1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __read_mostly; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .destroy_inode = sock_destroy_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct dentry *dentry, struct inode *inode, 338 const char *suffix, const void *value, 339 size_t size, int flags) 340 { 341 /* Handled by LSM. */ 342 return -EAGAIN; 343 } 344 345 static const struct xattr_handler sockfs_security_xattr_handler = { 346 .prefix = XATTR_SECURITY_PREFIX, 347 .set = sockfs_security_xattr_set, 348 }; 349 350 static const struct xattr_handler *sockfs_xattr_handlers[] = { 351 &sockfs_xattr_handler, 352 &sockfs_security_xattr_handler, 353 NULL 354 }; 355 356 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 357 int flags, const char *dev_name, void *data) 358 { 359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 360 sockfs_xattr_handlers, 361 &sockfs_dentry_operations, SOCKFS_MAGIC); 362 } 363 364 static struct vfsmount *sock_mnt __read_mostly; 365 366 static struct file_system_type sock_fs_type = { 367 .name = "sockfs", 368 .mount = sockfs_mount, 369 .kill_sb = kill_anon_super, 370 }; 371 372 /* 373 * Obtains the first available file descriptor and sets it up for use. 374 * 375 * These functions create file structures and maps them to fd space 376 * of the current process. On success it returns file descriptor 377 * and file struct implicitly stored in sock->file. 378 * Note that another thread may close file descriptor before we return 379 * from this function. We use the fact that now we do not refer 380 * to socket after mapping. If one day we will need it, this 381 * function will increment ref. count on file by 1. 382 * 383 * In any case returned fd MAY BE not valid! 384 * This race condition is unavoidable 385 * with shared fd spaces, we cannot solve it inside kernel, 386 * but we take care of internal coherence yet. 387 */ 388 389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 390 { 391 struct qstr name = { .name = "" }; 392 struct path path; 393 struct file *file; 394 395 if (dname) { 396 name.name = dname; 397 name.len = strlen(name.name); 398 } else if (sock->sk) { 399 name.name = sock->sk->sk_prot_creator->name; 400 name.len = strlen(name.name); 401 } 402 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 403 if (unlikely(!path.dentry)) { 404 sock_release(sock); 405 return ERR_PTR(-ENOMEM); 406 } 407 path.mnt = mntget(sock_mnt); 408 409 d_instantiate(path.dentry, SOCK_INODE(sock)); 410 411 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 412 &socket_file_ops); 413 if (IS_ERR(file)) { 414 /* drop dentry, keep inode for a bit */ 415 ihold(d_inode(path.dentry)); 416 path_put(&path); 417 /* ... and now kill it properly */ 418 sock_release(sock); 419 return file; 420 } 421 422 sock->file = file; 423 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 424 file->private_data = sock; 425 return file; 426 } 427 EXPORT_SYMBOL(sock_alloc_file); 428 429 static int sock_map_fd(struct socket *sock, int flags) 430 { 431 struct file *newfile; 432 int fd = get_unused_fd_flags(flags); 433 if (unlikely(fd < 0)) { 434 sock_release(sock); 435 return fd; 436 } 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 inode->i_ino = get_next_ino(); 572 inode->i_mode = S_IFSOCK | S_IRWXUGO; 573 inode->i_uid = current_fsuid(); 574 inode->i_gid = current_fsgid(); 575 inode->i_op = &sockfs_inode_ops; 576 577 return sock; 578 } 579 EXPORT_SYMBOL(sock_alloc); 580 581 /** 582 * sock_release - close a socket 583 * @sock: socket to close 584 * 585 * The socket is released from the protocol stack if it has a release 586 * callback, and the inode is then released if the socket is bound to 587 * an inode not a file. 588 */ 589 590 void sock_release(struct socket *sock) 591 { 592 if (sock->ops) { 593 struct module *owner = sock->ops->owner; 594 595 sock->ops->release(sock); 596 sock->ops = NULL; 597 module_put(owner); 598 } 599 600 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 601 pr_err("%s: fasync list not empty!\n", __func__); 602 603 if (!sock->file) { 604 iput(SOCK_INODE(sock)); 605 return; 606 } 607 sock->file = NULL; 608 } 609 EXPORT_SYMBOL(sock_release); 610 611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 612 { 613 u8 flags = *tx_flags; 614 615 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 616 flags |= SKBTX_HW_TSTAMP; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 619 flags |= SKBTX_SW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 622 flags |= SKBTX_SCHED_TSTAMP; 623 624 *tx_flags = flags; 625 } 626 EXPORT_SYMBOL(__sock_tx_timestamp); 627 628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 629 { 630 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 631 BUG_ON(ret == -EIOCBQUEUED); 632 return ret; 633 } 634 635 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 636 { 637 int err = security_socket_sendmsg(sock, msg, 638 msg_data_left(msg)); 639 640 return err ?: sock_sendmsg_nosec(sock, msg); 641 } 642 EXPORT_SYMBOL(sock_sendmsg); 643 644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 645 struct kvec *vec, size_t num, size_t size) 646 { 647 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 648 return sock_sendmsg(sock, msg); 649 } 650 EXPORT_SYMBOL(kernel_sendmsg); 651 652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 653 struct kvec *vec, size_t num, size_t size) 654 { 655 struct socket *sock = sk->sk_socket; 656 657 if (!sock->ops->sendmsg_locked) 658 return sock_no_sendmsg_locked(sk, msg, size); 659 660 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 661 662 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 663 } 664 EXPORT_SYMBOL(kernel_sendmsg_locked); 665 666 static bool skb_is_err_queue(const struct sk_buff *skb) 667 { 668 /* pkt_type of skbs enqueued on the error queue are set to 669 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 670 * in recvmsg, since skbs received on a local socket will never 671 * have a pkt_type of PACKET_OUTGOING. 672 */ 673 return skb->pkt_type == PACKET_OUTGOING; 674 } 675 676 /* On transmit, software and hardware timestamps are returned independently. 677 * As the two skb clones share the hardware timestamp, which may be updated 678 * before the software timestamp is received, a hardware TX timestamp may be 679 * returned only if there is no software TX timestamp. Ignore false software 680 * timestamps, which may be made in the __sock_recv_timestamp() call when the 681 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 682 * hardware timestamp. 683 */ 684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 685 { 686 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 687 } 688 689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 690 { 691 struct scm_ts_pktinfo ts_pktinfo; 692 struct net_device *orig_dev; 693 694 if (!skb_mac_header_was_set(skb)) 695 return; 696 697 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 698 699 rcu_read_lock(); 700 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 701 if (orig_dev) 702 ts_pktinfo.if_index = orig_dev->ifindex; 703 rcu_read_unlock(); 704 705 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 706 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 707 sizeof(ts_pktinfo), &ts_pktinfo); 708 } 709 710 /* 711 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 712 */ 713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 714 struct sk_buff *skb) 715 { 716 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 717 struct scm_timestamping tss; 718 int empty = 1, false_tstamp = 0; 719 struct skb_shared_hwtstamps *shhwtstamps = 720 skb_hwtstamps(skb); 721 722 /* Race occurred between timestamp enabling and packet 723 receiving. Fill in the current time for now. */ 724 if (need_software_tstamp && skb->tstamp == 0) { 725 __net_timestamp(skb); 726 false_tstamp = 1; 727 } 728 729 if (need_software_tstamp) { 730 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 731 struct timeval tv; 732 skb_get_timestamp(skb, &tv); 733 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 734 sizeof(tv), &tv); 735 } else { 736 struct timespec ts; 737 skb_get_timestampns(skb, &ts); 738 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 739 sizeof(ts), &ts); 740 } 741 } 742 743 memset(&tss, 0, sizeof(tss)); 744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 745 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 746 empty = 0; 747 if (shhwtstamps && 748 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 749 !skb_is_swtx_tstamp(skb, false_tstamp) && 750 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 751 empty = 0; 752 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 753 !skb_is_err_queue(skb)) 754 put_ts_pktinfo(msg, skb); 755 } 756 if (!empty) { 757 put_cmsg(msg, SOL_SOCKET, 758 SCM_TIMESTAMPING, sizeof(tss), &tss); 759 760 if (skb_is_err_queue(skb) && skb->len && 761 SKB_EXT_ERR(skb)->opt_stats) 762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 763 skb->len, skb->data); 764 } 765 } 766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 767 768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 769 struct sk_buff *skb) 770 { 771 int ack; 772 773 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 774 return; 775 if (!skb->wifi_acked_valid) 776 return; 777 778 ack = skb->wifi_acked; 779 780 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 781 } 782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 783 784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 785 struct sk_buff *skb) 786 { 787 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 788 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 789 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 790 } 791 792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 793 struct sk_buff *skb) 794 { 795 sock_recv_timestamp(msg, sk, skb); 796 sock_recv_drops(msg, sk, skb); 797 } 798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 799 800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 801 int flags) 802 { 803 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 804 } 805 806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 807 { 808 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 809 810 return err ?: sock_recvmsg_nosec(sock, msg, flags); 811 } 812 EXPORT_SYMBOL(sock_recvmsg); 813 814 /** 815 * kernel_recvmsg - Receive a message from a socket (kernel space) 816 * @sock: The socket to receive the message from 817 * @msg: Received message 818 * @vec: Input s/g array for message data 819 * @num: Size of input s/g array 820 * @size: Number of bytes to read 821 * @flags: Message flags (MSG_DONTWAIT, etc...) 822 * 823 * On return the msg structure contains the scatter/gather array passed in the 824 * vec argument. The array is modified so that it consists of the unfilled 825 * portion of the original array. 826 * 827 * The returned value is the total number of bytes received, or an error. 828 */ 829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 830 struct kvec *vec, size_t num, size_t size, int flags) 831 { 832 mm_segment_t oldfs = get_fs(); 833 int result; 834 835 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 836 set_fs(KERNEL_DS); 837 result = sock_recvmsg(sock, msg, flags); 838 set_fs(oldfs); 839 return result; 840 } 841 EXPORT_SYMBOL(kernel_recvmsg); 842 843 static ssize_t sock_sendpage(struct file *file, struct page *page, 844 int offset, size_t size, loff_t *ppos, int more) 845 { 846 struct socket *sock; 847 int flags; 848 849 sock = file->private_data; 850 851 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 852 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 853 flags |= more; 854 855 return kernel_sendpage(sock, page, offset, size, flags); 856 } 857 858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 859 struct pipe_inode_info *pipe, size_t len, 860 unsigned int flags) 861 { 862 struct socket *sock = file->private_data; 863 864 if (unlikely(!sock->ops->splice_read)) 865 return -EINVAL; 866 867 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 868 } 869 870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 871 { 872 struct file *file = iocb->ki_filp; 873 struct socket *sock = file->private_data; 874 struct msghdr msg = {.msg_iter = *to, 875 .msg_iocb = iocb}; 876 ssize_t res; 877 878 if (file->f_flags & O_NONBLOCK) 879 msg.msg_flags = MSG_DONTWAIT; 880 881 if (iocb->ki_pos != 0) 882 return -ESPIPE; 883 884 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 885 return 0; 886 887 res = sock_recvmsg(sock, &msg, msg.msg_flags); 888 *to = msg.msg_iter; 889 return res; 890 } 891 892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 893 { 894 struct file *file = iocb->ki_filp; 895 struct socket *sock = file->private_data; 896 struct msghdr msg = {.msg_iter = *from, 897 .msg_iocb = iocb}; 898 ssize_t res; 899 900 if (iocb->ki_pos != 0) 901 return -ESPIPE; 902 903 if (file->f_flags & O_NONBLOCK) 904 msg.msg_flags = MSG_DONTWAIT; 905 906 if (sock->type == SOCK_SEQPACKET) 907 msg.msg_flags |= MSG_EOR; 908 909 res = sock_sendmsg(sock, &msg); 910 *from = msg.msg_iter; 911 return res; 912 } 913 914 /* 915 * Atomic setting of ioctl hooks to avoid race 916 * with module unload. 917 */ 918 919 static DEFINE_MUTEX(br_ioctl_mutex); 920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 921 922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 923 { 924 mutex_lock(&br_ioctl_mutex); 925 br_ioctl_hook = hook; 926 mutex_unlock(&br_ioctl_mutex); 927 } 928 EXPORT_SYMBOL(brioctl_set); 929 930 static DEFINE_MUTEX(vlan_ioctl_mutex); 931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 932 933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 934 { 935 mutex_lock(&vlan_ioctl_mutex); 936 vlan_ioctl_hook = hook; 937 mutex_unlock(&vlan_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(vlan_ioctl_set); 940 941 static DEFINE_MUTEX(dlci_ioctl_mutex); 942 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 943 944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 945 { 946 mutex_lock(&dlci_ioctl_mutex); 947 dlci_ioctl_hook = hook; 948 mutex_unlock(&dlci_ioctl_mutex); 949 } 950 EXPORT_SYMBOL(dlci_ioctl_set); 951 952 static long sock_do_ioctl(struct net *net, struct socket *sock, 953 unsigned int cmd, unsigned long arg) 954 { 955 int err; 956 void __user *argp = (void __user *)arg; 957 958 err = sock->ops->ioctl(sock, cmd, arg); 959 960 /* 961 * If this ioctl is unknown try to hand it down 962 * to the NIC driver. 963 */ 964 if (err != -ENOIOCTLCMD) 965 return err; 966 967 if (cmd == SIOCGIFCONF) { 968 struct ifconf ifc; 969 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 970 return -EFAULT; 971 rtnl_lock(); 972 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 973 rtnl_unlock(); 974 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 975 err = -EFAULT; 976 } else { 977 struct ifreq ifr; 978 bool need_copyout; 979 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 980 return -EFAULT; 981 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 982 if (!err && need_copyout) 983 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 984 return -EFAULT; 985 } 986 return err; 987 } 988 989 /* 990 * With an ioctl, arg may well be a user mode pointer, but we don't know 991 * what to do with it - that's up to the protocol still. 992 */ 993 994 static struct ns_common *get_net_ns(struct ns_common *ns) 995 { 996 return &get_net(container_of(ns, struct net, ns))->ns; 997 } 998 999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1000 { 1001 struct socket *sock; 1002 struct sock *sk; 1003 void __user *argp = (void __user *)arg; 1004 int pid, err; 1005 struct net *net; 1006 1007 sock = file->private_data; 1008 sk = sock->sk; 1009 net = sock_net(sk); 1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1011 struct ifreq ifr; 1012 bool need_copyout; 1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1014 return -EFAULT; 1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1016 if (!err && need_copyout) 1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1018 return -EFAULT; 1019 } else 1020 #ifdef CONFIG_WEXT_CORE 1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1022 err = wext_handle_ioctl(net, cmd, argp); 1023 } else 1024 #endif 1025 switch (cmd) { 1026 case FIOSETOWN: 1027 case SIOCSPGRP: 1028 err = -EFAULT; 1029 if (get_user(pid, (int __user *)argp)) 1030 break; 1031 err = f_setown(sock->file, pid, 1); 1032 break; 1033 case FIOGETOWN: 1034 case SIOCGPGRP: 1035 err = put_user(f_getown(sock->file), 1036 (int __user *)argp); 1037 break; 1038 case SIOCGIFBR: 1039 case SIOCSIFBR: 1040 case SIOCBRADDBR: 1041 case SIOCBRDELBR: 1042 err = -ENOPKG; 1043 if (!br_ioctl_hook) 1044 request_module("bridge"); 1045 1046 mutex_lock(&br_ioctl_mutex); 1047 if (br_ioctl_hook) 1048 err = br_ioctl_hook(net, cmd, argp); 1049 mutex_unlock(&br_ioctl_mutex); 1050 break; 1051 case SIOCGIFVLAN: 1052 case SIOCSIFVLAN: 1053 err = -ENOPKG; 1054 if (!vlan_ioctl_hook) 1055 request_module("8021q"); 1056 1057 mutex_lock(&vlan_ioctl_mutex); 1058 if (vlan_ioctl_hook) 1059 err = vlan_ioctl_hook(net, argp); 1060 mutex_unlock(&vlan_ioctl_mutex); 1061 break; 1062 case SIOCADDDLCI: 1063 case SIOCDELDLCI: 1064 err = -ENOPKG; 1065 if (!dlci_ioctl_hook) 1066 request_module("dlci"); 1067 1068 mutex_lock(&dlci_ioctl_mutex); 1069 if (dlci_ioctl_hook) 1070 err = dlci_ioctl_hook(cmd, argp); 1071 mutex_unlock(&dlci_ioctl_mutex); 1072 break; 1073 case SIOCGSKNS: 1074 err = -EPERM; 1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1076 break; 1077 1078 err = open_related_ns(&net->ns, get_net_ns); 1079 break; 1080 default: 1081 err = sock_do_ioctl(net, sock, cmd, arg); 1082 break; 1083 } 1084 return err; 1085 } 1086 1087 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1088 { 1089 int err; 1090 struct socket *sock = NULL; 1091 1092 err = security_socket_create(family, type, protocol, 1); 1093 if (err) 1094 goto out; 1095 1096 sock = sock_alloc(); 1097 if (!sock) { 1098 err = -ENOMEM; 1099 goto out; 1100 } 1101 1102 sock->type = type; 1103 err = security_socket_post_create(sock, family, type, protocol, 1); 1104 if (err) 1105 goto out_release; 1106 1107 out: 1108 *res = sock; 1109 return err; 1110 out_release: 1111 sock_release(sock); 1112 sock = NULL; 1113 goto out; 1114 } 1115 EXPORT_SYMBOL(sock_create_lite); 1116 1117 /* No kernel lock held - perfect */ 1118 static __poll_t sock_poll(struct file *file, poll_table *wait) 1119 { 1120 __poll_t busy_flag = 0; 1121 struct socket *sock; 1122 1123 /* 1124 * We can't return errors to poll, so it's either yes or no. 1125 */ 1126 sock = file->private_data; 1127 1128 if (sk_can_busy_loop(sock->sk)) { 1129 /* this socket can poll_ll so tell the system call */ 1130 busy_flag = POLL_BUSY_LOOP; 1131 1132 /* once, only if requested by syscall */ 1133 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1134 sk_busy_loop(sock->sk, 1); 1135 } 1136 1137 return busy_flag | sock->ops->poll(file, sock, wait); 1138 } 1139 1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1141 { 1142 struct socket *sock = file->private_data; 1143 1144 return sock->ops->mmap(file, sock, vma); 1145 } 1146 1147 static int sock_close(struct inode *inode, struct file *filp) 1148 { 1149 sock_release(SOCKET_I(inode)); 1150 return 0; 1151 } 1152 1153 /* 1154 * Update the socket async list 1155 * 1156 * Fasync_list locking strategy. 1157 * 1158 * 1. fasync_list is modified only under process context socket lock 1159 * i.e. under semaphore. 1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1161 * or under socket lock 1162 */ 1163 1164 static int sock_fasync(int fd, struct file *filp, int on) 1165 { 1166 struct socket *sock = filp->private_data; 1167 struct sock *sk = sock->sk; 1168 struct socket_wq *wq; 1169 1170 if (sk == NULL) 1171 return -EINVAL; 1172 1173 lock_sock(sk); 1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1175 fasync_helper(fd, filp, on, &wq->fasync_list); 1176 1177 if (!wq->fasync_list) 1178 sock_reset_flag(sk, SOCK_FASYNC); 1179 else 1180 sock_set_flag(sk, SOCK_FASYNC); 1181 1182 release_sock(sk); 1183 return 0; 1184 } 1185 1186 /* This function may be called only under rcu_lock */ 1187 1188 int sock_wake_async(struct socket_wq *wq, int how, int band) 1189 { 1190 if (!wq || !wq->fasync_list) 1191 return -1; 1192 1193 switch (how) { 1194 case SOCK_WAKE_WAITD: 1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1196 break; 1197 goto call_kill; 1198 case SOCK_WAKE_SPACE: 1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1200 break; 1201 /* fall through */ 1202 case SOCK_WAKE_IO: 1203 call_kill: 1204 kill_fasync(&wq->fasync_list, SIGIO, band); 1205 break; 1206 case SOCK_WAKE_URG: 1207 kill_fasync(&wq->fasync_list, SIGURG, band); 1208 } 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL(sock_wake_async); 1213 1214 int __sock_create(struct net *net, int family, int type, int protocol, 1215 struct socket **res, int kern) 1216 { 1217 int err; 1218 struct socket *sock; 1219 const struct net_proto_family *pf; 1220 1221 /* 1222 * Check protocol is in range 1223 */ 1224 if (family < 0 || family >= NPROTO) 1225 return -EAFNOSUPPORT; 1226 if (type < 0 || type >= SOCK_MAX) 1227 return -EINVAL; 1228 1229 /* Compatibility. 1230 1231 This uglymoron is moved from INET layer to here to avoid 1232 deadlock in module load. 1233 */ 1234 if (family == PF_INET && type == SOCK_PACKET) { 1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1236 current->comm); 1237 family = PF_PACKET; 1238 } 1239 1240 err = security_socket_create(family, type, protocol, kern); 1241 if (err) 1242 return err; 1243 1244 /* 1245 * Allocate the socket and allow the family to set things up. if 1246 * the protocol is 0, the family is instructed to select an appropriate 1247 * default. 1248 */ 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 net_warn_ratelimited("socket: no more sockets\n"); 1252 return -ENFILE; /* Not exactly a match, but its the 1253 closest posix thing */ 1254 } 1255 1256 sock->type = type; 1257 1258 #ifdef CONFIG_MODULES 1259 /* Attempt to load a protocol module if the find failed. 1260 * 1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1262 * requested real, full-featured networking support upon configuration. 1263 * Otherwise module support will break! 1264 */ 1265 if (rcu_access_pointer(net_families[family]) == NULL) 1266 request_module("net-pf-%d", family); 1267 #endif 1268 1269 rcu_read_lock(); 1270 pf = rcu_dereference(net_families[family]); 1271 err = -EAFNOSUPPORT; 1272 if (!pf) 1273 goto out_release; 1274 1275 /* 1276 * We will call the ->create function, that possibly is in a loadable 1277 * module, so we have to bump that loadable module refcnt first. 1278 */ 1279 if (!try_module_get(pf->owner)) 1280 goto out_release; 1281 1282 /* Now protected by module ref count */ 1283 rcu_read_unlock(); 1284 1285 err = pf->create(net, sock, protocol, kern); 1286 if (err < 0) 1287 goto out_module_put; 1288 1289 /* 1290 * Now to bump the refcnt of the [loadable] module that owns this 1291 * socket at sock_release time we decrement its refcnt. 1292 */ 1293 if (!try_module_get(sock->ops->owner)) 1294 goto out_module_busy; 1295 1296 /* 1297 * Now that we're done with the ->create function, the [loadable] 1298 * module can have its refcnt decremented 1299 */ 1300 module_put(pf->owner); 1301 err = security_socket_post_create(sock, family, type, protocol, kern); 1302 if (err) 1303 goto out_sock_release; 1304 *res = sock; 1305 1306 return 0; 1307 1308 out_module_busy: 1309 err = -EAFNOSUPPORT; 1310 out_module_put: 1311 sock->ops = NULL; 1312 module_put(pf->owner); 1313 out_sock_release: 1314 sock_release(sock); 1315 return err; 1316 1317 out_release: 1318 rcu_read_unlock(); 1319 goto out_sock_release; 1320 } 1321 EXPORT_SYMBOL(__sock_create); 1322 1323 int sock_create(int family, int type, int protocol, struct socket **res) 1324 { 1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1326 } 1327 EXPORT_SYMBOL(sock_create); 1328 1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1330 { 1331 return __sock_create(net, family, type, protocol, res, 1); 1332 } 1333 EXPORT_SYMBOL(sock_create_kern); 1334 1335 int __sys_socket(int family, int type, int protocol) 1336 { 1337 int retval; 1338 struct socket *sock; 1339 int flags; 1340 1341 /* Check the SOCK_* constants for consistency. */ 1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 retval = sock_create(family, type, protocol, &sock); 1356 if (retval < 0) 1357 return retval; 1358 1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1360 } 1361 1362 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1363 { 1364 return __sys_socket(family, type, protocol); 1365 } 1366 1367 /* 1368 * Create a pair of connected sockets. 1369 */ 1370 1371 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1372 { 1373 struct socket *sock1, *sock2; 1374 int fd1, fd2, err; 1375 struct file *newfile1, *newfile2; 1376 int flags; 1377 1378 flags = type & ~SOCK_TYPE_MASK; 1379 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1380 return -EINVAL; 1381 type &= SOCK_TYPE_MASK; 1382 1383 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1384 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1385 1386 /* 1387 * reserve descriptors and make sure we won't fail 1388 * to return them to userland. 1389 */ 1390 fd1 = get_unused_fd_flags(flags); 1391 if (unlikely(fd1 < 0)) 1392 return fd1; 1393 1394 fd2 = get_unused_fd_flags(flags); 1395 if (unlikely(fd2 < 0)) { 1396 put_unused_fd(fd1); 1397 return fd2; 1398 } 1399 1400 err = put_user(fd1, &usockvec[0]); 1401 if (err) 1402 goto out; 1403 1404 err = put_user(fd2, &usockvec[1]); 1405 if (err) 1406 goto out; 1407 1408 /* 1409 * Obtain the first socket and check if the underlying protocol 1410 * supports the socketpair call. 1411 */ 1412 1413 err = sock_create(family, type, protocol, &sock1); 1414 if (unlikely(err < 0)) 1415 goto out; 1416 1417 err = sock_create(family, type, protocol, &sock2); 1418 if (unlikely(err < 0)) { 1419 sock_release(sock1); 1420 goto out; 1421 } 1422 1423 err = sock1->ops->socketpair(sock1, sock2); 1424 if (unlikely(err < 0)) { 1425 sock_release(sock2); 1426 sock_release(sock1); 1427 goto out; 1428 } 1429 1430 newfile1 = sock_alloc_file(sock1, flags, NULL); 1431 if (IS_ERR(newfile1)) { 1432 err = PTR_ERR(newfile1); 1433 sock_release(sock2); 1434 goto out; 1435 } 1436 1437 newfile2 = sock_alloc_file(sock2, flags, NULL); 1438 if (IS_ERR(newfile2)) { 1439 err = PTR_ERR(newfile2); 1440 fput(newfile1); 1441 goto out; 1442 } 1443 1444 audit_fd_pair(fd1, fd2); 1445 1446 fd_install(fd1, newfile1); 1447 fd_install(fd2, newfile2); 1448 return 0; 1449 1450 out: 1451 put_unused_fd(fd2); 1452 put_unused_fd(fd1); 1453 return err; 1454 } 1455 1456 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1457 int __user *, usockvec) 1458 { 1459 return __sys_socketpair(family, type, protocol, usockvec); 1460 } 1461 1462 /* 1463 * Bind a name to a socket. Nothing much to do here since it's 1464 * the protocol's responsibility to handle the local address. 1465 * 1466 * We move the socket address to kernel space before we call 1467 * the protocol layer (having also checked the address is ok). 1468 */ 1469 1470 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1471 { 1472 struct socket *sock; 1473 struct sockaddr_storage address; 1474 int err, fput_needed; 1475 1476 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1477 if (sock) { 1478 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1479 if (err >= 0) { 1480 err = security_socket_bind(sock, 1481 (struct sockaddr *)&address, 1482 addrlen); 1483 if (!err) 1484 err = sock->ops->bind(sock, 1485 (struct sockaddr *) 1486 &address, addrlen); 1487 } 1488 fput_light(sock->file, fput_needed); 1489 } 1490 return err; 1491 } 1492 1493 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1494 { 1495 return __sys_bind(fd, umyaddr, addrlen); 1496 } 1497 1498 /* 1499 * Perform a listen. Basically, we allow the protocol to do anything 1500 * necessary for a listen, and if that works, we mark the socket as 1501 * ready for listening. 1502 */ 1503 1504 int __sys_listen(int fd, int backlog) 1505 { 1506 struct socket *sock; 1507 int err, fput_needed; 1508 int somaxconn; 1509 1510 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1511 if (sock) { 1512 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1513 if ((unsigned int)backlog > somaxconn) 1514 backlog = somaxconn; 1515 1516 err = security_socket_listen(sock, backlog); 1517 if (!err) 1518 err = sock->ops->listen(sock, backlog); 1519 1520 fput_light(sock->file, fput_needed); 1521 } 1522 return err; 1523 } 1524 1525 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1526 { 1527 return __sys_listen(fd, backlog); 1528 } 1529 1530 /* 1531 * For accept, we attempt to create a new socket, set up the link 1532 * with the client, wake up the client, then return the new 1533 * connected fd. We collect the address of the connector in kernel 1534 * space and move it to user at the very end. This is unclean because 1535 * we open the socket then return an error. 1536 * 1537 * 1003.1g adds the ability to recvmsg() to query connection pending 1538 * status to recvmsg. We need to add that support in a way thats 1539 * clean when we restucture accept also. 1540 */ 1541 1542 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1543 int __user *upeer_addrlen, int flags) 1544 { 1545 struct socket *sock, *newsock; 1546 struct file *newfile; 1547 int err, len, newfd, fput_needed; 1548 struct sockaddr_storage address; 1549 1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1551 return -EINVAL; 1552 1553 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1554 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (!sock) 1558 goto out; 1559 1560 err = -ENFILE; 1561 newsock = sock_alloc(); 1562 if (!newsock) 1563 goto out_put; 1564 1565 newsock->type = sock->type; 1566 newsock->ops = sock->ops; 1567 1568 /* 1569 * We don't need try_module_get here, as the listening socket (sock) 1570 * has the protocol module (sock->ops->owner) held. 1571 */ 1572 __module_get(newsock->ops->owner); 1573 1574 newfd = get_unused_fd_flags(flags); 1575 if (unlikely(newfd < 0)) { 1576 err = newfd; 1577 sock_release(newsock); 1578 goto out_put; 1579 } 1580 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1581 if (IS_ERR(newfile)) { 1582 err = PTR_ERR(newfile); 1583 put_unused_fd(newfd); 1584 goto out_put; 1585 } 1586 1587 err = security_socket_accept(sock, newsock); 1588 if (err) 1589 goto out_fd; 1590 1591 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1592 if (err < 0) 1593 goto out_fd; 1594 1595 if (upeer_sockaddr) { 1596 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1597 &len, 2) < 0) { 1598 err = -ECONNABORTED; 1599 goto out_fd; 1600 } 1601 err = move_addr_to_user(&address, 1602 len, upeer_sockaddr, upeer_addrlen); 1603 if (err < 0) 1604 goto out_fd; 1605 } 1606 1607 /* File flags are not inherited via accept() unlike another OSes. */ 1608 1609 fd_install(newfd, newfile); 1610 err = newfd; 1611 1612 out_put: 1613 fput_light(sock->file, fput_needed); 1614 out: 1615 return err; 1616 out_fd: 1617 fput(newfile); 1618 put_unused_fd(newfd); 1619 goto out_put; 1620 } 1621 1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1623 int __user *, upeer_addrlen, int, flags) 1624 { 1625 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1626 } 1627 1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1629 int __user *, upeer_addrlen) 1630 { 1631 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1632 } 1633 1634 /* 1635 * Attempt to connect to a socket with the server address. The address 1636 * is in user space so we verify it is OK and move it to kernel space. 1637 * 1638 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1639 * break bindings 1640 * 1641 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1642 * other SEQPACKET protocols that take time to connect() as it doesn't 1643 * include the -EINPROGRESS status for such sockets. 1644 */ 1645 1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1647 { 1648 struct socket *sock; 1649 struct sockaddr_storage address; 1650 int err, fput_needed; 1651 1652 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1653 if (!sock) 1654 goto out; 1655 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1656 if (err < 0) 1657 goto out_put; 1658 1659 err = 1660 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1661 if (err) 1662 goto out_put; 1663 1664 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1665 sock->file->f_flags); 1666 out_put: 1667 fput_light(sock->file, fput_needed); 1668 out: 1669 return err; 1670 } 1671 1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1673 int, addrlen) 1674 { 1675 return __sys_connect(fd, uservaddr, addrlen); 1676 } 1677 1678 /* 1679 * Get the local address ('name') of a socket object. Move the obtained 1680 * name to user space. 1681 */ 1682 1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1684 int __user *usockaddr_len) 1685 { 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int len, err, fput_needed; 1689 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (!sock) 1692 goto out; 1693 1694 err = security_socket_getsockname(sock); 1695 if (err) 1696 goto out_put; 1697 1698 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1699 if (err) 1700 goto out_put; 1701 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1702 1703 out_put: 1704 fput_light(sock->file, fput_needed); 1705 out: 1706 return err; 1707 } 1708 1709 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1710 int __user *, usockaddr_len) 1711 { 1712 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1713 } 1714 1715 /* 1716 * Get the remote address ('name') of a socket object. Move the obtained 1717 * name to user space. 1718 */ 1719 1720 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1721 int __user *usockaddr_len) 1722 { 1723 struct socket *sock; 1724 struct sockaddr_storage address; 1725 int len, err, fput_needed; 1726 1727 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1728 if (sock != NULL) { 1729 err = security_socket_getpeername(sock); 1730 if (err) { 1731 fput_light(sock->file, fput_needed); 1732 return err; 1733 } 1734 1735 err = 1736 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1737 1); 1738 if (!err) 1739 err = move_addr_to_user(&address, len, usockaddr, 1740 usockaddr_len); 1741 fput_light(sock->file, fput_needed); 1742 } 1743 return err; 1744 } 1745 1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1747 int __user *, usockaddr_len) 1748 { 1749 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1750 } 1751 1752 /* 1753 * Send a datagram to a given address. We move the address into kernel 1754 * space and check the user space data area is readable before invoking 1755 * the protocol. 1756 */ 1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1758 struct sockaddr __user *addr, int addr_len) 1759 { 1760 struct socket *sock; 1761 struct sockaddr_storage address; 1762 int err; 1763 struct msghdr msg; 1764 struct iovec iov; 1765 int fput_needed; 1766 1767 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1768 if (unlikely(err)) 1769 return err; 1770 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1771 if (!sock) 1772 goto out; 1773 1774 msg.msg_name = NULL; 1775 msg.msg_control = NULL; 1776 msg.msg_controllen = 0; 1777 msg.msg_namelen = 0; 1778 if (addr) { 1779 err = move_addr_to_kernel(addr, addr_len, &address); 1780 if (err < 0) 1781 goto out_put; 1782 msg.msg_name = (struct sockaddr *)&address; 1783 msg.msg_namelen = addr_len; 1784 } 1785 if (sock->file->f_flags & O_NONBLOCK) 1786 flags |= MSG_DONTWAIT; 1787 msg.msg_flags = flags; 1788 err = sock_sendmsg(sock, &msg); 1789 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 out: 1793 return err; 1794 } 1795 1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1797 unsigned int, flags, struct sockaddr __user *, addr, 1798 int, addr_len) 1799 { 1800 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1801 } 1802 1803 /* 1804 * Send a datagram down a socket. 1805 */ 1806 1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1808 unsigned int, flags) 1809 { 1810 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1811 } 1812 1813 /* 1814 * Receive a frame from the socket and optionally record the address of the 1815 * sender. We verify the buffers are writable and if needed move the 1816 * sender address from kernel to user space. 1817 */ 1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1819 struct sockaddr __user *addr, int __user *addr_len) 1820 { 1821 struct socket *sock; 1822 struct iovec iov; 1823 struct msghdr msg; 1824 struct sockaddr_storage address; 1825 int err, err2; 1826 int fput_needed; 1827 1828 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1829 if (unlikely(err)) 1830 return err; 1831 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1832 if (!sock) 1833 goto out; 1834 1835 msg.msg_control = NULL; 1836 msg.msg_controllen = 0; 1837 /* Save some cycles and don't copy the address if not needed */ 1838 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1839 /* We assume all kernel code knows the size of sockaddr_storage */ 1840 msg.msg_namelen = 0; 1841 msg.msg_iocb = NULL; 1842 msg.msg_flags = 0; 1843 if (sock->file->f_flags & O_NONBLOCK) 1844 flags |= MSG_DONTWAIT; 1845 err = sock_recvmsg(sock, &msg, flags); 1846 1847 if (err >= 0 && addr != NULL) { 1848 err2 = move_addr_to_user(&address, 1849 msg.msg_namelen, addr, addr_len); 1850 if (err2 < 0) 1851 err = err2; 1852 } 1853 1854 fput_light(sock->file, fput_needed); 1855 out: 1856 return err; 1857 } 1858 1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1860 unsigned int, flags, struct sockaddr __user *, addr, 1861 int __user *, addr_len) 1862 { 1863 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1864 } 1865 1866 /* 1867 * Receive a datagram from a socket. 1868 */ 1869 1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1871 unsigned int, flags) 1872 { 1873 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1874 } 1875 1876 /* 1877 * Set a socket option. Because we don't know the option lengths we have 1878 * to pass the user mode parameter for the protocols to sort out. 1879 */ 1880 1881 static int __sys_setsockopt(int fd, int level, int optname, 1882 char __user *optval, int optlen) 1883 { 1884 int err, fput_needed; 1885 struct socket *sock; 1886 1887 if (optlen < 0) 1888 return -EINVAL; 1889 1890 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1891 if (sock != NULL) { 1892 err = security_socket_setsockopt(sock, level, optname); 1893 if (err) 1894 goto out_put; 1895 1896 if (level == SOL_SOCKET) 1897 err = 1898 sock_setsockopt(sock, level, optname, optval, 1899 optlen); 1900 else 1901 err = 1902 sock->ops->setsockopt(sock, level, optname, optval, 1903 optlen); 1904 out_put: 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1911 char __user *, optval, int, optlen) 1912 { 1913 return __sys_setsockopt(fd, level, optname, optval, optlen); 1914 } 1915 1916 /* 1917 * Get a socket option. Because we don't know the option lengths we have 1918 * to pass a user mode parameter for the protocols to sort out. 1919 */ 1920 1921 static int __sys_getsockopt(int fd, int level, int optname, 1922 char __user *optval, int __user *optlen) 1923 { 1924 int err, fput_needed; 1925 struct socket *sock; 1926 1927 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1928 if (sock != NULL) { 1929 err = security_socket_getsockopt(sock, level, optname); 1930 if (err) 1931 goto out_put; 1932 1933 if (level == SOL_SOCKET) 1934 err = 1935 sock_getsockopt(sock, level, optname, optval, 1936 optlen); 1937 else 1938 err = 1939 sock->ops->getsockopt(sock, level, optname, optval, 1940 optlen); 1941 out_put: 1942 fput_light(sock->file, fput_needed); 1943 } 1944 return err; 1945 } 1946 1947 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1948 char __user *, optval, int __user *, optlen) 1949 { 1950 return __sys_getsockopt(fd, level, optname, optval, optlen); 1951 } 1952 1953 /* 1954 * Shutdown a socket. 1955 */ 1956 1957 int __sys_shutdown(int fd, int how) 1958 { 1959 int err, fput_needed; 1960 struct socket *sock; 1961 1962 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1963 if (sock != NULL) { 1964 err = security_socket_shutdown(sock, how); 1965 if (!err) 1966 err = sock->ops->shutdown(sock, how); 1967 fput_light(sock->file, fput_needed); 1968 } 1969 return err; 1970 } 1971 1972 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1973 { 1974 return __sys_shutdown(fd, how); 1975 } 1976 1977 /* A couple of helpful macros for getting the address of the 32/64 bit 1978 * fields which are the same type (int / unsigned) on our platforms. 1979 */ 1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1983 1984 struct used_address { 1985 struct sockaddr_storage name; 1986 unsigned int name_len; 1987 }; 1988 1989 static int copy_msghdr_from_user(struct msghdr *kmsg, 1990 struct user_msghdr __user *umsg, 1991 struct sockaddr __user **save_addr, 1992 struct iovec **iov) 1993 { 1994 struct user_msghdr msg; 1995 ssize_t err; 1996 1997 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1998 return -EFAULT; 1999 2000 kmsg->msg_control = (void __force *)msg.msg_control; 2001 kmsg->msg_controllen = msg.msg_controllen; 2002 kmsg->msg_flags = msg.msg_flags; 2003 2004 kmsg->msg_namelen = msg.msg_namelen; 2005 if (!msg.msg_name) 2006 kmsg->msg_namelen = 0; 2007 2008 if (kmsg->msg_namelen < 0) 2009 return -EINVAL; 2010 2011 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2012 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2013 2014 if (save_addr) 2015 *save_addr = msg.msg_name; 2016 2017 if (msg.msg_name && kmsg->msg_namelen) { 2018 if (!save_addr) { 2019 err = move_addr_to_kernel(msg.msg_name, 2020 kmsg->msg_namelen, 2021 kmsg->msg_name); 2022 if (err < 0) 2023 return err; 2024 } 2025 } else { 2026 kmsg->msg_name = NULL; 2027 kmsg->msg_namelen = 0; 2028 } 2029 2030 if (msg.msg_iovlen > UIO_MAXIOV) 2031 return -EMSGSIZE; 2032 2033 kmsg->msg_iocb = NULL; 2034 2035 return import_iovec(save_addr ? READ : WRITE, 2036 msg.msg_iov, msg.msg_iovlen, 2037 UIO_FASTIOV, iov, &kmsg->msg_iter); 2038 } 2039 2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2041 struct msghdr *msg_sys, unsigned int flags, 2042 struct used_address *used_address, 2043 unsigned int allowed_msghdr_flags) 2044 { 2045 struct compat_msghdr __user *msg_compat = 2046 (struct compat_msghdr __user *)msg; 2047 struct sockaddr_storage address; 2048 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2049 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2050 __aligned(sizeof(__kernel_size_t)); 2051 /* 20 is size of ipv6_pktinfo */ 2052 unsigned char *ctl_buf = ctl; 2053 int ctl_len; 2054 ssize_t err; 2055 2056 msg_sys->msg_name = &address; 2057 2058 if (MSG_CMSG_COMPAT & flags) 2059 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2060 else 2061 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2062 if (err < 0) 2063 return err; 2064 2065 err = -ENOBUFS; 2066 2067 if (msg_sys->msg_controllen > INT_MAX) 2068 goto out_freeiov; 2069 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2070 ctl_len = msg_sys->msg_controllen; 2071 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2072 err = 2073 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2074 sizeof(ctl)); 2075 if (err) 2076 goto out_freeiov; 2077 ctl_buf = msg_sys->msg_control; 2078 ctl_len = msg_sys->msg_controllen; 2079 } else if (ctl_len) { 2080 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2081 CMSG_ALIGN(sizeof(struct cmsghdr))); 2082 if (ctl_len > sizeof(ctl)) { 2083 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2084 if (ctl_buf == NULL) 2085 goto out_freeiov; 2086 } 2087 err = -EFAULT; 2088 /* 2089 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2090 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2091 * checking falls down on this. 2092 */ 2093 if (copy_from_user(ctl_buf, 2094 (void __user __force *)msg_sys->msg_control, 2095 ctl_len)) 2096 goto out_freectl; 2097 msg_sys->msg_control = ctl_buf; 2098 } 2099 msg_sys->msg_flags = flags; 2100 2101 if (sock->file->f_flags & O_NONBLOCK) 2102 msg_sys->msg_flags |= MSG_DONTWAIT; 2103 /* 2104 * If this is sendmmsg() and current destination address is same as 2105 * previously succeeded address, omit asking LSM's decision. 2106 * used_address->name_len is initialized to UINT_MAX so that the first 2107 * destination address never matches. 2108 */ 2109 if (used_address && msg_sys->msg_name && 2110 used_address->name_len == msg_sys->msg_namelen && 2111 !memcmp(&used_address->name, msg_sys->msg_name, 2112 used_address->name_len)) { 2113 err = sock_sendmsg_nosec(sock, msg_sys); 2114 goto out_freectl; 2115 } 2116 err = sock_sendmsg(sock, msg_sys); 2117 /* 2118 * If this is sendmmsg() and sending to current destination address was 2119 * successful, remember it. 2120 */ 2121 if (used_address && err >= 0) { 2122 used_address->name_len = msg_sys->msg_namelen; 2123 if (msg_sys->msg_name) 2124 memcpy(&used_address->name, msg_sys->msg_name, 2125 used_address->name_len); 2126 } 2127 2128 out_freectl: 2129 if (ctl_buf != ctl) 2130 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2131 out_freeiov: 2132 kfree(iov); 2133 return err; 2134 } 2135 2136 /* 2137 * BSD sendmsg interface 2138 */ 2139 2140 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2141 bool forbid_cmsg_compat) 2142 { 2143 int fput_needed, err; 2144 struct msghdr msg_sys; 2145 struct socket *sock; 2146 2147 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2148 return -EINVAL; 2149 2150 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2151 if (!sock) 2152 goto out; 2153 2154 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2155 2156 fput_light(sock->file, fput_needed); 2157 out: 2158 return err; 2159 } 2160 2161 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2162 { 2163 return __sys_sendmsg(fd, msg, flags, true); 2164 } 2165 2166 /* 2167 * Linux sendmmsg interface 2168 */ 2169 2170 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2171 unsigned int flags, bool forbid_cmsg_compat) 2172 { 2173 int fput_needed, err, datagrams; 2174 struct socket *sock; 2175 struct mmsghdr __user *entry; 2176 struct compat_mmsghdr __user *compat_entry; 2177 struct msghdr msg_sys; 2178 struct used_address used_address; 2179 unsigned int oflags = flags; 2180 2181 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2182 return -EINVAL; 2183 2184 if (vlen > UIO_MAXIOV) 2185 vlen = UIO_MAXIOV; 2186 2187 datagrams = 0; 2188 2189 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2190 if (!sock) 2191 return err; 2192 2193 used_address.name_len = UINT_MAX; 2194 entry = mmsg; 2195 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2196 err = 0; 2197 flags |= MSG_BATCH; 2198 2199 while (datagrams < vlen) { 2200 if (datagrams == vlen - 1) 2201 flags = oflags; 2202 2203 if (MSG_CMSG_COMPAT & flags) { 2204 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2205 &msg_sys, flags, &used_address, MSG_EOR); 2206 if (err < 0) 2207 break; 2208 err = __put_user(err, &compat_entry->msg_len); 2209 ++compat_entry; 2210 } else { 2211 err = ___sys_sendmsg(sock, 2212 (struct user_msghdr __user *)entry, 2213 &msg_sys, flags, &used_address, MSG_EOR); 2214 if (err < 0) 2215 break; 2216 err = put_user(err, &entry->msg_len); 2217 ++entry; 2218 } 2219 2220 if (err) 2221 break; 2222 ++datagrams; 2223 if (msg_data_left(&msg_sys)) 2224 break; 2225 cond_resched(); 2226 } 2227 2228 fput_light(sock->file, fput_needed); 2229 2230 /* We only return an error if no datagrams were able to be sent */ 2231 if (datagrams != 0) 2232 return datagrams; 2233 2234 return err; 2235 } 2236 2237 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2238 unsigned int, vlen, unsigned int, flags) 2239 { 2240 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2241 } 2242 2243 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2244 struct msghdr *msg_sys, unsigned int flags, int nosec) 2245 { 2246 struct compat_msghdr __user *msg_compat = 2247 (struct compat_msghdr __user *)msg; 2248 struct iovec iovstack[UIO_FASTIOV]; 2249 struct iovec *iov = iovstack; 2250 unsigned long cmsg_ptr; 2251 int len; 2252 ssize_t err; 2253 2254 /* kernel mode address */ 2255 struct sockaddr_storage addr; 2256 2257 /* user mode address pointers */ 2258 struct sockaddr __user *uaddr; 2259 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2260 2261 msg_sys->msg_name = &addr; 2262 2263 if (MSG_CMSG_COMPAT & flags) 2264 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2265 else 2266 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2267 if (err < 0) 2268 return err; 2269 2270 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2271 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2272 2273 /* We assume all kernel code knows the size of sockaddr_storage */ 2274 msg_sys->msg_namelen = 0; 2275 2276 if (sock->file->f_flags & O_NONBLOCK) 2277 flags |= MSG_DONTWAIT; 2278 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2279 if (err < 0) 2280 goto out_freeiov; 2281 len = err; 2282 2283 if (uaddr != NULL) { 2284 err = move_addr_to_user(&addr, 2285 msg_sys->msg_namelen, uaddr, 2286 uaddr_len); 2287 if (err < 0) 2288 goto out_freeiov; 2289 } 2290 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2291 COMPAT_FLAGS(msg)); 2292 if (err) 2293 goto out_freeiov; 2294 if (MSG_CMSG_COMPAT & flags) 2295 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2296 &msg_compat->msg_controllen); 2297 else 2298 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2299 &msg->msg_controllen); 2300 if (err) 2301 goto out_freeiov; 2302 err = len; 2303 2304 out_freeiov: 2305 kfree(iov); 2306 return err; 2307 } 2308 2309 /* 2310 * BSD recvmsg interface 2311 */ 2312 2313 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2314 bool forbid_cmsg_compat) 2315 { 2316 int fput_needed, err; 2317 struct msghdr msg_sys; 2318 struct socket *sock; 2319 2320 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2321 return -EINVAL; 2322 2323 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2324 if (!sock) 2325 goto out; 2326 2327 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2328 2329 fput_light(sock->file, fput_needed); 2330 out: 2331 return err; 2332 } 2333 2334 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2335 unsigned int, flags) 2336 { 2337 return __sys_recvmsg(fd, msg, flags, true); 2338 } 2339 2340 /* 2341 * Linux recvmmsg interface 2342 */ 2343 2344 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2345 unsigned int flags, struct timespec *timeout) 2346 { 2347 int fput_needed, err, datagrams; 2348 struct socket *sock; 2349 struct mmsghdr __user *entry; 2350 struct compat_mmsghdr __user *compat_entry; 2351 struct msghdr msg_sys; 2352 struct timespec64 end_time; 2353 struct timespec64 timeout64; 2354 2355 if (timeout && 2356 poll_select_set_timeout(&end_time, timeout->tv_sec, 2357 timeout->tv_nsec)) 2358 return -EINVAL; 2359 2360 datagrams = 0; 2361 2362 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2363 if (!sock) 2364 return err; 2365 2366 err = sock_error(sock->sk); 2367 if (err) { 2368 datagrams = err; 2369 goto out_put; 2370 } 2371 2372 entry = mmsg; 2373 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2374 2375 while (datagrams < vlen) { 2376 /* 2377 * No need to ask LSM for more than the first datagram. 2378 */ 2379 if (MSG_CMSG_COMPAT & flags) { 2380 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2381 &msg_sys, flags & ~MSG_WAITFORONE, 2382 datagrams); 2383 if (err < 0) 2384 break; 2385 err = __put_user(err, &compat_entry->msg_len); 2386 ++compat_entry; 2387 } else { 2388 err = ___sys_recvmsg(sock, 2389 (struct user_msghdr __user *)entry, 2390 &msg_sys, flags & ~MSG_WAITFORONE, 2391 datagrams); 2392 if (err < 0) 2393 break; 2394 err = put_user(err, &entry->msg_len); 2395 ++entry; 2396 } 2397 2398 if (err) 2399 break; 2400 ++datagrams; 2401 2402 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2403 if (flags & MSG_WAITFORONE) 2404 flags |= MSG_DONTWAIT; 2405 2406 if (timeout) { 2407 ktime_get_ts64(&timeout64); 2408 *timeout = timespec64_to_timespec( 2409 timespec64_sub(end_time, timeout64)); 2410 if (timeout->tv_sec < 0) { 2411 timeout->tv_sec = timeout->tv_nsec = 0; 2412 break; 2413 } 2414 2415 /* Timeout, return less than vlen datagrams */ 2416 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2417 break; 2418 } 2419 2420 /* Out of band data, return right away */ 2421 if (msg_sys.msg_flags & MSG_OOB) 2422 break; 2423 cond_resched(); 2424 } 2425 2426 if (err == 0) 2427 goto out_put; 2428 2429 if (datagrams == 0) { 2430 datagrams = err; 2431 goto out_put; 2432 } 2433 2434 /* 2435 * We may return less entries than requested (vlen) if the 2436 * sock is non block and there aren't enough datagrams... 2437 */ 2438 if (err != -EAGAIN) { 2439 /* 2440 * ... or if recvmsg returns an error after we 2441 * received some datagrams, where we record the 2442 * error to return on the next call or if the 2443 * app asks about it using getsockopt(SO_ERROR). 2444 */ 2445 sock->sk->sk_err = -err; 2446 } 2447 out_put: 2448 fput_light(sock->file, fput_needed); 2449 2450 return datagrams; 2451 } 2452 2453 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2454 unsigned int vlen, unsigned int flags, 2455 struct timespec __user *timeout) 2456 { 2457 int datagrams; 2458 struct timespec timeout_sys; 2459 2460 if (flags & MSG_CMSG_COMPAT) 2461 return -EINVAL; 2462 2463 if (!timeout) 2464 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2465 2466 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2467 return -EFAULT; 2468 2469 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2470 2471 if (datagrams > 0 && 2472 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2473 datagrams = -EFAULT; 2474 2475 return datagrams; 2476 } 2477 2478 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2479 unsigned int, vlen, unsigned int, flags, 2480 struct timespec __user *, timeout) 2481 { 2482 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2483 } 2484 2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2486 /* Argument list sizes for sys_socketcall */ 2487 #define AL(x) ((x) * sizeof(unsigned long)) 2488 static const unsigned char nargs[21] = { 2489 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2490 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2491 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2492 AL(4), AL(5), AL(4) 2493 }; 2494 2495 #undef AL 2496 2497 /* 2498 * System call vectors. 2499 * 2500 * Argument checking cleaned up. Saved 20% in size. 2501 * This function doesn't need to set the kernel lock because 2502 * it is set by the callees. 2503 */ 2504 2505 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2506 { 2507 unsigned long a[AUDITSC_ARGS]; 2508 unsigned long a0, a1; 2509 int err; 2510 unsigned int len; 2511 2512 if (call < 1 || call > SYS_SENDMMSG) 2513 return -EINVAL; 2514 2515 len = nargs[call]; 2516 if (len > sizeof(a)) 2517 return -EINVAL; 2518 2519 /* copy_from_user should be SMP safe. */ 2520 if (copy_from_user(a, args, len)) 2521 return -EFAULT; 2522 2523 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2524 if (err) 2525 return err; 2526 2527 a0 = a[0]; 2528 a1 = a[1]; 2529 2530 switch (call) { 2531 case SYS_SOCKET: 2532 err = __sys_socket(a0, a1, a[2]); 2533 break; 2534 case SYS_BIND: 2535 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2536 break; 2537 case SYS_CONNECT: 2538 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2539 break; 2540 case SYS_LISTEN: 2541 err = __sys_listen(a0, a1); 2542 break; 2543 case SYS_ACCEPT: 2544 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2545 (int __user *)a[2], 0); 2546 break; 2547 case SYS_GETSOCKNAME: 2548 err = 2549 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2550 (int __user *)a[2]); 2551 break; 2552 case SYS_GETPEERNAME: 2553 err = 2554 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2555 (int __user *)a[2]); 2556 break; 2557 case SYS_SOCKETPAIR: 2558 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2559 break; 2560 case SYS_SEND: 2561 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2562 NULL, 0); 2563 break; 2564 case SYS_SENDTO: 2565 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2566 (struct sockaddr __user *)a[4], a[5]); 2567 break; 2568 case SYS_RECV: 2569 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2570 NULL, NULL); 2571 break; 2572 case SYS_RECVFROM: 2573 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2574 (struct sockaddr __user *)a[4], 2575 (int __user *)a[5]); 2576 break; 2577 case SYS_SHUTDOWN: 2578 err = __sys_shutdown(a0, a1); 2579 break; 2580 case SYS_SETSOCKOPT: 2581 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2582 a[4]); 2583 break; 2584 case SYS_GETSOCKOPT: 2585 err = 2586 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2587 (int __user *)a[4]); 2588 break; 2589 case SYS_SENDMSG: 2590 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2591 a[2], true); 2592 break; 2593 case SYS_SENDMMSG: 2594 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2595 a[3], true); 2596 break; 2597 case SYS_RECVMSG: 2598 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2599 a[2], true); 2600 break; 2601 case SYS_RECVMMSG: 2602 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2603 a[3], (struct timespec __user *)a[4]); 2604 break; 2605 case SYS_ACCEPT4: 2606 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2607 (int __user *)a[2], a[3]); 2608 break; 2609 default: 2610 err = -EINVAL; 2611 break; 2612 } 2613 return err; 2614 } 2615 2616 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2617 2618 /** 2619 * sock_register - add a socket protocol handler 2620 * @ops: description of protocol 2621 * 2622 * This function is called by a protocol handler that wants to 2623 * advertise its address family, and have it linked into the 2624 * socket interface. The value ops->family corresponds to the 2625 * socket system call protocol family. 2626 */ 2627 int sock_register(const struct net_proto_family *ops) 2628 { 2629 int err; 2630 2631 if (ops->family >= NPROTO) { 2632 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2633 return -ENOBUFS; 2634 } 2635 2636 spin_lock(&net_family_lock); 2637 if (rcu_dereference_protected(net_families[ops->family], 2638 lockdep_is_held(&net_family_lock))) 2639 err = -EEXIST; 2640 else { 2641 rcu_assign_pointer(net_families[ops->family], ops); 2642 err = 0; 2643 } 2644 spin_unlock(&net_family_lock); 2645 2646 pr_info("NET: Registered protocol family %d\n", ops->family); 2647 return err; 2648 } 2649 EXPORT_SYMBOL(sock_register); 2650 2651 /** 2652 * sock_unregister - remove a protocol handler 2653 * @family: protocol family to remove 2654 * 2655 * This function is called by a protocol handler that wants to 2656 * remove its address family, and have it unlinked from the 2657 * new socket creation. 2658 * 2659 * If protocol handler is a module, then it can use module reference 2660 * counts to protect against new references. If protocol handler is not 2661 * a module then it needs to provide its own protection in 2662 * the ops->create routine. 2663 */ 2664 void sock_unregister(int family) 2665 { 2666 BUG_ON(family < 0 || family >= NPROTO); 2667 2668 spin_lock(&net_family_lock); 2669 RCU_INIT_POINTER(net_families[family], NULL); 2670 spin_unlock(&net_family_lock); 2671 2672 synchronize_rcu(); 2673 2674 pr_info("NET: Unregistered protocol family %d\n", family); 2675 } 2676 EXPORT_SYMBOL(sock_unregister); 2677 2678 bool sock_is_registered(int family) 2679 { 2680 return family < NPROTO && rcu_access_pointer(net_families[family]); 2681 } 2682 2683 static int __init sock_init(void) 2684 { 2685 int err; 2686 /* 2687 * Initialize the network sysctl infrastructure. 2688 */ 2689 err = net_sysctl_init(); 2690 if (err) 2691 goto out; 2692 2693 /* 2694 * Initialize skbuff SLAB cache 2695 */ 2696 skb_init(); 2697 2698 /* 2699 * Initialize the protocols module. 2700 */ 2701 2702 init_inodecache(); 2703 2704 err = register_filesystem(&sock_fs_type); 2705 if (err) 2706 goto out_fs; 2707 sock_mnt = kern_mount(&sock_fs_type); 2708 if (IS_ERR(sock_mnt)) { 2709 err = PTR_ERR(sock_mnt); 2710 goto out_mount; 2711 } 2712 2713 /* The real protocol initialization is performed in later initcalls. 2714 */ 2715 2716 #ifdef CONFIG_NETFILTER 2717 err = netfilter_init(); 2718 if (err) 2719 goto out; 2720 #endif 2721 2722 ptp_classifier_init(); 2723 2724 out: 2725 return err; 2726 2727 out_mount: 2728 unregister_filesystem(&sock_fs_type); 2729 out_fs: 2730 goto out; 2731 } 2732 2733 core_initcall(sock_init); /* early initcall */ 2734 2735 #ifdef CONFIG_PROC_FS 2736 void socket_seq_show(struct seq_file *seq) 2737 { 2738 seq_printf(seq, "sockets: used %d\n", 2739 sock_inuse_get(seq->private)); 2740 } 2741 #endif /* CONFIG_PROC_FS */ 2742 2743 #ifdef CONFIG_COMPAT 2744 static int do_siocgstamp(struct net *net, struct socket *sock, 2745 unsigned int cmd, void __user *up) 2746 { 2747 mm_segment_t old_fs = get_fs(); 2748 struct timeval ktv; 2749 int err; 2750 2751 set_fs(KERNEL_DS); 2752 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2753 set_fs(old_fs); 2754 if (!err) 2755 err = compat_put_timeval(&ktv, up); 2756 2757 return err; 2758 } 2759 2760 static int do_siocgstampns(struct net *net, struct socket *sock, 2761 unsigned int cmd, void __user *up) 2762 { 2763 mm_segment_t old_fs = get_fs(); 2764 struct timespec kts; 2765 int err; 2766 2767 set_fs(KERNEL_DS); 2768 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2769 set_fs(old_fs); 2770 if (!err) 2771 err = compat_put_timespec(&kts, up); 2772 2773 return err; 2774 } 2775 2776 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2777 { 2778 struct compat_ifconf ifc32; 2779 struct ifconf ifc; 2780 int err; 2781 2782 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2783 return -EFAULT; 2784 2785 ifc.ifc_len = ifc32.ifc_len; 2786 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2787 2788 rtnl_lock(); 2789 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2790 rtnl_unlock(); 2791 if (err) 2792 return err; 2793 2794 ifc32.ifc_len = ifc.ifc_len; 2795 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2796 return -EFAULT; 2797 2798 return 0; 2799 } 2800 2801 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2802 { 2803 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2804 bool convert_in = false, convert_out = false; 2805 size_t buf_size = 0; 2806 struct ethtool_rxnfc __user *rxnfc = NULL; 2807 struct ifreq ifr; 2808 u32 rule_cnt = 0, actual_rule_cnt; 2809 u32 ethcmd; 2810 u32 data; 2811 int ret; 2812 2813 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2814 return -EFAULT; 2815 2816 compat_rxnfc = compat_ptr(data); 2817 2818 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2819 return -EFAULT; 2820 2821 /* Most ethtool structures are defined without padding. 2822 * Unfortunately struct ethtool_rxnfc is an exception. 2823 */ 2824 switch (ethcmd) { 2825 default: 2826 break; 2827 case ETHTOOL_GRXCLSRLALL: 2828 /* Buffer size is variable */ 2829 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2830 return -EFAULT; 2831 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2832 return -ENOMEM; 2833 buf_size += rule_cnt * sizeof(u32); 2834 /* fall through */ 2835 case ETHTOOL_GRXRINGS: 2836 case ETHTOOL_GRXCLSRLCNT: 2837 case ETHTOOL_GRXCLSRULE: 2838 case ETHTOOL_SRXCLSRLINS: 2839 convert_out = true; 2840 /* fall through */ 2841 case ETHTOOL_SRXCLSRLDEL: 2842 buf_size += sizeof(struct ethtool_rxnfc); 2843 convert_in = true; 2844 rxnfc = compat_alloc_user_space(buf_size); 2845 break; 2846 } 2847 2848 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2849 return -EFAULT; 2850 2851 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2852 2853 if (convert_in) { 2854 /* We expect there to be holes between fs.m_ext and 2855 * fs.ring_cookie and at the end of fs, but nowhere else. 2856 */ 2857 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2858 sizeof(compat_rxnfc->fs.m_ext) != 2859 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2860 sizeof(rxnfc->fs.m_ext)); 2861 BUILD_BUG_ON( 2862 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2863 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2864 offsetof(struct ethtool_rxnfc, fs.location) - 2865 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2866 2867 if (copy_in_user(rxnfc, compat_rxnfc, 2868 (void __user *)(&rxnfc->fs.m_ext + 1) - 2869 (void __user *)rxnfc) || 2870 copy_in_user(&rxnfc->fs.ring_cookie, 2871 &compat_rxnfc->fs.ring_cookie, 2872 (void __user *)(&rxnfc->fs.location + 1) - 2873 (void __user *)&rxnfc->fs.ring_cookie) || 2874 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2875 sizeof(rxnfc->rule_cnt))) 2876 return -EFAULT; 2877 } 2878 2879 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2880 if (ret) 2881 return ret; 2882 2883 if (convert_out) { 2884 if (copy_in_user(compat_rxnfc, rxnfc, 2885 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2886 (const void __user *)rxnfc) || 2887 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2888 &rxnfc->fs.ring_cookie, 2889 (const void __user *)(&rxnfc->fs.location + 1) - 2890 (const void __user *)&rxnfc->fs.ring_cookie) || 2891 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2892 sizeof(rxnfc->rule_cnt))) 2893 return -EFAULT; 2894 2895 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2896 /* As an optimisation, we only copy the actual 2897 * number of rules that the underlying 2898 * function returned. Since Mallory might 2899 * change the rule count in user memory, we 2900 * check that it is less than the rule count 2901 * originally given (as the user buffer size), 2902 * which has been range-checked. 2903 */ 2904 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2905 return -EFAULT; 2906 if (actual_rule_cnt < rule_cnt) 2907 rule_cnt = actual_rule_cnt; 2908 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2909 &rxnfc->rule_locs[0], 2910 rule_cnt * sizeof(u32))) 2911 return -EFAULT; 2912 } 2913 } 2914 2915 return 0; 2916 } 2917 2918 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2919 { 2920 compat_uptr_t uptr32; 2921 struct ifreq ifr; 2922 void __user *saved; 2923 int err; 2924 2925 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2926 return -EFAULT; 2927 2928 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2929 return -EFAULT; 2930 2931 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2932 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2933 2934 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2935 if (!err) { 2936 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2937 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2938 err = -EFAULT; 2939 } 2940 return err; 2941 } 2942 2943 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2944 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2945 struct compat_ifreq __user *u_ifreq32) 2946 { 2947 struct ifreq ifreq; 2948 u32 data32; 2949 2950 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2951 return -EFAULT; 2952 if (get_user(data32, &u_ifreq32->ifr_data)) 2953 return -EFAULT; 2954 ifreq.ifr_data = compat_ptr(data32); 2955 2956 return dev_ioctl(net, cmd, &ifreq, NULL); 2957 } 2958 2959 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2960 struct compat_ifreq __user *uifr32) 2961 { 2962 struct ifreq ifr; 2963 struct compat_ifmap __user *uifmap32; 2964 int err; 2965 2966 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2967 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2968 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2969 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2970 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2971 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2972 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2973 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2974 if (err) 2975 return -EFAULT; 2976 2977 err = dev_ioctl(net, cmd, &ifr, NULL); 2978 2979 if (cmd == SIOCGIFMAP && !err) { 2980 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2981 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2982 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2983 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2984 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2985 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2986 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2987 if (err) 2988 err = -EFAULT; 2989 } 2990 return err; 2991 } 2992 2993 struct rtentry32 { 2994 u32 rt_pad1; 2995 struct sockaddr rt_dst; /* target address */ 2996 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2997 struct sockaddr rt_genmask; /* target network mask (IP) */ 2998 unsigned short rt_flags; 2999 short rt_pad2; 3000 u32 rt_pad3; 3001 unsigned char rt_tos; 3002 unsigned char rt_class; 3003 short rt_pad4; 3004 short rt_metric; /* +1 for binary compatibility! */ 3005 /* char * */ u32 rt_dev; /* forcing the device at add */ 3006 u32 rt_mtu; /* per route MTU/Window */ 3007 u32 rt_window; /* Window clamping */ 3008 unsigned short rt_irtt; /* Initial RTT */ 3009 }; 3010 3011 struct in6_rtmsg32 { 3012 struct in6_addr rtmsg_dst; 3013 struct in6_addr rtmsg_src; 3014 struct in6_addr rtmsg_gateway; 3015 u32 rtmsg_type; 3016 u16 rtmsg_dst_len; 3017 u16 rtmsg_src_len; 3018 u32 rtmsg_metric; 3019 u32 rtmsg_info; 3020 u32 rtmsg_flags; 3021 s32 rtmsg_ifindex; 3022 }; 3023 3024 static int routing_ioctl(struct net *net, struct socket *sock, 3025 unsigned int cmd, void __user *argp) 3026 { 3027 int ret; 3028 void *r = NULL; 3029 struct in6_rtmsg r6; 3030 struct rtentry r4; 3031 char devname[16]; 3032 u32 rtdev; 3033 mm_segment_t old_fs = get_fs(); 3034 3035 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3036 struct in6_rtmsg32 __user *ur6 = argp; 3037 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3038 3 * sizeof(struct in6_addr)); 3039 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3040 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3041 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3042 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3043 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3044 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3045 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3046 3047 r = (void *) &r6; 3048 } else { /* ipv4 */ 3049 struct rtentry32 __user *ur4 = argp; 3050 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3051 3 * sizeof(struct sockaddr)); 3052 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3053 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3054 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3055 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3056 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3057 ret |= get_user(rtdev, &(ur4->rt_dev)); 3058 if (rtdev) { 3059 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3060 r4.rt_dev = (char __user __force *)devname; 3061 devname[15] = 0; 3062 } else 3063 r4.rt_dev = NULL; 3064 3065 r = (void *) &r4; 3066 } 3067 3068 if (ret) { 3069 ret = -EFAULT; 3070 goto out; 3071 } 3072 3073 set_fs(KERNEL_DS); 3074 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3075 set_fs(old_fs); 3076 3077 out: 3078 return ret; 3079 } 3080 3081 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3082 * for some operations; this forces use of the newer bridge-utils that 3083 * use compatible ioctls 3084 */ 3085 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3086 { 3087 compat_ulong_t tmp; 3088 3089 if (get_user(tmp, argp)) 3090 return -EFAULT; 3091 if (tmp == BRCTL_GET_VERSION) 3092 return BRCTL_VERSION + 1; 3093 return -EINVAL; 3094 } 3095 3096 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3097 unsigned int cmd, unsigned long arg) 3098 { 3099 void __user *argp = compat_ptr(arg); 3100 struct sock *sk = sock->sk; 3101 struct net *net = sock_net(sk); 3102 3103 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3104 return compat_ifr_data_ioctl(net, cmd, argp); 3105 3106 switch (cmd) { 3107 case SIOCSIFBR: 3108 case SIOCGIFBR: 3109 return old_bridge_ioctl(argp); 3110 case SIOCGIFCONF: 3111 return compat_dev_ifconf(net, argp); 3112 case SIOCETHTOOL: 3113 return ethtool_ioctl(net, argp); 3114 case SIOCWANDEV: 3115 return compat_siocwandev(net, argp); 3116 case SIOCGIFMAP: 3117 case SIOCSIFMAP: 3118 return compat_sioc_ifmap(net, cmd, argp); 3119 case SIOCADDRT: 3120 case SIOCDELRT: 3121 return routing_ioctl(net, sock, cmd, argp); 3122 case SIOCGSTAMP: 3123 return do_siocgstamp(net, sock, cmd, argp); 3124 case SIOCGSTAMPNS: 3125 return do_siocgstampns(net, sock, cmd, argp); 3126 case SIOCBONDSLAVEINFOQUERY: 3127 case SIOCBONDINFOQUERY: 3128 case SIOCSHWTSTAMP: 3129 case SIOCGHWTSTAMP: 3130 return compat_ifr_data_ioctl(net, cmd, argp); 3131 3132 case FIOSETOWN: 3133 case SIOCSPGRP: 3134 case FIOGETOWN: 3135 case SIOCGPGRP: 3136 case SIOCBRADDBR: 3137 case SIOCBRDELBR: 3138 case SIOCGIFVLAN: 3139 case SIOCSIFVLAN: 3140 case SIOCADDDLCI: 3141 case SIOCDELDLCI: 3142 case SIOCGSKNS: 3143 return sock_ioctl(file, cmd, arg); 3144 3145 case SIOCGIFFLAGS: 3146 case SIOCSIFFLAGS: 3147 case SIOCGIFMETRIC: 3148 case SIOCSIFMETRIC: 3149 case SIOCGIFMTU: 3150 case SIOCSIFMTU: 3151 case SIOCGIFMEM: 3152 case SIOCSIFMEM: 3153 case SIOCGIFHWADDR: 3154 case SIOCSIFHWADDR: 3155 case SIOCADDMULTI: 3156 case SIOCDELMULTI: 3157 case SIOCGIFINDEX: 3158 case SIOCGIFADDR: 3159 case SIOCSIFADDR: 3160 case SIOCSIFHWBROADCAST: 3161 case SIOCDIFADDR: 3162 case SIOCGIFBRDADDR: 3163 case SIOCSIFBRDADDR: 3164 case SIOCGIFDSTADDR: 3165 case SIOCSIFDSTADDR: 3166 case SIOCGIFNETMASK: 3167 case SIOCSIFNETMASK: 3168 case SIOCSIFPFLAGS: 3169 case SIOCGIFPFLAGS: 3170 case SIOCGIFTXQLEN: 3171 case SIOCSIFTXQLEN: 3172 case SIOCBRADDIF: 3173 case SIOCBRDELIF: 3174 case SIOCSIFNAME: 3175 case SIOCGMIIPHY: 3176 case SIOCGMIIREG: 3177 case SIOCSMIIREG: 3178 case SIOCSARP: 3179 case SIOCGARP: 3180 case SIOCDARP: 3181 case SIOCATMARK: 3182 case SIOCBONDENSLAVE: 3183 case SIOCBONDRELEASE: 3184 case SIOCBONDSETHWADDR: 3185 case SIOCBONDCHANGEACTIVE: 3186 case SIOCGIFNAME: 3187 return sock_do_ioctl(net, sock, cmd, arg); 3188 } 3189 3190 return -ENOIOCTLCMD; 3191 } 3192 3193 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3194 unsigned long arg) 3195 { 3196 struct socket *sock = file->private_data; 3197 int ret = -ENOIOCTLCMD; 3198 struct sock *sk; 3199 struct net *net; 3200 3201 sk = sock->sk; 3202 net = sock_net(sk); 3203 3204 if (sock->ops->compat_ioctl) 3205 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3206 3207 if (ret == -ENOIOCTLCMD && 3208 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3209 ret = compat_wext_handle_ioctl(net, cmd, arg); 3210 3211 if (ret == -ENOIOCTLCMD) 3212 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3213 3214 return ret; 3215 } 3216 #endif 3217 3218 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3219 { 3220 return sock->ops->bind(sock, addr, addrlen); 3221 } 3222 EXPORT_SYMBOL(kernel_bind); 3223 3224 int kernel_listen(struct socket *sock, int backlog) 3225 { 3226 return sock->ops->listen(sock, backlog); 3227 } 3228 EXPORT_SYMBOL(kernel_listen); 3229 3230 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3231 { 3232 struct sock *sk = sock->sk; 3233 int err; 3234 3235 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3236 newsock); 3237 if (err < 0) 3238 goto done; 3239 3240 err = sock->ops->accept(sock, *newsock, flags, true); 3241 if (err < 0) { 3242 sock_release(*newsock); 3243 *newsock = NULL; 3244 goto done; 3245 } 3246 3247 (*newsock)->ops = sock->ops; 3248 __module_get((*newsock)->ops->owner); 3249 3250 done: 3251 return err; 3252 } 3253 EXPORT_SYMBOL(kernel_accept); 3254 3255 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3256 int flags) 3257 { 3258 return sock->ops->connect(sock, addr, addrlen, flags); 3259 } 3260 EXPORT_SYMBOL(kernel_connect); 3261 3262 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3263 int *addrlen) 3264 { 3265 return sock->ops->getname(sock, addr, addrlen, 0); 3266 } 3267 EXPORT_SYMBOL(kernel_getsockname); 3268 3269 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3270 int *addrlen) 3271 { 3272 return sock->ops->getname(sock, addr, addrlen, 1); 3273 } 3274 EXPORT_SYMBOL(kernel_getpeername); 3275 3276 int kernel_getsockopt(struct socket *sock, int level, int optname, 3277 char *optval, int *optlen) 3278 { 3279 mm_segment_t oldfs = get_fs(); 3280 char __user *uoptval; 3281 int __user *uoptlen; 3282 int err; 3283 3284 uoptval = (char __user __force *) optval; 3285 uoptlen = (int __user __force *) optlen; 3286 3287 set_fs(KERNEL_DS); 3288 if (level == SOL_SOCKET) 3289 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3290 else 3291 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3292 uoptlen); 3293 set_fs(oldfs); 3294 return err; 3295 } 3296 EXPORT_SYMBOL(kernel_getsockopt); 3297 3298 int kernel_setsockopt(struct socket *sock, int level, int optname, 3299 char *optval, unsigned int optlen) 3300 { 3301 mm_segment_t oldfs = get_fs(); 3302 char __user *uoptval; 3303 int err; 3304 3305 uoptval = (char __user __force *) optval; 3306 3307 set_fs(KERNEL_DS); 3308 if (level == SOL_SOCKET) 3309 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3310 else 3311 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3312 optlen); 3313 set_fs(oldfs); 3314 return err; 3315 } 3316 EXPORT_SYMBOL(kernel_setsockopt); 3317 3318 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3319 size_t size, int flags) 3320 { 3321 if (sock->ops->sendpage) 3322 return sock->ops->sendpage(sock, page, offset, size, flags); 3323 3324 return sock_no_sendpage(sock, page, offset, size, flags); 3325 } 3326 EXPORT_SYMBOL(kernel_sendpage); 3327 3328 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3329 size_t size, int flags) 3330 { 3331 struct socket *sock = sk->sk_socket; 3332 3333 if (sock->ops->sendpage_locked) 3334 return sock->ops->sendpage_locked(sk, page, offset, size, 3335 flags); 3336 3337 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3338 } 3339 EXPORT_SYMBOL(kernel_sendpage_locked); 3340 3341 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3342 { 3343 return sock->ops->shutdown(sock, how); 3344 } 3345 EXPORT_SYMBOL(kernel_sock_shutdown); 3346 3347 /* This routine returns the IP overhead imposed by a socket i.e. 3348 * the length of the underlying IP header, depending on whether 3349 * this is an IPv4 or IPv6 socket and the length from IP options turned 3350 * on at the socket. Assumes that the caller has a lock on the socket. 3351 */ 3352 u32 kernel_sock_ip_overhead(struct sock *sk) 3353 { 3354 struct inet_sock *inet; 3355 struct ip_options_rcu *opt; 3356 u32 overhead = 0; 3357 #if IS_ENABLED(CONFIG_IPV6) 3358 struct ipv6_pinfo *np; 3359 struct ipv6_txoptions *optv6 = NULL; 3360 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3361 3362 if (!sk) 3363 return overhead; 3364 3365 switch (sk->sk_family) { 3366 case AF_INET: 3367 inet = inet_sk(sk); 3368 overhead += sizeof(struct iphdr); 3369 opt = rcu_dereference_protected(inet->inet_opt, 3370 sock_owned_by_user(sk)); 3371 if (opt) 3372 overhead += opt->opt.optlen; 3373 return overhead; 3374 #if IS_ENABLED(CONFIG_IPV6) 3375 case AF_INET6: 3376 np = inet6_sk(sk); 3377 overhead += sizeof(struct ipv6hdr); 3378 if (np) 3379 optv6 = rcu_dereference_protected(np->opt, 3380 sock_owned_by_user(sk)); 3381 if (optv6) 3382 overhead += (optv6->opt_flen + optv6->opt_nflen); 3383 return overhead; 3384 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3385 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3386 return overhead; 3387 } 3388 } 3389 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3390