xref: /linux/net/socket.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct file *file;
390 
391 	if (!dname)
392 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 				O_RDWR | (flags & O_NONBLOCK),
396 				&socket_file_ops);
397 	if (IS_ERR(file)) {
398 		sock_release(sock);
399 		return file;
400 	}
401 
402 	sock->file = file;
403 	file->private_data = sock;
404 	return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410 	struct file *newfile;
411 	int fd = get_unused_fd_flags(flags);
412 	if (unlikely(fd < 0)) {
413 		sock_release(sock);
414 		return fd;
415 	}
416 
417 	newfile = sock_alloc_file(sock, flags, NULL);
418 	if (likely(!IS_ERR(newfile))) {
419 		fd_install(fd, newfile);
420 		return fd;
421 	}
422 
423 	put_unused_fd(fd);
424 	return PTR_ERR(newfile);
425 }
426 
427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429 	if (file->f_op == &socket_file_ops)
430 		return file->private_data;	/* set in sock_map_fd */
431 
432 	*err = -ENOTSOCK;
433 	return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *	sockfd_lookup - Go from a file number to its socket slot
439  *	@fd: file handle
440  *	@err: pointer to an error code return
441  *
442  *	The file handle passed in is locked and the socket it is bound
443  *	to is returned. If an error occurs the err pointer is overwritten
444  *	with a negative errno code and NULL is returned. The function checks
445  *	for both invalid handles and passing a handle which is not a socket.
446  *
447  *	On a success the socket object pointer is returned.
448  */
449 
450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	file = fget(fd);
456 	if (!file) {
457 		*err = -EBADF;
458 		return NULL;
459 	}
460 
461 	sock = sock_from_file(file, err);
462 	if (!sock)
463 		fput(file);
464 	return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470 	struct fd f = fdget(fd);
471 	struct socket *sock;
472 
473 	*err = -EBADF;
474 	if (f.file) {
475 		sock = sock_from_file(f.file, err);
476 		if (likely(sock)) {
477 			*fput_needed = f.flags;
478 			return sock;
479 		}
480 		fdput(f);
481 	}
482 	return NULL;
483 }
484 
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 				size_t size)
487 {
488 	ssize_t len;
489 	ssize_t used = 0;
490 
491 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 	if (len < 0)
493 		return len;
494 	used += len;
495 	if (buffer) {
496 		if (size < used)
497 			return -ERANGE;
498 		buffer += len;
499 	}
500 
501 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 		buffer += len;
508 	}
509 
510 	return used;
511 }
512 
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515 	int err = simple_setattr(dentry, iattr);
516 
517 	if (!err && (iattr->ia_valid & ATTR_UID)) {
518 		struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520 		if (sock->sk)
521 			sock->sk->sk_uid = iattr->ia_uid;
522 		else
523 			err = -ENOENT;
524 	}
525 
526 	return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
542 struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	inode->i_ino = get_next_ino();
554 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 	inode->i_uid = current_fsuid();
556 	inode->i_gid = current_fsgid();
557 	inode->i_op = &sockfs_inode_ops;
558 
559 	return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *	sock_release	-	close a socket
565  *	@sock: socket to close
566  *
567  *	The socket is released from the protocol stack if it has a release
568  *	callback, and the inode is then released if the socket is bound to
569  *	an inode not a file.
570  */
571 
572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574 	if (sock->ops) {
575 		struct module *owner = sock->ops->owner;
576 
577 		if (inode)
578 			inode_lock(inode);
579 		sock->ops->release(sock);
580 		if (inode)
581 			inode_unlock(inode);
582 		sock->ops = NULL;
583 		module_put(owner);
584 	}
585 
586 	if (sock->wq->fasync_list)
587 		pr_err("%s: fasync list not empty!\n", __func__);
588 
589 	if (!sock->file) {
590 		iput(SOCK_INODE(sock));
591 		return;
592 	}
593 	sock->file = NULL;
594 }
595 
596 void sock_release(struct socket *sock)
597 {
598 	__sock_release(sock, NULL);
599 }
600 EXPORT_SYMBOL(sock_release);
601 
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603 {
604 	u8 flags = *tx_flags;
605 
606 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 		flags |= SKBTX_HW_TSTAMP;
608 
609 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 		flags |= SKBTX_SW_TSTAMP;
611 
612 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 		flags |= SKBTX_SCHED_TSTAMP;
614 
615 	*tx_flags = flags;
616 }
617 EXPORT_SYMBOL(__sock_tx_timestamp);
618 
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620 {
621 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 	BUG_ON(ret == -EIOCBQUEUED);
623 	return ret;
624 }
625 
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627 {
628 	int err = security_socket_sendmsg(sock, msg,
629 					  msg_data_left(msg));
630 
631 	return err ?: sock_sendmsg_nosec(sock, msg);
632 }
633 EXPORT_SYMBOL(sock_sendmsg);
634 
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 		   struct kvec *vec, size_t num, size_t size)
637 {
638 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
639 	return sock_sendmsg(sock, msg);
640 }
641 EXPORT_SYMBOL(kernel_sendmsg);
642 
643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 			  struct kvec *vec, size_t num, size_t size)
645 {
646 	struct socket *sock = sk->sk_socket;
647 
648 	if (!sock->ops->sendmsg_locked)
649 		return sock_no_sendmsg_locked(sk, msg, size);
650 
651 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
652 
653 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
654 }
655 EXPORT_SYMBOL(kernel_sendmsg_locked);
656 
657 static bool skb_is_err_queue(const struct sk_buff *skb)
658 {
659 	/* pkt_type of skbs enqueued on the error queue are set to
660 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 	 * in recvmsg, since skbs received on a local socket will never
662 	 * have a pkt_type of PACKET_OUTGOING.
663 	 */
664 	return skb->pkt_type == PACKET_OUTGOING;
665 }
666 
667 /* On transmit, software and hardware timestamps are returned independently.
668  * As the two skb clones share the hardware timestamp, which may be updated
669  * before the software timestamp is received, a hardware TX timestamp may be
670  * returned only if there is no software TX timestamp. Ignore false software
671  * timestamps, which may be made in the __sock_recv_timestamp() call when the
672  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
673  * hardware timestamp.
674  */
675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
676 {
677 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
678 }
679 
680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
681 {
682 	struct scm_ts_pktinfo ts_pktinfo;
683 	struct net_device *orig_dev;
684 
685 	if (!skb_mac_header_was_set(skb))
686 		return;
687 
688 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
689 
690 	rcu_read_lock();
691 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 	if (orig_dev)
693 		ts_pktinfo.if_index = orig_dev->ifindex;
694 	rcu_read_unlock();
695 
696 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 		 sizeof(ts_pktinfo), &ts_pktinfo);
699 }
700 
701 /*
702  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
703  */
704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 	struct sk_buff *skb)
706 {
707 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
709 	struct scm_timestamping_internal tss;
710 
711 	int empty = 1, false_tstamp = 0;
712 	struct skb_shared_hwtstamps *shhwtstamps =
713 		skb_hwtstamps(skb);
714 
715 	/* Race occurred between timestamp enabling and packet
716 	   receiving.  Fill in the current time for now. */
717 	if (need_software_tstamp && skb->tstamp == 0) {
718 		__net_timestamp(skb);
719 		false_tstamp = 1;
720 	}
721 
722 	if (need_software_tstamp) {
723 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724 			if (new_tstamp) {
725 				struct __kernel_sock_timeval tv;
726 
727 				skb_get_new_timestamp(skb, &tv);
728 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
729 					 sizeof(tv), &tv);
730 			} else {
731 				struct __kernel_old_timeval tv;
732 
733 				skb_get_timestamp(skb, &tv);
734 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
735 					 sizeof(tv), &tv);
736 			}
737 		} else {
738 			if (new_tstamp) {
739 				struct __kernel_timespec ts;
740 
741 				skb_get_new_timestampns(skb, &ts);
742 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
743 					 sizeof(ts), &ts);
744 			} else {
745 				struct timespec ts;
746 
747 				skb_get_timestampns(skb, &ts);
748 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
749 					 sizeof(ts), &ts);
750 			}
751 		}
752 	}
753 
754 	memset(&tss, 0, sizeof(tss));
755 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
756 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
757 		empty = 0;
758 	if (shhwtstamps &&
759 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
760 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
761 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
762 		empty = 0;
763 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
764 		    !skb_is_err_queue(skb))
765 			put_ts_pktinfo(msg, skb);
766 	}
767 	if (!empty) {
768 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
769 			put_cmsg_scm_timestamping64(msg, &tss);
770 		else
771 			put_cmsg_scm_timestamping(msg, &tss);
772 
773 		if (skb_is_err_queue(skb) && skb->len &&
774 		    SKB_EXT_ERR(skb)->opt_stats)
775 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
776 				 skb->len, skb->data);
777 	}
778 }
779 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
780 
781 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
782 	struct sk_buff *skb)
783 {
784 	int ack;
785 
786 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
787 		return;
788 	if (!skb->wifi_acked_valid)
789 		return;
790 
791 	ack = skb->wifi_acked;
792 
793 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
794 }
795 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
796 
797 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
798 				   struct sk_buff *skb)
799 {
800 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
801 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
802 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
803 }
804 
805 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
806 	struct sk_buff *skb)
807 {
808 	sock_recv_timestamp(msg, sk, skb);
809 	sock_recv_drops(msg, sk, skb);
810 }
811 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
812 
813 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
814 				     int flags)
815 {
816 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
817 }
818 
819 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
820 {
821 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
822 
823 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
824 }
825 EXPORT_SYMBOL(sock_recvmsg);
826 
827 /**
828  * kernel_recvmsg - Receive a message from a socket (kernel space)
829  * @sock:       The socket to receive the message from
830  * @msg:        Received message
831  * @vec:        Input s/g array for message data
832  * @num:        Size of input s/g array
833  * @size:       Number of bytes to read
834  * @flags:      Message flags (MSG_DONTWAIT, etc...)
835  *
836  * On return the msg structure contains the scatter/gather array passed in the
837  * vec argument. The array is modified so that it consists of the unfilled
838  * portion of the original array.
839  *
840  * The returned value is the total number of bytes received, or an error.
841  */
842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843 		   struct kvec *vec, size_t num, size_t size, int flags)
844 {
845 	mm_segment_t oldfs = get_fs();
846 	int result;
847 
848 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
849 	set_fs(KERNEL_DS);
850 	result = sock_recvmsg(sock, msg, flags);
851 	set_fs(oldfs);
852 	return result;
853 }
854 EXPORT_SYMBOL(kernel_recvmsg);
855 
856 static ssize_t sock_sendpage(struct file *file, struct page *page,
857 			     int offset, size_t size, loff_t *ppos, int more)
858 {
859 	struct socket *sock;
860 	int flags;
861 
862 	sock = file->private_data;
863 
864 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
865 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866 	flags |= more;
867 
868 	return kernel_sendpage(sock, page, offset, size, flags);
869 }
870 
871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
872 				struct pipe_inode_info *pipe, size_t len,
873 				unsigned int flags)
874 {
875 	struct socket *sock = file->private_data;
876 
877 	if (unlikely(!sock->ops->splice_read))
878 		return generic_file_splice_read(file, ppos, pipe, len, flags);
879 
880 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
881 }
882 
883 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
884 {
885 	struct file *file = iocb->ki_filp;
886 	struct socket *sock = file->private_data;
887 	struct msghdr msg = {.msg_iter = *to,
888 			     .msg_iocb = iocb};
889 	ssize_t res;
890 
891 	if (file->f_flags & O_NONBLOCK)
892 		msg.msg_flags = MSG_DONTWAIT;
893 
894 	if (iocb->ki_pos != 0)
895 		return -ESPIPE;
896 
897 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
898 		return 0;
899 
900 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
901 	*to = msg.msg_iter;
902 	return res;
903 }
904 
905 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
906 {
907 	struct file *file = iocb->ki_filp;
908 	struct socket *sock = file->private_data;
909 	struct msghdr msg = {.msg_iter = *from,
910 			     .msg_iocb = iocb};
911 	ssize_t res;
912 
913 	if (iocb->ki_pos != 0)
914 		return -ESPIPE;
915 
916 	if (file->f_flags & O_NONBLOCK)
917 		msg.msg_flags = MSG_DONTWAIT;
918 
919 	if (sock->type == SOCK_SEQPACKET)
920 		msg.msg_flags |= MSG_EOR;
921 
922 	res = sock_sendmsg(sock, &msg);
923 	*from = msg.msg_iter;
924 	return res;
925 }
926 
927 /*
928  * Atomic setting of ioctl hooks to avoid race
929  * with module unload.
930  */
931 
932 static DEFINE_MUTEX(br_ioctl_mutex);
933 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
934 
935 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
936 {
937 	mutex_lock(&br_ioctl_mutex);
938 	br_ioctl_hook = hook;
939 	mutex_unlock(&br_ioctl_mutex);
940 }
941 EXPORT_SYMBOL(brioctl_set);
942 
943 static DEFINE_MUTEX(vlan_ioctl_mutex);
944 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
945 
946 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
947 {
948 	mutex_lock(&vlan_ioctl_mutex);
949 	vlan_ioctl_hook = hook;
950 	mutex_unlock(&vlan_ioctl_mutex);
951 }
952 EXPORT_SYMBOL(vlan_ioctl_set);
953 
954 static DEFINE_MUTEX(dlci_ioctl_mutex);
955 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
956 
957 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
958 {
959 	mutex_lock(&dlci_ioctl_mutex);
960 	dlci_ioctl_hook = hook;
961 	mutex_unlock(&dlci_ioctl_mutex);
962 }
963 EXPORT_SYMBOL(dlci_ioctl_set);
964 
965 static long sock_do_ioctl(struct net *net, struct socket *sock,
966 			  unsigned int cmd, unsigned long arg)
967 {
968 	int err;
969 	void __user *argp = (void __user *)arg;
970 
971 	err = sock->ops->ioctl(sock, cmd, arg);
972 
973 	/*
974 	 * If this ioctl is unknown try to hand it down
975 	 * to the NIC driver.
976 	 */
977 	if (err != -ENOIOCTLCMD)
978 		return err;
979 
980 	if (cmd == SIOCGIFCONF) {
981 		struct ifconf ifc;
982 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
983 			return -EFAULT;
984 		rtnl_lock();
985 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
986 		rtnl_unlock();
987 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
988 			err = -EFAULT;
989 	} else {
990 		struct ifreq ifr;
991 		bool need_copyout;
992 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
993 			return -EFAULT;
994 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
995 		if (!err && need_copyout)
996 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
997 				return -EFAULT;
998 	}
999 	return err;
1000 }
1001 
1002 /*
1003  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1004  *	what to do with it - that's up to the protocol still.
1005  */
1006 
1007 struct ns_common *get_net_ns(struct ns_common *ns)
1008 {
1009 	return &get_net(container_of(ns, struct net, ns))->ns;
1010 }
1011 EXPORT_SYMBOL_GPL(get_net_ns);
1012 
1013 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1014 {
1015 	struct socket *sock;
1016 	struct sock *sk;
1017 	void __user *argp = (void __user *)arg;
1018 	int pid, err;
1019 	struct net *net;
1020 
1021 	sock = file->private_data;
1022 	sk = sock->sk;
1023 	net = sock_net(sk);
1024 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1025 		struct ifreq ifr;
1026 		bool need_copyout;
1027 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1028 			return -EFAULT;
1029 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1030 		if (!err && need_copyout)
1031 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1032 				return -EFAULT;
1033 	} else
1034 #ifdef CONFIG_WEXT_CORE
1035 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1036 		err = wext_handle_ioctl(net, cmd, argp);
1037 	} else
1038 #endif
1039 		switch (cmd) {
1040 		case FIOSETOWN:
1041 		case SIOCSPGRP:
1042 			err = -EFAULT;
1043 			if (get_user(pid, (int __user *)argp))
1044 				break;
1045 			err = f_setown(sock->file, pid, 1);
1046 			break;
1047 		case FIOGETOWN:
1048 		case SIOCGPGRP:
1049 			err = put_user(f_getown(sock->file),
1050 				       (int __user *)argp);
1051 			break;
1052 		case SIOCGIFBR:
1053 		case SIOCSIFBR:
1054 		case SIOCBRADDBR:
1055 		case SIOCBRDELBR:
1056 			err = -ENOPKG;
1057 			if (!br_ioctl_hook)
1058 				request_module("bridge");
1059 
1060 			mutex_lock(&br_ioctl_mutex);
1061 			if (br_ioctl_hook)
1062 				err = br_ioctl_hook(net, cmd, argp);
1063 			mutex_unlock(&br_ioctl_mutex);
1064 			break;
1065 		case SIOCGIFVLAN:
1066 		case SIOCSIFVLAN:
1067 			err = -ENOPKG;
1068 			if (!vlan_ioctl_hook)
1069 				request_module("8021q");
1070 
1071 			mutex_lock(&vlan_ioctl_mutex);
1072 			if (vlan_ioctl_hook)
1073 				err = vlan_ioctl_hook(net, argp);
1074 			mutex_unlock(&vlan_ioctl_mutex);
1075 			break;
1076 		case SIOCADDDLCI:
1077 		case SIOCDELDLCI:
1078 			err = -ENOPKG;
1079 			if (!dlci_ioctl_hook)
1080 				request_module("dlci");
1081 
1082 			mutex_lock(&dlci_ioctl_mutex);
1083 			if (dlci_ioctl_hook)
1084 				err = dlci_ioctl_hook(cmd, argp);
1085 			mutex_unlock(&dlci_ioctl_mutex);
1086 			break;
1087 		case SIOCGSKNS:
1088 			err = -EPERM;
1089 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1090 				break;
1091 
1092 			err = open_related_ns(&net->ns, get_net_ns);
1093 			break;
1094 		default:
1095 			err = sock_do_ioctl(net, sock, cmd, arg);
1096 			break;
1097 		}
1098 	return err;
1099 }
1100 
1101 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1102 {
1103 	int err;
1104 	struct socket *sock = NULL;
1105 
1106 	err = security_socket_create(family, type, protocol, 1);
1107 	if (err)
1108 		goto out;
1109 
1110 	sock = sock_alloc();
1111 	if (!sock) {
1112 		err = -ENOMEM;
1113 		goto out;
1114 	}
1115 
1116 	sock->type = type;
1117 	err = security_socket_post_create(sock, family, type, protocol, 1);
1118 	if (err)
1119 		goto out_release;
1120 
1121 out:
1122 	*res = sock;
1123 	return err;
1124 out_release:
1125 	sock_release(sock);
1126 	sock = NULL;
1127 	goto out;
1128 }
1129 EXPORT_SYMBOL(sock_create_lite);
1130 
1131 /* No kernel lock held - perfect */
1132 static __poll_t sock_poll(struct file *file, poll_table *wait)
1133 {
1134 	struct socket *sock = file->private_data;
1135 	__poll_t events = poll_requested_events(wait), flag = 0;
1136 
1137 	if (!sock->ops->poll)
1138 		return 0;
1139 
1140 	if (sk_can_busy_loop(sock->sk)) {
1141 		/* poll once if requested by the syscall */
1142 		if (events & POLL_BUSY_LOOP)
1143 			sk_busy_loop(sock->sk, 1);
1144 
1145 		/* if this socket can poll_ll, tell the system call */
1146 		flag = POLL_BUSY_LOOP;
1147 	}
1148 
1149 	return sock->ops->poll(file, sock, wait) | flag;
1150 }
1151 
1152 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1153 {
1154 	struct socket *sock = file->private_data;
1155 
1156 	return sock->ops->mmap(file, sock, vma);
1157 }
1158 
1159 static int sock_close(struct inode *inode, struct file *filp)
1160 {
1161 	__sock_release(SOCKET_I(inode), inode);
1162 	return 0;
1163 }
1164 
1165 /*
1166  *	Update the socket async list
1167  *
1168  *	Fasync_list locking strategy.
1169  *
1170  *	1. fasync_list is modified only under process context socket lock
1171  *	   i.e. under semaphore.
1172  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1173  *	   or under socket lock
1174  */
1175 
1176 static int sock_fasync(int fd, struct file *filp, int on)
1177 {
1178 	struct socket *sock = filp->private_data;
1179 	struct sock *sk = sock->sk;
1180 	struct socket_wq *wq;
1181 
1182 	if (sk == NULL)
1183 		return -EINVAL;
1184 
1185 	lock_sock(sk);
1186 	wq = sock->wq;
1187 	fasync_helper(fd, filp, on, &wq->fasync_list);
1188 
1189 	if (!wq->fasync_list)
1190 		sock_reset_flag(sk, SOCK_FASYNC);
1191 	else
1192 		sock_set_flag(sk, SOCK_FASYNC);
1193 
1194 	release_sock(sk);
1195 	return 0;
1196 }
1197 
1198 /* This function may be called only under rcu_lock */
1199 
1200 int sock_wake_async(struct socket_wq *wq, int how, int band)
1201 {
1202 	if (!wq || !wq->fasync_list)
1203 		return -1;
1204 
1205 	switch (how) {
1206 	case SOCK_WAKE_WAITD:
1207 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1208 			break;
1209 		goto call_kill;
1210 	case SOCK_WAKE_SPACE:
1211 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1212 			break;
1213 		/* fall through */
1214 	case SOCK_WAKE_IO:
1215 call_kill:
1216 		kill_fasync(&wq->fasync_list, SIGIO, band);
1217 		break;
1218 	case SOCK_WAKE_URG:
1219 		kill_fasync(&wq->fasync_list, SIGURG, band);
1220 	}
1221 
1222 	return 0;
1223 }
1224 EXPORT_SYMBOL(sock_wake_async);
1225 
1226 int __sock_create(struct net *net, int family, int type, int protocol,
1227 			 struct socket **res, int kern)
1228 {
1229 	int err;
1230 	struct socket *sock;
1231 	const struct net_proto_family *pf;
1232 
1233 	/*
1234 	 *      Check protocol is in range
1235 	 */
1236 	if (family < 0 || family >= NPROTO)
1237 		return -EAFNOSUPPORT;
1238 	if (type < 0 || type >= SOCK_MAX)
1239 		return -EINVAL;
1240 
1241 	/* Compatibility.
1242 
1243 	   This uglymoron is moved from INET layer to here to avoid
1244 	   deadlock in module load.
1245 	 */
1246 	if (family == PF_INET && type == SOCK_PACKET) {
1247 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1248 			     current->comm);
1249 		family = PF_PACKET;
1250 	}
1251 
1252 	err = security_socket_create(family, type, protocol, kern);
1253 	if (err)
1254 		return err;
1255 
1256 	/*
1257 	 *	Allocate the socket and allow the family to set things up. if
1258 	 *	the protocol is 0, the family is instructed to select an appropriate
1259 	 *	default.
1260 	 */
1261 	sock = sock_alloc();
1262 	if (!sock) {
1263 		net_warn_ratelimited("socket: no more sockets\n");
1264 		return -ENFILE;	/* Not exactly a match, but its the
1265 				   closest posix thing */
1266 	}
1267 
1268 	sock->type = type;
1269 
1270 #ifdef CONFIG_MODULES
1271 	/* Attempt to load a protocol module if the find failed.
1272 	 *
1273 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1274 	 * requested real, full-featured networking support upon configuration.
1275 	 * Otherwise module support will break!
1276 	 */
1277 	if (rcu_access_pointer(net_families[family]) == NULL)
1278 		request_module("net-pf-%d", family);
1279 #endif
1280 
1281 	rcu_read_lock();
1282 	pf = rcu_dereference(net_families[family]);
1283 	err = -EAFNOSUPPORT;
1284 	if (!pf)
1285 		goto out_release;
1286 
1287 	/*
1288 	 * We will call the ->create function, that possibly is in a loadable
1289 	 * module, so we have to bump that loadable module refcnt first.
1290 	 */
1291 	if (!try_module_get(pf->owner))
1292 		goto out_release;
1293 
1294 	/* Now protected by module ref count */
1295 	rcu_read_unlock();
1296 
1297 	err = pf->create(net, sock, protocol, kern);
1298 	if (err < 0)
1299 		goto out_module_put;
1300 
1301 	/*
1302 	 * Now to bump the refcnt of the [loadable] module that owns this
1303 	 * socket at sock_release time we decrement its refcnt.
1304 	 */
1305 	if (!try_module_get(sock->ops->owner))
1306 		goto out_module_busy;
1307 
1308 	/*
1309 	 * Now that we're done with the ->create function, the [loadable]
1310 	 * module can have its refcnt decremented
1311 	 */
1312 	module_put(pf->owner);
1313 	err = security_socket_post_create(sock, family, type, protocol, kern);
1314 	if (err)
1315 		goto out_sock_release;
1316 	*res = sock;
1317 
1318 	return 0;
1319 
1320 out_module_busy:
1321 	err = -EAFNOSUPPORT;
1322 out_module_put:
1323 	sock->ops = NULL;
1324 	module_put(pf->owner);
1325 out_sock_release:
1326 	sock_release(sock);
1327 	return err;
1328 
1329 out_release:
1330 	rcu_read_unlock();
1331 	goto out_sock_release;
1332 }
1333 EXPORT_SYMBOL(__sock_create);
1334 
1335 int sock_create(int family, int type, int protocol, struct socket **res)
1336 {
1337 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1338 }
1339 EXPORT_SYMBOL(sock_create);
1340 
1341 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1342 {
1343 	return __sock_create(net, family, type, protocol, res, 1);
1344 }
1345 EXPORT_SYMBOL(sock_create_kern);
1346 
1347 int __sys_socket(int family, int type, int protocol)
1348 {
1349 	int retval;
1350 	struct socket *sock;
1351 	int flags;
1352 
1353 	/* Check the SOCK_* constants for consistency.  */
1354 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1355 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1356 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1357 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1358 
1359 	flags = type & ~SOCK_TYPE_MASK;
1360 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1361 		return -EINVAL;
1362 	type &= SOCK_TYPE_MASK;
1363 
1364 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1365 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1366 
1367 	retval = sock_create(family, type, protocol, &sock);
1368 	if (retval < 0)
1369 		return retval;
1370 
1371 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1372 }
1373 
1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 {
1376 	return __sys_socket(family, type, protocol);
1377 }
1378 
1379 /*
1380  *	Create a pair of connected sockets.
1381  */
1382 
1383 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1384 {
1385 	struct socket *sock1, *sock2;
1386 	int fd1, fd2, err;
1387 	struct file *newfile1, *newfile2;
1388 	int flags;
1389 
1390 	flags = type & ~SOCK_TYPE_MASK;
1391 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1392 		return -EINVAL;
1393 	type &= SOCK_TYPE_MASK;
1394 
1395 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1396 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1397 
1398 	/*
1399 	 * reserve descriptors and make sure we won't fail
1400 	 * to return them to userland.
1401 	 */
1402 	fd1 = get_unused_fd_flags(flags);
1403 	if (unlikely(fd1 < 0))
1404 		return fd1;
1405 
1406 	fd2 = get_unused_fd_flags(flags);
1407 	if (unlikely(fd2 < 0)) {
1408 		put_unused_fd(fd1);
1409 		return fd2;
1410 	}
1411 
1412 	err = put_user(fd1, &usockvec[0]);
1413 	if (err)
1414 		goto out;
1415 
1416 	err = put_user(fd2, &usockvec[1]);
1417 	if (err)
1418 		goto out;
1419 
1420 	/*
1421 	 * Obtain the first socket and check if the underlying protocol
1422 	 * supports the socketpair call.
1423 	 */
1424 
1425 	err = sock_create(family, type, protocol, &sock1);
1426 	if (unlikely(err < 0))
1427 		goto out;
1428 
1429 	err = sock_create(family, type, protocol, &sock2);
1430 	if (unlikely(err < 0)) {
1431 		sock_release(sock1);
1432 		goto out;
1433 	}
1434 
1435 	err = security_socket_socketpair(sock1, sock2);
1436 	if (unlikely(err)) {
1437 		sock_release(sock2);
1438 		sock_release(sock1);
1439 		goto out;
1440 	}
1441 
1442 	err = sock1->ops->socketpair(sock1, sock2);
1443 	if (unlikely(err < 0)) {
1444 		sock_release(sock2);
1445 		sock_release(sock1);
1446 		goto out;
1447 	}
1448 
1449 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1450 	if (IS_ERR(newfile1)) {
1451 		err = PTR_ERR(newfile1);
1452 		sock_release(sock2);
1453 		goto out;
1454 	}
1455 
1456 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1457 	if (IS_ERR(newfile2)) {
1458 		err = PTR_ERR(newfile2);
1459 		fput(newfile1);
1460 		goto out;
1461 	}
1462 
1463 	audit_fd_pair(fd1, fd2);
1464 
1465 	fd_install(fd1, newfile1);
1466 	fd_install(fd2, newfile2);
1467 	return 0;
1468 
1469 out:
1470 	put_unused_fd(fd2);
1471 	put_unused_fd(fd1);
1472 	return err;
1473 }
1474 
1475 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1476 		int __user *, usockvec)
1477 {
1478 	return __sys_socketpair(family, type, protocol, usockvec);
1479 }
1480 
1481 /*
1482  *	Bind a name to a socket. Nothing much to do here since it's
1483  *	the protocol's responsibility to handle the local address.
1484  *
1485  *	We move the socket address to kernel space before we call
1486  *	the protocol layer (having also checked the address is ok).
1487  */
1488 
1489 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1490 {
1491 	struct socket *sock;
1492 	struct sockaddr_storage address;
1493 	int err, fput_needed;
1494 
1495 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1496 	if (sock) {
1497 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1498 		if (!err) {
1499 			err = security_socket_bind(sock,
1500 						   (struct sockaddr *)&address,
1501 						   addrlen);
1502 			if (!err)
1503 				err = sock->ops->bind(sock,
1504 						      (struct sockaddr *)
1505 						      &address, addrlen);
1506 		}
1507 		fput_light(sock->file, fput_needed);
1508 	}
1509 	return err;
1510 }
1511 
1512 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1513 {
1514 	return __sys_bind(fd, umyaddr, addrlen);
1515 }
1516 
1517 /*
1518  *	Perform a listen. Basically, we allow the protocol to do anything
1519  *	necessary for a listen, and if that works, we mark the socket as
1520  *	ready for listening.
1521  */
1522 
1523 int __sys_listen(int fd, int backlog)
1524 {
1525 	struct socket *sock;
1526 	int err, fput_needed;
1527 	int somaxconn;
1528 
1529 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1530 	if (sock) {
1531 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1532 		if ((unsigned int)backlog > somaxconn)
1533 			backlog = somaxconn;
1534 
1535 		err = security_socket_listen(sock, backlog);
1536 		if (!err)
1537 			err = sock->ops->listen(sock, backlog);
1538 
1539 		fput_light(sock->file, fput_needed);
1540 	}
1541 	return err;
1542 }
1543 
1544 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1545 {
1546 	return __sys_listen(fd, backlog);
1547 }
1548 
1549 /*
1550  *	For accept, we attempt to create a new socket, set up the link
1551  *	with the client, wake up the client, then return the new
1552  *	connected fd. We collect the address of the connector in kernel
1553  *	space and move it to user at the very end. This is unclean because
1554  *	we open the socket then return an error.
1555  *
1556  *	1003.1g adds the ability to recvmsg() to query connection pending
1557  *	status to recvmsg. We need to add that support in a way thats
1558  *	clean when we restructure accept also.
1559  */
1560 
1561 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1562 		  int __user *upeer_addrlen, int flags)
1563 {
1564 	struct socket *sock, *newsock;
1565 	struct file *newfile;
1566 	int err, len, newfd, fput_needed;
1567 	struct sockaddr_storage address;
1568 
1569 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 		return -EINVAL;
1571 
1572 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1573 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1574 
1575 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1576 	if (!sock)
1577 		goto out;
1578 
1579 	err = -ENFILE;
1580 	newsock = sock_alloc();
1581 	if (!newsock)
1582 		goto out_put;
1583 
1584 	newsock->type = sock->type;
1585 	newsock->ops = sock->ops;
1586 
1587 	/*
1588 	 * We don't need try_module_get here, as the listening socket (sock)
1589 	 * has the protocol module (sock->ops->owner) held.
1590 	 */
1591 	__module_get(newsock->ops->owner);
1592 
1593 	newfd = get_unused_fd_flags(flags);
1594 	if (unlikely(newfd < 0)) {
1595 		err = newfd;
1596 		sock_release(newsock);
1597 		goto out_put;
1598 	}
1599 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1600 	if (IS_ERR(newfile)) {
1601 		err = PTR_ERR(newfile);
1602 		put_unused_fd(newfd);
1603 		goto out_put;
1604 	}
1605 
1606 	err = security_socket_accept(sock, newsock);
1607 	if (err)
1608 		goto out_fd;
1609 
1610 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1611 	if (err < 0)
1612 		goto out_fd;
1613 
1614 	if (upeer_sockaddr) {
1615 		len = newsock->ops->getname(newsock,
1616 					(struct sockaddr *)&address, 2);
1617 		if (len < 0) {
1618 			err = -ECONNABORTED;
1619 			goto out_fd;
1620 		}
1621 		err = move_addr_to_user(&address,
1622 					len, upeer_sockaddr, upeer_addrlen);
1623 		if (err < 0)
1624 			goto out_fd;
1625 	}
1626 
1627 	/* File flags are not inherited via accept() unlike another OSes. */
1628 
1629 	fd_install(newfd, newfile);
1630 	err = newfd;
1631 
1632 out_put:
1633 	fput_light(sock->file, fput_needed);
1634 out:
1635 	return err;
1636 out_fd:
1637 	fput(newfile);
1638 	put_unused_fd(newfd);
1639 	goto out_put;
1640 }
1641 
1642 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1643 		int __user *, upeer_addrlen, int, flags)
1644 {
1645 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1646 }
1647 
1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 		int __user *, upeer_addrlen)
1650 {
1651 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1652 }
1653 
1654 /*
1655  *	Attempt to connect to a socket with the server address.  The address
1656  *	is in user space so we verify it is OK and move it to kernel space.
1657  *
1658  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1659  *	break bindings
1660  *
1661  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1662  *	other SEQPACKET protocols that take time to connect() as it doesn't
1663  *	include the -EINPROGRESS status for such sockets.
1664  */
1665 
1666 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1667 {
1668 	struct socket *sock;
1669 	struct sockaddr_storage address;
1670 	int err, fput_needed;
1671 
1672 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 	if (!sock)
1674 		goto out;
1675 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1676 	if (err < 0)
1677 		goto out_put;
1678 
1679 	err =
1680 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1681 	if (err)
1682 		goto out_put;
1683 
1684 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1685 				 sock->file->f_flags);
1686 out_put:
1687 	fput_light(sock->file, fput_needed);
1688 out:
1689 	return err;
1690 }
1691 
1692 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1693 		int, addrlen)
1694 {
1695 	return __sys_connect(fd, uservaddr, addrlen);
1696 }
1697 
1698 /*
1699  *	Get the local address ('name') of a socket object. Move the obtained
1700  *	name to user space.
1701  */
1702 
1703 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1704 		      int __user *usockaddr_len)
1705 {
1706 	struct socket *sock;
1707 	struct sockaddr_storage address;
1708 	int err, fput_needed;
1709 
1710 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1711 	if (!sock)
1712 		goto out;
1713 
1714 	err = security_socket_getsockname(sock);
1715 	if (err)
1716 		goto out_put;
1717 
1718 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1719 	if (err < 0)
1720 		goto out_put;
1721         /* "err" is actually length in this case */
1722 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1723 
1724 out_put:
1725 	fput_light(sock->file, fput_needed);
1726 out:
1727 	return err;
1728 }
1729 
1730 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1731 		int __user *, usockaddr_len)
1732 {
1733 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1734 }
1735 
1736 /*
1737  *	Get the remote address ('name') of a socket object. Move the obtained
1738  *	name to user space.
1739  */
1740 
1741 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1742 		      int __user *usockaddr_len)
1743 {
1744 	struct socket *sock;
1745 	struct sockaddr_storage address;
1746 	int err, fput_needed;
1747 
1748 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1749 	if (sock != NULL) {
1750 		err = security_socket_getpeername(sock);
1751 		if (err) {
1752 			fput_light(sock->file, fput_needed);
1753 			return err;
1754 		}
1755 
1756 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1757 		if (err >= 0)
1758 			/* "err" is actually length in this case */
1759 			err = move_addr_to_user(&address, err, usockaddr,
1760 						usockaddr_len);
1761 		fput_light(sock->file, fput_needed);
1762 	}
1763 	return err;
1764 }
1765 
1766 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1767 		int __user *, usockaddr_len)
1768 {
1769 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1770 }
1771 
1772 /*
1773  *	Send a datagram to a given address. We move the address into kernel
1774  *	space and check the user space data area is readable before invoking
1775  *	the protocol.
1776  */
1777 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1778 		 struct sockaddr __user *addr,  int addr_len)
1779 {
1780 	struct socket *sock;
1781 	struct sockaddr_storage address;
1782 	int err;
1783 	struct msghdr msg;
1784 	struct iovec iov;
1785 	int fput_needed;
1786 
1787 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1788 	if (unlikely(err))
1789 		return err;
1790 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 	if (!sock)
1792 		goto out;
1793 
1794 	msg.msg_name = NULL;
1795 	msg.msg_control = NULL;
1796 	msg.msg_controllen = 0;
1797 	msg.msg_namelen = 0;
1798 	if (addr) {
1799 		err = move_addr_to_kernel(addr, addr_len, &address);
1800 		if (err < 0)
1801 			goto out_put;
1802 		msg.msg_name = (struct sockaddr *)&address;
1803 		msg.msg_namelen = addr_len;
1804 	}
1805 	if (sock->file->f_flags & O_NONBLOCK)
1806 		flags |= MSG_DONTWAIT;
1807 	msg.msg_flags = flags;
1808 	err = sock_sendmsg(sock, &msg);
1809 
1810 out_put:
1811 	fput_light(sock->file, fput_needed);
1812 out:
1813 	return err;
1814 }
1815 
1816 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1817 		unsigned int, flags, struct sockaddr __user *, addr,
1818 		int, addr_len)
1819 {
1820 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1821 }
1822 
1823 /*
1824  *	Send a datagram down a socket.
1825  */
1826 
1827 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1828 		unsigned int, flags)
1829 {
1830 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1831 }
1832 
1833 /*
1834  *	Receive a frame from the socket and optionally record the address of the
1835  *	sender. We verify the buffers are writable and if needed move the
1836  *	sender address from kernel to user space.
1837  */
1838 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1839 		   struct sockaddr __user *addr, int __user *addr_len)
1840 {
1841 	struct socket *sock;
1842 	struct iovec iov;
1843 	struct msghdr msg;
1844 	struct sockaddr_storage address;
1845 	int err, err2;
1846 	int fput_needed;
1847 
1848 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1849 	if (unlikely(err))
1850 		return err;
1851 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1852 	if (!sock)
1853 		goto out;
1854 
1855 	msg.msg_control = NULL;
1856 	msg.msg_controllen = 0;
1857 	/* Save some cycles and don't copy the address if not needed */
1858 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1859 	/* We assume all kernel code knows the size of sockaddr_storage */
1860 	msg.msg_namelen = 0;
1861 	msg.msg_iocb = NULL;
1862 	msg.msg_flags = 0;
1863 	if (sock->file->f_flags & O_NONBLOCK)
1864 		flags |= MSG_DONTWAIT;
1865 	err = sock_recvmsg(sock, &msg, flags);
1866 
1867 	if (err >= 0 && addr != NULL) {
1868 		err2 = move_addr_to_user(&address,
1869 					 msg.msg_namelen, addr, addr_len);
1870 		if (err2 < 0)
1871 			err = err2;
1872 	}
1873 
1874 	fput_light(sock->file, fput_needed);
1875 out:
1876 	return err;
1877 }
1878 
1879 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1880 		unsigned int, flags, struct sockaddr __user *, addr,
1881 		int __user *, addr_len)
1882 {
1883 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1884 }
1885 
1886 /*
1887  *	Receive a datagram from a socket.
1888  */
1889 
1890 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1891 		unsigned int, flags)
1892 {
1893 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1894 }
1895 
1896 /*
1897  *	Set a socket option. Because we don't know the option lengths we have
1898  *	to pass the user mode parameter for the protocols to sort out.
1899  */
1900 
1901 static int __sys_setsockopt(int fd, int level, int optname,
1902 			    char __user *optval, int optlen)
1903 {
1904 	int err, fput_needed;
1905 	struct socket *sock;
1906 
1907 	if (optlen < 0)
1908 		return -EINVAL;
1909 
1910 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1911 	if (sock != NULL) {
1912 		err = security_socket_setsockopt(sock, level, optname);
1913 		if (err)
1914 			goto out_put;
1915 
1916 		if (level == SOL_SOCKET)
1917 			err =
1918 			    sock_setsockopt(sock, level, optname, optval,
1919 					    optlen);
1920 		else
1921 			err =
1922 			    sock->ops->setsockopt(sock, level, optname, optval,
1923 						  optlen);
1924 out_put:
1925 		fput_light(sock->file, fput_needed);
1926 	}
1927 	return err;
1928 }
1929 
1930 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1931 		char __user *, optval, int, optlen)
1932 {
1933 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1934 }
1935 
1936 /*
1937  *	Get a socket option. Because we don't know the option lengths we have
1938  *	to pass a user mode parameter for the protocols to sort out.
1939  */
1940 
1941 static int __sys_getsockopt(int fd, int level, int optname,
1942 			    char __user *optval, int __user *optlen)
1943 {
1944 	int err, fput_needed;
1945 	struct socket *sock;
1946 
1947 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1948 	if (sock != NULL) {
1949 		err = security_socket_getsockopt(sock, level, optname);
1950 		if (err)
1951 			goto out_put;
1952 
1953 		if (level == SOL_SOCKET)
1954 			err =
1955 			    sock_getsockopt(sock, level, optname, optval,
1956 					    optlen);
1957 		else
1958 			err =
1959 			    sock->ops->getsockopt(sock, level, optname, optval,
1960 						  optlen);
1961 out_put:
1962 		fput_light(sock->file, fput_needed);
1963 	}
1964 	return err;
1965 }
1966 
1967 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1968 		char __user *, optval, int __user *, optlen)
1969 {
1970 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1971 }
1972 
1973 /*
1974  *	Shutdown a socket.
1975  */
1976 
1977 int __sys_shutdown(int fd, int how)
1978 {
1979 	int err, fput_needed;
1980 	struct socket *sock;
1981 
1982 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983 	if (sock != NULL) {
1984 		err = security_socket_shutdown(sock, how);
1985 		if (!err)
1986 			err = sock->ops->shutdown(sock, how);
1987 		fput_light(sock->file, fput_needed);
1988 	}
1989 	return err;
1990 }
1991 
1992 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1993 {
1994 	return __sys_shutdown(fd, how);
1995 }
1996 
1997 /* A couple of helpful macros for getting the address of the 32/64 bit
1998  * fields which are the same type (int / unsigned) on our platforms.
1999  */
2000 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2001 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2002 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2003 
2004 struct used_address {
2005 	struct sockaddr_storage name;
2006 	unsigned int name_len;
2007 };
2008 
2009 static int copy_msghdr_from_user(struct msghdr *kmsg,
2010 				 struct user_msghdr __user *umsg,
2011 				 struct sockaddr __user **save_addr,
2012 				 struct iovec **iov)
2013 {
2014 	struct user_msghdr msg;
2015 	ssize_t err;
2016 
2017 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2018 		return -EFAULT;
2019 
2020 	kmsg->msg_control = (void __force *)msg.msg_control;
2021 	kmsg->msg_controllen = msg.msg_controllen;
2022 	kmsg->msg_flags = msg.msg_flags;
2023 
2024 	kmsg->msg_namelen = msg.msg_namelen;
2025 	if (!msg.msg_name)
2026 		kmsg->msg_namelen = 0;
2027 
2028 	if (kmsg->msg_namelen < 0)
2029 		return -EINVAL;
2030 
2031 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2032 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2033 
2034 	if (save_addr)
2035 		*save_addr = msg.msg_name;
2036 
2037 	if (msg.msg_name && kmsg->msg_namelen) {
2038 		if (!save_addr) {
2039 			err = move_addr_to_kernel(msg.msg_name,
2040 						  kmsg->msg_namelen,
2041 						  kmsg->msg_name);
2042 			if (err < 0)
2043 				return err;
2044 		}
2045 	} else {
2046 		kmsg->msg_name = NULL;
2047 		kmsg->msg_namelen = 0;
2048 	}
2049 
2050 	if (msg.msg_iovlen > UIO_MAXIOV)
2051 		return -EMSGSIZE;
2052 
2053 	kmsg->msg_iocb = NULL;
2054 
2055 	return import_iovec(save_addr ? READ : WRITE,
2056 			    msg.msg_iov, msg.msg_iovlen,
2057 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2058 }
2059 
2060 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2061 			 struct msghdr *msg_sys, unsigned int flags,
2062 			 struct used_address *used_address,
2063 			 unsigned int allowed_msghdr_flags)
2064 {
2065 	struct compat_msghdr __user *msg_compat =
2066 	    (struct compat_msghdr __user *)msg;
2067 	struct sockaddr_storage address;
2068 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2069 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2070 				__aligned(sizeof(__kernel_size_t));
2071 	/* 20 is size of ipv6_pktinfo */
2072 	unsigned char *ctl_buf = ctl;
2073 	int ctl_len;
2074 	ssize_t err;
2075 
2076 	msg_sys->msg_name = &address;
2077 
2078 	if (MSG_CMSG_COMPAT & flags)
2079 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2080 	else
2081 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2082 	if (err < 0)
2083 		return err;
2084 
2085 	err = -ENOBUFS;
2086 
2087 	if (msg_sys->msg_controllen > INT_MAX)
2088 		goto out_freeiov;
2089 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2090 	ctl_len = msg_sys->msg_controllen;
2091 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2092 		err =
2093 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2094 						     sizeof(ctl));
2095 		if (err)
2096 			goto out_freeiov;
2097 		ctl_buf = msg_sys->msg_control;
2098 		ctl_len = msg_sys->msg_controllen;
2099 	} else if (ctl_len) {
2100 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2101 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2102 		if (ctl_len > sizeof(ctl)) {
2103 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2104 			if (ctl_buf == NULL)
2105 				goto out_freeiov;
2106 		}
2107 		err = -EFAULT;
2108 		/*
2109 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2110 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2111 		 * checking falls down on this.
2112 		 */
2113 		if (copy_from_user(ctl_buf,
2114 				   (void __user __force *)msg_sys->msg_control,
2115 				   ctl_len))
2116 			goto out_freectl;
2117 		msg_sys->msg_control = ctl_buf;
2118 	}
2119 	msg_sys->msg_flags = flags;
2120 
2121 	if (sock->file->f_flags & O_NONBLOCK)
2122 		msg_sys->msg_flags |= MSG_DONTWAIT;
2123 	/*
2124 	 * If this is sendmmsg() and current destination address is same as
2125 	 * previously succeeded address, omit asking LSM's decision.
2126 	 * used_address->name_len is initialized to UINT_MAX so that the first
2127 	 * destination address never matches.
2128 	 */
2129 	if (used_address && msg_sys->msg_name &&
2130 	    used_address->name_len == msg_sys->msg_namelen &&
2131 	    !memcmp(&used_address->name, msg_sys->msg_name,
2132 		    used_address->name_len)) {
2133 		err = sock_sendmsg_nosec(sock, msg_sys);
2134 		goto out_freectl;
2135 	}
2136 	err = sock_sendmsg(sock, msg_sys);
2137 	/*
2138 	 * If this is sendmmsg() and sending to current destination address was
2139 	 * successful, remember it.
2140 	 */
2141 	if (used_address && err >= 0) {
2142 		used_address->name_len = msg_sys->msg_namelen;
2143 		if (msg_sys->msg_name)
2144 			memcpy(&used_address->name, msg_sys->msg_name,
2145 			       used_address->name_len);
2146 	}
2147 
2148 out_freectl:
2149 	if (ctl_buf != ctl)
2150 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2151 out_freeiov:
2152 	kfree(iov);
2153 	return err;
2154 }
2155 
2156 /*
2157  *	BSD sendmsg interface
2158  */
2159 
2160 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2161 		   bool forbid_cmsg_compat)
2162 {
2163 	int fput_needed, err;
2164 	struct msghdr msg_sys;
2165 	struct socket *sock;
2166 
2167 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2168 		return -EINVAL;
2169 
2170 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2171 	if (!sock)
2172 		goto out;
2173 
2174 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2175 
2176 	fput_light(sock->file, fput_needed);
2177 out:
2178 	return err;
2179 }
2180 
2181 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2182 {
2183 	return __sys_sendmsg(fd, msg, flags, true);
2184 }
2185 
2186 /*
2187  *	Linux sendmmsg interface
2188  */
2189 
2190 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2191 		   unsigned int flags, bool forbid_cmsg_compat)
2192 {
2193 	int fput_needed, err, datagrams;
2194 	struct socket *sock;
2195 	struct mmsghdr __user *entry;
2196 	struct compat_mmsghdr __user *compat_entry;
2197 	struct msghdr msg_sys;
2198 	struct used_address used_address;
2199 	unsigned int oflags = flags;
2200 
2201 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2202 		return -EINVAL;
2203 
2204 	if (vlen > UIO_MAXIOV)
2205 		vlen = UIO_MAXIOV;
2206 
2207 	datagrams = 0;
2208 
2209 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2210 	if (!sock)
2211 		return err;
2212 
2213 	used_address.name_len = UINT_MAX;
2214 	entry = mmsg;
2215 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2216 	err = 0;
2217 	flags |= MSG_BATCH;
2218 
2219 	while (datagrams < vlen) {
2220 		if (datagrams == vlen - 1)
2221 			flags = oflags;
2222 
2223 		if (MSG_CMSG_COMPAT & flags) {
2224 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2225 					     &msg_sys, flags, &used_address, MSG_EOR);
2226 			if (err < 0)
2227 				break;
2228 			err = __put_user(err, &compat_entry->msg_len);
2229 			++compat_entry;
2230 		} else {
2231 			err = ___sys_sendmsg(sock,
2232 					     (struct user_msghdr __user *)entry,
2233 					     &msg_sys, flags, &used_address, MSG_EOR);
2234 			if (err < 0)
2235 				break;
2236 			err = put_user(err, &entry->msg_len);
2237 			++entry;
2238 		}
2239 
2240 		if (err)
2241 			break;
2242 		++datagrams;
2243 		if (msg_data_left(&msg_sys))
2244 			break;
2245 		cond_resched();
2246 	}
2247 
2248 	fput_light(sock->file, fput_needed);
2249 
2250 	/* We only return an error if no datagrams were able to be sent */
2251 	if (datagrams != 0)
2252 		return datagrams;
2253 
2254 	return err;
2255 }
2256 
2257 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2258 		unsigned int, vlen, unsigned int, flags)
2259 {
2260 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2261 }
2262 
2263 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2264 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2265 {
2266 	struct compat_msghdr __user *msg_compat =
2267 	    (struct compat_msghdr __user *)msg;
2268 	struct iovec iovstack[UIO_FASTIOV];
2269 	struct iovec *iov = iovstack;
2270 	unsigned long cmsg_ptr;
2271 	int len;
2272 	ssize_t err;
2273 
2274 	/* kernel mode address */
2275 	struct sockaddr_storage addr;
2276 
2277 	/* user mode address pointers */
2278 	struct sockaddr __user *uaddr;
2279 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2280 
2281 	msg_sys->msg_name = &addr;
2282 
2283 	if (MSG_CMSG_COMPAT & flags)
2284 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2285 	else
2286 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2287 	if (err < 0)
2288 		return err;
2289 
2290 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2291 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2292 
2293 	/* We assume all kernel code knows the size of sockaddr_storage */
2294 	msg_sys->msg_namelen = 0;
2295 
2296 	if (sock->file->f_flags & O_NONBLOCK)
2297 		flags |= MSG_DONTWAIT;
2298 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2299 	if (err < 0)
2300 		goto out_freeiov;
2301 	len = err;
2302 
2303 	if (uaddr != NULL) {
2304 		err = move_addr_to_user(&addr,
2305 					msg_sys->msg_namelen, uaddr,
2306 					uaddr_len);
2307 		if (err < 0)
2308 			goto out_freeiov;
2309 	}
2310 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2311 			 COMPAT_FLAGS(msg));
2312 	if (err)
2313 		goto out_freeiov;
2314 	if (MSG_CMSG_COMPAT & flags)
2315 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2316 				 &msg_compat->msg_controllen);
2317 	else
2318 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2319 				 &msg->msg_controllen);
2320 	if (err)
2321 		goto out_freeiov;
2322 	err = len;
2323 
2324 out_freeiov:
2325 	kfree(iov);
2326 	return err;
2327 }
2328 
2329 /*
2330  *	BSD recvmsg interface
2331  */
2332 
2333 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2334 		   bool forbid_cmsg_compat)
2335 {
2336 	int fput_needed, err;
2337 	struct msghdr msg_sys;
2338 	struct socket *sock;
2339 
2340 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2341 		return -EINVAL;
2342 
2343 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2344 	if (!sock)
2345 		goto out;
2346 
2347 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2348 
2349 	fput_light(sock->file, fput_needed);
2350 out:
2351 	return err;
2352 }
2353 
2354 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2355 		unsigned int, flags)
2356 {
2357 	return __sys_recvmsg(fd, msg, flags, true);
2358 }
2359 
2360 /*
2361  *     Linux recvmmsg interface
2362  */
2363 
2364 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2365 			  unsigned int vlen, unsigned int flags,
2366 			  struct timespec64 *timeout)
2367 {
2368 	int fput_needed, err, datagrams;
2369 	struct socket *sock;
2370 	struct mmsghdr __user *entry;
2371 	struct compat_mmsghdr __user *compat_entry;
2372 	struct msghdr msg_sys;
2373 	struct timespec64 end_time;
2374 	struct timespec64 timeout64;
2375 
2376 	if (timeout &&
2377 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2378 				    timeout->tv_nsec))
2379 		return -EINVAL;
2380 
2381 	datagrams = 0;
2382 
2383 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2384 	if (!sock)
2385 		return err;
2386 
2387 	if (likely(!(flags & MSG_ERRQUEUE))) {
2388 		err = sock_error(sock->sk);
2389 		if (err) {
2390 			datagrams = err;
2391 			goto out_put;
2392 		}
2393 	}
2394 
2395 	entry = mmsg;
2396 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2397 
2398 	while (datagrams < vlen) {
2399 		/*
2400 		 * No need to ask LSM for more than the first datagram.
2401 		 */
2402 		if (MSG_CMSG_COMPAT & flags) {
2403 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2404 					     &msg_sys, flags & ~MSG_WAITFORONE,
2405 					     datagrams);
2406 			if (err < 0)
2407 				break;
2408 			err = __put_user(err, &compat_entry->msg_len);
2409 			++compat_entry;
2410 		} else {
2411 			err = ___sys_recvmsg(sock,
2412 					     (struct user_msghdr __user *)entry,
2413 					     &msg_sys, flags & ~MSG_WAITFORONE,
2414 					     datagrams);
2415 			if (err < 0)
2416 				break;
2417 			err = put_user(err, &entry->msg_len);
2418 			++entry;
2419 		}
2420 
2421 		if (err)
2422 			break;
2423 		++datagrams;
2424 
2425 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2426 		if (flags & MSG_WAITFORONE)
2427 			flags |= MSG_DONTWAIT;
2428 
2429 		if (timeout) {
2430 			ktime_get_ts64(&timeout64);
2431 			*timeout = timespec64_sub(end_time, timeout64);
2432 			if (timeout->tv_sec < 0) {
2433 				timeout->tv_sec = timeout->tv_nsec = 0;
2434 				break;
2435 			}
2436 
2437 			/* Timeout, return less than vlen datagrams */
2438 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2439 				break;
2440 		}
2441 
2442 		/* Out of band data, return right away */
2443 		if (msg_sys.msg_flags & MSG_OOB)
2444 			break;
2445 		cond_resched();
2446 	}
2447 
2448 	if (err == 0)
2449 		goto out_put;
2450 
2451 	if (datagrams == 0) {
2452 		datagrams = err;
2453 		goto out_put;
2454 	}
2455 
2456 	/*
2457 	 * We may return less entries than requested (vlen) if the
2458 	 * sock is non block and there aren't enough datagrams...
2459 	 */
2460 	if (err != -EAGAIN) {
2461 		/*
2462 		 * ... or  if recvmsg returns an error after we
2463 		 * received some datagrams, where we record the
2464 		 * error to return on the next call or if the
2465 		 * app asks about it using getsockopt(SO_ERROR).
2466 		 */
2467 		sock->sk->sk_err = -err;
2468 	}
2469 out_put:
2470 	fput_light(sock->file, fput_needed);
2471 
2472 	return datagrams;
2473 }
2474 
2475 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2476 		   unsigned int vlen, unsigned int flags,
2477 		   struct __kernel_timespec __user *timeout,
2478 		   struct old_timespec32 __user *timeout32)
2479 {
2480 	int datagrams;
2481 	struct timespec64 timeout_sys;
2482 
2483 	if (timeout && get_timespec64(&timeout_sys, timeout))
2484 		return -EFAULT;
2485 
2486 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2487 		return -EFAULT;
2488 
2489 	if (!timeout && !timeout32)
2490 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2491 
2492 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2493 
2494 	if (datagrams <= 0)
2495 		return datagrams;
2496 
2497 	if (timeout && put_timespec64(&timeout_sys, timeout))
2498 		datagrams = -EFAULT;
2499 
2500 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2501 		datagrams = -EFAULT;
2502 
2503 	return datagrams;
2504 }
2505 
2506 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2507 		unsigned int, vlen, unsigned int, flags,
2508 		struct __kernel_timespec __user *, timeout)
2509 {
2510 	if (flags & MSG_CMSG_COMPAT)
2511 		return -EINVAL;
2512 
2513 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2514 }
2515 
2516 #ifdef CONFIG_COMPAT_32BIT_TIME
2517 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2518 		unsigned int, vlen, unsigned int, flags,
2519 		struct old_timespec32 __user *, timeout)
2520 {
2521 	if (flags & MSG_CMSG_COMPAT)
2522 		return -EINVAL;
2523 
2524 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2525 }
2526 #endif
2527 
2528 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2529 /* Argument list sizes for sys_socketcall */
2530 #define AL(x) ((x) * sizeof(unsigned long))
2531 static const unsigned char nargs[21] = {
2532 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2533 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2534 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2535 	AL(4), AL(5), AL(4)
2536 };
2537 
2538 #undef AL
2539 
2540 /*
2541  *	System call vectors.
2542  *
2543  *	Argument checking cleaned up. Saved 20% in size.
2544  *  This function doesn't need to set the kernel lock because
2545  *  it is set by the callees.
2546  */
2547 
2548 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2549 {
2550 	unsigned long a[AUDITSC_ARGS];
2551 	unsigned long a0, a1;
2552 	int err;
2553 	unsigned int len;
2554 
2555 	if (call < 1 || call > SYS_SENDMMSG)
2556 		return -EINVAL;
2557 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2558 
2559 	len = nargs[call];
2560 	if (len > sizeof(a))
2561 		return -EINVAL;
2562 
2563 	/* copy_from_user should be SMP safe. */
2564 	if (copy_from_user(a, args, len))
2565 		return -EFAULT;
2566 
2567 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2568 	if (err)
2569 		return err;
2570 
2571 	a0 = a[0];
2572 	a1 = a[1];
2573 
2574 	switch (call) {
2575 	case SYS_SOCKET:
2576 		err = __sys_socket(a0, a1, a[2]);
2577 		break;
2578 	case SYS_BIND:
2579 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2580 		break;
2581 	case SYS_CONNECT:
2582 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2583 		break;
2584 	case SYS_LISTEN:
2585 		err = __sys_listen(a0, a1);
2586 		break;
2587 	case SYS_ACCEPT:
2588 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2589 				    (int __user *)a[2], 0);
2590 		break;
2591 	case SYS_GETSOCKNAME:
2592 		err =
2593 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2594 				      (int __user *)a[2]);
2595 		break;
2596 	case SYS_GETPEERNAME:
2597 		err =
2598 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2599 				      (int __user *)a[2]);
2600 		break;
2601 	case SYS_SOCKETPAIR:
2602 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2603 		break;
2604 	case SYS_SEND:
2605 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2606 				   NULL, 0);
2607 		break;
2608 	case SYS_SENDTO:
2609 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2610 				   (struct sockaddr __user *)a[4], a[5]);
2611 		break;
2612 	case SYS_RECV:
2613 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2614 				     NULL, NULL);
2615 		break;
2616 	case SYS_RECVFROM:
2617 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2618 				     (struct sockaddr __user *)a[4],
2619 				     (int __user *)a[5]);
2620 		break;
2621 	case SYS_SHUTDOWN:
2622 		err = __sys_shutdown(a0, a1);
2623 		break;
2624 	case SYS_SETSOCKOPT:
2625 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2626 				       a[4]);
2627 		break;
2628 	case SYS_GETSOCKOPT:
2629 		err =
2630 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2631 				     (int __user *)a[4]);
2632 		break;
2633 	case SYS_SENDMSG:
2634 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2635 				    a[2], true);
2636 		break;
2637 	case SYS_SENDMMSG:
2638 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2639 				     a[3], true);
2640 		break;
2641 	case SYS_RECVMSG:
2642 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2643 				    a[2], true);
2644 		break;
2645 	case SYS_RECVMMSG:
2646 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2647 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2648 					     a[2], a[3],
2649 					     (struct __kernel_timespec __user *)a[4],
2650 					     NULL);
2651 		else
2652 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2653 					     a[2], a[3], NULL,
2654 					     (struct old_timespec32 __user *)a[4]);
2655 		break;
2656 	case SYS_ACCEPT4:
2657 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2658 				    (int __user *)a[2], a[3]);
2659 		break;
2660 	default:
2661 		err = -EINVAL;
2662 		break;
2663 	}
2664 	return err;
2665 }
2666 
2667 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2668 
2669 /**
2670  *	sock_register - add a socket protocol handler
2671  *	@ops: description of protocol
2672  *
2673  *	This function is called by a protocol handler that wants to
2674  *	advertise its address family, and have it linked into the
2675  *	socket interface. The value ops->family corresponds to the
2676  *	socket system call protocol family.
2677  */
2678 int sock_register(const struct net_proto_family *ops)
2679 {
2680 	int err;
2681 
2682 	if (ops->family >= NPROTO) {
2683 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2684 		return -ENOBUFS;
2685 	}
2686 
2687 	spin_lock(&net_family_lock);
2688 	if (rcu_dereference_protected(net_families[ops->family],
2689 				      lockdep_is_held(&net_family_lock)))
2690 		err = -EEXIST;
2691 	else {
2692 		rcu_assign_pointer(net_families[ops->family], ops);
2693 		err = 0;
2694 	}
2695 	spin_unlock(&net_family_lock);
2696 
2697 	pr_info("NET: Registered protocol family %d\n", ops->family);
2698 	return err;
2699 }
2700 EXPORT_SYMBOL(sock_register);
2701 
2702 /**
2703  *	sock_unregister - remove a protocol handler
2704  *	@family: protocol family to remove
2705  *
2706  *	This function is called by a protocol handler that wants to
2707  *	remove its address family, and have it unlinked from the
2708  *	new socket creation.
2709  *
2710  *	If protocol handler is a module, then it can use module reference
2711  *	counts to protect against new references. If protocol handler is not
2712  *	a module then it needs to provide its own protection in
2713  *	the ops->create routine.
2714  */
2715 void sock_unregister(int family)
2716 {
2717 	BUG_ON(family < 0 || family >= NPROTO);
2718 
2719 	spin_lock(&net_family_lock);
2720 	RCU_INIT_POINTER(net_families[family], NULL);
2721 	spin_unlock(&net_family_lock);
2722 
2723 	synchronize_rcu();
2724 
2725 	pr_info("NET: Unregistered protocol family %d\n", family);
2726 }
2727 EXPORT_SYMBOL(sock_unregister);
2728 
2729 bool sock_is_registered(int family)
2730 {
2731 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2732 }
2733 
2734 static int __init sock_init(void)
2735 {
2736 	int err;
2737 	/*
2738 	 *      Initialize the network sysctl infrastructure.
2739 	 */
2740 	err = net_sysctl_init();
2741 	if (err)
2742 		goto out;
2743 
2744 	/*
2745 	 *      Initialize skbuff SLAB cache
2746 	 */
2747 	skb_init();
2748 
2749 	/*
2750 	 *      Initialize the protocols module.
2751 	 */
2752 
2753 	init_inodecache();
2754 
2755 	err = register_filesystem(&sock_fs_type);
2756 	if (err)
2757 		goto out_fs;
2758 	sock_mnt = kern_mount(&sock_fs_type);
2759 	if (IS_ERR(sock_mnt)) {
2760 		err = PTR_ERR(sock_mnt);
2761 		goto out_mount;
2762 	}
2763 
2764 	/* The real protocol initialization is performed in later initcalls.
2765 	 */
2766 
2767 #ifdef CONFIG_NETFILTER
2768 	err = netfilter_init();
2769 	if (err)
2770 		goto out;
2771 #endif
2772 
2773 	ptp_classifier_init();
2774 
2775 out:
2776 	return err;
2777 
2778 out_mount:
2779 	unregister_filesystem(&sock_fs_type);
2780 out_fs:
2781 	goto out;
2782 }
2783 
2784 core_initcall(sock_init);	/* early initcall */
2785 
2786 #ifdef CONFIG_PROC_FS
2787 void socket_seq_show(struct seq_file *seq)
2788 {
2789 	seq_printf(seq, "sockets: used %d\n",
2790 		   sock_inuse_get(seq->private));
2791 }
2792 #endif				/* CONFIG_PROC_FS */
2793 
2794 #ifdef CONFIG_COMPAT
2795 static int do_siocgstamp(struct net *net, struct socket *sock,
2796 			 unsigned int cmd, void __user *up)
2797 {
2798 	mm_segment_t old_fs = get_fs();
2799 	struct timeval ktv;
2800 	int err;
2801 
2802 	set_fs(KERNEL_DS);
2803 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2804 	set_fs(old_fs);
2805 	if (!err)
2806 		err = compat_put_timeval(&ktv, up);
2807 
2808 	return err;
2809 }
2810 
2811 static int do_siocgstampns(struct net *net, struct socket *sock,
2812 			   unsigned int cmd, void __user *up)
2813 {
2814 	mm_segment_t old_fs = get_fs();
2815 	struct timespec kts;
2816 	int err;
2817 
2818 	set_fs(KERNEL_DS);
2819 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2820 	set_fs(old_fs);
2821 	if (!err)
2822 		err = compat_put_timespec(&kts, up);
2823 
2824 	return err;
2825 }
2826 
2827 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2828 {
2829 	struct compat_ifconf ifc32;
2830 	struct ifconf ifc;
2831 	int err;
2832 
2833 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2834 		return -EFAULT;
2835 
2836 	ifc.ifc_len = ifc32.ifc_len;
2837 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2838 
2839 	rtnl_lock();
2840 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2841 	rtnl_unlock();
2842 	if (err)
2843 		return err;
2844 
2845 	ifc32.ifc_len = ifc.ifc_len;
2846 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2847 		return -EFAULT;
2848 
2849 	return 0;
2850 }
2851 
2852 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2853 {
2854 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2855 	bool convert_in = false, convert_out = false;
2856 	size_t buf_size = 0;
2857 	struct ethtool_rxnfc __user *rxnfc = NULL;
2858 	struct ifreq ifr;
2859 	u32 rule_cnt = 0, actual_rule_cnt;
2860 	u32 ethcmd;
2861 	u32 data;
2862 	int ret;
2863 
2864 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2865 		return -EFAULT;
2866 
2867 	compat_rxnfc = compat_ptr(data);
2868 
2869 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2870 		return -EFAULT;
2871 
2872 	/* Most ethtool structures are defined without padding.
2873 	 * Unfortunately struct ethtool_rxnfc is an exception.
2874 	 */
2875 	switch (ethcmd) {
2876 	default:
2877 		break;
2878 	case ETHTOOL_GRXCLSRLALL:
2879 		/* Buffer size is variable */
2880 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2881 			return -EFAULT;
2882 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2883 			return -ENOMEM;
2884 		buf_size += rule_cnt * sizeof(u32);
2885 		/* fall through */
2886 	case ETHTOOL_GRXRINGS:
2887 	case ETHTOOL_GRXCLSRLCNT:
2888 	case ETHTOOL_GRXCLSRULE:
2889 	case ETHTOOL_SRXCLSRLINS:
2890 		convert_out = true;
2891 		/* fall through */
2892 	case ETHTOOL_SRXCLSRLDEL:
2893 		buf_size += sizeof(struct ethtool_rxnfc);
2894 		convert_in = true;
2895 		rxnfc = compat_alloc_user_space(buf_size);
2896 		break;
2897 	}
2898 
2899 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2900 		return -EFAULT;
2901 
2902 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2903 
2904 	if (convert_in) {
2905 		/* We expect there to be holes between fs.m_ext and
2906 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2907 		 */
2908 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2909 			     sizeof(compat_rxnfc->fs.m_ext) !=
2910 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2911 			     sizeof(rxnfc->fs.m_ext));
2912 		BUILD_BUG_ON(
2913 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2914 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2915 			offsetof(struct ethtool_rxnfc, fs.location) -
2916 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2917 
2918 		if (copy_in_user(rxnfc, compat_rxnfc,
2919 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2920 				 (void __user *)rxnfc) ||
2921 		    copy_in_user(&rxnfc->fs.ring_cookie,
2922 				 &compat_rxnfc->fs.ring_cookie,
2923 				 (void __user *)(&rxnfc->fs.location + 1) -
2924 				 (void __user *)&rxnfc->fs.ring_cookie))
2925 			return -EFAULT;
2926 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2927 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2928 				return -EFAULT;
2929 		} else if (copy_in_user(&rxnfc->rule_cnt,
2930 					&compat_rxnfc->rule_cnt,
2931 					sizeof(rxnfc->rule_cnt)))
2932 			return -EFAULT;
2933 	}
2934 
2935 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2936 	if (ret)
2937 		return ret;
2938 
2939 	if (convert_out) {
2940 		if (copy_in_user(compat_rxnfc, rxnfc,
2941 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2942 				 (const void __user *)rxnfc) ||
2943 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2944 				 &rxnfc->fs.ring_cookie,
2945 				 (const void __user *)(&rxnfc->fs.location + 1) -
2946 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2947 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2948 				 sizeof(rxnfc->rule_cnt)))
2949 			return -EFAULT;
2950 
2951 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2952 			/* As an optimisation, we only copy the actual
2953 			 * number of rules that the underlying
2954 			 * function returned.  Since Mallory might
2955 			 * change the rule count in user memory, we
2956 			 * check that it is less than the rule count
2957 			 * originally given (as the user buffer size),
2958 			 * which has been range-checked.
2959 			 */
2960 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2961 				return -EFAULT;
2962 			if (actual_rule_cnt < rule_cnt)
2963 				rule_cnt = actual_rule_cnt;
2964 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2965 					 &rxnfc->rule_locs[0],
2966 					 rule_cnt * sizeof(u32)))
2967 				return -EFAULT;
2968 		}
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2975 {
2976 	compat_uptr_t uptr32;
2977 	struct ifreq ifr;
2978 	void __user *saved;
2979 	int err;
2980 
2981 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2982 		return -EFAULT;
2983 
2984 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2985 		return -EFAULT;
2986 
2987 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2988 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2989 
2990 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2991 	if (!err) {
2992 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2993 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2994 			err = -EFAULT;
2995 	}
2996 	return err;
2997 }
2998 
2999 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3000 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3001 				 struct compat_ifreq __user *u_ifreq32)
3002 {
3003 	struct ifreq ifreq;
3004 	u32 data32;
3005 
3006 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3007 		return -EFAULT;
3008 	if (get_user(data32, &u_ifreq32->ifr_data))
3009 		return -EFAULT;
3010 	ifreq.ifr_data = compat_ptr(data32);
3011 
3012 	return dev_ioctl(net, cmd, &ifreq, NULL);
3013 }
3014 
3015 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3016 			      unsigned int cmd,
3017 			      struct compat_ifreq __user *uifr32)
3018 {
3019 	struct ifreq __user *uifr;
3020 	int err;
3021 
3022 	/* Handle the fact that while struct ifreq has the same *layout* on
3023 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3024 	 * which are handled elsewhere, it still has different *size* due to
3025 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3026 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3027 	 * As a result, if the struct happens to be at the end of a page and
3028 	 * the next page isn't readable/writable, we get a fault. To prevent
3029 	 * that, copy back and forth to the full size.
3030 	 */
3031 
3032 	uifr = compat_alloc_user_space(sizeof(*uifr));
3033 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3034 		return -EFAULT;
3035 
3036 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3037 
3038 	if (!err) {
3039 		switch (cmd) {
3040 		case SIOCGIFFLAGS:
3041 		case SIOCGIFMETRIC:
3042 		case SIOCGIFMTU:
3043 		case SIOCGIFMEM:
3044 		case SIOCGIFHWADDR:
3045 		case SIOCGIFINDEX:
3046 		case SIOCGIFADDR:
3047 		case SIOCGIFBRDADDR:
3048 		case SIOCGIFDSTADDR:
3049 		case SIOCGIFNETMASK:
3050 		case SIOCGIFPFLAGS:
3051 		case SIOCGIFTXQLEN:
3052 		case SIOCGMIIPHY:
3053 		case SIOCGMIIREG:
3054 		case SIOCGIFNAME:
3055 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3056 				err = -EFAULT;
3057 			break;
3058 		}
3059 	}
3060 	return err;
3061 }
3062 
3063 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3064 			struct compat_ifreq __user *uifr32)
3065 {
3066 	struct ifreq ifr;
3067 	struct compat_ifmap __user *uifmap32;
3068 	int err;
3069 
3070 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3071 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3072 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3073 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3074 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3075 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3076 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3077 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3078 	if (err)
3079 		return -EFAULT;
3080 
3081 	err = dev_ioctl(net, cmd, &ifr, NULL);
3082 
3083 	if (cmd == SIOCGIFMAP && !err) {
3084 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3085 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3086 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3087 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3088 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3089 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3090 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3091 		if (err)
3092 			err = -EFAULT;
3093 	}
3094 	return err;
3095 }
3096 
3097 struct rtentry32 {
3098 	u32		rt_pad1;
3099 	struct sockaddr rt_dst;         /* target address               */
3100 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3101 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3102 	unsigned short	rt_flags;
3103 	short		rt_pad2;
3104 	u32		rt_pad3;
3105 	unsigned char	rt_tos;
3106 	unsigned char	rt_class;
3107 	short		rt_pad4;
3108 	short		rt_metric;      /* +1 for binary compatibility! */
3109 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3110 	u32		rt_mtu;         /* per route MTU/Window         */
3111 	u32		rt_window;      /* Window clamping              */
3112 	unsigned short  rt_irtt;        /* Initial RTT                  */
3113 };
3114 
3115 struct in6_rtmsg32 {
3116 	struct in6_addr		rtmsg_dst;
3117 	struct in6_addr		rtmsg_src;
3118 	struct in6_addr		rtmsg_gateway;
3119 	u32			rtmsg_type;
3120 	u16			rtmsg_dst_len;
3121 	u16			rtmsg_src_len;
3122 	u32			rtmsg_metric;
3123 	u32			rtmsg_info;
3124 	u32			rtmsg_flags;
3125 	s32			rtmsg_ifindex;
3126 };
3127 
3128 static int routing_ioctl(struct net *net, struct socket *sock,
3129 			 unsigned int cmd, void __user *argp)
3130 {
3131 	int ret;
3132 	void *r = NULL;
3133 	struct in6_rtmsg r6;
3134 	struct rtentry r4;
3135 	char devname[16];
3136 	u32 rtdev;
3137 	mm_segment_t old_fs = get_fs();
3138 
3139 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3140 		struct in6_rtmsg32 __user *ur6 = argp;
3141 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3142 			3 * sizeof(struct in6_addr));
3143 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3144 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3145 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3146 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3147 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3148 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3149 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3150 
3151 		r = (void *) &r6;
3152 	} else { /* ipv4 */
3153 		struct rtentry32 __user *ur4 = argp;
3154 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3155 					3 * sizeof(struct sockaddr));
3156 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3157 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3158 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3159 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3160 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3161 		ret |= get_user(rtdev, &(ur4->rt_dev));
3162 		if (rtdev) {
3163 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3164 			r4.rt_dev = (char __user __force *)devname;
3165 			devname[15] = 0;
3166 		} else
3167 			r4.rt_dev = NULL;
3168 
3169 		r = (void *) &r4;
3170 	}
3171 
3172 	if (ret) {
3173 		ret = -EFAULT;
3174 		goto out;
3175 	}
3176 
3177 	set_fs(KERNEL_DS);
3178 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3179 	set_fs(old_fs);
3180 
3181 out:
3182 	return ret;
3183 }
3184 
3185 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3186  * for some operations; this forces use of the newer bridge-utils that
3187  * use compatible ioctls
3188  */
3189 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3190 {
3191 	compat_ulong_t tmp;
3192 
3193 	if (get_user(tmp, argp))
3194 		return -EFAULT;
3195 	if (tmp == BRCTL_GET_VERSION)
3196 		return BRCTL_VERSION + 1;
3197 	return -EINVAL;
3198 }
3199 
3200 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3201 			 unsigned int cmd, unsigned long arg)
3202 {
3203 	void __user *argp = compat_ptr(arg);
3204 	struct sock *sk = sock->sk;
3205 	struct net *net = sock_net(sk);
3206 
3207 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3208 		return compat_ifr_data_ioctl(net, cmd, argp);
3209 
3210 	switch (cmd) {
3211 	case SIOCSIFBR:
3212 	case SIOCGIFBR:
3213 		return old_bridge_ioctl(argp);
3214 	case SIOCGIFCONF:
3215 		return compat_dev_ifconf(net, argp);
3216 	case SIOCETHTOOL:
3217 		return ethtool_ioctl(net, argp);
3218 	case SIOCWANDEV:
3219 		return compat_siocwandev(net, argp);
3220 	case SIOCGIFMAP:
3221 	case SIOCSIFMAP:
3222 		return compat_sioc_ifmap(net, cmd, argp);
3223 	case SIOCADDRT:
3224 	case SIOCDELRT:
3225 		return routing_ioctl(net, sock, cmd, argp);
3226 	case SIOCGSTAMP:
3227 		return do_siocgstamp(net, sock, cmd, argp);
3228 	case SIOCGSTAMPNS:
3229 		return do_siocgstampns(net, sock, cmd, argp);
3230 	case SIOCBONDSLAVEINFOQUERY:
3231 	case SIOCBONDINFOQUERY:
3232 	case SIOCSHWTSTAMP:
3233 	case SIOCGHWTSTAMP:
3234 		return compat_ifr_data_ioctl(net, cmd, argp);
3235 
3236 	case FIOSETOWN:
3237 	case SIOCSPGRP:
3238 	case FIOGETOWN:
3239 	case SIOCGPGRP:
3240 	case SIOCBRADDBR:
3241 	case SIOCBRDELBR:
3242 	case SIOCGIFVLAN:
3243 	case SIOCSIFVLAN:
3244 	case SIOCADDDLCI:
3245 	case SIOCDELDLCI:
3246 	case SIOCGSKNS:
3247 		return sock_ioctl(file, cmd, arg);
3248 
3249 	case SIOCGIFFLAGS:
3250 	case SIOCSIFFLAGS:
3251 	case SIOCGIFMETRIC:
3252 	case SIOCSIFMETRIC:
3253 	case SIOCGIFMTU:
3254 	case SIOCSIFMTU:
3255 	case SIOCGIFMEM:
3256 	case SIOCSIFMEM:
3257 	case SIOCGIFHWADDR:
3258 	case SIOCSIFHWADDR:
3259 	case SIOCADDMULTI:
3260 	case SIOCDELMULTI:
3261 	case SIOCGIFINDEX:
3262 	case SIOCGIFADDR:
3263 	case SIOCSIFADDR:
3264 	case SIOCSIFHWBROADCAST:
3265 	case SIOCDIFADDR:
3266 	case SIOCGIFBRDADDR:
3267 	case SIOCSIFBRDADDR:
3268 	case SIOCGIFDSTADDR:
3269 	case SIOCSIFDSTADDR:
3270 	case SIOCGIFNETMASK:
3271 	case SIOCSIFNETMASK:
3272 	case SIOCSIFPFLAGS:
3273 	case SIOCGIFPFLAGS:
3274 	case SIOCGIFTXQLEN:
3275 	case SIOCSIFTXQLEN:
3276 	case SIOCBRADDIF:
3277 	case SIOCBRDELIF:
3278 	case SIOCGIFNAME:
3279 	case SIOCSIFNAME:
3280 	case SIOCGMIIPHY:
3281 	case SIOCGMIIREG:
3282 	case SIOCSMIIREG:
3283 	case SIOCBONDENSLAVE:
3284 	case SIOCBONDRELEASE:
3285 	case SIOCBONDSETHWADDR:
3286 	case SIOCBONDCHANGEACTIVE:
3287 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3288 
3289 	case SIOCSARP:
3290 	case SIOCGARP:
3291 	case SIOCDARP:
3292 	case SIOCATMARK:
3293 		return sock_do_ioctl(net, sock, cmd, arg);
3294 	}
3295 
3296 	return -ENOIOCTLCMD;
3297 }
3298 
3299 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3300 			      unsigned long arg)
3301 {
3302 	struct socket *sock = file->private_data;
3303 	int ret = -ENOIOCTLCMD;
3304 	struct sock *sk;
3305 	struct net *net;
3306 
3307 	sk = sock->sk;
3308 	net = sock_net(sk);
3309 
3310 	if (sock->ops->compat_ioctl)
3311 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3312 
3313 	if (ret == -ENOIOCTLCMD &&
3314 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3315 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3316 
3317 	if (ret == -ENOIOCTLCMD)
3318 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3319 
3320 	return ret;
3321 }
3322 #endif
3323 
3324 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3325 {
3326 	return sock->ops->bind(sock, addr, addrlen);
3327 }
3328 EXPORT_SYMBOL(kernel_bind);
3329 
3330 int kernel_listen(struct socket *sock, int backlog)
3331 {
3332 	return sock->ops->listen(sock, backlog);
3333 }
3334 EXPORT_SYMBOL(kernel_listen);
3335 
3336 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3337 {
3338 	struct sock *sk = sock->sk;
3339 	int err;
3340 
3341 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3342 			       newsock);
3343 	if (err < 0)
3344 		goto done;
3345 
3346 	err = sock->ops->accept(sock, *newsock, flags, true);
3347 	if (err < 0) {
3348 		sock_release(*newsock);
3349 		*newsock = NULL;
3350 		goto done;
3351 	}
3352 
3353 	(*newsock)->ops = sock->ops;
3354 	__module_get((*newsock)->ops->owner);
3355 
3356 done:
3357 	return err;
3358 }
3359 EXPORT_SYMBOL(kernel_accept);
3360 
3361 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3362 		   int flags)
3363 {
3364 	return sock->ops->connect(sock, addr, addrlen, flags);
3365 }
3366 EXPORT_SYMBOL(kernel_connect);
3367 
3368 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3369 {
3370 	return sock->ops->getname(sock, addr, 0);
3371 }
3372 EXPORT_SYMBOL(kernel_getsockname);
3373 
3374 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3375 {
3376 	return sock->ops->getname(sock, addr, 1);
3377 }
3378 EXPORT_SYMBOL(kernel_getpeername);
3379 
3380 int kernel_getsockopt(struct socket *sock, int level, int optname,
3381 			char *optval, int *optlen)
3382 {
3383 	mm_segment_t oldfs = get_fs();
3384 	char __user *uoptval;
3385 	int __user *uoptlen;
3386 	int err;
3387 
3388 	uoptval = (char __user __force *) optval;
3389 	uoptlen = (int __user __force *) optlen;
3390 
3391 	set_fs(KERNEL_DS);
3392 	if (level == SOL_SOCKET)
3393 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3394 	else
3395 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3396 					    uoptlen);
3397 	set_fs(oldfs);
3398 	return err;
3399 }
3400 EXPORT_SYMBOL(kernel_getsockopt);
3401 
3402 int kernel_setsockopt(struct socket *sock, int level, int optname,
3403 			char *optval, unsigned int optlen)
3404 {
3405 	mm_segment_t oldfs = get_fs();
3406 	char __user *uoptval;
3407 	int err;
3408 
3409 	uoptval = (char __user __force *) optval;
3410 
3411 	set_fs(KERNEL_DS);
3412 	if (level == SOL_SOCKET)
3413 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3414 	else
3415 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3416 					    optlen);
3417 	set_fs(oldfs);
3418 	return err;
3419 }
3420 EXPORT_SYMBOL(kernel_setsockopt);
3421 
3422 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3423 		    size_t size, int flags)
3424 {
3425 	if (sock->ops->sendpage)
3426 		return sock->ops->sendpage(sock, page, offset, size, flags);
3427 
3428 	return sock_no_sendpage(sock, page, offset, size, flags);
3429 }
3430 EXPORT_SYMBOL(kernel_sendpage);
3431 
3432 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3433 			   size_t size, int flags)
3434 {
3435 	struct socket *sock = sk->sk_socket;
3436 
3437 	if (sock->ops->sendpage_locked)
3438 		return sock->ops->sendpage_locked(sk, page, offset, size,
3439 						  flags);
3440 
3441 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3442 }
3443 EXPORT_SYMBOL(kernel_sendpage_locked);
3444 
3445 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3446 {
3447 	return sock->ops->shutdown(sock, how);
3448 }
3449 EXPORT_SYMBOL(kernel_sock_shutdown);
3450 
3451 /* This routine returns the IP overhead imposed by a socket i.e.
3452  * the length of the underlying IP header, depending on whether
3453  * this is an IPv4 or IPv6 socket and the length from IP options turned
3454  * on at the socket. Assumes that the caller has a lock on the socket.
3455  */
3456 u32 kernel_sock_ip_overhead(struct sock *sk)
3457 {
3458 	struct inet_sock *inet;
3459 	struct ip_options_rcu *opt;
3460 	u32 overhead = 0;
3461 #if IS_ENABLED(CONFIG_IPV6)
3462 	struct ipv6_pinfo *np;
3463 	struct ipv6_txoptions *optv6 = NULL;
3464 #endif /* IS_ENABLED(CONFIG_IPV6) */
3465 
3466 	if (!sk)
3467 		return overhead;
3468 
3469 	switch (sk->sk_family) {
3470 	case AF_INET:
3471 		inet = inet_sk(sk);
3472 		overhead += sizeof(struct iphdr);
3473 		opt = rcu_dereference_protected(inet->inet_opt,
3474 						sock_owned_by_user(sk));
3475 		if (opt)
3476 			overhead += opt->opt.optlen;
3477 		return overhead;
3478 #if IS_ENABLED(CONFIG_IPV6)
3479 	case AF_INET6:
3480 		np = inet6_sk(sk);
3481 		overhead += sizeof(struct ipv6hdr);
3482 		if (np)
3483 			optv6 = rcu_dereference_protected(np->opt,
3484 							  sock_owned_by_user(sk));
3485 		if (optv6)
3486 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3487 		return overhead;
3488 #endif /* IS_ENABLED(CONFIG_IPV6) */
3489 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3490 		return overhead;
3491 	}
3492 }
3493 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3494