1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int err; 280 int len; 281 282 BUG_ON(klen > sizeof(struct sockaddr_storage)); 283 err = get_user(len, ulen); 284 if (err) 285 return err; 286 if (len > klen) 287 len = klen; 288 if (len < 0) 289 return -EINVAL; 290 if (len) { 291 if (audit_sockaddr(klen, kaddr)) 292 return -ENOMEM; 293 if (copy_to_user(uaddr, kaddr, len)) 294 return -EFAULT; 295 } 296 /* 297 * "fromlen shall refer to the value before truncation.." 298 * 1003.1g 299 */ 300 return __put_user(klen, ulen); 301 } 302 303 static struct kmem_cache *sock_inode_cachep __ro_after_init; 304 305 static struct inode *sock_alloc_inode(struct super_block *sb) 306 { 307 struct socket_alloc *ei; 308 309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 310 if (!ei) 311 return NULL; 312 init_waitqueue_head(&ei->socket.wq.wait); 313 ei->socket.wq.fasync_list = NULL; 314 ei->socket.wq.flags = 0; 315 316 ei->socket.state = SS_UNCONNECTED; 317 ei->socket.flags = 0; 318 ei->socket.ops = NULL; 319 ei->socket.sk = NULL; 320 ei->socket.file = NULL; 321 322 return &ei->vfs_inode; 323 } 324 325 static void sock_free_inode(struct inode *inode) 326 { 327 struct socket_alloc *ei; 328 329 ei = container_of(inode, struct socket_alloc, vfs_inode); 330 kmem_cache_free(sock_inode_cachep, ei); 331 } 332 333 static void init_once(void *foo) 334 { 335 struct socket_alloc *ei = (struct socket_alloc *)foo; 336 337 inode_init_once(&ei->vfs_inode); 338 } 339 340 static void init_inodecache(void) 341 { 342 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 343 sizeof(struct socket_alloc), 344 0, 345 (SLAB_HWCACHE_ALIGN | 346 SLAB_RECLAIM_ACCOUNT | 347 SLAB_ACCOUNT), 348 init_once); 349 BUG_ON(sock_inode_cachep == NULL); 350 } 351 352 static const struct super_operations sockfs_ops = { 353 .alloc_inode = sock_alloc_inode, 354 .free_inode = sock_free_inode, 355 .statfs = simple_statfs, 356 }; 357 358 /* 359 * sockfs_dname() is called from d_path(). 360 */ 361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 362 { 363 return dynamic_dname(buffer, buflen, "socket:[%lu]", 364 d_inode(dentry)->i_ino); 365 } 366 367 static const struct dentry_operations sockfs_dentry_operations = { 368 .d_dname = sockfs_dname, 369 }; 370 371 static int sockfs_xattr_get(const struct xattr_handler *handler, 372 struct dentry *dentry, struct inode *inode, 373 const char *suffix, void *value, size_t size) 374 { 375 if (value) { 376 if (dentry->d_name.len + 1 > size) 377 return -ERANGE; 378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 379 } 380 return dentry->d_name.len + 1; 381 } 382 383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 386 387 static const struct xattr_handler sockfs_xattr_handler = { 388 .name = XATTR_NAME_SOCKPROTONAME, 389 .get = sockfs_xattr_get, 390 }; 391 392 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 393 struct mnt_idmap *idmap, 394 struct dentry *dentry, struct inode *inode, 395 const char *suffix, const void *value, 396 size_t size, int flags) 397 { 398 /* Handled by LSM. */ 399 return -EAGAIN; 400 } 401 402 static const struct xattr_handler sockfs_security_xattr_handler = { 403 .prefix = XATTR_SECURITY_PREFIX, 404 .set = sockfs_security_xattr_set, 405 }; 406 407 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 408 &sockfs_xattr_handler, 409 &sockfs_security_xattr_handler, 410 NULL 411 }; 412 413 static int sockfs_init_fs_context(struct fs_context *fc) 414 { 415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 416 if (!ctx) 417 return -ENOMEM; 418 ctx->ops = &sockfs_ops; 419 ctx->dops = &sockfs_dentry_operations; 420 ctx->xattr = sockfs_xattr_handlers; 421 return 0; 422 } 423 424 static struct vfsmount *sock_mnt __read_mostly; 425 426 static struct file_system_type sock_fs_type = { 427 .name = "sockfs", 428 .init_fs_context = sockfs_init_fs_context, 429 .kill_sb = kill_anon_super, 430 }; 431 432 /* 433 * Obtains the first available file descriptor and sets it up for use. 434 * 435 * These functions create file structures and maps them to fd space 436 * of the current process. On success it returns file descriptor 437 * and file struct implicitly stored in sock->file. 438 * Note that another thread may close file descriptor before we return 439 * from this function. We use the fact that now we do not refer 440 * to socket after mapping. If one day we will need it, this 441 * function will increment ref. count on file by 1. 442 * 443 * In any case returned fd MAY BE not valid! 444 * This race condition is unavoidable 445 * with shared fd spaces, we cannot solve it inside kernel, 446 * but we take care of internal coherence yet. 447 */ 448 449 /** 450 * sock_alloc_file - Bind a &socket to a &file 451 * @sock: socket 452 * @flags: file status flags 453 * @dname: protocol name 454 * 455 * Returns the &file bound with @sock, implicitly storing it 456 * in sock->file. If dname is %NULL, sets to "". 457 * 458 * On failure @sock is released, and an ERR pointer is returned. 459 * 460 * This function uses GFP_KERNEL internally. 461 */ 462 463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 464 { 465 struct file *file; 466 467 if (!dname) 468 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 469 470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 471 O_RDWR | (flags & O_NONBLOCK), 472 &socket_file_ops); 473 if (IS_ERR(file)) { 474 sock_release(sock); 475 return file; 476 } 477 478 file->f_mode |= FMODE_NOWAIT; 479 sock->file = file; 480 file->private_data = sock; 481 stream_open(SOCK_INODE(sock), file); 482 /* 483 * Disable permission and pre-content events, but enable legacy 484 * inotify events for legacy users. 485 */ 486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 487 return file; 488 } 489 EXPORT_SYMBOL(sock_alloc_file); 490 491 static int sock_map_fd(struct socket *sock, int flags) 492 { 493 struct file *newfile; 494 int fd = get_unused_fd_flags(flags); 495 if (unlikely(fd < 0)) { 496 sock_release(sock); 497 return fd; 498 } 499 500 newfile = sock_alloc_file(sock, flags, NULL); 501 if (!IS_ERR(newfile)) { 502 fd_install(fd, newfile); 503 return fd; 504 } 505 506 put_unused_fd(fd); 507 return PTR_ERR(newfile); 508 } 509 510 /** 511 * sock_from_file - Return the &socket bounded to @file. 512 * @file: file 513 * 514 * On failure returns %NULL. 515 */ 516 517 struct socket *sock_from_file(struct file *file) 518 { 519 if (likely(file->f_op == &socket_file_ops)) 520 return file->private_data; /* set in sock_alloc_file */ 521 522 return NULL; 523 } 524 EXPORT_SYMBOL(sock_from_file); 525 526 /** 527 * sockfd_lookup - Go from a file number to its socket slot 528 * @fd: file handle 529 * @err: pointer to an error code return 530 * 531 * The file handle passed in is locked and the socket it is bound 532 * to is returned. If an error occurs the err pointer is overwritten 533 * with a negative errno code and NULL is returned. The function checks 534 * for both invalid handles and passing a handle which is not a socket. 535 * 536 * On a success the socket object pointer is returned. 537 */ 538 539 struct socket *sockfd_lookup(int fd, int *err) 540 { 541 struct file *file; 542 struct socket *sock; 543 544 file = fget(fd); 545 if (!file) { 546 *err = -EBADF; 547 return NULL; 548 } 549 550 sock = sock_from_file(file); 551 if (!sock) { 552 *err = -ENOTSOCK; 553 fput(file); 554 } 555 return sock; 556 } 557 EXPORT_SYMBOL(sockfd_lookup); 558 559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 560 size_t size) 561 { 562 ssize_t len; 563 ssize_t used = 0; 564 565 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 566 if (len < 0) 567 return len; 568 used += len; 569 if (buffer) { 570 if (size < used) 571 return -ERANGE; 572 buffer += len; 573 } 574 575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 581 buffer += len; 582 } 583 584 return used; 585 } 586 587 static int sockfs_setattr(struct mnt_idmap *idmap, 588 struct dentry *dentry, struct iattr *iattr) 589 { 590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 591 592 if (!err && (iattr->ia_valid & ATTR_UID)) { 593 struct socket *sock = SOCKET_I(d_inode(dentry)); 594 595 if (sock->sk) { 596 /* Paired with READ_ONCE() in sk_uid() */ 597 WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid); 598 } else { 599 err = -ENOENT; 600 } 601 } 602 603 return err; 604 } 605 606 static const struct inode_operations sockfs_inode_ops = { 607 .listxattr = sockfs_listxattr, 608 .setattr = sockfs_setattr, 609 }; 610 611 /** 612 * sock_alloc - allocate a socket 613 * 614 * Allocate a new inode and socket object. The two are bound together 615 * and initialised. The socket is then returned. If we are out of inodes 616 * NULL is returned. This functions uses GFP_KERNEL internally. 617 */ 618 619 struct socket *sock_alloc(void) 620 { 621 struct inode *inode; 622 struct socket *sock; 623 624 inode = new_inode_pseudo(sock_mnt->mnt_sb); 625 if (!inode) 626 return NULL; 627 628 sock = SOCKET_I(inode); 629 630 inode->i_ino = get_next_ino(); 631 inode->i_mode = S_IFSOCK | S_IRWXUGO; 632 inode->i_uid = current_fsuid(); 633 inode->i_gid = current_fsgid(); 634 inode->i_op = &sockfs_inode_ops; 635 636 return sock; 637 } 638 EXPORT_SYMBOL(sock_alloc); 639 640 static void __sock_release(struct socket *sock, struct inode *inode) 641 { 642 const struct proto_ops *ops = READ_ONCE(sock->ops); 643 644 if (ops) { 645 struct module *owner = ops->owner; 646 647 if (inode) 648 inode_lock(inode); 649 ops->release(sock); 650 sock->sk = NULL; 651 if (inode) 652 inode_unlock(inode); 653 sock->ops = NULL; 654 module_put(owner); 655 } 656 657 if (sock->wq.fasync_list) 658 pr_err("%s: fasync list not empty!\n", __func__); 659 660 if (!sock->file) { 661 iput(SOCK_INODE(sock)); 662 return; 663 } 664 sock->file = NULL; 665 } 666 667 /** 668 * sock_release - close a socket 669 * @sock: socket to close 670 * 671 * The socket is released from the protocol stack if it has a release 672 * callback, and the inode is then released if the socket is bound to 673 * an inode not a file. 674 */ 675 void sock_release(struct socket *sock) 676 { 677 __sock_release(sock, NULL); 678 } 679 EXPORT_SYMBOL(sock_release); 680 681 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 682 { 683 u8 flags = *tx_flags; 684 685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 686 flags |= SKBTX_HW_TSTAMP_NOBPF; 687 688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 689 flags |= SKBTX_SW_TSTAMP; 690 691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 692 flags |= SKBTX_SCHED_TSTAMP; 693 694 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) 695 flags |= SKBTX_COMPLETION_TSTAMP; 696 697 *tx_flags = flags; 698 } 699 EXPORT_SYMBOL(__sock_tx_timestamp); 700 701 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 702 size_t)); 703 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 704 size_t)); 705 706 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 707 int flags) 708 { 709 trace_sock_send_length(sk, ret, 0); 710 } 711 712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 713 { 714 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 715 inet_sendmsg, sock, msg, 716 msg_data_left(msg)); 717 BUG_ON(ret == -EIOCBQUEUED); 718 719 if (trace_sock_send_length_enabled()) 720 call_trace_sock_send_length(sock->sk, ret, 0); 721 return ret; 722 } 723 724 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 725 { 726 int err = security_socket_sendmsg(sock, msg, 727 msg_data_left(msg)); 728 729 return err ?: sock_sendmsg_nosec(sock, msg); 730 } 731 732 /** 733 * sock_sendmsg - send a message through @sock 734 * @sock: socket 735 * @msg: message to send 736 * 737 * Sends @msg through @sock, passing through LSM. 738 * Returns the number of bytes sent, or an error code. 739 */ 740 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 741 { 742 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 743 struct sockaddr_storage address; 744 int save_len = msg->msg_namelen; 745 int ret; 746 747 if (msg->msg_name) { 748 memcpy(&address, msg->msg_name, msg->msg_namelen); 749 msg->msg_name = &address; 750 } 751 752 ret = __sock_sendmsg(sock, msg); 753 msg->msg_name = save_addr; 754 msg->msg_namelen = save_len; 755 756 return ret; 757 } 758 EXPORT_SYMBOL(sock_sendmsg); 759 760 /** 761 * kernel_sendmsg - send a message through @sock (kernel-space) 762 * @sock: socket 763 * @msg: message header 764 * @vec: kernel vec 765 * @num: vec array length 766 * @size: total message data size 767 * 768 * Builds the message data with @vec and sends it through @sock. 769 * Returns the number of bytes sent, or an error code. 770 */ 771 772 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 773 struct kvec *vec, size_t num, size_t size) 774 { 775 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 776 return sock_sendmsg(sock, msg); 777 } 778 EXPORT_SYMBOL(kernel_sendmsg); 779 780 static bool skb_is_err_queue(const struct sk_buff *skb) 781 { 782 /* pkt_type of skbs enqueued on the error queue are set to 783 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 784 * in recvmsg, since skbs received on a local socket will never 785 * have a pkt_type of PACKET_OUTGOING. 786 */ 787 return skb->pkt_type == PACKET_OUTGOING; 788 } 789 790 /* On transmit, software and hardware timestamps are returned independently. 791 * As the two skb clones share the hardware timestamp, which may be updated 792 * before the software timestamp is received, a hardware TX timestamp may be 793 * returned only if there is no software TX timestamp. Ignore false software 794 * timestamps, which may be made in the __sock_recv_timestamp() call when the 795 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 796 * hardware timestamp. 797 */ 798 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 799 { 800 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 801 } 802 803 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 804 { 805 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 806 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 807 struct net_device *orig_dev; 808 ktime_t hwtstamp; 809 810 rcu_read_lock(); 811 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 812 if (orig_dev) { 813 *if_index = orig_dev->ifindex; 814 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 815 } else { 816 hwtstamp = shhwtstamps->hwtstamp; 817 } 818 rcu_read_unlock(); 819 820 return hwtstamp; 821 } 822 823 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 824 int if_index) 825 { 826 struct scm_ts_pktinfo ts_pktinfo; 827 struct net_device *orig_dev; 828 829 if (!skb_mac_header_was_set(skb)) 830 return; 831 832 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 833 834 if (!if_index) { 835 rcu_read_lock(); 836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 837 if (orig_dev) 838 if_index = orig_dev->ifindex; 839 rcu_read_unlock(); 840 } 841 ts_pktinfo.if_index = if_index; 842 843 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 844 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 845 sizeof(ts_pktinfo), &ts_pktinfo); 846 } 847 848 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk) 849 { 850 const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 851 u32 tsflags = READ_ONCE(sk->sk_tsflags); 852 853 if (serr->ee.ee_errno != ENOMSG || 854 serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING) 855 return false; 856 857 /* software time stamp available and wanted */ 858 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp) 859 return true; 860 /* hardware time stamps available and wanted */ 861 return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 862 skb_hwtstamps(skb)->hwtstamp; 863 } 864 865 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 866 struct timespec64 *ts) 867 { 868 u32 tsflags = READ_ONCE(sk->sk_tsflags); 869 ktime_t hwtstamp; 870 int if_index = 0; 871 872 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 873 ktime_to_timespec64_cond(skb->tstamp, ts)) 874 return SOF_TIMESTAMPING_TX_SOFTWARE; 875 876 if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) || 877 skb_is_swtx_tstamp(skb, false)) 878 return -ENOENT; 879 880 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 881 hwtstamp = get_timestamp(sk, skb, &if_index); 882 else 883 hwtstamp = skb_hwtstamps(skb)->hwtstamp; 884 885 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 886 hwtstamp = ptp_convert_timestamp(&hwtstamp, 887 READ_ONCE(sk->sk_bind_phc)); 888 if (!ktime_to_timespec64_cond(hwtstamp, ts)) 889 return -ENOENT; 890 891 return SOF_TIMESTAMPING_TX_HARDWARE; 892 } 893 894 /* 895 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 896 */ 897 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 898 struct sk_buff *skb) 899 { 900 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 901 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 902 struct scm_timestamping_internal tss; 903 int empty = 1, false_tstamp = 0; 904 struct skb_shared_hwtstamps *shhwtstamps = 905 skb_hwtstamps(skb); 906 int if_index; 907 ktime_t hwtstamp; 908 u32 tsflags; 909 910 /* Race occurred between timestamp enabling and packet 911 receiving. Fill in the current time for now. */ 912 if (need_software_tstamp && skb->tstamp == 0) { 913 __net_timestamp(skb); 914 false_tstamp = 1; 915 } 916 917 if (need_software_tstamp) { 918 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 919 if (new_tstamp) { 920 struct __kernel_sock_timeval tv; 921 922 skb_get_new_timestamp(skb, &tv); 923 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 924 sizeof(tv), &tv); 925 } else { 926 struct __kernel_old_timeval tv; 927 928 skb_get_timestamp(skb, &tv); 929 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 930 sizeof(tv), &tv); 931 } 932 } else { 933 if (new_tstamp) { 934 struct __kernel_timespec ts; 935 936 skb_get_new_timestampns(skb, &ts); 937 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 938 sizeof(ts), &ts); 939 } else { 940 struct __kernel_old_timespec ts; 941 942 skb_get_timestampns(skb, &ts); 943 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 944 sizeof(ts), &ts); 945 } 946 } 947 } 948 949 memset(&tss, 0, sizeof(tss)); 950 tsflags = READ_ONCE(sk->sk_tsflags); 951 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 952 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 953 skb_is_err_queue(skb) || 954 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 955 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 956 empty = 0; 957 if (shhwtstamps && 958 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 959 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 960 skb_is_err_queue(skb) || 961 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 962 !skb_is_swtx_tstamp(skb, false_tstamp)) { 963 if_index = 0; 964 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 965 hwtstamp = get_timestamp(sk, skb, &if_index); 966 else 967 hwtstamp = shhwtstamps->hwtstamp; 968 969 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 970 hwtstamp = ptp_convert_timestamp(&hwtstamp, 971 READ_ONCE(sk->sk_bind_phc)); 972 973 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 974 empty = 0; 975 976 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 977 !skb_is_err_queue(skb)) 978 put_ts_pktinfo(msg, skb, if_index); 979 } 980 } 981 if (!empty) { 982 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 983 put_cmsg_scm_timestamping64(msg, &tss); 984 else 985 put_cmsg_scm_timestamping(msg, &tss); 986 987 if (skb_is_err_queue(skb) && skb->len && 988 SKB_EXT_ERR(skb)->opt_stats) 989 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 990 skb->len, skb->data); 991 } 992 } 993 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 994 995 #ifdef CONFIG_WIRELESS 996 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 997 struct sk_buff *skb) 998 { 999 int ack; 1000 1001 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 1002 return; 1003 if (!skb->wifi_acked_valid) 1004 return; 1005 1006 ack = skb->wifi_acked; 1007 1008 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1009 } 1010 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1011 #endif 1012 1013 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1014 struct sk_buff *skb) 1015 { 1016 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1017 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1018 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1019 } 1020 1021 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1022 struct sk_buff *skb) 1023 { 1024 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1025 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1026 __u32 mark = skb->mark; 1027 1028 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1029 } 1030 } 1031 1032 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 1033 struct sk_buff *skb) 1034 { 1035 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 1036 __u32 priority = skb->priority; 1037 1038 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 1039 } 1040 } 1041 1042 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1043 struct sk_buff *skb) 1044 { 1045 sock_recv_timestamp(msg, sk, skb); 1046 sock_recv_drops(msg, sk, skb); 1047 sock_recv_mark(msg, sk, skb); 1048 sock_recv_priority(msg, sk, skb); 1049 } 1050 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1051 1052 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1053 size_t, int)); 1054 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1055 size_t, int)); 1056 1057 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1058 { 1059 trace_sock_recv_length(sk, ret, flags); 1060 } 1061 1062 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1063 int flags) 1064 { 1065 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1066 inet6_recvmsg, 1067 inet_recvmsg, sock, msg, 1068 msg_data_left(msg), flags); 1069 if (trace_sock_recv_length_enabled()) 1070 call_trace_sock_recv_length(sock->sk, ret, flags); 1071 return ret; 1072 } 1073 1074 /** 1075 * sock_recvmsg - receive a message from @sock 1076 * @sock: socket 1077 * @msg: message to receive 1078 * @flags: message flags 1079 * 1080 * Receives @msg from @sock, passing through LSM. Returns the total number 1081 * of bytes received, or an error. 1082 */ 1083 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1084 { 1085 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1086 1087 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1088 } 1089 EXPORT_SYMBOL(sock_recvmsg); 1090 1091 /** 1092 * kernel_recvmsg - Receive a message from a socket (kernel space) 1093 * @sock: The socket to receive the message from 1094 * @msg: Received message 1095 * @vec: Input s/g array for message data 1096 * @num: Size of input s/g array 1097 * @size: Number of bytes to read 1098 * @flags: Message flags (MSG_DONTWAIT, etc...) 1099 * 1100 * On return the msg structure contains the scatter/gather array passed in the 1101 * vec argument. The array is modified so that it consists of the unfilled 1102 * portion of the original array. 1103 * 1104 * The returned value is the total number of bytes received, or an error. 1105 */ 1106 1107 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1108 struct kvec *vec, size_t num, size_t size, int flags) 1109 { 1110 msg->msg_control_is_user = false; 1111 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1112 return sock_recvmsg(sock, msg, flags); 1113 } 1114 EXPORT_SYMBOL(kernel_recvmsg); 1115 1116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1117 struct pipe_inode_info *pipe, size_t len, 1118 unsigned int flags) 1119 { 1120 struct socket *sock = file->private_data; 1121 const struct proto_ops *ops; 1122 1123 ops = READ_ONCE(sock->ops); 1124 if (unlikely(!ops->splice_read)) 1125 return copy_splice_read(file, ppos, pipe, len, flags); 1126 1127 return ops->splice_read(sock, ppos, pipe, len, flags); 1128 } 1129 1130 static void sock_splice_eof(struct file *file) 1131 { 1132 struct socket *sock = file->private_data; 1133 const struct proto_ops *ops; 1134 1135 ops = READ_ONCE(sock->ops); 1136 if (ops->splice_eof) 1137 ops->splice_eof(sock); 1138 } 1139 1140 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1141 { 1142 struct file *file = iocb->ki_filp; 1143 struct socket *sock = file->private_data; 1144 struct msghdr msg = {.msg_iter = *to, 1145 .msg_iocb = iocb}; 1146 ssize_t res; 1147 1148 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1149 msg.msg_flags = MSG_DONTWAIT; 1150 1151 if (iocb->ki_pos != 0) 1152 return -ESPIPE; 1153 1154 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1155 return 0; 1156 1157 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1158 *to = msg.msg_iter; 1159 return res; 1160 } 1161 1162 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1163 { 1164 struct file *file = iocb->ki_filp; 1165 struct socket *sock = file->private_data; 1166 struct msghdr msg = {.msg_iter = *from, 1167 .msg_iocb = iocb}; 1168 ssize_t res; 1169 1170 if (iocb->ki_pos != 0) 1171 return -ESPIPE; 1172 1173 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1174 msg.msg_flags = MSG_DONTWAIT; 1175 1176 if (sock->type == SOCK_SEQPACKET) 1177 msg.msg_flags |= MSG_EOR; 1178 1179 res = __sock_sendmsg(sock, &msg); 1180 *from = msg.msg_iter; 1181 return res; 1182 } 1183 1184 /* 1185 * Atomic setting of ioctl hooks to avoid race 1186 * with module unload. 1187 */ 1188 1189 static DEFINE_MUTEX(br_ioctl_mutex); 1190 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, 1191 void __user *uarg); 1192 1193 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, 1194 void __user *uarg)) 1195 { 1196 mutex_lock(&br_ioctl_mutex); 1197 br_ioctl_hook = hook; 1198 mutex_unlock(&br_ioctl_mutex); 1199 } 1200 EXPORT_SYMBOL(brioctl_set); 1201 1202 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) 1203 { 1204 int err = -ENOPKG; 1205 1206 if (!br_ioctl_hook) 1207 request_module("bridge"); 1208 1209 mutex_lock(&br_ioctl_mutex); 1210 if (br_ioctl_hook) 1211 err = br_ioctl_hook(net, cmd, uarg); 1212 mutex_unlock(&br_ioctl_mutex); 1213 1214 return err; 1215 } 1216 1217 static DEFINE_MUTEX(vlan_ioctl_mutex); 1218 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1219 1220 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1221 { 1222 mutex_lock(&vlan_ioctl_mutex); 1223 vlan_ioctl_hook = hook; 1224 mutex_unlock(&vlan_ioctl_mutex); 1225 } 1226 EXPORT_SYMBOL(vlan_ioctl_set); 1227 1228 static long sock_do_ioctl(struct net *net, struct socket *sock, 1229 unsigned int cmd, unsigned long arg) 1230 { 1231 const struct proto_ops *ops = READ_ONCE(sock->ops); 1232 struct ifreq ifr; 1233 bool need_copyout; 1234 int err; 1235 void __user *argp = (void __user *)arg; 1236 void __user *data; 1237 1238 err = ops->ioctl(sock, cmd, arg); 1239 1240 /* 1241 * If this ioctl is unknown try to hand it down 1242 * to the NIC driver. 1243 */ 1244 if (err != -ENOIOCTLCMD) 1245 return err; 1246 1247 if (!is_socket_ioctl_cmd(cmd)) 1248 return -ENOTTY; 1249 1250 if (get_user_ifreq(&ifr, &data, argp)) 1251 return -EFAULT; 1252 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1253 if (!err && need_copyout) 1254 if (put_user_ifreq(&ifr, argp)) 1255 return -EFAULT; 1256 1257 return err; 1258 } 1259 1260 /* 1261 * With an ioctl, arg may well be a user mode pointer, but we don't know 1262 * what to do with it - that's up to the protocol still. 1263 */ 1264 1265 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1266 { 1267 const struct proto_ops *ops; 1268 struct socket *sock; 1269 struct sock *sk; 1270 void __user *argp = (void __user *)arg; 1271 int pid, err; 1272 struct net *net; 1273 1274 sock = file->private_data; 1275 ops = READ_ONCE(sock->ops); 1276 sk = sock->sk; 1277 net = sock_net(sk); 1278 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1279 struct ifreq ifr; 1280 void __user *data; 1281 bool need_copyout; 1282 if (get_user_ifreq(&ifr, &data, argp)) 1283 return -EFAULT; 1284 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1285 if (!err && need_copyout) 1286 if (put_user_ifreq(&ifr, argp)) 1287 return -EFAULT; 1288 } else 1289 #ifdef CONFIG_WEXT_CORE 1290 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1291 err = wext_handle_ioctl(net, cmd, argp); 1292 } else 1293 #endif 1294 switch (cmd) { 1295 case FIOSETOWN: 1296 case SIOCSPGRP: 1297 err = -EFAULT; 1298 if (get_user(pid, (int __user *)argp)) 1299 break; 1300 err = f_setown(sock->file, pid, 1); 1301 break; 1302 case FIOGETOWN: 1303 case SIOCGPGRP: 1304 err = put_user(f_getown(sock->file), 1305 (int __user *)argp); 1306 break; 1307 case SIOCGIFBR: 1308 case SIOCSIFBR: 1309 case SIOCBRADDBR: 1310 case SIOCBRDELBR: 1311 case SIOCBRADDIF: 1312 case SIOCBRDELIF: 1313 err = br_ioctl_call(net, cmd, argp); 1314 break; 1315 case SIOCGIFVLAN: 1316 case SIOCSIFVLAN: 1317 err = -ENOPKG; 1318 if (!vlan_ioctl_hook) 1319 request_module("8021q"); 1320 1321 mutex_lock(&vlan_ioctl_mutex); 1322 if (vlan_ioctl_hook) 1323 err = vlan_ioctl_hook(net, argp); 1324 mutex_unlock(&vlan_ioctl_mutex); 1325 break; 1326 case SIOCGSKNS: 1327 err = -EPERM; 1328 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1329 break; 1330 1331 err = open_related_ns(&net->ns, get_net_ns); 1332 break; 1333 case SIOCGSTAMP_OLD: 1334 case SIOCGSTAMPNS_OLD: 1335 if (!ops->gettstamp) { 1336 err = -ENOIOCTLCMD; 1337 break; 1338 } 1339 err = ops->gettstamp(sock, argp, 1340 cmd == SIOCGSTAMP_OLD, 1341 !IS_ENABLED(CONFIG_64BIT)); 1342 break; 1343 case SIOCGSTAMP_NEW: 1344 case SIOCGSTAMPNS_NEW: 1345 if (!ops->gettstamp) { 1346 err = -ENOIOCTLCMD; 1347 break; 1348 } 1349 err = ops->gettstamp(sock, argp, 1350 cmd == SIOCGSTAMP_NEW, 1351 false); 1352 break; 1353 1354 case SIOCGIFCONF: 1355 err = dev_ifconf(net, argp); 1356 break; 1357 1358 default: 1359 err = sock_do_ioctl(net, sock, cmd, arg); 1360 break; 1361 } 1362 return err; 1363 } 1364 1365 /** 1366 * sock_create_lite - creates a socket 1367 * @family: protocol family (AF_INET, ...) 1368 * @type: communication type (SOCK_STREAM, ...) 1369 * @protocol: protocol (0, ...) 1370 * @res: new socket 1371 * 1372 * Creates a new socket and assigns it to @res, passing through LSM. 1373 * The new socket initialization is not complete, see kernel_accept(). 1374 * Returns 0 or an error. On failure @res is set to %NULL. 1375 * This function internally uses GFP_KERNEL. 1376 */ 1377 1378 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1379 { 1380 int err; 1381 struct socket *sock = NULL; 1382 1383 err = security_socket_create(family, type, protocol, 1); 1384 if (err) 1385 goto out; 1386 1387 sock = sock_alloc(); 1388 if (!sock) { 1389 err = -ENOMEM; 1390 goto out; 1391 } 1392 1393 sock->type = type; 1394 err = security_socket_post_create(sock, family, type, protocol, 1); 1395 if (err) 1396 goto out_release; 1397 1398 out: 1399 *res = sock; 1400 return err; 1401 out_release: 1402 sock_release(sock); 1403 sock = NULL; 1404 goto out; 1405 } 1406 EXPORT_SYMBOL(sock_create_lite); 1407 1408 /* No kernel lock held - perfect */ 1409 static __poll_t sock_poll(struct file *file, poll_table *wait) 1410 { 1411 struct socket *sock = file->private_data; 1412 const struct proto_ops *ops = READ_ONCE(sock->ops); 1413 __poll_t events = poll_requested_events(wait), flag = 0; 1414 1415 if (!ops->poll) 1416 return 0; 1417 1418 if (sk_can_busy_loop(sock->sk)) { 1419 /* poll once if requested by the syscall */ 1420 if (events & POLL_BUSY_LOOP) 1421 sk_busy_loop(sock->sk, 1); 1422 1423 /* if this socket can poll_ll, tell the system call */ 1424 flag = POLL_BUSY_LOOP; 1425 } 1426 1427 return ops->poll(file, sock, wait) | flag; 1428 } 1429 1430 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1431 { 1432 struct socket *sock = file->private_data; 1433 1434 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1435 } 1436 1437 static int sock_close(struct inode *inode, struct file *filp) 1438 { 1439 __sock_release(SOCKET_I(inode), inode); 1440 return 0; 1441 } 1442 1443 /* 1444 * Update the socket async list 1445 * 1446 * Fasync_list locking strategy. 1447 * 1448 * 1. fasync_list is modified only under process context socket lock 1449 * i.e. under semaphore. 1450 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1451 * or under socket lock 1452 */ 1453 1454 static int sock_fasync(int fd, struct file *filp, int on) 1455 { 1456 struct socket *sock = filp->private_data; 1457 struct sock *sk = sock->sk; 1458 struct socket_wq *wq = &sock->wq; 1459 1460 if (sk == NULL) 1461 return -EINVAL; 1462 1463 lock_sock(sk); 1464 fasync_helper(fd, filp, on, &wq->fasync_list); 1465 1466 if (!wq->fasync_list) 1467 sock_reset_flag(sk, SOCK_FASYNC); 1468 else 1469 sock_set_flag(sk, SOCK_FASYNC); 1470 1471 release_sock(sk); 1472 return 0; 1473 } 1474 1475 /* This function may be called only under rcu_lock */ 1476 1477 int sock_wake_async(struct socket_wq *wq, int how, int band) 1478 { 1479 if (!wq || !wq->fasync_list) 1480 return -1; 1481 1482 switch (how) { 1483 case SOCK_WAKE_WAITD: 1484 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1485 break; 1486 goto call_kill; 1487 case SOCK_WAKE_SPACE: 1488 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1489 break; 1490 fallthrough; 1491 case SOCK_WAKE_IO: 1492 call_kill: 1493 kill_fasync(&wq->fasync_list, SIGIO, band); 1494 break; 1495 case SOCK_WAKE_URG: 1496 kill_fasync(&wq->fasync_list, SIGURG, band); 1497 } 1498 1499 return 0; 1500 } 1501 EXPORT_SYMBOL(sock_wake_async); 1502 1503 /** 1504 * __sock_create - creates a socket 1505 * @net: net namespace 1506 * @family: protocol family (AF_INET, ...) 1507 * @type: communication type (SOCK_STREAM, ...) 1508 * @protocol: protocol (0, ...) 1509 * @res: new socket 1510 * @kern: boolean for kernel space sockets 1511 * 1512 * Creates a new socket and assigns it to @res, passing through LSM. 1513 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1514 * be set to true if the socket resides in kernel space. 1515 * This function internally uses GFP_KERNEL. 1516 */ 1517 1518 int __sock_create(struct net *net, int family, int type, int protocol, 1519 struct socket **res, int kern) 1520 { 1521 int err; 1522 struct socket *sock; 1523 const struct net_proto_family *pf; 1524 1525 /* 1526 * Check protocol is in range 1527 */ 1528 if (family < 0 || family >= NPROTO) 1529 return -EAFNOSUPPORT; 1530 if (type < 0 || type >= SOCK_MAX) 1531 return -EINVAL; 1532 1533 /* Compatibility. 1534 1535 This uglymoron is moved from INET layer to here to avoid 1536 deadlock in module load. 1537 */ 1538 if (family == PF_INET && type == SOCK_PACKET) { 1539 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1540 current->comm); 1541 family = PF_PACKET; 1542 } 1543 1544 err = security_socket_create(family, type, protocol, kern); 1545 if (err) 1546 return err; 1547 1548 /* 1549 * Allocate the socket and allow the family to set things up. if 1550 * the protocol is 0, the family is instructed to select an appropriate 1551 * default. 1552 */ 1553 sock = sock_alloc(); 1554 if (!sock) { 1555 net_warn_ratelimited("socket: no more sockets\n"); 1556 return -ENFILE; /* Not exactly a match, but its the 1557 closest posix thing */ 1558 } 1559 1560 sock->type = type; 1561 1562 #ifdef CONFIG_MODULES 1563 /* Attempt to load a protocol module if the find failed. 1564 * 1565 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1566 * requested real, full-featured networking support upon configuration. 1567 * Otherwise module support will break! 1568 */ 1569 if (rcu_access_pointer(net_families[family]) == NULL) 1570 request_module("net-pf-%d", family); 1571 #endif 1572 1573 rcu_read_lock(); 1574 pf = rcu_dereference(net_families[family]); 1575 err = -EAFNOSUPPORT; 1576 if (!pf) 1577 goto out_release; 1578 1579 /* 1580 * We will call the ->create function, that possibly is in a loadable 1581 * module, so we have to bump that loadable module refcnt first. 1582 */ 1583 if (!try_module_get(pf->owner)) 1584 goto out_release; 1585 1586 /* Now protected by module ref count */ 1587 rcu_read_unlock(); 1588 1589 err = pf->create(net, sock, protocol, kern); 1590 if (err < 0) { 1591 /* ->create should release the allocated sock->sk object on error 1592 * and make sure sock->sk is set to NULL to avoid use-after-free 1593 */ 1594 DEBUG_NET_WARN_ONCE(sock->sk, 1595 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1596 pf->create, family, type, protocol); 1597 goto out_module_put; 1598 } 1599 1600 /* 1601 * Now to bump the refcnt of the [loadable] module that owns this 1602 * socket at sock_release time we decrement its refcnt. 1603 */ 1604 if (!try_module_get(sock->ops->owner)) 1605 goto out_module_busy; 1606 1607 /* 1608 * Now that we're done with the ->create function, the [loadable] 1609 * module can have its refcnt decremented 1610 */ 1611 module_put(pf->owner); 1612 err = security_socket_post_create(sock, family, type, protocol, kern); 1613 if (err) 1614 goto out_sock_release; 1615 *res = sock; 1616 1617 return 0; 1618 1619 out_module_busy: 1620 err = -EAFNOSUPPORT; 1621 out_module_put: 1622 sock->ops = NULL; 1623 module_put(pf->owner); 1624 out_sock_release: 1625 sock_release(sock); 1626 return err; 1627 1628 out_release: 1629 rcu_read_unlock(); 1630 goto out_sock_release; 1631 } 1632 EXPORT_SYMBOL(__sock_create); 1633 1634 /** 1635 * sock_create - creates a socket 1636 * @family: protocol family (AF_INET, ...) 1637 * @type: communication type (SOCK_STREAM, ...) 1638 * @protocol: protocol (0, ...) 1639 * @res: new socket 1640 * 1641 * A wrapper around __sock_create(). 1642 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1643 */ 1644 1645 int sock_create(int family, int type, int protocol, struct socket **res) 1646 { 1647 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1648 } 1649 EXPORT_SYMBOL(sock_create); 1650 1651 /** 1652 * sock_create_kern - creates a socket (kernel space) 1653 * @net: net namespace 1654 * @family: protocol family (AF_INET, ...) 1655 * @type: communication type (SOCK_STREAM, ...) 1656 * @protocol: protocol (0, ...) 1657 * @res: new socket 1658 * 1659 * A wrapper around __sock_create(). 1660 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1661 */ 1662 1663 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1664 { 1665 return __sock_create(net, family, type, protocol, res, 1); 1666 } 1667 EXPORT_SYMBOL(sock_create_kern); 1668 1669 static struct socket *__sys_socket_create(int family, int type, int protocol) 1670 { 1671 struct socket *sock; 1672 int retval; 1673 1674 /* Check the SOCK_* constants for consistency. */ 1675 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1676 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1677 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1678 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1679 1680 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1681 return ERR_PTR(-EINVAL); 1682 type &= SOCK_TYPE_MASK; 1683 1684 retval = sock_create(family, type, protocol, &sock); 1685 if (retval < 0) 1686 return ERR_PTR(retval); 1687 1688 return sock; 1689 } 1690 1691 struct file *__sys_socket_file(int family, int type, int protocol) 1692 { 1693 struct socket *sock; 1694 int flags; 1695 1696 sock = __sys_socket_create(family, type, protocol); 1697 if (IS_ERR(sock)) 1698 return ERR_CAST(sock); 1699 1700 flags = type & ~SOCK_TYPE_MASK; 1701 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1702 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1703 1704 return sock_alloc_file(sock, flags, NULL); 1705 } 1706 1707 /* A hook for bpf progs to attach to and update socket protocol. 1708 * 1709 * A static noinline declaration here could cause the compiler to 1710 * optimize away the function. A global noinline declaration will 1711 * keep the definition, but may optimize away the callsite. 1712 * Therefore, __weak is needed to ensure that the call is still 1713 * emitted, by telling the compiler that we don't know what the 1714 * function might eventually be. 1715 */ 1716 1717 __bpf_hook_start(); 1718 1719 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1720 { 1721 return protocol; 1722 } 1723 1724 __bpf_hook_end(); 1725 1726 int __sys_socket(int family, int type, int protocol) 1727 { 1728 struct socket *sock; 1729 int flags; 1730 1731 sock = __sys_socket_create(family, type, 1732 update_socket_protocol(family, type, protocol)); 1733 if (IS_ERR(sock)) 1734 return PTR_ERR(sock); 1735 1736 flags = type & ~SOCK_TYPE_MASK; 1737 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1738 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1739 1740 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1741 } 1742 1743 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1744 { 1745 return __sys_socket(family, type, protocol); 1746 } 1747 1748 /* 1749 * Create a pair of connected sockets. 1750 */ 1751 1752 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1753 { 1754 struct socket *sock1, *sock2; 1755 int fd1, fd2, err; 1756 struct file *newfile1, *newfile2; 1757 int flags; 1758 1759 flags = type & ~SOCK_TYPE_MASK; 1760 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1761 return -EINVAL; 1762 type &= SOCK_TYPE_MASK; 1763 1764 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1765 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1766 1767 /* 1768 * reserve descriptors and make sure we won't fail 1769 * to return them to userland. 1770 */ 1771 fd1 = get_unused_fd_flags(flags); 1772 if (unlikely(fd1 < 0)) 1773 return fd1; 1774 1775 fd2 = get_unused_fd_flags(flags); 1776 if (unlikely(fd2 < 0)) { 1777 put_unused_fd(fd1); 1778 return fd2; 1779 } 1780 1781 err = put_user(fd1, &usockvec[0]); 1782 if (err) 1783 goto out; 1784 1785 err = put_user(fd2, &usockvec[1]); 1786 if (err) 1787 goto out; 1788 1789 /* 1790 * Obtain the first socket and check if the underlying protocol 1791 * supports the socketpair call. 1792 */ 1793 1794 err = sock_create(family, type, protocol, &sock1); 1795 if (unlikely(err < 0)) 1796 goto out; 1797 1798 err = sock_create(family, type, protocol, &sock2); 1799 if (unlikely(err < 0)) { 1800 sock_release(sock1); 1801 goto out; 1802 } 1803 1804 err = security_socket_socketpair(sock1, sock2); 1805 if (unlikely(err)) { 1806 sock_release(sock2); 1807 sock_release(sock1); 1808 goto out; 1809 } 1810 1811 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1812 if (unlikely(err < 0)) { 1813 sock_release(sock2); 1814 sock_release(sock1); 1815 goto out; 1816 } 1817 1818 newfile1 = sock_alloc_file(sock1, flags, NULL); 1819 if (IS_ERR(newfile1)) { 1820 err = PTR_ERR(newfile1); 1821 sock_release(sock2); 1822 goto out; 1823 } 1824 1825 newfile2 = sock_alloc_file(sock2, flags, NULL); 1826 if (IS_ERR(newfile2)) { 1827 err = PTR_ERR(newfile2); 1828 fput(newfile1); 1829 goto out; 1830 } 1831 1832 audit_fd_pair(fd1, fd2); 1833 1834 fd_install(fd1, newfile1); 1835 fd_install(fd2, newfile2); 1836 return 0; 1837 1838 out: 1839 put_unused_fd(fd2); 1840 put_unused_fd(fd1); 1841 return err; 1842 } 1843 1844 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1845 int __user *, usockvec) 1846 { 1847 return __sys_socketpair(family, type, protocol, usockvec); 1848 } 1849 1850 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1851 int addrlen) 1852 { 1853 int err; 1854 1855 err = security_socket_bind(sock, (struct sockaddr *)address, 1856 addrlen); 1857 if (!err) 1858 err = READ_ONCE(sock->ops)->bind(sock, 1859 (struct sockaddr *)address, 1860 addrlen); 1861 return err; 1862 } 1863 1864 /* 1865 * Bind a name to a socket. Nothing much to do here since it's 1866 * the protocol's responsibility to handle the local address. 1867 * 1868 * We move the socket address to kernel space before we call 1869 * the protocol layer (having also checked the address is ok). 1870 */ 1871 1872 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1873 { 1874 struct socket *sock; 1875 struct sockaddr_storage address; 1876 CLASS(fd, f)(fd); 1877 int err; 1878 1879 if (fd_empty(f)) 1880 return -EBADF; 1881 sock = sock_from_file(fd_file(f)); 1882 if (unlikely(!sock)) 1883 return -ENOTSOCK; 1884 1885 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1886 if (unlikely(err)) 1887 return err; 1888 1889 return __sys_bind_socket(sock, &address, addrlen); 1890 } 1891 1892 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1893 { 1894 return __sys_bind(fd, umyaddr, addrlen); 1895 } 1896 1897 /* 1898 * Perform a listen. Basically, we allow the protocol to do anything 1899 * necessary for a listen, and if that works, we mark the socket as 1900 * ready for listening. 1901 */ 1902 int __sys_listen_socket(struct socket *sock, int backlog) 1903 { 1904 int somaxconn, err; 1905 1906 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1907 if ((unsigned int)backlog > somaxconn) 1908 backlog = somaxconn; 1909 1910 err = security_socket_listen(sock, backlog); 1911 if (!err) 1912 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1913 return err; 1914 } 1915 1916 int __sys_listen(int fd, int backlog) 1917 { 1918 CLASS(fd, f)(fd); 1919 struct socket *sock; 1920 1921 if (fd_empty(f)) 1922 return -EBADF; 1923 sock = sock_from_file(fd_file(f)); 1924 if (unlikely(!sock)) 1925 return -ENOTSOCK; 1926 1927 return __sys_listen_socket(sock, backlog); 1928 } 1929 1930 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1931 { 1932 return __sys_listen(fd, backlog); 1933 } 1934 1935 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1936 struct sockaddr __user *upeer_sockaddr, 1937 int __user *upeer_addrlen, int flags) 1938 { 1939 struct socket *sock, *newsock; 1940 struct file *newfile; 1941 int err, len; 1942 struct sockaddr_storage address; 1943 const struct proto_ops *ops; 1944 1945 sock = sock_from_file(file); 1946 if (!sock) 1947 return ERR_PTR(-ENOTSOCK); 1948 1949 newsock = sock_alloc(); 1950 if (!newsock) 1951 return ERR_PTR(-ENFILE); 1952 ops = READ_ONCE(sock->ops); 1953 1954 newsock->type = sock->type; 1955 newsock->ops = ops; 1956 1957 /* 1958 * We don't need try_module_get here, as the listening socket (sock) 1959 * has the protocol module (sock->ops->owner) held. 1960 */ 1961 __module_get(ops->owner); 1962 1963 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1964 if (IS_ERR(newfile)) 1965 return newfile; 1966 1967 err = security_socket_accept(sock, newsock); 1968 if (err) 1969 goto out_fd; 1970 1971 arg->flags |= sock->file->f_flags; 1972 err = ops->accept(sock, newsock, arg); 1973 if (err < 0) 1974 goto out_fd; 1975 1976 if (upeer_sockaddr) { 1977 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1978 if (len < 0) { 1979 err = -ECONNABORTED; 1980 goto out_fd; 1981 } 1982 err = move_addr_to_user(&address, 1983 len, upeer_sockaddr, upeer_addrlen); 1984 if (err < 0) 1985 goto out_fd; 1986 } 1987 1988 /* File flags are not inherited via accept() unlike another OSes. */ 1989 return newfile; 1990 out_fd: 1991 fput(newfile); 1992 return ERR_PTR(err); 1993 } 1994 1995 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1996 int __user *upeer_addrlen, int flags) 1997 { 1998 struct proto_accept_arg arg = { }; 1999 struct file *newfile; 2000 int newfd; 2001 2002 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 2003 return -EINVAL; 2004 2005 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 2006 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 2007 2008 newfd = get_unused_fd_flags(flags); 2009 if (unlikely(newfd < 0)) 2010 return newfd; 2011 2012 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 2013 flags); 2014 if (IS_ERR(newfile)) { 2015 put_unused_fd(newfd); 2016 return PTR_ERR(newfile); 2017 } 2018 fd_install(newfd, newfile); 2019 return newfd; 2020 } 2021 2022 /* 2023 * For accept, we attempt to create a new socket, set up the link 2024 * with the client, wake up the client, then return the new 2025 * connected fd. We collect the address of the connector in kernel 2026 * space and move it to user at the very end. This is unclean because 2027 * we open the socket then return an error. 2028 * 2029 * 1003.1g adds the ability to recvmsg() to query connection pending 2030 * status to recvmsg. We need to add that support in a way thats 2031 * clean when we restructure accept also. 2032 */ 2033 2034 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2035 int __user *upeer_addrlen, int flags) 2036 { 2037 CLASS(fd, f)(fd); 2038 2039 if (fd_empty(f)) 2040 return -EBADF; 2041 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2042 upeer_addrlen, flags); 2043 } 2044 2045 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2046 int __user *, upeer_addrlen, int, flags) 2047 { 2048 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2049 } 2050 2051 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2052 int __user *, upeer_addrlen) 2053 { 2054 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2055 } 2056 2057 /* 2058 * Attempt to connect to a socket with the server address. The address 2059 * is in user space so we verify it is OK and move it to kernel space. 2060 * 2061 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2062 * break bindings 2063 * 2064 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2065 * other SEQPACKET protocols that take time to connect() as it doesn't 2066 * include the -EINPROGRESS status for such sockets. 2067 */ 2068 2069 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2070 int addrlen, int file_flags) 2071 { 2072 struct socket *sock; 2073 int err; 2074 2075 sock = sock_from_file(file); 2076 if (!sock) { 2077 err = -ENOTSOCK; 2078 goto out; 2079 } 2080 2081 err = 2082 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2083 if (err) 2084 goto out; 2085 2086 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2087 addrlen, sock->file->f_flags | file_flags); 2088 out: 2089 return err; 2090 } 2091 2092 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2093 { 2094 struct sockaddr_storage address; 2095 CLASS(fd, f)(fd); 2096 int ret; 2097 2098 if (fd_empty(f)) 2099 return -EBADF; 2100 2101 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2102 if (ret) 2103 return ret; 2104 2105 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2106 } 2107 2108 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2109 int, addrlen) 2110 { 2111 return __sys_connect(fd, uservaddr, addrlen); 2112 } 2113 2114 /* 2115 * Get the local address ('name') of a socket object. Move the obtained 2116 * name to user space. 2117 */ 2118 2119 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2120 int __user *usockaddr_len) 2121 { 2122 struct socket *sock; 2123 struct sockaddr_storage address; 2124 CLASS(fd, f)(fd); 2125 int err; 2126 2127 if (fd_empty(f)) 2128 return -EBADF; 2129 sock = sock_from_file(fd_file(f)); 2130 if (unlikely(!sock)) 2131 return -ENOTSOCK; 2132 2133 err = security_socket_getsockname(sock); 2134 if (err) 2135 return err; 2136 2137 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2138 if (err < 0) 2139 return err; 2140 2141 /* "err" is actually length in this case */ 2142 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2143 } 2144 2145 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2146 int __user *, usockaddr_len) 2147 { 2148 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2149 } 2150 2151 /* 2152 * Get the remote address ('name') of a socket object. Move the obtained 2153 * name to user space. 2154 */ 2155 2156 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2157 int __user *usockaddr_len) 2158 { 2159 struct socket *sock; 2160 struct sockaddr_storage address; 2161 CLASS(fd, f)(fd); 2162 int err; 2163 2164 if (fd_empty(f)) 2165 return -EBADF; 2166 sock = sock_from_file(fd_file(f)); 2167 if (unlikely(!sock)) 2168 return -ENOTSOCK; 2169 2170 err = security_socket_getpeername(sock); 2171 if (err) 2172 return err; 2173 2174 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2175 if (err < 0) 2176 return err; 2177 2178 /* "err" is actually length in this case */ 2179 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2180 } 2181 2182 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2183 int __user *, usockaddr_len) 2184 { 2185 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2186 } 2187 2188 /* 2189 * Send a datagram to a given address. We move the address into kernel 2190 * space and check the user space data area is readable before invoking 2191 * the protocol. 2192 */ 2193 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2194 struct sockaddr __user *addr, int addr_len) 2195 { 2196 struct socket *sock; 2197 struct sockaddr_storage address; 2198 int err; 2199 struct msghdr msg; 2200 2201 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2202 if (unlikely(err)) 2203 return err; 2204 2205 CLASS(fd, f)(fd); 2206 if (fd_empty(f)) 2207 return -EBADF; 2208 sock = sock_from_file(fd_file(f)); 2209 if (unlikely(!sock)) 2210 return -ENOTSOCK; 2211 2212 msg.msg_name = NULL; 2213 msg.msg_control = NULL; 2214 msg.msg_controllen = 0; 2215 msg.msg_namelen = 0; 2216 msg.msg_ubuf = NULL; 2217 if (addr) { 2218 err = move_addr_to_kernel(addr, addr_len, &address); 2219 if (err < 0) 2220 return err; 2221 msg.msg_name = (struct sockaddr *)&address; 2222 msg.msg_namelen = addr_len; 2223 } 2224 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2225 if (sock->file->f_flags & O_NONBLOCK) 2226 flags |= MSG_DONTWAIT; 2227 msg.msg_flags = flags; 2228 return __sock_sendmsg(sock, &msg); 2229 } 2230 2231 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2232 unsigned int, flags, struct sockaddr __user *, addr, 2233 int, addr_len) 2234 { 2235 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2236 } 2237 2238 /* 2239 * Send a datagram down a socket. 2240 */ 2241 2242 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2243 unsigned int, flags) 2244 { 2245 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2246 } 2247 2248 /* 2249 * Receive a frame from the socket and optionally record the address of the 2250 * sender. We verify the buffers are writable and if needed move the 2251 * sender address from kernel to user space. 2252 */ 2253 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2254 struct sockaddr __user *addr, int __user *addr_len) 2255 { 2256 struct sockaddr_storage address; 2257 struct msghdr msg = { 2258 /* Save some cycles and don't copy the address if not needed */ 2259 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2260 }; 2261 struct socket *sock; 2262 int err, err2; 2263 2264 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2265 if (unlikely(err)) 2266 return err; 2267 2268 CLASS(fd, f)(fd); 2269 2270 if (fd_empty(f)) 2271 return -EBADF; 2272 sock = sock_from_file(fd_file(f)); 2273 if (unlikely(!sock)) 2274 return -ENOTSOCK; 2275 2276 if (sock->file->f_flags & O_NONBLOCK) 2277 flags |= MSG_DONTWAIT; 2278 err = sock_recvmsg(sock, &msg, flags); 2279 2280 if (err >= 0 && addr != NULL) { 2281 err2 = move_addr_to_user(&address, 2282 msg.msg_namelen, addr, addr_len); 2283 if (err2 < 0) 2284 err = err2; 2285 } 2286 return err; 2287 } 2288 2289 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2290 unsigned int, flags, struct sockaddr __user *, addr, 2291 int __user *, addr_len) 2292 { 2293 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2294 } 2295 2296 /* 2297 * Receive a datagram from a socket. 2298 */ 2299 2300 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2301 unsigned int, flags) 2302 { 2303 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2304 } 2305 2306 static bool sock_use_custom_sol_socket(const struct socket *sock) 2307 { 2308 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2309 } 2310 2311 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2312 int optname, sockptr_t optval, int optlen) 2313 { 2314 const struct proto_ops *ops; 2315 char *kernel_optval = NULL; 2316 int err; 2317 2318 if (optlen < 0) 2319 return -EINVAL; 2320 2321 err = security_socket_setsockopt(sock, level, optname); 2322 if (err) 2323 goto out_put; 2324 2325 if (!compat) 2326 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2327 optval, &optlen, 2328 &kernel_optval); 2329 if (err < 0) 2330 goto out_put; 2331 if (err > 0) { 2332 err = 0; 2333 goto out_put; 2334 } 2335 2336 if (kernel_optval) 2337 optval = KERNEL_SOCKPTR(kernel_optval); 2338 ops = READ_ONCE(sock->ops); 2339 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2340 err = sock_setsockopt(sock, level, optname, optval, optlen); 2341 else if (unlikely(!ops->setsockopt)) 2342 err = -EOPNOTSUPP; 2343 else 2344 err = ops->setsockopt(sock, level, optname, optval, 2345 optlen); 2346 kfree(kernel_optval); 2347 out_put: 2348 return err; 2349 } 2350 EXPORT_SYMBOL(do_sock_setsockopt); 2351 2352 /* Set a socket option. Because we don't know the option lengths we have 2353 * to pass the user mode parameter for the protocols to sort out. 2354 */ 2355 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2356 int optlen) 2357 { 2358 sockptr_t optval = USER_SOCKPTR(user_optval); 2359 bool compat = in_compat_syscall(); 2360 struct socket *sock; 2361 CLASS(fd, f)(fd); 2362 2363 if (fd_empty(f)) 2364 return -EBADF; 2365 sock = sock_from_file(fd_file(f)); 2366 if (unlikely(!sock)) 2367 return -ENOTSOCK; 2368 2369 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2370 } 2371 2372 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2373 char __user *, optval, int, optlen) 2374 { 2375 return __sys_setsockopt(fd, level, optname, optval, optlen); 2376 } 2377 2378 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2379 int optname)); 2380 2381 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2382 int optname, sockptr_t optval, sockptr_t optlen) 2383 { 2384 int max_optlen __maybe_unused = 0; 2385 const struct proto_ops *ops; 2386 int err; 2387 2388 err = security_socket_getsockopt(sock, level, optname); 2389 if (err) 2390 return err; 2391 2392 if (!compat) 2393 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2394 2395 ops = READ_ONCE(sock->ops); 2396 if (level == SOL_SOCKET) { 2397 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2398 } else if (unlikely(!ops->getsockopt)) { 2399 err = -EOPNOTSUPP; 2400 } else { 2401 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2402 "Invalid argument type")) 2403 return -EOPNOTSUPP; 2404 2405 err = ops->getsockopt(sock, level, optname, optval.user, 2406 optlen.user); 2407 } 2408 2409 if (!compat) 2410 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2411 optval, optlen, max_optlen, 2412 err); 2413 2414 return err; 2415 } 2416 EXPORT_SYMBOL(do_sock_getsockopt); 2417 2418 /* 2419 * Get a socket option. Because we don't know the option lengths we have 2420 * to pass a user mode parameter for the protocols to sort out. 2421 */ 2422 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2423 int __user *optlen) 2424 { 2425 struct socket *sock; 2426 CLASS(fd, f)(fd); 2427 2428 if (fd_empty(f)) 2429 return -EBADF; 2430 sock = sock_from_file(fd_file(f)); 2431 if (unlikely(!sock)) 2432 return -ENOTSOCK; 2433 2434 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2435 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2436 } 2437 2438 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2439 char __user *, optval, int __user *, optlen) 2440 { 2441 return __sys_getsockopt(fd, level, optname, optval, optlen); 2442 } 2443 2444 /* 2445 * Shutdown a socket. 2446 */ 2447 2448 int __sys_shutdown_sock(struct socket *sock, int how) 2449 { 2450 int err; 2451 2452 err = security_socket_shutdown(sock, how); 2453 if (!err) 2454 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2455 2456 return err; 2457 } 2458 2459 int __sys_shutdown(int fd, int how) 2460 { 2461 struct socket *sock; 2462 CLASS(fd, f)(fd); 2463 2464 if (fd_empty(f)) 2465 return -EBADF; 2466 sock = sock_from_file(fd_file(f)); 2467 if (unlikely(!sock)) 2468 return -ENOTSOCK; 2469 2470 return __sys_shutdown_sock(sock, how); 2471 } 2472 2473 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2474 { 2475 return __sys_shutdown(fd, how); 2476 } 2477 2478 /* A couple of helpful macros for getting the address of the 32/64 bit 2479 * fields which are the same type (int / unsigned) on our platforms. 2480 */ 2481 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2482 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2483 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2484 2485 struct used_address { 2486 struct sockaddr_storage name; 2487 unsigned int name_len; 2488 }; 2489 2490 int __copy_msghdr(struct msghdr *kmsg, 2491 struct user_msghdr *msg, 2492 struct sockaddr __user **save_addr) 2493 { 2494 ssize_t err; 2495 2496 kmsg->msg_control_is_user = true; 2497 kmsg->msg_get_inq = 0; 2498 kmsg->msg_control_user = msg->msg_control; 2499 kmsg->msg_controllen = msg->msg_controllen; 2500 kmsg->msg_flags = msg->msg_flags; 2501 2502 kmsg->msg_namelen = msg->msg_namelen; 2503 if (!msg->msg_name) 2504 kmsg->msg_namelen = 0; 2505 2506 if (kmsg->msg_namelen < 0) 2507 return -EINVAL; 2508 2509 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2510 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2511 2512 if (save_addr) 2513 *save_addr = msg->msg_name; 2514 2515 if (msg->msg_name && kmsg->msg_namelen) { 2516 if (!save_addr) { 2517 err = move_addr_to_kernel(msg->msg_name, 2518 kmsg->msg_namelen, 2519 kmsg->msg_name); 2520 if (err < 0) 2521 return err; 2522 } 2523 } else { 2524 kmsg->msg_name = NULL; 2525 kmsg->msg_namelen = 0; 2526 } 2527 2528 if (msg->msg_iovlen > UIO_MAXIOV) 2529 return -EMSGSIZE; 2530 2531 kmsg->msg_iocb = NULL; 2532 kmsg->msg_ubuf = NULL; 2533 return 0; 2534 } 2535 2536 static int copy_msghdr_from_user(struct msghdr *kmsg, 2537 struct user_msghdr __user *umsg, 2538 struct sockaddr __user **save_addr, 2539 struct iovec **iov) 2540 { 2541 struct user_msghdr msg; 2542 ssize_t err; 2543 2544 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2545 return -EFAULT; 2546 2547 err = __copy_msghdr(kmsg, &msg, save_addr); 2548 if (err) 2549 return err; 2550 2551 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2552 msg.msg_iov, msg.msg_iovlen, 2553 UIO_FASTIOV, iov, &kmsg->msg_iter); 2554 return err < 0 ? err : 0; 2555 } 2556 2557 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2558 unsigned int flags, struct used_address *used_address, 2559 unsigned int allowed_msghdr_flags) 2560 { 2561 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2562 __aligned(sizeof(__kernel_size_t)); 2563 /* 20 is size of ipv6_pktinfo */ 2564 unsigned char *ctl_buf = ctl; 2565 int ctl_len; 2566 ssize_t err; 2567 2568 err = -ENOBUFS; 2569 2570 if (msg_sys->msg_controllen > INT_MAX) 2571 goto out; 2572 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2573 ctl_len = msg_sys->msg_controllen; 2574 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2575 err = 2576 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2577 sizeof(ctl)); 2578 if (err) 2579 goto out; 2580 ctl_buf = msg_sys->msg_control; 2581 ctl_len = msg_sys->msg_controllen; 2582 } else if (ctl_len) { 2583 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2584 CMSG_ALIGN(sizeof(struct cmsghdr))); 2585 if (ctl_len > sizeof(ctl)) { 2586 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2587 if (ctl_buf == NULL) 2588 goto out; 2589 } 2590 err = -EFAULT; 2591 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2592 goto out_freectl; 2593 msg_sys->msg_control = ctl_buf; 2594 msg_sys->msg_control_is_user = false; 2595 } 2596 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2597 msg_sys->msg_flags = flags; 2598 2599 if (sock->file->f_flags & O_NONBLOCK) 2600 msg_sys->msg_flags |= MSG_DONTWAIT; 2601 /* 2602 * If this is sendmmsg() and current destination address is same as 2603 * previously succeeded address, omit asking LSM's decision. 2604 * used_address->name_len is initialized to UINT_MAX so that the first 2605 * destination address never matches. 2606 */ 2607 if (used_address && msg_sys->msg_name && 2608 used_address->name_len == msg_sys->msg_namelen && 2609 !memcmp(&used_address->name, msg_sys->msg_name, 2610 used_address->name_len)) { 2611 err = sock_sendmsg_nosec(sock, msg_sys); 2612 goto out_freectl; 2613 } 2614 err = __sock_sendmsg(sock, msg_sys); 2615 /* 2616 * If this is sendmmsg() and sending to current destination address was 2617 * successful, remember it. 2618 */ 2619 if (used_address && err >= 0) { 2620 used_address->name_len = msg_sys->msg_namelen; 2621 if (msg_sys->msg_name) 2622 memcpy(&used_address->name, msg_sys->msg_name, 2623 used_address->name_len); 2624 } 2625 2626 out_freectl: 2627 if (ctl_buf != ctl) 2628 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2629 out: 2630 return err; 2631 } 2632 2633 static int sendmsg_copy_msghdr(struct msghdr *msg, 2634 struct user_msghdr __user *umsg, unsigned flags, 2635 struct iovec **iov) 2636 { 2637 int err; 2638 2639 if (flags & MSG_CMSG_COMPAT) { 2640 struct compat_msghdr __user *msg_compat; 2641 2642 msg_compat = (struct compat_msghdr __user *) umsg; 2643 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2644 } else { 2645 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2646 } 2647 if (err < 0) 2648 return err; 2649 2650 return 0; 2651 } 2652 2653 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2654 struct msghdr *msg_sys, unsigned int flags, 2655 struct used_address *used_address, 2656 unsigned int allowed_msghdr_flags) 2657 { 2658 struct sockaddr_storage address; 2659 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2660 ssize_t err; 2661 2662 msg_sys->msg_name = &address; 2663 2664 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2665 if (err < 0) 2666 return err; 2667 2668 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2669 allowed_msghdr_flags); 2670 kfree(iov); 2671 return err; 2672 } 2673 2674 /* 2675 * BSD sendmsg interface 2676 */ 2677 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2678 unsigned int flags) 2679 { 2680 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2681 } 2682 2683 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2684 bool forbid_cmsg_compat) 2685 { 2686 struct msghdr msg_sys; 2687 struct socket *sock; 2688 2689 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2690 return -EINVAL; 2691 2692 CLASS(fd, f)(fd); 2693 2694 if (fd_empty(f)) 2695 return -EBADF; 2696 sock = sock_from_file(fd_file(f)); 2697 if (unlikely(!sock)) 2698 return -ENOTSOCK; 2699 2700 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2701 } 2702 2703 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2704 { 2705 return __sys_sendmsg(fd, msg, flags, true); 2706 } 2707 2708 /* 2709 * Linux sendmmsg interface 2710 */ 2711 2712 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2713 unsigned int flags, bool forbid_cmsg_compat) 2714 { 2715 int err, datagrams; 2716 struct socket *sock; 2717 struct mmsghdr __user *entry; 2718 struct compat_mmsghdr __user *compat_entry; 2719 struct msghdr msg_sys; 2720 struct used_address used_address; 2721 unsigned int oflags = flags; 2722 2723 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2724 return -EINVAL; 2725 2726 if (vlen > UIO_MAXIOV) 2727 vlen = UIO_MAXIOV; 2728 2729 datagrams = 0; 2730 2731 CLASS(fd, f)(fd); 2732 2733 if (fd_empty(f)) 2734 return -EBADF; 2735 sock = sock_from_file(fd_file(f)); 2736 if (unlikely(!sock)) 2737 return -ENOTSOCK; 2738 2739 used_address.name_len = UINT_MAX; 2740 entry = mmsg; 2741 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2742 err = 0; 2743 flags |= MSG_BATCH; 2744 2745 while (datagrams < vlen) { 2746 if (datagrams == vlen - 1) 2747 flags = oflags; 2748 2749 if (MSG_CMSG_COMPAT & flags) { 2750 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2751 &msg_sys, flags, &used_address, MSG_EOR); 2752 if (err < 0) 2753 break; 2754 err = __put_user(err, &compat_entry->msg_len); 2755 ++compat_entry; 2756 } else { 2757 err = ___sys_sendmsg(sock, 2758 (struct user_msghdr __user *)entry, 2759 &msg_sys, flags, &used_address, MSG_EOR); 2760 if (err < 0) 2761 break; 2762 err = put_user(err, &entry->msg_len); 2763 ++entry; 2764 } 2765 2766 if (err) 2767 break; 2768 ++datagrams; 2769 if (msg_data_left(&msg_sys)) 2770 break; 2771 cond_resched(); 2772 } 2773 2774 /* We only return an error if no datagrams were able to be sent */ 2775 if (datagrams != 0) 2776 return datagrams; 2777 2778 return err; 2779 } 2780 2781 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2782 unsigned int, vlen, unsigned int, flags) 2783 { 2784 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2785 } 2786 2787 static int recvmsg_copy_msghdr(struct msghdr *msg, 2788 struct user_msghdr __user *umsg, unsigned flags, 2789 struct sockaddr __user **uaddr, 2790 struct iovec **iov) 2791 { 2792 ssize_t err; 2793 2794 if (MSG_CMSG_COMPAT & flags) { 2795 struct compat_msghdr __user *msg_compat; 2796 2797 msg_compat = (struct compat_msghdr __user *) umsg; 2798 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2799 } else { 2800 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2801 } 2802 if (err < 0) 2803 return err; 2804 2805 return 0; 2806 } 2807 2808 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2809 struct user_msghdr __user *msg, 2810 struct sockaddr __user *uaddr, 2811 unsigned int flags, int nosec) 2812 { 2813 struct compat_msghdr __user *msg_compat = 2814 (struct compat_msghdr __user *) msg; 2815 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2816 struct sockaddr_storage addr; 2817 unsigned long cmsg_ptr; 2818 int len; 2819 ssize_t err; 2820 2821 msg_sys->msg_name = &addr; 2822 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2823 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2824 2825 /* We assume all kernel code knows the size of sockaddr_storage */ 2826 msg_sys->msg_namelen = 0; 2827 2828 if (sock->file->f_flags & O_NONBLOCK) 2829 flags |= MSG_DONTWAIT; 2830 2831 if (unlikely(nosec)) 2832 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2833 else 2834 err = sock_recvmsg(sock, msg_sys, flags); 2835 2836 if (err < 0) 2837 goto out; 2838 len = err; 2839 2840 if (uaddr != NULL) { 2841 err = move_addr_to_user(&addr, 2842 msg_sys->msg_namelen, uaddr, 2843 uaddr_len); 2844 if (err < 0) 2845 goto out; 2846 } 2847 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2848 COMPAT_FLAGS(msg)); 2849 if (err) 2850 goto out; 2851 if (MSG_CMSG_COMPAT & flags) 2852 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2853 &msg_compat->msg_controllen); 2854 else 2855 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2856 &msg->msg_controllen); 2857 if (err) 2858 goto out; 2859 err = len; 2860 out: 2861 return err; 2862 } 2863 2864 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2865 struct msghdr *msg_sys, unsigned int flags, int nosec) 2866 { 2867 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2868 /* user mode address pointers */ 2869 struct sockaddr __user *uaddr; 2870 ssize_t err; 2871 2872 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2873 if (err < 0) 2874 return err; 2875 2876 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2877 kfree(iov); 2878 return err; 2879 } 2880 2881 /* 2882 * BSD recvmsg interface 2883 */ 2884 2885 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2886 struct user_msghdr __user *umsg, 2887 struct sockaddr __user *uaddr, unsigned int flags) 2888 { 2889 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2890 } 2891 2892 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2893 bool forbid_cmsg_compat) 2894 { 2895 struct msghdr msg_sys; 2896 struct socket *sock; 2897 2898 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2899 return -EINVAL; 2900 2901 CLASS(fd, f)(fd); 2902 2903 if (fd_empty(f)) 2904 return -EBADF; 2905 sock = sock_from_file(fd_file(f)); 2906 if (unlikely(!sock)) 2907 return -ENOTSOCK; 2908 2909 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2910 } 2911 2912 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2913 unsigned int, flags) 2914 { 2915 return __sys_recvmsg(fd, msg, flags, true); 2916 } 2917 2918 /* 2919 * Linux recvmmsg interface 2920 */ 2921 2922 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2923 unsigned int vlen, unsigned int flags, 2924 struct timespec64 *timeout) 2925 { 2926 int err = 0, datagrams; 2927 struct socket *sock; 2928 struct mmsghdr __user *entry; 2929 struct compat_mmsghdr __user *compat_entry; 2930 struct msghdr msg_sys; 2931 struct timespec64 end_time; 2932 struct timespec64 timeout64; 2933 2934 if (timeout && 2935 poll_select_set_timeout(&end_time, timeout->tv_sec, 2936 timeout->tv_nsec)) 2937 return -EINVAL; 2938 2939 datagrams = 0; 2940 2941 CLASS(fd, f)(fd); 2942 2943 if (fd_empty(f)) 2944 return -EBADF; 2945 sock = sock_from_file(fd_file(f)); 2946 if (unlikely(!sock)) 2947 return -ENOTSOCK; 2948 2949 if (likely(!(flags & MSG_ERRQUEUE))) { 2950 err = sock_error(sock->sk); 2951 if (err) 2952 return err; 2953 } 2954 2955 entry = mmsg; 2956 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2957 2958 while (datagrams < vlen) { 2959 /* 2960 * No need to ask LSM for more than the first datagram. 2961 */ 2962 if (MSG_CMSG_COMPAT & flags) { 2963 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2964 &msg_sys, flags & ~MSG_WAITFORONE, 2965 datagrams); 2966 if (err < 0) 2967 break; 2968 err = __put_user(err, &compat_entry->msg_len); 2969 ++compat_entry; 2970 } else { 2971 err = ___sys_recvmsg(sock, 2972 (struct user_msghdr __user *)entry, 2973 &msg_sys, flags & ~MSG_WAITFORONE, 2974 datagrams); 2975 if (err < 0) 2976 break; 2977 err = put_user(err, &entry->msg_len); 2978 ++entry; 2979 } 2980 2981 if (err) 2982 break; 2983 ++datagrams; 2984 2985 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2986 if (flags & MSG_WAITFORONE) 2987 flags |= MSG_DONTWAIT; 2988 2989 if (timeout) { 2990 ktime_get_ts64(&timeout64); 2991 *timeout = timespec64_sub(end_time, timeout64); 2992 if (timeout->tv_sec < 0) { 2993 timeout->tv_sec = timeout->tv_nsec = 0; 2994 break; 2995 } 2996 2997 /* Timeout, return less than vlen datagrams */ 2998 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2999 break; 3000 } 3001 3002 /* Out of band data, return right away */ 3003 if (msg_sys.msg_flags & MSG_OOB) 3004 break; 3005 cond_resched(); 3006 } 3007 3008 if (err == 0) 3009 return datagrams; 3010 3011 if (datagrams == 0) 3012 return err; 3013 3014 /* 3015 * We may return less entries than requested (vlen) if the 3016 * sock is non block and there aren't enough datagrams... 3017 */ 3018 if (err != -EAGAIN) { 3019 /* 3020 * ... or if recvmsg returns an error after we 3021 * received some datagrams, where we record the 3022 * error to return on the next call or if the 3023 * app asks about it using getsockopt(SO_ERROR). 3024 */ 3025 WRITE_ONCE(sock->sk->sk_err, -err); 3026 } 3027 return datagrams; 3028 } 3029 3030 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3031 unsigned int vlen, unsigned int flags, 3032 struct __kernel_timespec __user *timeout, 3033 struct old_timespec32 __user *timeout32) 3034 { 3035 int datagrams; 3036 struct timespec64 timeout_sys; 3037 3038 if (timeout && get_timespec64(&timeout_sys, timeout)) 3039 return -EFAULT; 3040 3041 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3042 return -EFAULT; 3043 3044 if (!timeout && !timeout32) 3045 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3046 3047 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3048 3049 if (datagrams <= 0) 3050 return datagrams; 3051 3052 if (timeout && put_timespec64(&timeout_sys, timeout)) 3053 datagrams = -EFAULT; 3054 3055 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3056 datagrams = -EFAULT; 3057 3058 return datagrams; 3059 } 3060 3061 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3062 unsigned int, vlen, unsigned int, flags, 3063 struct __kernel_timespec __user *, timeout) 3064 { 3065 if (flags & MSG_CMSG_COMPAT) 3066 return -EINVAL; 3067 3068 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3069 } 3070 3071 #ifdef CONFIG_COMPAT_32BIT_TIME 3072 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3073 unsigned int, vlen, unsigned int, flags, 3074 struct old_timespec32 __user *, timeout) 3075 { 3076 if (flags & MSG_CMSG_COMPAT) 3077 return -EINVAL; 3078 3079 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3080 } 3081 #endif 3082 3083 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3084 /* Argument list sizes for sys_socketcall */ 3085 #define AL(x) ((x) * sizeof(unsigned long)) 3086 static const unsigned char nargs[21] = { 3087 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3088 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3089 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3090 AL(4), AL(5), AL(4) 3091 }; 3092 3093 #undef AL 3094 3095 /* 3096 * System call vectors. 3097 * 3098 * Argument checking cleaned up. Saved 20% in size. 3099 * This function doesn't need to set the kernel lock because 3100 * it is set by the callees. 3101 */ 3102 3103 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3104 { 3105 unsigned long a[AUDITSC_ARGS]; 3106 unsigned long a0, a1; 3107 int err; 3108 unsigned int len; 3109 3110 if (call < 1 || call > SYS_SENDMMSG) 3111 return -EINVAL; 3112 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3113 3114 len = nargs[call]; 3115 if (len > sizeof(a)) 3116 return -EINVAL; 3117 3118 /* copy_from_user should be SMP safe. */ 3119 if (copy_from_user(a, args, len)) 3120 return -EFAULT; 3121 3122 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3123 if (err) 3124 return err; 3125 3126 a0 = a[0]; 3127 a1 = a[1]; 3128 3129 switch (call) { 3130 case SYS_SOCKET: 3131 err = __sys_socket(a0, a1, a[2]); 3132 break; 3133 case SYS_BIND: 3134 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3135 break; 3136 case SYS_CONNECT: 3137 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3138 break; 3139 case SYS_LISTEN: 3140 err = __sys_listen(a0, a1); 3141 break; 3142 case SYS_ACCEPT: 3143 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3144 (int __user *)a[2], 0); 3145 break; 3146 case SYS_GETSOCKNAME: 3147 err = 3148 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3149 (int __user *)a[2]); 3150 break; 3151 case SYS_GETPEERNAME: 3152 err = 3153 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3154 (int __user *)a[2]); 3155 break; 3156 case SYS_SOCKETPAIR: 3157 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3158 break; 3159 case SYS_SEND: 3160 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3161 NULL, 0); 3162 break; 3163 case SYS_SENDTO: 3164 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3165 (struct sockaddr __user *)a[4], a[5]); 3166 break; 3167 case SYS_RECV: 3168 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3169 NULL, NULL); 3170 break; 3171 case SYS_RECVFROM: 3172 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3173 (struct sockaddr __user *)a[4], 3174 (int __user *)a[5]); 3175 break; 3176 case SYS_SHUTDOWN: 3177 err = __sys_shutdown(a0, a1); 3178 break; 3179 case SYS_SETSOCKOPT: 3180 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3181 a[4]); 3182 break; 3183 case SYS_GETSOCKOPT: 3184 err = 3185 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3186 (int __user *)a[4]); 3187 break; 3188 case SYS_SENDMSG: 3189 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3190 a[2], true); 3191 break; 3192 case SYS_SENDMMSG: 3193 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3194 a[3], true); 3195 break; 3196 case SYS_RECVMSG: 3197 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3198 a[2], true); 3199 break; 3200 case SYS_RECVMMSG: 3201 if (IS_ENABLED(CONFIG_64BIT)) 3202 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3203 a[2], a[3], 3204 (struct __kernel_timespec __user *)a[4], 3205 NULL); 3206 else 3207 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3208 a[2], a[3], NULL, 3209 (struct old_timespec32 __user *)a[4]); 3210 break; 3211 case SYS_ACCEPT4: 3212 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3213 (int __user *)a[2], a[3]); 3214 break; 3215 default: 3216 err = -EINVAL; 3217 break; 3218 } 3219 return err; 3220 } 3221 3222 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3223 3224 /** 3225 * sock_register - add a socket protocol handler 3226 * @ops: description of protocol 3227 * 3228 * This function is called by a protocol handler that wants to 3229 * advertise its address family, and have it linked into the 3230 * socket interface. The value ops->family corresponds to the 3231 * socket system call protocol family. 3232 */ 3233 int sock_register(const struct net_proto_family *ops) 3234 { 3235 int err; 3236 3237 if (ops->family >= NPROTO) { 3238 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3239 return -ENOBUFS; 3240 } 3241 3242 spin_lock(&net_family_lock); 3243 if (rcu_dereference_protected(net_families[ops->family], 3244 lockdep_is_held(&net_family_lock))) 3245 err = -EEXIST; 3246 else { 3247 rcu_assign_pointer(net_families[ops->family], ops); 3248 err = 0; 3249 } 3250 spin_unlock(&net_family_lock); 3251 3252 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3253 return err; 3254 } 3255 EXPORT_SYMBOL(sock_register); 3256 3257 /** 3258 * sock_unregister - remove a protocol handler 3259 * @family: protocol family to remove 3260 * 3261 * This function is called by a protocol handler that wants to 3262 * remove its address family, and have it unlinked from the 3263 * new socket creation. 3264 * 3265 * If protocol handler is a module, then it can use module reference 3266 * counts to protect against new references. If protocol handler is not 3267 * a module then it needs to provide its own protection in 3268 * the ops->create routine. 3269 */ 3270 void sock_unregister(int family) 3271 { 3272 BUG_ON(family < 0 || family >= NPROTO); 3273 3274 spin_lock(&net_family_lock); 3275 RCU_INIT_POINTER(net_families[family], NULL); 3276 spin_unlock(&net_family_lock); 3277 3278 synchronize_rcu(); 3279 3280 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3281 } 3282 EXPORT_SYMBOL(sock_unregister); 3283 3284 bool sock_is_registered(int family) 3285 { 3286 return family < NPROTO && rcu_access_pointer(net_families[family]); 3287 } 3288 3289 static int __init sock_init(void) 3290 { 3291 int err; 3292 /* 3293 * Initialize the network sysctl infrastructure. 3294 */ 3295 err = net_sysctl_init(); 3296 if (err) 3297 goto out; 3298 3299 /* 3300 * Initialize skbuff SLAB cache 3301 */ 3302 skb_init(); 3303 3304 /* 3305 * Initialize the protocols module. 3306 */ 3307 3308 init_inodecache(); 3309 3310 err = register_filesystem(&sock_fs_type); 3311 if (err) 3312 goto out; 3313 sock_mnt = kern_mount(&sock_fs_type); 3314 if (IS_ERR(sock_mnt)) { 3315 err = PTR_ERR(sock_mnt); 3316 goto out_mount; 3317 } 3318 3319 /* The real protocol initialization is performed in later initcalls. 3320 */ 3321 3322 #ifdef CONFIG_NETFILTER 3323 err = netfilter_init(); 3324 if (err) 3325 goto out; 3326 #endif 3327 3328 ptp_classifier_init(); 3329 3330 out: 3331 return err; 3332 3333 out_mount: 3334 unregister_filesystem(&sock_fs_type); 3335 goto out; 3336 } 3337 3338 core_initcall(sock_init); /* early initcall */ 3339 3340 #ifdef CONFIG_PROC_FS 3341 void socket_seq_show(struct seq_file *seq) 3342 { 3343 seq_printf(seq, "sockets: used %d\n", 3344 sock_inuse_get(seq->private)); 3345 } 3346 #endif /* CONFIG_PROC_FS */ 3347 3348 /* Handle the fact that while struct ifreq has the same *layout* on 3349 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3350 * which are handled elsewhere, it still has different *size* due to 3351 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3352 * resulting in struct ifreq being 32 and 40 bytes respectively). 3353 * As a result, if the struct happens to be at the end of a page and 3354 * the next page isn't readable/writable, we get a fault. To prevent 3355 * that, copy back and forth to the full size. 3356 */ 3357 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3358 { 3359 if (in_compat_syscall()) { 3360 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3361 3362 memset(ifr, 0, sizeof(*ifr)); 3363 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3364 return -EFAULT; 3365 3366 if (ifrdata) 3367 *ifrdata = compat_ptr(ifr32->ifr_data); 3368 3369 return 0; 3370 } 3371 3372 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3373 return -EFAULT; 3374 3375 if (ifrdata) 3376 *ifrdata = ifr->ifr_data; 3377 3378 return 0; 3379 } 3380 EXPORT_SYMBOL(get_user_ifreq); 3381 3382 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3383 { 3384 size_t size = sizeof(*ifr); 3385 3386 if (in_compat_syscall()) 3387 size = sizeof(struct compat_ifreq); 3388 3389 if (copy_to_user(arg, ifr, size)) 3390 return -EFAULT; 3391 3392 return 0; 3393 } 3394 EXPORT_SYMBOL(put_user_ifreq); 3395 3396 #ifdef CONFIG_COMPAT 3397 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3398 { 3399 compat_uptr_t uptr32; 3400 struct ifreq ifr; 3401 void __user *saved; 3402 int err; 3403 3404 if (get_user_ifreq(&ifr, NULL, uifr32)) 3405 return -EFAULT; 3406 3407 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3408 return -EFAULT; 3409 3410 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3411 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3412 3413 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3414 if (!err) { 3415 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3416 if (put_user_ifreq(&ifr, uifr32)) 3417 err = -EFAULT; 3418 } 3419 return err; 3420 } 3421 3422 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3423 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3424 struct compat_ifreq __user *u_ifreq32) 3425 { 3426 struct ifreq ifreq; 3427 void __user *data; 3428 3429 if (!is_socket_ioctl_cmd(cmd)) 3430 return -ENOTTY; 3431 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3432 return -EFAULT; 3433 ifreq.ifr_data = data; 3434 3435 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3436 } 3437 3438 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3439 unsigned int cmd, unsigned long arg) 3440 { 3441 void __user *argp = compat_ptr(arg); 3442 struct sock *sk = sock->sk; 3443 struct net *net = sock_net(sk); 3444 const struct proto_ops *ops; 3445 3446 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3447 return sock_ioctl(file, cmd, (unsigned long)argp); 3448 3449 switch (cmd) { 3450 case SIOCWANDEV: 3451 return compat_siocwandev(net, argp); 3452 case SIOCGSTAMP_OLD: 3453 case SIOCGSTAMPNS_OLD: 3454 ops = READ_ONCE(sock->ops); 3455 if (!ops->gettstamp) 3456 return -ENOIOCTLCMD; 3457 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3458 !COMPAT_USE_64BIT_TIME); 3459 3460 case SIOCETHTOOL: 3461 case SIOCBONDSLAVEINFOQUERY: 3462 case SIOCBONDINFOQUERY: 3463 case SIOCSHWTSTAMP: 3464 case SIOCGHWTSTAMP: 3465 return compat_ifr_data_ioctl(net, cmd, argp); 3466 3467 case FIOSETOWN: 3468 case SIOCSPGRP: 3469 case FIOGETOWN: 3470 case SIOCGPGRP: 3471 case SIOCBRADDBR: 3472 case SIOCBRDELBR: 3473 case SIOCBRADDIF: 3474 case SIOCBRDELIF: 3475 case SIOCGIFVLAN: 3476 case SIOCSIFVLAN: 3477 case SIOCGSKNS: 3478 case SIOCGSTAMP_NEW: 3479 case SIOCGSTAMPNS_NEW: 3480 case SIOCGIFCONF: 3481 case SIOCSIFBR: 3482 case SIOCGIFBR: 3483 return sock_ioctl(file, cmd, arg); 3484 3485 case SIOCGIFFLAGS: 3486 case SIOCSIFFLAGS: 3487 case SIOCGIFMAP: 3488 case SIOCSIFMAP: 3489 case SIOCGIFMETRIC: 3490 case SIOCSIFMETRIC: 3491 case SIOCGIFMTU: 3492 case SIOCSIFMTU: 3493 case SIOCGIFMEM: 3494 case SIOCSIFMEM: 3495 case SIOCGIFHWADDR: 3496 case SIOCSIFHWADDR: 3497 case SIOCADDMULTI: 3498 case SIOCDELMULTI: 3499 case SIOCGIFINDEX: 3500 case SIOCGIFADDR: 3501 case SIOCSIFADDR: 3502 case SIOCSIFHWBROADCAST: 3503 case SIOCDIFADDR: 3504 case SIOCGIFBRDADDR: 3505 case SIOCSIFBRDADDR: 3506 case SIOCGIFDSTADDR: 3507 case SIOCSIFDSTADDR: 3508 case SIOCGIFNETMASK: 3509 case SIOCSIFNETMASK: 3510 case SIOCSIFPFLAGS: 3511 case SIOCGIFPFLAGS: 3512 case SIOCGIFTXQLEN: 3513 case SIOCSIFTXQLEN: 3514 case SIOCGIFNAME: 3515 case SIOCSIFNAME: 3516 case SIOCGMIIPHY: 3517 case SIOCGMIIREG: 3518 case SIOCSMIIREG: 3519 case SIOCBONDENSLAVE: 3520 case SIOCBONDRELEASE: 3521 case SIOCBONDSETHWADDR: 3522 case SIOCBONDCHANGEACTIVE: 3523 case SIOCSARP: 3524 case SIOCGARP: 3525 case SIOCDARP: 3526 case SIOCOUTQ: 3527 case SIOCOUTQNSD: 3528 case SIOCATMARK: 3529 return sock_do_ioctl(net, sock, cmd, arg); 3530 } 3531 3532 return -ENOIOCTLCMD; 3533 } 3534 3535 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3536 unsigned long arg) 3537 { 3538 struct socket *sock = file->private_data; 3539 const struct proto_ops *ops = READ_ONCE(sock->ops); 3540 int ret = -ENOIOCTLCMD; 3541 struct sock *sk; 3542 struct net *net; 3543 3544 sk = sock->sk; 3545 net = sock_net(sk); 3546 3547 if (ops->compat_ioctl) 3548 ret = ops->compat_ioctl(sock, cmd, arg); 3549 3550 if (ret == -ENOIOCTLCMD && 3551 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3552 ret = compat_wext_handle_ioctl(net, cmd, arg); 3553 3554 if (ret == -ENOIOCTLCMD) 3555 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3556 3557 return ret; 3558 } 3559 #endif 3560 3561 /** 3562 * kernel_bind - bind an address to a socket (kernel space) 3563 * @sock: socket 3564 * @addr: address 3565 * @addrlen: length of address 3566 * 3567 * Returns 0 or an error. 3568 */ 3569 3570 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3571 { 3572 struct sockaddr_storage address; 3573 3574 memcpy(&address, addr, addrlen); 3575 3576 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3577 addrlen); 3578 } 3579 EXPORT_SYMBOL(kernel_bind); 3580 3581 /** 3582 * kernel_listen - move socket to listening state (kernel space) 3583 * @sock: socket 3584 * @backlog: pending connections queue size 3585 * 3586 * Returns 0 or an error. 3587 */ 3588 3589 int kernel_listen(struct socket *sock, int backlog) 3590 { 3591 return READ_ONCE(sock->ops)->listen(sock, backlog); 3592 } 3593 EXPORT_SYMBOL(kernel_listen); 3594 3595 /** 3596 * kernel_accept - accept a connection (kernel space) 3597 * @sock: listening socket 3598 * @newsock: new connected socket 3599 * @flags: flags 3600 * 3601 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3602 * If it fails, @newsock is guaranteed to be %NULL. 3603 * Returns 0 or an error. 3604 */ 3605 3606 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3607 { 3608 struct sock *sk = sock->sk; 3609 const struct proto_ops *ops = READ_ONCE(sock->ops); 3610 struct proto_accept_arg arg = { 3611 .flags = flags, 3612 .kern = true, 3613 }; 3614 int err; 3615 3616 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3617 newsock); 3618 if (err < 0) 3619 goto done; 3620 3621 err = ops->accept(sock, *newsock, &arg); 3622 if (err < 0) { 3623 sock_release(*newsock); 3624 *newsock = NULL; 3625 goto done; 3626 } 3627 3628 (*newsock)->ops = ops; 3629 __module_get(ops->owner); 3630 3631 done: 3632 return err; 3633 } 3634 EXPORT_SYMBOL(kernel_accept); 3635 3636 /** 3637 * kernel_connect - connect a socket (kernel space) 3638 * @sock: socket 3639 * @addr: address 3640 * @addrlen: address length 3641 * @flags: flags (O_NONBLOCK, ...) 3642 * 3643 * For datagram sockets, @addr is the address to which datagrams are sent 3644 * by default, and the only address from which datagrams are received. 3645 * For stream sockets, attempts to connect to @addr. 3646 * Returns 0 or an error code. 3647 */ 3648 3649 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3650 int flags) 3651 { 3652 struct sockaddr_storage address; 3653 3654 memcpy(&address, addr, addrlen); 3655 3656 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3657 addrlen, flags); 3658 } 3659 EXPORT_SYMBOL(kernel_connect); 3660 3661 /** 3662 * kernel_getsockname - get the address which the socket is bound (kernel space) 3663 * @sock: socket 3664 * @addr: address holder 3665 * 3666 * Fills the @addr pointer with the address which the socket is bound. 3667 * Returns the length of the address in bytes or an error code. 3668 */ 3669 3670 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3671 { 3672 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3673 } 3674 EXPORT_SYMBOL(kernel_getsockname); 3675 3676 /** 3677 * kernel_getpeername - get the address which the socket is connected (kernel space) 3678 * @sock: socket 3679 * @addr: address holder 3680 * 3681 * Fills the @addr pointer with the address which the socket is connected. 3682 * Returns the length of the address in bytes or an error code. 3683 */ 3684 3685 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3686 { 3687 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3688 } 3689 EXPORT_SYMBOL(kernel_getpeername); 3690 3691 /** 3692 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3693 * @sock: socket 3694 * @how: connection part 3695 * 3696 * Returns 0 or an error. 3697 */ 3698 3699 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3700 { 3701 return READ_ONCE(sock->ops)->shutdown(sock, how); 3702 } 3703 EXPORT_SYMBOL(kernel_sock_shutdown); 3704 3705 /** 3706 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3707 * @sk: socket 3708 * 3709 * This routine returns the IP overhead imposed by a socket i.e. 3710 * the length of the underlying IP header, depending on whether 3711 * this is an IPv4 or IPv6 socket and the length from IP options turned 3712 * on at the socket. Assumes that the caller has a lock on the socket. 3713 */ 3714 3715 u32 kernel_sock_ip_overhead(struct sock *sk) 3716 { 3717 struct inet_sock *inet; 3718 struct ip_options_rcu *opt; 3719 u32 overhead = 0; 3720 #if IS_ENABLED(CONFIG_IPV6) 3721 struct ipv6_pinfo *np; 3722 struct ipv6_txoptions *optv6 = NULL; 3723 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3724 3725 if (!sk) 3726 return overhead; 3727 3728 switch (sk->sk_family) { 3729 case AF_INET: 3730 inet = inet_sk(sk); 3731 overhead += sizeof(struct iphdr); 3732 opt = rcu_dereference_protected(inet->inet_opt, 3733 sock_owned_by_user(sk)); 3734 if (opt) 3735 overhead += opt->opt.optlen; 3736 return overhead; 3737 #if IS_ENABLED(CONFIG_IPV6) 3738 case AF_INET6: 3739 np = inet6_sk(sk); 3740 overhead += sizeof(struct ipv6hdr); 3741 if (np) 3742 optv6 = rcu_dereference_protected(np->opt, 3743 sock_owned_by_user(sk)); 3744 if (optv6) 3745 overhead += (optv6->opt_flen + optv6->opt_nflen); 3746 return overhead; 3747 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3748 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3749 return overhead; 3750 } 3751 } 3752 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3753