1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 if (inode) 581 inode_unlock(inode); 582 sock->ops = NULL; 583 module_put(owner); 584 } 585 586 if (sock->wq->fasync_list) 587 pr_err("%s: fasync list not empty!\n", __func__); 588 589 if (!sock->file) { 590 iput(SOCK_INODE(sock)); 591 return; 592 } 593 sock->file = NULL; 594 } 595 596 void sock_release(struct socket *sock) 597 { 598 __sock_release(sock, NULL); 599 } 600 EXPORT_SYMBOL(sock_release); 601 602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 603 { 604 u8 flags = *tx_flags; 605 606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 607 flags |= SKBTX_HW_TSTAMP; 608 609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 610 flags |= SKBTX_SW_TSTAMP; 611 612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 613 flags |= SKBTX_SCHED_TSTAMP; 614 615 *tx_flags = flags; 616 } 617 EXPORT_SYMBOL(__sock_tx_timestamp); 618 619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 620 { 621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 622 BUG_ON(ret == -EIOCBQUEUED); 623 return ret; 624 } 625 626 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 627 { 628 int err = security_socket_sendmsg(sock, msg, 629 msg_data_left(msg)); 630 631 return err ?: sock_sendmsg_nosec(sock, msg); 632 } 633 EXPORT_SYMBOL(sock_sendmsg); 634 635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size) 637 { 638 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 639 return sock_sendmsg(sock, msg); 640 } 641 EXPORT_SYMBOL(kernel_sendmsg); 642 643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 struct socket *sock = sk->sk_socket; 647 648 if (!sock->ops->sendmsg_locked) 649 return sock_no_sendmsg_locked(sk, msg, size); 650 651 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 652 653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg_locked); 656 657 static bool skb_is_err_queue(const struct sk_buff *skb) 658 { 659 /* pkt_type of skbs enqueued on the error queue are set to 660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 661 * in recvmsg, since skbs received on a local socket will never 662 * have a pkt_type of PACKET_OUTGOING. 663 */ 664 return skb->pkt_type == PACKET_OUTGOING; 665 } 666 667 /* On transmit, software and hardware timestamps are returned independently. 668 * As the two skb clones share the hardware timestamp, which may be updated 669 * before the software timestamp is received, a hardware TX timestamp may be 670 * returned only if there is no software TX timestamp. Ignore false software 671 * timestamps, which may be made in the __sock_recv_timestamp() call when the 672 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 673 * hardware timestamp. 674 */ 675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 676 { 677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 678 } 679 680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 681 { 682 struct scm_ts_pktinfo ts_pktinfo; 683 struct net_device *orig_dev; 684 685 if (!skb_mac_header_was_set(skb)) 686 return; 687 688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 689 690 rcu_read_lock(); 691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 692 if (orig_dev) 693 ts_pktinfo.if_index = orig_dev->ifindex; 694 rcu_read_unlock(); 695 696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 698 sizeof(ts_pktinfo), &ts_pktinfo); 699 } 700 701 /* 702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 703 */ 704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 708 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 709 struct scm_timestamping_internal tss; 710 711 int empty = 1, false_tstamp = 0; 712 struct skb_shared_hwtstamps *shhwtstamps = 713 skb_hwtstamps(skb); 714 715 /* Race occurred between timestamp enabling and packet 716 receiving. Fill in the current time for now. */ 717 if (need_software_tstamp && skb->tstamp == 0) { 718 __net_timestamp(skb); 719 false_tstamp = 1; 720 } 721 722 if (need_software_tstamp) { 723 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 724 if (new_tstamp) { 725 struct __kernel_sock_timeval tv; 726 727 skb_get_new_timestamp(skb, &tv); 728 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 729 sizeof(tv), &tv); 730 } else { 731 struct __kernel_old_timeval tv; 732 733 skb_get_timestamp(skb, &tv); 734 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 735 sizeof(tv), &tv); 736 } 737 } else { 738 if (new_tstamp) { 739 struct __kernel_timespec ts; 740 741 skb_get_new_timestampns(skb, &ts); 742 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 743 sizeof(ts), &ts); 744 } else { 745 struct timespec ts; 746 747 skb_get_timestampns(skb, &ts); 748 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 749 sizeof(ts), &ts); 750 } 751 } 752 } 753 754 memset(&tss, 0, sizeof(tss)); 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 756 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 757 empty = 0; 758 if (shhwtstamps && 759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 760 !skb_is_swtx_tstamp(skb, false_tstamp) && 761 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 762 empty = 0; 763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 764 !skb_is_err_queue(skb)) 765 put_ts_pktinfo(msg, skb); 766 } 767 if (!empty) { 768 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 769 put_cmsg_scm_timestamping64(msg, &tss); 770 else 771 put_cmsg_scm_timestamping(msg, &tss); 772 773 if (skb_is_err_queue(skb) && skb->len && 774 SKB_EXT_ERR(skb)->opt_stats) 775 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 776 skb->len, skb->data); 777 } 778 } 779 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 780 781 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783 { 784 int ack; 785 786 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 787 return; 788 if (!skb->wifi_acked_valid) 789 return; 790 791 ack = skb->wifi_acked; 792 793 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 794 } 795 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 796 797 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 798 struct sk_buff *skb) 799 { 800 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 801 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 802 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 803 } 804 805 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 806 struct sk_buff *skb) 807 { 808 sock_recv_timestamp(msg, sk, skb); 809 sock_recv_drops(msg, sk, skb); 810 } 811 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 812 813 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 814 int flags) 815 { 816 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 817 } 818 819 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 820 { 821 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 822 823 return err ?: sock_recvmsg_nosec(sock, msg, flags); 824 } 825 EXPORT_SYMBOL(sock_recvmsg); 826 827 /** 828 * kernel_recvmsg - Receive a message from a socket (kernel space) 829 * @sock: The socket to receive the message from 830 * @msg: Received message 831 * @vec: Input s/g array for message data 832 * @num: Size of input s/g array 833 * @size: Number of bytes to read 834 * @flags: Message flags (MSG_DONTWAIT, etc...) 835 * 836 * On return the msg structure contains the scatter/gather array passed in the 837 * vec argument. The array is modified so that it consists of the unfilled 838 * portion of the original array. 839 * 840 * The returned value is the total number of bytes received, or an error. 841 */ 842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 843 struct kvec *vec, size_t num, size_t size, int flags) 844 { 845 mm_segment_t oldfs = get_fs(); 846 int result; 847 848 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 849 set_fs(KERNEL_DS); 850 result = sock_recvmsg(sock, msg, flags); 851 set_fs(oldfs); 852 return result; 853 } 854 EXPORT_SYMBOL(kernel_recvmsg); 855 856 static ssize_t sock_sendpage(struct file *file, struct page *page, 857 int offset, size_t size, loff_t *ppos, int more) 858 { 859 struct socket *sock; 860 int flags; 861 862 sock = file->private_data; 863 864 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 865 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 866 flags |= more; 867 868 return kernel_sendpage(sock, page, offset, size, flags); 869 } 870 871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 872 struct pipe_inode_info *pipe, size_t len, 873 unsigned int flags) 874 { 875 struct socket *sock = file->private_data; 876 877 if (unlikely(!sock->ops->splice_read)) 878 return generic_file_splice_read(file, ppos, pipe, len, flags); 879 880 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 881 } 882 883 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 884 { 885 struct file *file = iocb->ki_filp; 886 struct socket *sock = file->private_data; 887 struct msghdr msg = {.msg_iter = *to, 888 .msg_iocb = iocb}; 889 ssize_t res; 890 891 if (file->f_flags & O_NONBLOCK) 892 msg.msg_flags = MSG_DONTWAIT; 893 894 if (iocb->ki_pos != 0) 895 return -ESPIPE; 896 897 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 898 return 0; 899 900 res = sock_recvmsg(sock, &msg, msg.msg_flags); 901 *to = msg.msg_iter; 902 return res; 903 } 904 905 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 906 { 907 struct file *file = iocb->ki_filp; 908 struct socket *sock = file->private_data; 909 struct msghdr msg = {.msg_iter = *from, 910 .msg_iocb = iocb}; 911 ssize_t res; 912 913 if (iocb->ki_pos != 0) 914 return -ESPIPE; 915 916 if (file->f_flags & O_NONBLOCK) 917 msg.msg_flags = MSG_DONTWAIT; 918 919 if (sock->type == SOCK_SEQPACKET) 920 msg.msg_flags |= MSG_EOR; 921 922 res = sock_sendmsg(sock, &msg); 923 *from = msg.msg_iter; 924 return res; 925 } 926 927 /* 928 * Atomic setting of ioctl hooks to avoid race 929 * with module unload. 930 */ 931 932 static DEFINE_MUTEX(br_ioctl_mutex); 933 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 934 935 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 936 { 937 mutex_lock(&br_ioctl_mutex); 938 br_ioctl_hook = hook; 939 mutex_unlock(&br_ioctl_mutex); 940 } 941 EXPORT_SYMBOL(brioctl_set); 942 943 static DEFINE_MUTEX(vlan_ioctl_mutex); 944 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 945 946 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 947 { 948 mutex_lock(&vlan_ioctl_mutex); 949 vlan_ioctl_hook = hook; 950 mutex_unlock(&vlan_ioctl_mutex); 951 } 952 EXPORT_SYMBOL(vlan_ioctl_set); 953 954 static DEFINE_MUTEX(dlci_ioctl_mutex); 955 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 956 957 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 958 { 959 mutex_lock(&dlci_ioctl_mutex); 960 dlci_ioctl_hook = hook; 961 mutex_unlock(&dlci_ioctl_mutex); 962 } 963 EXPORT_SYMBOL(dlci_ioctl_set); 964 965 static long sock_do_ioctl(struct net *net, struct socket *sock, 966 unsigned int cmd, unsigned long arg) 967 { 968 int err; 969 void __user *argp = (void __user *)arg; 970 971 err = sock->ops->ioctl(sock, cmd, arg); 972 973 /* 974 * If this ioctl is unknown try to hand it down 975 * to the NIC driver. 976 */ 977 if (err != -ENOIOCTLCMD) 978 return err; 979 980 if (cmd == SIOCGIFCONF) { 981 struct ifconf ifc; 982 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 983 return -EFAULT; 984 rtnl_lock(); 985 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 986 rtnl_unlock(); 987 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 988 err = -EFAULT; 989 } else { 990 struct ifreq ifr; 991 bool need_copyout; 992 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 993 return -EFAULT; 994 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 995 if (!err && need_copyout) 996 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 997 return -EFAULT; 998 } 999 return err; 1000 } 1001 1002 /* 1003 * With an ioctl, arg may well be a user mode pointer, but we don't know 1004 * what to do with it - that's up to the protocol still. 1005 */ 1006 1007 struct ns_common *get_net_ns(struct ns_common *ns) 1008 { 1009 return &get_net(container_of(ns, struct net, ns))->ns; 1010 } 1011 EXPORT_SYMBOL_GPL(get_net_ns); 1012 1013 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1014 { 1015 struct socket *sock; 1016 struct sock *sk; 1017 void __user *argp = (void __user *)arg; 1018 int pid, err; 1019 struct net *net; 1020 1021 sock = file->private_data; 1022 sk = sock->sk; 1023 net = sock_net(sk); 1024 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1025 struct ifreq ifr; 1026 bool need_copyout; 1027 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1028 return -EFAULT; 1029 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1030 if (!err && need_copyout) 1031 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1032 return -EFAULT; 1033 } else 1034 #ifdef CONFIG_WEXT_CORE 1035 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1036 err = wext_handle_ioctl(net, cmd, argp); 1037 } else 1038 #endif 1039 switch (cmd) { 1040 case FIOSETOWN: 1041 case SIOCSPGRP: 1042 err = -EFAULT; 1043 if (get_user(pid, (int __user *)argp)) 1044 break; 1045 err = f_setown(sock->file, pid, 1); 1046 break; 1047 case FIOGETOWN: 1048 case SIOCGPGRP: 1049 err = put_user(f_getown(sock->file), 1050 (int __user *)argp); 1051 break; 1052 case SIOCGIFBR: 1053 case SIOCSIFBR: 1054 case SIOCBRADDBR: 1055 case SIOCBRDELBR: 1056 err = -ENOPKG; 1057 if (!br_ioctl_hook) 1058 request_module("bridge"); 1059 1060 mutex_lock(&br_ioctl_mutex); 1061 if (br_ioctl_hook) 1062 err = br_ioctl_hook(net, cmd, argp); 1063 mutex_unlock(&br_ioctl_mutex); 1064 break; 1065 case SIOCGIFVLAN: 1066 case SIOCSIFVLAN: 1067 err = -ENOPKG; 1068 if (!vlan_ioctl_hook) 1069 request_module("8021q"); 1070 1071 mutex_lock(&vlan_ioctl_mutex); 1072 if (vlan_ioctl_hook) 1073 err = vlan_ioctl_hook(net, argp); 1074 mutex_unlock(&vlan_ioctl_mutex); 1075 break; 1076 case SIOCADDDLCI: 1077 case SIOCDELDLCI: 1078 err = -ENOPKG; 1079 if (!dlci_ioctl_hook) 1080 request_module("dlci"); 1081 1082 mutex_lock(&dlci_ioctl_mutex); 1083 if (dlci_ioctl_hook) 1084 err = dlci_ioctl_hook(cmd, argp); 1085 mutex_unlock(&dlci_ioctl_mutex); 1086 break; 1087 case SIOCGSKNS: 1088 err = -EPERM; 1089 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1090 break; 1091 1092 err = open_related_ns(&net->ns, get_net_ns); 1093 break; 1094 default: 1095 err = sock_do_ioctl(net, sock, cmd, arg); 1096 break; 1097 } 1098 return err; 1099 } 1100 1101 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1102 { 1103 int err; 1104 struct socket *sock = NULL; 1105 1106 err = security_socket_create(family, type, protocol, 1); 1107 if (err) 1108 goto out; 1109 1110 sock = sock_alloc(); 1111 if (!sock) { 1112 err = -ENOMEM; 1113 goto out; 1114 } 1115 1116 sock->type = type; 1117 err = security_socket_post_create(sock, family, type, protocol, 1); 1118 if (err) 1119 goto out_release; 1120 1121 out: 1122 *res = sock; 1123 return err; 1124 out_release: 1125 sock_release(sock); 1126 sock = NULL; 1127 goto out; 1128 } 1129 EXPORT_SYMBOL(sock_create_lite); 1130 1131 /* No kernel lock held - perfect */ 1132 static __poll_t sock_poll(struct file *file, poll_table *wait) 1133 { 1134 struct socket *sock = file->private_data; 1135 __poll_t events = poll_requested_events(wait), flag = 0; 1136 1137 if (!sock->ops->poll) 1138 return 0; 1139 1140 if (sk_can_busy_loop(sock->sk)) { 1141 /* poll once if requested by the syscall */ 1142 if (events & POLL_BUSY_LOOP) 1143 sk_busy_loop(sock->sk, 1); 1144 1145 /* if this socket can poll_ll, tell the system call */ 1146 flag = POLL_BUSY_LOOP; 1147 } 1148 1149 return sock->ops->poll(file, sock, wait) | flag; 1150 } 1151 1152 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1153 { 1154 struct socket *sock = file->private_data; 1155 1156 return sock->ops->mmap(file, sock, vma); 1157 } 1158 1159 static int sock_close(struct inode *inode, struct file *filp) 1160 { 1161 __sock_release(SOCKET_I(inode), inode); 1162 return 0; 1163 } 1164 1165 /* 1166 * Update the socket async list 1167 * 1168 * Fasync_list locking strategy. 1169 * 1170 * 1. fasync_list is modified only under process context socket lock 1171 * i.e. under semaphore. 1172 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1173 * or under socket lock 1174 */ 1175 1176 static int sock_fasync(int fd, struct file *filp, int on) 1177 { 1178 struct socket *sock = filp->private_data; 1179 struct sock *sk = sock->sk; 1180 struct socket_wq *wq; 1181 1182 if (sk == NULL) 1183 return -EINVAL; 1184 1185 lock_sock(sk); 1186 wq = sock->wq; 1187 fasync_helper(fd, filp, on, &wq->fasync_list); 1188 1189 if (!wq->fasync_list) 1190 sock_reset_flag(sk, SOCK_FASYNC); 1191 else 1192 sock_set_flag(sk, SOCK_FASYNC); 1193 1194 release_sock(sk); 1195 return 0; 1196 } 1197 1198 /* This function may be called only under rcu_lock */ 1199 1200 int sock_wake_async(struct socket_wq *wq, int how, int band) 1201 { 1202 if (!wq || !wq->fasync_list) 1203 return -1; 1204 1205 switch (how) { 1206 case SOCK_WAKE_WAITD: 1207 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1208 break; 1209 goto call_kill; 1210 case SOCK_WAKE_SPACE: 1211 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1212 break; 1213 /* fall through */ 1214 case SOCK_WAKE_IO: 1215 call_kill: 1216 kill_fasync(&wq->fasync_list, SIGIO, band); 1217 break; 1218 case SOCK_WAKE_URG: 1219 kill_fasync(&wq->fasync_list, SIGURG, band); 1220 } 1221 1222 return 0; 1223 } 1224 EXPORT_SYMBOL(sock_wake_async); 1225 1226 int __sock_create(struct net *net, int family, int type, int protocol, 1227 struct socket **res, int kern) 1228 { 1229 int err; 1230 struct socket *sock; 1231 const struct net_proto_family *pf; 1232 1233 /* 1234 * Check protocol is in range 1235 */ 1236 if (family < 0 || family >= NPROTO) 1237 return -EAFNOSUPPORT; 1238 if (type < 0 || type >= SOCK_MAX) 1239 return -EINVAL; 1240 1241 /* Compatibility. 1242 1243 This uglymoron is moved from INET layer to here to avoid 1244 deadlock in module load. 1245 */ 1246 if (family == PF_INET && type == SOCK_PACKET) { 1247 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1248 current->comm); 1249 family = PF_PACKET; 1250 } 1251 1252 err = security_socket_create(family, type, protocol, kern); 1253 if (err) 1254 return err; 1255 1256 /* 1257 * Allocate the socket and allow the family to set things up. if 1258 * the protocol is 0, the family is instructed to select an appropriate 1259 * default. 1260 */ 1261 sock = sock_alloc(); 1262 if (!sock) { 1263 net_warn_ratelimited("socket: no more sockets\n"); 1264 return -ENFILE; /* Not exactly a match, but its the 1265 closest posix thing */ 1266 } 1267 1268 sock->type = type; 1269 1270 #ifdef CONFIG_MODULES 1271 /* Attempt to load a protocol module if the find failed. 1272 * 1273 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1274 * requested real, full-featured networking support upon configuration. 1275 * Otherwise module support will break! 1276 */ 1277 if (rcu_access_pointer(net_families[family]) == NULL) 1278 request_module("net-pf-%d", family); 1279 #endif 1280 1281 rcu_read_lock(); 1282 pf = rcu_dereference(net_families[family]); 1283 err = -EAFNOSUPPORT; 1284 if (!pf) 1285 goto out_release; 1286 1287 /* 1288 * We will call the ->create function, that possibly is in a loadable 1289 * module, so we have to bump that loadable module refcnt first. 1290 */ 1291 if (!try_module_get(pf->owner)) 1292 goto out_release; 1293 1294 /* Now protected by module ref count */ 1295 rcu_read_unlock(); 1296 1297 err = pf->create(net, sock, protocol, kern); 1298 if (err < 0) 1299 goto out_module_put; 1300 1301 /* 1302 * Now to bump the refcnt of the [loadable] module that owns this 1303 * socket at sock_release time we decrement its refcnt. 1304 */ 1305 if (!try_module_get(sock->ops->owner)) 1306 goto out_module_busy; 1307 1308 /* 1309 * Now that we're done with the ->create function, the [loadable] 1310 * module can have its refcnt decremented 1311 */ 1312 module_put(pf->owner); 1313 err = security_socket_post_create(sock, family, type, protocol, kern); 1314 if (err) 1315 goto out_sock_release; 1316 *res = sock; 1317 1318 return 0; 1319 1320 out_module_busy: 1321 err = -EAFNOSUPPORT; 1322 out_module_put: 1323 sock->ops = NULL; 1324 module_put(pf->owner); 1325 out_sock_release: 1326 sock_release(sock); 1327 return err; 1328 1329 out_release: 1330 rcu_read_unlock(); 1331 goto out_sock_release; 1332 } 1333 EXPORT_SYMBOL(__sock_create); 1334 1335 int sock_create(int family, int type, int protocol, struct socket **res) 1336 { 1337 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1338 } 1339 EXPORT_SYMBOL(sock_create); 1340 1341 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1342 { 1343 return __sock_create(net, family, type, protocol, res, 1); 1344 } 1345 EXPORT_SYMBOL(sock_create_kern); 1346 1347 int __sys_socket(int family, int type, int protocol) 1348 { 1349 int retval; 1350 struct socket *sock; 1351 int flags; 1352 1353 /* Check the SOCK_* constants for consistency. */ 1354 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1355 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1356 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1357 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1358 1359 flags = type & ~SOCK_TYPE_MASK; 1360 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1361 return -EINVAL; 1362 type &= SOCK_TYPE_MASK; 1363 1364 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1365 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1366 1367 retval = sock_create(family, type, protocol, &sock); 1368 if (retval < 0) 1369 return retval; 1370 1371 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1372 } 1373 1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1375 { 1376 return __sys_socket(family, type, protocol); 1377 } 1378 1379 /* 1380 * Create a pair of connected sockets. 1381 */ 1382 1383 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1384 { 1385 struct socket *sock1, *sock2; 1386 int fd1, fd2, err; 1387 struct file *newfile1, *newfile2; 1388 int flags; 1389 1390 flags = type & ~SOCK_TYPE_MASK; 1391 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1392 return -EINVAL; 1393 type &= SOCK_TYPE_MASK; 1394 1395 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1396 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1397 1398 /* 1399 * reserve descriptors and make sure we won't fail 1400 * to return them to userland. 1401 */ 1402 fd1 = get_unused_fd_flags(flags); 1403 if (unlikely(fd1 < 0)) 1404 return fd1; 1405 1406 fd2 = get_unused_fd_flags(flags); 1407 if (unlikely(fd2 < 0)) { 1408 put_unused_fd(fd1); 1409 return fd2; 1410 } 1411 1412 err = put_user(fd1, &usockvec[0]); 1413 if (err) 1414 goto out; 1415 1416 err = put_user(fd2, &usockvec[1]); 1417 if (err) 1418 goto out; 1419 1420 /* 1421 * Obtain the first socket and check if the underlying protocol 1422 * supports the socketpair call. 1423 */ 1424 1425 err = sock_create(family, type, protocol, &sock1); 1426 if (unlikely(err < 0)) 1427 goto out; 1428 1429 err = sock_create(family, type, protocol, &sock2); 1430 if (unlikely(err < 0)) { 1431 sock_release(sock1); 1432 goto out; 1433 } 1434 1435 err = security_socket_socketpair(sock1, sock2); 1436 if (unlikely(err)) { 1437 sock_release(sock2); 1438 sock_release(sock1); 1439 goto out; 1440 } 1441 1442 err = sock1->ops->socketpair(sock1, sock2); 1443 if (unlikely(err < 0)) { 1444 sock_release(sock2); 1445 sock_release(sock1); 1446 goto out; 1447 } 1448 1449 newfile1 = sock_alloc_file(sock1, flags, NULL); 1450 if (IS_ERR(newfile1)) { 1451 err = PTR_ERR(newfile1); 1452 sock_release(sock2); 1453 goto out; 1454 } 1455 1456 newfile2 = sock_alloc_file(sock2, flags, NULL); 1457 if (IS_ERR(newfile2)) { 1458 err = PTR_ERR(newfile2); 1459 fput(newfile1); 1460 goto out; 1461 } 1462 1463 audit_fd_pair(fd1, fd2); 1464 1465 fd_install(fd1, newfile1); 1466 fd_install(fd2, newfile2); 1467 return 0; 1468 1469 out: 1470 put_unused_fd(fd2); 1471 put_unused_fd(fd1); 1472 return err; 1473 } 1474 1475 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1476 int __user *, usockvec) 1477 { 1478 return __sys_socketpair(family, type, protocol, usockvec); 1479 } 1480 1481 /* 1482 * Bind a name to a socket. Nothing much to do here since it's 1483 * the protocol's responsibility to handle the local address. 1484 * 1485 * We move the socket address to kernel space before we call 1486 * the protocol layer (having also checked the address is ok). 1487 */ 1488 1489 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1490 { 1491 struct socket *sock; 1492 struct sockaddr_storage address; 1493 int err, fput_needed; 1494 1495 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1496 if (sock) { 1497 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1498 if (!err) { 1499 err = security_socket_bind(sock, 1500 (struct sockaddr *)&address, 1501 addrlen); 1502 if (!err) 1503 err = sock->ops->bind(sock, 1504 (struct sockaddr *) 1505 &address, addrlen); 1506 } 1507 fput_light(sock->file, fput_needed); 1508 } 1509 return err; 1510 } 1511 1512 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1513 { 1514 return __sys_bind(fd, umyaddr, addrlen); 1515 } 1516 1517 /* 1518 * Perform a listen. Basically, we allow the protocol to do anything 1519 * necessary for a listen, and if that works, we mark the socket as 1520 * ready for listening. 1521 */ 1522 1523 int __sys_listen(int fd, int backlog) 1524 { 1525 struct socket *sock; 1526 int err, fput_needed; 1527 int somaxconn; 1528 1529 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1530 if (sock) { 1531 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1532 if ((unsigned int)backlog > somaxconn) 1533 backlog = somaxconn; 1534 1535 err = security_socket_listen(sock, backlog); 1536 if (!err) 1537 err = sock->ops->listen(sock, backlog); 1538 1539 fput_light(sock->file, fput_needed); 1540 } 1541 return err; 1542 } 1543 1544 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1545 { 1546 return __sys_listen(fd, backlog); 1547 } 1548 1549 /* 1550 * For accept, we attempt to create a new socket, set up the link 1551 * with the client, wake up the client, then return the new 1552 * connected fd. We collect the address of the connector in kernel 1553 * space and move it to user at the very end. This is unclean because 1554 * we open the socket then return an error. 1555 * 1556 * 1003.1g adds the ability to recvmsg() to query connection pending 1557 * status to recvmsg. We need to add that support in a way thats 1558 * clean when we restructure accept also. 1559 */ 1560 1561 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1562 int __user *upeer_addrlen, int flags) 1563 { 1564 struct socket *sock, *newsock; 1565 struct file *newfile; 1566 int err, len, newfd, fput_needed; 1567 struct sockaddr_storage address; 1568 1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1570 return -EINVAL; 1571 1572 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1573 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1574 1575 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1576 if (!sock) 1577 goto out; 1578 1579 err = -ENFILE; 1580 newsock = sock_alloc(); 1581 if (!newsock) 1582 goto out_put; 1583 1584 newsock->type = sock->type; 1585 newsock->ops = sock->ops; 1586 1587 /* 1588 * We don't need try_module_get here, as the listening socket (sock) 1589 * has the protocol module (sock->ops->owner) held. 1590 */ 1591 __module_get(newsock->ops->owner); 1592 1593 newfd = get_unused_fd_flags(flags); 1594 if (unlikely(newfd < 0)) { 1595 err = newfd; 1596 sock_release(newsock); 1597 goto out_put; 1598 } 1599 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1600 if (IS_ERR(newfile)) { 1601 err = PTR_ERR(newfile); 1602 put_unused_fd(newfd); 1603 goto out_put; 1604 } 1605 1606 err = security_socket_accept(sock, newsock); 1607 if (err) 1608 goto out_fd; 1609 1610 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1611 if (err < 0) 1612 goto out_fd; 1613 1614 if (upeer_sockaddr) { 1615 len = newsock->ops->getname(newsock, 1616 (struct sockaddr *)&address, 2); 1617 if (len < 0) { 1618 err = -ECONNABORTED; 1619 goto out_fd; 1620 } 1621 err = move_addr_to_user(&address, 1622 len, upeer_sockaddr, upeer_addrlen); 1623 if (err < 0) 1624 goto out_fd; 1625 } 1626 1627 /* File flags are not inherited via accept() unlike another OSes. */ 1628 1629 fd_install(newfd, newfile); 1630 err = newfd; 1631 1632 out_put: 1633 fput_light(sock->file, fput_needed); 1634 out: 1635 return err; 1636 out_fd: 1637 fput(newfile); 1638 put_unused_fd(newfd); 1639 goto out_put; 1640 } 1641 1642 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1643 int __user *, upeer_addrlen, int, flags) 1644 { 1645 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1646 } 1647 1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1649 int __user *, upeer_addrlen) 1650 { 1651 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1652 } 1653 1654 /* 1655 * Attempt to connect to a socket with the server address. The address 1656 * is in user space so we verify it is OK and move it to kernel space. 1657 * 1658 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1659 * break bindings 1660 * 1661 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1662 * other SEQPACKET protocols that take time to connect() as it doesn't 1663 * include the -EINPROGRESS status for such sockets. 1664 */ 1665 1666 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1667 { 1668 struct socket *sock; 1669 struct sockaddr_storage address; 1670 int err, fput_needed; 1671 1672 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1673 if (!sock) 1674 goto out; 1675 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1676 if (err < 0) 1677 goto out_put; 1678 1679 err = 1680 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1681 if (err) 1682 goto out_put; 1683 1684 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1685 sock->file->f_flags); 1686 out_put: 1687 fput_light(sock->file, fput_needed); 1688 out: 1689 return err; 1690 } 1691 1692 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1693 int, addrlen) 1694 { 1695 return __sys_connect(fd, uservaddr, addrlen); 1696 } 1697 1698 /* 1699 * Get the local address ('name') of a socket object. Move the obtained 1700 * name to user space. 1701 */ 1702 1703 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1704 int __user *usockaddr_len) 1705 { 1706 struct socket *sock; 1707 struct sockaddr_storage address; 1708 int err, fput_needed; 1709 1710 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1711 if (!sock) 1712 goto out; 1713 1714 err = security_socket_getsockname(sock); 1715 if (err) 1716 goto out_put; 1717 1718 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1719 if (err < 0) 1720 goto out_put; 1721 /* "err" is actually length in this case */ 1722 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1723 1724 out_put: 1725 fput_light(sock->file, fput_needed); 1726 out: 1727 return err; 1728 } 1729 1730 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1731 int __user *, usockaddr_len) 1732 { 1733 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1734 } 1735 1736 /* 1737 * Get the remote address ('name') of a socket object. Move the obtained 1738 * name to user space. 1739 */ 1740 1741 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1742 int __user *usockaddr_len) 1743 { 1744 struct socket *sock; 1745 struct sockaddr_storage address; 1746 int err, fput_needed; 1747 1748 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1749 if (sock != NULL) { 1750 err = security_socket_getpeername(sock); 1751 if (err) { 1752 fput_light(sock->file, fput_needed); 1753 return err; 1754 } 1755 1756 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1757 if (err >= 0) 1758 /* "err" is actually length in this case */ 1759 err = move_addr_to_user(&address, err, usockaddr, 1760 usockaddr_len); 1761 fput_light(sock->file, fput_needed); 1762 } 1763 return err; 1764 } 1765 1766 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1767 int __user *, usockaddr_len) 1768 { 1769 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1770 } 1771 1772 /* 1773 * Send a datagram to a given address. We move the address into kernel 1774 * space and check the user space data area is readable before invoking 1775 * the protocol. 1776 */ 1777 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1778 struct sockaddr __user *addr, int addr_len) 1779 { 1780 struct socket *sock; 1781 struct sockaddr_storage address; 1782 int err; 1783 struct msghdr msg; 1784 struct iovec iov; 1785 int fput_needed; 1786 1787 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1788 if (unlikely(err)) 1789 return err; 1790 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1791 if (!sock) 1792 goto out; 1793 1794 msg.msg_name = NULL; 1795 msg.msg_control = NULL; 1796 msg.msg_controllen = 0; 1797 msg.msg_namelen = 0; 1798 if (addr) { 1799 err = move_addr_to_kernel(addr, addr_len, &address); 1800 if (err < 0) 1801 goto out_put; 1802 msg.msg_name = (struct sockaddr *)&address; 1803 msg.msg_namelen = addr_len; 1804 } 1805 if (sock->file->f_flags & O_NONBLOCK) 1806 flags |= MSG_DONTWAIT; 1807 msg.msg_flags = flags; 1808 err = sock_sendmsg(sock, &msg); 1809 1810 out_put: 1811 fput_light(sock->file, fput_needed); 1812 out: 1813 return err; 1814 } 1815 1816 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1817 unsigned int, flags, struct sockaddr __user *, addr, 1818 int, addr_len) 1819 { 1820 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1821 } 1822 1823 /* 1824 * Send a datagram down a socket. 1825 */ 1826 1827 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1828 unsigned int, flags) 1829 { 1830 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1831 } 1832 1833 /* 1834 * Receive a frame from the socket and optionally record the address of the 1835 * sender. We verify the buffers are writable and if needed move the 1836 * sender address from kernel to user space. 1837 */ 1838 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1839 struct sockaddr __user *addr, int __user *addr_len) 1840 { 1841 struct socket *sock; 1842 struct iovec iov; 1843 struct msghdr msg; 1844 struct sockaddr_storage address; 1845 int err, err2; 1846 int fput_needed; 1847 1848 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1849 if (unlikely(err)) 1850 return err; 1851 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1852 if (!sock) 1853 goto out; 1854 1855 msg.msg_control = NULL; 1856 msg.msg_controllen = 0; 1857 /* Save some cycles and don't copy the address if not needed */ 1858 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1859 /* We assume all kernel code knows the size of sockaddr_storage */ 1860 msg.msg_namelen = 0; 1861 msg.msg_iocb = NULL; 1862 msg.msg_flags = 0; 1863 if (sock->file->f_flags & O_NONBLOCK) 1864 flags |= MSG_DONTWAIT; 1865 err = sock_recvmsg(sock, &msg, flags); 1866 1867 if (err >= 0 && addr != NULL) { 1868 err2 = move_addr_to_user(&address, 1869 msg.msg_namelen, addr, addr_len); 1870 if (err2 < 0) 1871 err = err2; 1872 } 1873 1874 fput_light(sock->file, fput_needed); 1875 out: 1876 return err; 1877 } 1878 1879 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1880 unsigned int, flags, struct sockaddr __user *, addr, 1881 int __user *, addr_len) 1882 { 1883 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1884 } 1885 1886 /* 1887 * Receive a datagram from a socket. 1888 */ 1889 1890 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1891 unsigned int, flags) 1892 { 1893 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1894 } 1895 1896 /* 1897 * Set a socket option. Because we don't know the option lengths we have 1898 * to pass the user mode parameter for the protocols to sort out. 1899 */ 1900 1901 static int __sys_setsockopt(int fd, int level, int optname, 1902 char __user *optval, int optlen) 1903 { 1904 int err, fput_needed; 1905 struct socket *sock; 1906 1907 if (optlen < 0) 1908 return -EINVAL; 1909 1910 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1911 if (sock != NULL) { 1912 err = security_socket_setsockopt(sock, level, optname); 1913 if (err) 1914 goto out_put; 1915 1916 if (level == SOL_SOCKET) 1917 err = 1918 sock_setsockopt(sock, level, optname, optval, 1919 optlen); 1920 else 1921 err = 1922 sock->ops->setsockopt(sock, level, optname, optval, 1923 optlen); 1924 out_put: 1925 fput_light(sock->file, fput_needed); 1926 } 1927 return err; 1928 } 1929 1930 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1931 char __user *, optval, int, optlen) 1932 { 1933 return __sys_setsockopt(fd, level, optname, optval, optlen); 1934 } 1935 1936 /* 1937 * Get a socket option. Because we don't know the option lengths we have 1938 * to pass a user mode parameter for the protocols to sort out. 1939 */ 1940 1941 static int __sys_getsockopt(int fd, int level, int optname, 1942 char __user *optval, int __user *optlen) 1943 { 1944 int err, fput_needed; 1945 struct socket *sock; 1946 1947 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1948 if (sock != NULL) { 1949 err = security_socket_getsockopt(sock, level, optname); 1950 if (err) 1951 goto out_put; 1952 1953 if (level == SOL_SOCKET) 1954 err = 1955 sock_getsockopt(sock, level, optname, optval, 1956 optlen); 1957 else 1958 err = 1959 sock->ops->getsockopt(sock, level, optname, optval, 1960 optlen); 1961 out_put: 1962 fput_light(sock->file, fput_needed); 1963 } 1964 return err; 1965 } 1966 1967 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1968 char __user *, optval, int __user *, optlen) 1969 { 1970 return __sys_getsockopt(fd, level, optname, optval, optlen); 1971 } 1972 1973 /* 1974 * Shutdown a socket. 1975 */ 1976 1977 int __sys_shutdown(int fd, int how) 1978 { 1979 int err, fput_needed; 1980 struct socket *sock; 1981 1982 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1983 if (sock != NULL) { 1984 err = security_socket_shutdown(sock, how); 1985 if (!err) 1986 err = sock->ops->shutdown(sock, how); 1987 fput_light(sock->file, fput_needed); 1988 } 1989 return err; 1990 } 1991 1992 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1993 { 1994 return __sys_shutdown(fd, how); 1995 } 1996 1997 /* A couple of helpful macros for getting the address of the 32/64 bit 1998 * fields which are the same type (int / unsigned) on our platforms. 1999 */ 2000 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2001 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2002 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2003 2004 struct used_address { 2005 struct sockaddr_storage name; 2006 unsigned int name_len; 2007 }; 2008 2009 static int copy_msghdr_from_user(struct msghdr *kmsg, 2010 struct user_msghdr __user *umsg, 2011 struct sockaddr __user **save_addr, 2012 struct iovec **iov) 2013 { 2014 struct user_msghdr msg; 2015 ssize_t err; 2016 2017 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2018 return -EFAULT; 2019 2020 kmsg->msg_control = (void __force *)msg.msg_control; 2021 kmsg->msg_controllen = msg.msg_controllen; 2022 kmsg->msg_flags = msg.msg_flags; 2023 2024 kmsg->msg_namelen = msg.msg_namelen; 2025 if (!msg.msg_name) 2026 kmsg->msg_namelen = 0; 2027 2028 if (kmsg->msg_namelen < 0) 2029 return -EINVAL; 2030 2031 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2032 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2033 2034 if (save_addr) 2035 *save_addr = msg.msg_name; 2036 2037 if (msg.msg_name && kmsg->msg_namelen) { 2038 if (!save_addr) { 2039 err = move_addr_to_kernel(msg.msg_name, 2040 kmsg->msg_namelen, 2041 kmsg->msg_name); 2042 if (err < 0) 2043 return err; 2044 } 2045 } else { 2046 kmsg->msg_name = NULL; 2047 kmsg->msg_namelen = 0; 2048 } 2049 2050 if (msg.msg_iovlen > UIO_MAXIOV) 2051 return -EMSGSIZE; 2052 2053 kmsg->msg_iocb = NULL; 2054 2055 return import_iovec(save_addr ? READ : WRITE, 2056 msg.msg_iov, msg.msg_iovlen, 2057 UIO_FASTIOV, iov, &kmsg->msg_iter); 2058 } 2059 2060 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2061 struct msghdr *msg_sys, unsigned int flags, 2062 struct used_address *used_address, 2063 unsigned int allowed_msghdr_flags) 2064 { 2065 struct compat_msghdr __user *msg_compat = 2066 (struct compat_msghdr __user *)msg; 2067 struct sockaddr_storage address; 2068 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2069 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2070 __aligned(sizeof(__kernel_size_t)); 2071 /* 20 is size of ipv6_pktinfo */ 2072 unsigned char *ctl_buf = ctl; 2073 int ctl_len; 2074 ssize_t err; 2075 2076 msg_sys->msg_name = &address; 2077 2078 if (MSG_CMSG_COMPAT & flags) 2079 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2080 else 2081 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2082 if (err < 0) 2083 return err; 2084 2085 err = -ENOBUFS; 2086 2087 if (msg_sys->msg_controllen > INT_MAX) 2088 goto out_freeiov; 2089 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2090 ctl_len = msg_sys->msg_controllen; 2091 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2092 err = 2093 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2094 sizeof(ctl)); 2095 if (err) 2096 goto out_freeiov; 2097 ctl_buf = msg_sys->msg_control; 2098 ctl_len = msg_sys->msg_controllen; 2099 } else if (ctl_len) { 2100 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2101 CMSG_ALIGN(sizeof(struct cmsghdr))); 2102 if (ctl_len > sizeof(ctl)) { 2103 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2104 if (ctl_buf == NULL) 2105 goto out_freeiov; 2106 } 2107 err = -EFAULT; 2108 /* 2109 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2110 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2111 * checking falls down on this. 2112 */ 2113 if (copy_from_user(ctl_buf, 2114 (void __user __force *)msg_sys->msg_control, 2115 ctl_len)) 2116 goto out_freectl; 2117 msg_sys->msg_control = ctl_buf; 2118 } 2119 msg_sys->msg_flags = flags; 2120 2121 if (sock->file->f_flags & O_NONBLOCK) 2122 msg_sys->msg_flags |= MSG_DONTWAIT; 2123 /* 2124 * If this is sendmmsg() and current destination address is same as 2125 * previously succeeded address, omit asking LSM's decision. 2126 * used_address->name_len is initialized to UINT_MAX so that the first 2127 * destination address never matches. 2128 */ 2129 if (used_address && msg_sys->msg_name && 2130 used_address->name_len == msg_sys->msg_namelen && 2131 !memcmp(&used_address->name, msg_sys->msg_name, 2132 used_address->name_len)) { 2133 err = sock_sendmsg_nosec(sock, msg_sys); 2134 goto out_freectl; 2135 } 2136 err = sock_sendmsg(sock, msg_sys); 2137 /* 2138 * If this is sendmmsg() and sending to current destination address was 2139 * successful, remember it. 2140 */ 2141 if (used_address && err >= 0) { 2142 used_address->name_len = msg_sys->msg_namelen; 2143 if (msg_sys->msg_name) 2144 memcpy(&used_address->name, msg_sys->msg_name, 2145 used_address->name_len); 2146 } 2147 2148 out_freectl: 2149 if (ctl_buf != ctl) 2150 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2151 out_freeiov: 2152 kfree(iov); 2153 return err; 2154 } 2155 2156 /* 2157 * BSD sendmsg interface 2158 */ 2159 2160 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2161 bool forbid_cmsg_compat) 2162 { 2163 int fput_needed, err; 2164 struct msghdr msg_sys; 2165 struct socket *sock; 2166 2167 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2168 return -EINVAL; 2169 2170 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2171 if (!sock) 2172 goto out; 2173 2174 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2175 2176 fput_light(sock->file, fput_needed); 2177 out: 2178 return err; 2179 } 2180 2181 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2182 { 2183 return __sys_sendmsg(fd, msg, flags, true); 2184 } 2185 2186 /* 2187 * Linux sendmmsg interface 2188 */ 2189 2190 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2191 unsigned int flags, bool forbid_cmsg_compat) 2192 { 2193 int fput_needed, err, datagrams; 2194 struct socket *sock; 2195 struct mmsghdr __user *entry; 2196 struct compat_mmsghdr __user *compat_entry; 2197 struct msghdr msg_sys; 2198 struct used_address used_address; 2199 unsigned int oflags = flags; 2200 2201 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2202 return -EINVAL; 2203 2204 if (vlen > UIO_MAXIOV) 2205 vlen = UIO_MAXIOV; 2206 2207 datagrams = 0; 2208 2209 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2210 if (!sock) 2211 return err; 2212 2213 used_address.name_len = UINT_MAX; 2214 entry = mmsg; 2215 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2216 err = 0; 2217 flags |= MSG_BATCH; 2218 2219 while (datagrams < vlen) { 2220 if (datagrams == vlen - 1) 2221 flags = oflags; 2222 2223 if (MSG_CMSG_COMPAT & flags) { 2224 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2225 &msg_sys, flags, &used_address, MSG_EOR); 2226 if (err < 0) 2227 break; 2228 err = __put_user(err, &compat_entry->msg_len); 2229 ++compat_entry; 2230 } else { 2231 err = ___sys_sendmsg(sock, 2232 (struct user_msghdr __user *)entry, 2233 &msg_sys, flags, &used_address, MSG_EOR); 2234 if (err < 0) 2235 break; 2236 err = put_user(err, &entry->msg_len); 2237 ++entry; 2238 } 2239 2240 if (err) 2241 break; 2242 ++datagrams; 2243 if (msg_data_left(&msg_sys)) 2244 break; 2245 cond_resched(); 2246 } 2247 2248 fput_light(sock->file, fput_needed); 2249 2250 /* We only return an error if no datagrams were able to be sent */ 2251 if (datagrams != 0) 2252 return datagrams; 2253 2254 return err; 2255 } 2256 2257 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2258 unsigned int, vlen, unsigned int, flags) 2259 { 2260 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2261 } 2262 2263 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2264 struct msghdr *msg_sys, unsigned int flags, int nosec) 2265 { 2266 struct compat_msghdr __user *msg_compat = 2267 (struct compat_msghdr __user *)msg; 2268 struct iovec iovstack[UIO_FASTIOV]; 2269 struct iovec *iov = iovstack; 2270 unsigned long cmsg_ptr; 2271 int len; 2272 ssize_t err; 2273 2274 /* kernel mode address */ 2275 struct sockaddr_storage addr; 2276 2277 /* user mode address pointers */ 2278 struct sockaddr __user *uaddr; 2279 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2280 2281 msg_sys->msg_name = &addr; 2282 2283 if (MSG_CMSG_COMPAT & flags) 2284 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2285 else 2286 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2287 if (err < 0) 2288 return err; 2289 2290 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2291 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2292 2293 /* We assume all kernel code knows the size of sockaddr_storage */ 2294 msg_sys->msg_namelen = 0; 2295 2296 if (sock->file->f_flags & O_NONBLOCK) 2297 flags |= MSG_DONTWAIT; 2298 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2299 if (err < 0) 2300 goto out_freeiov; 2301 len = err; 2302 2303 if (uaddr != NULL) { 2304 err = move_addr_to_user(&addr, 2305 msg_sys->msg_namelen, uaddr, 2306 uaddr_len); 2307 if (err < 0) 2308 goto out_freeiov; 2309 } 2310 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2311 COMPAT_FLAGS(msg)); 2312 if (err) 2313 goto out_freeiov; 2314 if (MSG_CMSG_COMPAT & flags) 2315 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2316 &msg_compat->msg_controllen); 2317 else 2318 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2319 &msg->msg_controllen); 2320 if (err) 2321 goto out_freeiov; 2322 err = len; 2323 2324 out_freeiov: 2325 kfree(iov); 2326 return err; 2327 } 2328 2329 /* 2330 * BSD recvmsg interface 2331 */ 2332 2333 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2334 bool forbid_cmsg_compat) 2335 { 2336 int fput_needed, err; 2337 struct msghdr msg_sys; 2338 struct socket *sock; 2339 2340 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2341 return -EINVAL; 2342 2343 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2344 if (!sock) 2345 goto out; 2346 2347 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2348 2349 fput_light(sock->file, fput_needed); 2350 out: 2351 return err; 2352 } 2353 2354 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2355 unsigned int, flags) 2356 { 2357 return __sys_recvmsg(fd, msg, flags, true); 2358 } 2359 2360 /* 2361 * Linux recvmmsg interface 2362 */ 2363 2364 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2365 unsigned int vlen, unsigned int flags, 2366 struct timespec64 *timeout) 2367 { 2368 int fput_needed, err, datagrams; 2369 struct socket *sock; 2370 struct mmsghdr __user *entry; 2371 struct compat_mmsghdr __user *compat_entry; 2372 struct msghdr msg_sys; 2373 struct timespec64 end_time; 2374 struct timespec64 timeout64; 2375 2376 if (timeout && 2377 poll_select_set_timeout(&end_time, timeout->tv_sec, 2378 timeout->tv_nsec)) 2379 return -EINVAL; 2380 2381 datagrams = 0; 2382 2383 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2384 if (!sock) 2385 return err; 2386 2387 if (likely(!(flags & MSG_ERRQUEUE))) { 2388 err = sock_error(sock->sk); 2389 if (err) { 2390 datagrams = err; 2391 goto out_put; 2392 } 2393 } 2394 2395 entry = mmsg; 2396 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2397 2398 while (datagrams < vlen) { 2399 /* 2400 * No need to ask LSM for more than the first datagram. 2401 */ 2402 if (MSG_CMSG_COMPAT & flags) { 2403 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2404 &msg_sys, flags & ~MSG_WAITFORONE, 2405 datagrams); 2406 if (err < 0) 2407 break; 2408 err = __put_user(err, &compat_entry->msg_len); 2409 ++compat_entry; 2410 } else { 2411 err = ___sys_recvmsg(sock, 2412 (struct user_msghdr __user *)entry, 2413 &msg_sys, flags & ~MSG_WAITFORONE, 2414 datagrams); 2415 if (err < 0) 2416 break; 2417 err = put_user(err, &entry->msg_len); 2418 ++entry; 2419 } 2420 2421 if (err) 2422 break; 2423 ++datagrams; 2424 2425 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2426 if (flags & MSG_WAITFORONE) 2427 flags |= MSG_DONTWAIT; 2428 2429 if (timeout) { 2430 ktime_get_ts64(&timeout64); 2431 *timeout = timespec64_sub(end_time, timeout64); 2432 if (timeout->tv_sec < 0) { 2433 timeout->tv_sec = timeout->tv_nsec = 0; 2434 break; 2435 } 2436 2437 /* Timeout, return less than vlen datagrams */ 2438 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2439 break; 2440 } 2441 2442 /* Out of band data, return right away */ 2443 if (msg_sys.msg_flags & MSG_OOB) 2444 break; 2445 cond_resched(); 2446 } 2447 2448 if (err == 0) 2449 goto out_put; 2450 2451 if (datagrams == 0) { 2452 datagrams = err; 2453 goto out_put; 2454 } 2455 2456 /* 2457 * We may return less entries than requested (vlen) if the 2458 * sock is non block and there aren't enough datagrams... 2459 */ 2460 if (err != -EAGAIN) { 2461 /* 2462 * ... or if recvmsg returns an error after we 2463 * received some datagrams, where we record the 2464 * error to return on the next call or if the 2465 * app asks about it using getsockopt(SO_ERROR). 2466 */ 2467 sock->sk->sk_err = -err; 2468 } 2469 out_put: 2470 fput_light(sock->file, fput_needed); 2471 2472 return datagrams; 2473 } 2474 2475 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2476 unsigned int vlen, unsigned int flags, 2477 struct __kernel_timespec __user *timeout, 2478 struct old_timespec32 __user *timeout32) 2479 { 2480 int datagrams; 2481 struct timespec64 timeout_sys; 2482 2483 if (timeout && get_timespec64(&timeout_sys, timeout)) 2484 return -EFAULT; 2485 2486 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2487 return -EFAULT; 2488 2489 if (!timeout && !timeout32) 2490 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2491 2492 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2493 2494 if (datagrams <= 0) 2495 return datagrams; 2496 2497 if (timeout && put_timespec64(&timeout_sys, timeout)) 2498 datagrams = -EFAULT; 2499 2500 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2501 datagrams = -EFAULT; 2502 2503 return datagrams; 2504 } 2505 2506 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2507 unsigned int, vlen, unsigned int, flags, 2508 struct __kernel_timespec __user *, timeout) 2509 { 2510 if (flags & MSG_CMSG_COMPAT) 2511 return -EINVAL; 2512 2513 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2514 } 2515 2516 #ifdef CONFIG_COMPAT_32BIT_TIME 2517 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2518 unsigned int, vlen, unsigned int, flags, 2519 struct old_timespec32 __user *, timeout) 2520 { 2521 if (flags & MSG_CMSG_COMPAT) 2522 return -EINVAL; 2523 2524 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2525 } 2526 #endif 2527 2528 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2529 /* Argument list sizes for sys_socketcall */ 2530 #define AL(x) ((x) * sizeof(unsigned long)) 2531 static const unsigned char nargs[21] = { 2532 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2533 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2534 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2535 AL(4), AL(5), AL(4) 2536 }; 2537 2538 #undef AL 2539 2540 /* 2541 * System call vectors. 2542 * 2543 * Argument checking cleaned up. Saved 20% in size. 2544 * This function doesn't need to set the kernel lock because 2545 * it is set by the callees. 2546 */ 2547 2548 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2549 { 2550 unsigned long a[AUDITSC_ARGS]; 2551 unsigned long a0, a1; 2552 int err; 2553 unsigned int len; 2554 2555 if (call < 1 || call > SYS_SENDMMSG) 2556 return -EINVAL; 2557 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2558 2559 len = nargs[call]; 2560 if (len > sizeof(a)) 2561 return -EINVAL; 2562 2563 /* copy_from_user should be SMP safe. */ 2564 if (copy_from_user(a, args, len)) 2565 return -EFAULT; 2566 2567 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2568 if (err) 2569 return err; 2570 2571 a0 = a[0]; 2572 a1 = a[1]; 2573 2574 switch (call) { 2575 case SYS_SOCKET: 2576 err = __sys_socket(a0, a1, a[2]); 2577 break; 2578 case SYS_BIND: 2579 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2580 break; 2581 case SYS_CONNECT: 2582 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2583 break; 2584 case SYS_LISTEN: 2585 err = __sys_listen(a0, a1); 2586 break; 2587 case SYS_ACCEPT: 2588 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2589 (int __user *)a[2], 0); 2590 break; 2591 case SYS_GETSOCKNAME: 2592 err = 2593 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2594 (int __user *)a[2]); 2595 break; 2596 case SYS_GETPEERNAME: 2597 err = 2598 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2599 (int __user *)a[2]); 2600 break; 2601 case SYS_SOCKETPAIR: 2602 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2603 break; 2604 case SYS_SEND: 2605 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2606 NULL, 0); 2607 break; 2608 case SYS_SENDTO: 2609 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2610 (struct sockaddr __user *)a[4], a[5]); 2611 break; 2612 case SYS_RECV: 2613 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2614 NULL, NULL); 2615 break; 2616 case SYS_RECVFROM: 2617 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2618 (struct sockaddr __user *)a[4], 2619 (int __user *)a[5]); 2620 break; 2621 case SYS_SHUTDOWN: 2622 err = __sys_shutdown(a0, a1); 2623 break; 2624 case SYS_SETSOCKOPT: 2625 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2626 a[4]); 2627 break; 2628 case SYS_GETSOCKOPT: 2629 err = 2630 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2631 (int __user *)a[4]); 2632 break; 2633 case SYS_SENDMSG: 2634 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2635 a[2], true); 2636 break; 2637 case SYS_SENDMMSG: 2638 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2639 a[3], true); 2640 break; 2641 case SYS_RECVMSG: 2642 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2643 a[2], true); 2644 break; 2645 case SYS_RECVMMSG: 2646 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2647 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2648 a[2], a[3], 2649 (struct __kernel_timespec __user *)a[4], 2650 NULL); 2651 else 2652 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2653 a[2], a[3], NULL, 2654 (struct old_timespec32 __user *)a[4]); 2655 break; 2656 case SYS_ACCEPT4: 2657 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2658 (int __user *)a[2], a[3]); 2659 break; 2660 default: 2661 err = -EINVAL; 2662 break; 2663 } 2664 return err; 2665 } 2666 2667 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2668 2669 /** 2670 * sock_register - add a socket protocol handler 2671 * @ops: description of protocol 2672 * 2673 * This function is called by a protocol handler that wants to 2674 * advertise its address family, and have it linked into the 2675 * socket interface. The value ops->family corresponds to the 2676 * socket system call protocol family. 2677 */ 2678 int sock_register(const struct net_proto_family *ops) 2679 { 2680 int err; 2681 2682 if (ops->family >= NPROTO) { 2683 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2684 return -ENOBUFS; 2685 } 2686 2687 spin_lock(&net_family_lock); 2688 if (rcu_dereference_protected(net_families[ops->family], 2689 lockdep_is_held(&net_family_lock))) 2690 err = -EEXIST; 2691 else { 2692 rcu_assign_pointer(net_families[ops->family], ops); 2693 err = 0; 2694 } 2695 spin_unlock(&net_family_lock); 2696 2697 pr_info("NET: Registered protocol family %d\n", ops->family); 2698 return err; 2699 } 2700 EXPORT_SYMBOL(sock_register); 2701 2702 /** 2703 * sock_unregister - remove a protocol handler 2704 * @family: protocol family to remove 2705 * 2706 * This function is called by a protocol handler that wants to 2707 * remove its address family, and have it unlinked from the 2708 * new socket creation. 2709 * 2710 * If protocol handler is a module, then it can use module reference 2711 * counts to protect against new references. If protocol handler is not 2712 * a module then it needs to provide its own protection in 2713 * the ops->create routine. 2714 */ 2715 void sock_unregister(int family) 2716 { 2717 BUG_ON(family < 0 || family >= NPROTO); 2718 2719 spin_lock(&net_family_lock); 2720 RCU_INIT_POINTER(net_families[family], NULL); 2721 spin_unlock(&net_family_lock); 2722 2723 synchronize_rcu(); 2724 2725 pr_info("NET: Unregistered protocol family %d\n", family); 2726 } 2727 EXPORT_SYMBOL(sock_unregister); 2728 2729 bool sock_is_registered(int family) 2730 { 2731 return family < NPROTO && rcu_access_pointer(net_families[family]); 2732 } 2733 2734 static int __init sock_init(void) 2735 { 2736 int err; 2737 /* 2738 * Initialize the network sysctl infrastructure. 2739 */ 2740 err = net_sysctl_init(); 2741 if (err) 2742 goto out; 2743 2744 /* 2745 * Initialize skbuff SLAB cache 2746 */ 2747 skb_init(); 2748 2749 /* 2750 * Initialize the protocols module. 2751 */ 2752 2753 init_inodecache(); 2754 2755 err = register_filesystem(&sock_fs_type); 2756 if (err) 2757 goto out_fs; 2758 sock_mnt = kern_mount(&sock_fs_type); 2759 if (IS_ERR(sock_mnt)) { 2760 err = PTR_ERR(sock_mnt); 2761 goto out_mount; 2762 } 2763 2764 /* The real protocol initialization is performed in later initcalls. 2765 */ 2766 2767 #ifdef CONFIG_NETFILTER 2768 err = netfilter_init(); 2769 if (err) 2770 goto out; 2771 #endif 2772 2773 ptp_classifier_init(); 2774 2775 out: 2776 return err; 2777 2778 out_mount: 2779 unregister_filesystem(&sock_fs_type); 2780 out_fs: 2781 goto out; 2782 } 2783 2784 core_initcall(sock_init); /* early initcall */ 2785 2786 #ifdef CONFIG_PROC_FS 2787 void socket_seq_show(struct seq_file *seq) 2788 { 2789 seq_printf(seq, "sockets: used %d\n", 2790 sock_inuse_get(seq->private)); 2791 } 2792 #endif /* CONFIG_PROC_FS */ 2793 2794 #ifdef CONFIG_COMPAT 2795 static int do_siocgstamp(struct net *net, struct socket *sock, 2796 unsigned int cmd, void __user *up) 2797 { 2798 mm_segment_t old_fs = get_fs(); 2799 struct timeval ktv; 2800 int err; 2801 2802 set_fs(KERNEL_DS); 2803 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2804 set_fs(old_fs); 2805 if (!err) 2806 err = compat_put_timeval(&ktv, up); 2807 2808 return err; 2809 } 2810 2811 static int do_siocgstampns(struct net *net, struct socket *sock, 2812 unsigned int cmd, void __user *up) 2813 { 2814 mm_segment_t old_fs = get_fs(); 2815 struct timespec kts; 2816 int err; 2817 2818 set_fs(KERNEL_DS); 2819 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2820 set_fs(old_fs); 2821 if (!err) 2822 err = compat_put_timespec(&kts, up); 2823 2824 return err; 2825 } 2826 2827 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2828 { 2829 struct compat_ifconf ifc32; 2830 struct ifconf ifc; 2831 int err; 2832 2833 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2834 return -EFAULT; 2835 2836 ifc.ifc_len = ifc32.ifc_len; 2837 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2838 2839 rtnl_lock(); 2840 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2841 rtnl_unlock(); 2842 if (err) 2843 return err; 2844 2845 ifc32.ifc_len = ifc.ifc_len; 2846 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2847 return -EFAULT; 2848 2849 return 0; 2850 } 2851 2852 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2853 { 2854 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2855 bool convert_in = false, convert_out = false; 2856 size_t buf_size = 0; 2857 struct ethtool_rxnfc __user *rxnfc = NULL; 2858 struct ifreq ifr; 2859 u32 rule_cnt = 0, actual_rule_cnt; 2860 u32 ethcmd; 2861 u32 data; 2862 int ret; 2863 2864 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2865 return -EFAULT; 2866 2867 compat_rxnfc = compat_ptr(data); 2868 2869 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2870 return -EFAULT; 2871 2872 /* Most ethtool structures are defined without padding. 2873 * Unfortunately struct ethtool_rxnfc is an exception. 2874 */ 2875 switch (ethcmd) { 2876 default: 2877 break; 2878 case ETHTOOL_GRXCLSRLALL: 2879 /* Buffer size is variable */ 2880 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2881 return -EFAULT; 2882 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2883 return -ENOMEM; 2884 buf_size += rule_cnt * sizeof(u32); 2885 /* fall through */ 2886 case ETHTOOL_GRXRINGS: 2887 case ETHTOOL_GRXCLSRLCNT: 2888 case ETHTOOL_GRXCLSRULE: 2889 case ETHTOOL_SRXCLSRLINS: 2890 convert_out = true; 2891 /* fall through */ 2892 case ETHTOOL_SRXCLSRLDEL: 2893 buf_size += sizeof(struct ethtool_rxnfc); 2894 convert_in = true; 2895 rxnfc = compat_alloc_user_space(buf_size); 2896 break; 2897 } 2898 2899 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2900 return -EFAULT; 2901 2902 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2903 2904 if (convert_in) { 2905 /* We expect there to be holes between fs.m_ext and 2906 * fs.ring_cookie and at the end of fs, but nowhere else. 2907 */ 2908 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2909 sizeof(compat_rxnfc->fs.m_ext) != 2910 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2911 sizeof(rxnfc->fs.m_ext)); 2912 BUILD_BUG_ON( 2913 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2914 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2915 offsetof(struct ethtool_rxnfc, fs.location) - 2916 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2917 2918 if (copy_in_user(rxnfc, compat_rxnfc, 2919 (void __user *)(&rxnfc->fs.m_ext + 1) - 2920 (void __user *)rxnfc) || 2921 copy_in_user(&rxnfc->fs.ring_cookie, 2922 &compat_rxnfc->fs.ring_cookie, 2923 (void __user *)(&rxnfc->fs.location + 1) - 2924 (void __user *)&rxnfc->fs.ring_cookie)) 2925 return -EFAULT; 2926 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2927 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2928 return -EFAULT; 2929 } else if (copy_in_user(&rxnfc->rule_cnt, 2930 &compat_rxnfc->rule_cnt, 2931 sizeof(rxnfc->rule_cnt))) 2932 return -EFAULT; 2933 } 2934 2935 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2936 if (ret) 2937 return ret; 2938 2939 if (convert_out) { 2940 if (copy_in_user(compat_rxnfc, rxnfc, 2941 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2942 (const void __user *)rxnfc) || 2943 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2944 &rxnfc->fs.ring_cookie, 2945 (const void __user *)(&rxnfc->fs.location + 1) - 2946 (const void __user *)&rxnfc->fs.ring_cookie) || 2947 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2948 sizeof(rxnfc->rule_cnt))) 2949 return -EFAULT; 2950 2951 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2952 /* As an optimisation, we only copy the actual 2953 * number of rules that the underlying 2954 * function returned. Since Mallory might 2955 * change the rule count in user memory, we 2956 * check that it is less than the rule count 2957 * originally given (as the user buffer size), 2958 * which has been range-checked. 2959 */ 2960 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2961 return -EFAULT; 2962 if (actual_rule_cnt < rule_cnt) 2963 rule_cnt = actual_rule_cnt; 2964 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2965 &rxnfc->rule_locs[0], 2966 rule_cnt * sizeof(u32))) 2967 return -EFAULT; 2968 } 2969 } 2970 2971 return 0; 2972 } 2973 2974 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2975 { 2976 compat_uptr_t uptr32; 2977 struct ifreq ifr; 2978 void __user *saved; 2979 int err; 2980 2981 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2982 return -EFAULT; 2983 2984 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2985 return -EFAULT; 2986 2987 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2988 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2989 2990 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2991 if (!err) { 2992 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2993 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2994 err = -EFAULT; 2995 } 2996 return err; 2997 } 2998 2999 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3000 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3001 struct compat_ifreq __user *u_ifreq32) 3002 { 3003 struct ifreq ifreq; 3004 u32 data32; 3005 3006 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3007 return -EFAULT; 3008 if (get_user(data32, &u_ifreq32->ifr_data)) 3009 return -EFAULT; 3010 ifreq.ifr_data = compat_ptr(data32); 3011 3012 return dev_ioctl(net, cmd, &ifreq, NULL); 3013 } 3014 3015 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3016 unsigned int cmd, 3017 struct compat_ifreq __user *uifr32) 3018 { 3019 struct ifreq __user *uifr; 3020 int err; 3021 3022 /* Handle the fact that while struct ifreq has the same *layout* on 3023 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3024 * which are handled elsewhere, it still has different *size* due to 3025 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3026 * resulting in struct ifreq being 32 and 40 bytes respectively). 3027 * As a result, if the struct happens to be at the end of a page and 3028 * the next page isn't readable/writable, we get a fault. To prevent 3029 * that, copy back and forth to the full size. 3030 */ 3031 3032 uifr = compat_alloc_user_space(sizeof(*uifr)); 3033 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3034 return -EFAULT; 3035 3036 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3037 3038 if (!err) { 3039 switch (cmd) { 3040 case SIOCGIFFLAGS: 3041 case SIOCGIFMETRIC: 3042 case SIOCGIFMTU: 3043 case SIOCGIFMEM: 3044 case SIOCGIFHWADDR: 3045 case SIOCGIFINDEX: 3046 case SIOCGIFADDR: 3047 case SIOCGIFBRDADDR: 3048 case SIOCGIFDSTADDR: 3049 case SIOCGIFNETMASK: 3050 case SIOCGIFPFLAGS: 3051 case SIOCGIFTXQLEN: 3052 case SIOCGMIIPHY: 3053 case SIOCGMIIREG: 3054 case SIOCGIFNAME: 3055 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3056 err = -EFAULT; 3057 break; 3058 } 3059 } 3060 return err; 3061 } 3062 3063 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3064 struct compat_ifreq __user *uifr32) 3065 { 3066 struct ifreq ifr; 3067 struct compat_ifmap __user *uifmap32; 3068 int err; 3069 3070 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3071 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3072 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3073 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3074 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3075 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3076 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3077 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3078 if (err) 3079 return -EFAULT; 3080 3081 err = dev_ioctl(net, cmd, &ifr, NULL); 3082 3083 if (cmd == SIOCGIFMAP && !err) { 3084 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3085 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3086 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3087 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3088 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3089 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3090 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3091 if (err) 3092 err = -EFAULT; 3093 } 3094 return err; 3095 } 3096 3097 struct rtentry32 { 3098 u32 rt_pad1; 3099 struct sockaddr rt_dst; /* target address */ 3100 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3101 struct sockaddr rt_genmask; /* target network mask (IP) */ 3102 unsigned short rt_flags; 3103 short rt_pad2; 3104 u32 rt_pad3; 3105 unsigned char rt_tos; 3106 unsigned char rt_class; 3107 short rt_pad4; 3108 short rt_metric; /* +1 for binary compatibility! */ 3109 /* char * */ u32 rt_dev; /* forcing the device at add */ 3110 u32 rt_mtu; /* per route MTU/Window */ 3111 u32 rt_window; /* Window clamping */ 3112 unsigned short rt_irtt; /* Initial RTT */ 3113 }; 3114 3115 struct in6_rtmsg32 { 3116 struct in6_addr rtmsg_dst; 3117 struct in6_addr rtmsg_src; 3118 struct in6_addr rtmsg_gateway; 3119 u32 rtmsg_type; 3120 u16 rtmsg_dst_len; 3121 u16 rtmsg_src_len; 3122 u32 rtmsg_metric; 3123 u32 rtmsg_info; 3124 u32 rtmsg_flags; 3125 s32 rtmsg_ifindex; 3126 }; 3127 3128 static int routing_ioctl(struct net *net, struct socket *sock, 3129 unsigned int cmd, void __user *argp) 3130 { 3131 int ret; 3132 void *r = NULL; 3133 struct in6_rtmsg r6; 3134 struct rtentry r4; 3135 char devname[16]; 3136 u32 rtdev; 3137 mm_segment_t old_fs = get_fs(); 3138 3139 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3140 struct in6_rtmsg32 __user *ur6 = argp; 3141 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3142 3 * sizeof(struct in6_addr)); 3143 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3144 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3145 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3146 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3147 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3148 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3149 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3150 3151 r = (void *) &r6; 3152 } else { /* ipv4 */ 3153 struct rtentry32 __user *ur4 = argp; 3154 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3155 3 * sizeof(struct sockaddr)); 3156 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3157 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3158 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3159 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3160 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3161 ret |= get_user(rtdev, &(ur4->rt_dev)); 3162 if (rtdev) { 3163 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3164 r4.rt_dev = (char __user __force *)devname; 3165 devname[15] = 0; 3166 } else 3167 r4.rt_dev = NULL; 3168 3169 r = (void *) &r4; 3170 } 3171 3172 if (ret) { 3173 ret = -EFAULT; 3174 goto out; 3175 } 3176 3177 set_fs(KERNEL_DS); 3178 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3179 set_fs(old_fs); 3180 3181 out: 3182 return ret; 3183 } 3184 3185 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3186 * for some operations; this forces use of the newer bridge-utils that 3187 * use compatible ioctls 3188 */ 3189 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3190 { 3191 compat_ulong_t tmp; 3192 3193 if (get_user(tmp, argp)) 3194 return -EFAULT; 3195 if (tmp == BRCTL_GET_VERSION) 3196 return BRCTL_VERSION + 1; 3197 return -EINVAL; 3198 } 3199 3200 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3201 unsigned int cmd, unsigned long arg) 3202 { 3203 void __user *argp = compat_ptr(arg); 3204 struct sock *sk = sock->sk; 3205 struct net *net = sock_net(sk); 3206 3207 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3208 return compat_ifr_data_ioctl(net, cmd, argp); 3209 3210 switch (cmd) { 3211 case SIOCSIFBR: 3212 case SIOCGIFBR: 3213 return old_bridge_ioctl(argp); 3214 case SIOCGIFCONF: 3215 return compat_dev_ifconf(net, argp); 3216 case SIOCETHTOOL: 3217 return ethtool_ioctl(net, argp); 3218 case SIOCWANDEV: 3219 return compat_siocwandev(net, argp); 3220 case SIOCGIFMAP: 3221 case SIOCSIFMAP: 3222 return compat_sioc_ifmap(net, cmd, argp); 3223 case SIOCADDRT: 3224 case SIOCDELRT: 3225 return routing_ioctl(net, sock, cmd, argp); 3226 case SIOCGSTAMP: 3227 return do_siocgstamp(net, sock, cmd, argp); 3228 case SIOCGSTAMPNS: 3229 return do_siocgstampns(net, sock, cmd, argp); 3230 case SIOCBONDSLAVEINFOQUERY: 3231 case SIOCBONDINFOQUERY: 3232 case SIOCSHWTSTAMP: 3233 case SIOCGHWTSTAMP: 3234 return compat_ifr_data_ioctl(net, cmd, argp); 3235 3236 case FIOSETOWN: 3237 case SIOCSPGRP: 3238 case FIOGETOWN: 3239 case SIOCGPGRP: 3240 case SIOCBRADDBR: 3241 case SIOCBRDELBR: 3242 case SIOCGIFVLAN: 3243 case SIOCSIFVLAN: 3244 case SIOCADDDLCI: 3245 case SIOCDELDLCI: 3246 case SIOCGSKNS: 3247 return sock_ioctl(file, cmd, arg); 3248 3249 case SIOCGIFFLAGS: 3250 case SIOCSIFFLAGS: 3251 case SIOCGIFMETRIC: 3252 case SIOCSIFMETRIC: 3253 case SIOCGIFMTU: 3254 case SIOCSIFMTU: 3255 case SIOCGIFMEM: 3256 case SIOCSIFMEM: 3257 case SIOCGIFHWADDR: 3258 case SIOCSIFHWADDR: 3259 case SIOCADDMULTI: 3260 case SIOCDELMULTI: 3261 case SIOCGIFINDEX: 3262 case SIOCGIFADDR: 3263 case SIOCSIFADDR: 3264 case SIOCSIFHWBROADCAST: 3265 case SIOCDIFADDR: 3266 case SIOCGIFBRDADDR: 3267 case SIOCSIFBRDADDR: 3268 case SIOCGIFDSTADDR: 3269 case SIOCSIFDSTADDR: 3270 case SIOCGIFNETMASK: 3271 case SIOCSIFNETMASK: 3272 case SIOCSIFPFLAGS: 3273 case SIOCGIFPFLAGS: 3274 case SIOCGIFTXQLEN: 3275 case SIOCSIFTXQLEN: 3276 case SIOCBRADDIF: 3277 case SIOCBRDELIF: 3278 case SIOCGIFNAME: 3279 case SIOCSIFNAME: 3280 case SIOCGMIIPHY: 3281 case SIOCGMIIREG: 3282 case SIOCSMIIREG: 3283 case SIOCBONDENSLAVE: 3284 case SIOCBONDRELEASE: 3285 case SIOCBONDSETHWADDR: 3286 case SIOCBONDCHANGEACTIVE: 3287 return compat_ifreq_ioctl(net, sock, cmd, argp); 3288 3289 case SIOCSARP: 3290 case SIOCGARP: 3291 case SIOCDARP: 3292 case SIOCATMARK: 3293 return sock_do_ioctl(net, sock, cmd, arg); 3294 } 3295 3296 return -ENOIOCTLCMD; 3297 } 3298 3299 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3300 unsigned long arg) 3301 { 3302 struct socket *sock = file->private_data; 3303 int ret = -ENOIOCTLCMD; 3304 struct sock *sk; 3305 struct net *net; 3306 3307 sk = sock->sk; 3308 net = sock_net(sk); 3309 3310 if (sock->ops->compat_ioctl) 3311 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3312 3313 if (ret == -ENOIOCTLCMD && 3314 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3315 ret = compat_wext_handle_ioctl(net, cmd, arg); 3316 3317 if (ret == -ENOIOCTLCMD) 3318 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3319 3320 return ret; 3321 } 3322 #endif 3323 3324 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3325 { 3326 return sock->ops->bind(sock, addr, addrlen); 3327 } 3328 EXPORT_SYMBOL(kernel_bind); 3329 3330 int kernel_listen(struct socket *sock, int backlog) 3331 { 3332 return sock->ops->listen(sock, backlog); 3333 } 3334 EXPORT_SYMBOL(kernel_listen); 3335 3336 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3337 { 3338 struct sock *sk = sock->sk; 3339 int err; 3340 3341 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3342 newsock); 3343 if (err < 0) 3344 goto done; 3345 3346 err = sock->ops->accept(sock, *newsock, flags, true); 3347 if (err < 0) { 3348 sock_release(*newsock); 3349 *newsock = NULL; 3350 goto done; 3351 } 3352 3353 (*newsock)->ops = sock->ops; 3354 __module_get((*newsock)->ops->owner); 3355 3356 done: 3357 return err; 3358 } 3359 EXPORT_SYMBOL(kernel_accept); 3360 3361 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3362 int flags) 3363 { 3364 return sock->ops->connect(sock, addr, addrlen, flags); 3365 } 3366 EXPORT_SYMBOL(kernel_connect); 3367 3368 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3369 { 3370 return sock->ops->getname(sock, addr, 0); 3371 } 3372 EXPORT_SYMBOL(kernel_getsockname); 3373 3374 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3375 { 3376 return sock->ops->getname(sock, addr, 1); 3377 } 3378 EXPORT_SYMBOL(kernel_getpeername); 3379 3380 int kernel_getsockopt(struct socket *sock, int level, int optname, 3381 char *optval, int *optlen) 3382 { 3383 mm_segment_t oldfs = get_fs(); 3384 char __user *uoptval; 3385 int __user *uoptlen; 3386 int err; 3387 3388 uoptval = (char __user __force *) optval; 3389 uoptlen = (int __user __force *) optlen; 3390 3391 set_fs(KERNEL_DS); 3392 if (level == SOL_SOCKET) 3393 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3394 else 3395 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3396 uoptlen); 3397 set_fs(oldfs); 3398 return err; 3399 } 3400 EXPORT_SYMBOL(kernel_getsockopt); 3401 3402 int kernel_setsockopt(struct socket *sock, int level, int optname, 3403 char *optval, unsigned int optlen) 3404 { 3405 mm_segment_t oldfs = get_fs(); 3406 char __user *uoptval; 3407 int err; 3408 3409 uoptval = (char __user __force *) optval; 3410 3411 set_fs(KERNEL_DS); 3412 if (level == SOL_SOCKET) 3413 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3414 else 3415 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3416 optlen); 3417 set_fs(oldfs); 3418 return err; 3419 } 3420 EXPORT_SYMBOL(kernel_setsockopt); 3421 3422 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3423 size_t size, int flags) 3424 { 3425 if (sock->ops->sendpage) 3426 return sock->ops->sendpage(sock, page, offset, size, flags); 3427 3428 return sock_no_sendpage(sock, page, offset, size, flags); 3429 } 3430 EXPORT_SYMBOL(kernel_sendpage); 3431 3432 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3433 size_t size, int flags) 3434 { 3435 struct socket *sock = sk->sk_socket; 3436 3437 if (sock->ops->sendpage_locked) 3438 return sock->ops->sendpage_locked(sk, page, offset, size, 3439 flags); 3440 3441 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3442 } 3443 EXPORT_SYMBOL(kernel_sendpage_locked); 3444 3445 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3446 { 3447 return sock->ops->shutdown(sock, how); 3448 } 3449 EXPORT_SYMBOL(kernel_sock_shutdown); 3450 3451 /* This routine returns the IP overhead imposed by a socket i.e. 3452 * the length of the underlying IP header, depending on whether 3453 * this is an IPv4 or IPv6 socket and the length from IP options turned 3454 * on at the socket. Assumes that the caller has a lock on the socket. 3455 */ 3456 u32 kernel_sock_ip_overhead(struct sock *sk) 3457 { 3458 struct inet_sock *inet; 3459 struct ip_options_rcu *opt; 3460 u32 overhead = 0; 3461 #if IS_ENABLED(CONFIG_IPV6) 3462 struct ipv6_pinfo *np; 3463 struct ipv6_txoptions *optv6 = NULL; 3464 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3465 3466 if (!sk) 3467 return overhead; 3468 3469 switch (sk->sk_family) { 3470 case AF_INET: 3471 inet = inet_sk(sk); 3472 overhead += sizeof(struct iphdr); 3473 opt = rcu_dereference_protected(inet->inet_opt, 3474 sock_owned_by_user(sk)); 3475 if (opt) 3476 overhead += opt->opt.optlen; 3477 return overhead; 3478 #if IS_ENABLED(CONFIG_IPV6) 3479 case AF_INET6: 3480 np = inet6_sk(sk); 3481 overhead += sizeof(struct ipv6hdr); 3482 if (np) 3483 optv6 = rcu_dereference_protected(np->opt, 3484 sock_owned_by_user(sk)); 3485 if (optv6) 3486 overhead += (optv6->opt_flen + optv6->opt_nflen); 3487 return overhead; 3488 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3489 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3490 return overhead; 3491 } 3492 } 3493 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3494