xref: /linux/net/socket.c (revision a7edd0e676d51145ae634a2acf7a447e319200fa)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90 
91 #include <net/compat.h>
92 
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95 
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 			 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 			  unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102 
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 			      struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 			      unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 			     int offset, size_t size, loff_t *ppos, int more);
114 
115 /*
116  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117  *	in the operation structures but are done directly via the socketcall() multiplexor.
118  */
119 
120 static const struct file_operations socket_file_ops = {
121 	.owner =	THIS_MODULE,
122 	.llseek =	no_llseek,
123 	.aio_read =	sock_aio_read,
124 	.aio_write =	sock_aio_write,
125 	.poll =		sock_poll,
126 	.unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 	.compat_ioctl = compat_sock_ioctl,
129 #endif
130 	.mmap =		sock_mmap,
131 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
132 	.release =	sock_close,
133 	.fasync =	sock_fasync,
134 	.sendpage =	sock_sendpage,
135 	.splice_write = generic_splice_sendpage,
136 };
137 
138 /*
139  *	The protocol list. Each protocol is registered in here.
140  */
141 
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144 
145 /*
146  *	Statistics counters of the socket lists
147  */
148 
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150 
151 /*
152  * Support routines.
153  * Move socket addresses back and forth across the kernel/user
154  * divide and look after the messy bits.
155  */
156 
157 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
158 					   16 for IP, 16 for IPX,
159 					   24 for IPv6,
160 					   about 80 for AX.25
161 					   must be at least one bigger than
162 					   the AF_UNIX size (see net/unix/af_unix.c
163 					   :unix_mkname()).
164 					 */
165 
166 /**
167  *	move_addr_to_kernel	-	copy a socket address into kernel space
168  *	@uaddr: Address in user space
169  *	@kaddr: Address in kernel space
170  *	@ulen: Length in user space
171  *
172  *	The address is copied into kernel space. If the provided address is
173  *	too long an error code of -EINVAL is returned. If the copy gives
174  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
175  */
176 
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 		return -EINVAL;
181 	if (ulen == 0)
182 		return 0;
183 	if (copy_from_user(kaddr, uaddr, ulen))
184 		return -EFAULT;
185 	return audit_sockaddr(ulen, kaddr);
186 }
187 
188 /**
189  *	move_addr_to_user	-	copy an address to user space
190  *	@kaddr: kernel space address
191  *	@klen: length of address in kernel
192  *	@uaddr: user space address
193  *	@ulen: pointer to user length field
194  *
195  *	The value pointed to by ulen on entry is the buffer length available.
196  *	This is overwritten with the buffer space used. -EINVAL is returned
197  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
198  *	is returned if either the buffer or the length field are not
199  *	accessible.
200  *	After copying the data up to the limit the user specifies, the true
201  *	length of the data is written over the length limit the user
202  *	specified. Zero is returned for a success.
203  */
204 
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 		      int __user *ulen)
207 {
208 	int err;
209 	int len;
210 
211 	err = get_user(len, ulen);
212 	if (err)
213 		return err;
214 	if (len > klen)
215 		len = klen;
216 	if (len < 0 || len > MAX_SOCK_ADDR)
217 		return -EINVAL;
218 	if (len) {
219 		if (audit_sockaddr(klen, kaddr))
220 			return -ENOMEM;
221 		if (copy_to_user(uaddr, kaddr, len))
222 			return -EFAULT;
223 	}
224 	/*
225 	 *      "fromlen shall refer to the value before truncation.."
226 	 *                      1003.1g
227 	 */
228 	return __put_user(klen, ulen);
229 }
230 
231 #define SOCKFS_MAGIC 0x534F434B
232 
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wait);
243 
244 	ei->socket.fasync_list = NULL;
245 	ei->socket.state = SS_UNCONNECTED;
246 	ei->socket.flags = 0;
247 	ei->socket.ops = NULL;
248 	ei->socket.sk = NULL;
249 	ei->socket.file = NULL;
250 
251 	return &ei->vfs_inode;
252 }
253 
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 	kmem_cache_free(sock_inode_cachep,
257 			container_of(inode, struct socket_alloc, vfs_inode));
258 }
259 
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 	struct socket_alloc *ei = (struct socket_alloc *)foo;
263 
264 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 	    == SLAB_CTOR_CONSTRUCTOR)
266 		inode_init_once(&ei->vfs_inode);
267 }
268 
269 static int init_inodecache(void)
270 {
271 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 					      sizeof(struct socket_alloc),
273 					      0,
274 					      (SLAB_HWCACHE_ALIGN |
275 					       SLAB_RECLAIM_ACCOUNT |
276 					       SLAB_MEM_SPREAD),
277 					      init_once,
278 					      NULL);
279 	if (sock_inode_cachep == NULL)
280 		return -ENOMEM;
281 	return 0;
282 }
283 
284 static struct super_operations sockfs_ops = {
285 	.alloc_inode =	sock_alloc_inode,
286 	.destroy_inode =sock_destroy_inode,
287 	.statfs =	simple_statfs,
288 };
289 
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 			 int flags, const char *dev_name, void *data,
292 			 struct vfsmount *mnt)
293 {
294 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
295 			     mnt);
296 }
297 
298 static struct vfsmount *sock_mnt __read_mostly;
299 
300 static struct file_system_type sock_fs_type = {
301 	.name =		"sockfs",
302 	.get_sb =	sockfs_get_sb,
303 	.kill_sb =	kill_anon_super,
304 };
305 
306 static int sockfs_delete_dentry(struct dentry *dentry)
307 {
308 	/*
309 	 * At creation time, we pretended this dentry was hashed
310 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 	 * At delete time, we restore the truth : not hashed.
312 	 * (so that dput() can proceed correctly)
313 	 */
314 	dentry->d_flags |= DCACHE_UNHASHED;
315 	return 0;
316 }
317 static struct dentry_operations sockfs_dentry_operations = {
318 	.d_delete = sockfs_delete_dentry,
319 };
320 
321 /*
322  *	Obtains the first available file descriptor and sets it up for use.
323  *
324  *	These functions create file structures and maps them to fd space
325  *	of the current process. On success it returns file descriptor
326  *	and file struct implicitly stored in sock->file.
327  *	Note that another thread may close file descriptor before we return
328  *	from this function. We use the fact that now we do not refer
329  *	to socket after mapping. If one day we will need it, this
330  *	function will increment ref. count on file by 1.
331  *
332  *	In any case returned fd MAY BE not valid!
333  *	This race condition is unavoidable
334  *	with shared fd spaces, we cannot solve it inside kernel,
335  *	but we take care of internal coherence yet.
336  */
337 
338 static int sock_alloc_fd(struct file **filep)
339 {
340 	int fd;
341 
342 	fd = get_unused_fd();
343 	if (likely(fd >= 0)) {
344 		struct file *file = get_empty_filp();
345 
346 		*filep = file;
347 		if (unlikely(!file)) {
348 			put_unused_fd(fd);
349 			return -ENFILE;
350 		}
351 	} else
352 		*filep = NULL;
353 	return fd;
354 }
355 
356 static int sock_attach_fd(struct socket *sock, struct file *file)
357 {
358 	struct qstr this;
359 	char name[32];
360 
361 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
362 	this.name = name;
363 	this.hash = 0;
364 
365 	file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 	if (unlikely(!file->f_path.dentry))
367 		return -ENOMEM;
368 
369 	file->f_path.dentry->d_op = &sockfs_dentry_operations;
370 	/*
371 	 * We dont want to push this dentry into global dentry hash table.
372 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 	 * This permits a working /proc/$pid/fd/XXX on sockets
374 	 */
375 	file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
376 	d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
377 	file->f_path.mnt = mntget(sock_mnt);
378 	file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
379 
380 	sock->file = file;
381 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
382 	file->f_mode = FMODE_READ | FMODE_WRITE;
383 	file->f_flags = O_RDWR;
384 	file->f_pos = 0;
385 	file->private_data = sock;
386 
387 	return 0;
388 }
389 
390 int sock_map_fd(struct socket *sock)
391 {
392 	struct file *newfile;
393 	int fd = sock_alloc_fd(&newfile);
394 
395 	if (likely(fd >= 0)) {
396 		int err = sock_attach_fd(sock, newfile);
397 
398 		if (unlikely(err < 0)) {
399 			put_filp(newfile);
400 			put_unused_fd(fd);
401 			return err;
402 		}
403 		fd_install(fd, newfile);
404 	}
405 	return fd;
406 }
407 
408 static struct socket *sock_from_file(struct file *file, int *err)
409 {
410 	if (file->f_op == &socket_file_ops)
411 		return file->private_data;	/* set in sock_map_fd */
412 
413 	*err = -ENOTSOCK;
414 	return NULL;
415 }
416 
417 /**
418  *	sockfd_lookup	- 	Go from a file number to its socket slot
419  *	@fd: file handle
420  *	@err: pointer to an error code return
421  *
422  *	The file handle passed in is locked and the socket it is bound
423  *	too is returned. If an error occurs the err pointer is overwritten
424  *	with a negative errno code and NULL is returned. The function checks
425  *	for both invalid handles and passing a handle which is not a socket.
426  *
427  *	On a success the socket object pointer is returned.
428  */
429 
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 	struct file *file;
433 	struct socket *sock;
434 
435 	file = fget(fd);
436 	if (!file) {
437 		*err = -EBADF;
438 		return NULL;
439 	}
440 
441 	sock = sock_from_file(file, err);
442 	if (!sock)
443 		fput(file);
444 	return sock;
445 }
446 
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 	struct file *file;
450 	struct socket *sock;
451 
452 	*err = -EBADF;
453 	file = fget_light(fd, fput_needed);
454 	if (file) {
455 		sock = sock_from_file(file, err);
456 		if (sock)
457 			return sock;
458 		fput_light(file, *fput_needed);
459 	}
460 	return NULL;
461 }
462 
463 /**
464  *	sock_alloc	-	allocate a socket
465  *
466  *	Allocate a new inode and socket object. The two are bound together
467  *	and initialised. The socket is then returned. If we are out of inodes
468  *	NULL is returned.
469  */
470 
471 static struct socket *sock_alloc(void)
472 {
473 	struct inode *inode;
474 	struct socket *sock;
475 
476 	inode = new_inode(sock_mnt->mnt_sb);
477 	if (!inode)
478 		return NULL;
479 
480 	sock = SOCKET_I(inode);
481 
482 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 	inode->i_uid = current->fsuid;
484 	inode->i_gid = current->fsgid;
485 
486 	get_cpu_var(sockets_in_use)++;
487 	put_cpu_var(sockets_in_use);
488 	return sock;
489 }
490 
491 /*
492  *	In theory you can't get an open on this inode, but /proc provides
493  *	a back door. Remember to keep it shut otherwise you'll let the
494  *	creepy crawlies in.
495  */
496 
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 	return -ENXIO;
500 }
501 
502 const struct file_operations bad_sock_fops = {
503 	.owner = THIS_MODULE,
504 	.open = sock_no_open,
505 };
506 
507 /**
508  *	sock_release	-	close a socket
509  *	@sock: socket to close
510  *
511  *	The socket is released from the protocol stack if it has a release
512  *	callback, and the inode is then released if the socket is bound to
513  *	an inode not a file.
514  */
515 
516 void sock_release(struct socket *sock)
517 {
518 	if (sock->ops) {
519 		struct module *owner = sock->ops->owner;
520 
521 		sock->ops->release(sock);
522 		sock->ops = NULL;
523 		module_put(owner);
524 	}
525 
526 	if (sock->fasync_list)
527 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
528 
529 	get_cpu_var(sockets_in_use)--;
530 	put_cpu_var(sockets_in_use);
531 	if (!sock->file) {
532 		iput(SOCK_INODE(sock));
533 		return;
534 	}
535 	sock->file = NULL;
536 }
537 
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 				 struct msghdr *msg, size_t size)
540 {
541 	struct sock_iocb *si = kiocb_to_siocb(iocb);
542 	int err;
543 
544 	si->sock = sock;
545 	si->scm = NULL;
546 	si->msg = msg;
547 	si->size = size;
548 
549 	err = security_socket_sendmsg(sock, msg, size);
550 	if (err)
551 		return err;
552 
553 	return sock->ops->sendmsg(iocb, sock, msg, size);
554 }
555 
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
557 {
558 	struct kiocb iocb;
559 	struct sock_iocb siocb;
560 	int ret;
561 
562 	init_sync_kiocb(&iocb, NULL);
563 	iocb.private = &siocb;
564 	ret = __sock_sendmsg(&iocb, sock, msg, size);
565 	if (-EIOCBQUEUED == ret)
566 		ret = wait_on_sync_kiocb(&iocb);
567 	return ret;
568 }
569 
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 		   struct kvec *vec, size_t num, size_t size)
572 {
573 	mm_segment_t oldfs = get_fs();
574 	int result;
575 
576 	set_fs(KERNEL_DS);
577 	/*
578 	 * the following is safe, since for compiler definitions of kvec and
579 	 * iovec are identical, yielding the same in-core layout and alignment
580 	 */
581 	msg->msg_iov = (struct iovec *)vec;
582 	msg->msg_iovlen = num;
583 	result = sock_sendmsg(sock, msg, size);
584 	set_fs(oldfs);
585 	return result;
586 }
587 
588 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
589 				 struct msghdr *msg, size_t size, int flags)
590 {
591 	int err;
592 	struct sock_iocb *si = kiocb_to_siocb(iocb);
593 
594 	si->sock = sock;
595 	si->scm = NULL;
596 	si->msg = msg;
597 	si->size = size;
598 	si->flags = flags;
599 
600 	err = security_socket_recvmsg(sock, msg, size, flags);
601 	if (err)
602 		return err;
603 
604 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
605 }
606 
607 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
608 		 size_t size, int flags)
609 {
610 	struct kiocb iocb;
611 	struct sock_iocb siocb;
612 	int ret;
613 
614 	init_sync_kiocb(&iocb, NULL);
615 	iocb.private = &siocb;
616 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
617 	if (-EIOCBQUEUED == ret)
618 		ret = wait_on_sync_kiocb(&iocb);
619 	return ret;
620 }
621 
622 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
623 		   struct kvec *vec, size_t num, size_t size, int flags)
624 {
625 	mm_segment_t oldfs = get_fs();
626 	int result;
627 
628 	set_fs(KERNEL_DS);
629 	/*
630 	 * the following is safe, since for compiler definitions of kvec and
631 	 * iovec are identical, yielding the same in-core layout and alignment
632 	 */
633 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
634 	result = sock_recvmsg(sock, msg, size, flags);
635 	set_fs(oldfs);
636 	return result;
637 }
638 
639 static void sock_aio_dtor(struct kiocb *iocb)
640 {
641 	kfree(iocb->private);
642 }
643 
644 static ssize_t sock_sendpage(struct file *file, struct page *page,
645 			     int offset, size_t size, loff_t *ppos, int more)
646 {
647 	struct socket *sock;
648 	int flags;
649 
650 	sock = file->private_data;
651 
652 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
653 	if (more)
654 		flags |= MSG_MORE;
655 
656 	return sock->ops->sendpage(sock, page, offset, size, flags);
657 }
658 
659 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
660 					 struct sock_iocb *siocb)
661 {
662 	if (!is_sync_kiocb(iocb)) {
663 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
664 		if (!siocb)
665 			return NULL;
666 		iocb->ki_dtor = sock_aio_dtor;
667 	}
668 
669 	siocb->kiocb = iocb;
670 	iocb->private = siocb;
671 	return siocb;
672 }
673 
674 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
675 		struct file *file, const struct iovec *iov,
676 		unsigned long nr_segs)
677 {
678 	struct socket *sock = file->private_data;
679 	size_t size = 0;
680 	int i;
681 
682 	for (i = 0; i < nr_segs; i++)
683 		size += iov[i].iov_len;
684 
685 	msg->msg_name = NULL;
686 	msg->msg_namelen = 0;
687 	msg->msg_control = NULL;
688 	msg->msg_controllen = 0;
689 	msg->msg_iov = (struct iovec *)iov;
690 	msg->msg_iovlen = nr_segs;
691 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
692 
693 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
694 }
695 
696 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
697 				unsigned long nr_segs, loff_t pos)
698 {
699 	struct sock_iocb siocb, *x;
700 
701 	if (pos != 0)
702 		return -ESPIPE;
703 
704 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
705 		return 0;
706 
707 
708 	x = alloc_sock_iocb(iocb, &siocb);
709 	if (!x)
710 		return -ENOMEM;
711 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
712 }
713 
714 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
715 			struct file *file, const struct iovec *iov,
716 			unsigned long nr_segs)
717 {
718 	struct socket *sock = file->private_data;
719 	size_t size = 0;
720 	int i;
721 
722 	for (i = 0; i < nr_segs; i++)
723 		size += iov[i].iov_len;
724 
725 	msg->msg_name = NULL;
726 	msg->msg_namelen = 0;
727 	msg->msg_control = NULL;
728 	msg->msg_controllen = 0;
729 	msg->msg_iov = (struct iovec *)iov;
730 	msg->msg_iovlen = nr_segs;
731 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
732 	if (sock->type == SOCK_SEQPACKET)
733 		msg->msg_flags |= MSG_EOR;
734 
735 	return __sock_sendmsg(iocb, sock, msg, size);
736 }
737 
738 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
739 			  unsigned long nr_segs, loff_t pos)
740 {
741 	struct sock_iocb siocb, *x;
742 
743 	if (pos != 0)
744 		return -ESPIPE;
745 
746 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
747 		return 0;
748 
749 	x = alloc_sock_iocb(iocb, &siocb);
750 	if (!x)
751 		return -ENOMEM;
752 
753 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
754 }
755 
756 /*
757  * Atomic setting of ioctl hooks to avoid race
758  * with module unload.
759  */
760 
761 static DEFINE_MUTEX(br_ioctl_mutex);
762 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
763 
764 void brioctl_set(int (*hook) (unsigned int, void __user *))
765 {
766 	mutex_lock(&br_ioctl_mutex);
767 	br_ioctl_hook = hook;
768 	mutex_unlock(&br_ioctl_mutex);
769 }
770 
771 EXPORT_SYMBOL(brioctl_set);
772 
773 static DEFINE_MUTEX(vlan_ioctl_mutex);
774 static int (*vlan_ioctl_hook) (void __user *arg);
775 
776 void vlan_ioctl_set(int (*hook) (void __user *))
777 {
778 	mutex_lock(&vlan_ioctl_mutex);
779 	vlan_ioctl_hook = hook;
780 	mutex_unlock(&vlan_ioctl_mutex);
781 }
782 
783 EXPORT_SYMBOL(vlan_ioctl_set);
784 
785 static DEFINE_MUTEX(dlci_ioctl_mutex);
786 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
787 
788 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
789 {
790 	mutex_lock(&dlci_ioctl_mutex);
791 	dlci_ioctl_hook = hook;
792 	mutex_unlock(&dlci_ioctl_mutex);
793 }
794 
795 EXPORT_SYMBOL(dlci_ioctl_set);
796 
797 /*
798  *	With an ioctl, arg may well be a user mode pointer, but we don't know
799  *	what to do with it - that's up to the protocol still.
800  */
801 
802 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
803 {
804 	struct socket *sock;
805 	void __user *argp = (void __user *)arg;
806 	int pid, err;
807 
808 	sock = file->private_data;
809 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
810 		err = dev_ioctl(cmd, argp);
811 	} else
812 #ifdef CONFIG_WIRELESS_EXT
813 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
814 		err = dev_ioctl(cmd, argp);
815 	} else
816 #endif				/* CONFIG_WIRELESS_EXT */
817 		switch (cmd) {
818 		case FIOSETOWN:
819 		case SIOCSPGRP:
820 			err = -EFAULT;
821 			if (get_user(pid, (int __user *)argp))
822 				break;
823 			err = f_setown(sock->file, pid, 1);
824 			break;
825 		case FIOGETOWN:
826 		case SIOCGPGRP:
827 			err = put_user(f_getown(sock->file),
828 				       (int __user *)argp);
829 			break;
830 		case SIOCGIFBR:
831 		case SIOCSIFBR:
832 		case SIOCBRADDBR:
833 		case SIOCBRDELBR:
834 			err = -ENOPKG;
835 			if (!br_ioctl_hook)
836 				request_module("bridge");
837 
838 			mutex_lock(&br_ioctl_mutex);
839 			if (br_ioctl_hook)
840 				err = br_ioctl_hook(cmd, argp);
841 			mutex_unlock(&br_ioctl_mutex);
842 			break;
843 		case SIOCGIFVLAN:
844 		case SIOCSIFVLAN:
845 			err = -ENOPKG;
846 			if (!vlan_ioctl_hook)
847 				request_module("8021q");
848 
849 			mutex_lock(&vlan_ioctl_mutex);
850 			if (vlan_ioctl_hook)
851 				err = vlan_ioctl_hook(argp);
852 			mutex_unlock(&vlan_ioctl_mutex);
853 			break;
854 		case SIOCADDDLCI:
855 		case SIOCDELDLCI:
856 			err = -ENOPKG;
857 			if (!dlci_ioctl_hook)
858 				request_module("dlci");
859 
860 			if (dlci_ioctl_hook) {
861 				mutex_lock(&dlci_ioctl_mutex);
862 				err = dlci_ioctl_hook(cmd, argp);
863 				mutex_unlock(&dlci_ioctl_mutex);
864 			}
865 			break;
866 		default:
867 			err = sock->ops->ioctl(sock, cmd, arg);
868 
869 			/*
870 			 * If this ioctl is unknown try to hand it down
871 			 * to the NIC driver.
872 			 */
873 			if (err == -ENOIOCTLCMD)
874 				err = dev_ioctl(cmd, argp);
875 			break;
876 		}
877 	return err;
878 }
879 
880 int sock_create_lite(int family, int type, int protocol, struct socket **res)
881 {
882 	int err;
883 	struct socket *sock = NULL;
884 
885 	err = security_socket_create(family, type, protocol, 1);
886 	if (err)
887 		goto out;
888 
889 	sock = sock_alloc();
890 	if (!sock) {
891 		err = -ENOMEM;
892 		goto out;
893 	}
894 
895 	sock->type = type;
896 	err = security_socket_post_create(sock, family, type, protocol, 1);
897 	if (err)
898 		goto out_release;
899 
900 out:
901 	*res = sock;
902 	return err;
903 out_release:
904 	sock_release(sock);
905 	sock = NULL;
906 	goto out;
907 }
908 
909 /* No kernel lock held - perfect */
910 static unsigned int sock_poll(struct file *file, poll_table *wait)
911 {
912 	struct socket *sock;
913 
914 	/*
915 	 *      We can't return errors to poll, so it's either yes or no.
916 	 */
917 	sock = file->private_data;
918 	return sock->ops->poll(file, sock, wait);
919 }
920 
921 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
922 {
923 	struct socket *sock = file->private_data;
924 
925 	return sock->ops->mmap(file, sock, vma);
926 }
927 
928 static int sock_close(struct inode *inode, struct file *filp)
929 {
930 	/*
931 	 *      It was possible the inode is NULL we were
932 	 *      closing an unfinished socket.
933 	 */
934 
935 	if (!inode) {
936 		printk(KERN_DEBUG "sock_close: NULL inode\n");
937 		return 0;
938 	}
939 	sock_fasync(-1, filp, 0);
940 	sock_release(SOCKET_I(inode));
941 	return 0;
942 }
943 
944 /*
945  *	Update the socket async list
946  *
947  *	Fasync_list locking strategy.
948  *
949  *	1. fasync_list is modified only under process context socket lock
950  *	   i.e. under semaphore.
951  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
952  *	   or under socket lock.
953  *	3. fasync_list can be used from softirq context, so that
954  *	   modification under socket lock have to be enhanced with
955  *	   write_lock_bh(&sk->sk_callback_lock).
956  *							--ANK (990710)
957  */
958 
959 static int sock_fasync(int fd, struct file *filp, int on)
960 {
961 	struct fasync_struct *fa, *fna = NULL, **prev;
962 	struct socket *sock;
963 	struct sock *sk;
964 
965 	if (on) {
966 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
967 		if (fna == NULL)
968 			return -ENOMEM;
969 	}
970 
971 	sock = filp->private_data;
972 
973 	sk = sock->sk;
974 	if (sk == NULL) {
975 		kfree(fna);
976 		return -EINVAL;
977 	}
978 
979 	lock_sock(sk);
980 
981 	prev = &(sock->fasync_list);
982 
983 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
984 		if (fa->fa_file == filp)
985 			break;
986 
987 	if (on) {
988 		if (fa != NULL) {
989 			write_lock_bh(&sk->sk_callback_lock);
990 			fa->fa_fd = fd;
991 			write_unlock_bh(&sk->sk_callback_lock);
992 
993 			kfree(fna);
994 			goto out;
995 		}
996 		fna->fa_file = filp;
997 		fna->fa_fd = fd;
998 		fna->magic = FASYNC_MAGIC;
999 		fna->fa_next = sock->fasync_list;
1000 		write_lock_bh(&sk->sk_callback_lock);
1001 		sock->fasync_list = fna;
1002 		write_unlock_bh(&sk->sk_callback_lock);
1003 	} else {
1004 		if (fa != NULL) {
1005 			write_lock_bh(&sk->sk_callback_lock);
1006 			*prev = fa->fa_next;
1007 			write_unlock_bh(&sk->sk_callback_lock);
1008 			kfree(fa);
1009 		}
1010 	}
1011 
1012 out:
1013 	release_sock(sock->sk);
1014 	return 0;
1015 }
1016 
1017 /* This function may be called only under socket lock or callback_lock */
1018 
1019 int sock_wake_async(struct socket *sock, int how, int band)
1020 {
1021 	if (!sock || !sock->fasync_list)
1022 		return -1;
1023 	switch (how) {
1024 	case 1:
1025 
1026 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1027 			break;
1028 		goto call_kill;
1029 	case 2:
1030 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1031 			break;
1032 		/* fall through */
1033 	case 0:
1034 call_kill:
1035 		__kill_fasync(sock->fasync_list, SIGIO, band);
1036 		break;
1037 	case 3:
1038 		__kill_fasync(sock->fasync_list, SIGURG, band);
1039 	}
1040 	return 0;
1041 }
1042 
1043 static int __sock_create(int family, int type, int protocol,
1044 			 struct socket **res, int kern)
1045 {
1046 	int err;
1047 	struct socket *sock;
1048 	const struct net_proto_family *pf;
1049 
1050 	/*
1051 	 *      Check protocol is in range
1052 	 */
1053 	if (family < 0 || family >= NPROTO)
1054 		return -EAFNOSUPPORT;
1055 	if (type < 0 || type >= SOCK_MAX)
1056 		return -EINVAL;
1057 
1058 	/* Compatibility.
1059 
1060 	   This uglymoron is moved from INET layer to here to avoid
1061 	   deadlock in module load.
1062 	 */
1063 	if (family == PF_INET && type == SOCK_PACKET) {
1064 		static int warned;
1065 		if (!warned) {
1066 			warned = 1;
1067 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1068 			       current->comm);
1069 		}
1070 		family = PF_PACKET;
1071 	}
1072 
1073 	err = security_socket_create(family, type, protocol, kern);
1074 	if (err)
1075 		return err;
1076 
1077 	/*
1078 	 *	Allocate the socket and allow the family to set things up. if
1079 	 *	the protocol is 0, the family is instructed to select an appropriate
1080 	 *	default.
1081 	 */
1082 	sock = sock_alloc();
1083 	if (!sock) {
1084 		if (net_ratelimit())
1085 			printk(KERN_WARNING "socket: no more sockets\n");
1086 		return -ENFILE;	/* Not exactly a match, but its the
1087 				   closest posix thing */
1088 	}
1089 
1090 	sock->type = type;
1091 
1092 #if defined(CONFIG_KMOD)
1093 	/* Attempt to load a protocol module if the find failed.
1094 	 *
1095 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1096 	 * requested real, full-featured networking support upon configuration.
1097 	 * Otherwise module support will break!
1098 	 */
1099 	if (net_families[family] == NULL)
1100 		request_module("net-pf-%d", family);
1101 #endif
1102 
1103 	rcu_read_lock();
1104 	pf = rcu_dereference(net_families[family]);
1105 	err = -EAFNOSUPPORT;
1106 	if (!pf)
1107 		goto out_release;
1108 
1109 	/*
1110 	 * We will call the ->create function, that possibly is in a loadable
1111 	 * module, so we have to bump that loadable module refcnt first.
1112 	 */
1113 	if (!try_module_get(pf->owner))
1114 		goto out_release;
1115 
1116 	/* Now protected by module ref count */
1117 	rcu_read_unlock();
1118 
1119 	err = pf->create(sock, protocol);
1120 	if (err < 0)
1121 		goto out_module_put;
1122 
1123 	/*
1124 	 * Now to bump the refcnt of the [loadable] module that owns this
1125 	 * socket at sock_release time we decrement its refcnt.
1126 	 */
1127 	if (!try_module_get(sock->ops->owner))
1128 		goto out_module_busy;
1129 
1130 	/*
1131 	 * Now that we're done with the ->create function, the [loadable]
1132 	 * module can have its refcnt decremented
1133 	 */
1134 	module_put(pf->owner);
1135 	err = security_socket_post_create(sock, family, type, protocol, kern);
1136 	if (err)
1137 		goto out_release;
1138 	*res = sock;
1139 
1140 	return 0;
1141 
1142 out_module_busy:
1143 	err = -EAFNOSUPPORT;
1144 out_module_put:
1145 	sock->ops = NULL;
1146 	module_put(pf->owner);
1147 out_sock_release:
1148 	sock_release(sock);
1149 	return err;
1150 
1151 out_release:
1152 	rcu_read_unlock();
1153 	goto out_sock_release;
1154 }
1155 
1156 int sock_create(int family, int type, int protocol, struct socket **res)
1157 {
1158 	return __sock_create(family, type, protocol, res, 0);
1159 }
1160 
1161 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1162 {
1163 	return __sock_create(family, type, protocol, res, 1);
1164 }
1165 
1166 asmlinkage long sys_socket(int family, int type, int protocol)
1167 {
1168 	int retval;
1169 	struct socket *sock;
1170 
1171 	retval = sock_create(family, type, protocol, &sock);
1172 	if (retval < 0)
1173 		goto out;
1174 
1175 	retval = sock_map_fd(sock);
1176 	if (retval < 0)
1177 		goto out_release;
1178 
1179 out:
1180 	/* It may be already another descriptor 8) Not kernel problem. */
1181 	return retval;
1182 
1183 out_release:
1184 	sock_release(sock);
1185 	return retval;
1186 }
1187 
1188 /*
1189  *	Create a pair of connected sockets.
1190  */
1191 
1192 asmlinkage long sys_socketpair(int family, int type, int protocol,
1193 			       int __user *usockvec)
1194 {
1195 	struct socket *sock1, *sock2;
1196 	int fd1, fd2, err;
1197 	struct file *newfile1, *newfile2;
1198 
1199 	/*
1200 	 * Obtain the first socket and check if the underlying protocol
1201 	 * supports the socketpair call.
1202 	 */
1203 
1204 	err = sock_create(family, type, protocol, &sock1);
1205 	if (err < 0)
1206 		goto out;
1207 
1208 	err = sock_create(family, type, protocol, &sock2);
1209 	if (err < 0)
1210 		goto out_release_1;
1211 
1212 	err = sock1->ops->socketpair(sock1, sock2);
1213 	if (err < 0)
1214 		goto out_release_both;
1215 
1216 	fd1 = sock_alloc_fd(&newfile1);
1217 	if (unlikely(fd1 < 0))
1218 		goto out_release_both;
1219 
1220 	fd2 = sock_alloc_fd(&newfile2);
1221 	if (unlikely(fd2 < 0)) {
1222 		put_filp(newfile1);
1223 		put_unused_fd(fd1);
1224 		goto out_release_both;
1225 	}
1226 
1227 	err = sock_attach_fd(sock1, newfile1);
1228 	if (unlikely(err < 0)) {
1229 		goto out_fd2;
1230 	}
1231 
1232 	err = sock_attach_fd(sock2, newfile2);
1233 	if (unlikely(err < 0)) {
1234 		fput(newfile1);
1235 		goto out_fd1;
1236 	}
1237 
1238 	err = audit_fd_pair(fd1, fd2);
1239 	if (err < 0) {
1240 		fput(newfile1);
1241 		fput(newfile2);
1242 		goto out_fd;
1243 	}
1244 
1245 	fd_install(fd1, newfile1);
1246 	fd_install(fd2, newfile2);
1247 	/* fd1 and fd2 may be already another descriptors.
1248 	 * Not kernel problem.
1249 	 */
1250 
1251 	err = put_user(fd1, &usockvec[0]);
1252 	if (!err)
1253 		err = put_user(fd2, &usockvec[1]);
1254 	if (!err)
1255 		return 0;
1256 
1257 	sys_close(fd2);
1258 	sys_close(fd1);
1259 	return err;
1260 
1261 out_release_both:
1262 	sock_release(sock2);
1263 out_release_1:
1264 	sock_release(sock1);
1265 out:
1266 	return err;
1267 
1268 out_fd2:
1269 	put_filp(newfile1);
1270 	sock_release(sock1);
1271 out_fd1:
1272 	put_filp(newfile2);
1273 	sock_release(sock2);
1274 out_fd:
1275 	put_unused_fd(fd1);
1276 	put_unused_fd(fd2);
1277 	goto out;
1278 }
1279 
1280 /*
1281  *	Bind a name to a socket. Nothing much to do here since it's
1282  *	the protocol's responsibility to handle the local address.
1283  *
1284  *	We move the socket address to kernel space before we call
1285  *	the protocol layer (having also checked the address is ok).
1286  */
1287 
1288 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1289 {
1290 	struct socket *sock;
1291 	char address[MAX_SOCK_ADDR];
1292 	int err, fput_needed;
1293 
1294 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1295 	if(sock) {
1296 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1297 		if (err >= 0) {
1298 			err = security_socket_bind(sock,
1299 						   (struct sockaddr *)address,
1300 						   addrlen);
1301 			if (!err)
1302 				err = sock->ops->bind(sock,
1303 						      (struct sockaddr *)
1304 						      address, addrlen);
1305 		}
1306 		fput_light(sock->file, fput_needed);
1307 	}
1308 	return err;
1309 }
1310 
1311 /*
1312  *	Perform a listen. Basically, we allow the protocol to do anything
1313  *	necessary for a listen, and if that works, we mark the socket as
1314  *	ready for listening.
1315  */
1316 
1317 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1318 
1319 asmlinkage long sys_listen(int fd, int backlog)
1320 {
1321 	struct socket *sock;
1322 	int err, fput_needed;
1323 
1324 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1325 	if (sock) {
1326 		if ((unsigned)backlog > sysctl_somaxconn)
1327 			backlog = sysctl_somaxconn;
1328 
1329 		err = security_socket_listen(sock, backlog);
1330 		if (!err)
1331 			err = sock->ops->listen(sock, backlog);
1332 
1333 		fput_light(sock->file, fput_needed);
1334 	}
1335 	return err;
1336 }
1337 
1338 /*
1339  *	For accept, we attempt to create a new socket, set up the link
1340  *	with the client, wake up the client, then return the new
1341  *	connected fd. We collect the address of the connector in kernel
1342  *	space and move it to user at the very end. This is unclean because
1343  *	we open the socket then return an error.
1344  *
1345  *	1003.1g adds the ability to recvmsg() to query connection pending
1346  *	status to recvmsg. We need to add that support in a way thats
1347  *	clean when we restucture accept also.
1348  */
1349 
1350 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1351 			   int __user *upeer_addrlen)
1352 {
1353 	struct socket *sock, *newsock;
1354 	struct file *newfile;
1355 	int err, len, newfd, fput_needed;
1356 	char address[MAX_SOCK_ADDR];
1357 
1358 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1359 	if (!sock)
1360 		goto out;
1361 
1362 	err = -ENFILE;
1363 	if (!(newsock = sock_alloc()))
1364 		goto out_put;
1365 
1366 	newsock->type = sock->type;
1367 	newsock->ops = sock->ops;
1368 
1369 	/*
1370 	 * We don't need try_module_get here, as the listening socket (sock)
1371 	 * has the protocol module (sock->ops->owner) held.
1372 	 */
1373 	__module_get(newsock->ops->owner);
1374 
1375 	newfd = sock_alloc_fd(&newfile);
1376 	if (unlikely(newfd < 0)) {
1377 		err = newfd;
1378 		sock_release(newsock);
1379 		goto out_put;
1380 	}
1381 
1382 	err = sock_attach_fd(newsock, newfile);
1383 	if (err < 0)
1384 		goto out_fd_simple;
1385 
1386 	err = security_socket_accept(sock, newsock);
1387 	if (err)
1388 		goto out_fd;
1389 
1390 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1391 	if (err < 0)
1392 		goto out_fd;
1393 
1394 	if (upeer_sockaddr) {
1395 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1396 					  &len, 2) < 0) {
1397 			err = -ECONNABORTED;
1398 			goto out_fd;
1399 		}
1400 		err = move_addr_to_user(address, len, upeer_sockaddr,
1401 					upeer_addrlen);
1402 		if (err < 0)
1403 			goto out_fd;
1404 	}
1405 
1406 	/* File flags are not inherited via accept() unlike another OSes. */
1407 
1408 	fd_install(newfd, newfile);
1409 	err = newfd;
1410 
1411 	security_socket_post_accept(sock, newsock);
1412 
1413 out_put:
1414 	fput_light(sock->file, fput_needed);
1415 out:
1416 	return err;
1417 out_fd_simple:
1418 	sock_release(newsock);
1419 	put_filp(newfile);
1420 	put_unused_fd(newfd);
1421 	goto out_put;
1422 out_fd:
1423 	fput(newfile);
1424 	put_unused_fd(newfd);
1425 	goto out_put;
1426 }
1427 
1428 /*
1429  *	Attempt to connect to a socket with the server address.  The address
1430  *	is in user space so we verify it is OK and move it to kernel space.
1431  *
1432  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1433  *	break bindings
1434  *
1435  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1436  *	other SEQPACKET protocols that take time to connect() as it doesn't
1437  *	include the -EINPROGRESS status for such sockets.
1438  */
1439 
1440 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1441 			    int addrlen)
1442 {
1443 	struct socket *sock;
1444 	char address[MAX_SOCK_ADDR];
1445 	int err, fput_needed;
1446 
1447 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1448 	if (!sock)
1449 		goto out;
1450 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1451 	if (err < 0)
1452 		goto out_put;
1453 
1454 	err =
1455 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1456 	if (err)
1457 		goto out_put;
1458 
1459 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1460 				 sock->file->f_flags);
1461 out_put:
1462 	fput_light(sock->file, fput_needed);
1463 out:
1464 	return err;
1465 }
1466 
1467 /*
1468  *	Get the local address ('name') of a socket object. Move the obtained
1469  *	name to user space.
1470  */
1471 
1472 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1473 				int __user *usockaddr_len)
1474 {
1475 	struct socket *sock;
1476 	char address[MAX_SOCK_ADDR];
1477 	int len, err, fput_needed;
1478 
1479 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 	if (!sock)
1481 		goto out;
1482 
1483 	err = security_socket_getsockname(sock);
1484 	if (err)
1485 		goto out_put;
1486 
1487 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1488 	if (err)
1489 		goto out_put;
1490 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1491 
1492 out_put:
1493 	fput_light(sock->file, fput_needed);
1494 out:
1495 	return err;
1496 }
1497 
1498 /*
1499  *	Get the remote address ('name') of a socket object. Move the obtained
1500  *	name to user space.
1501  */
1502 
1503 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1504 				int __user *usockaddr_len)
1505 {
1506 	struct socket *sock;
1507 	char address[MAX_SOCK_ADDR];
1508 	int len, err, fput_needed;
1509 
1510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 	if (sock != NULL) {
1512 		err = security_socket_getpeername(sock);
1513 		if (err) {
1514 			fput_light(sock->file, fput_needed);
1515 			return err;
1516 		}
1517 
1518 		err =
1519 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1520 				       1);
1521 		if (!err)
1522 			err = move_addr_to_user(address, len, usockaddr,
1523 						usockaddr_len);
1524 		fput_light(sock->file, fput_needed);
1525 	}
1526 	return err;
1527 }
1528 
1529 /*
1530  *	Send a datagram to a given address. We move the address into kernel
1531  *	space and check the user space data area is readable before invoking
1532  *	the protocol.
1533  */
1534 
1535 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1536 			   unsigned flags, struct sockaddr __user *addr,
1537 			   int addr_len)
1538 {
1539 	struct socket *sock;
1540 	char address[MAX_SOCK_ADDR];
1541 	int err;
1542 	struct msghdr msg;
1543 	struct iovec iov;
1544 	int fput_needed;
1545 	struct file *sock_file;
1546 
1547 	sock_file = fget_light(fd, &fput_needed);
1548 	err = -EBADF;
1549 	if (!sock_file)
1550 		goto out;
1551 
1552 	sock = sock_from_file(sock_file, &err);
1553 	if (!sock)
1554 		goto out_put;
1555 	iov.iov_base = buff;
1556 	iov.iov_len = len;
1557 	msg.msg_name = NULL;
1558 	msg.msg_iov = &iov;
1559 	msg.msg_iovlen = 1;
1560 	msg.msg_control = NULL;
1561 	msg.msg_controllen = 0;
1562 	msg.msg_namelen = 0;
1563 	if (addr) {
1564 		err = move_addr_to_kernel(addr, addr_len, address);
1565 		if (err < 0)
1566 			goto out_put;
1567 		msg.msg_name = address;
1568 		msg.msg_namelen = addr_len;
1569 	}
1570 	if (sock->file->f_flags & O_NONBLOCK)
1571 		flags |= MSG_DONTWAIT;
1572 	msg.msg_flags = flags;
1573 	err = sock_sendmsg(sock, &msg, len);
1574 
1575 out_put:
1576 	fput_light(sock_file, fput_needed);
1577 out:
1578 	return err;
1579 }
1580 
1581 /*
1582  *	Send a datagram down a socket.
1583  */
1584 
1585 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1586 {
1587 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1588 }
1589 
1590 /*
1591  *	Receive a frame from the socket and optionally record the address of the
1592  *	sender. We verify the buffers are writable and if needed move the
1593  *	sender address from kernel to user space.
1594  */
1595 
1596 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1597 			     unsigned flags, struct sockaddr __user *addr,
1598 			     int __user *addr_len)
1599 {
1600 	struct socket *sock;
1601 	struct iovec iov;
1602 	struct msghdr msg;
1603 	char address[MAX_SOCK_ADDR];
1604 	int err, err2;
1605 	struct file *sock_file;
1606 	int fput_needed;
1607 
1608 	sock_file = fget_light(fd, &fput_needed);
1609 	err = -EBADF;
1610 	if (!sock_file)
1611 		goto out;
1612 
1613 	sock = sock_from_file(sock_file, &err);
1614 	if (!sock)
1615 		goto out_put;
1616 
1617 	msg.msg_control = NULL;
1618 	msg.msg_controllen = 0;
1619 	msg.msg_iovlen = 1;
1620 	msg.msg_iov = &iov;
1621 	iov.iov_len = size;
1622 	iov.iov_base = ubuf;
1623 	msg.msg_name = address;
1624 	msg.msg_namelen = MAX_SOCK_ADDR;
1625 	if (sock->file->f_flags & O_NONBLOCK)
1626 		flags |= MSG_DONTWAIT;
1627 	err = sock_recvmsg(sock, &msg, size, flags);
1628 
1629 	if (err >= 0 && addr != NULL) {
1630 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1631 		if (err2 < 0)
1632 			err = err2;
1633 	}
1634 out_put:
1635 	fput_light(sock_file, fput_needed);
1636 out:
1637 	return err;
1638 }
1639 
1640 /*
1641  *	Receive a datagram from a socket.
1642  */
1643 
1644 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1645 			 unsigned flags)
1646 {
1647 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1648 }
1649 
1650 /*
1651  *	Set a socket option. Because we don't know the option lengths we have
1652  *	to pass the user mode parameter for the protocols to sort out.
1653  */
1654 
1655 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1656 			       char __user *optval, int optlen)
1657 {
1658 	int err, fput_needed;
1659 	struct socket *sock;
1660 
1661 	if (optlen < 0)
1662 		return -EINVAL;
1663 
1664 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1665 	if (sock != NULL) {
1666 		err = security_socket_setsockopt(sock, level, optname);
1667 		if (err)
1668 			goto out_put;
1669 
1670 		if (level == SOL_SOCKET)
1671 			err =
1672 			    sock_setsockopt(sock, level, optname, optval,
1673 					    optlen);
1674 		else
1675 			err =
1676 			    sock->ops->setsockopt(sock, level, optname, optval,
1677 						  optlen);
1678 out_put:
1679 		fput_light(sock->file, fput_needed);
1680 	}
1681 	return err;
1682 }
1683 
1684 /*
1685  *	Get a socket option. Because we don't know the option lengths we have
1686  *	to pass a user mode parameter for the protocols to sort out.
1687  */
1688 
1689 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1690 			       char __user *optval, int __user *optlen)
1691 {
1692 	int err, fput_needed;
1693 	struct socket *sock;
1694 
1695 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 	if (sock != NULL) {
1697 		err = security_socket_getsockopt(sock, level, optname);
1698 		if (err)
1699 			goto out_put;
1700 
1701 		if (level == SOL_SOCKET)
1702 			err =
1703 			    sock_getsockopt(sock, level, optname, optval,
1704 					    optlen);
1705 		else
1706 			err =
1707 			    sock->ops->getsockopt(sock, level, optname, optval,
1708 						  optlen);
1709 out_put:
1710 		fput_light(sock->file, fput_needed);
1711 	}
1712 	return err;
1713 }
1714 
1715 /*
1716  *	Shutdown a socket.
1717  */
1718 
1719 asmlinkage long sys_shutdown(int fd, int how)
1720 {
1721 	int err, fput_needed;
1722 	struct socket *sock;
1723 
1724 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1725 	if (sock != NULL) {
1726 		err = security_socket_shutdown(sock, how);
1727 		if (!err)
1728 			err = sock->ops->shutdown(sock, how);
1729 		fput_light(sock->file, fput_needed);
1730 	}
1731 	return err;
1732 }
1733 
1734 /* A couple of helpful macros for getting the address of the 32/64 bit
1735  * fields which are the same type (int / unsigned) on our platforms.
1736  */
1737 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1738 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1739 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1740 
1741 /*
1742  *	BSD sendmsg interface
1743  */
1744 
1745 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1746 {
1747 	struct compat_msghdr __user *msg_compat =
1748 	    (struct compat_msghdr __user *)msg;
1749 	struct socket *sock;
1750 	char address[MAX_SOCK_ADDR];
1751 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1752 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1753 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1754 	/* 20 is size of ipv6_pktinfo */
1755 	unsigned char *ctl_buf = ctl;
1756 	struct msghdr msg_sys;
1757 	int err, ctl_len, iov_size, total_len;
1758 	int fput_needed;
1759 
1760 	err = -EFAULT;
1761 	if (MSG_CMSG_COMPAT & flags) {
1762 		if (get_compat_msghdr(&msg_sys, msg_compat))
1763 			return -EFAULT;
1764 	}
1765 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1766 		return -EFAULT;
1767 
1768 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 	if (!sock)
1770 		goto out;
1771 
1772 	/* do not move before msg_sys is valid */
1773 	err = -EMSGSIZE;
1774 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1775 		goto out_put;
1776 
1777 	/* Check whether to allocate the iovec area */
1778 	err = -ENOMEM;
1779 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1780 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1781 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1782 		if (!iov)
1783 			goto out_put;
1784 	}
1785 
1786 	/* This will also move the address data into kernel space */
1787 	if (MSG_CMSG_COMPAT & flags) {
1788 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1789 	} else
1790 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1791 	if (err < 0)
1792 		goto out_freeiov;
1793 	total_len = err;
1794 
1795 	err = -ENOBUFS;
1796 
1797 	if (msg_sys.msg_controllen > INT_MAX)
1798 		goto out_freeiov;
1799 	ctl_len = msg_sys.msg_controllen;
1800 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1801 		err =
1802 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1803 						     sizeof(ctl));
1804 		if (err)
1805 			goto out_freeiov;
1806 		ctl_buf = msg_sys.msg_control;
1807 		ctl_len = msg_sys.msg_controllen;
1808 	} else if (ctl_len) {
1809 		if (ctl_len > sizeof(ctl)) {
1810 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1811 			if (ctl_buf == NULL)
1812 				goto out_freeiov;
1813 		}
1814 		err = -EFAULT;
1815 		/*
1816 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1817 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1818 		 * checking falls down on this.
1819 		 */
1820 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1821 				   ctl_len))
1822 			goto out_freectl;
1823 		msg_sys.msg_control = ctl_buf;
1824 	}
1825 	msg_sys.msg_flags = flags;
1826 
1827 	if (sock->file->f_flags & O_NONBLOCK)
1828 		msg_sys.msg_flags |= MSG_DONTWAIT;
1829 	err = sock_sendmsg(sock, &msg_sys, total_len);
1830 
1831 out_freectl:
1832 	if (ctl_buf != ctl)
1833 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1834 out_freeiov:
1835 	if (iov != iovstack)
1836 		sock_kfree_s(sock->sk, iov, iov_size);
1837 out_put:
1838 	fput_light(sock->file, fput_needed);
1839 out:
1840 	return err;
1841 }
1842 
1843 /*
1844  *	BSD recvmsg interface
1845  */
1846 
1847 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1848 			    unsigned int flags)
1849 {
1850 	struct compat_msghdr __user *msg_compat =
1851 	    (struct compat_msghdr __user *)msg;
1852 	struct socket *sock;
1853 	struct iovec iovstack[UIO_FASTIOV];
1854 	struct iovec *iov = iovstack;
1855 	struct msghdr msg_sys;
1856 	unsigned long cmsg_ptr;
1857 	int err, iov_size, total_len, len;
1858 	int fput_needed;
1859 
1860 	/* kernel mode address */
1861 	char addr[MAX_SOCK_ADDR];
1862 
1863 	/* user mode address pointers */
1864 	struct sockaddr __user *uaddr;
1865 	int __user *uaddr_len;
1866 
1867 	if (MSG_CMSG_COMPAT & flags) {
1868 		if (get_compat_msghdr(&msg_sys, msg_compat))
1869 			return -EFAULT;
1870 	}
1871 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1872 		return -EFAULT;
1873 
1874 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1875 	if (!sock)
1876 		goto out;
1877 
1878 	err = -EMSGSIZE;
1879 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1880 		goto out_put;
1881 
1882 	/* Check whether to allocate the iovec area */
1883 	err = -ENOMEM;
1884 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1885 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1886 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1887 		if (!iov)
1888 			goto out_put;
1889 	}
1890 
1891 	/*
1892 	 *      Save the user-mode address (verify_iovec will change the
1893 	 *      kernel msghdr to use the kernel address space)
1894 	 */
1895 
1896 	uaddr = (void __user *)msg_sys.msg_name;
1897 	uaddr_len = COMPAT_NAMELEN(msg);
1898 	if (MSG_CMSG_COMPAT & flags) {
1899 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1900 	} else
1901 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1902 	if (err < 0)
1903 		goto out_freeiov;
1904 	total_len = err;
1905 
1906 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1907 	msg_sys.msg_flags = 0;
1908 	if (MSG_CMSG_COMPAT & flags)
1909 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1910 
1911 	if (sock->file->f_flags & O_NONBLOCK)
1912 		flags |= MSG_DONTWAIT;
1913 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1914 	if (err < 0)
1915 		goto out_freeiov;
1916 	len = err;
1917 
1918 	if (uaddr != NULL) {
1919 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1920 					uaddr_len);
1921 		if (err < 0)
1922 			goto out_freeiov;
1923 	}
1924 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1925 			 COMPAT_FLAGS(msg));
1926 	if (err)
1927 		goto out_freeiov;
1928 	if (MSG_CMSG_COMPAT & flags)
1929 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1930 				 &msg_compat->msg_controllen);
1931 	else
1932 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1933 				 &msg->msg_controllen);
1934 	if (err)
1935 		goto out_freeiov;
1936 	err = len;
1937 
1938 out_freeiov:
1939 	if (iov != iovstack)
1940 		sock_kfree_s(sock->sk, iov, iov_size);
1941 out_put:
1942 	fput_light(sock->file, fput_needed);
1943 out:
1944 	return err;
1945 }
1946 
1947 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1948 
1949 /* Argument list sizes for sys_socketcall */
1950 #define AL(x) ((x) * sizeof(unsigned long))
1951 static const unsigned char nargs[18]={
1952 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1953 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1954 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1955 };
1956 
1957 #undef AL
1958 
1959 /*
1960  *	System call vectors.
1961  *
1962  *	Argument checking cleaned up. Saved 20% in size.
1963  *  This function doesn't need to set the kernel lock because
1964  *  it is set by the callees.
1965  */
1966 
1967 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1968 {
1969 	unsigned long a[6];
1970 	unsigned long a0, a1;
1971 	int err;
1972 
1973 	if (call < 1 || call > SYS_RECVMSG)
1974 		return -EINVAL;
1975 
1976 	/* copy_from_user should be SMP safe. */
1977 	if (copy_from_user(a, args, nargs[call]))
1978 		return -EFAULT;
1979 
1980 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1981 	if (err)
1982 		return err;
1983 
1984 	a0 = a[0];
1985 	a1 = a[1];
1986 
1987 	switch (call) {
1988 	case SYS_SOCKET:
1989 		err = sys_socket(a0, a1, a[2]);
1990 		break;
1991 	case SYS_BIND:
1992 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
1993 		break;
1994 	case SYS_CONNECT:
1995 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1996 		break;
1997 	case SYS_LISTEN:
1998 		err = sys_listen(a0, a1);
1999 		break;
2000 	case SYS_ACCEPT:
2001 		err =
2002 		    sys_accept(a0, (struct sockaddr __user *)a1,
2003 			       (int __user *)a[2]);
2004 		break;
2005 	case SYS_GETSOCKNAME:
2006 		err =
2007 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2008 				    (int __user *)a[2]);
2009 		break;
2010 	case SYS_GETPEERNAME:
2011 		err =
2012 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2013 				    (int __user *)a[2]);
2014 		break;
2015 	case SYS_SOCKETPAIR:
2016 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2017 		break;
2018 	case SYS_SEND:
2019 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2020 		break;
2021 	case SYS_SENDTO:
2022 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2023 				 (struct sockaddr __user *)a[4], a[5]);
2024 		break;
2025 	case SYS_RECV:
2026 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2027 		break;
2028 	case SYS_RECVFROM:
2029 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2030 				   (struct sockaddr __user *)a[4],
2031 				   (int __user *)a[5]);
2032 		break;
2033 	case SYS_SHUTDOWN:
2034 		err = sys_shutdown(a0, a1);
2035 		break;
2036 	case SYS_SETSOCKOPT:
2037 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2038 		break;
2039 	case SYS_GETSOCKOPT:
2040 		err =
2041 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2042 				   (int __user *)a[4]);
2043 		break;
2044 	case SYS_SENDMSG:
2045 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2046 		break;
2047 	case SYS_RECVMSG:
2048 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2049 		break;
2050 	default:
2051 		err = -EINVAL;
2052 		break;
2053 	}
2054 	return err;
2055 }
2056 
2057 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2058 
2059 /**
2060  *	sock_register - add a socket protocol handler
2061  *	@ops: description of protocol
2062  *
2063  *	This function is called by a protocol handler that wants to
2064  *	advertise its address family, and have it linked into the
2065  *	socket interface. The value ops->family coresponds to the
2066  *	socket system call protocol family.
2067  */
2068 int sock_register(const struct net_proto_family *ops)
2069 {
2070 	int err;
2071 
2072 	if (ops->family >= NPROTO) {
2073 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2074 		       NPROTO);
2075 		return -ENOBUFS;
2076 	}
2077 
2078 	spin_lock(&net_family_lock);
2079 	if (net_families[ops->family])
2080 		err = -EEXIST;
2081 	else {
2082 		net_families[ops->family] = ops;
2083 		err = 0;
2084 	}
2085 	spin_unlock(&net_family_lock);
2086 
2087 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2088 	return err;
2089 }
2090 
2091 /**
2092  *	sock_unregister - remove a protocol handler
2093  *	@family: protocol family to remove
2094  *
2095  *	This function is called by a protocol handler that wants to
2096  *	remove its address family, and have it unlinked from the
2097  *	new socket creation.
2098  *
2099  *	If protocol handler is a module, then it can use module reference
2100  *	counts to protect against new references. If protocol handler is not
2101  *	a module then it needs to provide its own protection in
2102  *	the ops->create routine.
2103  */
2104 void sock_unregister(int family)
2105 {
2106 	BUG_ON(family < 0 || family >= NPROTO);
2107 
2108 	spin_lock(&net_family_lock);
2109 	net_families[family] = NULL;
2110 	spin_unlock(&net_family_lock);
2111 
2112 	synchronize_rcu();
2113 
2114 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2115 }
2116 
2117 static int __init sock_init(void)
2118 {
2119 	/*
2120 	 *      Initialize sock SLAB cache.
2121 	 */
2122 
2123 	sk_init();
2124 
2125 	/*
2126 	 *      Initialize skbuff SLAB cache
2127 	 */
2128 	skb_init();
2129 
2130 	/*
2131 	 *      Initialize the protocols module.
2132 	 */
2133 
2134 	init_inodecache();
2135 	register_filesystem(&sock_fs_type);
2136 	sock_mnt = kern_mount(&sock_fs_type);
2137 
2138 	/* The real protocol initialization is performed in later initcalls.
2139 	 */
2140 
2141 #ifdef CONFIG_NETFILTER
2142 	netfilter_init();
2143 #endif
2144 
2145 	return 0;
2146 }
2147 
2148 core_initcall(sock_init);	/* early initcall */
2149 
2150 #ifdef CONFIG_PROC_FS
2151 void socket_seq_show(struct seq_file *seq)
2152 {
2153 	int cpu;
2154 	int counter = 0;
2155 
2156 	for_each_possible_cpu(cpu)
2157 	    counter += per_cpu(sockets_in_use, cpu);
2158 
2159 	/* It can be negative, by the way. 8) */
2160 	if (counter < 0)
2161 		counter = 0;
2162 
2163 	seq_printf(seq, "sockets: used %d\n", counter);
2164 }
2165 #endif				/* CONFIG_PROC_FS */
2166 
2167 #ifdef CONFIG_COMPAT
2168 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2169 			      unsigned long arg)
2170 {
2171 	struct socket *sock = file->private_data;
2172 	int ret = -ENOIOCTLCMD;
2173 
2174 	if (sock->ops->compat_ioctl)
2175 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2176 
2177 	return ret;
2178 }
2179 #endif
2180 
2181 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2182 {
2183 	return sock->ops->bind(sock, addr, addrlen);
2184 }
2185 
2186 int kernel_listen(struct socket *sock, int backlog)
2187 {
2188 	return sock->ops->listen(sock, backlog);
2189 }
2190 
2191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2192 {
2193 	struct sock *sk = sock->sk;
2194 	int err;
2195 
2196 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2197 			       newsock);
2198 	if (err < 0)
2199 		goto done;
2200 
2201 	err = sock->ops->accept(sock, *newsock, flags);
2202 	if (err < 0) {
2203 		sock_release(*newsock);
2204 		goto done;
2205 	}
2206 
2207 	(*newsock)->ops = sock->ops;
2208 
2209 done:
2210 	return err;
2211 }
2212 
2213 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2214 		   int flags)
2215 {
2216 	return sock->ops->connect(sock, addr, addrlen, flags);
2217 }
2218 
2219 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2220 			 int *addrlen)
2221 {
2222 	return sock->ops->getname(sock, addr, addrlen, 0);
2223 }
2224 
2225 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2226 			 int *addrlen)
2227 {
2228 	return sock->ops->getname(sock, addr, addrlen, 1);
2229 }
2230 
2231 int kernel_getsockopt(struct socket *sock, int level, int optname,
2232 			char *optval, int *optlen)
2233 {
2234 	mm_segment_t oldfs = get_fs();
2235 	int err;
2236 
2237 	set_fs(KERNEL_DS);
2238 	if (level == SOL_SOCKET)
2239 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2240 	else
2241 		err = sock->ops->getsockopt(sock, level, optname, optval,
2242 					    optlen);
2243 	set_fs(oldfs);
2244 	return err;
2245 }
2246 
2247 int kernel_setsockopt(struct socket *sock, int level, int optname,
2248 			char *optval, int optlen)
2249 {
2250 	mm_segment_t oldfs = get_fs();
2251 	int err;
2252 
2253 	set_fs(KERNEL_DS);
2254 	if (level == SOL_SOCKET)
2255 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2256 	else
2257 		err = sock->ops->setsockopt(sock, level, optname, optval,
2258 					    optlen);
2259 	set_fs(oldfs);
2260 	return err;
2261 }
2262 
2263 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2264 		    size_t size, int flags)
2265 {
2266 	if (sock->ops->sendpage)
2267 		return sock->ops->sendpage(sock, page, offset, size, flags);
2268 
2269 	return sock_no_sendpage(sock, page, offset, size, flags);
2270 }
2271 
2272 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2273 {
2274 	mm_segment_t oldfs = get_fs();
2275 	int err;
2276 
2277 	set_fs(KERNEL_DS);
2278 	err = sock->ops->ioctl(sock, cmd, arg);
2279 	set_fs(oldfs);
2280 
2281 	return err;
2282 }
2283 
2284 /* ABI emulation layers need these two */
2285 EXPORT_SYMBOL(move_addr_to_kernel);
2286 EXPORT_SYMBOL(move_addr_to_user);
2287 EXPORT_SYMBOL(sock_create);
2288 EXPORT_SYMBOL(sock_create_kern);
2289 EXPORT_SYMBOL(sock_create_lite);
2290 EXPORT_SYMBOL(sock_map_fd);
2291 EXPORT_SYMBOL(sock_recvmsg);
2292 EXPORT_SYMBOL(sock_register);
2293 EXPORT_SYMBOL(sock_release);
2294 EXPORT_SYMBOL(sock_sendmsg);
2295 EXPORT_SYMBOL(sock_unregister);
2296 EXPORT_SYMBOL(sock_wake_async);
2297 EXPORT_SYMBOL(sockfd_lookup);
2298 EXPORT_SYMBOL(kernel_sendmsg);
2299 EXPORT_SYMBOL(kernel_recvmsg);
2300 EXPORT_SYMBOL(kernel_bind);
2301 EXPORT_SYMBOL(kernel_listen);
2302 EXPORT_SYMBOL(kernel_accept);
2303 EXPORT_SYMBOL(kernel_connect);
2304 EXPORT_SYMBOL(kernel_getsockname);
2305 EXPORT_SYMBOL(kernel_getpeername);
2306 EXPORT_SYMBOL(kernel_getsockopt);
2307 EXPORT_SYMBOL(kernel_setsockopt);
2308 EXPORT_SYMBOL(kernel_sendpage);
2309 EXPORT_SYMBOL(kernel_sock_ioctl);
2310