xref: /linux/net/socket.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.destroy_inode	= sock_destroy_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 			 int flags, const char *dev_name, void *data)
358 {
359 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 				  sockfs_xattr_handlers,
361 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363 
364 static struct vfsmount *sock_mnt __read_mostly;
365 
366 static struct file_system_type sock_fs_type = {
367 	.name =		"sockfs",
368 	.mount =	sockfs_mount,
369 	.kill_sb =	kill_anon_super,
370 };
371 
372 /*
373  *	Obtains the first available file descriptor and sets it up for use.
374  *
375  *	These functions create file structures and maps them to fd space
376  *	of the current process. On success it returns file descriptor
377  *	and file struct implicitly stored in sock->file.
378  *	Note that another thread may close file descriptor before we return
379  *	from this function. We use the fact that now we do not refer
380  *	to socket after mapping. If one day we will need it, this
381  *	function will increment ref. count on file by 1.
382  *
383  *	In any case returned fd MAY BE not valid!
384  *	This race condition is unavoidable
385  *	with shared fd spaces, we cannot solve it inside kernel,
386  *	but we take care of internal coherence yet.
387  */
388 
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 	struct qstr name = { .name = "" };
392 	struct path path;
393 	struct file *file;
394 
395 	if (dname) {
396 		name.name = dname;
397 		name.len = strlen(name.name);
398 	} else if (sock->sk) {
399 		name.name = sock->sk->sk_prot_creator->name;
400 		name.len = strlen(name.name);
401 	}
402 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 	if (unlikely(!path.dentry)) {
404 		sock_release(sock);
405 		return ERR_PTR(-ENOMEM);
406 	}
407 	path.mnt = mntget(sock_mnt);
408 
409 	d_instantiate(path.dentry, SOCK_INODE(sock));
410 
411 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 		  &socket_file_ops);
413 	if (IS_ERR(file)) {
414 		/* drop dentry, keep inode for a bit */
415 		ihold(d_inode(path.dentry));
416 		path_put(&path);
417 		/* ... and now kill it properly */
418 		sock_release(sock);
419 		return file;
420 	}
421 
422 	sock->file = file;
423 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 	file->private_data = sock;
425 	return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428 
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 	struct file *newfile;
432 	int fd = get_unused_fd_flags(flags);
433 	if (unlikely(fd < 0)) {
434 		sock_release(sock);
435 		return fd;
436 	}
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	inode->i_ino = get_next_ino();
572 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 	inode->i_uid = current_fsuid();
574 	inode->i_gid = current_fsgid();
575 	inode->i_op = &sockfs_inode_ops;
576 
577 	return sock;
578 }
579 EXPORT_SYMBOL(sock_alloc);
580 
581 /**
582  *	sock_release	-	close a socket
583  *	@sock: socket to close
584  *
585  *	The socket is released from the protocol stack if it has a release
586  *	callback, and the inode is then released if the socket is bound to
587  *	an inode not a file.
588  */
589 
590 void sock_release(struct socket *sock)
591 {
592 	if (sock->ops) {
593 		struct module *owner = sock->ops->owner;
594 
595 		sock->ops->release(sock);
596 		sock->ops = NULL;
597 		module_put(owner);
598 	}
599 
600 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
601 		pr_err("%s: fasync list not empty!\n", __func__);
602 
603 	if (!sock->file) {
604 		iput(SOCK_INODE(sock));
605 		return;
606 	}
607 	sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610 
611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
612 {
613 	u8 flags = *tx_flags;
614 
615 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
616 		flags |= SKBTX_HW_TSTAMP;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 		flags |= SKBTX_SW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
622 		flags |= SKBTX_SCHED_TSTAMP;
623 
624 	*tx_flags = flags;
625 }
626 EXPORT_SYMBOL(__sock_tx_timestamp);
627 
628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
629 {
630 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
631 	BUG_ON(ret == -EIOCBQUEUED);
632 	return ret;
633 }
634 
635 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
636 {
637 	int err = security_socket_sendmsg(sock, msg,
638 					  msg_data_left(msg));
639 
640 	return err ?: sock_sendmsg_nosec(sock, msg);
641 }
642 EXPORT_SYMBOL(sock_sendmsg);
643 
644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
645 		   struct kvec *vec, size_t num, size_t size)
646 {
647 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
648 	return sock_sendmsg(sock, msg);
649 }
650 EXPORT_SYMBOL(kernel_sendmsg);
651 
652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
653 			  struct kvec *vec, size_t num, size_t size)
654 {
655 	struct socket *sock = sk->sk_socket;
656 
657 	if (!sock->ops->sendmsg_locked)
658 		return sock_no_sendmsg_locked(sk, msg, size);
659 
660 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
661 
662 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
663 }
664 EXPORT_SYMBOL(kernel_sendmsg_locked);
665 
666 static bool skb_is_err_queue(const struct sk_buff *skb)
667 {
668 	/* pkt_type of skbs enqueued on the error queue are set to
669 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
670 	 * in recvmsg, since skbs received on a local socket will never
671 	 * have a pkt_type of PACKET_OUTGOING.
672 	 */
673 	return skb->pkt_type == PACKET_OUTGOING;
674 }
675 
676 /* On transmit, software and hardware timestamps are returned independently.
677  * As the two skb clones share the hardware timestamp, which may be updated
678  * before the software timestamp is received, a hardware TX timestamp may be
679  * returned only if there is no software TX timestamp. Ignore false software
680  * timestamps, which may be made in the __sock_recv_timestamp() call when the
681  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
682  * hardware timestamp.
683  */
684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
685 {
686 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
687 }
688 
689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
690 {
691 	struct scm_ts_pktinfo ts_pktinfo;
692 	struct net_device *orig_dev;
693 
694 	if (!skb_mac_header_was_set(skb))
695 		return;
696 
697 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
698 
699 	rcu_read_lock();
700 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
701 	if (orig_dev)
702 		ts_pktinfo.if_index = orig_dev->ifindex;
703 	rcu_read_unlock();
704 
705 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
706 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
707 		 sizeof(ts_pktinfo), &ts_pktinfo);
708 }
709 
710 /*
711  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
712  */
713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
714 	struct sk_buff *skb)
715 {
716 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
717 	struct scm_timestamping tss;
718 	int empty = 1, false_tstamp = 0;
719 	struct skb_shared_hwtstamps *shhwtstamps =
720 		skb_hwtstamps(skb);
721 
722 	/* Race occurred between timestamp enabling and packet
723 	   receiving.  Fill in the current time for now. */
724 	if (need_software_tstamp && skb->tstamp == 0) {
725 		__net_timestamp(skb);
726 		false_tstamp = 1;
727 	}
728 
729 	if (need_software_tstamp) {
730 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
731 			struct timeval tv;
732 			skb_get_timestamp(skb, &tv);
733 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
734 				 sizeof(tv), &tv);
735 		} else {
736 			struct timespec ts;
737 			skb_get_timestampns(skb, &ts);
738 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
739 				 sizeof(ts), &ts);
740 		}
741 	}
742 
743 	memset(&tss, 0, sizeof(tss));
744 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
745 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
746 		empty = 0;
747 	if (shhwtstamps &&
748 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
749 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
750 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
751 		empty = 0;
752 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
753 		    !skb_is_err_queue(skb))
754 			put_ts_pktinfo(msg, skb);
755 	}
756 	if (!empty) {
757 		put_cmsg(msg, SOL_SOCKET,
758 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
759 
760 		if (skb_is_err_queue(skb) && skb->len &&
761 		    SKB_EXT_ERR(skb)->opt_stats)
762 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
763 				 skb->len, skb->data);
764 	}
765 }
766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
767 
768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
769 	struct sk_buff *skb)
770 {
771 	int ack;
772 
773 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
774 		return;
775 	if (!skb->wifi_acked_valid)
776 		return;
777 
778 	ack = skb->wifi_acked;
779 
780 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
781 }
782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
783 
784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
785 				   struct sk_buff *skb)
786 {
787 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
788 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
789 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
790 }
791 
792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
793 	struct sk_buff *skb)
794 {
795 	sock_recv_timestamp(msg, sk, skb);
796 	sock_recv_drops(msg, sk, skb);
797 }
798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
799 
800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
801 				     int flags)
802 {
803 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
804 }
805 
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
807 {
808 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
809 
810 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813 
814 /**
815  * kernel_recvmsg - Receive a message from a socket (kernel space)
816  * @sock:       The socket to receive the message from
817  * @msg:        Received message
818  * @vec:        Input s/g array for message data
819  * @num:        Size of input s/g array
820  * @size:       Number of bytes to read
821  * @flags:      Message flags (MSG_DONTWAIT, etc...)
822  *
823  * On return the msg structure contains the scatter/gather array passed in the
824  * vec argument. The array is modified so that it consists of the unfilled
825  * portion of the original array.
826  *
827  * The returned value is the total number of bytes received, or an error.
828  */
829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
830 		   struct kvec *vec, size_t num, size_t size, int flags)
831 {
832 	mm_segment_t oldfs = get_fs();
833 	int result;
834 
835 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
836 	set_fs(KERNEL_DS);
837 	result = sock_recvmsg(sock, msg, flags);
838 	set_fs(oldfs);
839 	return result;
840 }
841 EXPORT_SYMBOL(kernel_recvmsg);
842 
843 static ssize_t sock_sendpage(struct file *file, struct page *page,
844 			     int offset, size_t size, loff_t *ppos, int more)
845 {
846 	struct socket *sock;
847 	int flags;
848 
849 	sock = file->private_data;
850 
851 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
852 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
853 	flags |= more;
854 
855 	return kernel_sendpage(sock, page, offset, size, flags);
856 }
857 
858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
859 				struct pipe_inode_info *pipe, size_t len,
860 				unsigned int flags)
861 {
862 	struct socket *sock = file->private_data;
863 
864 	if (unlikely(!sock->ops->splice_read))
865 		return -EINVAL;
866 
867 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
868 }
869 
870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
871 {
872 	struct file *file = iocb->ki_filp;
873 	struct socket *sock = file->private_data;
874 	struct msghdr msg = {.msg_iter = *to,
875 			     .msg_iocb = iocb};
876 	ssize_t res;
877 
878 	if (file->f_flags & O_NONBLOCK)
879 		msg.msg_flags = MSG_DONTWAIT;
880 
881 	if (iocb->ki_pos != 0)
882 		return -ESPIPE;
883 
884 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
885 		return 0;
886 
887 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
888 	*to = msg.msg_iter;
889 	return res;
890 }
891 
892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
893 {
894 	struct file *file = iocb->ki_filp;
895 	struct socket *sock = file->private_data;
896 	struct msghdr msg = {.msg_iter = *from,
897 			     .msg_iocb = iocb};
898 	ssize_t res;
899 
900 	if (iocb->ki_pos != 0)
901 		return -ESPIPE;
902 
903 	if (file->f_flags & O_NONBLOCK)
904 		msg.msg_flags = MSG_DONTWAIT;
905 
906 	if (sock->type == SOCK_SEQPACKET)
907 		msg.msg_flags |= MSG_EOR;
908 
909 	res = sock_sendmsg(sock, &msg);
910 	*from = msg.msg_iter;
911 	return res;
912 }
913 
914 /*
915  * Atomic setting of ioctl hooks to avoid race
916  * with module unload.
917  */
918 
919 static DEFINE_MUTEX(br_ioctl_mutex);
920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
921 
922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
923 {
924 	mutex_lock(&br_ioctl_mutex);
925 	br_ioctl_hook = hook;
926 	mutex_unlock(&br_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(brioctl_set);
929 
930 static DEFINE_MUTEX(vlan_ioctl_mutex);
931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
932 
933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
934 {
935 	mutex_lock(&vlan_ioctl_mutex);
936 	vlan_ioctl_hook = hook;
937 	mutex_unlock(&vlan_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(vlan_ioctl_set);
940 
941 static DEFINE_MUTEX(dlci_ioctl_mutex);
942 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
943 
944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
945 {
946 	mutex_lock(&dlci_ioctl_mutex);
947 	dlci_ioctl_hook = hook;
948 	mutex_unlock(&dlci_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(dlci_ioctl_set);
951 
952 static long sock_do_ioctl(struct net *net, struct socket *sock,
953 				 unsigned int cmd, unsigned long arg)
954 {
955 	int err;
956 	void __user *argp = (void __user *)arg;
957 
958 	err = sock->ops->ioctl(sock, cmd, arg);
959 
960 	/*
961 	 * If this ioctl is unknown try to hand it down
962 	 * to the NIC driver.
963 	 */
964 	if (err != -ENOIOCTLCMD)
965 		return err;
966 
967 	if (cmd == SIOCGIFCONF) {
968 		struct ifconf ifc;
969 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
970 			return -EFAULT;
971 		rtnl_lock();
972 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
973 		rtnl_unlock();
974 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
975 			err = -EFAULT;
976 	} else {
977 		struct ifreq ifr;
978 		bool need_copyout;
979 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
980 			return -EFAULT;
981 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
982 		if (!err && need_copyout)
983 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
984 				return -EFAULT;
985 	}
986 	return err;
987 }
988 
989 /*
990  *	With an ioctl, arg may well be a user mode pointer, but we don't know
991  *	what to do with it - that's up to the protocol still.
992  */
993 
994 static struct ns_common *get_net_ns(struct ns_common *ns)
995 {
996 	return &get_net(container_of(ns, struct net, ns))->ns;
997 }
998 
999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 {
1001 	struct socket *sock;
1002 	struct sock *sk;
1003 	void __user *argp = (void __user *)arg;
1004 	int pid, err;
1005 	struct net *net;
1006 
1007 	sock = file->private_data;
1008 	sk = sock->sk;
1009 	net = sock_net(sk);
1010 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 		struct ifreq ifr;
1012 		bool need_copyout;
1013 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 			return -EFAULT;
1015 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 		if (!err && need_copyout)
1017 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 				return -EFAULT;
1019 	} else
1020 #ifdef CONFIG_WEXT_CORE
1021 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 		err = wext_handle_ioctl(net, cmd, argp);
1023 	} else
1024 #endif
1025 		switch (cmd) {
1026 		case FIOSETOWN:
1027 		case SIOCSPGRP:
1028 			err = -EFAULT;
1029 			if (get_user(pid, (int __user *)argp))
1030 				break;
1031 			err = f_setown(sock->file, pid, 1);
1032 			break;
1033 		case FIOGETOWN:
1034 		case SIOCGPGRP:
1035 			err = put_user(f_getown(sock->file),
1036 				       (int __user *)argp);
1037 			break;
1038 		case SIOCGIFBR:
1039 		case SIOCSIFBR:
1040 		case SIOCBRADDBR:
1041 		case SIOCBRDELBR:
1042 			err = -ENOPKG;
1043 			if (!br_ioctl_hook)
1044 				request_module("bridge");
1045 
1046 			mutex_lock(&br_ioctl_mutex);
1047 			if (br_ioctl_hook)
1048 				err = br_ioctl_hook(net, cmd, argp);
1049 			mutex_unlock(&br_ioctl_mutex);
1050 			break;
1051 		case SIOCGIFVLAN:
1052 		case SIOCSIFVLAN:
1053 			err = -ENOPKG;
1054 			if (!vlan_ioctl_hook)
1055 				request_module("8021q");
1056 
1057 			mutex_lock(&vlan_ioctl_mutex);
1058 			if (vlan_ioctl_hook)
1059 				err = vlan_ioctl_hook(net, argp);
1060 			mutex_unlock(&vlan_ioctl_mutex);
1061 			break;
1062 		case SIOCADDDLCI:
1063 		case SIOCDELDLCI:
1064 			err = -ENOPKG;
1065 			if (!dlci_ioctl_hook)
1066 				request_module("dlci");
1067 
1068 			mutex_lock(&dlci_ioctl_mutex);
1069 			if (dlci_ioctl_hook)
1070 				err = dlci_ioctl_hook(cmd, argp);
1071 			mutex_unlock(&dlci_ioctl_mutex);
1072 			break;
1073 		case SIOCGSKNS:
1074 			err = -EPERM;
1075 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 				break;
1077 
1078 			err = open_related_ns(&net->ns, get_net_ns);
1079 			break;
1080 		default:
1081 			err = sock_do_ioctl(net, sock, cmd, arg);
1082 			break;
1083 		}
1084 	return err;
1085 }
1086 
1087 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088 {
1089 	int err;
1090 	struct socket *sock = NULL;
1091 
1092 	err = security_socket_create(family, type, protocol, 1);
1093 	if (err)
1094 		goto out;
1095 
1096 	sock = sock_alloc();
1097 	if (!sock) {
1098 		err = -ENOMEM;
1099 		goto out;
1100 	}
1101 
1102 	sock->type = type;
1103 	err = security_socket_post_create(sock, family, type, protocol, 1);
1104 	if (err)
1105 		goto out_release;
1106 
1107 out:
1108 	*res = sock;
1109 	return err;
1110 out_release:
1111 	sock_release(sock);
1112 	sock = NULL;
1113 	goto out;
1114 }
1115 EXPORT_SYMBOL(sock_create_lite);
1116 
1117 /* No kernel lock held - perfect */
1118 static __poll_t sock_poll(struct file *file, poll_table *wait)
1119 {
1120 	__poll_t busy_flag = 0;
1121 	struct socket *sock;
1122 
1123 	/*
1124 	 *      We can't return errors to poll, so it's either yes or no.
1125 	 */
1126 	sock = file->private_data;
1127 
1128 	if (sk_can_busy_loop(sock->sk)) {
1129 		/* this socket can poll_ll so tell the system call */
1130 		busy_flag = POLL_BUSY_LOOP;
1131 
1132 		/* once, only if requested by syscall */
1133 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 			sk_busy_loop(sock->sk, 1);
1135 	}
1136 
1137 	return busy_flag | sock->ops->poll(file, sock, wait);
1138 }
1139 
1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141 {
1142 	struct socket *sock = file->private_data;
1143 
1144 	return sock->ops->mmap(file, sock, vma);
1145 }
1146 
1147 static int sock_close(struct inode *inode, struct file *filp)
1148 {
1149 	sock_release(SOCKET_I(inode));
1150 	return 0;
1151 }
1152 
1153 /*
1154  *	Update the socket async list
1155  *
1156  *	Fasync_list locking strategy.
1157  *
1158  *	1. fasync_list is modified only under process context socket lock
1159  *	   i.e. under semaphore.
1160  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161  *	   or under socket lock
1162  */
1163 
1164 static int sock_fasync(int fd, struct file *filp, int on)
1165 {
1166 	struct socket *sock = filp->private_data;
1167 	struct sock *sk = sock->sk;
1168 	struct socket_wq *wq;
1169 
1170 	if (sk == NULL)
1171 		return -EINVAL;
1172 
1173 	lock_sock(sk);
1174 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 	fasync_helper(fd, filp, on, &wq->fasync_list);
1176 
1177 	if (!wq->fasync_list)
1178 		sock_reset_flag(sk, SOCK_FASYNC);
1179 	else
1180 		sock_set_flag(sk, SOCK_FASYNC);
1181 
1182 	release_sock(sk);
1183 	return 0;
1184 }
1185 
1186 /* This function may be called only under rcu_lock */
1187 
1188 int sock_wake_async(struct socket_wq *wq, int how, int band)
1189 {
1190 	if (!wq || !wq->fasync_list)
1191 		return -1;
1192 
1193 	switch (how) {
1194 	case SOCK_WAKE_WAITD:
1195 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 			break;
1197 		goto call_kill;
1198 	case SOCK_WAKE_SPACE:
1199 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 			break;
1201 		/* fall through */
1202 	case SOCK_WAKE_IO:
1203 call_kill:
1204 		kill_fasync(&wq->fasync_list, SIGIO, band);
1205 		break;
1206 	case SOCK_WAKE_URG:
1207 		kill_fasync(&wq->fasync_list, SIGURG, band);
1208 	}
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(sock_wake_async);
1213 
1214 int __sock_create(struct net *net, int family, int type, int protocol,
1215 			 struct socket **res, int kern)
1216 {
1217 	int err;
1218 	struct socket *sock;
1219 	const struct net_proto_family *pf;
1220 
1221 	/*
1222 	 *      Check protocol is in range
1223 	 */
1224 	if (family < 0 || family >= NPROTO)
1225 		return -EAFNOSUPPORT;
1226 	if (type < 0 || type >= SOCK_MAX)
1227 		return -EINVAL;
1228 
1229 	/* Compatibility.
1230 
1231 	   This uglymoron is moved from INET layer to here to avoid
1232 	   deadlock in module load.
1233 	 */
1234 	if (family == PF_INET && type == SOCK_PACKET) {
1235 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 			     current->comm);
1237 		family = PF_PACKET;
1238 	}
1239 
1240 	err = security_socket_create(family, type, protocol, kern);
1241 	if (err)
1242 		return err;
1243 
1244 	/*
1245 	 *	Allocate the socket and allow the family to set things up. if
1246 	 *	the protocol is 0, the family is instructed to select an appropriate
1247 	 *	default.
1248 	 */
1249 	sock = sock_alloc();
1250 	if (!sock) {
1251 		net_warn_ratelimited("socket: no more sockets\n");
1252 		return -ENFILE;	/* Not exactly a match, but its the
1253 				   closest posix thing */
1254 	}
1255 
1256 	sock->type = type;
1257 
1258 #ifdef CONFIG_MODULES
1259 	/* Attempt to load a protocol module if the find failed.
1260 	 *
1261 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 	 * requested real, full-featured networking support upon configuration.
1263 	 * Otherwise module support will break!
1264 	 */
1265 	if (rcu_access_pointer(net_families[family]) == NULL)
1266 		request_module("net-pf-%d", family);
1267 #endif
1268 
1269 	rcu_read_lock();
1270 	pf = rcu_dereference(net_families[family]);
1271 	err = -EAFNOSUPPORT;
1272 	if (!pf)
1273 		goto out_release;
1274 
1275 	/*
1276 	 * We will call the ->create function, that possibly is in a loadable
1277 	 * module, so we have to bump that loadable module refcnt first.
1278 	 */
1279 	if (!try_module_get(pf->owner))
1280 		goto out_release;
1281 
1282 	/* Now protected by module ref count */
1283 	rcu_read_unlock();
1284 
1285 	err = pf->create(net, sock, protocol, kern);
1286 	if (err < 0)
1287 		goto out_module_put;
1288 
1289 	/*
1290 	 * Now to bump the refcnt of the [loadable] module that owns this
1291 	 * socket at sock_release time we decrement its refcnt.
1292 	 */
1293 	if (!try_module_get(sock->ops->owner))
1294 		goto out_module_busy;
1295 
1296 	/*
1297 	 * Now that we're done with the ->create function, the [loadable]
1298 	 * module can have its refcnt decremented
1299 	 */
1300 	module_put(pf->owner);
1301 	err = security_socket_post_create(sock, family, type, protocol, kern);
1302 	if (err)
1303 		goto out_sock_release;
1304 	*res = sock;
1305 
1306 	return 0;
1307 
1308 out_module_busy:
1309 	err = -EAFNOSUPPORT;
1310 out_module_put:
1311 	sock->ops = NULL;
1312 	module_put(pf->owner);
1313 out_sock_release:
1314 	sock_release(sock);
1315 	return err;
1316 
1317 out_release:
1318 	rcu_read_unlock();
1319 	goto out_sock_release;
1320 }
1321 EXPORT_SYMBOL(__sock_create);
1322 
1323 int sock_create(int family, int type, int protocol, struct socket **res)
1324 {
1325 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326 }
1327 EXPORT_SYMBOL(sock_create);
1328 
1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330 {
1331 	return __sock_create(net, family, type, protocol, res, 1);
1332 }
1333 EXPORT_SYMBOL(sock_create_kern);
1334 
1335 int __sys_socket(int family, int type, int protocol)
1336 {
1337 	int retval;
1338 	struct socket *sock;
1339 	int flags;
1340 
1341 	/* Check the SOCK_* constants for consistency.  */
1342 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346 
1347 	flags = type & ~SOCK_TYPE_MASK;
1348 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 		return -EINVAL;
1350 	type &= SOCK_TYPE_MASK;
1351 
1352 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354 
1355 	retval = sock_create(family, type, protocol, &sock);
1356 	if (retval < 0)
1357 		return retval;
1358 
1359 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360 }
1361 
1362 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363 {
1364 	return __sys_socket(family, type, protocol);
1365 }
1366 
1367 /*
1368  *	Create a pair of connected sockets.
1369  */
1370 
1371 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372 {
1373 	struct socket *sock1, *sock2;
1374 	int fd1, fd2, err;
1375 	struct file *newfile1, *newfile2;
1376 	int flags;
1377 
1378 	flags = type & ~SOCK_TYPE_MASK;
1379 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380 		return -EINVAL;
1381 	type &= SOCK_TYPE_MASK;
1382 
1383 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385 
1386 	/*
1387 	 * reserve descriptors and make sure we won't fail
1388 	 * to return them to userland.
1389 	 */
1390 	fd1 = get_unused_fd_flags(flags);
1391 	if (unlikely(fd1 < 0))
1392 		return fd1;
1393 
1394 	fd2 = get_unused_fd_flags(flags);
1395 	if (unlikely(fd2 < 0)) {
1396 		put_unused_fd(fd1);
1397 		return fd2;
1398 	}
1399 
1400 	err = put_user(fd1, &usockvec[0]);
1401 	if (err)
1402 		goto out;
1403 
1404 	err = put_user(fd2, &usockvec[1]);
1405 	if (err)
1406 		goto out;
1407 
1408 	/*
1409 	 * Obtain the first socket and check if the underlying protocol
1410 	 * supports the socketpair call.
1411 	 */
1412 
1413 	err = sock_create(family, type, protocol, &sock1);
1414 	if (unlikely(err < 0))
1415 		goto out;
1416 
1417 	err = sock_create(family, type, protocol, &sock2);
1418 	if (unlikely(err < 0)) {
1419 		sock_release(sock1);
1420 		goto out;
1421 	}
1422 
1423 	err = sock1->ops->socketpair(sock1, sock2);
1424 	if (unlikely(err < 0)) {
1425 		sock_release(sock2);
1426 		sock_release(sock1);
1427 		goto out;
1428 	}
1429 
1430 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1431 	if (IS_ERR(newfile1)) {
1432 		err = PTR_ERR(newfile1);
1433 		sock_release(sock2);
1434 		goto out;
1435 	}
1436 
1437 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1438 	if (IS_ERR(newfile2)) {
1439 		err = PTR_ERR(newfile2);
1440 		fput(newfile1);
1441 		goto out;
1442 	}
1443 
1444 	audit_fd_pair(fd1, fd2);
1445 
1446 	fd_install(fd1, newfile1);
1447 	fd_install(fd2, newfile2);
1448 	return 0;
1449 
1450 out:
1451 	put_unused_fd(fd2);
1452 	put_unused_fd(fd1);
1453 	return err;
1454 }
1455 
1456 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457 		int __user *, usockvec)
1458 {
1459 	return __sys_socketpair(family, type, protocol, usockvec);
1460 }
1461 
1462 /*
1463  *	Bind a name to a socket. Nothing much to do here since it's
1464  *	the protocol's responsibility to handle the local address.
1465  *
1466  *	We move the socket address to kernel space before we call
1467  *	the protocol layer (having also checked the address is ok).
1468  */
1469 
1470 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471 {
1472 	struct socket *sock;
1473 	struct sockaddr_storage address;
1474 	int err, fput_needed;
1475 
1476 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477 	if (sock) {
1478 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479 		if (err >= 0) {
1480 			err = security_socket_bind(sock,
1481 						   (struct sockaddr *)&address,
1482 						   addrlen);
1483 			if (!err)
1484 				err = sock->ops->bind(sock,
1485 						      (struct sockaddr *)
1486 						      &address, addrlen);
1487 		}
1488 		fput_light(sock->file, fput_needed);
1489 	}
1490 	return err;
1491 }
1492 
1493 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494 {
1495 	return __sys_bind(fd, umyaddr, addrlen);
1496 }
1497 
1498 /*
1499  *	Perform a listen. Basically, we allow the protocol to do anything
1500  *	necessary for a listen, and if that works, we mark the socket as
1501  *	ready for listening.
1502  */
1503 
1504 int __sys_listen(int fd, int backlog)
1505 {
1506 	struct socket *sock;
1507 	int err, fput_needed;
1508 	int somaxconn;
1509 
1510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 	if (sock) {
1512 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513 		if ((unsigned int)backlog > somaxconn)
1514 			backlog = somaxconn;
1515 
1516 		err = security_socket_listen(sock, backlog);
1517 		if (!err)
1518 			err = sock->ops->listen(sock, backlog);
1519 
1520 		fput_light(sock->file, fput_needed);
1521 	}
1522 	return err;
1523 }
1524 
1525 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526 {
1527 	return __sys_listen(fd, backlog);
1528 }
1529 
1530 /*
1531  *	For accept, we attempt to create a new socket, set up the link
1532  *	with the client, wake up the client, then return the new
1533  *	connected fd. We collect the address of the connector in kernel
1534  *	space and move it to user at the very end. This is unclean because
1535  *	we open the socket then return an error.
1536  *
1537  *	1003.1g adds the ability to recvmsg() to query connection pending
1538  *	status to recvmsg. We need to add that support in a way thats
1539  *	clean when we restucture accept also.
1540  */
1541 
1542 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543 		  int __user *upeer_addrlen, int flags)
1544 {
1545 	struct socket *sock, *newsock;
1546 	struct file *newfile;
1547 	int err, len, newfd, fput_needed;
1548 	struct sockaddr_storage address;
1549 
1550 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 		return -EINVAL;
1552 
1553 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 
1560 	err = -ENFILE;
1561 	newsock = sock_alloc();
1562 	if (!newsock)
1563 		goto out_put;
1564 
1565 	newsock->type = sock->type;
1566 	newsock->ops = sock->ops;
1567 
1568 	/*
1569 	 * We don't need try_module_get here, as the listening socket (sock)
1570 	 * has the protocol module (sock->ops->owner) held.
1571 	 */
1572 	__module_get(newsock->ops->owner);
1573 
1574 	newfd = get_unused_fd_flags(flags);
1575 	if (unlikely(newfd < 0)) {
1576 		err = newfd;
1577 		sock_release(newsock);
1578 		goto out_put;
1579 	}
1580 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581 	if (IS_ERR(newfile)) {
1582 		err = PTR_ERR(newfile);
1583 		put_unused_fd(newfd);
1584 		goto out_put;
1585 	}
1586 
1587 	err = security_socket_accept(sock, newsock);
1588 	if (err)
1589 		goto out_fd;
1590 
1591 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592 	if (err < 0)
1593 		goto out_fd;
1594 
1595 	if (upeer_sockaddr) {
1596 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1597 					  &len, 2) < 0) {
1598 			err = -ECONNABORTED;
1599 			goto out_fd;
1600 		}
1601 		err = move_addr_to_user(&address,
1602 					len, upeer_sockaddr, upeer_addrlen);
1603 		if (err < 0)
1604 			goto out_fd;
1605 	}
1606 
1607 	/* File flags are not inherited via accept() unlike another OSes. */
1608 
1609 	fd_install(newfd, newfile);
1610 	err = newfd;
1611 
1612 out_put:
1613 	fput_light(sock->file, fput_needed);
1614 out:
1615 	return err;
1616 out_fd:
1617 	fput(newfile);
1618 	put_unused_fd(newfd);
1619 	goto out_put;
1620 }
1621 
1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1623 		int __user *, upeer_addrlen, int, flags)
1624 {
1625 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1626 }
1627 
1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1629 		int __user *, upeer_addrlen)
1630 {
1631 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1632 }
1633 
1634 /*
1635  *	Attempt to connect to a socket with the server address.  The address
1636  *	is in user space so we verify it is OK and move it to kernel space.
1637  *
1638  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1639  *	break bindings
1640  *
1641  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1642  *	other SEQPACKET protocols that take time to connect() as it doesn't
1643  *	include the -EINPROGRESS status for such sockets.
1644  */
1645 
1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1647 {
1648 	struct socket *sock;
1649 	struct sockaddr_storage address;
1650 	int err, fput_needed;
1651 
1652 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1653 	if (!sock)
1654 		goto out;
1655 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1656 	if (err < 0)
1657 		goto out_put;
1658 
1659 	err =
1660 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1661 	if (err)
1662 		goto out_put;
1663 
1664 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1665 				 sock->file->f_flags);
1666 out_put:
1667 	fput_light(sock->file, fput_needed);
1668 out:
1669 	return err;
1670 }
1671 
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 		int, addrlen)
1674 {
1675 	return __sys_connect(fd, uservaddr, addrlen);
1676 }
1677 
1678 /*
1679  *	Get the local address ('name') of a socket object. Move the obtained
1680  *	name to user space.
1681  */
1682 
1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1684 		      int __user *usockaddr_len)
1685 {
1686 	struct socket *sock;
1687 	struct sockaddr_storage address;
1688 	int len, err, fput_needed;
1689 
1690 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 	if (!sock)
1692 		goto out;
1693 
1694 	err = security_socket_getsockname(sock);
1695 	if (err)
1696 		goto out_put;
1697 
1698 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1699 	if (err)
1700 		goto out_put;
1701 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1702 
1703 out_put:
1704 	fput_light(sock->file, fput_needed);
1705 out:
1706 	return err;
1707 }
1708 
1709 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1710 		int __user *, usockaddr_len)
1711 {
1712 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1713 }
1714 
1715 /*
1716  *	Get the remote address ('name') of a socket object. Move the obtained
1717  *	name to user space.
1718  */
1719 
1720 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1721 		      int __user *usockaddr_len)
1722 {
1723 	struct socket *sock;
1724 	struct sockaddr_storage address;
1725 	int len, err, fput_needed;
1726 
1727 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 	if (sock != NULL) {
1729 		err = security_socket_getpeername(sock);
1730 		if (err) {
1731 			fput_light(sock->file, fput_needed);
1732 			return err;
1733 		}
1734 
1735 		err =
1736 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1737 				       1);
1738 		if (!err)
1739 			err = move_addr_to_user(&address, len, usockaddr,
1740 						usockaddr_len);
1741 		fput_light(sock->file, fput_needed);
1742 	}
1743 	return err;
1744 }
1745 
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 		int __user *, usockaddr_len)
1748 {
1749 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1750 }
1751 
1752 /*
1753  *	Send a datagram to a given address. We move the address into kernel
1754  *	space and check the user space data area is readable before invoking
1755  *	the protocol.
1756  */
1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1758 		 struct sockaddr __user *addr,  int addr_len)
1759 {
1760 	struct socket *sock;
1761 	struct sockaddr_storage address;
1762 	int err;
1763 	struct msghdr msg;
1764 	struct iovec iov;
1765 	int fput_needed;
1766 
1767 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1768 	if (unlikely(err))
1769 		return err;
1770 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1771 	if (!sock)
1772 		goto out;
1773 
1774 	msg.msg_name = NULL;
1775 	msg.msg_control = NULL;
1776 	msg.msg_controllen = 0;
1777 	msg.msg_namelen = 0;
1778 	if (addr) {
1779 		err = move_addr_to_kernel(addr, addr_len, &address);
1780 		if (err < 0)
1781 			goto out_put;
1782 		msg.msg_name = (struct sockaddr *)&address;
1783 		msg.msg_namelen = addr_len;
1784 	}
1785 	if (sock->file->f_flags & O_NONBLOCK)
1786 		flags |= MSG_DONTWAIT;
1787 	msg.msg_flags = flags;
1788 	err = sock_sendmsg(sock, &msg);
1789 
1790 out_put:
1791 	fput_light(sock->file, fput_needed);
1792 out:
1793 	return err;
1794 }
1795 
1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1797 		unsigned int, flags, struct sockaddr __user *, addr,
1798 		int, addr_len)
1799 {
1800 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1801 }
1802 
1803 /*
1804  *	Send a datagram down a socket.
1805  */
1806 
1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1808 		unsigned int, flags)
1809 {
1810 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1811 }
1812 
1813 /*
1814  *	Receive a frame from the socket and optionally record the address of the
1815  *	sender. We verify the buffers are writable and if needed move the
1816  *	sender address from kernel to user space.
1817  */
1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1819 		   struct sockaddr __user *addr, int __user *addr_len)
1820 {
1821 	struct socket *sock;
1822 	struct iovec iov;
1823 	struct msghdr msg;
1824 	struct sockaddr_storage address;
1825 	int err, err2;
1826 	int fput_needed;
1827 
1828 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1829 	if (unlikely(err))
1830 		return err;
1831 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 	if (!sock)
1833 		goto out;
1834 
1835 	msg.msg_control = NULL;
1836 	msg.msg_controllen = 0;
1837 	/* Save some cycles and don't copy the address if not needed */
1838 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1839 	/* We assume all kernel code knows the size of sockaddr_storage */
1840 	msg.msg_namelen = 0;
1841 	msg.msg_iocb = NULL;
1842 	msg.msg_flags = 0;
1843 	if (sock->file->f_flags & O_NONBLOCK)
1844 		flags |= MSG_DONTWAIT;
1845 	err = sock_recvmsg(sock, &msg, flags);
1846 
1847 	if (err >= 0 && addr != NULL) {
1848 		err2 = move_addr_to_user(&address,
1849 					 msg.msg_namelen, addr, addr_len);
1850 		if (err2 < 0)
1851 			err = err2;
1852 	}
1853 
1854 	fput_light(sock->file, fput_needed);
1855 out:
1856 	return err;
1857 }
1858 
1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1860 		unsigned int, flags, struct sockaddr __user *, addr,
1861 		int __user *, addr_len)
1862 {
1863 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1864 }
1865 
1866 /*
1867  *	Receive a datagram from a socket.
1868  */
1869 
1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1871 		unsigned int, flags)
1872 {
1873 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1874 }
1875 
1876 /*
1877  *	Set a socket option. Because we don't know the option lengths we have
1878  *	to pass the user mode parameter for the protocols to sort out.
1879  */
1880 
1881 static int __sys_setsockopt(int fd, int level, int optname,
1882 			    char __user *optval, int optlen)
1883 {
1884 	int err, fput_needed;
1885 	struct socket *sock;
1886 
1887 	if (optlen < 0)
1888 		return -EINVAL;
1889 
1890 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 	if (sock != NULL) {
1892 		err = security_socket_setsockopt(sock, level, optname);
1893 		if (err)
1894 			goto out_put;
1895 
1896 		if (level == SOL_SOCKET)
1897 			err =
1898 			    sock_setsockopt(sock, level, optname, optval,
1899 					    optlen);
1900 		else
1901 			err =
1902 			    sock->ops->setsockopt(sock, level, optname, optval,
1903 						  optlen);
1904 out_put:
1905 		fput_light(sock->file, fput_needed);
1906 	}
1907 	return err;
1908 }
1909 
1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1911 		char __user *, optval, int, optlen)
1912 {
1913 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1914 }
1915 
1916 /*
1917  *	Get a socket option. Because we don't know the option lengths we have
1918  *	to pass a user mode parameter for the protocols to sort out.
1919  */
1920 
1921 static int __sys_getsockopt(int fd, int level, int optname,
1922 			    char __user *optval, int __user *optlen)
1923 {
1924 	int err, fput_needed;
1925 	struct socket *sock;
1926 
1927 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 	if (sock != NULL) {
1929 		err = security_socket_getsockopt(sock, level, optname);
1930 		if (err)
1931 			goto out_put;
1932 
1933 		if (level == SOL_SOCKET)
1934 			err =
1935 			    sock_getsockopt(sock, level, optname, optval,
1936 					    optlen);
1937 		else
1938 			err =
1939 			    sock->ops->getsockopt(sock, level, optname, optval,
1940 						  optlen);
1941 out_put:
1942 		fput_light(sock->file, fput_needed);
1943 	}
1944 	return err;
1945 }
1946 
1947 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1948 		char __user *, optval, int __user *, optlen)
1949 {
1950 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1951 }
1952 
1953 /*
1954  *	Shutdown a socket.
1955  */
1956 
1957 int __sys_shutdown(int fd, int how)
1958 {
1959 	int err, fput_needed;
1960 	struct socket *sock;
1961 
1962 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 	if (sock != NULL) {
1964 		err = security_socket_shutdown(sock, how);
1965 		if (!err)
1966 			err = sock->ops->shutdown(sock, how);
1967 		fput_light(sock->file, fput_needed);
1968 	}
1969 	return err;
1970 }
1971 
1972 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1973 {
1974 	return __sys_shutdown(fd, how);
1975 }
1976 
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978  * fields which are the same type (int / unsigned) on our platforms.
1979  */
1980 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1983 
1984 struct used_address {
1985 	struct sockaddr_storage name;
1986 	unsigned int name_len;
1987 };
1988 
1989 static int copy_msghdr_from_user(struct msghdr *kmsg,
1990 				 struct user_msghdr __user *umsg,
1991 				 struct sockaddr __user **save_addr,
1992 				 struct iovec **iov)
1993 {
1994 	struct user_msghdr msg;
1995 	ssize_t err;
1996 
1997 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1998 		return -EFAULT;
1999 
2000 	kmsg->msg_control = (void __force *)msg.msg_control;
2001 	kmsg->msg_controllen = msg.msg_controllen;
2002 	kmsg->msg_flags = msg.msg_flags;
2003 
2004 	kmsg->msg_namelen = msg.msg_namelen;
2005 	if (!msg.msg_name)
2006 		kmsg->msg_namelen = 0;
2007 
2008 	if (kmsg->msg_namelen < 0)
2009 		return -EINVAL;
2010 
2011 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2012 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2013 
2014 	if (save_addr)
2015 		*save_addr = msg.msg_name;
2016 
2017 	if (msg.msg_name && kmsg->msg_namelen) {
2018 		if (!save_addr) {
2019 			err = move_addr_to_kernel(msg.msg_name,
2020 						  kmsg->msg_namelen,
2021 						  kmsg->msg_name);
2022 			if (err < 0)
2023 				return err;
2024 		}
2025 	} else {
2026 		kmsg->msg_name = NULL;
2027 		kmsg->msg_namelen = 0;
2028 	}
2029 
2030 	if (msg.msg_iovlen > UIO_MAXIOV)
2031 		return -EMSGSIZE;
2032 
2033 	kmsg->msg_iocb = NULL;
2034 
2035 	return import_iovec(save_addr ? READ : WRITE,
2036 			    msg.msg_iov, msg.msg_iovlen,
2037 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2038 }
2039 
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 			 struct msghdr *msg_sys, unsigned int flags,
2042 			 struct used_address *used_address,
2043 			 unsigned int allowed_msghdr_flags)
2044 {
2045 	struct compat_msghdr __user *msg_compat =
2046 	    (struct compat_msghdr __user *)msg;
2047 	struct sockaddr_storage address;
2048 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2049 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2050 				__aligned(sizeof(__kernel_size_t));
2051 	/* 20 is size of ipv6_pktinfo */
2052 	unsigned char *ctl_buf = ctl;
2053 	int ctl_len;
2054 	ssize_t err;
2055 
2056 	msg_sys->msg_name = &address;
2057 
2058 	if (MSG_CMSG_COMPAT & flags)
2059 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2060 	else
2061 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2062 	if (err < 0)
2063 		return err;
2064 
2065 	err = -ENOBUFS;
2066 
2067 	if (msg_sys->msg_controllen > INT_MAX)
2068 		goto out_freeiov;
2069 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2070 	ctl_len = msg_sys->msg_controllen;
2071 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2072 		err =
2073 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2074 						     sizeof(ctl));
2075 		if (err)
2076 			goto out_freeiov;
2077 		ctl_buf = msg_sys->msg_control;
2078 		ctl_len = msg_sys->msg_controllen;
2079 	} else if (ctl_len) {
2080 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2081 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2082 		if (ctl_len > sizeof(ctl)) {
2083 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2084 			if (ctl_buf == NULL)
2085 				goto out_freeiov;
2086 		}
2087 		err = -EFAULT;
2088 		/*
2089 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2090 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2091 		 * checking falls down on this.
2092 		 */
2093 		if (copy_from_user(ctl_buf,
2094 				   (void __user __force *)msg_sys->msg_control,
2095 				   ctl_len))
2096 			goto out_freectl;
2097 		msg_sys->msg_control = ctl_buf;
2098 	}
2099 	msg_sys->msg_flags = flags;
2100 
2101 	if (sock->file->f_flags & O_NONBLOCK)
2102 		msg_sys->msg_flags |= MSG_DONTWAIT;
2103 	/*
2104 	 * If this is sendmmsg() and current destination address is same as
2105 	 * previously succeeded address, omit asking LSM's decision.
2106 	 * used_address->name_len is initialized to UINT_MAX so that the first
2107 	 * destination address never matches.
2108 	 */
2109 	if (used_address && msg_sys->msg_name &&
2110 	    used_address->name_len == msg_sys->msg_namelen &&
2111 	    !memcmp(&used_address->name, msg_sys->msg_name,
2112 		    used_address->name_len)) {
2113 		err = sock_sendmsg_nosec(sock, msg_sys);
2114 		goto out_freectl;
2115 	}
2116 	err = sock_sendmsg(sock, msg_sys);
2117 	/*
2118 	 * If this is sendmmsg() and sending to current destination address was
2119 	 * successful, remember it.
2120 	 */
2121 	if (used_address && err >= 0) {
2122 		used_address->name_len = msg_sys->msg_namelen;
2123 		if (msg_sys->msg_name)
2124 			memcpy(&used_address->name, msg_sys->msg_name,
2125 			       used_address->name_len);
2126 	}
2127 
2128 out_freectl:
2129 	if (ctl_buf != ctl)
2130 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2131 out_freeiov:
2132 	kfree(iov);
2133 	return err;
2134 }
2135 
2136 /*
2137  *	BSD sendmsg interface
2138  */
2139 
2140 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2141 		   bool forbid_cmsg_compat)
2142 {
2143 	int fput_needed, err;
2144 	struct msghdr msg_sys;
2145 	struct socket *sock;
2146 
2147 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2148 		return -EINVAL;
2149 
2150 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 	if (!sock)
2152 		goto out;
2153 
2154 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2155 
2156 	fput_light(sock->file, fput_needed);
2157 out:
2158 	return err;
2159 }
2160 
2161 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2162 {
2163 	return __sys_sendmsg(fd, msg, flags, true);
2164 }
2165 
2166 /*
2167  *	Linux sendmmsg interface
2168  */
2169 
2170 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2171 		   unsigned int flags, bool forbid_cmsg_compat)
2172 {
2173 	int fput_needed, err, datagrams;
2174 	struct socket *sock;
2175 	struct mmsghdr __user *entry;
2176 	struct compat_mmsghdr __user *compat_entry;
2177 	struct msghdr msg_sys;
2178 	struct used_address used_address;
2179 	unsigned int oflags = flags;
2180 
2181 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2182 		return -EINVAL;
2183 
2184 	if (vlen > UIO_MAXIOV)
2185 		vlen = UIO_MAXIOV;
2186 
2187 	datagrams = 0;
2188 
2189 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 	if (!sock)
2191 		return err;
2192 
2193 	used_address.name_len = UINT_MAX;
2194 	entry = mmsg;
2195 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196 	err = 0;
2197 	flags |= MSG_BATCH;
2198 
2199 	while (datagrams < vlen) {
2200 		if (datagrams == vlen - 1)
2201 			flags = oflags;
2202 
2203 		if (MSG_CMSG_COMPAT & flags) {
2204 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2205 					     &msg_sys, flags, &used_address, MSG_EOR);
2206 			if (err < 0)
2207 				break;
2208 			err = __put_user(err, &compat_entry->msg_len);
2209 			++compat_entry;
2210 		} else {
2211 			err = ___sys_sendmsg(sock,
2212 					     (struct user_msghdr __user *)entry,
2213 					     &msg_sys, flags, &used_address, MSG_EOR);
2214 			if (err < 0)
2215 				break;
2216 			err = put_user(err, &entry->msg_len);
2217 			++entry;
2218 		}
2219 
2220 		if (err)
2221 			break;
2222 		++datagrams;
2223 		if (msg_data_left(&msg_sys))
2224 			break;
2225 		cond_resched();
2226 	}
2227 
2228 	fput_light(sock->file, fput_needed);
2229 
2230 	/* We only return an error if no datagrams were able to be sent */
2231 	if (datagrams != 0)
2232 		return datagrams;
2233 
2234 	return err;
2235 }
2236 
2237 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2238 		unsigned int, vlen, unsigned int, flags)
2239 {
2240 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2241 }
2242 
2243 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2244 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2245 {
2246 	struct compat_msghdr __user *msg_compat =
2247 	    (struct compat_msghdr __user *)msg;
2248 	struct iovec iovstack[UIO_FASTIOV];
2249 	struct iovec *iov = iovstack;
2250 	unsigned long cmsg_ptr;
2251 	int len;
2252 	ssize_t err;
2253 
2254 	/* kernel mode address */
2255 	struct sockaddr_storage addr;
2256 
2257 	/* user mode address pointers */
2258 	struct sockaddr __user *uaddr;
2259 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2260 
2261 	msg_sys->msg_name = &addr;
2262 
2263 	if (MSG_CMSG_COMPAT & flags)
2264 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2265 	else
2266 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2267 	if (err < 0)
2268 		return err;
2269 
2270 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272 
2273 	/* We assume all kernel code knows the size of sockaddr_storage */
2274 	msg_sys->msg_namelen = 0;
2275 
2276 	if (sock->file->f_flags & O_NONBLOCK)
2277 		flags |= MSG_DONTWAIT;
2278 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2279 	if (err < 0)
2280 		goto out_freeiov;
2281 	len = err;
2282 
2283 	if (uaddr != NULL) {
2284 		err = move_addr_to_user(&addr,
2285 					msg_sys->msg_namelen, uaddr,
2286 					uaddr_len);
2287 		if (err < 0)
2288 			goto out_freeiov;
2289 	}
2290 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2291 			 COMPAT_FLAGS(msg));
2292 	if (err)
2293 		goto out_freeiov;
2294 	if (MSG_CMSG_COMPAT & flags)
2295 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2296 				 &msg_compat->msg_controllen);
2297 	else
2298 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2299 				 &msg->msg_controllen);
2300 	if (err)
2301 		goto out_freeiov;
2302 	err = len;
2303 
2304 out_freeiov:
2305 	kfree(iov);
2306 	return err;
2307 }
2308 
2309 /*
2310  *	BSD recvmsg interface
2311  */
2312 
2313 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2314 		   bool forbid_cmsg_compat)
2315 {
2316 	int fput_needed, err;
2317 	struct msghdr msg_sys;
2318 	struct socket *sock;
2319 
2320 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2321 		return -EINVAL;
2322 
2323 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2324 	if (!sock)
2325 		goto out;
2326 
2327 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2328 
2329 	fput_light(sock->file, fput_needed);
2330 out:
2331 	return err;
2332 }
2333 
2334 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2335 		unsigned int, flags)
2336 {
2337 	return __sys_recvmsg(fd, msg, flags, true);
2338 }
2339 
2340 /*
2341  *     Linux recvmmsg interface
2342  */
2343 
2344 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2345 		   unsigned int flags, struct timespec *timeout)
2346 {
2347 	int fput_needed, err, datagrams;
2348 	struct socket *sock;
2349 	struct mmsghdr __user *entry;
2350 	struct compat_mmsghdr __user *compat_entry;
2351 	struct msghdr msg_sys;
2352 	struct timespec64 end_time;
2353 	struct timespec64 timeout64;
2354 
2355 	if (timeout &&
2356 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2357 				    timeout->tv_nsec))
2358 		return -EINVAL;
2359 
2360 	datagrams = 0;
2361 
2362 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2363 	if (!sock)
2364 		return err;
2365 
2366 	err = sock_error(sock->sk);
2367 	if (err) {
2368 		datagrams = err;
2369 		goto out_put;
2370 	}
2371 
2372 	entry = mmsg;
2373 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2374 
2375 	while (datagrams < vlen) {
2376 		/*
2377 		 * No need to ask LSM for more than the first datagram.
2378 		 */
2379 		if (MSG_CMSG_COMPAT & flags) {
2380 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2381 					     &msg_sys, flags & ~MSG_WAITFORONE,
2382 					     datagrams);
2383 			if (err < 0)
2384 				break;
2385 			err = __put_user(err, &compat_entry->msg_len);
2386 			++compat_entry;
2387 		} else {
2388 			err = ___sys_recvmsg(sock,
2389 					     (struct user_msghdr __user *)entry,
2390 					     &msg_sys, flags & ~MSG_WAITFORONE,
2391 					     datagrams);
2392 			if (err < 0)
2393 				break;
2394 			err = put_user(err, &entry->msg_len);
2395 			++entry;
2396 		}
2397 
2398 		if (err)
2399 			break;
2400 		++datagrams;
2401 
2402 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2403 		if (flags & MSG_WAITFORONE)
2404 			flags |= MSG_DONTWAIT;
2405 
2406 		if (timeout) {
2407 			ktime_get_ts64(&timeout64);
2408 			*timeout = timespec64_to_timespec(
2409 					timespec64_sub(end_time, timeout64));
2410 			if (timeout->tv_sec < 0) {
2411 				timeout->tv_sec = timeout->tv_nsec = 0;
2412 				break;
2413 			}
2414 
2415 			/* Timeout, return less than vlen datagrams */
2416 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2417 				break;
2418 		}
2419 
2420 		/* Out of band data, return right away */
2421 		if (msg_sys.msg_flags & MSG_OOB)
2422 			break;
2423 		cond_resched();
2424 	}
2425 
2426 	if (err == 0)
2427 		goto out_put;
2428 
2429 	if (datagrams == 0) {
2430 		datagrams = err;
2431 		goto out_put;
2432 	}
2433 
2434 	/*
2435 	 * We may return less entries than requested (vlen) if the
2436 	 * sock is non block and there aren't enough datagrams...
2437 	 */
2438 	if (err != -EAGAIN) {
2439 		/*
2440 		 * ... or  if recvmsg returns an error after we
2441 		 * received some datagrams, where we record the
2442 		 * error to return on the next call or if the
2443 		 * app asks about it using getsockopt(SO_ERROR).
2444 		 */
2445 		sock->sk->sk_err = -err;
2446 	}
2447 out_put:
2448 	fput_light(sock->file, fput_needed);
2449 
2450 	return datagrams;
2451 }
2452 
2453 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2454 			   unsigned int vlen, unsigned int flags,
2455 			   struct timespec __user *timeout)
2456 {
2457 	int datagrams;
2458 	struct timespec timeout_sys;
2459 
2460 	if (flags & MSG_CMSG_COMPAT)
2461 		return -EINVAL;
2462 
2463 	if (!timeout)
2464 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2465 
2466 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2467 		return -EFAULT;
2468 
2469 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2470 
2471 	if (datagrams > 0 &&
2472 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2473 		datagrams = -EFAULT;
2474 
2475 	return datagrams;
2476 }
2477 
2478 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2479 		unsigned int, vlen, unsigned int, flags,
2480 		struct timespec __user *, timeout)
2481 {
2482 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2483 }
2484 
2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2486 /* Argument list sizes for sys_socketcall */
2487 #define AL(x) ((x) * sizeof(unsigned long))
2488 static const unsigned char nargs[21] = {
2489 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2490 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2491 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2492 	AL(4), AL(5), AL(4)
2493 };
2494 
2495 #undef AL
2496 
2497 /*
2498  *	System call vectors.
2499  *
2500  *	Argument checking cleaned up. Saved 20% in size.
2501  *  This function doesn't need to set the kernel lock because
2502  *  it is set by the callees.
2503  */
2504 
2505 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2506 {
2507 	unsigned long a[AUDITSC_ARGS];
2508 	unsigned long a0, a1;
2509 	int err;
2510 	unsigned int len;
2511 
2512 	if (call < 1 || call > SYS_SENDMMSG)
2513 		return -EINVAL;
2514 
2515 	len = nargs[call];
2516 	if (len > sizeof(a))
2517 		return -EINVAL;
2518 
2519 	/* copy_from_user should be SMP safe. */
2520 	if (copy_from_user(a, args, len))
2521 		return -EFAULT;
2522 
2523 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2524 	if (err)
2525 		return err;
2526 
2527 	a0 = a[0];
2528 	a1 = a[1];
2529 
2530 	switch (call) {
2531 	case SYS_SOCKET:
2532 		err = __sys_socket(a0, a1, a[2]);
2533 		break;
2534 	case SYS_BIND:
2535 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2536 		break;
2537 	case SYS_CONNECT:
2538 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2539 		break;
2540 	case SYS_LISTEN:
2541 		err = __sys_listen(a0, a1);
2542 		break;
2543 	case SYS_ACCEPT:
2544 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2545 				    (int __user *)a[2], 0);
2546 		break;
2547 	case SYS_GETSOCKNAME:
2548 		err =
2549 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2550 				      (int __user *)a[2]);
2551 		break;
2552 	case SYS_GETPEERNAME:
2553 		err =
2554 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2555 				      (int __user *)a[2]);
2556 		break;
2557 	case SYS_SOCKETPAIR:
2558 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2559 		break;
2560 	case SYS_SEND:
2561 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2562 				   NULL, 0);
2563 		break;
2564 	case SYS_SENDTO:
2565 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2566 				   (struct sockaddr __user *)a[4], a[5]);
2567 		break;
2568 	case SYS_RECV:
2569 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2570 				     NULL, NULL);
2571 		break;
2572 	case SYS_RECVFROM:
2573 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2574 				     (struct sockaddr __user *)a[4],
2575 				     (int __user *)a[5]);
2576 		break;
2577 	case SYS_SHUTDOWN:
2578 		err = __sys_shutdown(a0, a1);
2579 		break;
2580 	case SYS_SETSOCKOPT:
2581 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2582 				       a[4]);
2583 		break;
2584 	case SYS_GETSOCKOPT:
2585 		err =
2586 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2587 				     (int __user *)a[4]);
2588 		break;
2589 	case SYS_SENDMSG:
2590 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2591 				    a[2], true);
2592 		break;
2593 	case SYS_SENDMMSG:
2594 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2595 				     a[3], true);
2596 		break;
2597 	case SYS_RECVMSG:
2598 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2599 				    a[2], true);
2600 		break;
2601 	case SYS_RECVMMSG:
2602 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2603 				      a[3], (struct timespec __user *)a[4]);
2604 		break;
2605 	case SYS_ACCEPT4:
2606 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2607 				    (int __user *)a[2], a[3]);
2608 		break;
2609 	default:
2610 		err = -EINVAL;
2611 		break;
2612 	}
2613 	return err;
2614 }
2615 
2616 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2617 
2618 /**
2619  *	sock_register - add a socket protocol handler
2620  *	@ops: description of protocol
2621  *
2622  *	This function is called by a protocol handler that wants to
2623  *	advertise its address family, and have it linked into the
2624  *	socket interface. The value ops->family corresponds to the
2625  *	socket system call protocol family.
2626  */
2627 int sock_register(const struct net_proto_family *ops)
2628 {
2629 	int err;
2630 
2631 	if (ops->family >= NPROTO) {
2632 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2633 		return -ENOBUFS;
2634 	}
2635 
2636 	spin_lock(&net_family_lock);
2637 	if (rcu_dereference_protected(net_families[ops->family],
2638 				      lockdep_is_held(&net_family_lock)))
2639 		err = -EEXIST;
2640 	else {
2641 		rcu_assign_pointer(net_families[ops->family], ops);
2642 		err = 0;
2643 	}
2644 	spin_unlock(&net_family_lock);
2645 
2646 	pr_info("NET: Registered protocol family %d\n", ops->family);
2647 	return err;
2648 }
2649 EXPORT_SYMBOL(sock_register);
2650 
2651 /**
2652  *	sock_unregister - remove a protocol handler
2653  *	@family: protocol family to remove
2654  *
2655  *	This function is called by a protocol handler that wants to
2656  *	remove its address family, and have it unlinked from the
2657  *	new socket creation.
2658  *
2659  *	If protocol handler is a module, then it can use module reference
2660  *	counts to protect against new references. If protocol handler is not
2661  *	a module then it needs to provide its own protection in
2662  *	the ops->create routine.
2663  */
2664 void sock_unregister(int family)
2665 {
2666 	BUG_ON(family < 0 || family >= NPROTO);
2667 
2668 	spin_lock(&net_family_lock);
2669 	RCU_INIT_POINTER(net_families[family], NULL);
2670 	spin_unlock(&net_family_lock);
2671 
2672 	synchronize_rcu();
2673 
2674 	pr_info("NET: Unregistered protocol family %d\n", family);
2675 }
2676 EXPORT_SYMBOL(sock_unregister);
2677 
2678 bool sock_is_registered(int family)
2679 {
2680 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2681 }
2682 
2683 static int __init sock_init(void)
2684 {
2685 	int err;
2686 	/*
2687 	 *      Initialize the network sysctl infrastructure.
2688 	 */
2689 	err = net_sysctl_init();
2690 	if (err)
2691 		goto out;
2692 
2693 	/*
2694 	 *      Initialize skbuff SLAB cache
2695 	 */
2696 	skb_init();
2697 
2698 	/*
2699 	 *      Initialize the protocols module.
2700 	 */
2701 
2702 	init_inodecache();
2703 
2704 	err = register_filesystem(&sock_fs_type);
2705 	if (err)
2706 		goto out_fs;
2707 	sock_mnt = kern_mount(&sock_fs_type);
2708 	if (IS_ERR(sock_mnt)) {
2709 		err = PTR_ERR(sock_mnt);
2710 		goto out_mount;
2711 	}
2712 
2713 	/* The real protocol initialization is performed in later initcalls.
2714 	 */
2715 
2716 #ifdef CONFIG_NETFILTER
2717 	err = netfilter_init();
2718 	if (err)
2719 		goto out;
2720 #endif
2721 
2722 	ptp_classifier_init();
2723 
2724 out:
2725 	return err;
2726 
2727 out_mount:
2728 	unregister_filesystem(&sock_fs_type);
2729 out_fs:
2730 	goto out;
2731 }
2732 
2733 core_initcall(sock_init);	/* early initcall */
2734 
2735 #ifdef CONFIG_PROC_FS
2736 void socket_seq_show(struct seq_file *seq)
2737 {
2738 	seq_printf(seq, "sockets: used %d\n",
2739 		   sock_inuse_get(seq->private));
2740 }
2741 #endif				/* CONFIG_PROC_FS */
2742 
2743 #ifdef CONFIG_COMPAT
2744 static int do_siocgstamp(struct net *net, struct socket *sock,
2745 			 unsigned int cmd, void __user *up)
2746 {
2747 	mm_segment_t old_fs = get_fs();
2748 	struct timeval ktv;
2749 	int err;
2750 
2751 	set_fs(KERNEL_DS);
2752 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2753 	set_fs(old_fs);
2754 	if (!err)
2755 		err = compat_put_timeval(&ktv, up);
2756 
2757 	return err;
2758 }
2759 
2760 static int do_siocgstampns(struct net *net, struct socket *sock,
2761 			   unsigned int cmd, void __user *up)
2762 {
2763 	mm_segment_t old_fs = get_fs();
2764 	struct timespec kts;
2765 	int err;
2766 
2767 	set_fs(KERNEL_DS);
2768 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2769 	set_fs(old_fs);
2770 	if (!err)
2771 		err = compat_put_timespec(&kts, up);
2772 
2773 	return err;
2774 }
2775 
2776 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2777 {
2778 	struct compat_ifconf ifc32;
2779 	struct ifconf ifc;
2780 	int err;
2781 
2782 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2783 		return -EFAULT;
2784 
2785 	ifc.ifc_len = ifc32.ifc_len;
2786 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2787 
2788 	rtnl_lock();
2789 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2790 	rtnl_unlock();
2791 	if (err)
2792 		return err;
2793 
2794 	ifc32.ifc_len = ifc.ifc_len;
2795 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2796 		return -EFAULT;
2797 
2798 	return 0;
2799 }
2800 
2801 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2802 {
2803 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2804 	bool convert_in = false, convert_out = false;
2805 	size_t buf_size = 0;
2806 	struct ethtool_rxnfc __user *rxnfc = NULL;
2807 	struct ifreq ifr;
2808 	u32 rule_cnt = 0, actual_rule_cnt;
2809 	u32 ethcmd;
2810 	u32 data;
2811 	int ret;
2812 
2813 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2814 		return -EFAULT;
2815 
2816 	compat_rxnfc = compat_ptr(data);
2817 
2818 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2819 		return -EFAULT;
2820 
2821 	/* Most ethtool structures are defined without padding.
2822 	 * Unfortunately struct ethtool_rxnfc is an exception.
2823 	 */
2824 	switch (ethcmd) {
2825 	default:
2826 		break;
2827 	case ETHTOOL_GRXCLSRLALL:
2828 		/* Buffer size is variable */
2829 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2830 			return -EFAULT;
2831 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2832 			return -ENOMEM;
2833 		buf_size += rule_cnt * sizeof(u32);
2834 		/* fall through */
2835 	case ETHTOOL_GRXRINGS:
2836 	case ETHTOOL_GRXCLSRLCNT:
2837 	case ETHTOOL_GRXCLSRULE:
2838 	case ETHTOOL_SRXCLSRLINS:
2839 		convert_out = true;
2840 		/* fall through */
2841 	case ETHTOOL_SRXCLSRLDEL:
2842 		buf_size += sizeof(struct ethtool_rxnfc);
2843 		convert_in = true;
2844 		rxnfc = compat_alloc_user_space(buf_size);
2845 		break;
2846 	}
2847 
2848 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2849 		return -EFAULT;
2850 
2851 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2852 
2853 	if (convert_in) {
2854 		/* We expect there to be holes between fs.m_ext and
2855 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2856 		 */
2857 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2858 			     sizeof(compat_rxnfc->fs.m_ext) !=
2859 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2860 			     sizeof(rxnfc->fs.m_ext));
2861 		BUILD_BUG_ON(
2862 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2863 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2864 			offsetof(struct ethtool_rxnfc, fs.location) -
2865 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2866 
2867 		if (copy_in_user(rxnfc, compat_rxnfc,
2868 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2869 				 (void __user *)rxnfc) ||
2870 		    copy_in_user(&rxnfc->fs.ring_cookie,
2871 				 &compat_rxnfc->fs.ring_cookie,
2872 				 (void __user *)(&rxnfc->fs.location + 1) -
2873 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2874 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2875 				 sizeof(rxnfc->rule_cnt)))
2876 			return -EFAULT;
2877 	}
2878 
2879 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2880 	if (ret)
2881 		return ret;
2882 
2883 	if (convert_out) {
2884 		if (copy_in_user(compat_rxnfc, rxnfc,
2885 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2886 				 (const void __user *)rxnfc) ||
2887 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2888 				 &rxnfc->fs.ring_cookie,
2889 				 (const void __user *)(&rxnfc->fs.location + 1) -
2890 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2891 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2892 				 sizeof(rxnfc->rule_cnt)))
2893 			return -EFAULT;
2894 
2895 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2896 			/* As an optimisation, we only copy the actual
2897 			 * number of rules that the underlying
2898 			 * function returned.  Since Mallory might
2899 			 * change the rule count in user memory, we
2900 			 * check that it is less than the rule count
2901 			 * originally given (as the user buffer size),
2902 			 * which has been range-checked.
2903 			 */
2904 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2905 				return -EFAULT;
2906 			if (actual_rule_cnt < rule_cnt)
2907 				rule_cnt = actual_rule_cnt;
2908 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2909 					 &rxnfc->rule_locs[0],
2910 					 rule_cnt * sizeof(u32)))
2911 				return -EFAULT;
2912 		}
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2919 {
2920 	compat_uptr_t uptr32;
2921 	struct ifreq ifr;
2922 	void __user *saved;
2923 	int err;
2924 
2925 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2926 		return -EFAULT;
2927 
2928 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2929 		return -EFAULT;
2930 
2931 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2932 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2933 
2934 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2935 	if (!err) {
2936 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2937 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2938 			err = -EFAULT;
2939 	}
2940 	return err;
2941 }
2942 
2943 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2944 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2945 				 struct compat_ifreq __user *u_ifreq32)
2946 {
2947 	struct ifreq ifreq;
2948 	u32 data32;
2949 
2950 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2951 		return -EFAULT;
2952 	if (get_user(data32, &u_ifreq32->ifr_data))
2953 		return -EFAULT;
2954 	ifreq.ifr_data = compat_ptr(data32);
2955 
2956 	return dev_ioctl(net, cmd, &ifreq, NULL);
2957 }
2958 
2959 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2960 			struct compat_ifreq __user *uifr32)
2961 {
2962 	struct ifreq ifr;
2963 	struct compat_ifmap __user *uifmap32;
2964 	int err;
2965 
2966 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2967 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2968 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2969 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2970 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2971 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2972 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2973 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2974 	if (err)
2975 		return -EFAULT;
2976 
2977 	err = dev_ioctl(net, cmd, &ifr, NULL);
2978 
2979 	if (cmd == SIOCGIFMAP && !err) {
2980 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2981 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2982 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2983 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2984 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2985 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2986 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2987 		if (err)
2988 			err = -EFAULT;
2989 	}
2990 	return err;
2991 }
2992 
2993 struct rtentry32 {
2994 	u32		rt_pad1;
2995 	struct sockaddr rt_dst;         /* target address               */
2996 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2997 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2998 	unsigned short	rt_flags;
2999 	short		rt_pad2;
3000 	u32		rt_pad3;
3001 	unsigned char	rt_tos;
3002 	unsigned char	rt_class;
3003 	short		rt_pad4;
3004 	short		rt_metric;      /* +1 for binary compatibility! */
3005 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3006 	u32		rt_mtu;         /* per route MTU/Window         */
3007 	u32		rt_window;      /* Window clamping              */
3008 	unsigned short  rt_irtt;        /* Initial RTT                  */
3009 };
3010 
3011 struct in6_rtmsg32 {
3012 	struct in6_addr		rtmsg_dst;
3013 	struct in6_addr		rtmsg_src;
3014 	struct in6_addr		rtmsg_gateway;
3015 	u32			rtmsg_type;
3016 	u16			rtmsg_dst_len;
3017 	u16			rtmsg_src_len;
3018 	u32			rtmsg_metric;
3019 	u32			rtmsg_info;
3020 	u32			rtmsg_flags;
3021 	s32			rtmsg_ifindex;
3022 };
3023 
3024 static int routing_ioctl(struct net *net, struct socket *sock,
3025 			 unsigned int cmd, void __user *argp)
3026 {
3027 	int ret;
3028 	void *r = NULL;
3029 	struct in6_rtmsg r6;
3030 	struct rtentry r4;
3031 	char devname[16];
3032 	u32 rtdev;
3033 	mm_segment_t old_fs = get_fs();
3034 
3035 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3036 		struct in6_rtmsg32 __user *ur6 = argp;
3037 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3038 			3 * sizeof(struct in6_addr));
3039 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3040 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3041 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3042 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3043 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3044 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3045 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3046 
3047 		r = (void *) &r6;
3048 	} else { /* ipv4 */
3049 		struct rtentry32 __user *ur4 = argp;
3050 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3051 					3 * sizeof(struct sockaddr));
3052 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3053 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3054 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3055 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3056 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3057 		ret |= get_user(rtdev, &(ur4->rt_dev));
3058 		if (rtdev) {
3059 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3060 			r4.rt_dev = (char __user __force *)devname;
3061 			devname[15] = 0;
3062 		} else
3063 			r4.rt_dev = NULL;
3064 
3065 		r = (void *) &r4;
3066 	}
3067 
3068 	if (ret) {
3069 		ret = -EFAULT;
3070 		goto out;
3071 	}
3072 
3073 	set_fs(KERNEL_DS);
3074 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3075 	set_fs(old_fs);
3076 
3077 out:
3078 	return ret;
3079 }
3080 
3081 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3082  * for some operations; this forces use of the newer bridge-utils that
3083  * use compatible ioctls
3084  */
3085 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3086 {
3087 	compat_ulong_t tmp;
3088 
3089 	if (get_user(tmp, argp))
3090 		return -EFAULT;
3091 	if (tmp == BRCTL_GET_VERSION)
3092 		return BRCTL_VERSION + 1;
3093 	return -EINVAL;
3094 }
3095 
3096 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3097 			 unsigned int cmd, unsigned long arg)
3098 {
3099 	void __user *argp = compat_ptr(arg);
3100 	struct sock *sk = sock->sk;
3101 	struct net *net = sock_net(sk);
3102 
3103 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3104 		return compat_ifr_data_ioctl(net, cmd, argp);
3105 
3106 	switch (cmd) {
3107 	case SIOCSIFBR:
3108 	case SIOCGIFBR:
3109 		return old_bridge_ioctl(argp);
3110 	case SIOCGIFCONF:
3111 		return compat_dev_ifconf(net, argp);
3112 	case SIOCETHTOOL:
3113 		return ethtool_ioctl(net, argp);
3114 	case SIOCWANDEV:
3115 		return compat_siocwandev(net, argp);
3116 	case SIOCGIFMAP:
3117 	case SIOCSIFMAP:
3118 		return compat_sioc_ifmap(net, cmd, argp);
3119 	case SIOCADDRT:
3120 	case SIOCDELRT:
3121 		return routing_ioctl(net, sock, cmd, argp);
3122 	case SIOCGSTAMP:
3123 		return do_siocgstamp(net, sock, cmd, argp);
3124 	case SIOCGSTAMPNS:
3125 		return do_siocgstampns(net, sock, cmd, argp);
3126 	case SIOCBONDSLAVEINFOQUERY:
3127 	case SIOCBONDINFOQUERY:
3128 	case SIOCSHWTSTAMP:
3129 	case SIOCGHWTSTAMP:
3130 		return compat_ifr_data_ioctl(net, cmd, argp);
3131 
3132 	case FIOSETOWN:
3133 	case SIOCSPGRP:
3134 	case FIOGETOWN:
3135 	case SIOCGPGRP:
3136 	case SIOCBRADDBR:
3137 	case SIOCBRDELBR:
3138 	case SIOCGIFVLAN:
3139 	case SIOCSIFVLAN:
3140 	case SIOCADDDLCI:
3141 	case SIOCDELDLCI:
3142 	case SIOCGSKNS:
3143 		return sock_ioctl(file, cmd, arg);
3144 
3145 	case SIOCGIFFLAGS:
3146 	case SIOCSIFFLAGS:
3147 	case SIOCGIFMETRIC:
3148 	case SIOCSIFMETRIC:
3149 	case SIOCGIFMTU:
3150 	case SIOCSIFMTU:
3151 	case SIOCGIFMEM:
3152 	case SIOCSIFMEM:
3153 	case SIOCGIFHWADDR:
3154 	case SIOCSIFHWADDR:
3155 	case SIOCADDMULTI:
3156 	case SIOCDELMULTI:
3157 	case SIOCGIFINDEX:
3158 	case SIOCGIFADDR:
3159 	case SIOCSIFADDR:
3160 	case SIOCSIFHWBROADCAST:
3161 	case SIOCDIFADDR:
3162 	case SIOCGIFBRDADDR:
3163 	case SIOCSIFBRDADDR:
3164 	case SIOCGIFDSTADDR:
3165 	case SIOCSIFDSTADDR:
3166 	case SIOCGIFNETMASK:
3167 	case SIOCSIFNETMASK:
3168 	case SIOCSIFPFLAGS:
3169 	case SIOCGIFPFLAGS:
3170 	case SIOCGIFTXQLEN:
3171 	case SIOCSIFTXQLEN:
3172 	case SIOCBRADDIF:
3173 	case SIOCBRDELIF:
3174 	case SIOCSIFNAME:
3175 	case SIOCGMIIPHY:
3176 	case SIOCGMIIREG:
3177 	case SIOCSMIIREG:
3178 	case SIOCSARP:
3179 	case SIOCGARP:
3180 	case SIOCDARP:
3181 	case SIOCATMARK:
3182 	case SIOCBONDENSLAVE:
3183 	case SIOCBONDRELEASE:
3184 	case SIOCBONDSETHWADDR:
3185 	case SIOCBONDCHANGEACTIVE:
3186 	case SIOCGIFNAME:
3187 		return sock_do_ioctl(net, sock, cmd, arg);
3188 	}
3189 
3190 	return -ENOIOCTLCMD;
3191 }
3192 
3193 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3194 			      unsigned long arg)
3195 {
3196 	struct socket *sock = file->private_data;
3197 	int ret = -ENOIOCTLCMD;
3198 	struct sock *sk;
3199 	struct net *net;
3200 
3201 	sk = sock->sk;
3202 	net = sock_net(sk);
3203 
3204 	if (sock->ops->compat_ioctl)
3205 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3206 
3207 	if (ret == -ENOIOCTLCMD &&
3208 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3209 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3210 
3211 	if (ret == -ENOIOCTLCMD)
3212 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3213 
3214 	return ret;
3215 }
3216 #endif
3217 
3218 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3219 {
3220 	return sock->ops->bind(sock, addr, addrlen);
3221 }
3222 EXPORT_SYMBOL(kernel_bind);
3223 
3224 int kernel_listen(struct socket *sock, int backlog)
3225 {
3226 	return sock->ops->listen(sock, backlog);
3227 }
3228 EXPORT_SYMBOL(kernel_listen);
3229 
3230 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3231 {
3232 	struct sock *sk = sock->sk;
3233 	int err;
3234 
3235 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3236 			       newsock);
3237 	if (err < 0)
3238 		goto done;
3239 
3240 	err = sock->ops->accept(sock, *newsock, flags, true);
3241 	if (err < 0) {
3242 		sock_release(*newsock);
3243 		*newsock = NULL;
3244 		goto done;
3245 	}
3246 
3247 	(*newsock)->ops = sock->ops;
3248 	__module_get((*newsock)->ops->owner);
3249 
3250 done:
3251 	return err;
3252 }
3253 EXPORT_SYMBOL(kernel_accept);
3254 
3255 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3256 		   int flags)
3257 {
3258 	return sock->ops->connect(sock, addr, addrlen, flags);
3259 }
3260 EXPORT_SYMBOL(kernel_connect);
3261 
3262 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3263 			 int *addrlen)
3264 {
3265 	return sock->ops->getname(sock, addr, addrlen, 0);
3266 }
3267 EXPORT_SYMBOL(kernel_getsockname);
3268 
3269 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3270 			 int *addrlen)
3271 {
3272 	return sock->ops->getname(sock, addr, addrlen, 1);
3273 }
3274 EXPORT_SYMBOL(kernel_getpeername);
3275 
3276 int kernel_getsockopt(struct socket *sock, int level, int optname,
3277 			char *optval, int *optlen)
3278 {
3279 	mm_segment_t oldfs = get_fs();
3280 	char __user *uoptval;
3281 	int __user *uoptlen;
3282 	int err;
3283 
3284 	uoptval = (char __user __force *) optval;
3285 	uoptlen = (int __user __force *) optlen;
3286 
3287 	set_fs(KERNEL_DS);
3288 	if (level == SOL_SOCKET)
3289 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3290 	else
3291 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3292 					    uoptlen);
3293 	set_fs(oldfs);
3294 	return err;
3295 }
3296 EXPORT_SYMBOL(kernel_getsockopt);
3297 
3298 int kernel_setsockopt(struct socket *sock, int level, int optname,
3299 			char *optval, unsigned int optlen)
3300 {
3301 	mm_segment_t oldfs = get_fs();
3302 	char __user *uoptval;
3303 	int err;
3304 
3305 	uoptval = (char __user __force *) optval;
3306 
3307 	set_fs(KERNEL_DS);
3308 	if (level == SOL_SOCKET)
3309 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3310 	else
3311 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3312 					    optlen);
3313 	set_fs(oldfs);
3314 	return err;
3315 }
3316 EXPORT_SYMBOL(kernel_setsockopt);
3317 
3318 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3319 		    size_t size, int flags)
3320 {
3321 	if (sock->ops->sendpage)
3322 		return sock->ops->sendpage(sock, page, offset, size, flags);
3323 
3324 	return sock_no_sendpage(sock, page, offset, size, flags);
3325 }
3326 EXPORT_SYMBOL(kernel_sendpage);
3327 
3328 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3329 			   size_t size, int flags)
3330 {
3331 	struct socket *sock = sk->sk_socket;
3332 
3333 	if (sock->ops->sendpage_locked)
3334 		return sock->ops->sendpage_locked(sk, page, offset, size,
3335 						  flags);
3336 
3337 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3338 }
3339 EXPORT_SYMBOL(kernel_sendpage_locked);
3340 
3341 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3342 {
3343 	return sock->ops->shutdown(sock, how);
3344 }
3345 EXPORT_SYMBOL(kernel_sock_shutdown);
3346 
3347 /* This routine returns the IP overhead imposed by a socket i.e.
3348  * the length of the underlying IP header, depending on whether
3349  * this is an IPv4 or IPv6 socket and the length from IP options turned
3350  * on at the socket. Assumes that the caller has a lock on the socket.
3351  */
3352 u32 kernel_sock_ip_overhead(struct sock *sk)
3353 {
3354 	struct inet_sock *inet;
3355 	struct ip_options_rcu *opt;
3356 	u32 overhead = 0;
3357 #if IS_ENABLED(CONFIG_IPV6)
3358 	struct ipv6_pinfo *np;
3359 	struct ipv6_txoptions *optv6 = NULL;
3360 #endif /* IS_ENABLED(CONFIG_IPV6) */
3361 
3362 	if (!sk)
3363 		return overhead;
3364 
3365 	switch (sk->sk_family) {
3366 	case AF_INET:
3367 		inet = inet_sk(sk);
3368 		overhead += sizeof(struct iphdr);
3369 		opt = rcu_dereference_protected(inet->inet_opt,
3370 						sock_owned_by_user(sk));
3371 		if (opt)
3372 			overhead += opt->opt.optlen;
3373 		return overhead;
3374 #if IS_ENABLED(CONFIG_IPV6)
3375 	case AF_INET6:
3376 		np = inet6_sk(sk);
3377 		overhead += sizeof(struct ipv6hdr);
3378 		if (np)
3379 			optv6 = rcu_dereference_protected(np->opt,
3380 							  sock_owned_by_user(sk));
3381 		if (optv6)
3382 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3383 		return overhead;
3384 #endif /* IS_ENABLED(CONFIG_IPV6) */
3385 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3386 		return overhead;
3387 	}
3388 }
3389 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3390