1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 RCU_INIT_POINTER(ei->socket.wq, wq); 261 262 ei->socket.state = SS_UNCONNECTED; 263 ei->socket.flags = 0; 264 ei->socket.ops = NULL; 265 ei->socket.sk = NULL; 266 ei->socket.file = NULL; 267 268 return &ei->vfs_inode; 269 } 270 271 static void sock_destroy_inode(struct inode *inode) 272 { 273 struct socket_alloc *ei; 274 struct socket_wq *wq; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 wq = rcu_dereference_protected(ei->socket.wq, 1); 278 kfree_rcu(wq, rcu); 279 kmem_cache_free(sock_inode_cachep, ei); 280 } 281 282 static void init_once(void *foo) 283 { 284 struct socket_alloc *ei = (struct socket_alloc *)foo; 285 286 inode_init_once(&ei->vfs_inode); 287 } 288 289 static int init_inodecache(void) 290 { 291 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 292 sizeof(struct socket_alloc), 293 0, 294 (SLAB_HWCACHE_ALIGN | 295 SLAB_RECLAIM_ACCOUNT | 296 SLAB_MEM_SPREAD), 297 init_once); 298 if (sock_inode_cachep == NULL) 299 return -ENOMEM; 300 return 0; 301 } 302 303 static const struct super_operations sockfs_ops = { 304 .alloc_inode = sock_alloc_inode, 305 .destroy_inode = sock_destroy_inode, 306 .statfs = simple_statfs, 307 }; 308 309 /* 310 * sockfs_dname() is called from d_path(). 311 */ 312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 313 { 314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 315 d_inode(dentry)->i_ino); 316 } 317 318 static const struct dentry_operations sockfs_dentry_operations = { 319 .d_dname = sockfs_dname, 320 }; 321 322 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 323 int flags, const char *dev_name, void *data) 324 { 325 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 326 &sockfs_dentry_operations, SOCKFS_MAGIC); 327 } 328 329 static struct vfsmount *sock_mnt __read_mostly; 330 331 static struct file_system_type sock_fs_type = { 332 .name = "sockfs", 333 .mount = sockfs_mount, 334 .kill_sb = kill_anon_super, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 360 if (dname) { 361 name.name = dname; 362 name.len = strlen(name.name); 363 } else if (sock->sk) { 364 name.name = sock->sk->sk_prot_creator->name; 365 name.len = strlen(name.name); 366 } 367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 368 if (unlikely(!path.dentry)) 369 return ERR_PTR(-ENOMEM); 370 path.mnt = mntget(sock_mnt); 371 372 d_instantiate(path.dentry, SOCK_INODE(sock)); 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (unlikely(IS_ERR(file))) { 377 /* drop dentry, keep inode */ 378 ihold(d_inode(path.dentry)); 379 path_put(&path); 380 return file; 381 } 382 383 sock->file = file; 384 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 385 file->private_data = sock; 386 return file; 387 } 388 EXPORT_SYMBOL(sock_alloc_file); 389 390 static int sock_map_fd(struct socket *sock, int flags) 391 { 392 struct file *newfile; 393 int fd = get_unused_fd_flags(flags); 394 if (unlikely(fd < 0)) 395 return fd; 396 397 newfile = sock_alloc_file(sock, flags, NULL); 398 if (likely(!IS_ERR(newfile))) { 399 fd_install(fd, newfile); 400 return fd; 401 } 402 403 put_unused_fd(fd); 404 return PTR_ERR(newfile); 405 } 406 407 struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 EXPORT_SYMBOL(sock_from_file); 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct socket *sock; 434 435 file = fget(fd); 436 if (!file) { 437 *err = -EBADF; 438 return NULL; 439 } 440 441 sock = sock_from_file(file, err); 442 if (!sock) 443 fput(file); 444 return sock; 445 } 446 EXPORT_SYMBOL(sockfd_lookup); 447 448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 449 { 450 struct fd f = fdget(fd); 451 struct socket *sock; 452 453 *err = -EBADF; 454 if (f.file) { 455 sock = sock_from_file(f.file, err); 456 if (likely(sock)) { 457 *fput_needed = f.flags; 458 return sock; 459 } 460 fdput(f); 461 } 462 return NULL; 463 } 464 465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 468 static ssize_t sockfs_getxattr(struct dentry *dentry, 469 const char *name, void *value, size_t size) 470 { 471 const char *proto_name; 472 size_t proto_size; 473 int error; 474 475 error = -ENODATA; 476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 477 proto_name = dentry->d_name.name; 478 proto_size = strlen(proto_name); 479 480 if (value) { 481 error = -ERANGE; 482 if (proto_size + 1 > size) 483 goto out; 484 485 strncpy(value, proto_name, proto_size + 1); 486 } 487 error = proto_size + 1; 488 } 489 490 out: 491 return error; 492 } 493 494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 495 size_t size) 496 { 497 ssize_t len; 498 ssize_t used = 0; 499 500 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 501 if (len < 0) 502 return len; 503 used += len; 504 if (buffer) { 505 if (size < used) 506 return -ERANGE; 507 buffer += len; 508 } 509 510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 511 used += len; 512 if (buffer) { 513 if (size < used) 514 return -ERANGE; 515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 516 buffer += len; 517 } 518 519 return used; 520 } 521 522 static const struct inode_operations sockfs_inode_ops = { 523 .getxattr = sockfs_getxattr, 524 .listxattr = sockfs_listxattr, 525 }; 526 527 /** 528 * sock_alloc - allocate a socket 529 * 530 * Allocate a new inode and socket object. The two are bound together 531 * and initialised. The socket is then returned. If we are out of inodes 532 * NULL is returned. 533 */ 534 535 static struct socket *sock_alloc(void) 536 { 537 struct inode *inode; 538 struct socket *sock; 539 540 inode = new_inode_pseudo(sock_mnt->mnt_sb); 541 if (!inode) 542 return NULL; 543 544 sock = SOCKET_I(inode); 545 546 kmemcheck_annotate_bitfield(sock, type); 547 inode->i_ino = get_next_ino(); 548 inode->i_mode = S_IFSOCK | S_IRWXUGO; 549 inode->i_uid = current_fsuid(); 550 inode->i_gid = current_fsgid(); 551 inode->i_op = &sockfs_inode_ops; 552 553 this_cpu_add(sockets_in_use, 1); 554 return sock; 555 } 556 557 /** 558 * sock_release - close a socket 559 * @sock: socket to close 560 * 561 * The socket is released from the protocol stack if it has a release 562 * callback, and the inode is then released if the socket is bound to 563 * an inode not a file. 564 */ 565 566 void sock_release(struct socket *sock) 567 { 568 if (sock->ops) { 569 struct module *owner = sock->ops->owner; 570 571 sock->ops->release(sock); 572 sock->ops = NULL; 573 module_put(owner); 574 } 575 576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 577 pr_err("%s: fasync list not empty!\n", __func__); 578 579 this_cpu_sub(sockets_in_use, 1); 580 if (!sock->file) { 581 iput(SOCK_INODE(sock)); 582 return; 583 } 584 sock->file = NULL; 585 } 586 EXPORT_SYMBOL(sock_release); 587 588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 589 { 590 u8 flags = *tx_flags; 591 592 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 593 flags |= SKBTX_HW_TSTAMP; 594 595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 596 flags |= SKBTX_SW_TSTAMP; 597 598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 599 flags |= SKBTX_SCHED_TSTAMP; 600 601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 602 flags |= SKBTX_ACK_TSTAMP; 603 604 *tx_flags = flags; 605 } 606 EXPORT_SYMBOL(__sock_tx_timestamp); 607 608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 609 { 610 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 611 BUG_ON(ret == -EIOCBQUEUED); 612 return ret; 613 } 614 615 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 616 { 617 int err = security_socket_sendmsg(sock, msg, 618 msg_data_left(msg)); 619 620 return err ?: sock_sendmsg_nosec(sock, msg); 621 } 622 EXPORT_SYMBOL(sock_sendmsg); 623 624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 625 struct kvec *vec, size_t num, size_t size) 626 { 627 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 628 return sock_sendmsg(sock, msg); 629 } 630 EXPORT_SYMBOL(kernel_sendmsg); 631 632 /* 633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 634 */ 635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 636 struct sk_buff *skb) 637 { 638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 639 struct scm_timestamping tss; 640 int empty = 1; 641 struct skb_shared_hwtstamps *shhwtstamps = 642 skb_hwtstamps(skb); 643 644 /* Race occurred between timestamp enabling and packet 645 receiving. Fill in the current time for now. */ 646 if (need_software_tstamp && skb->tstamp.tv64 == 0) 647 __net_timestamp(skb); 648 649 if (need_software_tstamp) { 650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 651 struct timeval tv; 652 skb_get_timestamp(skb, &tv); 653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 654 sizeof(tv), &tv); 655 } else { 656 struct timespec ts; 657 skb_get_timestampns(skb, &ts); 658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 659 sizeof(ts), &ts); 660 } 661 } 662 663 memset(&tss, 0, sizeof(tss)); 664 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 665 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 666 empty = 0; 667 if (shhwtstamps && 668 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 669 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 670 empty = 0; 671 if (!empty) 672 put_cmsg(msg, SOL_SOCKET, 673 SCM_TIMESTAMPING, sizeof(tss), &tss); 674 } 675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 676 677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 int ack; 681 682 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 683 return; 684 if (!skb->wifi_acked_valid) 685 return; 686 687 ack = skb->wifi_acked; 688 689 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 690 } 691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 692 693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 694 struct sk_buff *skb) 695 { 696 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 697 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 698 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 699 } 700 701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 702 struct sk_buff *skb) 703 { 704 sock_recv_timestamp(msg, sk, skb); 705 sock_recv_drops(msg, sk, skb); 706 } 707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 708 709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 710 size_t size, int flags) 711 { 712 return sock->ops->recvmsg(sock, msg, size, flags); 713 } 714 715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 716 int flags) 717 { 718 int err = security_socket_recvmsg(sock, msg, size, flags); 719 720 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 721 } 722 EXPORT_SYMBOL(sock_recvmsg); 723 724 /** 725 * kernel_recvmsg - Receive a message from a socket (kernel space) 726 * @sock: The socket to receive the message from 727 * @msg: Received message 728 * @vec: Input s/g array for message data 729 * @num: Size of input s/g array 730 * @size: Number of bytes to read 731 * @flags: Message flags (MSG_DONTWAIT, etc...) 732 * 733 * On return the msg structure contains the scatter/gather array passed in the 734 * vec argument. The array is modified so that it consists of the unfilled 735 * portion of the original array. 736 * 737 * The returned value is the total number of bytes received, or an error. 738 */ 739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size, int flags) 741 { 742 mm_segment_t oldfs = get_fs(); 743 int result; 744 745 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 746 set_fs(KERNEL_DS); 747 result = sock_recvmsg(sock, msg, size, flags); 748 set_fs(oldfs); 749 return result; 750 } 751 EXPORT_SYMBOL(kernel_recvmsg); 752 753 static ssize_t sock_sendpage(struct file *file, struct page *page, 754 int offset, size_t size, loff_t *ppos, int more) 755 { 756 struct socket *sock; 757 int flags; 758 759 sock = file->private_data; 760 761 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 762 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 763 flags |= more; 764 765 return kernel_sendpage(sock, page, offset, size, flags); 766 } 767 768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 769 struct pipe_inode_info *pipe, size_t len, 770 unsigned int flags) 771 { 772 struct socket *sock = file->private_data; 773 774 if (unlikely(!sock->ops->splice_read)) 775 return -EINVAL; 776 777 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 778 } 779 780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 781 { 782 struct file *file = iocb->ki_filp; 783 struct socket *sock = file->private_data; 784 struct msghdr msg = {.msg_iter = *to, 785 .msg_iocb = iocb}; 786 ssize_t res; 787 788 if (file->f_flags & O_NONBLOCK) 789 msg.msg_flags = MSG_DONTWAIT; 790 791 if (iocb->ki_pos != 0) 792 return -ESPIPE; 793 794 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 795 return 0; 796 797 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 798 *to = msg.msg_iter; 799 return res; 800 } 801 802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 803 { 804 struct file *file = iocb->ki_filp; 805 struct socket *sock = file->private_data; 806 struct msghdr msg = {.msg_iter = *from, 807 .msg_iocb = iocb}; 808 ssize_t res; 809 810 if (iocb->ki_pos != 0) 811 return -ESPIPE; 812 813 if (file->f_flags & O_NONBLOCK) 814 msg.msg_flags = MSG_DONTWAIT; 815 816 if (sock->type == SOCK_SEQPACKET) 817 msg.msg_flags |= MSG_EOR; 818 819 res = sock_sendmsg(sock, &msg); 820 *from = msg.msg_iter; 821 return res; 822 } 823 824 /* 825 * Atomic setting of ioctl hooks to avoid race 826 * with module unload. 827 */ 828 829 static DEFINE_MUTEX(br_ioctl_mutex); 830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 831 832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 833 { 834 mutex_lock(&br_ioctl_mutex); 835 br_ioctl_hook = hook; 836 mutex_unlock(&br_ioctl_mutex); 837 } 838 EXPORT_SYMBOL(brioctl_set); 839 840 static DEFINE_MUTEX(vlan_ioctl_mutex); 841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 842 843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 844 { 845 mutex_lock(&vlan_ioctl_mutex); 846 vlan_ioctl_hook = hook; 847 mutex_unlock(&vlan_ioctl_mutex); 848 } 849 EXPORT_SYMBOL(vlan_ioctl_set); 850 851 static DEFINE_MUTEX(dlci_ioctl_mutex); 852 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 853 854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 855 { 856 mutex_lock(&dlci_ioctl_mutex); 857 dlci_ioctl_hook = hook; 858 mutex_unlock(&dlci_ioctl_mutex); 859 } 860 EXPORT_SYMBOL(dlci_ioctl_set); 861 862 static long sock_do_ioctl(struct net *net, struct socket *sock, 863 unsigned int cmd, unsigned long arg) 864 { 865 int err; 866 void __user *argp = (void __user *)arg; 867 868 err = sock->ops->ioctl(sock, cmd, arg); 869 870 /* 871 * If this ioctl is unknown try to hand it down 872 * to the NIC driver. 873 */ 874 if (err == -ENOIOCTLCMD) 875 err = dev_ioctl(net, cmd, argp); 876 877 return err; 878 } 879 880 /* 881 * With an ioctl, arg may well be a user mode pointer, but we don't know 882 * what to do with it - that's up to the protocol still. 883 */ 884 885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 886 { 887 struct socket *sock; 888 struct sock *sk; 889 void __user *argp = (void __user *)arg; 890 int pid, err; 891 struct net *net; 892 893 sock = file->private_data; 894 sk = sock->sk; 895 net = sock_net(sk); 896 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 897 err = dev_ioctl(net, cmd, argp); 898 } else 899 #ifdef CONFIG_WEXT_CORE 900 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 901 err = dev_ioctl(net, cmd, argp); 902 } else 903 #endif 904 switch (cmd) { 905 case FIOSETOWN: 906 case SIOCSPGRP: 907 err = -EFAULT; 908 if (get_user(pid, (int __user *)argp)) 909 break; 910 f_setown(sock->file, pid, 1); 911 err = 0; 912 break; 913 case FIOGETOWN: 914 case SIOCGPGRP: 915 err = put_user(f_getown(sock->file), 916 (int __user *)argp); 917 break; 918 case SIOCGIFBR: 919 case SIOCSIFBR: 920 case SIOCBRADDBR: 921 case SIOCBRDELBR: 922 err = -ENOPKG; 923 if (!br_ioctl_hook) 924 request_module("bridge"); 925 926 mutex_lock(&br_ioctl_mutex); 927 if (br_ioctl_hook) 928 err = br_ioctl_hook(net, cmd, argp); 929 mutex_unlock(&br_ioctl_mutex); 930 break; 931 case SIOCGIFVLAN: 932 case SIOCSIFVLAN: 933 err = -ENOPKG; 934 if (!vlan_ioctl_hook) 935 request_module("8021q"); 936 937 mutex_lock(&vlan_ioctl_mutex); 938 if (vlan_ioctl_hook) 939 err = vlan_ioctl_hook(net, argp); 940 mutex_unlock(&vlan_ioctl_mutex); 941 break; 942 case SIOCADDDLCI: 943 case SIOCDELDLCI: 944 err = -ENOPKG; 945 if (!dlci_ioctl_hook) 946 request_module("dlci"); 947 948 mutex_lock(&dlci_ioctl_mutex); 949 if (dlci_ioctl_hook) 950 err = dlci_ioctl_hook(cmd, argp); 951 mutex_unlock(&dlci_ioctl_mutex); 952 break; 953 default: 954 err = sock_do_ioctl(net, sock, cmd, arg); 955 break; 956 } 957 return err; 958 } 959 960 int sock_create_lite(int family, int type, int protocol, struct socket **res) 961 { 962 int err; 963 struct socket *sock = NULL; 964 965 err = security_socket_create(family, type, protocol, 1); 966 if (err) 967 goto out; 968 969 sock = sock_alloc(); 970 if (!sock) { 971 err = -ENOMEM; 972 goto out; 973 } 974 975 sock->type = type; 976 err = security_socket_post_create(sock, family, type, protocol, 1); 977 if (err) 978 goto out_release; 979 980 out: 981 *res = sock; 982 return err; 983 out_release: 984 sock_release(sock); 985 sock = NULL; 986 goto out; 987 } 988 EXPORT_SYMBOL(sock_create_lite); 989 990 /* No kernel lock held - perfect */ 991 static unsigned int sock_poll(struct file *file, poll_table *wait) 992 { 993 unsigned int busy_flag = 0; 994 struct socket *sock; 995 996 /* 997 * We can't return errors to poll, so it's either yes or no. 998 */ 999 sock = file->private_data; 1000 1001 if (sk_can_busy_loop(sock->sk)) { 1002 /* this socket can poll_ll so tell the system call */ 1003 busy_flag = POLL_BUSY_LOOP; 1004 1005 /* once, only if requested by syscall */ 1006 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1007 sk_busy_loop(sock->sk, 1); 1008 } 1009 1010 return busy_flag | sock->ops->poll(file, sock, wait); 1011 } 1012 1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1014 { 1015 struct socket *sock = file->private_data; 1016 1017 return sock->ops->mmap(file, sock, vma); 1018 } 1019 1020 static int sock_close(struct inode *inode, struct file *filp) 1021 { 1022 sock_release(SOCKET_I(inode)); 1023 return 0; 1024 } 1025 1026 /* 1027 * Update the socket async list 1028 * 1029 * Fasync_list locking strategy. 1030 * 1031 * 1. fasync_list is modified only under process context socket lock 1032 * i.e. under semaphore. 1033 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1034 * or under socket lock 1035 */ 1036 1037 static int sock_fasync(int fd, struct file *filp, int on) 1038 { 1039 struct socket *sock = filp->private_data; 1040 struct sock *sk = sock->sk; 1041 struct socket_wq *wq; 1042 1043 if (sk == NULL) 1044 return -EINVAL; 1045 1046 lock_sock(sk); 1047 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1048 fasync_helper(fd, filp, on, &wq->fasync_list); 1049 1050 if (!wq->fasync_list) 1051 sock_reset_flag(sk, SOCK_FASYNC); 1052 else 1053 sock_set_flag(sk, SOCK_FASYNC); 1054 1055 release_sock(sk); 1056 return 0; 1057 } 1058 1059 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1060 1061 int sock_wake_async(struct socket *sock, int how, int band) 1062 { 1063 struct socket_wq *wq; 1064 1065 if (!sock) 1066 return -1; 1067 rcu_read_lock(); 1068 wq = rcu_dereference(sock->wq); 1069 if (!wq || !wq->fasync_list) { 1070 rcu_read_unlock(); 1071 return -1; 1072 } 1073 switch (how) { 1074 case SOCK_WAKE_WAITD: 1075 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1076 break; 1077 goto call_kill; 1078 case SOCK_WAKE_SPACE: 1079 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1080 break; 1081 /* fall through */ 1082 case SOCK_WAKE_IO: 1083 call_kill: 1084 kill_fasync(&wq->fasync_list, SIGIO, band); 1085 break; 1086 case SOCK_WAKE_URG: 1087 kill_fasync(&wq->fasync_list, SIGURG, band); 1088 } 1089 rcu_read_unlock(); 1090 return 0; 1091 } 1092 EXPORT_SYMBOL(sock_wake_async); 1093 1094 int __sock_create(struct net *net, int family, int type, int protocol, 1095 struct socket **res, int kern) 1096 { 1097 int err; 1098 struct socket *sock; 1099 const struct net_proto_family *pf; 1100 1101 /* 1102 * Check protocol is in range 1103 */ 1104 if (family < 0 || family >= NPROTO) 1105 return -EAFNOSUPPORT; 1106 if (type < 0 || type >= SOCK_MAX) 1107 return -EINVAL; 1108 1109 /* Compatibility. 1110 1111 This uglymoron is moved from INET layer to here to avoid 1112 deadlock in module load. 1113 */ 1114 if (family == PF_INET && type == SOCK_PACKET) { 1115 static int warned; 1116 if (!warned) { 1117 warned = 1; 1118 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1119 current->comm); 1120 } 1121 family = PF_PACKET; 1122 } 1123 1124 err = security_socket_create(family, type, protocol, kern); 1125 if (err) 1126 return err; 1127 1128 /* 1129 * Allocate the socket and allow the family to set things up. if 1130 * the protocol is 0, the family is instructed to select an appropriate 1131 * default. 1132 */ 1133 sock = sock_alloc(); 1134 if (!sock) { 1135 net_warn_ratelimited("socket: no more sockets\n"); 1136 return -ENFILE; /* Not exactly a match, but its the 1137 closest posix thing */ 1138 } 1139 1140 sock->type = type; 1141 1142 #ifdef CONFIG_MODULES 1143 /* Attempt to load a protocol module if the find failed. 1144 * 1145 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1146 * requested real, full-featured networking support upon configuration. 1147 * Otherwise module support will break! 1148 */ 1149 if (rcu_access_pointer(net_families[family]) == NULL) 1150 request_module("net-pf-%d", family); 1151 #endif 1152 1153 rcu_read_lock(); 1154 pf = rcu_dereference(net_families[family]); 1155 err = -EAFNOSUPPORT; 1156 if (!pf) 1157 goto out_release; 1158 1159 /* 1160 * We will call the ->create function, that possibly is in a loadable 1161 * module, so we have to bump that loadable module refcnt first. 1162 */ 1163 if (!try_module_get(pf->owner)) 1164 goto out_release; 1165 1166 /* Now protected by module ref count */ 1167 rcu_read_unlock(); 1168 1169 err = pf->create(net, sock, protocol, kern); 1170 if (err < 0) 1171 goto out_module_put; 1172 1173 /* 1174 * Now to bump the refcnt of the [loadable] module that owns this 1175 * socket at sock_release time we decrement its refcnt. 1176 */ 1177 if (!try_module_get(sock->ops->owner)) 1178 goto out_module_busy; 1179 1180 /* 1181 * Now that we're done with the ->create function, the [loadable] 1182 * module can have its refcnt decremented 1183 */ 1184 module_put(pf->owner); 1185 err = security_socket_post_create(sock, family, type, protocol, kern); 1186 if (err) 1187 goto out_sock_release; 1188 *res = sock; 1189 1190 return 0; 1191 1192 out_module_busy: 1193 err = -EAFNOSUPPORT; 1194 out_module_put: 1195 sock->ops = NULL; 1196 module_put(pf->owner); 1197 out_sock_release: 1198 sock_release(sock); 1199 return err; 1200 1201 out_release: 1202 rcu_read_unlock(); 1203 goto out_sock_release; 1204 } 1205 EXPORT_SYMBOL(__sock_create); 1206 1207 int sock_create(int family, int type, int protocol, struct socket **res) 1208 { 1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1210 } 1211 EXPORT_SYMBOL(sock_create); 1212 1213 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1214 { 1215 return __sock_create(net, family, type, protocol, res, 1); 1216 } 1217 EXPORT_SYMBOL(sock_create_kern); 1218 1219 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1220 { 1221 int retval; 1222 struct socket *sock; 1223 int flags; 1224 1225 /* Check the SOCK_* constants for consistency. */ 1226 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1227 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1228 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1229 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1230 1231 flags = type & ~SOCK_TYPE_MASK; 1232 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1233 return -EINVAL; 1234 type &= SOCK_TYPE_MASK; 1235 1236 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1237 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1238 1239 retval = sock_create(family, type, protocol, &sock); 1240 if (retval < 0) 1241 goto out; 1242 1243 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1244 if (retval < 0) 1245 goto out_release; 1246 1247 out: 1248 /* It may be already another descriptor 8) Not kernel problem. */ 1249 return retval; 1250 1251 out_release: 1252 sock_release(sock); 1253 return retval; 1254 } 1255 1256 /* 1257 * Create a pair of connected sockets. 1258 */ 1259 1260 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1261 int __user *, usockvec) 1262 { 1263 struct socket *sock1, *sock2; 1264 int fd1, fd2, err; 1265 struct file *newfile1, *newfile2; 1266 int flags; 1267 1268 flags = type & ~SOCK_TYPE_MASK; 1269 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1270 return -EINVAL; 1271 type &= SOCK_TYPE_MASK; 1272 1273 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1274 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1275 1276 /* 1277 * Obtain the first socket and check if the underlying protocol 1278 * supports the socketpair call. 1279 */ 1280 1281 err = sock_create(family, type, protocol, &sock1); 1282 if (err < 0) 1283 goto out; 1284 1285 err = sock_create(family, type, protocol, &sock2); 1286 if (err < 0) 1287 goto out_release_1; 1288 1289 err = sock1->ops->socketpair(sock1, sock2); 1290 if (err < 0) 1291 goto out_release_both; 1292 1293 fd1 = get_unused_fd_flags(flags); 1294 if (unlikely(fd1 < 0)) { 1295 err = fd1; 1296 goto out_release_both; 1297 } 1298 1299 fd2 = get_unused_fd_flags(flags); 1300 if (unlikely(fd2 < 0)) { 1301 err = fd2; 1302 goto out_put_unused_1; 1303 } 1304 1305 newfile1 = sock_alloc_file(sock1, flags, NULL); 1306 if (unlikely(IS_ERR(newfile1))) { 1307 err = PTR_ERR(newfile1); 1308 goto out_put_unused_both; 1309 } 1310 1311 newfile2 = sock_alloc_file(sock2, flags, NULL); 1312 if (IS_ERR(newfile2)) { 1313 err = PTR_ERR(newfile2); 1314 goto out_fput_1; 1315 } 1316 1317 err = put_user(fd1, &usockvec[0]); 1318 if (err) 1319 goto out_fput_both; 1320 1321 err = put_user(fd2, &usockvec[1]); 1322 if (err) 1323 goto out_fput_both; 1324 1325 audit_fd_pair(fd1, fd2); 1326 1327 fd_install(fd1, newfile1); 1328 fd_install(fd2, newfile2); 1329 /* fd1 and fd2 may be already another descriptors. 1330 * Not kernel problem. 1331 */ 1332 1333 return 0; 1334 1335 out_fput_both: 1336 fput(newfile2); 1337 fput(newfile1); 1338 put_unused_fd(fd2); 1339 put_unused_fd(fd1); 1340 goto out; 1341 1342 out_fput_1: 1343 fput(newfile1); 1344 put_unused_fd(fd2); 1345 put_unused_fd(fd1); 1346 sock_release(sock2); 1347 goto out; 1348 1349 out_put_unused_both: 1350 put_unused_fd(fd2); 1351 out_put_unused_1: 1352 put_unused_fd(fd1); 1353 out_release_both: 1354 sock_release(sock2); 1355 out_release_1: 1356 sock_release(sock1); 1357 out: 1358 return err; 1359 } 1360 1361 /* 1362 * Bind a name to a socket. Nothing much to do here since it's 1363 * the protocol's responsibility to handle the local address. 1364 * 1365 * We move the socket address to kernel space before we call 1366 * the protocol layer (having also checked the address is ok). 1367 */ 1368 1369 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1370 { 1371 struct socket *sock; 1372 struct sockaddr_storage address; 1373 int err, fput_needed; 1374 1375 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1376 if (sock) { 1377 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1378 if (err >= 0) { 1379 err = security_socket_bind(sock, 1380 (struct sockaddr *)&address, 1381 addrlen); 1382 if (!err) 1383 err = sock->ops->bind(sock, 1384 (struct sockaddr *) 1385 &address, addrlen); 1386 } 1387 fput_light(sock->file, fput_needed); 1388 } 1389 return err; 1390 } 1391 1392 /* 1393 * Perform a listen. Basically, we allow the protocol to do anything 1394 * necessary for a listen, and if that works, we mark the socket as 1395 * ready for listening. 1396 */ 1397 1398 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1399 { 1400 struct socket *sock; 1401 int err, fput_needed; 1402 int somaxconn; 1403 1404 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1405 if (sock) { 1406 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1407 if ((unsigned int)backlog > somaxconn) 1408 backlog = somaxconn; 1409 1410 err = security_socket_listen(sock, backlog); 1411 if (!err) 1412 err = sock->ops->listen(sock, backlog); 1413 1414 fput_light(sock->file, fput_needed); 1415 } 1416 return err; 1417 } 1418 1419 /* 1420 * For accept, we attempt to create a new socket, set up the link 1421 * with the client, wake up the client, then return the new 1422 * connected fd. We collect the address of the connector in kernel 1423 * space and move it to user at the very end. This is unclean because 1424 * we open the socket then return an error. 1425 * 1426 * 1003.1g adds the ability to recvmsg() to query connection pending 1427 * status to recvmsg. We need to add that support in a way thats 1428 * clean when we restucture accept also. 1429 */ 1430 1431 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1432 int __user *, upeer_addrlen, int, flags) 1433 { 1434 struct socket *sock, *newsock; 1435 struct file *newfile; 1436 int err, len, newfd, fput_needed; 1437 struct sockaddr_storage address; 1438 1439 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1440 return -EINVAL; 1441 1442 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1443 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1444 1445 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1446 if (!sock) 1447 goto out; 1448 1449 err = -ENFILE; 1450 newsock = sock_alloc(); 1451 if (!newsock) 1452 goto out_put; 1453 1454 newsock->type = sock->type; 1455 newsock->ops = sock->ops; 1456 1457 /* 1458 * We don't need try_module_get here, as the listening socket (sock) 1459 * has the protocol module (sock->ops->owner) held. 1460 */ 1461 __module_get(newsock->ops->owner); 1462 1463 newfd = get_unused_fd_flags(flags); 1464 if (unlikely(newfd < 0)) { 1465 err = newfd; 1466 sock_release(newsock); 1467 goto out_put; 1468 } 1469 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1470 if (unlikely(IS_ERR(newfile))) { 1471 err = PTR_ERR(newfile); 1472 put_unused_fd(newfd); 1473 sock_release(newsock); 1474 goto out_put; 1475 } 1476 1477 err = security_socket_accept(sock, newsock); 1478 if (err) 1479 goto out_fd; 1480 1481 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1482 if (err < 0) 1483 goto out_fd; 1484 1485 if (upeer_sockaddr) { 1486 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1487 &len, 2) < 0) { 1488 err = -ECONNABORTED; 1489 goto out_fd; 1490 } 1491 err = move_addr_to_user(&address, 1492 len, upeer_sockaddr, upeer_addrlen); 1493 if (err < 0) 1494 goto out_fd; 1495 } 1496 1497 /* File flags are not inherited via accept() unlike another OSes. */ 1498 1499 fd_install(newfd, newfile); 1500 err = newfd; 1501 1502 out_put: 1503 fput_light(sock->file, fput_needed); 1504 out: 1505 return err; 1506 out_fd: 1507 fput(newfile); 1508 put_unused_fd(newfd); 1509 goto out_put; 1510 } 1511 1512 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1513 int __user *, upeer_addrlen) 1514 { 1515 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1516 } 1517 1518 /* 1519 * Attempt to connect to a socket with the server address. The address 1520 * is in user space so we verify it is OK and move it to kernel space. 1521 * 1522 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1523 * break bindings 1524 * 1525 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1526 * other SEQPACKET protocols that take time to connect() as it doesn't 1527 * include the -EINPROGRESS status for such sockets. 1528 */ 1529 1530 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1531 int, addrlen) 1532 { 1533 struct socket *sock; 1534 struct sockaddr_storage address; 1535 int err, fput_needed; 1536 1537 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1538 if (!sock) 1539 goto out; 1540 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1541 if (err < 0) 1542 goto out_put; 1543 1544 err = 1545 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1546 if (err) 1547 goto out_put; 1548 1549 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1550 sock->file->f_flags); 1551 out_put: 1552 fput_light(sock->file, fput_needed); 1553 out: 1554 return err; 1555 } 1556 1557 /* 1558 * Get the local address ('name') of a socket object. Move the obtained 1559 * name to user space. 1560 */ 1561 1562 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1563 int __user *, usockaddr_len) 1564 { 1565 struct socket *sock; 1566 struct sockaddr_storage address; 1567 int len, err, fput_needed; 1568 1569 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1570 if (!sock) 1571 goto out; 1572 1573 err = security_socket_getsockname(sock); 1574 if (err) 1575 goto out_put; 1576 1577 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1578 if (err) 1579 goto out_put; 1580 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1581 1582 out_put: 1583 fput_light(sock->file, fput_needed); 1584 out: 1585 return err; 1586 } 1587 1588 /* 1589 * Get the remote address ('name') of a socket object. Move the obtained 1590 * name to user space. 1591 */ 1592 1593 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1594 int __user *, usockaddr_len) 1595 { 1596 struct socket *sock; 1597 struct sockaddr_storage address; 1598 int len, err, fput_needed; 1599 1600 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1601 if (sock != NULL) { 1602 err = security_socket_getpeername(sock); 1603 if (err) { 1604 fput_light(sock->file, fput_needed); 1605 return err; 1606 } 1607 1608 err = 1609 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1610 1); 1611 if (!err) 1612 err = move_addr_to_user(&address, len, usockaddr, 1613 usockaddr_len); 1614 fput_light(sock->file, fput_needed); 1615 } 1616 return err; 1617 } 1618 1619 /* 1620 * Send a datagram to a given address. We move the address into kernel 1621 * space and check the user space data area is readable before invoking 1622 * the protocol. 1623 */ 1624 1625 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1626 unsigned int, flags, struct sockaddr __user *, addr, 1627 int, addr_len) 1628 { 1629 struct socket *sock; 1630 struct sockaddr_storage address; 1631 int err; 1632 struct msghdr msg; 1633 struct iovec iov; 1634 int fput_needed; 1635 1636 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1637 if (unlikely(err)) 1638 return err; 1639 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1640 if (!sock) 1641 goto out; 1642 1643 msg.msg_name = NULL; 1644 msg.msg_control = NULL; 1645 msg.msg_controllen = 0; 1646 msg.msg_namelen = 0; 1647 if (addr) { 1648 err = move_addr_to_kernel(addr, addr_len, &address); 1649 if (err < 0) 1650 goto out_put; 1651 msg.msg_name = (struct sockaddr *)&address; 1652 msg.msg_namelen = addr_len; 1653 } 1654 if (sock->file->f_flags & O_NONBLOCK) 1655 flags |= MSG_DONTWAIT; 1656 msg.msg_flags = flags; 1657 err = sock_sendmsg(sock, &msg); 1658 1659 out_put: 1660 fput_light(sock->file, fput_needed); 1661 out: 1662 return err; 1663 } 1664 1665 /* 1666 * Send a datagram down a socket. 1667 */ 1668 1669 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1670 unsigned int, flags) 1671 { 1672 return sys_sendto(fd, buff, len, flags, NULL, 0); 1673 } 1674 1675 /* 1676 * Receive a frame from the socket and optionally record the address of the 1677 * sender. We verify the buffers are writable and if needed move the 1678 * sender address from kernel to user space. 1679 */ 1680 1681 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1682 unsigned int, flags, struct sockaddr __user *, addr, 1683 int __user *, addr_len) 1684 { 1685 struct socket *sock; 1686 struct iovec iov; 1687 struct msghdr msg; 1688 struct sockaddr_storage address; 1689 int err, err2; 1690 int fput_needed; 1691 1692 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1693 if (unlikely(err)) 1694 return err; 1695 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1696 if (!sock) 1697 goto out; 1698 1699 msg.msg_control = NULL; 1700 msg.msg_controllen = 0; 1701 /* Save some cycles and don't copy the address if not needed */ 1702 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1703 /* We assume all kernel code knows the size of sockaddr_storage */ 1704 msg.msg_namelen = 0; 1705 if (sock->file->f_flags & O_NONBLOCK) 1706 flags |= MSG_DONTWAIT; 1707 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1708 1709 if (err >= 0 && addr != NULL) { 1710 err2 = move_addr_to_user(&address, 1711 msg.msg_namelen, addr, addr_len); 1712 if (err2 < 0) 1713 err = err2; 1714 } 1715 1716 fput_light(sock->file, fput_needed); 1717 out: 1718 return err; 1719 } 1720 1721 /* 1722 * Receive a datagram from a socket. 1723 */ 1724 1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1726 unsigned int, flags) 1727 { 1728 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1729 } 1730 1731 /* 1732 * Set a socket option. Because we don't know the option lengths we have 1733 * to pass the user mode parameter for the protocols to sort out. 1734 */ 1735 1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1737 char __user *, optval, int, optlen) 1738 { 1739 int err, fput_needed; 1740 struct socket *sock; 1741 1742 if (optlen < 0) 1743 return -EINVAL; 1744 1745 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1746 if (sock != NULL) { 1747 err = security_socket_setsockopt(sock, level, optname); 1748 if (err) 1749 goto out_put; 1750 1751 if (level == SOL_SOCKET) 1752 err = 1753 sock_setsockopt(sock, level, optname, optval, 1754 optlen); 1755 else 1756 err = 1757 sock->ops->setsockopt(sock, level, optname, optval, 1758 optlen); 1759 out_put: 1760 fput_light(sock->file, fput_needed); 1761 } 1762 return err; 1763 } 1764 1765 /* 1766 * Get a socket option. Because we don't know the option lengths we have 1767 * to pass a user mode parameter for the protocols to sort out. 1768 */ 1769 1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1771 char __user *, optval, int __user *, optlen) 1772 { 1773 int err, fput_needed; 1774 struct socket *sock; 1775 1776 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1777 if (sock != NULL) { 1778 err = security_socket_getsockopt(sock, level, optname); 1779 if (err) 1780 goto out_put; 1781 1782 if (level == SOL_SOCKET) 1783 err = 1784 sock_getsockopt(sock, level, optname, optval, 1785 optlen); 1786 else 1787 err = 1788 sock->ops->getsockopt(sock, level, optname, optval, 1789 optlen); 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 } 1793 return err; 1794 } 1795 1796 /* 1797 * Shutdown a socket. 1798 */ 1799 1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1801 { 1802 int err, fput_needed; 1803 struct socket *sock; 1804 1805 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1806 if (sock != NULL) { 1807 err = security_socket_shutdown(sock, how); 1808 if (!err) 1809 err = sock->ops->shutdown(sock, how); 1810 fput_light(sock->file, fput_needed); 1811 } 1812 return err; 1813 } 1814 1815 /* A couple of helpful macros for getting the address of the 32/64 bit 1816 * fields which are the same type (int / unsigned) on our platforms. 1817 */ 1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1819 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1820 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1821 1822 struct used_address { 1823 struct sockaddr_storage name; 1824 unsigned int name_len; 1825 }; 1826 1827 static int copy_msghdr_from_user(struct msghdr *kmsg, 1828 struct user_msghdr __user *umsg, 1829 struct sockaddr __user **save_addr, 1830 struct iovec **iov) 1831 { 1832 struct sockaddr __user *uaddr; 1833 struct iovec __user *uiov; 1834 size_t nr_segs; 1835 ssize_t err; 1836 1837 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1838 __get_user(uaddr, &umsg->msg_name) || 1839 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1840 __get_user(uiov, &umsg->msg_iov) || 1841 __get_user(nr_segs, &umsg->msg_iovlen) || 1842 __get_user(kmsg->msg_control, &umsg->msg_control) || 1843 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1844 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1845 return -EFAULT; 1846 1847 if (!uaddr) 1848 kmsg->msg_namelen = 0; 1849 1850 if (kmsg->msg_namelen < 0) 1851 return -EINVAL; 1852 1853 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1854 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1855 1856 if (save_addr) 1857 *save_addr = uaddr; 1858 1859 if (uaddr && kmsg->msg_namelen) { 1860 if (!save_addr) { 1861 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1862 kmsg->msg_name); 1863 if (err < 0) 1864 return err; 1865 } 1866 } else { 1867 kmsg->msg_name = NULL; 1868 kmsg->msg_namelen = 0; 1869 } 1870 1871 if (nr_segs > UIO_MAXIOV) 1872 return -EMSGSIZE; 1873 1874 kmsg->msg_iocb = NULL; 1875 1876 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1877 UIO_FASTIOV, iov, &kmsg->msg_iter); 1878 } 1879 1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1881 struct msghdr *msg_sys, unsigned int flags, 1882 struct used_address *used_address) 1883 { 1884 struct compat_msghdr __user *msg_compat = 1885 (struct compat_msghdr __user *)msg; 1886 struct sockaddr_storage address; 1887 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1888 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1889 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1890 /* 20 is size of ipv6_pktinfo */ 1891 unsigned char *ctl_buf = ctl; 1892 int ctl_len; 1893 ssize_t err; 1894 1895 msg_sys->msg_name = &address; 1896 1897 if (MSG_CMSG_COMPAT & flags) 1898 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1899 else 1900 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1901 if (err < 0) 1902 return err; 1903 1904 err = -ENOBUFS; 1905 1906 if (msg_sys->msg_controllen > INT_MAX) 1907 goto out_freeiov; 1908 ctl_len = msg_sys->msg_controllen; 1909 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1910 err = 1911 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1912 sizeof(ctl)); 1913 if (err) 1914 goto out_freeiov; 1915 ctl_buf = msg_sys->msg_control; 1916 ctl_len = msg_sys->msg_controllen; 1917 } else if (ctl_len) { 1918 if (ctl_len > sizeof(ctl)) { 1919 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1920 if (ctl_buf == NULL) 1921 goto out_freeiov; 1922 } 1923 err = -EFAULT; 1924 /* 1925 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1926 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1927 * checking falls down on this. 1928 */ 1929 if (copy_from_user(ctl_buf, 1930 (void __user __force *)msg_sys->msg_control, 1931 ctl_len)) 1932 goto out_freectl; 1933 msg_sys->msg_control = ctl_buf; 1934 } 1935 msg_sys->msg_flags = flags; 1936 1937 if (sock->file->f_flags & O_NONBLOCK) 1938 msg_sys->msg_flags |= MSG_DONTWAIT; 1939 /* 1940 * If this is sendmmsg() and current destination address is same as 1941 * previously succeeded address, omit asking LSM's decision. 1942 * used_address->name_len is initialized to UINT_MAX so that the first 1943 * destination address never matches. 1944 */ 1945 if (used_address && msg_sys->msg_name && 1946 used_address->name_len == msg_sys->msg_namelen && 1947 !memcmp(&used_address->name, msg_sys->msg_name, 1948 used_address->name_len)) { 1949 err = sock_sendmsg_nosec(sock, msg_sys); 1950 goto out_freectl; 1951 } 1952 err = sock_sendmsg(sock, msg_sys); 1953 /* 1954 * If this is sendmmsg() and sending to current destination address was 1955 * successful, remember it. 1956 */ 1957 if (used_address && err >= 0) { 1958 used_address->name_len = msg_sys->msg_namelen; 1959 if (msg_sys->msg_name) 1960 memcpy(&used_address->name, msg_sys->msg_name, 1961 used_address->name_len); 1962 } 1963 1964 out_freectl: 1965 if (ctl_buf != ctl) 1966 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1967 out_freeiov: 1968 kfree(iov); 1969 return err; 1970 } 1971 1972 /* 1973 * BSD sendmsg interface 1974 */ 1975 1976 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1977 { 1978 int fput_needed, err; 1979 struct msghdr msg_sys; 1980 struct socket *sock; 1981 1982 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1983 if (!sock) 1984 goto out; 1985 1986 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1987 1988 fput_light(sock->file, fput_needed); 1989 out: 1990 return err; 1991 } 1992 1993 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1994 { 1995 if (flags & MSG_CMSG_COMPAT) 1996 return -EINVAL; 1997 return __sys_sendmsg(fd, msg, flags); 1998 } 1999 2000 /* 2001 * Linux sendmmsg interface 2002 */ 2003 2004 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2005 unsigned int flags) 2006 { 2007 int fput_needed, err, datagrams; 2008 struct socket *sock; 2009 struct mmsghdr __user *entry; 2010 struct compat_mmsghdr __user *compat_entry; 2011 struct msghdr msg_sys; 2012 struct used_address used_address; 2013 2014 if (vlen > UIO_MAXIOV) 2015 vlen = UIO_MAXIOV; 2016 2017 datagrams = 0; 2018 2019 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2020 if (!sock) 2021 return err; 2022 2023 used_address.name_len = UINT_MAX; 2024 entry = mmsg; 2025 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2026 err = 0; 2027 2028 while (datagrams < vlen) { 2029 if (MSG_CMSG_COMPAT & flags) { 2030 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2031 &msg_sys, flags, &used_address); 2032 if (err < 0) 2033 break; 2034 err = __put_user(err, &compat_entry->msg_len); 2035 ++compat_entry; 2036 } else { 2037 err = ___sys_sendmsg(sock, 2038 (struct user_msghdr __user *)entry, 2039 &msg_sys, flags, &used_address); 2040 if (err < 0) 2041 break; 2042 err = put_user(err, &entry->msg_len); 2043 ++entry; 2044 } 2045 2046 if (err) 2047 break; 2048 ++datagrams; 2049 } 2050 2051 fput_light(sock->file, fput_needed); 2052 2053 /* We only return an error if no datagrams were able to be sent */ 2054 if (datagrams != 0) 2055 return datagrams; 2056 2057 return err; 2058 } 2059 2060 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2061 unsigned int, vlen, unsigned int, flags) 2062 { 2063 if (flags & MSG_CMSG_COMPAT) 2064 return -EINVAL; 2065 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2066 } 2067 2068 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2069 struct msghdr *msg_sys, unsigned int flags, int nosec) 2070 { 2071 struct compat_msghdr __user *msg_compat = 2072 (struct compat_msghdr __user *)msg; 2073 struct iovec iovstack[UIO_FASTIOV]; 2074 struct iovec *iov = iovstack; 2075 unsigned long cmsg_ptr; 2076 int total_len, len; 2077 ssize_t err; 2078 2079 /* kernel mode address */ 2080 struct sockaddr_storage addr; 2081 2082 /* user mode address pointers */ 2083 struct sockaddr __user *uaddr; 2084 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2085 2086 msg_sys->msg_name = &addr; 2087 2088 if (MSG_CMSG_COMPAT & flags) 2089 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2090 else 2091 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2092 if (err < 0) 2093 return err; 2094 total_len = iov_iter_count(&msg_sys->msg_iter); 2095 2096 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2097 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2098 2099 /* We assume all kernel code knows the size of sockaddr_storage */ 2100 msg_sys->msg_namelen = 0; 2101 2102 if (sock->file->f_flags & O_NONBLOCK) 2103 flags |= MSG_DONTWAIT; 2104 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2105 total_len, flags); 2106 if (err < 0) 2107 goto out_freeiov; 2108 len = err; 2109 2110 if (uaddr != NULL) { 2111 err = move_addr_to_user(&addr, 2112 msg_sys->msg_namelen, uaddr, 2113 uaddr_len); 2114 if (err < 0) 2115 goto out_freeiov; 2116 } 2117 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2118 COMPAT_FLAGS(msg)); 2119 if (err) 2120 goto out_freeiov; 2121 if (MSG_CMSG_COMPAT & flags) 2122 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2123 &msg_compat->msg_controllen); 2124 else 2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2126 &msg->msg_controllen); 2127 if (err) 2128 goto out_freeiov; 2129 err = len; 2130 2131 out_freeiov: 2132 kfree(iov); 2133 return err; 2134 } 2135 2136 /* 2137 * BSD recvmsg interface 2138 */ 2139 2140 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2141 { 2142 int fput_needed, err; 2143 struct msghdr msg_sys; 2144 struct socket *sock; 2145 2146 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2147 if (!sock) 2148 goto out; 2149 2150 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2151 2152 fput_light(sock->file, fput_needed); 2153 out: 2154 return err; 2155 } 2156 2157 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2158 unsigned int, flags) 2159 { 2160 if (flags & MSG_CMSG_COMPAT) 2161 return -EINVAL; 2162 return __sys_recvmsg(fd, msg, flags); 2163 } 2164 2165 /* 2166 * Linux recvmmsg interface 2167 */ 2168 2169 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2170 unsigned int flags, struct timespec *timeout) 2171 { 2172 int fput_needed, err, datagrams; 2173 struct socket *sock; 2174 struct mmsghdr __user *entry; 2175 struct compat_mmsghdr __user *compat_entry; 2176 struct msghdr msg_sys; 2177 struct timespec end_time; 2178 2179 if (timeout && 2180 poll_select_set_timeout(&end_time, timeout->tv_sec, 2181 timeout->tv_nsec)) 2182 return -EINVAL; 2183 2184 datagrams = 0; 2185 2186 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2187 if (!sock) 2188 return err; 2189 2190 err = sock_error(sock->sk); 2191 if (err) 2192 goto out_put; 2193 2194 entry = mmsg; 2195 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2196 2197 while (datagrams < vlen) { 2198 /* 2199 * No need to ask LSM for more than the first datagram. 2200 */ 2201 if (MSG_CMSG_COMPAT & flags) { 2202 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2203 &msg_sys, flags & ~MSG_WAITFORONE, 2204 datagrams); 2205 if (err < 0) 2206 break; 2207 err = __put_user(err, &compat_entry->msg_len); 2208 ++compat_entry; 2209 } else { 2210 err = ___sys_recvmsg(sock, 2211 (struct user_msghdr __user *)entry, 2212 &msg_sys, flags & ~MSG_WAITFORONE, 2213 datagrams); 2214 if (err < 0) 2215 break; 2216 err = put_user(err, &entry->msg_len); 2217 ++entry; 2218 } 2219 2220 if (err) 2221 break; 2222 ++datagrams; 2223 2224 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2225 if (flags & MSG_WAITFORONE) 2226 flags |= MSG_DONTWAIT; 2227 2228 if (timeout) { 2229 ktime_get_ts(timeout); 2230 *timeout = timespec_sub(end_time, *timeout); 2231 if (timeout->tv_sec < 0) { 2232 timeout->tv_sec = timeout->tv_nsec = 0; 2233 break; 2234 } 2235 2236 /* Timeout, return less than vlen datagrams */ 2237 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2238 break; 2239 } 2240 2241 /* Out of band data, return right away */ 2242 if (msg_sys.msg_flags & MSG_OOB) 2243 break; 2244 } 2245 2246 out_put: 2247 fput_light(sock->file, fput_needed); 2248 2249 if (err == 0) 2250 return datagrams; 2251 2252 if (datagrams != 0) { 2253 /* 2254 * We may return less entries than requested (vlen) if the 2255 * sock is non block and there aren't enough datagrams... 2256 */ 2257 if (err != -EAGAIN) { 2258 /* 2259 * ... or if recvmsg returns an error after we 2260 * received some datagrams, where we record the 2261 * error to return on the next call or if the 2262 * app asks about it using getsockopt(SO_ERROR). 2263 */ 2264 sock->sk->sk_err = -err; 2265 } 2266 2267 return datagrams; 2268 } 2269 2270 return err; 2271 } 2272 2273 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2274 unsigned int, vlen, unsigned int, flags, 2275 struct timespec __user *, timeout) 2276 { 2277 int datagrams; 2278 struct timespec timeout_sys; 2279 2280 if (flags & MSG_CMSG_COMPAT) 2281 return -EINVAL; 2282 2283 if (!timeout) 2284 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2285 2286 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2287 return -EFAULT; 2288 2289 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2290 2291 if (datagrams > 0 && 2292 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2293 datagrams = -EFAULT; 2294 2295 return datagrams; 2296 } 2297 2298 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2299 /* Argument list sizes for sys_socketcall */ 2300 #define AL(x) ((x) * sizeof(unsigned long)) 2301 static const unsigned char nargs[21] = { 2302 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2303 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2304 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2305 AL(4), AL(5), AL(4) 2306 }; 2307 2308 #undef AL 2309 2310 /* 2311 * System call vectors. 2312 * 2313 * Argument checking cleaned up. Saved 20% in size. 2314 * This function doesn't need to set the kernel lock because 2315 * it is set by the callees. 2316 */ 2317 2318 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2319 { 2320 unsigned long a[AUDITSC_ARGS]; 2321 unsigned long a0, a1; 2322 int err; 2323 unsigned int len; 2324 2325 if (call < 1 || call > SYS_SENDMMSG) 2326 return -EINVAL; 2327 2328 len = nargs[call]; 2329 if (len > sizeof(a)) 2330 return -EINVAL; 2331 2332 /* copy_from_user should be SMP safe. */ 2333 if (copy_from_user(a, args, len)) 2334 return -EFAULT; 2335 2336 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2337 if (err) 2338 return err; 2339 2340 a0 = a[0]; 2341 a1 = a[1]; 2342 2343 switch (call) { 2344 case SYS_SOCKET: 2345 err = sys_socket(a0, a1, a[2]); 2346 break; 2347 case SYS_BIND: 2348 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2349 break; 2350 case SYS_CONNECT: 2351 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2352 break; 2353 case SYS_LISTEN: 2354 err = sys_listen(a0, a1); 2355 break; 2356 case SYS_ACCEPT: 2357 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2358 (int __user *)a[2], 0); 2359 break; 2360 case SYS_GETSOCKNAME: 2361 err = 2362 sys_getsockname(a0, (struct sockaddr __user *)a1, 2363 (int __user *)a[2]); 2364 break; 2365 case SYS_GETPEERNAME: 2366 err = 2367 sys_getpeername(a0, (struct sockaddr __user *)a1, 2368 (int __user *)a[2]); 2369 break; 2370 case SYS_SOCKETPAIR: 2371 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2372 break; 2373 case SYS_SEND: 2374 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2375 break; 2376 case SYS_SENDTO: 2377 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2378 (struct sockaddr __user *)a[4], a[5]); 2379 break; 2380 case SYS_RECV: 2381 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2382 break; 2383 case SYS_RECVFROM: 2384 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2385 (struct sockaddr __user *)a[4], 2386 (int __user *)a[5]); 2387 break; 2388 case SYS_SHUTDOWN: 2389 err = sys_shutdown(a0, a1); 2390 break; 2391 case SYS_SETSOCKOPT: 2392 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2393 break; 2394 case SYS_GETSOCKOPT: 2395 err = 2396 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2397 (int __user *)a[4]); 2398 break; 2399 case SYS_SENDMSG: 2400 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2401 break; 2402 case SYS_SENDMMSG: 2403 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2404 break; 2405 case SYS_RECVMSG: 2406 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2407 break; 2408 case SYS_RECVMMSG: 2409 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2410 (struct timespec __user *)a[4]); 2411 break; 2412 case SYS_ACCEPT4: 2413 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2414 (int __user *)a[2], a[3]); 2415 break; 2416 default: 2417 err = -EINVAL; 2418 break; 2419 } 2420 return err; 2421 } 2422 2423 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2424 2425 /** 2426 * sock_register - add a socket protocol handler 2427 * @ops: description of protocol 2428 * 2429 * This function is called by a protocol handler that wants to 2430 * advertise its address family, and have it linked into the 2431 * socket interface. The value ops->family corresponds to the 2432 * socket system call protocol family. 2433 */ 2434 int sock_register(const struct net_proto_family *ops) 2435 { 2436 int err; 2437 2438 if (ops->family >= NPROTO) { 2439 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2440 return -ENOBUFS; 2441 } 2442 2443 spin_lock(&net_family_lock); 2444 if (rcu_dereference_protected(net_families[ops->family], 2445 lockdep_is_held(&net_family_lock))) 2446 err = -EEXIST; 2447 else { 2448 rcu_assign_pointer(net_families[ops->family], ops); 2449 err = 0; 2450 } 2451 spin_unlock(&net_family_lock); 2452 2453 pr_info("NET: Registered protocol family %d\n", ops->family); 2454 return err; 2455 } 2456 EXPORT_SYMBOL(sock_register); 2457 2458 /** 2459 * sock_unregister - remove a protocol handler 2460 * @family: protocol family to remove 2461 * 2462 * This function is called by a protocol handler that wants to 2463 * remove its address family, and have it unlinked from the 2464 * new socket creation. 2465 * 2466 * If protocol handler is a module, then it can use module reference 2467 * counts to protect against new references. If protocol handler is not 2468 * a module then it needs to provide its own protection in 2469 * the ops->create routine. 2470 */ 2471 void sock_unregister(int family) 2472 { 2473 BUG_ON(family < 0 || family >= NPROTO); 2474 2475 spin_lock(&net_family_lock); 2476 RCU_INIT_POINTER(net_families[family], NULL); 2477 spin_unlock(&net_family_lock); 2478 2479 synchronize_rcu(); 2480 2481 pr_info("NET: Unregistered protocol family %d\n", family); 2482 } 2483 EXPORT_SYMBOL(sock_unregister); 2484 2485 static int __init sock_init(void) 2486 { 2487 int err; 2488 /* 2489 * Initialize the network sysctl infrastructure. 2490 */ 2491 err = net_sysctl_init(); 2492 if (err) 2493 goto out; 2494 2495 /* 2496 * Initialize skbuff SLAB cache 2497 */ 2498 skb_init(); 2499 2500 /* 2501 * Initialize the protocols module. 2502 */ 2503 2504 init_inodecache(); 2505 2506 err = register_filesystem(&sock_fs_type); 2507 if (err) 2508 goto out_fs; 2509 sock_mnt = kern_mount(&sock_fs_type); 2510 if (IS_ERR(sock_mnt)) { 2511 err = PTR_ERR(sock_mnt); 2512 goto out_mount; 2513 } 2514 2515 /* The real protocol initialization is performed in later initcalls. 2516 */ 2517 2518 #ifdef CONFIG_NETFILTER 2519 err = netfilter_init(); 2520 if (err) 2521 goto out; 2522 #endif 2523 2524 ptp_classifier_init(); 2525 2526 out: 2527 return err; 2528 2529 out_mount: 2530 unregister_filesystem(&sock_fs_type); 2531 out_fs: 2532 goto out; 2533 } 2534 2535 core_initcall(sock_init); /* early initcall */ 2536 2537 #ifdef CONFIG_PROC_FS 2538 void socket_seq_show(struct seq_file *seq) 2539 { 2540 int cpu; 2541 int counter = 0; 2542 2543 for_each_possible_cpu(cpu) 2544 counter += per_cpu(sockets_in_use, cpu); 2545 2546 /* It can be negative, by the way. 8) */ 2547 if (counter < 0) 2548 counter = 0; 2549 2550 seq_printf(seq, "sockets: used %d\n", counter); 2551 } 2552 #endif /* CONFIG_PROC_FS */ 2553 2554 #ifdef CONFIG_COMPAT 2555 static int do_siocgstamp(struct net *net, struct socket *sock, 2556 unsigned int cmd, void __user *up) 2557 { 2558 mm_segment_t old_fs = get_fs(); 2559 struct timeval ktv; 2560 int err; 2561 2562 set_fs(KERNEL_DS); 2563 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2564 set_fs(old_fs); 2565 if (!err) 2566 err = compat_put_timeval(&ktv, up); 2567 2568 return err; 2569 } 2570 2571 static int do_siocgstampns(struct net *net, struct socket *sock, 2572 unsigned int cmd, void __user *up) 2573 { 2574 mm_segment_t old_fs = get_fs(); 2575 struct timespec kts; 2576 int err; 2577 2578 set_fs(KERNEL_DS); 2579 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2580 set_fs(old_fs); 2581 if (!err) 2582 err = compat_put_timespec(&kts, up); 2583 2584 return err; 2585 } 2586 2587 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2588 { 2589 struct ifreq __user *uifr; 2590 int err; 2591 2592 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2593 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2594 return -EFAULT; 2595 2596 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2597 if (err) 2598 return err; 2599 2600 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2601 return -EFAULT; 2602 2603 return 0; 2604 } 2605 2606 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2607 { 2608 struct compat_ifconf ifc32; 2609 struct ifconf ifc; 2610 struct ifconf __user *uifc; 2611 struct compat_ifreq __user *ifr32; 2612 struct ifreq __user *ifr; 2613 unsigned int i, j; 2614 int err; 2615 2616 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2617 return -EFAULT; 2618 2619 memset(&ifc, 0, sizeof(ifc)); 2620 if (ifc32.ifcbuf == 0) { 2621 ifc32.ifc_len = 0; 2622 ifc.ifc_len = 0; 2623 ifc.ifc_req = NULL; 2624 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2625 } else { 2626 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2627 sizeof(struct ifreq); 2628 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2629 ifc.ifc_len = len; 2630 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2631 ifr32 = compat_ptr(ifc32.ifcbuf); 2632 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2633 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2634 return -EFAULT; 2635 ifr++; 2636 ifr32++; 2637 } 2638 } 2639 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2640 return -EFAULT; 2641 2642 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2643 if (err) 2644 return err; 2645 2646 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2647 return -EFAULT; 2648 2649 ifr = ifc.ifc_req; 2650 ifr32 = compat_ptr(ifc32.ifcbuf); 2651 for (i = 0, j = 0; 2652 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2653 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2654 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2655 return -EFAULT; 2656 ifr32++; 2657 ifr++; 2658 } 2659 2660 if (ifc32.ifcbuf == 0) { 2661 /* Translate from 64-bit structure multiple to 2662 * a 32-bit one. 2663 */ 2664 i = ifc.ifc_len; 2665 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2666 ifc32.ifc_len = i; 2667 } else { 2668 ifc32.ifc_len = i; 2669 } 2670 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2671 return -EFAULT; 2672 2673 return 0; 2674 } 2675 2676 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2677 { 2678 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2679 bool convert_in = false, convert_out = false; 2680 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2681 struct ethtool_rxnfc __user *rxnfc; 2682 struct ifreq __user *ifr; 2683 u32 rule_cnt = 0, actual_rule_cnt; 2684 u32 ethcmd; 2685 u32 data; 2686 int ret; 2687 2688 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2689 return -EFAULT; 2690 2691 compat_rxnfc = compat_ptr(data); 2692 2693 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2694 return -EFAULT; 2695 2696 /* Most ethtool structures are defined without padding. 2697 * Unfortunately struct ethtool_rxnfc is an exception. 2698 */ 2699 switch (ethcmd) { 2700 default: 2701 break; 2702 case ETHTOOL_GRXCLSRLALL: 2703 /* Buffer size is variable */ 2704 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2705 return -EFAULT; 2706 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2707 return -ENOMEM; 2708 buf_size += rule_cnt * sizeof(u32); 2709 /* fall through */ 2710 case ETHTOOL_GRXRINGS: 2711 case ETHTOOL_GRXCLSRLCNT: 2712 case ETHTOOL_GRXCLSRULE: 2713 case ETHTOOL_SRXCLSRLINS: 2714 convert_out = true; 2715 /* fall through */ 2716 case ETHTOOL_SRXCLSRLDEL: 2717 buf_size += sizeof(struct ethtool_rxnfc); 2718 convert_in = true; 2719 break; 2720 } 2721 2722 ifr = compat_alloc_user_space(buf_size); 2723 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2724 2725 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2726 return -EFAULT; 2727 2728 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2729 &ifr->ifr_ifru.ifru_data)) 2730 return -EFAULT; 2731 2732 if (convert_in) { 2733 /* We expect there to be holes between fs.m_ext and 2734 * fs.ring_cookie and at the end of fs, but nowhere else. 2735 */ 2736 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2737 sizeof(compat_rxnfc->fs.m_ext) != 2738 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2739 sizeof(rxnfc->fs.m_ext)); 2740 BUILD_BUG_ON( 2741 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2742 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2743 offsetof(struct ethtool_rxnfc, fs.location) - 2744 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2745 2746 if (copy_in_user(rxnfc, compat_rxnfc, 2747 (void __user *)(&rxnfc->fs.m_ext + 1) - 2748 (void __user *)rxnfc) || 2749 copy_in_user(&rxnfc->fs.ring_cookie, 2750 &compat_rxnfc->fs.ring_cookie, 2751 (void __user *)(&rxnfc->fs.location + 1) - 2752 (void __user *)&rxnfc->fs.ring_cookie) || 2753 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2754 sizeof(rxnfc->rule_cnt))) 2755 return -EFAULT; 2756 } 2757 2758 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2759 if (ret) 2760 return ret; 2761 2762 if (convert_out) { 2763 if (copy_in_user(compat_rxnfc, rxnfc, 2764 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2765 (const void __user *)rxnfc) || 2766 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2767 &rxnfc->fs.ring_cookie, 2768 (const void __user *)(&rxnfc->fs.location + 1) - 2769 (const void __user *)&rxnfc->fs.ring_cookie) || 2770 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2771 sizeof(rxnfc->rule_cnt))) 2772 return -EFAULT; 2773 2774 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2775 /* As an optimisation, we only copy the actual 2776 * number of rules that the underlying 2777 * function returned. Since Mallory might 2778 * change the rule count in user memory, we 2779 * check that it is less than the rule count 2780 * originally given (as the user buffer size), 2781 * which has been range-checked. 2782 */ 2783 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2784 return -EFAULT; 2785 if (actual_rule_cnt < rule_cnt) 2786 rule_cnt = actual_rule_cnt; 2787 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2788 &rxnfc->rule_locs[0], 2789 rule_cnt * sizeof(u32))) 2790 return -EFAULT; 2791 } 2792 } 2793 2794 return 0; 2795 } 2796 2797 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2798 { 2799 void __user *uptr; 2800 compat_uptr_t uptr32; 2801 struct ifreq __user *uifr; 2802 2803 uifr = compat_alloc_user_space(sizeof(*uifr)); 2804 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2805 return -EFAULT; 2806 2807 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2808 return -EFAULT; 2809 2810 uptr = compat_ptr(uptr32); 2811 2812 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2813 return -EFAULT; 2814 2815 return dev_ioctl(net, SIOCWANDEV, uifr); 2816 } 2817 2818 static int bond_ioctl(struct net *net, unsigned int cmd, 2819 struct compat_ifreq __user *ifr32) 2820 { 2821 struct ifreq kifr; 2822 mm_segment_t old_fs; 2823 int err; 2824 2825 switch (cmd) { 2826 case SIOCBONDENSLAVE: 2827 case SIOCBONDRELEASE: 2828 case SIOCBONDSETHWADDR: 2829 case SIOCBONDCHANGEACTIVE: 2830 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2831 return -EFAULT; 2832 2833 old_fs = get_fs(); 2834 set_fs(KERNEL_DS); 2835 err = dev_ioctl(net, cmd, 2836 (struct ifreq __user __force *) &kifr); 2837 set_fs(old_fs); 2838 2839 return err; 2840 default: 2841 return -ENOIOCTLCMD; 2842 } 2843 } 2844 2845 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2846 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2847 struct compat_ifreq __user *u_ifreq32) 2848 { 2849 struct ifreq __user *u_ifreq64; 2850 char tmp_buf[IFNAMSIZ]; 2851 void __user *data64; 2852 u32 data32; 2853 2854 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2855 IFNAMSIZ)) 2856 return -EFAULT; 2857 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2858 return -EFAULT; 2859 data64 = compat_ptr(data32); 2860 2861 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2862 2863 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2864 IFNAMSIZ)) 2865 return -EFAULT; 2866 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2867 return -EFAULT; 2868 2869 return dev_ioctl(net, cmd, u_ifreq64); 2870 } 2871 2872 static int dev_ifsioc(struct net *net, struct socket *sock, 2873 unsigned int cmd, struct compat_ifreq __user *uifr32) 2874 { 2875 struct ifreq __user *uifr; 2876 int err; 2877 2878 uifr = compat_alloc_user_space(sizeof(*uifr)); 2879 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2880 return -EFAULT; 2881 2882 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2883 2884 if (!err) { 2885 switch (cmd) { 2886 case SIOCGIFFLAGS: 2887 case SIOCGIFMETRIC: 2888 case SIOCGIFMTU: 2889 case SIOCGIFMEM: 2890 case SIOCGIFHWADDR: 2891 case SIOCGIFINDEX: 2892 case SIOCGIFADDR: 2893 case SIOCGIFBRDADDR: 2894 case SIOCGIFDSTADDR: 2895 case SIOCGIFNETMASK: 2896 case SIOCGIFPFLAGS: 2897 case SIOCGIFTXQLEN: 2898 case SIOCGMIIPHY: 2899 case SIOCGMIIREG: 2900 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2901 err = -EFAULT; 2902 break; 2903 } 2904 } 2905 return err; 2906 } 2907 2908 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2909 struct compat_ifreq __user *uifr32) 2910 { 2911 struct ifreq ifr; 2912 struct compat_ifmap __user *uifmap32; 2913 mm_segment_t old_fs; 2914 int err; 2915 2916 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2917 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2918 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2919 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2920 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2921 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2922 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2923 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2924 if (err) 2925 return -EFAULT; 2926 2927 old_fs = get_fs(); 2928 set_fs(KERNEL_DS); 2929 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2930 set_fs(old_fs); 2931 2932 if (cmd == SIOCGIFMAP && !err) { 2933 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2934 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2935 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2936 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2937 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2938 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2939 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2940 if (err) 2941 err = -EFAULT; 2942 } 2943 return err; 2944 } 2945 2946 struct rtentry32 { 2947 u32 rt_pad1; 2948 struct sockaddr rt_dst; /* target address */ 2949 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2950 struct sockaddr rt_genmask; /* target network mask (IP) */ 2951 unsigned short rt_flags; 2952 short rt_pad2; 2953 u32 rt_pad3; 2954 unsigned char rt_tos; 2955 unsigned char rt_class; 2956 short rt_pad4; 2957 short rt_metric; /* +1 for binary compatibility! */ 2958 /* char * */ u32 rt_dev; /* forcing the device at add */ 2959 u32 rt_mtu; /* per route MTU/Window */ 2960 u32 rt_window; /* Window clamping */ 2961 unsigned short rt_irtt; /* Initial RTT */ 2962 }; 2963 2964 struct in6_rtmsg32 { 2965 struct in6_addr rtmsg_dst; 2966 struct in6_addr rtmsg_src; 2967 struct in6_addr rtmsg_gateway; 2968 u32 rtmsg_type; 2969 u16 rtmsg_dst_len; 2970 u16 rtmsg_src_len; 2971 u32 rtmsg_metric; 2972 u32 rtmsg_info; 2973 u32 rtmsg_flags; 2974 s32 rtmsg_ifindex; 2975 }; 2976 2977 static int routing_ioctl(struct net *net, struct socket *sock, 2978 unsigned int cmd, void __user *argp) 2979 { 2980 int ret; 2981 void *r = NULL; 2982 struct in6_rtmsg r6; 2983 struct rtentry r4; 2984 char devname[16]; 2985 u32 rtdev; 2986 mm_segment_t old_fs = get_fs(); 2987 2988 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2989 struct in6_rtmsg32 __user *ur6 = argp; 2990 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2991 3 * sizeof(struct in6_addr)); 2992 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2993 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2994 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2995 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2996 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2997 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2998 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2999 3000 r = (void *) &r6; 3001 } else { /* ipv4 */ 3002 struct rtentry32 __user *ur4 = argp; 3003 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3004 3 * sizeof(struct sockaddr)); 3005 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3006 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3007 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3008 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3009 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3010 ret |= get_user(rtdev, &(ur4->rt_dev)); 3011 if (rtdev) { 3012 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3013 r4.rt_dev = (char __user __force *)devname; 3014 devname[15] = 0; 3015 } else 3016 r4.rt_dev = NULL; 3017 3018 r = (void *) &r4; 3019 } 3020 3021 if (ret) { 3022 ret = -EFAULT; 3023 goto out; 3024 } 3025 3026 set_fs(KERNEL_DS); 3027 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3028 set_fs(old_fs); 3029 3030 out: 3031 return ret; 3032 } 3033 3034 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3035 * for some operations; this forces use of the newer bridge-utils that 3036 * use compatible ioctls 3037 */ 3038 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3039 { 3040 compat_ulong_t tmp; 3041 3042 if (get_user(tmp, argp)) 3043 return -EFAULT; 3044 if (tmp == BRCTL_GET_VERSION) 3045 return BRCTL_VERSION + 1; 3046 return -EINVAL; 3047 } 3048 3049 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3050 unsigned int cmd, unsigned long arg) 3051 { 3052 void __user *argp = compat_ptr(arg); 3053 struct sock *sk = sock->sk; 3054 struct net *net = sock_net(sk); 3055 3056 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3057 return compat_ifr_data_ioctl(net, cmd, argp); 3058 3059 switch (cmd) { 3060 case SIOCSIFBR: 3061 case SIOCGIFBR: 3062 return old_bridge_ioctl(argp); 3063 case SIOCGIFNAME: 3064 return dev_ifname32(net, argp); 3065 case SIOCGIFCONF: 3066 return dev_ifconf(net, argp); 3067 case SIOCETHTOOL: 3068 return ethtool_ioctl(net, argp); 3069 case SIOCWANDEV: 3070 return compat_siocwandev(net, argp); 3071 case SIOCGIFMAP: 3072 case SIOCSIFMAP: 3073 return compat_sioc_ifmap(net, cmd, argp); 3074 case SIOCBONDENSLAVE: 3075 case SIOCBONDRELEASE: 3076 case SIOCBONDSETHWADDR: 3077 case SIOCBONDCHANGEACTIVE: 3078 return bond_ioctl(net, cmd, argp); 3079 case SIOCADDRT: 3080 case SIOCDELRT: 3081 return routing_ioctl(net, sock, cmd, argp); 3082 case SIOCGSTAMP: 3083 return do_siocgstamp(net, sock, cmd, argp); 3084 case SIOCGSTAMPNS: 3085 return do_siocgstampns(net, sock, cmd, argp); 3086 case SIOCBONDSLAVEINFOQUERY: 3087 case SIOCBONDINFOQUERY: 3088 case SIOCSHWTSTAMP: 3089 case SIOCGHWTSTAMP: 3090 return compat_ifr_data_ioctl(net, cmd, argp); 3091 3092 case FIOSETOWN: 3093 case SIOCSPGRP: 3094 case FIOGETOWN: 3095 case SIOCGPGRP: 3096 case SIOCBRADDBR: 3097 case SIOCBRDELBR: 3098 case SIOCGIFVLAN: 3099 case SIOCSIFVLAN: 3100 case SIOCADDDLCI: 3101 case SIOCDELDLCI: 3102 return sock_ioctl(file, cmd, arg); 3103 3104 case SIOCGIFFLAGS: 3105 case SIOCSIFFLAGS: 3106 case SIOCGIFMETRIC: 3107 case SIOCSIFMETRIC: 3108 case SIOCGIFMTU: 3109 case SIOCSIFMTU: 3110 case SIOCGIFMEM: 3111 case SIOCSIFMEM: 3112 case SIOCGIFHWADDR: 3113 case SIOCSIFHWADDR: 3114 case SIOCADDMULTI: 3115 case SIOCDELMULTI: 3116 case SIOCGIFINDEX: 3117 case SIOCGIFADDR: 3118 case SIOCSIFADDR: 3119 case SIOCSIFHWBROADCAST: 3120 case SIOCDIFADDR: 3121 case SIOCGIFBRDADDR: 3122 case SIOCSIFBRDADDR: 3123 case SIOCGIFDSTADDR: 3124 case SIOCSIFDSTADDR: 3125 case SIOCGIFNETMASK: 3126 case SIOCSIFNETMASK: 3127 case SIOCSIFPFLAGS: 3128 case SIOCGIFPFLAGS: 3129 case SIOCGIFTXQLEN: 3130 case SIOCSIFTXQLEN: 3131 case SIOCBRADDIF: 3132 case SIOCBRDELIF: 3133 case SIOCSIFNAME: 3134 case SIOCGMIIPHY: 3135 case SIOCGMIIREG: 3136 case SIOCSMIIREG: 3137 return dev_ifsioc(net, sock, cmd, argp); 3138 3139 case SIOCSARP: 3140 case SIOCGARP: 3141 case SIOCDARP: 3142 case SIOCATMARK: 3143 return sock_do_ioctl(net, sock, cmd, arg); 3144 } 3145 3146 return -ENOIOCTLCMD; 3147 } 3148 3149 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3150 unsigned long arg) 3151 { 3152 struct socket *sock = file->private_data; 3153 int ret = -ENOIOCTLCMD; 3154 struct sock *sk; 3155 struct net *net; 3156 3157 sk = sock->sk; 3158 net = sock_net(sk); 3159 3160 if (sock->ops->compat_ioctl) 3161 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3162 3163 if (ret == -ENOIOCTLCMD && 3164 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3165 ret = compat_wext_handle_ioctl(net, cmd, arg); 3166 3167 if (ret == -ENOIOCTLCMD) 3168 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3169 3170 return ret; 3171 } 3172 #endif 3173 3174 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3175 { 3176 return sock->ops->bind(sock, addr, addrlen); 3177 } 3178 EXPORT_SYMBOL(kernel_bind); 3179 3180 int kernel_listen(struct socket *sock, int backlog) 3181 { 3182 return sock->ops->listen(sock, backlog); 3183 } 3184 EXPORT_SYMBOL(kernel_listen); 3185 3186 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3187 { 3188 struct sock *sk = sock->sk; 3189 int err; 3190 3191 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3192 newsock); 3193 if (err < 0) 3194 goto done; 3195 3196 err = sock->ops->accept(sock, *newsock, flags); 3197 if (err < 0) { 3198 sock_release(*newsock); 3199 *newsock = NULL; 3200 goto done; 3201 } 3202 3203 (*newsock)->ops = sock->ops; 3204 __module_get((*newsock)->ops->owner); 3205 3206 done: 3207 return err; 3208 } 3209 EXPORT_SYMBOL(kernel_accept); 3210 3211 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3212 int flags) 3213 { 3214 return sock->ops->connect(sock, addr, addrlen, flags); 3215 } 3216 EXPORT_SYMBOL(kernel_connect); 3217 3218 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3219 int *addrlen) 3220 { 3221 return sock->ops->getname(sock, addr, addrlen, 0); 3222 } 3223 EXPORT_SYMBOL(kernel_getsockname); 3224 3225 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3226 int *addrlen) 3227 { 3228 return sock->ops->getname(sock, addr, addrlen, 1); 3229 } 3230 EXPORT_SYMBOL(kernel_getpeername); 3231 3232 int kernel_getsockopt(struct socket *sock, int level, int optname, 3233 char *optval, int *optlen) 3234 { 3235 mm_segment_t oldfs = get_fs(); 3236 char __user *uoptval; 3237 int __user *uoptlen; 3238 int err; 3239 3240 uoptval = (char __user __force *) optval; 3241 uoptlen = (int __user __force *) optlen; 3242 3243 set_fs(KERNEL_DS); 3244 if (level == SOL_SOCKET) 3245 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3246 else 3247 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3248 uoptlen); 3249 set_fs(oldfs); 3250 return err; 3251 } 3252 EXPORT_SYMBOL(kernel_getsockopt); 3253 3254 int kernel_setsockopt(struct socket *sock, int level, int optname, 3255 char *optval, unsigned int optlen) 3256 { 3257 mm_segment_t oldfs = get_fs(); 3258 char __user *uoptval; 3259 int err; 3260 3261 uoptval = (char __user __force *) optval; 3262 3263 set_fs(KERNEL_DS); 3264 if (level == SOL_SOCKET) 3265 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3266 else 3267 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3268 optlen); 3269 set_fs(oldfs); 3270 return err; 3271 } 3272 EXPORT_SYMBOL(kernel_setsockopt); 3273 3274 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3275 size_t size, int flags) 3276 { 3277 if (sock->ops->sendpage) 3278 return sock->ops->sendpage(sock, page, offset, size, flags); 3279 3280 return sock_no_sendpage(sock, page, offset, size, flags); 3281 } 3282 EXPORT_SYMBOL(kernel_sendpage); 3283 3284 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3285 { 3286 mm_segment_t oldfs = get_fs(); 3287 int err; 3288 3289 set_fs(KERNEL_DS); 3290 err = sock->ops->ioctl(sock, cmd, arg); 3291 set_fs(oldfs); 3292 3293 return err; 3294 } 3295 EXPORT_SYMBOL(kernel_sock_ioctl); 3296 3297 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3298 { 3299 return sock->ops->shutdown(sock, how); 3300 } 3301 EXPORT_SYMBOL(kernel_sock_shutdown); 3302