1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/thread_info.h> 73 #include <linux/wanrouter.h> 74 #include <linux/if_bridge.h> 75 #include <linux/if_frad.h> 76 #include <linux/if_vlan.h> 77 #include <linux/init.h> 78 #include <linux/poll.h> 79 #include <linux/cache.h> 80 #include <linux/module.h> 81 #include <linux/highmem.h> 82 #include <linux/mount.h> 83 #include <linux/security.h> 84 #include <linux/syscalls.h> 85 #include <linux/compat.h> 86 #include <linux/kmod.h> 87 #include <linux/audit.h> 88 #include <linux/wireless.h> 89 #include <linux/nsproxy.h> 90 91 #include <asm/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 102 unsigned long nr_segs, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 104 unsigned long nr_segs, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 111 #ifdef CONFIG_COMPAT 112 static long compat_sock_ioctl(struct file *file, 113 unsigned int cmd, unsigned long arg); 114 #endif 115 static int sock_fasync(int fd, struct file *filp, int on); 116 static ssize_t sock_sendpage(struct file *file, struct page *page, 117 int offset, size_t size, loff_t *ppos, int more); 118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 119 struct pipe_inode_info *pipe, size_t len, 120 unsigned int flags); 121 122 /* 123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 124 * in the operation structures but are done directly via the socketcall() multiplexor. 125 */ 126 127 static const struct file_operations socket_file_ops = { 128 .owner = THIS_MODULE, 129 .llseek = no_llseek, 130 .aio_read = sock_aio_read, 131 .aio_write = sock_aio_write, 132 .poll = sock_poll, 133 .unlocked_ioctl = sock_ioctl, 134 #ifdef CONFIG_COMPAT 135 .compat_ioctl = compat_sock_ioctl, 136 #endif 137 .mmap = sock_mmap, 138 .open = sock_no_open, /* special open code to disallow open via /proc */ 139 .release = sock_close, 140 .fasync = sock_fasync, 141 .sendpage = sock_sendpage, 142 .splice_write = generic_splice_sendpage, 143 .splice_read = sock_splice_read, 144 }; 145 146 /* 147 * The protocol list. Each protocol is registered in here. 148 */ 149 150 static DEFINE_SPINLOCK(net_family_lock); 151 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 152 153 /* 154 * Statistics counters of the socket lists 155 */ 156 157 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 158 159 /* 160 * Support routines. 161 * Move socket addresses back and forth across the kernel/user 162 * divide and look after the messy bits. 163 */ 164 165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 166 16 for IP, 16 for IPX, 167 24 for IPv6, 168 about 80 for AX.25 169 must be at least one bigger than 170 the AF_UNIX size (see net/unix/af_unix.c 171 :unix_mkname()). 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 214 int __user *ulen) 215 { 216 int err; 217 int len; 218 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0 || len > sizeof(struct sockaddr_storage)) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 #define SOCKFS_MAGIC 0x534F434B 240 241 static struct kmem_cache *sock_inode_cachep __read_mostly; 242 243 static struct inode *sock_alloc_inode(struct super_block *sb) 244 { 245 struct socket_alloc *ei; 246 247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 248 if (!ei) 249 return NULL; 250 init_waitqueue_head(&ei->socket.wait); 251 252 ei->socket.fasync_list = NULL; 253 ei->socket.state = SS_UNCONNECTED; 254 ei->socket.flags = 0; 255 ei->socket.ops = NULL; 256 ei->socket.sk = NULL; 257 ei->socket.file = NULL; 258 259 return &ei->vfs_inode; 260 } 261 262 static void sock_destroy_inode(struct inode *inode) 263 { 264 kmem_cache_free(sock_inode_cachep, 265 container_of(inode, struct socket_alloc, vfs_inode)); 266 } 267 268 static void init_once(void *foo) 269 { 270 struct socket_alloc *ei = (struct socket_alloc *)foo; 271 272 inode_init_once(&ei->vfs_inode); 273 } 274 275 static int init_inodecache(void) 276 { 277 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 278 sizeof(struct socket_alloc), 279 0, 280 (SLAB_HWCACHE_ALIGN | 281 SLAB_RECLAIM_ACCOUNT | 282 SLAB_MEM_SPREAD), 283 init_once); 284 if (sock_inode_cachep == NULL) 285 return -ENOMEM; 286 return 0; 287 } 288 289 static struct super_operations sockfs_ops = { 290 .alloc_inode = sock_alloc_inode, 291 .destroy_inode =sock_destroy_inode, 292 .statfs = simple_statfs, 293 }; 294 295 static int sockfs_get_sb(struct file_system_type *fs_type, 296 int flags, const char *dev_name, void *data, 297 struct vfsmount *mnt) 298 { 299 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 300 mnt); 301 } 302 303 static struct vfsmount *sock_mnt __read_mostly; 304 305 static struct file_system_type sock_fs_type = { 306 .name = "sockfs", 307 .get_sb = sockfs_get_sb, 308 .kill_sb = kill_anon_super, 309 }; 310 311 static int sockfs_delete_dentry(struct dentry *dentry) 312 { 313 /* 314 * At creation time, we pretended this dentry was hashed 315 * (by clearing DCACHE_UNHASHED bit in d_flags) 316 * At delete time, we restore the truth : not hashed. 317 * (so that dput() can proceed correctly) 318 */ 319 dentry->d_flags |= DCACHE_UNHASHED; 320 return 0; 321 } 322 323 /* 324 * sockfs_dname() is called from d_path(). 325 */ 326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 327 { 328 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 329 dentry->d_inode->i_ino); 330 } 331 332 static struct dentry_operations sockfs_dentry_operations = { 333 .d_delete = sockfs_delete_dentry, 334 .d_dname = sockfs_dname, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_fd(struct file **filep, int flags) 355 { 356 int fd; 357 358 fd = get_unused_fd_flags(flags); 359 if (likely(fd >= 0)) { 360 struct file *file = get_empty_filp(); 361 362 *filep = file; 363 if (unlikely(!file)) { 364 put_unused_fd(fd); 365 return -ENFILE; 366 } 367 } else 368 *filep = NULL; 369 return fd; 370 } 371 372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags) 373 { 374 struct dentry *dentry; 375 struct qstr name = { .name = "" }; 376 377 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 378 if (unlikely(!dentry)) 379 return -ENOMEM; 380 381 dentry->d_op = &sockfs_dentry_operations; 382 /* 383 * We dont want to push this dentry into global dentry hash table. 384 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 385 * This permits a working /proc/$pid/fd/XXX on sockets 386 */ 387 dentry->d_flags &= ~DCACHE_UNHASHED; 388 d_instantiate(dentry, SOCK_INODE(sock)); 389 390 sock->file = file; 391 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 392 &socket_file_ops); 393 SOCK_INODE(sock)->i_fop = &socket_file_ops; 394 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 395 file->f_pos = 0; 396 file->private_data = sock; 397 398 return 0; 399 } 400 401 int sock_map_fd(struct socket *sock, int flags) 402 { 403 struct file *newfile; 404 int fd = sock_alloc_fd(&newfile, flags); 405 406 if (likely(fd >= 0)) { 407 int err = sock_attach_fd(sock, newfile, flags); 408 409 if (unlikely(err < 0)) { 410 put_filp(newfile); 411 put_unused_fd(fd); 412 return err; 413 } 414 fd_install(fd, newfile); 415 } 416 return fd; 417 } 418 419 static struct socket *sock_from_file(struct file *file, int *err) 420 { 421 if (file->f_op == &socket_file_ops) 422 return file->private_data; /* set in sock_map_fd */ 423 424 *err = -ENOTSOCK; 425 return NULL; 426 } 427 428 /** 429 * sockfd_lookup - Go from a file number to its socket slot 430 * @fd: file handle 431 * @err: pointer to an error code return 432 * 433 * The file handle passed in is locked and the socket it is bound 434 * too is returned. If an error occurs the err pointer is overwritten 435 * with a negative errno code and NULL is returned. The function checks 436 * for both invalid handles and passing a handle which is not a socket. 437 * 438 * On a success the socket object pointer is returned. 439 */ 440 441 struct socket *sockfd_lookup(int fd, int *err) 442 { 443 struct file *file; 444 struct socket *sock; 445 446 file = fget(fd); 447 if (!file) { 448 *err = -EBADF; 449 return NULL; 450 } 451 452 sock = sock_from_file(file, err); 453 if (!sock) 454 fput(file); 455 return sock; 456 } 457 458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 459 { 460 struct file *file; 461 struct socket *sock; 462 463 *err = -EBADF; 464 file = fget_light(fd, fput_needed); 465 if (file) { 466 sock = sock_from_file(file, err); 467 if (sock) 468 return sock; 469 fput_light(file, *fput_needed); 470 } 471 return NULL; 472 } 473 474 /** 475 * sock_alloc - allocate a socket 476 * 477 * Allocate a new inode and socket object. The two are bound together 478 * and initialised. The socket is then returned. If we are out of inodes 479 * NULL is returned. 480 */ 481 482 static struct socket *sock_alloc(void) 483 { 484 struct inode *inode; 485 struct socket *sock; 486 487 inode = new_inode(sock_mnt->mnt_sb); 488 if (!inode) 489 return NULL; 490 491 sock = SOCKET_I(inode); 492 493 inode->i_mode = S_IFSOCK | S_IRWXUGO; 494 inode->i_uid = current->fsuid; 495 inode->i_gid = current->fsgid; 496 497 get_cpu_var(sockets_in_use)++; 498 put_cpu_var(sockets_in_use); 499 return sock; 500 } 501 502 /* 503 * In theory you can't get an open on this inode, but /proc provides 504 * a back door. Remember to keep it shut otherwise you'll let the 505 * creepy crawlies in. 506 */ 507 508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 509 { 510 return -ENXIO; 511 } 512 513 const struct file_operations bad_sock_fops = { 514 .owner = THIS_MODULE, 515 .open = sock_no_open, 516 }; 517 518 /** 519 * sock_release - close a socket 520 * @sock: socket to close 521 * 522 * The socket is released from the protocol stack if it has a release 523 * callback, and the inode is then released if the socket is bound to 524 * an inode not a file. 525 */ 526 527 void sock_release(struct socket *sock) 528 { 529 if (sock->ops) { 530 struct module *owner = sock->ops->owner; 531 532 sock->ops->release(sock); 533 sock->ops = NULL; 534 module_put(owner); 535 } 536 537 if (sock->fasync_list) 538 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 539 540 get_cpu_var(sockets_in_use)--; 541 put_cpu_var(sockets_in_use); 542 if (!sock->file) { 543 iput(SOCK_INODE(sock)); 544 return; 545 } 546 sock->file = NULL; 547 } 548 549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 550 struct msghdr *msg, size_t size) 551 { 552 struct sock_iocb *si = kiocb_to_siocb(iocb); 553 int err; 554 555 si->sock = sock; 556 si->scm = NULL; 557 si->msg = msg; 558 si->size = size; 559 560 err = security_socket_sendmsg(sock, msg, size); 561 if (err) 562 return err; 563 564 return sock->ops->sendmsg(iocb, sock, msg, size); 565 } 566 567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 568 { 569 struct kiocb iocb; 570 struct sock_iocb siocb; 571 int ret; 572 573 init_sync_kiocb(&iocb, NULL); 574 iocb.private = &siocb; 575 ret = __sock_sendmsg(&iocb, sock, msg, size); 576 if (-EIOCBQUEUED == ret) 577 ret = wait_on_sync_kiocb(&iocb); 578 return ret; 579 } 580 581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 582 struct kvec *vec, size_t num, size_t size) 583 { 584 mm_segment_t oldfs = get_fs(); 585 int result; 586 587 set_fs(KERNEL_DS); 588 /* 589 * the following is safe, since for compiler definitions of kvec and 590 * iovec are identical, yielding the same in-core layout and alignment 591 */ 592 msg->msg_iov = (struct iovec *)vec; 593 msg->msg_iovlen = num; 594 result = sock_sendmsg(sock, msg, size); 595 set_fs(oldfs); 596 return result; 597 } 598 599 /* 600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 601 */ 602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 603 struct sk_buff *skb) 604 { 605 ktime_t kt = skb->tstamp; 606 607 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 608 struct timeval tv; 609 /* Race occurred between timestamp enabling and packet 610 receiving. Fill in the current time for now. */ 611 if (kt.tv64 == 0) 612 kt = ktime_get_real(); 613 skb->tstamp = kt; 614 tv = ktime_to_timeval(kt); 615 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 616 } else { 617 struct timespec ts; 618 /* Race occurred between timestamp enabling and packet 619 receiving. Fill in the current time for now. */ 620 if (kt.tv64 == 0) 621 kt = ktime_get_real(); 622 skb->tstamp = kt; 623 ts = ktime_to_timespec(kt); 624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 625 } 626 } 627 628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 629 630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 631 struct msghdr *msg, size_t size, int flags) 632 { 633 int err; 634 struct sock_iocb *si = kiocb_to_siocb(iocb); 635 636 si->sock = sock; 637 si->scm = NULL; 638 si->msg = msg; 639 si->size = size; 640 si->flags = flags; 641 642 err = security_socket_recvmsg(sock, msg, size, flags); 643 if (err) 644 return err; 645 646 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 647 } 648 649 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 650 size_t size, int flags) 651 { 652 struct kiocb iocb; 653 struct sock_iocb siocb; 654 int ret; 655 656 init_sync_kiocb(&iocb, NULL); 657 iocb.private = &siocb; 658 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 659 if (-EIOCBQUEUED == ret) 660 ret = wait_on_sync_kiocb(&iocb); 661 return ret; 662 } 663 664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 665 struct kvec *vec, size_t num, size_t size, int flags) 666 { 667 mm_segment_t oldfs = get_fs(); 668 int result; 669 670 set_fs(KERNEL_DS); 671 /* 672 * the following is safe, since for compiler definitions of kvec and 673 * iovec are identical, yielding the same in-core layout and alignment 674 */ 675 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 676 result = sock_recvmsg(sock, msg, size, flags); 677 set_fs(oldfs); 678 return result; 679 } 680 681 static void sock_aio_dtor(struct kiocb *iocb) 682 { 683 kfree(iocb->private); 684 } 685 686 static ssize_t sock_sendpage(struct file *file, struct page *page, 687 int offset, size_t size, loff_t *ppos, int more) 688 { 689 struct socket *sock; 690 int flags; 691 692 sock = file->private_data; 693 694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 695 if (more) 696 flags |= MSG_MORE; 697 698 return sock->ops->sendpage(sock, page, offset, size, flags); 699 } 700 701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 702 struct pipe_inode_info *pipe, size_t len, 703 unsigned int flags) 704 { 705 struct socket *sock = file->private_data; 706 707 if (unlikely(!sock->ops->splice_read)) 708 return -EINVAL; 709 710 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 711 } 712 713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 714 struct sock_iocb *siocb) 715 { 716 if (!is_sync_kiocb(iocb)) { 717 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 718 if (!siocb) 719 return NULL; 720 iocb->ki_dtor = sock_aio_dtor; 721 } 722 723 siocb->kiocb = iocb; 724 iocb->private = siocb; 725 return siocb; 726 } 727 728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 729 struct file *file, const struct iovec *iov, 730 unsigned long nr_segs) 731 { 732 struct socket *sock = file->private_data; 733 size_t size = 0; 734 int i; 735 736 for (i = 0; i < nr_segs; i++) 737 size += iov[i].iov_len; 738 739 msg->msg_name = NULL; 740 msg->msg_namelen = 0; 741 msg->msg_control = NULL; 742 msg->msg_controllen = 0; 743 msg->msg_iov = (struct iovec *)iov; 744 msg->msg_iovlen = nr_segs; 745 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 746 747 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 748 } 749 750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 751 unsigned long nr_segs, loff_t pos) 752 { 753 struct sock_iocb siocb, *x; 754 755 if (pos != 0) 756 return -ESPIPE; 757 758 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 759 return 0; 760 761 762 x = alloc_sock_iocb(iocb, &siocb); 763 if (!x) 764 return -ENOMEM; 765 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 766 } 767 768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 769 struct file *file, const struct iovec *iov, 770 unsigned long nr_segs) 771 { 772 struct socket *sock = file->private_data; 773 size_t size = 0; 774 int i; 775 776 for (i = 0; i < nr_segs; i++) 777 size += iov[i].iov_len; 778 779 msg->msg_name = NULL; 780 msg->msg_namelen = 0; 781 msg->msg_control = NULL; 782 msg->msg_controllen = 0; 783 msg->msg_iov = (struct iovec *)iov; 784 msg->msg_iovlen = nr_segs; 785 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 786 if (sock->type == SOCK_SEQPACKET) 787 msg->msg_flags |= MSG_EOR; 788 789 return __sock_sendmsg(iocb, sock, msg, size); 790 } 791 792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 793 unsigned long nr_segs, loff_t pos) 794 { 795 struct sock_iocb siocb, *x; 796 797 if (pos != 0) 798 return -ESPIPE; 799 800 x = alloc_sock_iocb(iocb, &siocb); 801 if (!x) 802 return -ENOMEM; 803 804 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 805 } 806 807 /* 808 * Atomic setting of ioctl hooks to avoid race 809 * with module unload. 810 */ 811 812 static DEFINE_MUTEX(br_ioctl_mutex); 813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 814 815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 816 { 817 mutex_lock(&br_ioctl_mutex); 818 br_ioctl_hook = hook; 819 mutex_unlock(&br_ioctl_mutex); 820 } 821 822 EXPORT_SYMBOL(brioctl_set); 823 824 static DEFINE_MUTEX(vlan_ioctl_mutex); 825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 826 827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 828 { 829 mutex_lock(&vlan_ioctl_mutex); 830 vlan_ioctl_hook = hook; 831 mutex_unlock(&vlan_ioctl_mutex); 832 } 833 834 EXPORT_SYMBOL(vlan_ioctl_set); 835 836 static DEFINE_MUTEX(dlci_ioctl_mutex); 837 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 838 839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 840 { 841 mutex_lock(&dlci_ioctl_mutex); 842 dlci_ioctl_hook = hook; 843 mutex_unlock(&dlci_ioctl_mutex); 844 } 845 846 EXPORT_SYMBOL(dlci_ioctl_set); 847 848 /* 849 * With an ioctl, arg may well be a user mode pointer, but we don't know 850 * what to do with it - that's up to the protocol still. 851 */ 852 853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 854 { 855 struct socket *sock; 856 struct sock *sk; 857 void __user *argp = (void __user *)arg; 858 int pid, err; 859 struct net *net; 860 861 sock = file->private_data; 862 sk = sock->sk; 863 net = sock_net(sk); 864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 865 err = dev_ioctl(net, cmd, argp); 866 } else 867 #ifdef CONFIG_WIRELESS_EXT 868 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 869 err = dev_ioctl(net, cmd, argp); 870 } else 871 #endif /* CONFIG_WIRELESS_EXT */ 872 switch (cmd) { 873 case FIOSETOWN: 874 case SIOCSPGRP: 875 err = -EFAULT; 876 if (get_user(pid, (int __user *)argp)) 877 break; 878 err = f_setown(sock->file, pid, 1); 879 break; 880 case FIOGETOWN: 881 case SIOCGPGRP: 882 err = put_user(f_getown(sock->file), 883 (int __user *)argp); 884 break; 885 case SIOCGIFBR: 886 case SIOCSIFBR: 887 case SIOCBRADDBR: 888 case SIOCBRDELBR: 889 err = -ENOPKG; 890 if (!br_ioctl_hook) 891 request_module("bridge"); 892 893 mutex_lock(&br_ioctl_mutex); 894 if (br_ioctl_hook) 895 err = br_ioctl_hook(net, cmd, argp); 896 mutex_unlock(&br_ioctl_mutex); 897 break; 898 case SIOCGIFVLAN: 899 case SIOCSIFVLAN: 900 err = -ENOPKG; 901 if (!vlan_ioctl_hook) 902 request_module("8021q"); 903 904 mutex_lock(&vlan_ioctl_mutex); 905 if (vlan_ioctl_hook) 906 err = vlan_ioctl_hook(net, argp); 907 mutex_unlock(&vlan_ioctl_mutex); 908 break; 909 case SIOCADDDLCI: 910 case SIOCDELDLCI: 911 err = -ENOPKG; 912 if (!dlci_ioctl_hook) 913 request_module("dlci"); 914 915 mutex_lock(&dlci_ioctl_mutex); 916 if (dlci_ioctl_hook) 917 err = dlci_ioctl_hook(cmd, argp); 918 mutex_unlock(&dlci_ioctl_mutex); 919 break; 920 default: 921 err = sock->ops->ioctl(sock, cmd, arg); 922 923 /* 924 * If this ioctl is unknown try to hand it down 925 * to the NIC driver. 926 */ 927 if (err == -ENOIOCTLCMD) 928 err = dev_ioctl(net, cmd, argp); 929 break; 930 } 931 return err; 932 } 933 934 int sock_create_lite(int family, int type, int protocol, struct socket **res) 935 { 936 int err; 937 struct socket *sock = NULL; 938 939 err = security_socket_create(family, type, protocol, 1); 940 if (err) 941 goto out; 942 943 sock = sock_alloc(); 944 if (!sock) { 945 err = -ENOMEM; 946 goto out; 947 } 948 949 sock->type = type; 950 err = security_socket_post_create(sock, family, type, protocol, 1); 951 if (err) 952 goto out_release; 953 954 out: 955 *res = sock; 956 return err; 957 out_release: 958 sock_release(sock); 959 sock = NULL; 960 goto out; 961 } 962 963 /* No kernel lock held - perfect */ 964 static unsigned int sock_poll(struct file *file, poll_table *wait) 965 { 966 struct socket *sock; 967 968 /* 969 * We can't return errors to poll, so it's either yes or no. 970 */ 971 sock = file->private_data; 972 return sock->ops->poll(file, sock, wait); 973 } 974 975 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 976 { 977 struct socket *sock = file->private_data; 978 979 return sock->ops->mmap(file, sock, vma); 980 } 981 982 static int sock_close(struct inode *inode, struct file *filp) 983 { 984 /* 985 * It was possible the inode is NULL we were 986 * closing an unfinished socket. 987 */ 988 989 if (!inode) { 990 printk(KERN_DEBUG "sock_close: NULL inode\n"); 991 return 0; 992 } 993 sock_fasync(-1, filp, 0); 994 sock_release(SOCKET_I(inode)); 995 return 0; 996 } 997 998 /* 999 * Update the socket async list 1000 * 1001 * Fasync_list locking strategy. 1002 * 1003 * 1. fasync_list is modified only under process context socket lock 1004 * i.e. under semaphore. 1005 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1006 * or under socket lock. 1007 * 3. fasync_list can be used from softirq context, so that 1008 * modification under socket lock have to be enhanced with 1009 * write_lock_bh(&sk->sk_callback_lock). 1010 * --ANK (990710) 1011 */ 1012 1013 static int sock_fasync(int fd, struct file *filp, int on) 1014 { 1015 struct fasync_struct *fa, *fna = NULL, **prev; 1016 struct socket *sock; 1017 struct sock *sk; 1018 1019 if (on) { 1020 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1021 if (fna == NULL) 1022 return -ENOMEM; 1023 } 1024 1025 sock = filp->private_data; 1026 1027 sk = sock->sk; 1028 if (sk == NULL) { 1029 kfree(fna); 1030 return -EINVAL; 1031 } 1032 1033 lock_sock(sk); 1034 1035 prev = &(sock->fasync_list); 1036 1037 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1038 if (fa->fa_file == filp) 1039 break; 1040 1041 if (on) { 1042 if (fa != NULL) { 1043 write_lock_bh(&sk->sk_callback_lock); 1044 fa->fa_fd = fd; 1045 write_unlock_bh(&sk->sk_callback_lock); 1046 1047 kfree(fna); 1048 goto out; 1049 } 1050 fna->fa_file = filp; 1051 fna->fa_fd = fd; 1052 fna->magic = FASYNC_MAGIC; 1053 fna->fa_next = sock->fasync_list; 1054 write_lock_bh(&sk->sk_callback_lock); 1055 sock->fasync_list = fna; 1056 write_unlock_bh(&sk->sk_callback_lock); 1057 } else { 1058 if (fa != NULL) { 1059 write_lock_bh(&sk->sk_callback_lock); 1060 *prev = fa->fa_next; 1061 write_unlock_bh(&sk->sk_callback_lock); 1062 kfree(fa); 1063 } 1064 } 1065 1066 out: 1067 release_sock(sock->sk); 1068 return 0; 1069 } 1070 1071 /* This function may be called only under socket lock or callback_lock */ 1072 1073 int sock_wake_async(struct socket *sock, int how, int band) 1074 { 1075 if (!sock || !sock->fasync_list) 1076 return -1; 1077 switch (how) { 1078 case SOCK_WAKE_WAITD: 1079 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1080 break; 1081 goto call_kill; 1082 case SOCK_WAKE_SPACE: 1083 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1084 break; 1085 /* fall through */ 1086 case SOCK_WAKE_IO: 1087 call_kill: 1088 __kill_fasync(sock->fasync_list, SIGIO, band); 1089 break; 1090 case SOCK_WAKE_URG: 1091 __kill_fasync(sock->fasync_list, SIGURG, band); 1092 } 1093 return 0; 1094 } 1095 1096 static int __sock_create(struct net *net, int family, int type, int protocol, 1097 struct socket **res, int kern) 1098 { 1099 int err; 1100 struct socket *sock; 1101 const struct net_proto_family *pf; 1102 1103 /* 1104 * Check protocol is in range 1105 */ 1106 if (family < 0 || family >= NPROTO) 1107 return -EAFNOSUPPORT; 1108 if (type < 0 || type >= SOCK_MAX) 1109 return -EINVAL; 1110 1111 /* Compatibility. 1112 1113 This uglymoron is moved from INET layer to here to avoid 1114 deadlock in module load. 1115 */ 1116 if (family == PF_INET && type == SOCK_PACKET) { 1117 static int warned; 1118 if (!warned) { 1119 warned = 1; 1120 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1121 current->comm); 1122 } 1123 family = PF_PACKET; 1124 } 1125 1126 err = security_socket_create(family, type, protocol, kern); 1127 if (err) 1128 return err; 1129 1130 /* 1131 * Allocate the socket and allow the family to set things up. if 1132 * the protocol is 0, the family is instructed to select an appropriate 1133 * default. 1134 */ 1135 sock = sock_alloc(); 1136 if (!sock) { 1137 if (net_ratelimit()) 1138 printk(KERN_WARNING "socket: no more sockets\n"); 1139 return -ENFILE; /* Not exactly a match, but its the 1140 closest posix thing */ 1141 } 1142 1143 sock->type = type; 1144 1145 #if defined(CONFIG_KMOD) 1146 /* Attempt to load a protocol module if the find failed. 1147 * 1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1149 * requested real, full-featured networking support upon configuration. 1150 * Otherwise module support will break! 1151 */ 1152 if (net_families[family] == NULL) 1153 request_module("net-pf-%d", family); 1154 #endif 1155 1156 rcu_read_lock(); 1157 pf = rcu_dereference(net_families[family]); 1158 err = -EAFNOSUPPORT; 1159 if (!pf) 1160 goto out_release; 1161 1162 /* 1163 * We will call the ->create function, that possibly is in a loadable 1164 * module, so we have to bump that loadable module refcnt first. 1165 */ 1166 if (!try_module_get(pf->owner)) 1167 goto out_release; 1168 1169 /* Now protected by module ref count */ 1170 rcu_read_unlock(); 1171 1172 err = pf->create(net, sock, protocol); 1173 if (err < 0) 1174 goto out_module_put; 1175 1176 /* 1177 * Now to bump the refcnt of the [loadable] module that owns this 1178 * socket at sock_release time we decrement its refcnt. 1179 */ 1180 if (!try_module_get(sock->ops->owner)) 1181 goto out_module_busy; 1182 1183 /* 1184 * Now that we're done with the ->create function, the [loadable] 1185 * module can have its refcnt decremented 1186 */ 1187 module_put(pf->owner); 1188 err = security_socket_post_create(sock, family, type, protocol, kern); 1189 if (err) 1190 goto out_sock_release; 1191 *res = sock; 1192 1193 return 0; 1194 1195 out_module_busy: 1196 err = -EAFNOSUPPORT; 1197 out_module_put: 1198 sock->ops = NULL; 1199 module_put(pf->owner); 1200 out_sock_release: 1201 sock_release(sock); 1202 return err; 1203 1204 out_release: 1205 rcu_read_unlock(); 1206 goto out_sock_release; 1207 } 1208 1209 int sock_create(int family, int type, int protocol, struct socket **res) 1210 { 1211 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1212 } 1213 1214 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1215 { 1216 return __sock_create(&init_net, family, type, protocol, res, 1); 1217 } 1218 1219 asmlinkage long sys_socket(int family, int type, int protocol) 1220 { 1221 int retval; 1222 struct socket *sock; 1223 int flags; 1224 1225 /* Check the SOCK_* constants for consistency. */ 1226 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1227 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1228 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1229 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1230 1231 flags = type & ~SOCK_TYPE_MASK; 1232 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1233 return -EINVAL; 1234 type &= SOCK_TYPE_MASK; 1235 1236 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1237 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1238 1239 retval = sock_create(family, type, protocol, &sock); 1240 if (retval < 0) 1241 goto out; 1242 1243 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1244 if (retval < 0) 1245 goto out_release; 1246 1247 out: 1248 /* It may be already another descriptor 8) Not kernel problem. */ 1249 return retval; 1250 1251 out_release: 1252 sock_release(sock); 1253 return retval; 1254 } 1255 1256 /* 1257 * Create a pair of connected sockets. 1258 */ 1259 1260 asmlinkage long sys_socketpair(int family, int type, int protocol, 1261 int __user *usockvec) 1262 { 1263 struct socket *sock1, *sock2; 1264 int fd1, fd2, err; 1265 struct file *newfile1, *newfile2; 1266 int flags; 1267 1268 flags = type & ~SOCK_TYPE_MASK; 1269 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1270 return -EINVAL; 1271 type &= SOCK_TYPE_MASK; 1272 1273 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1274 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1275 1276 /* 1277 * Obtain the first socket and check if the underlying protocol 1278 * supports the socketpair call. 1279 */ 1280 1281 err = sock_create(family, type, protocol, &sock1); 1282 if (err < 0) 1283 goto out; 1284 1285 err = sock_create(family, type, protocol, &sock2); 1286 if (err < 0) 1287 goto out_release_1; 1288 1289 err = sock1->ops->socketpair(sock1, sock2); 1290 if (err < 0) 1291 goto out_release_both; 1292 1293 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC); 1294 if (unlikely(fd1 < 0)) { 1295 err = fd1; 1296 goto out_release_both; 1297 } 1298 1299 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC); 1300 if (unlikely(fd2 < 0)) { 1301 err = fd2; 1302 put_filp(newfile1); 1303 put_unused_fd(fd1); 1304 goto out_release_both; 1305 } 1306 1307 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK); 1308 if (unlikely(err < 0)) { 1309 goto out_fd2; 1310 } 1311 1312 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK); 1313 if (unlikely(err < 0)) { 1314 fput(newfile1); 1315 goto out_fd1; 1316 } 1317 1318 err = audit_fd_pair(fd1, fd2); 1319 if (err < 0) { 1320 fput(newfile1); 1321 fput(newfile2); 1322 goto out_fd; 1323 } 1324 1325 fd_install(fd1, newfile1); 1326 fd_install(fd2, newfile2); 1327 /* fd1 and fd2 may be already another descriptors. 1328 * Not kernel problem. 1329 */ 1330 1331 err = put_user(fd1, &usockvec[0]); 1332 if (!err) 1333 err = put_user(fd2, &usockvec[1]); 1334 if (!err) 1335 return 0; 1336 1337 sys_close(fd2); 1338 sys_close(fd1); 1339 return err; 1340 1341 out_release_both: 1342 sock_release(sock2); 1343 out_release_1: 1344 sock_release(sock1); 1345 out: 1346 return err; 1347 1348 out_fd2: 1349 put_filp(newfile1); 1350 sock_release(sock1); 1351 out_fd1: 1352 put_filp(newfile2); 1353 sock_release(sock2); 1354 out_fd: 1355 put_unused_fd(fd1); 1356 put_unused_fd(fd2); 1357 goto out; 1358 } 1359 1360 /* 1361 * Bind a name to a socket. Nothing much to do here since it's 1362 * the protocol's responsibility to handle the local address. 1363 * 1364 * We move the socket address to kernel space before we call 1365 * the protocol layer (having also checked the address is ok). 1366 */ 1367 1368 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1369 { 1370 struct socket *sock; 1371 struct sockaddr_storage address; 1372 int err, fput_needed; 1373 1374 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1375 if (sock) { 1376 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1377 if (err >= 0) { 1378 err = security_socket_bind(sock, 1379 (struct sockaddr *)&address, 1380 addrlen); 1381 if (!err) 1382 err = sock->ops->bind(sock, 1383 (struct sockaddr *) 1384 &address, addrlen); 1385 } 1386 fput_light(sock->file, fput_needed); 1387 } 1388 return err; 1389 } 1390 1391 /* 1392 * Perform a listen. Basically, we allow the protocol to do anything 1393 * necessary for a listen, and if that works, we mark the socket as 1394 * ready for listening. 1395 */ 1396 1397 asmlinkage long sys_listen(int fd, int backlog) 1398 { 1399 struct socket *sock; 1400 int err, fput_needed; 1401 int somaxconn; 1402 1403 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1404 if (sock) { 1405 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1406 if ((unsigned)backlog > somaxconn) 1407 backlog = somaxconn; 1408 1409 err = security_socket_listen(sock, backlog); 1410 if (!err) 1411 err = sock->ops->listen(sock, backlog); 1412 1413 fput_light(sock->file, fput_needed); 1414 } 1415 return err; 1416 } 1417 1418 /* 1419 * For accept, we attempt to create a new socket, set up the link 1420 * with the client, wake up the client, then return the new 1421 * connected fd. We collect the address of the connector in kernel 1422 * space and move it to user at the very end. This is unclean because 1423 * we open the socket then return an error. 1424 * 1425 * 1003.1g adds the ability to recvmsg() to query connection pending 1426 * status to recvmsg. We need to add that support in a way thats 1427 * clean when we restucture accept also. 1428 */ 1429 1430 long do_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1431 int __user *upeer_addrlen, int flags) 1432 { 1433 struct socket *sock, *newsock; 1434 struct file *newfile; 1435 int err, len, newfd, fput_needed; 1436 struct sockaddr_storage address; 1437 1438 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1439 return -EINVAL; 1440 1441 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1442 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1443 1444 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1445 if (!sock) 1446 goto out; 1447 1448 err = -ENFILE; 1449 if (!(newsock = sock_alloc())) 1450 goto out_put; 1451 1452 newsock->type = sock->type; 1453 newsock->ops = sock->ops; 1454 1455 /* 1456 * We don't need try_module_get here, as the listening socket (sock) 1457 * has the protocol module (sock->ops->owner) held. 1458 */ 1459 __module_get(newsock->ops->owner); 1460 1461 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC); 1462 if (unlikely(newfd < 0)) { 1463 err = newfd; 1464 sock_release(newsock); 1465 goto out_put; 1466 } 1467 1468 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK); 1469 if (err < 0) 1470 goto out_fd_simple; 1471 1472 err = security_socket_accept(sock, newsock); 1473 if (err) 1474 goto out_fd; 1475 1476 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1477 if (err < 0) 1478 goto out_fd; 1479 1480 if (upeer_sockaddr) { 1481 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1482 &len, 2) < 0) { 1483 err = -ECONNABORTED; 1484 goto out_fd; 1485 } 1486 err = move_addr_to_user((struct sockaddr *)&address, 1487 len, upeer_sockaddr, upeer_addrlen); 1488 if (err < 0) 1489 goto out_fd; 1490 } 1491 1492 /* File flags are not inherited via accept() unlike another OSes. */ 1493 1494 fd_install(newfd, newfile); 1495 err = newfd; 1496 1497 security_socket_post_accept(sock, newsock); 1498 1499 out_put: 1500 fput_light(sock->file, fput_needed); 1501 out: 1502 return err; 1503 out_fd_simple: 1504 sock_release(newsock); 1505 put_filp(newfile); 1506 put_unused_fd(newfd); 1507 goto out_put; 1508 out_fd: 1509 fput(newfile); 1510 put_unused_fd(newfd); 1511 goto out_put; 1512 } 1513 1514 #if 0 1515 #ifdef HAVE_SET_RESTORE_SIGMASK 1516 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr, 1517 int __user *upeer_addrlen, 1518 const sigset_t __user *sigmask, 1519 size_t sigsetsize, int flags) 1520 { 1521 sigset_t ksigmask, sigsaved; 1522 int ret; 1523 1524 if (sigmask) { 1525 /* XXX: Don't preclude handling different sized sigset_t's. */ 1526 if (sigsetsize != sizeof(sigset_t)) 1527 return -EINVAL; 1528 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1529 return -EFAULT; 1530 1531 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1532 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1533 } 1534 1535 ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags); 1536 1537 if (ret < 0 && signal_pending(current)) { 1538 /* 1539 * Don't restore the signal mask yet. Let do_signal() deliver 1540 * the signal on the way back to userspace, before the signal 1541 * mask is restored. 1542 */ 1543 if (sigmask) { 1544 memcpy(¤t->saved_sigmask, &sigsaved, 1545 sizeof(sigsaved)); 1546 set_restore_sigmask(); 1547 } 1548 } else if (sigmask) 1549 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1550 1551 return ret; 1552 } 1553 #else 1554 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr, 1555 int __user *upeer_addrlen, 1556 const sigset_t __user *sigmask, 1557 size_t sigsetsize, int flags) 1558 { 1559 /* The platform does not support restoring the signal mask in the 1560 * return path. So we do not allow using paccept() with a signal 1561 * mask. */ 1562 if (sigmask) 1563 return -EINVAL; 1564 1565 return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags); 1566 } 1567 #endif 1568 #endif 1569 1570 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1571 int __user *upeer_addrlen) 1572 { 1573 return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0); 1574 } 1575 1576 /* 1577 * Attempt to connect to a socket with the server address. The address 1578 * is in user space so we verify it is OK and move it to kernel space. 1579 * 1580 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1581 * break bindings 1582 * 1583 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1584 * other SEQPACKET protocols that take time to connect() as it doesn't 1585 * include the -EINPROGRESS status for such sockets. 1586 */ 1587 1588 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1589 int addrlen) 1590 { 1591 struct socket *sock; 1592 struct sockaddr_storage address; 1593 int err, fput_needed; 1594 1595 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1596 if (!sock) 1597 goto out; 1598 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1599 if (err < 0) 1600 goto out_put; 1601 1602 err = 1603 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1604 if (err) 1605 goto out_put; 1606 1607 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1608 sock->file->f_flags); 1609 out_put: 1610 fput_light(sock->file, fput_needed); 1611 out: 1612 return err; 1613 } 1614 1615 /* 1616 * Get the local address ('name') of a socket object. Move the obtained 1617 * name to user space. 1618 */ 1619 1620 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1621 int __user *usockaddr_len) 1622 { 1623 struct socket *sock; 1624 struct sockaddr_storage address; 1625 int len, err, fput_needed; 1626 1627 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1628 if (!sock) 1629 goto out; 1630 1631 err = security_socket_getsockname(sock); 1632 if (err) 1633 goto out_put; 1634 1635 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1636 if (err) 1637 goto out_put; 1638 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1639 1640 out_put: 1641 fput_light(sock->file, fput_needed); 1642 out: 1643 return err; 1644 } 1645 1646 /* 1647 * Get the remote address ('name') of a socket object. Move the obtained 1648 * name to user space. 1649 */ 1650 1651 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1652 int __user *usockaddr_len) 1653 { 1654 struct socket *sock; 1655 struct sockaddr_storage address; 1656 int len, err, fput_needed; 1657 1658 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1659 if (sock != NULL) { 1660 err = security_socket_getpeername(sock); 1661 if (err) { 1662 fput_light(sock->file, fput_needed); 1663 return err; 1664 } 1665 1666 err = 1667 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1668 1); 1669 if (!err) 1670 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1671 usockaddr_len); 1672 fput_light(sock->file, fput_needed); 1673 } 1674 return err; 1675 } 1676 1677 /* 1678 * Send a datagram to a given address. We move the address into kernel 1679 * space and check the user space data area is readable before invoking 1680 * the protocol. 1681 */ 1682 1683 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1684 unsigned flags, struct sockaddr __user *addr, 1685 int addr_len) 1686 { 1687 struct socket *sock; 1688 struct sockaddr_storage address; 1689 int err; 1690 struct msghdr msg; 1691 struct iovec iov; 1692 int fput_needed; 1693 1694 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1695 if (!sock) 1696 goto out; 1697 1698 iov.iov_base = buff; 1699 iov.iov_len = len; 1700 msg.msg_name = NULL; 1701 msg.msg_iov = &iov; 1702 msg.msg_iovlen = 1; 1703 msg.msg_control = NULL; 1704 msg.msg_controllen = 0; 1705 msg.msg_namelen = 0; 1706 if (addr) { 1707 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1708 if (err < 0) 1709 goto out_put; 1710 msg.msg_name = (struct sockaddr *)&address; 1711 msg.msg_namelen = addr_len; 1712 } 1713 if (sock->file->f_flags & O_NONBLOCK) 1714 flags |= MSG_DONTWAIT; 1715 msg.msg_flags = flags; 1716 err = sock_sendmsg(sock, &msg, len); 1717 1718 out_put: 1719 fput_light(sock->file, fput_needed); 1720 out: 1721 return err; 1722 } 1723 1724 /* 1725 * Send a datagram down a socket. 1726 */ 1727 1728 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1729 { 1730 return sys_sendto(fd, buff, len, flags, NULL, 0); 1731 } 1732 1733 /* 1734 * Receive a frame from the socket and optionally record the address of the 1735 * sender. We verify the buffers are writable and if needed move the 1736 * sender address from kernel to user space. 1737 */ 1738 1739 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1740 unsigned flags, struct sockaddr __user *addr, 1741 int __user *addr_len) 1742 { 1743 struct socket *sock; 1744 struct iovec iov; 1745 struct msghdr msg; 1746 struct sockaddr_storage address; 1747 int err, err2; 1748 int fput_needed; 1749 1750 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1751 if (!sock) 1752 goto out; 1753 1754 msg.msg_control = NULL; 1755 msg.msg_controllen = 0; 1756 msg.msg_iovlen = 1; 1757 msg.msg_iov = &iov; 1758 iov.iov_len = size; 1759 iov.iov_base = ubuf; 1760 msg.msg_name = (struct sockaddr *)&address; 1761 msg.msg_namelen = sizeof(address); 1762 if (sock->file->f_flags & O_NONBLOCK) 1763 flags |= MSG_DONTWAIT; 1764 err = sock_recvmsg(sock, &msg, size, flags); 1765 1766 if (err >= 0 && addr != NULL) { 1767 err2 = move_addr_to_user((struct sockaddr *)&address, 1768 msg.msg_namelen, addr, addr_len); 1769 if (err2 < 0) 1770 err = err2; 1771 } 1772 1773 fput_light(sock->file, fput_needed); 1774 out: 1775 return err; 1776 } 1777 1778 /* 1779 * Receive a datagram from a socket. 1780 */ 1781 1782 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1783 unsigned flags) 1784 { 1785 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1786 } 1787 1788 /* 1789 * Set a socket option. Because we don't know the option lengths we have 1790 * to pass the user mode parameter for the protocols to sort out. 1791 */ 1792 1793 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1794 char __user *optval, int optlen) 1795 { 1796 int err, fput_needed; 1797 struct socket *sock; 1798 1799 if (optlen < 0) 1800 return -EINVAL; 1801 1802 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1803 if (sock != NULL) { 1804 err = security_socket_setsockopt(sock, level, optname); 1805 if (err) 1806 goto out_put; 1807 1808 if (level == SOL_SOCKET) 1809 err = 1810 sock_setsockopt(sock, level, optname, optval, 1811 optlen); 1812 else 1813 err = 1814 sock->ops->setsockopt(sock, level, optname, optval, 1815 optlen); 1816 out_put: 1817 fput_light(sock->file, fput_needed); 1818 } 1819 return err; 1820 } 1821 1822 /* 1823 * Get a socket option. Because we don't know the option lengths we have 1824 * to pass a user mode parameter for the protocols to sort out. 1825 */ 1826 1827 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1828 char __user *optval, int __user *optlen) 1829 { 1830 int err, fput_needed; 1831 struct socket *sock; 1832 1833 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1834 if (sock != NULL) { 1835 err = security_socket_getsockopt(sock, level, optname); 1836 if (err) 1837 goto out_put; 1838 1839 if (level == SOL_SOCKET) 1840 err = 1841 sock_getsockopt(sock, level, optname, optval, 1842 optlen); 1843 else 1844 err = 1845 sock->ops->getsockopt(sock, level, optname, optval, 1846 optlen); 1847 out_put: 1848 fput_light(sock->file, fput_needed); 1849 } 1850 return err; 1851 } 1852 1853 /* 1854 * Shutdown a socket. 1855 */ 1856 1857 asmlinkage long sys_shutdown(int fd, int how) 1858 { 1859 int err, fput_needed; 1860 struct socket *sock; 1861 1862 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1863 if (sock != NULL) { 1864 err = security_socket_shutdown(sock, how); 1865 if (!err) 1866 err = sock->ops->shutdown(sock, how); 1867 fput_light(sock->file, fput_needed); 1868 } 1869 return err; 1870 } 1871 1872 /* A couple of helpful macros for getting the address of the 32/64 bit 1873 * fields which are the same type (int / unsigned) on our platforms. 1874 */ 1875 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1876 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1877 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1878 1879 /* 1880 * BSD sendmsg interface 1881 */ 1882 1883 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1884 { 1885 struct compat_msghdr __user *msg_compat = 1886 (struct compat_msghdr __user *)msg; 1887 struct socket *sock; 1888 struct sockaddr_storage address; 1889 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1890 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1891 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1892 /* 20 is size of ipv6_pktinfo */ 1893 unsigned char *ctl_buf = ctl; 1894 struct msghdr msg_sys; 1895 int err, ctl_len, iov_size, total_len; 1896 int fput_needed; 1897 1898 err = -EFAULT; 1899 if (MSG_CMSG_COMPAT & flags) { 1900 if (get_compat_msghdr(&msg_sys, msg_compat)) 1901 return -EFAULT; 1902 } 1903 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1904 return -EFAULT; 1905 1906 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1907 if (!sock) 1908 goto out; 1909 1910 /* do not move before msg_sys is valid */ 1911 err = -EMSGSIZE; 1912 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1913 goto out_put; 1914 1915 /* Check whether to allocate the iovec area */ 1916 err = -ENOMEM; 1917 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1918 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1919 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1920 if (!iov) 1921 goto out_put; 1922 } 1923 1924 /* This will also move the address data into kernel space */ 1925 if (MSG_CMSG_COMPAT & flags) { 1926 err = verify_compat_iovec(&msg_sys, iov, 1927 (struct sockaddr *)&address, 1928 VERIFY_READ); 1929 } else 1930 err = verify_iovec(&msg_sys, iov, 1931 (struct sockaddr *)&address, 1932 VERIFY_READ); 1933 if (err < 0) 1934 goto out_freeiov; 1935 total_len = err; 1936 1937 err = -ENOBUFS; 1938 1939 if (msg_sys.msg_controllen > INT_MAX) 1940 goto out_freeiov; 1941 ctl_len = msg_sys.msg_controllen; 1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1943 err = 1944 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1945 sizeof(ctl)); 1946 if (err) 1947 goto out_freeiov; 1948 ctl_buf = msg_sys.msg_control; 1949 ctl_len = msg_sys.msg_controllen; 1950 } else if (ctl_len) { 1951 if (ctl_len > sizeof(ctl)) { 1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1953 if (ctl_buf == NULL) 1954 goto out_freeiov; 1955 } 1956 err = -EFAULT; 1957 /* 1958 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1960 * checking falls down on this. 1961 */ 1962 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1963 ctl_len)) 1964 goto out_freectl; 1965 msg_sys.msg_control = ctl_buf; 1966 } 1967 msg_sys.msg_flags = flags; 1968 1969 if (sock->file->f_flags & O_NONBLOCK) 1970 msg_sys.msg_flags |= MSG_DONTWAIT; 1971 err = sock_sendmsg(sock, &msg_sys, total_len); 1972 1973 out_freectl: 1974 if (ctl_buf != ctl) 1975 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1976 out_freeiov: 1977 if (iov != iovstack) 1978 sock_kfree_s(sock->sk, iov, iov_size); 1979 out_put: 1980 fput_light(sock->file, fput_needed); 1981 out: 1982 return err; 1983 } 1984 1985 /* 1986 * BSD recvmsg interface 1987 */ 1988 1989 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1990 unsigned int flags) 1991 { 1992 struct compat_msghdr __user *msg_compat = 1993 (struct compat_msghdr __user *)msg; 1994 struct socket *sock; 1995 struct iovec iovstack[UIO_FASTIOV]; 1996 struct iovec *iov = iovstack; 1997 struct msghdr msg_sys; 1998 unsigned long cmsg_ptr; 1999 int err, iov_size, total_len, len; 2000 int fput_needed; 2001 2002 /* kernel mode address */ 2003 struct sockaddr_storage addr; 2004 2005 /* user mode address pointers */ 2006 struct sockaddr __user *uaddr; 2007 int __user *uaddr_len; 2008 2009 if (MSG_CMSG_COMPAT & flags) { 2010 if (get_compat_msghdr(&msg_sys, msg_compat)) 2011 return -EFAULT; 2012 } 2013 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 2014 return -EFAULT; 2015 2016 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2017 if (!sock) 2018 goto out; 2019 2020 err = -EMSGSIZE; 2021 if (msg_sys.msg_iovlen > UIO_MAXIOV) 2022 goto out_put; 2023 2024 /* Check whether to allocate the iovec area */ 2025 err = -ENOMEM; 2026 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 2027 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 2028 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2029 if (!iov) 2030 goto out_put; 2031 } 2032 2033 /* 2034 * Save the user-mode address (verify_iovec will change the 2035 * kernel msghdr to use the kernel address space) 2036 */ 2037 2038 uaddr = (__force void __user *)msg_sys.msg_name; 2039 uaddr_len = COMPAT_NAMELEN(msg); 2040 if (MSG_CMSG_COMPAT & flags) { 2041 err = verify_compat_iovec(&msg_sys, iov, 2042 (struct sockaddr *)&addr, 2043 VERIFY_WRITE); 2044 } else 2045 err = verify_iovec(&msg_sys, iov, 2046 (struct sockaddr *)&addr, 2047 VERIFY_WRITE); 2048 if (err < 0) 2049 goto out_freeiov; 2050 total_len = err; 2051 2052 cmsg_ptr = (unsigned long)msg_sys.msg_control; 2053 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2054 2055 if (sock->file->f_flags & O_NONBLOCK) 2056 flags |= MSG_DONTWAIT; 2057 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 2058 if (err < 0) 2059 goto out_freeiov; 2060 len = err; 2061 2062 if (uaddr != NULL) { 2063 err = move_addr_to_user((struct sockaddr *)&addr, 2064 msg_sys.msg_namelen, uaddr, 2065 uaddr_len); 2066 if (err < 0) 2067 goto out_freeiov; 2068 } 2069 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 2070 COMPAT_FLAGS(msg)); 2071 if (err) 2072 goto out_freeiov; 2073 if (MSG_CMSG_COMPAT & flags) 2074 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2075 &msg_compat->msg_controllen); 2076 else 2077 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2078 &msg->msg_controllen); 2079 if (err) 2080 goto out_freeiov; 2081 err = len; 2082 2083 out_freeiov: 2084 if (iov != iovstack) 2085 sock_kfree_s(sock->sk, iov, iov_size); 2086 out_put: 2087 fput_light(sock->file, fput_needed); 2088 out: 2089 return err; 2090 } 2091 2092 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2093 2094 /* Argument list sizes for sys_socketcall */ 2095 #define AL(x) ((x) * sizeof(unsigned long)) 2096 static const unsigned char nargs[19]={ 2097 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2098 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2099 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2100 AL(6) 2101 }; 2102 2103 #undef AL 2104 2105 /* 2106 * System call vectors. 2107 * 2108 * Argument checking cleaned up. Saved 20% in size. 2109 * This function doesn't need to set the kernel lock because 2110 * it is set by the callees. 2111 */ 2112 2113 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2114 { 2115 unsigned long a[6]; 2116 unsigned long a0, a1; 2117 int err; 2118 2119 if (call < 1 || call > SYS_PACCEPT) 2120 return -EINVAL; 2121 2122 /* copy_from_user should be SMP safe. */ 2123 if (copy_from_user(a, args, nargs[call])) 2124 return -EFAULT; 2125 2126 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2127 if (err) 2128 return err; 2129 2130 a0 = a[0]; 2131 a1 = a[1]; 2132 2133 switch (call) { 2134 case SYS_SOCKET: 2135 err = sys_socket(a0, a1, a[2]); 2136 break; 2137 case SYS_BIND: 2138 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2139 break; 2140 case SYS_CONNECT: 2141 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2142 break; 2143 case SYS_LISTEN: 2144 err = sys_listen(a0, a1); 2145 break; 2146 case SYS_ACCEPT: 2147 err = 2148 do_accept(a0, (struct sockaddr __user *)a1, 2149 (int __user *)a[2], 0); 2150 break; 2151 case SYS_GETSOCKNAME: 2152 err = 2153 sys_getsockname(a0, (struct sockaddr __user *)a1, 2154 (int __user *)a[2]); 2155 break; 2156 case SYS_GETPEERNAME: 2157 err = 2158 sys_getpeername(a0, (struct sockaddr __user *)a1, 2159 (int __user *)a[2]); 2160 break; 2161 case SYS_SOCKETPAIR: 2162 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2163 break; 2164 case SYS_SEND: 2165 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2166 break; 2167 case SYS_SENDTO: 2168 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2169 (struct sockaddr __user *)a[4], a[5]); 2170 break; 2171 case SYS_RECV: 2172 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2173 break; 2174 case SYS_RECVFROM: 2175 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2176 (struct sockaddr __user *)a[4], 2177 (int __user *)a[5]); 2178 break; 2179 case SYS_SHUTDOWN: 2180 err = sys_shutdown(a0, a1); 2181 break; 2182 case SYS_SETSOCKOPT: 2183 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2184 break; 2185 case SYS_GETSOCKOPT: 2186 err = 2187 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2188 (int __user *)a[4]); 2189 break; 2190 case SYS_SENDMSG: 2191 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2192 break; 2193 case SYS_RECVMSG: 2194 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2195 break; 2196 case SYS_PACCEPT: 2197 err = 2198 sys_paccept(a0, (struct sockaddr __user *)a1, 2199 (int __user *)a[2], 2200 (const sigset_t __user *) a[3], 2201 a[4], a[5]); 2202 break; 2203 default: 2204 err = -EINVAL; 2205 break; 2206 } 2207 return err; 2208 } 2209 2210 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2211 2212 /** 2213 * sock_register - add a socket protocol handler 2214 * @ops: description of protocol 2215 * 2216 * This function is called by a protocol handler that wants to 2217 * advertise its address family, and have it linked into the 2218 * socket interface. The value ops->family coresponds to the 2219 * socket system call protocol family. 2220 */ 2221 int sock_register(const struct net_proto_family *ops) 2222 { 2223 int err; 2224 2225 if (ops->family >= NPROTO) { 2226 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2227 NPROTO); 2228 return -ENOBUFS; 2229 } 2230 2231 spin_lock(&net_family_lock); 2232 if (net_families[ops->family]) 2233 err = -EEXIST; 2234 else { 2235 net_families[ops->family] = ops; 2236 err = 0; 2237 } 2238 spin_unlock(&net_family_lock); 2239 2240 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2241 return err; 2242 } 2243 2244 /** 2245 * sock_unregister - remove a protocol handler 2246 * @family: protocol family to remove 2247 * 2248 * This function is called by a protocol handler that wants to 2249 * remove its address family, and have it unlinked from the 2250 * new socket creation. 2251 * 2252 * If protocol handler is a module, then it can use module reference 2253 * counts to protect against new references. If protocol handler is not 2254 * a module then it needs to provide its own protection in 2255 * the ops->create routine. 2256 */ 2257 void sock_unregister(int family) 2258 { 2259 BUG_ON(family < 0 || family >= NPROTO); 2260 2261 spin_lock(&net_family_lock); 2262 net_families[family] = NULL; 2263 spin_unlock(&net_family_lock); 2264 2265 synchronize_rcu(); 2266 2267 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2268 } 2269 2270 static int __init sock_init(void) 2271 { 2272 /* 2273 * Initialize sock SLAB cache. 2274 */ 2275 2276 sk_init(); 2277 2278 /* 2279 * Initialize skbuff SLAB cache 2280 */ 2281 skb_init(); 2282 2283 /* 2284 * Initialize the protocols module. 2285 */ 2286 2287 init_inodecache(); 2288 register_filesystem(&sock_fs_type); 2289 sock_mnt = kern_mount(&sock_fs_type); 2290 2291 /* The real protocol initialization is performed in later initcalls. 2292 */ 2293 2294 #ifdef CONFIG_NETFILTER 2295 netfilter_init(); 2296 #endif 2297 2298 return 0; 2299 } 2300 2301 core_initcall(sock_init); /* early initcall */ 2302 2303 #ifdef CONFIG_PROC_FS 2304 void socket_seq_show(struct seq_file *seq) 2305 { 2306 int cpu; 2307 int counter = 0; 2308 2309 for_each_possible_cpu(cpu) 2310 counter += per_cpu(sockets_in_use, cpu); 2311 2312 /* It can be negative, by the way. 8) */ 2313 if (counter < 0) 2314 counter = 0; 2315 2316 seq_printf(seq, "sockets: used %d\n", counter); 2317 } 2318 #endif /* CONFIG_PROC_FS */ 2319 2320 #ifdef CONFIG_COMPAT 2321 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2322 unsigned long arg) 2323 { 2324 struct socket *sock = file->private_data; 2325 int ret = -ENOIOCTLCMD; 2326 struct sock *sk; 2327 struct net *net; 2328 2329 sk = sock->sk; 2330 net = sock_net(sk); 2331 2332 if (sock->ops->compat_ioctl) 2333 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2334 2335 if (ret == -ENOIOCTLCMD && 2336 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2337 ret = compat_wext_handle_ioctl(net, cmd, arg); 2338 2339 return ret; 2340 } 2341 #endif 2342 2343 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2344 { 2345 return sock->ops->bind(sock, addr, addrlen); 2346 } 2347 2348 int kernel_listen(struct socket *sock, int backlog) 2349 { 2350 return sock->ops->listen(sock, backlog); 2351 } 2352 2353 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2354 { 2355 struct sock *sk = sock->sk; 2356 int err; 2357 2358 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2359 newsock); 2360 if (err < 0) 2361 goto done; 2362 2363 err = sock->ops->accept(sock, *newsock, flags); 2364 if (err < 0) { 2365 sock_release(*newsock); 2366 *newsock = NULL; 2367 goto done; 2368 } 2369 2370 (*newsock)->ops = sock->ops; 2371 2372 done: 2373 return err; 2374 } 2375 2376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2377 int flags) 2378 { 2379 return sock->ops->connect(sock, addr, addrlen, flags); 2380 } 2381 2382 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2383 int *addrlen) 2384 { 2385 return sock->ops->getname(sock, addr, addrlen, 0); 2386 } 2387 2388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2389 int *addrlen) 2390 { 2391 return sock->ops->getname(sock, addr, addrlen, 1); 2392 } 2393 2394 int kernel_getsockopt(struct socket *sock, int level, int optname, 2395 char *optval, int *optlen) 2396 { 2397 mm_segment_t oldfs = get_fs(); 2398 int err; 2399 2400 set_fs(KERNEL_DS); 2401 if (level == SOL_SOCKET) 2402 err = sock_getsockopt(sock, level, optname, optval, optlen); 2403 else 2404 err = sock->ops->getsockopt(sock, level, optname, optval, 2405 optlen); 2406 set_fs(oldfs); 2407 return err; 2408 } 2409 2410 int kernel_setsockopt(struct socket *sock, int level, int optname, 2411 char *optval, int optlen) 2412 { 2413 mm_segment_t oldfs = get_fs(); 2414 int err; 2415 2416 set_fs(KERNEL_DS); 2417 if (level == SOL_SOCKET) 2418 err = sock_setsockopt(sock, level, optname, optval, optlen); 2419 else 2420 err = sock->ops->setsockopt(sock, level, optname, optval, 2421 optlen); 2422 set_fs(oldfs); 2423 return err; 2424 } 2425 2426 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2427 size_t size, int flags) 2428 { 2429 if (sock->ops->sendpage) 2430 return sock->ops->sendpage(sock, page, offset, size, flags); 2431 2432 return sock_no_sendpage(sock, page, offset, size, flags); 2433 } 2434 2435 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2436 { 2437 mm_segment_t oldfs = get_fs(); 2438 int err; 2439 2440 set_fs(KERNEL_DS); 2441 err = sock->ops->ioctl(sock, cmd, arg); 2442 set_fs(oldfs); 2443 2444 return err; 2445 } 2446 2447 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2448 { 2449 return sock->ops->shutdown(sock, how); 2450 } 2451 2452 EXPORT_SYMBOL(sock_create); 2453 EXPORT_SYMBOL(sock_create_kern); 2454 EXPORT_SYMBOL(sock_create_lite); 2455 EXPORT_SYMBOL(sock_map_fd); 2456 EXPORT_SYMBOL(sock_recvmsg); 2457 EXPORT_SYMBOL(sock_register); 2458 EXPORT_SYMBOL(sock_release); 2459 EXPORT_SYMBOL(sock_sendmsg); 2460 EXPORT_SYMBOL(sock_unregister); 2461 EXPORT_SYMBOL(sock_wake_async); 2462 EXPORT_SYMBOL(sockfd_lookup); 2463 EXPORT_SYMBOL(kernel_sendmsg); 2464 EXPORT_SYMBOL(kernel_recvmsg); 2465 EXPORT_SYMBOL(kernel_bind); 2466 EXPORT_SYMBOL(kernel_listen); 2467 EXPORT_SYMBOL(kernel_accept); 2468 EXPORT_SYMBOL(kernel_connect); 2469 EXPORT_SYMBOL(kernel_getsockname); 2470 EXPORT_SYMBOL(kernel_getpeername); 2471 EXPORT_SYMBOL(kernel_getsockopt); 2472 EXPORT_SYMBOL(kernel_setsockopt); 2473 EXPORT_SYMBOL(kernel_sendpage); 2474 EXPORT_SYMBOL(kernel_sock_ioctl); 2475 EXPORT_SYMBOL(kernel_sock_shutdown); 2476