1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/security.h> 77 #include <linux/syscalls.h> 78 #include <linux/compat.h> 79 #include <linux/kmod.h> 80 #include <linux/audit.h> 81 #include <linux/wireless.h> 82 #include <linux/nsproxy.h> 83 #include <linux/magic.h> 84 #include <linux/slab.h> 85 #include <linux/xattr.h> 86 #include <linux/nospec.h> 87 #include <linux/indirect_call_wrapper.h> 88 89 #include <linux/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 #include <net/wext.h> 94 #include <net/cls_cgroup.h> 95 96 #include <net/sock.h> 97 #include <linux/netfilter.h> 98 99 #include <linux/if_tun.h> 100 #include <linux/ipv6_route.h> 101 #include <linux/route.h> 102 #include <linux/sockios.h> 103 #include <net/busy_poll.h> 104 #include <linux/errqueue.h> 105 106 #ifdef CONFIG_NET_RX_BUSY_POLL 107 unsigned int sysctl_net_busy_read __read_mostly; 108 unsigned int sysctl_net_busy_poll __read_mostly; 109 #endif 110 111 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static __poll_t sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .read_iter = sock_read_iter, 139 .write_iter = sock_write_iter, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .release = sock_close, 147 .fasync = sock_fasync, 148 .sendpage = sock_sendpage, 149 .splice_write = generic_splice_sendpage, 150 .splice_read = sock_splice_read, 151 }; 152 153 /* 154 * The protocol list. Each protocol is registered in here. 155 */ 156 157 static DEFINE_SPINLOCK(net_family_lock); 158 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 159 160 /* 161 * Support routines. 162 * Move socket addresses back and forth across the kernel/user 163 * divide and look after the messy bits. 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 178 { 179 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 206 void __user *uaddr, int __user *ulen) 207 { 208 int err; 209 int len; 210 211 BUG_ON(klen > sizeof(struct sockaddr_storage)); 212 err = get_user(len, ulen); 213 if (err) 214 return err; 215 if (len > klen) 216 len = klen; 217 if (len < 0) 218 return -EINVAL; 219 if (len) { 220 if (audit_sockaddr(klen, kaddr)) 221 return -ENOMEM; 222 if (copy_to_user(uaddr, kaddr, len)) 223 return -EFAULT; 224 } 225 /* 226 * "fromlen shall refer to the value before truncation.." 227 * 1003.1g 228 */ 229 return __put_user(klen, ulen); 230 } 231 232 static struct kmem_cache *sock_inode_cachep __ro_after_init; 233 234 static struct inode *sock_alloc_inode(struct super_block *sb) 235 { 236 struct socket_alloc *ei; 237 struct socket_wq *wq; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 243 if (!wq) { 244 kmem_cache_free(sock_inode_cachep, ei); 245 return NULL; 246 } 247 init_waitqueue_head(&wq->wait); 248 wq->fasync_list = NULL; 249 wq->flags = 0; 250 ei->socket.wq = wq; 251 252 ei->socket.state = SS_UNCONNECTED; 253 ei->socket.flags = 0; 254 ei->socket.ops = NULL; 255 ei->socket.sk = NULL; 256 ei->socket.file = NULL; 257 258 return &ei->vfs_inode; 259 } 260 261 static void sock_destroy_inode(struct inode *inode) 262 { 263 struct socket_alloc *ei; 264 265 ei = container_of(inode, struct socket_alloc, vfs_inode); 266 kfree_rcu(ei->socket.wq, rcu); 267 kmem_cache_free(sock_inode_cachep, ei); 268 } 269 270 static void init_once(void *foo) 271 { 272 struct socket_alloc *ei = (struct socket_alloc *)foo; 273 274 inode_init_once(&ei->vfs_inode); 275 } 276 277 static void init_inodecache(void) 278 { 279 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 280 sizeof(struct socket_alloc), 281 0, 282 (SLAB_HWCACHE_ALIGN | 283 SLAB_RECLAIM_ACCOUNT | 284 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 285 init_once); 286 BUG_ON(sock_inode_cachep == NULL); 287 } 288 289 static const struct super_operations sockfs_ops = { 290 .alloc_inode = sock_alloc_inode, 291 .destroy_inode = sock_destroy_inode, 292 .statfs = simple_statfs, 293 }; 294 295 /* 296 * sockfs_dname() is called from d_path(). 297 */ 298 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 299 { 300 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 301 d_inode(dentry)->i_ino); 302 } 303 304 static const struct dentry_operations sockfs_dentry_operations = { 305 .d_dname = sockfs_dname, 306 }; 307 308 static int sockfs_xattr_get(const struct xattr_handler *handler, 309 struct dentry *dentry, struct inode *inode, 310 const char *suffix, void *value, size_t size) 311 { 312 if (value) { 313 if (dentry->d_name.len + 1 > size) 314 return -ERANGE; 315 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 316 } 317 return dentry->d_name.len + 1; 318 } 319 320 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 321 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 322 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 323 324 static const struct xattr_handler sockfs_xattr_handler = { 325 .name = XATTR_NAME_SOCKPROTONAME, 326 .get = sockfs_xattr_get, 327 }; 328 329 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 330 struct dentry *dentry, struct inode *inode, 331 const char *suffix, const void *value, 332 size_t size, int flags) 333 { 334 /* Handled by LSM. */ 335 return -EAGAIN; 336 } 337 338 static const struct xattr_handler sockfs_security_xattr_handler = { 339 .prefix = XATTR_SECURITY_PREFIX, 340 .set = sockfs_security_xattr_set, 341 }; 342 343 static const struct xattr_handler *sockfs_xattr_handlers[] = { 344 &sockfs_xattr_handler, 345 &sockfs_security_xattr_handler, 346 NULL 347 }; 348 349 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 350 int flags, const char *dev_name, void *data) 351 { 352 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 353 sockfs_xattr_handlers, 354 &sockfs_dentry_operations, SOCKFS_MAGIC); 355 } 356 357 static struct vfsmount *sock_mnt __read_mostly; 358 359 static struct file_system_type sock_fs_type = { 360 .name = "sockfs", 361 .mount = sockfs_mount, 362 .kill_sb = kill_anon_super, 363 }; 364 365 /* 366 * Obtains the first available file descriptor and sets it up for use. 367 * 368 * These functions create file structures and maps them to fd space 369 * of the current process. On success it returns file descriptor 370 * and file struct implicitly stored in sock->file. 371 * Note that another thread may close file descriptor before we return 372 * from this function. We use the fact that now we do not refer 373 * to socket after mapping. If one day we will need it, this 374 * function will increment ref. count on file by 1. 375 * 376 * In any case returned fd MAY BE not valid! 377 * This race condition is unavoidable 378 * with shared fd spaces, we cannot solve it inside kernel, 379 * but we take care of internal coherence yet. 380 */ 381 382 /** 383 * sock_alloc_file - Bind a &socket to a &file 384 * @sock: socket 385 * @flags: file status flags 386 * @dname: protocol name 387 * 388 * Returns the &file bound with @sock, implicitly storing it 389 * in sock->file. If dname is %NULL, sets to "". 390 * On failure the return is a ERR pointer (see linux/err.h). 391 * This function uses GFP_KERNEL internally. 392 */ 393 394 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 395 { 396 struct file *file; 397 398 if (!dname) 399 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 400 401 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 402 O_RDWR | (flags & O_NONBLOCK), 403 &socket_file_ops); 404 if (IS_ERR(file)) { 405 sock_release(sock); 406 return file; 407 } 408 409 sock->file = file; 410 file->private_data = sock; 411 return file; 412 } 413 EXPORT_SYMBOL(sock_alloc_file); 414 415 static int sock_map_fd(struct socket *sock, int flags) 416 { 417 struct file *newfile; 418 int fd = get_unused_fd_flags(flags); 419 if (unlikely(fd < 0)) { 420 sock_release(sock); 421 return fd; 422 } 423 424 newfile = sock_alloc_file(sock, flags, NULL); 425 if (!IS_ERR(newfile)) { 426 fd_install(fd, newfile); 427 return fd; 428 } 429 430 put_unused_fd(fd); 431 return PTR_ERR(newfile); 432 } 433 434 /** 435 * sock_from_file - Return the &socket bounded to @file. 436 * @file: file 437 * @err: pointer to an error code return 438 * 439 * On failure returns %NULL and assigns -ENOTSOCK to @err. 440 */ 441 442 struct socket *sock_from_file(struct file *file, int *err) 443 { 444 if (file->f_op == &socket_file_ops) 445 return file->private_data; /* set in sock_map_fd */ 446 447 *err = -ENOTSOCK; 448 return NULL; 449 } 450 EXPORT_SYMBOL(sock_from_file); 451 452 /** 453 * sockfd_lookup - Go from a file number to its socket slot 454 * @fd: file handle 455 * @err: pointer to an error code return 456 * 457 * The file handle passed in is locked and the socket it is bound 458 * to is returned. If an error occurs the err pointer is overwritten 459 * with a negative errno code and NULL is returned. The function checks 460 * for both invalid handles and passing a handle which is not a socket. 461 * 462 * On a success the socket object pointer is returned. 463 */ 464 465 struct socket *sockfd_lookup(int fd, int *err) 466 { 467 struct file *file; 468 struct socket *sock; 469 470 file = fget(fd); 471 if (!file) { 472 *err = -EBADF; 473 return NULL; 474 } 475 476 sock = sock_from_file(file, err); 477 if (!sock) 478 fput(file); 479 return sock; 480 } 481 EXPORT_SYMBOL(sockfd_lookup); 482 483 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 484 { 485 struct fd f = fdget(fd); 486 struct socket *sock; 487 488 *err = -EBADF; 489 if (f.file) { 490 sock = sock_from_file(f.file, err); 491 if (likely(sock)) { 492 *fput_needed = f.flags; 493 return sock; 494 } 495 fdput(f); 496 } 497 return NULL; 498 } 499 500 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 501 size_t size) 502 { 503 ssize_t len; 504 ssize_t used = 0; 505 506 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 507 if (len < 0) 508 return len; 509 used += len; 510 if (buffer) { 511 if (size < used) 512 return -ERANGE; 513 buffer += len; 514 } 515 516 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 517 used += len; 518 if (buffer) { 519 if (size < used) 520 return -ERANGE; 521 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 522 buffer += len; 523 } 524 525 return used; 526 } 527 528 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 529 { 530 int err = simple_setattr(dentry, iattr); 531 532 if (!err && (iattr->ia_valid & ATTR_UID)) { 533 struct socket *sock = SOCKET_I(d_inode(dentry)); 534 535 if (sock->sk) 536 sock->sk->sk_uid = iattr->ia_uid; 537 else 538 err = -ENOENT; 539 } 540 541 return err; 542 } 543 544 static const struct inode_operations sockfs_inode_ops = { 545 .listxattr = sockfs_listxattr, 546 .setattr = sockfs_setattr, 547 }; 548 549 /** 550 * sock_alloc - allocate a socket 551 * 552 * Allocate a new inode and socket object. The two are bound together 553 * and initialised. The socket is then returned. If we are out of inodes 554 * NULL is returned. This functions uses GFP_KERNEL internally. 555 */ 556 557 struct socket *sock_alloc(void) 558 { 559 struct inode *inode; 560 struct socket *sock; 561 562 inode = new_inode_pseudo(sock_mnt->mnt_sb); 563 if (!inode) 564 return NULL; 565 566 sock = SOCKET_I(inode); 567 568 inode->i_ino = get_next_ino(); 569 inode->i_mode = S_IFSOCK | S_IRWXUGO; 570 inode->i_uid = current_fsuid(); 571 inode->i_gid = current_fsgid(); 572 inode->i_op = &sockfs_inode_ops; 573 574 return sock; 575 } 576 EXPORT_SYMBOL(sock_alloc); 577 578 /** 579 * sock_release - close a socket 580 * @sock: socket to close 581 * 582 * The socket is released from the protocol stack if it has a release 583 * callback, and the inode is then released if the socket is bound to 584 * an inode not a file. 585 */ 586 587 static void __sock_release(struct socket *sock, struct inode *inode) 588 { 589 if (sock->ops) { 590 struct module *owner = sock->ops->owner; 591 592 if (inode) 593 inode_lock(inode); 594 sock->ops->release(sock); 595 sock->sk = NULL; 596 if (inode) 597 inode_unlock(inode); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (sock->wq->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 612 void sock_release(struct socket *sock) 613 { 614 __sock_release(sock, NULL); 615 } 616 EXPORT_SYMBOL(sock_release); 617 618 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 619 { 620 u8 flags = *tx_flags; 621 622 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 623 flags |= SKBTX_HW_TSTAMP; 624 625 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 626 flags |= SKBTX_SW_TSTAMP; 627 628 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 629 flags |= SKBTX_SCHED_TSTAMP; 630 631 *tx_flags = flags; 632 } 633 EXPORT_SYMBOL(__sock_tx_timestamp); 634 635 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 636 size_t)); 637 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 638 size_t)); 639 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 640 { 641 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 642 inet_sendmsg, sock, msg, 643 msg_data_left(msg)); 644 BUG_ON(ret == -EIOCBQUEUED); 645 return ret; 646 } 647 648 /** 649 * sock_sendmsg - send a message through @sock 650 * @sock: socket 651 * @msg: message to send 652 * 653 * Sends @msg through @sock, passing through LSM. 654 * Returns the number of bytes sent, or an error code. 655 */ 656 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 657 { 658 int err = security_socket_sendmsg(sock, msg, 659 msg_data_left(msg)); 660 661 return err ?: sock_sendmsg_nosec(sock, msg); 662 } 663 EXPORT_SYMBOL(sock_sendmsg); 664 665 /** 666 * kernel_sendmsg - send a message through @sock (kernel-space) 667 * @sock: socket 668 * @msg: message header 669 * @vec: kernel vec 670 * @num: vec array length 671 * @size: total message data size 672 * 673 * Builds the message data with @vec and sends it through @sock. 674 * Returns the number of bytes sent, or an error code. 675 */ 676 677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 678 struct kvec *vec, size_t num, size_t size) 679 { 680 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 681 return sock_sendmsg(sock, msg); 682 } 683 EXPORT_SYMBOL(kernel_sendmsg); 684 685 /** 686 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 687 * @sk: sock 688 * @msg: message header 689 * @vec: output s/g array 690 * @num: output s/g array length 691 * @size: total message data size 692 * 693 * Builds the message data with @vec and sends it through @sock. 694 * Returns the number of bytes sent, or an error code. 695 * Caller must hold @sk. 696 */ 697 698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 699 struct kvec *vec, size_t num, size_t size) 700 { 701 struct socket *sock = sk->sk_socket; 702 703 if (!sock->ops->sendmsg_locked) 704 return sock_no_sendmsg_locked(sk, msg, size); 705 706 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 707 708 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 709 } 710 EXPORT_SYMBOL(kernel_sendmsg_locked); 711 712 static bool skb_is_err_queue(const struct sk_buff *skb) 713 { 714 /* pkt_type of skbs enqueued on the error queue are set to 715 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 716 * in recvmsg, since skbs received on a local socket will never 717 * have a pkt_type of PACKET_OUTGOING. 718 */ 719 return skb->pkt_type == PACKET_OUTGOING; 720 } 721 722 /* On transmit, software and hardware timestamps are returned independently. 723 * As the two skb clones share the hardware timestamp, which may be updated 724 * before the software timestamp is received, a hardware TX timestamp may be 725 * returned only if there is no software TX timestamp. Ignore false software 726 * timestamps, which may be made in the __sock_recv_timestamp() call when the 727 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 728 * hardware timestamp. 729 */ 730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 731 { 732 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 733 } 734 735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 736 { 737 struct scm_ts_pktinfo ts_pktinfo; 738 struct net_device *orig_dev; 739 740 if (!skb_mac_header_was_set(skb)) 741 return; 742 743 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 744 745 rcu_read_lock(); 746 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 747 if (orig_dev) 748 ts_pktinfo.if_index = orig_dev->ifindex; 749 rcu_read_unlock(); 750 751 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 753 sizeof(ts_pktinfo), &ts_pktinfo); 754 } 755 756 /* 757 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 758 */ 759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 760 struct sk_buff *skb) 761 { 762 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 763 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 764 struct scm_timestamping_internal tss; 765 766 int empty = 1, false_tstamp = 0; 767 struct skb_shared_hwtstamps *shhwtstamps = 768 skb_hwtstamps(skb); 769 770 /* Race occurred between timestamp enabling and packet 771 receiving. Fill in the current time for now. */ 772 if (need_software_tstamp && skb->tstamp == 0) { 773 __net_timestamp(skb); 774 false_tstamp = 1; 775 } 776 777 if (need_software_tstamp) { 778 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 779 if (new_tstamp) { 780 struct __kernel_sock_timeval tv; 781 782 skb_get_new_timestamp(skb, &tv); 783 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 784 sizeof(tv), &tv); 785 } else { 786 struct __kernel_old_timeval tv; 787 788 skb_get_timestamp(skb, &tv); 789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 790 sizeof(tv), &tv); 791 } 792 } else { 793 if (new_tstamp) { 794 struct __kernel_timespec ts; 795 796 skb_get_new_timestampns(skb, &ts); 797 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 798 sizeof(ts), &ts); 799 } else { 800 struct timespec ts; 801 802 skb_get_timestampns(skb, &ts); 803 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 804 sizeof(ts), &ts); 805 } 806 } 807 } 808 809 memset(&tss, 0, sizeof(tss)); 810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 811 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 812 empty = 0; 813 if (shhwtstamps && 814 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 815 !skb_is_swtx_tstamp(skb, false_tstamp) && 816 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 817 empty = 0; 818 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 819 !skb_is_err_queue(skb)) 820 put_ts_pktinfo(msg, skb); 821 } 822 if (!empty) { 823 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 824 put_cmsg_scm_timestamping64(msg, &tss); 825 else 826 put_cmsg_scm_timestamping(msg, &tss); 827 828 if (skb_is_err_queue(skb) && skb->len && 829 SKB_EXT_ERR(skb)->opt_stats) 830 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 831 skb->len, skb->data); 832 } 833 } 834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 835 836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 837 struct sk_buff *skb) 838 { 839 int ack; 840 841 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 842 return; 843 if (!skb->wifi_acked_valid) 844 return; 845 846 ack = skb->wifi_acked; 847 848 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 849 } 850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 851 852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 853 struct sk_buff *skb) 854 { 855 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 856 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 857 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 858 } 859 860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 861 struct sk_buff *skb) 862 { 863 sock_recv_timestamp(msg, sk, skb); 864 sock_recv_drops(msg, sk, skb); 865 } 866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 867 868 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 869 size_t, int)); 870 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 871 size_t, int)); 872 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 873 int flags) 874 { 875 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 876 inet_recvmsg, sock, msg, msg_data_left(msg), 877 flags); 878 } 879 880 /** 881 * sock_recvmsg - receive a message from @sock 882 * @sock: socket 883 * @msg: message to receive 884 * @flags: message flags 885 * 886 * Receives @msg from @sock, passing through LSM. Returns the total number 887 * of bytes received, or an error. 888 */ 889 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 890 { 891 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 892 893 return err ?: sock_recvmsg_nosec(sock, msg, flags); 894 } 895 EXPORT_SYMBOL(sock_recvmsg); 896 897 /** 898 * kernel_recvmsg - Receive a message from a socket (kernel space) 899 * @sock: The socket to receive the message from 900 * @msg: Received message 901 * @vec: Input s/g array for message data 902 * @num: Size of input s/g array 903 * @size: Number of bytes to read 904 * @flags: Message flags (MSG_DONTWAIT, etc...) 905 * 906 * On return the msg structure contains the scatter/gather array passed in the 907 * vec argument. The array is modified so that it consists of the unfilled 908 * portion of the original array. 909 * 910 * The returned value is the total number of bytes received, or an error. 911 */ 912 913 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 914 struct kvec *vec, size_t num, size_t size, int flags) 915 { 916 mm_segment_t oldfs = get_fs(); 917 int result; 918 919 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 920 set_fs(KERNEL_DS); 921 result = sock_recvmsg(sock, msg, flags); 922 set_fs(oldfs); 923 return result; 924 } 925 EXPORT_SYMBOL(kernel_recvmsg); 926 927 static ssize_t sock_sendpage(struct file *file, struct page *page, 928 int offset, size_t size, loff_t *ppos, int more) 929 { 930 struct socket *sock; 931 int flags; 932 933 sock = file->private_data; 934 935 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 936 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 937 flags |= more; 938 939 return kernel_sendpage(sock, page, offset, size, flags); 940 } 941 942 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 943 struct pipe_inode_info *pipe, size_t len, 944 unsigned int flags) 945 { 946 struct socket *sock = file->private_data; 947 948 if (unlikely(!sock->ops->splice_read)) 949 return generic_file_splice_read(file, ppos, pipe, len, flags); 950 951 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 952 } 953 954 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 955 { 956 struct file *file = iocb->ki_filp; 957 struct socket *sock = file->private_data; 958 struct msghdr msg = {.msg_iter = *to, 959 .msg_iocb = iocb}; 960 ssize_t res; 961 962 if (file->f_flags & O_NONBLOCK) 963 msg.msg_flags = MSG_DONTWAIT; 964 965 if (iocb->ki_pos != 0) 966 return -ESPIPE; 967 968 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 969 return 0; 970 971 res = sock_recvmsg(sock, &msg, msg.msg_flags); 972 *to = msg.msg_iter; 973 return res; 974 } 975 976 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 977 { 978 struct file *file = iocb->ki_filp; 979 struct socket *sock = file->private_data; 980 struct msghdr msg = {.msg_iter = *from, 981 .msg_iocb = iocb}; 982 ssize_t res; 983 984 if (iocb->ki_pos != 0) 985 return -ESPIPE; 986 987 if (file->f_flags & O_NONBLOCK) 988 msg.msg_flags = MSG_DONTWAIT; 989 990 if (sock->type == SOCK_SEQPACKET) 991 msg.msg_flags |= MSG_EOR; 992 993 res = sock_sendmsg(sock, &msg); 994 *from = msg.msg_iter; 995 return res; 996 } 997 998 /* 999 * Atomic setting of ioctl hooks to avoid race 1000 * with module unload. 1001 */ 1002 1003 static DEFINE_MUTEX(br_ioctl_mutex); 1004 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1005 1006 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1007 { 1008 mutex_lock(&br_ioctl_mutex); 1009 br_ioctl_hook = hook; 1010 mutex_unlock(&br_ioctl_mutex); 1011 } 1012 EXPORT_SYMBOL(brioctl_set); 1013 1014 static DEFINE_MUTEX(vlan_ioctl_mutex); 1015 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1016 1017 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1018 { 1019 mutex_lock(&vlan_ioctl_mutex); 1020 vlan_ioctl_hook = hook; 1021 mutex_unlock(&vlan_ioctl_mutex); 1022 } 1023 EXPORT_SYMBOL(vlan_ioctl_set); 1024 1025 static DEFINE_MUTEX(dlci_ioctl_mutex); 1026 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1027 1028 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1029 { 1030 mutex_lock(&dlci_ioctl_mutex); 1031 dlci_ioctl_hook = hook; 1032 mutex_unlock(&dlci_ioctl_mutex); 1033 } 1034 EXPORT_SYMBOL(dlci_ioctl_set); 1035 1036 static long sock_do_ioctl(struct net *net, struct socket *sock, 1037 unsigned int cmd, unsigned long arg) 1038 { 1039 int err; 1040 void __user *argp = (void __user *)arg; 1041 1042 err = sock->ops->ioctl(sock, cmd, arg); 1043 1044 /* 1045 * If this ioctl is unknown try to hand it down 1046 * to the NIC driver. 1047 */ 1048 if (err != -ENOIOCTLCMD) 1049 return err; 1050 1051 if (cmd == SIOCGIFCONF) { 1052 struct ifconf ifc; 1053 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1054 return -EFAULT; 1055 rtnl_lock(); 1056 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1057 rtnl_unlock(); 1058 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1059 err = -EFAULT; 1060 } else { 1061 struct ifreq ifr; 1062 bool need_copyout; 1063 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1064 return -EFAULT; 1065 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1066 if (!err && need_copyout) 1067 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1068 return -EFAULT; 1069 } 1070 return err; 1071 } 1072 1073 /* 1074 * With an ioctl, arg may well be a user mode pointer, but we don't know 1075 * what to do with it - that's up to the protocol still. 1076 */ 1077 1078 /** 1079 * get_net_ns - increment the refcount of the network namespace 1080 * @ns: common namespace (net) 1081 * 1082 * Returns the net's common namespace. 1083 */ 1084 1085 struct ns_common *get_net_ns(struct ns_common *ns) 1086 { 1087 return &get_net(container_of(ns, struct net, ns))->ns; 1088 } 1089 EXPORT_SYMBOL_GPL(get_net_ns); 1090 1091 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1092 { 1093 struct socket *sock; 1094 struct sock *sk; 1095 void __user *argp = (void __user *)arg; 1096 int pid, err; 1097 struct net *net; 1098 1099 sock = file->private_data; 1100 sk = sock->sk; 1101 net = sock_net(sk); 1102 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1103 struct ifreq ifr; 1104 bool need_copyout; 1105 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1106 return -EFAULT; 1107 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1108 if (!err && need_copyout) 1109 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1110 return -EFAULT; 1111 } else 1112 #ifdef CONFIG_WEXT_CORE 1113 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1114 err = wext_handle_ioctl(net, cmd, argp); 1115 } else 1116 #endif 1117 switch (cmd) { 1118 case FIOSETOWN: 1119 case SIOCSPGRP: 1120 err = -EFAULT; 1121 if (get_user(pid, (int __user *)argp)) 1122 break; 1123 err = f_setown(sock->file, pid, 1); 1124 break; 1125 case FIOGETOWN: 1126 case SIOCGPGRP: 1127 err = put_user(f_getown(sock->file), 1128 (int __user *)argp); 1129 break; 1130 case SIOCGIFBR: 1131 case SIOCSIFBR: 1132 case SIOCBRADDBR: 1133 case SIOCBRDELBR: 1134 err = -ENOPKG; 1135 if (!br_ioctl_hook) 1136 request_module("bridge"); 1137 1138 mutex_lock(&br_ioctl_mutex); 1139 if (br_ioctl_hook) 1140 err = br_ioctl_hook(net, cmd, argp); 1141 mutex_unlock(&br_ioctl_mutex); 1142 break; 1143 case SIOCGIFVLAN: 1144 case SIOCSIFVLAN: 1145 err = -ENOPKG; 1146 if (!vlan_ioctl_hook) 1147 request_module("8021q"); 1148 1149 mutex_lock(&vlan_ioctl_mutex); 1150 if (vlan_ioctl_hook) 1151 err = vlan_ioctl_hook(net, argp); 1152 mutex_unlock(&vlan_ioctl_mutex); 1153 break; 1154 case SIOCADDDLCI: 1155 case SIOCDELDLCI: 1156 err = -ENOPKG; 1157 if (!dlci_ioctl_hook) 1158 request_module("dlci"); 1159 1160 mutex_lock(&dlci_ioctl_mutex); 1161 if (dlci_ioctl_hook) 1162 err = dlci_ioctl_hook(cmd, argp); 1163 mutex_unlock(&dlci_ioctl_mutex); 1164 break; 1165 case SIOCGSKNS: 1166 err = -EPERM; 1167 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1168 break; 1169 1170 err = open_related_ns(&net->ns, get_net_ns); 1171 break; 1172 case SIOCGSTAMP_OLD: 1173 case SIOCGSTAMPNS_OLD: 1174 if (!sock->ops->gettstamp) { 1175 err = -ENOIOCTLCMD; 1176 break; 1177 } 1178 err = sock->ops->gettstamp(sock, argp, 1179 cmd == SIOCGSTAMP_OLD, 1180 !IS_ENABLED(CONFIG_64BIT)); 1181 break; 1182 case SIOCGSTAMP_NEW: 1183 case SIOCGSTAMPNS_NEW: 1184 if (!sock->ops->gettstamp) { 1185 err = -ENOIOCTLCMD; 1186 break; 1187 } 1188 err = sock->ops->gettstamp(sock, argp, 1189 cmd == SIOCGSTAMP_NEW, 1190 false); 1191 break; 1192 default: 1193 err = sock_do_ioctl(net, sock, cmd, arg); 1194 break; 1195 } 1196 return err; 1197 } 1198 1199 /** 1200 * sock_create_lite - creates a socket 1201 * @family: protocol family (AF_INET, ...) 1202 * @type: communication type (SOCK_STREAM, ...) 1203 * @protocol: protocol (0, ...) 1204 * @res: new socket 1205 * 1206 * Creates a new socket and assigns it to @res, passing through LSM. 1207 * The new socket initialization is not complete, see kernel_accept(). 1208 * Returns 0 or an error. On failure @res is set to %NULL. 1209 * This function internally uses GFP_KERNEL. 1210 */ 1211 1212 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1213 { 1214 int err; 1215 struct socket *sock = NULL; 1216 1217 err = security_socket_create(family, type, protocol, 1); 1218 if (err) 1219 goto out; 1220 1221 sock = sock_alloc(); 1222 if (!sock) { 1223 err = -ENOMEM; 1224 goto out; 1225 } 1226 1227 sock->type = type; 1228 err = security_socket_post_create(sock, family, type, protocol, 1); 1229 if (err) 1230 goto out_release; 1231 1232 out: 1233 *res = sock; 1234 return err; 1235 out_release: 1236 sock_release(sock); 1237 sock = NULL; 1238 goto out; 1239 } 1240 EXPORT_SYMBOL(sock_create_lite); 1241 1242 /* No kernel lock held - perfect */ 1243 static __poll_t sock_poll(struct file *file, poll_table *wait) 1244 { 1245 struct socket *sock = file->private_data; 1246 __poll_t events = poll_requested_events(wait), flag = 0; 1247 1248 if (!sock->ops->poll) 1249 return 0; 1250 1251 if (sk_can_busy_loop(sock->sk)) { 1252 /* poll once if requested by the syscall */ 1253 if (events & POLL_BUSY_LOOP) 1254 sk_busy_loop(sock->sk, 1); 1255 1256 /* if this socket can poll_ll, tell the system call */ 1257 flag = POLL_BUSY_LOOP; 1258 } 1259 1260 return sock->ops->poll(file, sock, wait) | flag; 1261 } 1262 1263 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1264 { 1265 struct socket *sock = file->private_data; 1266 1267 return sock->ops->mmap(file, sock, vma); 1268 } 1269 1270 static int sock_close(struct inode *inode, struct file *filp) 1271 { 1272 __sock_release(SOCKET_I(inode), inode); 1273 return 0; 1274 } 1275 1276 /* 1277 * Update the socket async list 1278 * 1279 * Fasync_list locking strategy. 1280 * 1281 * 1. fasync_list is modified only under process context socket lock 1282 * i.e. under semaphore. 1283 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1284 * or under socket lock 1285 */ 1286 1287 static int sock_fasync(int fd, struct file *filp, int on) 1288 { 1289 struct socket *sock = filp->private_data; 1290 struct sock *sk = sock->sk; 1291 struct socket_wq *wq; 1292 1293 if (sk == NULL) 1294 return -EINVAL; 1295 1296 lock_sock(sk); 1297 wq = sock->wq; 1298 fasync_helper(fd, filp, on, &wq->fasync_list); 1299 1300 if (!wq->fasync_list) 1301 sock_reset_flag(sk, SOCK_FASYNC); 1302 else 1303 sock_set_flag(sk, SOCK_FASYNC); 1304 1305 release_sock(sk); 1306 return 0; 1307 } 1308 1309 /* This function may be called only under rcu_lock */ 1310 1311 int sock_wake_async(struct socket_wq *wq, int how, int band) 1312 { 1313 if (!wq || !wq->fasync_list) 1314 return -1; 1315 1316 switch (how) { 1317 case SOCK_WAKE_WAITD: 1318 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1319 break; 1320 goto call_kill; 1321 case SOCK_WAKE_SPACE: 1322 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1323 break; 1324 /* fall through */ 1325 case SOCK_WAKE_IO: 1326 call_kill: 1327 kill_fasync(&wq->fasync_list, SIGIO, band); 1328 break; 1329 case SOCK_WAKE_URG: 1330 kill_fasync(&wq->fasync_list, SIGURG, band); 1331 } 1332 1333 return 0; 1334 } 1335 EXPORT_SYMBOL(sock_wake_async); 1336 1337 /** 1338 * __sock_create - creates a socket 1339 * @net: net namespace 1340 * @family: protocol family (AF_INET, ...) 1341 * @type: communication type (SOCK_STREAM, ...) 1342 * @protocol: protocol (0, ...) 1343 * @res: new socket 1344 * @kern: boolean for kernel space sockets 1345 * 1346 * Creates a new socket and assigns it to @res, passing through LSM. 1347 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1348 * be set to true if the socket resides in kernel space. 1349 * This function internally uses GFP_KERNEL. 1350 */ 1351 1352 int __sock_create(struct net *net, int family, int type, int protocol, 1353 struct socket **res, int kern) 1354 { 1355 int err; 1356 struct socket *sock; 1357 const struct net_proto_family *pf; 1358 1359 /* 1360 * Check protocol is in range 1361 */ 1362 if (family < 0 || family >= NPROTO) 1363 return -EAFNOSUPPORT; 1364 if (type < 0 || type >= SOCK_MAX) 1365 return -EINVAL; 1366 1367 /* Compatibility. 1368 1369 This uglymoron is moved from INET layer to here to avoid 1370 deadlock in module load. 1371 */ 1372 if (family == PF_INET && type == SOCK_PACKET) { 1373 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1374 current->comm); 1375 family = PF_PACKET; 1376 } 1377 1378 err = security_socket_create(family, type, protocol, kern); 1379 if (err) 1380 return err; 1381 1382 /* 1383 * Allocate the socket and allow the family to set things up. if 1384 * the protocol is 0, the family is instructed to select an appropriate 1385 * default. 1386 */ 1387 sock = sock_alloc(); 1388 if (!sock) { 1389 net_warn_ratelimited("socket: no more sockets\n"); 1390 return -ENFILE; /* Not exactly a match, but its the 1391 closest posix thing */ 1392 } 1393 1394 sock->type = type; 1395 1396 #ifdef CONFIG_MODULES 1397 /* Attempt to load a protocol module if the find failed. 1398 * 1399 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1400 * requested real, full-featured networking support upon configuration. 1401 * Otherwise module support will break! 1402 */ 1403 if (rcu_access_pointer(net_families[family]) == NULL) 1404 request_module("net-pf-%d", family); 1405 #endif 1406 1407 rcu_read_lock(); 1408 pf = rcu_dereference(net_families[family]); 1409 err = -EAFNOSUPPORT; 1410 if (!pf) 1411 goto out_release; 1412 1413 /* 1414 * We will call the ->create function, that possibly is in a loadable 1415 * module, so we have to bump that loadable module refcnt first. 1416 */ 1417 if (!try_module_get(pf->owner)) 1418 goto out_release; 1419 1420 /* Now protected by module ref count */ 1421 rcu_read_unlock(); 1422 1423 err = pf->create(net, sock, protocol, kern); 1424 if (err < 0) 1425 goto out_module_put; 1426 1427 /* 1428 * Now to bump the refcnt of the [loadable] module that owns this 1429 * socket at sock_release time we decrement its refcnt. 1430 */ 1431 if (!try_module_get(sock->ops->owner)) 1432 goto out_module_busy; 1433 1434 /* 1435 * Now that we're done with the ->create function, the [loadable] 1436 * module can have its refcnt decremented 1437 */ 1438 module_put(pf->owner); 1439 err = security_socket_post_create(sock, family, type, protocol, kern); 1440 if (err) 1441 goto out_sock_release; 1442 *res = sock; 1443 1444 return 0; 1445 1446 out_module_busy: 1447 err = -EAFNOSUPPORT; 1448 out_module_put: 1449 sock->ops = NULL; 1450 module_put(pf->owner); 1451 out_sock_release: 1452 sock_release(sock); 1453 return err; 1454 1455 out_release: 1456 rcu_read_unlock(); 1457 goto out_sock_release; 1458 } 1459 EXPORT_SYMBOL(__sock_create); 1460 1461 /** 1462 * sock_create - creates a socket 1463 * @family: protocol family (AF_INET, ...) 1464 * @type: communication type (SOCK_STREAM, ...) 1465 * @protocol: protocol (0, ...) 1466 * @res: new socket 1467 * 1468 * A wrapper around __sock_create(). 1469 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1470 */ 1471 1472 int sock_create(int family, int type, int protocol, struct socket **res) 1473 { 1474 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1475 } 1476 EXPORT_SYMBOL(sock_create); 1477 1478 /** 1479 * sock_create_kern - creates a socket (kernel space) 1480 * @net: net namespace 1481 * @family: protocol family (AF_INET, ...) 1482 * @type: communication type (SOCK_STREAM, ...) 1483 * @protocol: protocol (0, ...) 1484 * @res: new socket 1485 * 1486 * A wrapper around __sock_create(). 1487 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1488 */ 1489 1490 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1491 { 1492 return __sock_create(net, family, type, protocol, res, 1); 1493 } 1494 EXPORT_SYMBOL(sock_create_kern); 1495 1496 int __sys_socket(int family, int type, int protocol) 1497 { 1498 int retval; 1499 struct socket *sock; 1500 int flags; 1501 1502 /* Check the SOCK_* constants for consistency. */ 1503 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1504 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1505 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1506 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1507 1508 flags = type & ~SOCK_TYPE_MASK; 1509 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1510 return -EINVAL; 1511 type &= SOCK_TYPE_MASK; 1512 1513 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1514 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1515 1516 retval = sock_create(family, type, protocol, &sock); 1517 if (retval < 0) 1518 return retval; 1519 1520 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1521 } 1522 1523 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1524 { 1525 return __sys_socket(family, type, protocol); 1526 } 1527 1528 /* 1529 * Create a pair of connected sockets. 1530 */ 1531 1532 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1533 { 1534 struct socket *sock1, *sock2; 1535 int fd1, fd2, err; 1536 struct file *newfile1, *newfile2; 1537 int flags; 1538 1539 flags = type & ~SOCK_TYPE_MASK; 1540 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1541 return -EINVAL; 1542 type &= SOCK_TYPE_MASK; 1543 1544 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1545 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1546 1547 /* 1548 * reserve descriptors and make sure we won't fail 1549 * to return them to userland. 1550 */ 1551 fd1 = get_unused_fd_flags(flags); 1552 if (unlikely(fd1 < 0)) 1553 return fd1; 1554 1555 fd2 = get_unused_fd_flags(flags); 1556 if (unlikely(fd2 < 0)) { 1557 put_unused_fd(fd1); 1558 return fd2; 1559 } 1560 1561 err = put_user(fd1, &usockvec[0]); 1562 if (err) 1563 goto out; 1564 1565 err = put_user(fd2, &usockvec[1]); 1566 if (err) 1567 goto out; 1568 1569 /* 1570 * Obtain the first socket and check if the underlying protocol 1571 * supports the socketpair call. 1572 */ 1573 1574 err = sock_create(family, type, protocol, &sock1); 1575 if (unlikely(err < 0)) 1576 goto out; 1577 1578 err = sock_create(family, type, protocol, &sock2); 1579 if (unlikely(err < 0)) { 1580 sock_release(sock1); 1581 goto out; 1582 } 1583 1584 err = security_socket_socketpair(sock1, sock2); 1585 if (unlikely(err)) { 1586 sock_release(sock2); 1587 sock_release(sock1); 1588 goto out; 1589 } 1590 1591 err = sock1->ops->socketpair(sock1, sock2); 1592 if (unlikely(err < 0)) { 1593 sock_release(sock2); 1594 sock_release(sock1); 1595 goto out; 1596 } 1597 1598 newfile1 = sock_alloc_file(sock1, flags, NULL); 1599 if (IS_ERR(newfile1)) { 1600 err = PTR_ERR(newfile1); 1601 sock_release(sock2); 1602 goto out; 1603 } 1604 1605 newfile2 = sock_alloc_file(sock2, flags, NULL); 1606 if (IS_ERR(newfile2)) { 1607 err = PTR_ERR(newfile2); 1608 fput(newfile1); 1609 goto out; 1610 } 1611 1612 audit_fd_pair(fd1, fd2); 1613 1614 fd_install(fd1, newfile1); 1615 fd_install(fd2, newfile2); 1616 return 0; 1617 1618 out: 1619 put_unused_fd(fd2); 1620 put_unused_fd(fd1); 1621 return err; 1622 } 1623 1624 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1625 int __user *, usockvec) 1626 { 1627 return __sys_socketpair(family, type, protocol, usockvec); 1628 } 1629 1630 /* 1631 * Bind a name to a socket. Nothing much to do here since it's 1632 * the protocol's responsibility to handle the local address. 1633 * 1634 * We move the socket address to kernel space before we call 1635 * the protocol layer (having also checked the address is ok). 1636 */ 1637 1638 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1639 { 1640 struct socket *sock; 1641 struct sockaddr_storage address; 1642 int err, fput_needed; 1643 1644 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1645 if (sock) { 1646 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1647 if (!err) { 1648 err = security_socket_bind(sock, 1649 (struct sockaddr *)&address, 1650 addrlen); 1651 if (!err) 1652 err = sock->ops->bind(sock, 1653 (struct sockaddr *) 1654 &address, addrlen); 1655 } 1656 fput_light(sock->file, fput_needed); 1657 } 1658 return err; 1659 } 1660 1661 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1662 { 1663 return __sys_bind(fd, umyaddr, addrlen); 1664 } 1665 1666 /* 1667 * Perform a listen. Basically, we allow the protocol to do anything 1668 * necessary for a listen, and if that works, we mark the socket as 1669 * ready for listening. 1670 */ 1671 1672 int __sys_listen(int fd, int backlog) 1673 { 1674 struct socket *sock; 1675 int err, fput_needed; 1676 int somaxconn; 1677 1678 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1679 if (sock) { 1680 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1681 if ((unsigned int)backlog > somaxconn) 1682 backlog = somaxconn; 1683 1684 err = security_socket_listen(sock, backlog); 1685 if (!err) 1686 err = sock->ops->listen(sock, backlog); 1687 1688 fput_light(sock->file, fput_needed); 1689 } 1690 return err; 1691 } 1692 1693 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1694 { 1695 return __sys_listen(fd, backlog); 1696 } 1697 1698 /* 1699 * For accept, we attempt to create a new socket, set up the link 1700 * with the client, wake up the client, then return the new 1701 * connected fd. We collect the address of the connector in kernel 1702 * space and move it to user at the very end. This is unclean because 1703 * we open the socket then return an error. 1704 * 1705 * 1003.1g adds the ability to recvmsg() to query connection pending 1706 * status to recvmsg. We need to add that support in a way thats 1707 * clean when we restructure accept also. 1708 */ 1709 1710 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1711 int __user *upeer_addrlen, int flags) 1712 { 1713 struct socket *sock, *newsock; 1714 struct file *newfile; 1715 int err, len, newfd, fput_needed; 1716 struct sockaddr_storage address; 1717 1718 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1719 return -EINVAL; 1720 1721 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1722 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1723 1724 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1725 if (!sock) 1726 goto out; 1727 1728 err = -ENFILE; 1729 newsock = sock_alloc(); 1730 if (!newsock) 1731 goto out_put; 1732 1733 newsock->type = sock->type; 1734 newsock->ops = sock->ops; 1735 1736 /* 1737 * We don't need try_module_get here, as the listening socket (sock) 1738 * has the protocol module (sock->ops->owner) held. 1739 */ 1740 __module_get(newsock->ops->owner); 1741 1742 newfd = get_unused_fd_flags(flags); 1743 if (unlikely(newfd < 0)) { 1744 err = newfd; 1745 sock_release(newsock); 1746 goto out_put; 1747 } 1748 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1749 if (IS_ERR(newfile)) { 1750 err = PTR_ERR(newfile); 1751 put_unused_fd(newfd); 1752 goto out_put; 1753 } 1754 1755 err = security_socket_accept(sock, newsock); 1756 if (err) 1757 goto out_fd; 1758 1759 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1760 if (err < 0) 1761 goto out_fd; 1762 1763 if (upeer_sockaddr) { 1764 len = newsock->ops->getname(newsock, 1765 (struct sockaddr *)&address, 2); 1766 if (len < 0) { 1767 err = -ECONNABORTED; 1768 goto out_fd; 1769 } 1770 err = move_addr_to_user(&address, 1771 len, upeer_sockaddr, upeer_addrlen); 1772 if (err < 0) 1773 goto out_fd; 1774 } 1775 1776 /* File flags are not inherited via accept() unlike another OSes. */ 1777 1778 fd_install(newfd, newfile); 1779 err = newfd; 1780 1781 out_put: 1782 fput_light(sock->file, fput_needed); 1783 out: 1784 return err; 1785 out_fd: 1786 fput(newfile); 1787 put_unused_fd(newfd); 1788 goto out_put; 1789 } 1790 1791 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1792 int __user *, upeer_addrlen, int, flags) 1793 { 1794 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1795 } 1796 1797 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1798 int __user *, upeer_addrlen) 1799 { 1800 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1801 } 1802 1803 /* 1804 * Attempt to connect to a socket with the server address. The address 1805 * is in user space so we verify it is OK and move it to kernel space. 1806 * 1807 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1808 * break bindings 1809 * 1810 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1811 * other SEQPACKET protocols that take time to connect() as it doesn't 1812 * include the -EINPROGRESS status for such sockets. 1813 */ 1814 1815 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1816 { 1817 struct socket *sock; 1818 struct sockaddr_storage address; 1819 int err, fput_needed; 1820 1821 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1822 if (!sock) 1823 goto out; 1824 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1825 if (err < 0) 1826 goto out_put; 1827 1828 err = 1829 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1830 if (err) 1831 goto out_put; 1832 1833 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1834 sock->file->f_flags); 1835 out_put: 1836 fput_light(sock->file, fput_needed); 1837 out: 1838 return err; 1839 } 1840 1841 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1842 int, addrlen) 1843 { 1844 return __sys_connect(fd, uservaddr, addrlen); 1845 } 1846 1847 /* 1848 * Get the local address ('name') of a socket object. Move the obtained 1849 * name to user space. 1850 */ 1851 1852 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1853 int __user *usockaddr_len) 1854 { 1855 struct socket *sock; 1856 struct sockaddr_storage address; 1857 int err, fput_needed; 1858 1859 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1860 if (!sock) 1861 goto out; 1862 1863 err = security_socket_getsockname(sock); 1864 if (err) 1865 goto out_put; 1866 1867 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1868 if (err < 0) 1869 goto out_put; 1870 /* "err" is actually length in this case */ 1871 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1872 1873 out_put: 1874 fput_light(sock->file, fput_needed); 1875 out: 1876 return err; 1877 } 1878 1879 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1880 int __user *, usockaddr_len) 1881 { 1882 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1883 } 1884 1885 /* 1886 * Get the remote address ('name') of a socket object. Move the obtained 1887 * name to user space. 1888 */ 1889 1890 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1891 int __user *usockaddr_len) 1892 { 1893 struct socket *sock; 1894 struct sockaddr_storage address; 1895 int err, fput_needed; 1896 1897 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1898 if (sock != NULL) { 1899 err = security_socket_getpeername(sock); 1900 if (err) { 1901 fput_light(sock->file, fput_needed); 1902 return err; 1903 } 1904 1905 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1906 if (err >= 0) 1907 /* "err" is actually length in this case */ 1908 err = move_addr_to_user(&address, err, usockaddr, 1909 usockaddr_len); 1910 fput_light(sock->file, fput_needed); 1911 } 1912 return err; 1913 } 1914 1915 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1916 int __user *, usockaddr_len) 1917 { 1918 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1919 } 1920 1921 /* 1922 * Send a datagram to a given address. We move the address into kernel 1923 * space and check the user space data area is readable before invoking 1924 * the protocol. 1925 */ 1926 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1927 struct sockaddr __user *addr, int addr_len) 1928 { 1929 struct socket *sock; 1930 struct sockaddr_storage address; 1931 int err; 1932 struct msghdr msg; 1933 struct iovec iov; 1934 int fput_needed; 1935 1936 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1937 if (unlikely(err)) 1938 return err; 1939 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1940 if (!sock) 1941 goto out; 1942 1943 msg.msg_name = NULL; 1944 msg.msg_control = NULL; 1945 msg.msg_controllen = 0; 1946 msg.msg_namelen = 0; 1947 if (addr) { 1948 err = move_addr_to_kernel(addr, addr_len, &address); 1949 if (err < 0) 1950 goto out_put; 1951 msg.msg_name = (struct sockaddr *)&address; 1952 msg.msg_namelen = addr_len; 1953 } 1954 if (sock->file->f_flags & O_NONBLOCK) 1955 flags |= MSG_DONTWAIT; 1956 msg.msg_flags = flags; 1957 err = sock_sendmsg(sock, &msg); 1958 1959 out_put: 1960 fput_light(sock->file, fput_needed); 1961 out: 1962 return err; 1963 } 1964 1965 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1966 unsigned int, flags, struct sockaddr __user *, addr, 1967 int, addr_len) 1968 { 1969 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1970 } 1971 1972 /* 1973 * Send a datagram down a socket. 1974 */ 1975 1976 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1977 unsigned int, flags) 1978 { 1979 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1980 } 1981 1982 /* 1983 * Receive a frame from the socket and optionally record the address of the 1984 * sender. We verify the buffers are writable and if needed move the 1985 * sender address from kernel to user space. 1986 */ 1987 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1988 struct sockaddr __user *addr, int __user *addr_len) 1989 { 1990 struct socket *sock; 1991 struct iovec iov; 1992 struct msghdr msg; 1993 struct sockaddr_storage address; 1994 int err, err2; 1995 int fput_needed; 1996 1997 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1998 if (unlikely(err)) 1999 return err; 2000 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2001 if (!sock) 2002 goto out; 2003 2004 msg.msg_control = NULL; 2005 msg.msg_controllen = 0; 2006 /* Save some cycles and don't copy the address if not needed */ 2007 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2008 /* We assume all kernel code knows the size of sockaddr_storage */ 2009 msg.msg_namelen = 0; 2010 msg.msg_iocb = NULL; 2011 msg.msg_flags = 0; 2012 if (sock->file->f_flags & O_NONBLOCK) 2013 flags |= MSG_DONTWAIT; 2014 err = sock_recvmsg(sock, &msg, flags); 2015 2016 if (err >= 0 && addr != NULL) { 2017 err2 = move_addr_to_user(&address, 2018 msg.msg_namelen, addr, addr_len); 2019 if (err2 < 0) 2020 err = err2; 2021 } 2022 2023 fput_light(sock->file, fput_needed); 2024 out: 2025 return err; 2026 } 2027 2028 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2029 unsigned int, flags, struct sockaddr __user *, addr, 2030 int __user *, addr_len) 2031 { 2032 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2033 } 2034 2035 /* 2036 * Receive a datagram from a socket. 2037 */ 2038 2039 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2040 unsigned int, flags) 2041 { 2042 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2043 } 2044 2045 /* 2046 * Set a socket option. Because we don't know the option lengths we have 2047 * to pass the user mode parameter for the protocols to sort out. 2048 */ 2049 2050 static int __sys_setsockopt(int fd, int level, int optname, 2051 char __user *optval, int optlen) 2052 { 2053 mm_segment_t oldfs = get_fs(); 2054 char *kernel_optval = NULL; 2055 int err, fput_needed; 2056 struct socket *sock; 2057 2058 if (optlen < 0) 2059 return -EINVAL; 2060 2061 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2062 if (sock != NULL) { 2063 err = security_socket_setsockopt(sock, level, optname); 2064 if (err) 2065 goto out_put; 2066 2067 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2068 &optname, optval, &optlen, 2069 &kernel_optval); 2070 2071 if (err < 0) { 2072 goto out_put; 2073 } else if (err > 0) { 2074 err = 0; 2075 goto out_put; 2076 } 2077 2078 if (kernel_optval) { 2079 set_fs(KERNEL_DS); 2080 optval = (char __user __force *)kernel_optval; 2081 } 2082 2083 if (level == SOL_SOCKET) 2084 err = 2085 sock_setsockopt(sock, level, optname, optval, 2086 optlen); 2087 else 2088 err = 2089 sock->ops->setsockopt(sock, level, optname, optval, 2090 optlen); 2091 2092 if (kernel_optval) { 2093 set_fs(oldfs); 2094 kfree(kernel_optval); 2095 } 2096 out_put: 2097 fput_light(sock->file, fput_needed); 2098 } 2099 return err; 2100 } 2101 2102 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2103 char __user *, optval, int, optlen) 2104 { 2105 return __sys_setsockopt(fd, level, optname, optval, optlen); 2106 } 2107 2108 /* 2109 * Get a socket option. Because we don't know the option lengths we have 2110 * to pass a user mode parameter for the protocols to sort out. 2111 */ 2112 2113 static int __sys_getsockopt(int fd, int level, int optname, 2114 char __user *optval, int __user *optlen) 2115 { 2116 int err, fput_needed; 2117 struct socket *sock; 2118 int max_optlen; 2119 2120 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2121 if (sock != NULL) { 2122 err = security_socket_getsockopt(sock, level, optname); 2123 if (err) 2124 goto out_put; 2125 2126 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2127 2128 if (level == SOL_SOCKET) 2129 err = 2130 sock_getsockopt(sock, level, optname, optval, 2131 optlen); 2132 else 2133 err = 2134 sock->ops->getsockopt(sock, level, optname, optval, 2135 optlen); 2136 2137 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2138 optval, optlen, 2139 max_optlen, err); 2140 out_put: 2141 fput_light(sock->file, fput_needed); 2142 } 2143 return err; 2144 } 2145 2146 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2147 char __user *, optval, int __user *, optlen) 2148 { 2149 return __sys_getsockopt(fd, level, optname, optval, optlen); 2150 } 2151 2152 /* 2153 * Shutdown a socket. 2154 */ 2155 2156 int __sys_shutdown(int fd, int how) 2157 { 2158 int err, fput_needed; 2159 struct socket *sock; 2160 2161 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2162 if (sock != NULL) { 2163 err = security_socket_shutdown(sock, how); 2164 if (!err) 2165 err = sock->ops->shutdown(sock, how); 2166 fput_light(sock->file, fput_needed); 2167 } 2168 return err; 2169 } 2170 2171 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2172 { 2173 return __sys_shutdown(fd, how); 2174 } 2175 2176 /* A couple of helpful macros for getting the address of the 32/64 bit 2177 * fields which are the same type (int / unsigned) on our platforms. 2178 */ 2179 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2180 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2181 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2182 2183 struct used_address { 2184 struct sockaddr_storage name; 2185 unsigned int name_len; 2186 }; 2187 2188 static int copy_msghdr_from_user(struct msghdr *kmsg, 2189 struct user_msghdr __user *umsg, 2190 struct sockaddr __user **save_addr, 2191 struct iovec **iov) 2192 { 2193 struct user_msghdr msg; 2194 ssize_t err; 2195 2196 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2197 return -EFAULT; 2198 2199 kmsg->msg_control = (void __force *)msg.msg_control; 2200 kmsg->msg_controllen = msg.msg_controllen; 2201 kmsg->msg_flags = msg.msg_flags; 2202 2203 kmsg->msg_namelen = msg.msg_namelen; 2204 if (!msg.msg_name) 2205 kmsg->msg_namelen = 0; 2206 2207 if (kmsg->msg_namelen < 0) 2208 return -EINVAL; 2209 2210 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2211 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2212 2213 if (save_addr) 2214 *save_addr = msg.msg_name; 2215 2216 if (msg.msg_name && kmsg->msg_namelen) { 2217 if (!save_addr) { 2218 err = move_addr_to_kernel(msg.msg_name, 2219 kmsg->msg_namelen, 2220 kmsg->msg_name); 2221 if (err < 0) 2222 return err; 2223 } 2224 } else { 2225 kmsg->msg_name = NULL; 2226 kmsg->msg_namelen = 0; 2227 } 2228 2229 if (msg.msg_iovlen > UIO_MAXIOV) 2230 return -EMSGSIZE; 2231 2232 kmsg->msg_iocb = NULL; 2233 2234 return import_iovec(save_addr ? READ : WRITE, 2235 msg.msg_iov, msg.msg_iovlen, 2236 UIO_FASTIOV, iov, &kmsg->msg_iter); 2237 } 2238 2239 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2240 struct msghdr *msg_sys, unsigned int flags, 2241 struct used_address *used_address, 2242 unsigned int allowed_msghdr_flags) 2243 { 2244 struct compat_msghdr __user *msg_compat = 2245 (struct compat_msghdr __user *)msg; 2246 struct sockaddr_storage address; 2247 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2248 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2249 __aligned(sizeof(__kernel_size_t)); 2250 /* 20 is size of ipv6_pktinfo */ 2251 unsigned char *ctl_buf = ctl; 2252 int ctl_len; 2253 ssize_t err; 2254 2255 msg_sys->msg_name = &address; 2256 2257 if (MSG_CMSG_COMPAT & flags) 2258 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2259 else 2260 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2261 if (err < 0) 2262 return err; 2263 2264 err = -ENOBUFS; 2265 2266 if (msg_sys->msg_controllen > INT_MAX) 2267 goto out_freeiov; 2268 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2269 ctl_len = msg_sys->msg_controllen; 2270 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2271 err = 2272 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2273 sizeof(ctl)); 2274 if (err) 2275 goto out_freeiov; 2276 ctl_buf = msg_sys->msg_control; 2277 ctl_len = msg_sys->msg_controllen; 2278 } else if (ctl_len) { 2279 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2280 CMSG_ALIGN(sizeof(struct cmsghdr))); 2281 if (ctl_len > sizeof(ctl)) { 2282 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2283 if (ctl_buf == NULL) 2284 goto out_freeiov; 2285 } 2286 err = -EFAULT; 2287 /* 2288 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2289 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2290 * checking falls down on this. 2291 */ 2292 if (copy_from_user(ctl_buf, 2293 (void __user __force *)msg_sys->msg_control, 2294 ctl_len)) 2295 goto out_freectl; 2296 msg_sys->msg_control = ctl_buf; 2297 } 2298 msg_sys->msg_flags = flags; 2299 2300 if (sock->file->f_flags & O_NONBLOCK) 2301 msg_sys->msg_flags |= MSG_DONTWAIT; 2302 /* 2303 * If this is sendmmsg() and current destination address is same as 2304 * previously succeeded address, omit asking LSM's decision. 2305 * used_address->name_len is initialized to UINT_MAX so that the first 2306 * destination address never matches. 2307 */ 2308 if (used_address && msg_sys->msg_name && 2309 used_address->name_len == msg_sys->msg_namelen && 2310 !memcmp(&used_address->name, msg_sys->msg_name, 2311 used_address->name_len)) { 2312 err = sock_sendmsg_nosec(sock, msg_sys); 2313 goto out_freectl; 2314 } 2315 err = sock_sendmsg(sock, msg_sys); 2316 /* 2317 * If this is sendmmsg() and sending to current destination address was 2318 * successful, remember it. 2319 */ 2320 if (used_address && err >= 0) { 2321 used_address->name_len = msg_sys->msg_namelen; 2322 if (msg_sys->msg_name) 2323 memcpy(&used_address->name, msg_sys->msg_name, 2324 used_address->name_len); 2325 } 2326 2327 out_freectl: 2328 if (ctl_buf != ctl) 2329 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2330 out_freeiov: 2331 kfree(iov); 2332 return err; 2333 } 2334 2335 /* 2336 * BSD sendmsg interface 2337 */ 2338 2339 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2340 bool forbid_cmsg_compat) 2341 { 2342 int fput_needed, err; 2343 struct msghdr msg_sys; 2344 struct socket *sock; 2345 2346 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2347 return -EINVAL; 2348 2349 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2350 if (!sock) 2351 goto out; 2352 2353 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2354 2355 fput_light(sock->file, fput_needed); 2356 out: 2357 return err; 2358 } 2359 2360 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2361 { 2362 return __sys_sendmsg(fd, msg, flags, true); 2363 } 2364 2365 /* 2366 * Linux sendmmsg interface 2367 */ 2368 2369 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2370 unsigned int flags, bool forbid_cmsg_compat) 2371 { 2372 int fput_needed, err, datagrams; 2373 struct socket *sock; 2374 struct mmsghdr __user *entry; 2375 struct compat_mmsghdr __user *compat_entry; 2376 struct msghdr msg_sys; 2377 struct used_address used_address; 2378 unsigned int oflags = flags; 2379 2380 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2381 return -EINVAL; 2382 2383 if (vlen > UIO_MAXIOV) 2384 vlen = UIO_MAXIOV; 2385 2386 datagrams = 0; 2387 2388 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2389 if (!sock) 2390 return err; 2391 2392 used_address.name_len = UINT_MAX; 2393 entry = mmsg; 2394 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2395 err = 0; 2396 flags |= MSG_BATCH; 2397 2398 while (datagrams < vlen) { 2399 if (datagrams == vlen - 1) 2400 flags = oflags; 2401 2402 if (MSG_CMSG_COMPAT & flags) { 2403 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2404 &msg_sys, flags, &used_address, MSG_EOR); 2405 if (err < 0) 2406 break; 2407 err = __put_user(err, &compat_entry->msg_len); 2408 ++compat_entry; 2409 } else { 2410 err = ___sys_sendmsg(sock, 2411 (struct user_msghdr __user *)entry, 2412 &msg_sys, flags, &used_address, MSG_EOR); 2413 if (err < 0) 2414 break; 2415 err = put_user(err, &entry->msg_len); 2416 ++entry; 2417 } 2418 2419 if (err) 2420 break; 2421 ++datagrams; 2422 if (msg_data_left(&msg_sys)) 2423 break; 2424 cond_resched(); 2425 } 2426 2427 fput_light(sock->file, fput_needed); 2428 2429 /* We only return an error if no datagrams were able to be sent */ 2430 if (datagrams != 0) 2431 return datagrams; 2432 2433 return err; 2434 } 2435 2436 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2437 unsigned int, vlen, unsigned int, flags) 2438 { 2439 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2440 } 2441 2442 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2443 struct msghdr *msg_sys, unsigned int flags, int nosec) 2444 { 2445 struct compat_msghdr __user *msg_compat = 2446 (struct compat_msghdr __user *)msg; 2447 struct iovec iovstack[UIO_FASTIOV]; 2448 struct iovec *iov = iovstack; 2449 unsigned long cmsg_ptr; 2450 int len; 2451 ssize_t err; 2452 2453 /* kernel mode address */ 2454 struct sockaddr_storage addr; 2455 2456 /* user mode address pointers */ 2457 struct sockaddr __user *uaddr; 2458 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2459 2460 msg_sys->msg_name = &addr; 2461 2462 if (MSG_CMSG_COMPAT & flags) 2463 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2464 else 2465 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2466 if (err < 0) 2467 return err; 2468 2469 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2470 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2471 2472 /* We assume all kernel code knows the size of sockaddr_storage */ 2473 msg_sys->msg_namelen = 0; 2474 2475 if (sock->file->f_flags & O_NONBLOCK) 2476 flags |= MSG_DONTWAIT; 2477 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2478 if (err < 0) 2479 goto out_freeiov; 2480 len = err; 2481 2482 if (uaddr != NULL) { 2483 err = move_addr_to_user(&addr, 2484 msg_sys->msg_namelen, uaddr, 2485 uaddr_len); 2486 if (err < 0) 2487 goto out_freeiov; 2488 } 2489 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2490 COMPAT_FLAGS(msg)); 2491 if (err) 2492 goto out_freeiov; 2493 if (MSG_CMSG_COMPAT & flags) 2494 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2495 &msg_compat->msg_controllen); 2496 else 2497 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2498 &msg->msg_controllen); 2499 if (err) 2500 goto out_freeiov; 2501 err = len; 2502 2503 out_freeiov: 2504 kfree(iov); 2505 return err; 2506 } 2507 2508 /* 2509 * BSD recvmsg interface 2510 */ 2511 2512 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2513 bool forbid_cmsg_compat) 2514 { 2515 int fput_needed, err; 2516 struct msghdr msg_sys; 2517 struct socket *sock; 2518 2519 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2520 return -EINVAL; 2521 2522 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2523 if (!sock) 2524 goto out; 2525 2526 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2527 2528 fput_light(sock->file, fput_needed); 2529 out: 2530 return err; 2531 } 2532 2533 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2534 unsigned int, flags) 2535 { 2536 return __sys_recvmsg(fd, msg, flags, true); 2537 } 2538 2539 /* 2540 * Linux recvmmsg interface 2541 */ 2542 2543 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2544 unsigned int vlen, unsigned int flags, 2545 struct timespec64 *timeout) 2546 { 2547 int fput_needed, err, datagrams; 2548 struct socket *sock; 2549 struct mmsghdr __user *entry; 2550 struct compat_mmsghdr __user *compat_entry; 2551 struct msghdr msg_sys; 2552 struct timespec64 end_time; 2553 struct timespec64 timeout64; 2554 2555 if (timeout && 2556 poll_select_set_timeout(&end_time, timeout->tv_sec, 2557 timeout->tv_nsec)) 2558 return -EINVAL; 2559 2560 datagrams = 0; 2561 2562 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2563 if (!sock) 2564 return err; 2565 2566 if (likely(!(flags & MSG_ERRQUEUE))) { 2567 err = sock_error(sock->sk); 2568 if (err) { 2569 datagrams = err; 2570 goto out_put; 2571 } 2572 } 2573 2574 entry = mmsg; 2575 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2576 2577 while (datagrams < vlen) { 2578 /* 2579 * No need to ask LSM for more than the first datagram. 2580 */ 2581 if (MSG_CMSG_COMPAT & flags) { 2582 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2583 &msg_sys, flags & ~MSG_WAITFORONE, 2584 datagrams); 2585 if (err < 0) 2586 break; 2587 err = __put_user(err, &compat_entry->msg_len); 2588 ++compat_entry; 2589 } else { 2590 err = ___sys_recvmsg(sock, 2591 (struct user_msghdr __user *)entry, 2592 &msg_sys, flags & ~MSG_WAITFORONE, 2593 datagrams); 2594 if (err < 0) 2595 break; 2596 err = put_user(err, &entry->msg_len); 2597 ++entry; 2598 } 2599 2600 if (err) 2601 break; 2602 ++datagrams; 2603 2604 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2605 if (flags & MSG_WAITFORONE) 2606 flags |= MSG_DONTWAIT; 2607 2608 if (timeout) { 2609 ktime_get_ts64(&timeout64); 2610 *timeout = timespec64_sub(end_time, timeout64); 2611 if (timeout->tv_sec < 0) { 2612 timeout->tv_sec = timeout->tv_nsec = 0; 2613 break; 2614 } 2615 2616 /* Timeout, return less than vlen datagrams */ 2617 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2618 break; 2619 } 2620 2621 /* Out of band data, return right away */ 2622 if (msg_sys.msg_flags & MSG_OOB) 2623 break; 2624 cond_resched(); 2625 } 2626 2627 if (err == 0) 2628 goto out_put; 2629 2630 if (datagrams == 0) { 2631 datagrams = err; 2632 goto out_put; 2633 } 2634 2635 /* 2636 * We may return less entries than requested (vlen) if the 2637 * sock is non block and there aren't enough datagrams... 2638 */ 2639 if (err != -EAGAIN) { 2640 /* 2641 * ... or if recvmsg returns an error after we 2642 * received some datagrams, where we record the 2643 * error to return on the next call or if the 2644 * app asks about it using getsockopt(SO_ERROR). 2645 */ 2646 sock->sk->sk_err = -err; 2647 } 2648 out_put: 2649 fput_light(sock->file, fput_needed); 2650 2651 return datagrams; 2652 } 2653 2654 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2655 unsigned int vlen, unsigned int flags, 2656 struct __kernel_timespec __user *timeout, 2657 struct old_timespec32 __user *timeout32) 2658 { 2659 int datagrams; 2660 struct timespec64 timeout_sys; 2661 2662 if (timeout && get_timespec64(&timeout_sys, timeout)) 2663 return -EFAULT; 2664 2665 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2666 return -EFAULT; 2667 2668 if (!timeout && !timeout32) 2669 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2670 2671 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2672 2673 if (datagrams <= 0) 2674 return datagrams; 2675 2676 if (timeout && put_timespec64(&timeout_sys, timeout)) 2677 datagrams = -EFAULT; 2678 2679 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2680 datagrams = -EFAULT; 2681 2682 return datagrams; 2683 } 2684 2685 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2686 unsigned int, vlen, unsigned int, flags, 2687 struct __kernel_timespec __user *, timeout) 2688 { 2689 if (flags & MSG_CMSG_COMPAT) 2690 return -EINVAL; 2691 2692 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2693 } 2694 2695 #ifdef CONFIG_COMPAT_32BIT_TIME 2696 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2697 unsigned int, vlen, unsigned int, flags, 2698 struct old_timespec32 __user *, timeout) 2699 { 2700 if (flags & MSG_CMSG_COMPAT) 2701 return -EINVAL; 2702 2703 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2704 } 2705 #endif 2706 2707 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2708 /* Argument list sizes for sys_socketcall */ 2709 #define AL(x) ((x) * sizeof(unsigned long)) 2710 static const unsigned char nargs[21] = { 2711 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2712 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2713 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2714 AL(4), AL(5), AL(4) 2715 }; 2716 2717 #undef AL 2718 2719 /* 2720 * System call vectors. 2721 * 2722 * Argument checking cleaned up. Saved 20% in size. 2723 * This function doesn't need to set the kernel lock because 2724 * it is set by the callees. 2725 */ 2726 2727 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2728 { 2729 unsigned long a[AUDITSC_ARGS]; 2730 unsigned long a0, a1; 2731 int err; 2732 unsigned int len; 2733 2734 if (call < 1 || call > SYS_SENDMMSG) 2735 return -EINVAL; 2736 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2737 2738 len = nargs[call]; 2739 if (len > sizeof(a)) 2740 return -EINVAL; 2741 2742 /* copy_from_user should be SMP safe. */ 2743 if (copy_from_user(a, args, len)) 2744 return -EFAULT; 2745 2746 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2747 if (err) 2748 return err; 2749 2750 a0 = a[0]; 2751 a1 = a[1]; 2752 2753 switch (call) { 2754 case SYS_SOCKET: 2755 err = __sys_socket(a0, a1, a[2]); 2756 break; 2757 case SYS_BIND: 2758 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2759 break; 2760 case SYS_CONNECT: 2761 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2762 break; 2763 case SYS_LISTEN: 2764 err = __sys_listen(a0, a1); 2765 break; 2766 case SYS_ACCEPT: 2767 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2768 (int __user *)a[2], 0); 2769 break; 2770 case SYS_GETSOCKNAME: 2771 err = 2772 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2773 (int __user *)a[2]); 2774 break; 2775 case SYS_GETPEERNAME: 2776 err = 2777 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2778 (int __user *)a[2]); 2779 break; 2780 case SYS_SOCKETPAIR: 2781 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2782 break; 2783 case SYS_SEND: 2784 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2785 NULL, 0); 2786 break; 2787 case SYS_SENDTO: 2788 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2789 (struct sockaddr __user *)a[4], a[5]); 2790 break; 2791 case SYS_RECV: 2792 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2793 NULL, NULL); 2794 break; 2795 case SYS_RECVFROM: 2796 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2797 (struct sockaddr __user *)a[4], 2798 (int __user *)a[5]); 2799 break; 2800 case SYS_SHUTDOWN: 2801 err = __sys_shutdown(a0, a1); 2802 break; 2803 case SYS_SETSOCKOPT: 2804 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2805 a[4]); 2806 break; 2807 case SYS_GETSOCKOPT: 2808 err = 2809 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2810 (int __user *)a[4]); 2811 break; 2812 case SYS_SENDMSG: 2813 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2814 a[2], true); 2815 break; 2816 case SYS_SENDMMSG: 2817 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2818 a[3], true); 2819 break; 2820 case SYS_RECVMSG: 2821 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2822 a[2], true); 2823 break; 2824 case SYS_RECVMMSG: 2825 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2826 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2827 a[2], a[3], 2828 (struct __kernel_timespec __user *)a[4], 2829 NULL); 2830 else 2831 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2832 a[2], a[3], NULL, 2833 (struct old_timespec32 __user *)a[4]); 2834 break; 2835 case SYS_ACCEPT4: 2836 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2837 (int __user *)a[2], a[3]); 2838 break; 2839 default: 2840 err = -EINVAL; 2841 break; 2842 } 2843 return err; 2844 } 2845 2846 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2847 2848 /** 2849 * sock_register - add a socket protocol handler 2850 * @ops: description of protocol 2851 * 2852 * This function is called by a protocol handler that wants to 2853 * advertise its address family, and have it linked into the 2854 * socket interface. The value ops->family corresponds to the 2855 * socket system call protocol family. 2856 */ 2857 int sock_register(const struct net_proto_family *ops) 2858 { 2859 int err; 2860 2861 if (ops->family >= NPROTO) { 2862 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2863 return -ENOBUFS; 2864 } 2865 2866 spin_lock(&net_family_lock); 2867 if (rcu_dereference_protected(net_families[ops->family], 2868 lockdep_is_held(&net_family_lock))) 2869 err = -EEXIST; 2870 else { 2871 rcu_assign_pointer(net_families[ops->family], ops); 2872 err = 0; 2873 } 2874 spin_unlock(&net_family_lock); 2875 2876 pr_info("NET: Registered protocol family %d\n", ops->family); 2877 return err; 2878 } 2879 EXPORT_SYMBOL(sock_register); 2880 2881 /** 2882 * sock_unregister - remove a protocol handler 2883 * @family: protocol family to remove 2884 * 2885 * This function is called by a protocol handler that wants to 2886 * remove its address family, and have it unlinked from the 2887 * new socket creation. 2888 * 2889 * If protocol handler is a module, then it can use module reference 2890 * counts to protect against new references. If protocol handler is not 2891 * a module then it needs to provide its own protection in 2892 * the ops->create routine. 2893 */ 2894 void sock_unregister(int family) 2895 { 2896 BUG_ON(family < 0 || family >= NPROTO); 2897 2898 spin_lock(&net_family_lock); 2899 RCU_INIT_POINTER(net_families[family], NULL); 2900 spin_unlock(&net_family_lock); 2901 2902 synchronize_rcu(); 2903 2904 pr_info("NET: Unregistered protocol family %d\n", family); 2905 } 2906 EXPORT_SYMBOL(sock_unregister); 2907 2908 bool sock_is_registered(int family) 2909 { 2910 return family < NPROTO && rcu_access_pointer(net_families[family]); 2911 } 2912 2913 static int __init sock_init(void) 2914 { 2915 int err; 2916 /* 2917 * Initialize the network sysctl infrastructure. 2918 */ 2919 err = net_sysctl_init(); 2920 if (err) 2921 goto out; 2922 2923 /* 2924 * Initialize skbuff SLAB cache 2925 */ 2926 skb_init(); 2927 2928 /* 2929 * Initialize the protocols module. 2930 */ 2931 2932 init_inodecache(); 2933 2934 err = register_filesystem(&sock_fs_type); 2935 if (err) 2936 goto out_fs; 2937 sock_mnt = kern_mount(&sock_fs_type); 2938 if (IS_ERR(sock_mnt)) { 2939 err = PTR_ERR(sock_mnt); 2940 goto out_mount; 2941 } 2942 2943 /* The real protocol initialization is performed in later initcalls. 2944 */ 2945 2946 #ifdef CONFIG_NETFILTER 2947 err = netfilter_init(); 2948 if (err) 2949 goto out; 2950 #endif 2951 2952 ptp_classifier_init(); 2953 2954 out: 2955 return err; 2956 2957 out_mount: 2958 unregister_filesystem(&sock_fs_type); 2959 out_fs: 2960 goto out; 2961 } 2962 2963 core_initcall(sock_init); /* early initcall */ 2964 2965 #ifdef CONFIG_PROC_FS 2966 void socket_seq_show(struct seq_file *seq) 2967 { 2968 seq_printf(seq, "sockets: used %d\n", 2969 sock_inuse_get(seq->private)); 2970 } 2971 #endif /* CONFIG_PROC_FS */ 2972 2973 #ifdef CONFIG_COMPAT 2974 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2975 { 2976 struct compat_ifconf ifc32; 2977 struct ifconf ifc; 2978 int err; 2979 2980 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2981 return -EFAULT; 2982 2983 ifc.ifc_len = ifc32.ifc_len; 2984 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2985 2986 rtnl_lock(); 2987 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2988 rtnl_unlock(); 2989 if (err) 2990 return err; 2991 2992 ifc32.ifc_len = ifc.ifc_len; 2993 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2994 return -EFAULT; 2995 2996 return 0; 2997 } 2998 2999 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3000 { 3001 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3002 bool convert_in = false, convert_out = false; 3003 size_t buf_size = 0; 3004 struct ethtool_rxnfc __user *rxnfc = NULL; 3005 struct ifreq ifr; 3006 u32 rule_cnt = 0, actual_rule_cnt; 3007 u32 ethcmd; 3008 u32 data; 3009 int ret; 3010 3011 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3012 return -EFAULT; 3013 3014 compat_rxnfc = compat_ptr(data); 3015 3016 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3017 return -EFAULT; 3018 3019 /* Most ethtool structures are defined without padding. 3020 * Unfortunately struct ethtool_rxnfc is an exception. 3021 */ 3022 switch (ethcmd) { 3023 default: 3024 break; 3025 case ETHTOOL_GRXCLSRLALL: 3026 /* Buffer size is variable */ 3027 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3028 return -EFAULT; 3029 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3030 return -ENOMEM; 3031 buf_size += rule_cnt * sizeof(u32); 3032 /* fall through */ 3033 case ETHTOOL_GRXRINGS: 3034 case ETHTOOL_GRXCLSRLCNT: 3035 case ETHTOOL_GRXCLSRULE: 3036 case ETHTOOL_SRXCLSRLINS: 3037 convert_out = true; 3038 /* fall through */ 3039 case ETHTOOL_SRXCLSRLDEL: 3040 buf_size += sizeof(struct ethtool_rxnfc); 3041 convert_in = true; 3042 rxnfc = compat_alloc_user_space(buf_size); 3043 break; 3044 } 3045 3046 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3047 return -EFAULT; 3048 3049 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3050 3051 if (convert_in) { 3052 /* We expect there to be holes between fs.m_ext and 3053 * fs.ring_cookie and at the end of fs, but nowhere else. 3054 */ 3055 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3056 sizeof(compat_rxnfc->fs.m_ext) != 3057 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3058 sizeof(rxnfc->fs.m_ext)); 3059 BUILD_BUG_ON( 3060 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3061 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3062 offsetof(struct ethtool_rxnfc, fs.location) - 3063 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3064 3065 if (copy_in_user(rxnfc, compat_rxnfc, 3066 (void __user *)(&rxnfc->fs.m_ext + 1) - 3067 (void __user *)rxnfc) || 3068 copy_in_user(&rxnfc->fs.ring_cookie, 3069 &compat_rxnfc->fs.ring_cookie, 3070 (void __user *)(&rxnfc->fs.location + 1) - 3071 (void __user *)&rxnfc->fs.ring_cookie)) 3072 return -EFAULT; 3073 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3074 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3075 return -EFAULT; 3076 } else if (copy_in_user(&rxnfc->rule_cnt, 3077 &compat_rxnfc->rule_cnt, 3078 sizeof(rxnfc->rule_cnt))) 3079 return -EFAULT; 3080 } 3081 3082 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3083 if (ret) 3084 return ret; 3085 3086 if (convert_out) { 3087 if (copy_in_user(compat_rxnfc, rxnfc, 3088 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3089 (const void __user *)rxnfc) || 3090 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3091 &rxnfc->fs.ring_cookie, 3092 (const void __user *)(&rxnfc->fs.location + 1) - 3093 (const void __user *)&rxnfc->fs.ring_cookie) || 3094 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3095 sizeof(rxnfc->rule_cnt))) 3096 return -EFAULT; 3097 3098 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3099 /* As an optimisation, we only copy the actual 3100 * number of rules that the underlying 3101 * function returned. Since Mallory might 3102 * change the rule count in user memory, we 3103 * check that it is less than the rule count 3104 * originally given (as the user buffer size), 3105 * which has been range-checked. 3106 */ 3107 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3108 return -EFAULT; 3109 if (actual_rule_cnt < rule_cnt) 3110 rule_cnt = actual_rule_cnt; 3111 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3112 &rxnfc->rule_locs[0], 3113 rule_cnt * sizeof(u32))) 3114 return -EFAULT; 3115 } 3116 } 3117 3118 return 0; 3119 } 3120 3121 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3122 { 3123 compat_uptr_t uptr32; 3124 struct ifreq ifr; 3125 void __user *saved; 3126 int err; 3127 3128 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3129 return -EFAULT; 3130 3131 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3132 return -EFAULT; 3133 3134 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3135 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3136 3137 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3138 if (!err) { 3139 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3140 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3141 err = -EFAULT; 3142 } 3143 return err; 3144 } 3145 3146 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3147 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3148 struct compat_ifreq __user *u_ifreq32) 3149 { 3150 struct ifreq ifreq; 3151 u32 data32; 3152 3153 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3154 return -EFAULT; 3155 if (get_user(data32, &u_ifreq32->ifr_data)) 3156 return -EFAULT; 3157 ifreq.ifr_data = compat_ptr(data32); 3158 3159 return dev_ioctl(net, cmd, &ifreq, NULL); 3160 } 3161 3162 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3163 unsigned int cmd, 3164 struct compat_ifreq __user *uifr32) 3165 { 3166 struct ifreq __user *uifr; 3167 int err; 3168 3169 /* Handle the fact that while struct ifreq has the same *layout* on 3170 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3171 * which are handled elsewhere, it still has different *size* due to 3172 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3173 * resulting in struct ifreq being 32 and 40 bytes respectively). 3174 * As a result, if the struct happens to be at the end of a page and 3175 * the next page isn't readable/writable, we get a fault. To prevent 3176 * that, copy back and forth to the full size. 3177 */ 3178 3179 uifr = compat_alloc_user_space(sizeof(*uifr)); 3180 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3181 return -EFAULT; 3182 3183 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3184 3185 if (!err) { 3186 switch (cmd) { 3187 case SIOCGIFFLAGS: 3188 case SIOCGIFMETRIC: 3189 case SIOCGIFMTU: 3190 case SIOCGIFMEM: 3191 case SIOCGIFHWADDR: 3192 case SIOCGIFINDEX: 3193 case SIOCGIFADDR: 3194 case SIOCGIFBRDADDR: 3195 case SIOCGIFDSTADDR: 3196 case SIOCGIFNETMASK: 3197 case SIOCGIFPFLAGS: 3198 case SIOCGIFTXQLEN: 3199 case SIOCGMIIPHY: 3200 case SIOCGMIIREG: 3201 case SIOCGIFNAME: 3202 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3203 err = -EFAULT; 3204 break; 3205 } 3206 } 3207 return err; 3208 } 3209 3210 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3211 struct compat_ifreq __user *uifr32) 3212 { 3213 struct ifreq ifr; 3214 struct compat_ifmap __user *uifmap32; 3215 int err; 3216 3217 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3218 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3219 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3220 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3221 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3222 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3223 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3224 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3225 if (err) 3226 return -EFAULT; 3227 3228 err = dev_ioctl(net, cmd, &ifr, NULL); 3229 3230 if (cmd == SIOCGIFMAP && !err) { 3231 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3232 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3233 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3234 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3235 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3236 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3237 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3238 if (err) 3239 err = -EFAULT; 3240 } 3241 return err; 3242 } 3243 3244 struct rtentry32 { 3245 u32 rt_pad1; 3246 struct sockaddr rt_dst; /* target address */ 3247 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3248 struct sockaddr rt_genmask; /* target network mask (IP) */ 3249 unsigned short rt_flags; 3250 short rt_pad2; 3251 u32 rt_pad3; 3252 unsigned char rt_tos; 3253 unsigned char rt_class; 3254 short rt_pad4; 3255 short rt_metric; /* +1 for binary compatibility! */ 3256 /* char * */ u32 rt_dev; /* forcing the device at add */ 3257 u32 rt_mtu; /* per route MTU/Window */ 3258 u32 rt_window; /* Window clamping */ 3259 unsigned short rt_irtt; /* Initial RTT */ 3260 }; 3261 3262 struct in6_rtmsg32 { 3263 struct in6_addr rtmsg_dst; 3264 struct in6_addr rtmsg_src; 3265 struct in6_addr rtmsg_gateway; 3266 u32 rtmsg_type; 3267 u16 rtmsg_dst_len; 3268 u16 rtmsg_src_len; 3269 u32 rtmsg_metric; 3270 u32 rtmsg_info; 3271 u32 rtmsg_flags; 3272 s32 rtmsg_ifindex; 3273 }; 3274 3275 static int routing_ioctl(struct net *net, struct socket *sock, 3276 unsigned int cmd, void __user *argp) 3277 { 3278 int ret; 3279 void *r = NULL; 3280 struct in6_rtmsg r6; 3281 struct rtentry r4; 3282 char devname[16]; 3283 u32 rtdev; 3284 mm_segment_t old_fs = get_fs(); 3285 3286 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3287 struct in6_rtmsg32 __user *ur6 = argp; 3288 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3289 3 * sizeof(struct in6_addr)); 3290 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3291 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3292 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3293 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3294 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3295 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3296 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3297 3298 r = (void *) &r6; 3299 } else { /* ipv4 */ 3300 struct rtentry32 __user *ur4 = argp; 3301 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3302 3 * sizeof(struct sockaddr)); 3303 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3304 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3305 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3306 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3307 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3308 ret |= get_user(rtdev, &(ur4->rt_dev)); 3309 if (rtdev) { 3310 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3311 r4.rt_dev = (char __user __force *)devname; 3312 devname[15] = 0; 3313 } else 3314 r4.rt_dev = NULL; 3315 3316 r = (void *) &r4; 3317 } 3318 3319 if (ret) { 3320 ret = -EFAULT; 3321 goto out; 3322 } 3323 3324 set_fs(KERNEL_DS); 3325 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3326 set_fs(old_fs); 3327 3328 out: 3329 return ret; 3330 } 3331 3332 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3333 * for some operations; this forces use of the newer bridge-utils that 3334 * use compatible ioctls 3335 */ 3336 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3337 { 3338 compat_ulong_t tmp; 3339 3340 if (get_user(tmp, argp)) 3341 return -EFAULT; 3342 if (tmp == BRCTL_GET_VERSION) 3343 return BRCTL_VERSION + 1; 3344 return -EINVAL; 3345 } 3346 3347 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3348 unsigned int cmd, unsigned long arg) 3349 { 3350 void __user *argp = compat_ptr(arg); 3351 struct sock *sk = sock->sk; 3352 struct net *net = sock_net(sk); 3353 3354 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3355 return compat_ifr_data_ioctl(net, cmd, argp); 3356 3357 switch (cmd) { 3358 case SIOCSIFBR: 3359 case SIOCGIFBR: 3360 return old_bridge_ioctl(argp); 3361 case SIOCGIFCONF: 3362 return compat_dev_ifconf(net, argp); 3363 case SIOCETHTOOL: 3364 return ethtool_ioctl(net, argp); 3365 case SIOCWANDEV: 3366 return compat_siocwandev(net, argp); 3367 case SIOCGIFMAP: 3368 case SIOCSIFMAP: 3369 return compat_sioc_ifmap(net, cmd, argp); 3370 case SIOCADDRT: 3371 case SIOCDELRT: 3372 return routing_ioctl(net, sock, cmd, argp); 3373 case SIOCGSTAMP_OLD: 3374 case SIOCGSTAMPNS_OLD: 3375 if (!sock->ops->gettstamp) 3376 return -ENOIOCTLCMD; 3377 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3378 !COMPAT_USE_64BIT_TIME); 3379 3380 case SIOCBONDSLAVEINFOQUERY: 3381 case SIOCBONDINFOQUERY: 3382 case SIOCSHWTSTAMP: 3383 case SIOCGHWTSTAMP: 3384 return compat_ifr_data_ioctl(net, cmd, argp); 3385 3386 case FIOSETOWN: 3387 case SIOCSPGRP: 3388 case FIOGETOWN: 3389 case SIOCGPGRP: 3390 case SIOCBRADDBR: 3391 case SIOCBRDELBR: 3392 case SIOCGIFVLAN: 3393 case SIOCSIFVLAN: 3394 case SIOCADDDLCI: 3395 case SIOCDELDLCI: 3396 case SIOCGSKNS: 3397 case SIOCGSTAMP_NEW: 3398 case SIOCGSTAMPNS_NEW: 3399 return sock_ioctl(file, cmd, arg); 3400 3401 case SIOCGIFFLAGS: 3402 case SIOCSIFFLAGS: 3403 case SIOCGIFMETRIC: 3404 case SIOCSIFMETRIC: 3405 case SIOCGIFMTU: 3406 case SIOCSIFMTU: 3407 case SIOCGIFMEM: 3408 case SIOCSIFMEM: 3409 case SIOCGIFHWADDR: 3410 case SIOCSIFHWADDR: 3411 case SIOCADDMULTI: 3412 case SIOCDELMULTI: 3413 case SIOCGIFINDEX: 3414 case SIOCGIFADDR: 3415 case SIOCSIFADDR: 3416 case SIOCSIFHWBROADCAST: 3417 case SIOCDIFADDR: 3418 case SIOCGIFBRDADDR: 3419 case SIOCSIFBRDADDR: 3420 case SIOCGIFDSTADDR: 3421 case SIOCSIFDSTADDR: 3422 case SIOCGIFNETMASK: 3423 case SIOCSIFNETMASK: 3424 case SIOCSIFPFLAGS: 3425 case SIOCGIFPFLAGS: 3426 case SIOCGIFTXQLEN: 3427 case SIOCSIFTXQLEN: 3428 case SIOCBRADDIF: 3429 case SIOCBRDELIF: 3430 case SIOCGIFNAME: 3431 case SIOCSIFNAME: 3432 case SIOCGMIIPHY: 3433 case SIOCGMIIREG: 3434 case SIOCSMIIREG: 3435 case SIOCBONDENSLAVE: 3436 case SIOCBONDRELEASE: 3437 case SIOCBONDSETHWADDR: 3438 case SIOCBONDCHANGEACTIVE: 3439 return compat_ifreq_ioctl(net, sock, cmd, argp); 3440 3441 case SIOCSARP: 3442 case SIOCGARP: 3443 case SIOCDARP: 3444 case SIOCATMARK: 3445 return sock_do_ioctl(net, sock, cmd, arg); 3446 } 3447 3448 return -ENOIOCTLCMD; 3449 } 3450 3451 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3452 unsigned long arg) 3453 { 3454 struct socket *sock = file->private_data; 3455 int ret = -ENOIOCTLCMD; 3456 struct sock *sk; 3457 struct net *net; 3458 3459 sk = sock->sk; 3460 net = sock_net(sk); 3461 3462 if (sock->ops->compat_ioctl) 3463 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3464 3465 if (ret == -ENOIOCTLCMD && 3466 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3467 ret = compat_wext_handle_ioctl(net, cmd, arg); 3468 3469 if (ret == -ENOIOCTLCMD) 3470 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3471 3472 return ret; 3473 } 3474 #endif 3475 3476 /** 3477 * kernel_bind - bind an address to a socket (kernel space) 3478 * @sock: socket 3479 * @addr: address 3480 * @addrlen: length of address 3481 * 3482 * Returns 0 or an error. 3483 */ 3484 3485 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3486 { 3487 return sock->ops->bind(sock, addr, addrlen); 3488 } 3489 EXPORT_SYMBOL(kernel_bind); 3490 3491 /** 3492 * kernel_listen - move socket to listening state (kernel space) 3493 * @sock: socket 3494 * @backlog: pending connections queue size 3495 * 3496 * Returns 0 or an error. 3497 */ 3498 3499 int kernel_listen(struct socket *sock, int backlog) 3500 { 3501 return sock->ops->listen(sock, backlog); 3502 } 3503 EXPORT_SYMBOL(kernel_listen); 3504 3505 /** 3506 * kernel_accept - accept a connection (kernel space) 3507 * @sock: listening socket 3508 * @newsock: new connected socket 3509 * @flags: flags 3510 * 3511 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3512 * If it fails, @newsock is guaranteed to be %NULL. 3513 * Returns 0 or an error. 3514 */ 3515 3516 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3517 { 3518 struct sock *sk = sock->sk; 3519 int err; 3520 3521 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3522 newsock); 3523 if (err < 0) 3524 goto done; 3525 3526 err = sock->ops->accept(sock, *newsock, flags, true); 3527 if (err < 0) { 3528 sock_release(*newsock); 3529 *newsock = NULL; 3530 goto done; 3531 } 3532 3533 (*newsock)->ops = sock->ops; 3534 __module_get((*newsock)->ops->owner); 3535 3536 done: 3537 return err; 3538 } 3539 EXPORT_SYMBOL(kernel_accept); 3540 3541 /** 3542 * kernel_connect - connect a socket (kernel space) 3543 * @sock: socket 3544 * @addr: address 3545 * @addrlen: address length 3546 * @flags: flags (O_NONBLOCK, ...) 3547 * 3548 * For datagram sockets, @addr is the addres to which datagrams are sent 3549 * by default, and the only address from which datagrams are received. 3550 * For stream sockets, attempts to connect to @addr. 3551 * Returns 0 or an error code. 3552 */ 3553 3554 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3555 int flags) 3556 { 3557 return sock->ops->connect(sock, addr, addrlen, flags); 3558 } 3559 EXPORT_SYMBOL(kernel_connect); 3560 3561 /** 3562 * kernel_getsockname - get the address which the socket is bound (kernel space) 3563 * @sock: socket 3564 * @addr: address holder 3565 * 3566 * Fills the @addr pointer with the address which the socket is bound. 3567 * Returns 0 or an error code. 3568 */ 3569 3570 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3571 { 3572 return sock->ops->getname(sock, addr, 0); 3573 } 3574 EXPORT_SYMBOL(kernel_getsockname); 3575 3576 /** 3577 * kernel_peername - get the address which the socket is connected (kernel space) 3578 * @sock: socket 3579 * @addr: address holder 3580 * 3581 * Fills the @addr pointer with the address which the socket is connected. 3582 * Returns 0 or an error code. 3583 */ 3584 3585 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3586 { 3587 return sock->ops->getname(sock, addr, 1); 3588 } 3589 EXPORT_SYMBOL(kernel_getpeername); 3590 3591 /** 3592 * kernel_getsockopt - get a socket option (kernel space) 3593 * @sock: socket 3594 * @level: API level (SOL_SOCKET, ...) 3595 * @optname: option tag 3596 * @optval: option value 3597 * @optlen: option length 3598 * 3599 * Assigns the option length to @optlen. 3600 * Returns 0 or an error. 3601 */ 3602 3603 int kernel_getsockopt(struct socket *sock, int level, int optname, 3604 char *optval, int *optlen) 3605 { 3606 mm_segment_t oldfs = get_fs(); 3607 char __user *uoptval; 3608 int __user *uoptlen; 3609 int err; 3610 3611 uoptval = (char __user __force *) optval; 3612 uoptlen = (int __user __force *) optlen; 3613 3614 set_fs(KERNEL_DS); 3615 if (level == SOL_SOCKET) 3616 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3617 else 3618 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3619 uoptlen); 3620 set_fs(oldfs); 3621 return err; 3622 } 3623 EXPORT_SYMBOL(kernel_getsockopt); 3624 3625 /** 3626 * kernel_setsockopt - set a socket option (kernel space) 3627 * @sock: socket 3628 * @level: API level (SOL_SOCKET, ...) 3629 * @optname: option tag 3630 * @optval: option value 3631 * @optlen: option length 3632 * 3633 * Returns 0 or an error. 3634 */ 3635 3636 int kernel_setsockopt(struct socket *sock, int level, int optname, 3637 char *optval, unsigned int optlen) 3638 { 3639 mm_segment_t oldfs = get_fs(); 3640 char __user *uoptval; 3641 int err; 3642 3643 uoptval = (char __user __force *) optval; 3644 3645 set_fs(KERNEL_DS); 3646 if (level == SOL_SOCKET) 3647 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3648 else 3649 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3650 optlen); 3651 set_fs(oldfs); 3652 return err; 3653 } 3654 EXPORT_SYMBOL(kernel_setsockopt); 3655 3656 /** 3657 * kernel_sendpage - send a &page through a socket (kernel space) 3658 * @sock: socket 3659 * @page: page 3660 * @offset: page offset 3661 * @size: total size in bytes 3662 * @flags: flags (MSG_DONTWAIT, ...) 3663 * 3664 * Returns the total amount sent in bytes or an error. 3665 */ 3666 3667 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3668 size_t size, int flags) 3669 { 3670 if (sock->ops->sendpage) 3671 return sock->ops->sendpage(sock, page, offset, size, flags); 3672 3673 return sock_no_sendpage(sock, page, offset, size, flags); 3674 } 3675 EXPORT_SYMBOL(kernel_sendpage); 3676 3677 /** 3678 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3679 * @sk: sock 3680 * @page: page 3681 * @offset: page offset 3682 * @size: total size in bytes 3683 * @flags: flags (MSG_DONTWAIT, ...) 3684 * 3685 * Returns the total amount sent in bytes or an error. 3686 * Caller must hold @sk. 3687 */ 3688 3689 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3690 size_t size, int flags) 3691 { 3692 struct socket *sock = sk->sk_socket; 3693 3694 if (sock->ops->sendpage_locked) 3695 return sock->ops->sendpage_locked(sk, page, offset, size, 3696 flags); 3697 3698 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3699 } 3700 EXPORT_SYMBOL(kernel_sendpage_locked); 3701 3702 /** 3703 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3704 * @sock: socket 3705 * @how: connection part 3706 * 3707 * Returns 0 or an error. 3708 */ 3709 3710 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3711 { 3712 return sock->ops->shutdown(sock, how); 3713 } 3714 EXPORT_SYMBOL(kernel_sock_shutdown); 3715 3716 /** 3717 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3718 * @sk: socket 3719 * 3720 * This routine returns the IP overhead imposed by a socket i.e. 3721 * the length of the underlying IP header, depending on whether 3722 * this is an IPv4 or IPv6 socket and the length from IP options turned 3723 * on at the socket. Assumes that the caller has a lock on the socket. 3724 */ 3725 3726 u32 kernel_sock_ip_overhead(struct sock *sk) 3727 { 3728 struct inet_sock *inet; 3729 struct ip_options_rcu *opt; 3730 u32 overhead = 0; 3731 #if IS_ENABLED(CONFIG_IPV6) 3732 struct ipv6_pinfo *np; 3733 struct ipv6_txoptions *optv6 = NULL; 3734 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3735 3736 if (!sk) 3737 return overhead; 3738 3739 switch (sk->sk_family) { 3740 case AF_INET: 3741 inet = inet_sk(sk); 3742 overhead += sizeof(struct iphdr); 3743 opt = rcu_dereference_protected(inet->inet_opt, 3744 sock_owned_by_user(sk)); 3745 if (opt) 3746 overhead += opt->opt.optlen; 3747 return overhead; 3748 #if IS_ENABLED(CONFIG_IPV6) 3749 case AF_INET6: 3750 np = inet6_sk(sk); 3751 overhead += sizeof(struct ipv6hdr); 3752 if (np) 3753 optv6 = rcu_dereference_protected(np->opt, 3754 sock_owned_by_user(sk)); 3755 if (optv6) 3756 overhead += (optv6->opt_flen + optv6->opt_nflen); 3757 return overhead; 3758 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3759 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3760 return overhead; 3761 } 3762 } 3763 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3764