xref: /linux/net/socket.c (revision 99b5aa3c10c7cff1e97239fda93649222fc12d25)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90 
91 #include <net/compat.h>
92 
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95 
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 			 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 			  unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102 
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 			      struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 			      unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 			     int offset, size_t size, loff_t *ppos, int more);
114 
115 /*
116  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117  *	in the operation structures but are done directly via the socketcall() multiplexor.
118  */
119 
120 static struct file_operations socket_file_ops = {
121 	.owner =	THIS_MODULE,
122 	.llseek =	no_llseek,
123 	.aio_read =	sock_aio_read,
124 	.aio_write =	sock_aio_write,
125 	.poll =		sock_poll,
126 	.unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 	.compat_ioctl = compat_sock_ioctl,
129 #endif
130 	.mmap =		sock_mmap,
131 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
132 	.release =	sock_close,
133 	.fasync =	sock_fasync,
134 	.sendpage =	sock_sendpage,
135 	.splice_write = generic_splice_sendpage,
136 };
137 
138 /*
139  *	The protocol list. Each protocol is registered in here.
140  */
141 
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144 
145 /*
146  *	Statistics counters of the socket lists
147  */
148 
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150 
151 /*
152  * Support routines.
153  * Move socket addresses back and forth across the kernel/user
154  * divide and look after the messy bits.
155  */
156 
157 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
158 					   16 for IP, 16 for IPX,
159 					   24 for IPv6,
160 					   about 80 for AX.25
161 					   must be at least one bigger than
162 					   the AF_UNIX size (see net/unix/af_unix.c
163 					   :unix_mkname()).
164 					 */
165 
166 /**
167  *	move_addr_to_kernel	-	copy a socket address into kernel space
168  *	@uaddr: Address in user space
169  *	@kaddr: Address in kernel space
170  *	@ulen: Length in user space
171  *
172  *	The address is copied into kernel space. If the provided address is
173  *	too long an error code of -EINVAL is returned. If the copy gives
174  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
175  */
176 
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 		return -EINVAL;
181 	if (ulen == 0)
182 		return 0;
183 	if (copy_from_user(kaddr, uaddr, ulen))
184 		return -EFAULT;
185 	return audit_sockaddr(ulen, kaddr);
186 }
187 
188 /**
189  *	move_addr_to_user	-	copy an address to user space
190  *	@kaddr: kernel space address
191  *	@klen: length of address in kernel
192  *	@uaddr: user space address
193  *	@ulen: pointer to user length field
194  *
195  *	The value pointed to by ulen on entry is the buffer length available.
196  *	This is overwritten with the buffer space used. -EINVAL is returned
197  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
198  *	is returned if either the buffer or the length field are not
199  *	accessible.
200  *	After copying the data up to the limit the user specifies, the true
201  *	length of the data is written over the length limit the user
202  *	specified. Zero is returned for a success.
203  */
204 
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 		      int __user *ulen)
207 {
208 	int err;
209 	int len;
210 
211 	err = get_user(len, ulen);
212 	if (err)
213 		return err;
214 	if (len > klen)
215 		len = klen;
216 	if (len < 0 || len > MAX_SOCK_ADDR)
217 		return -EINVAL;
218 	if (len) {
219 		if (audit_sockaddr(klen, kaddr))
220 			return -ENOMEM;
221 		if (copy_to_user(uaddr, kaddr, len))
222 			return -EFAULT;
223 	}
224 	/*
225 	 *      "fromlen shall refer to the value before truncation.."
226 	 *                      1003.1g
227 	 */
228 	return __put_user(klen, ulen);
229 }
230 
231 #define SOCKFS_MAGIC 0x534F434B
232 
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wait);
243 
244 	ei->socket.fasync_list = NULL;
245 	ei->socket.state = SS_UNCONNECTED;
246 	ei->socket.flags = 0;
247 	ei->socket.ops = NULL;
248 	ei->socket.sk = NULL;
249 	ei->socket.file = NULL;
250 
251 	return &ei->vfs_inode;
252 }
253 
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 	kmem_cache_free(sock_inode_cachep,
257 			container_of(inode, struct socket_alloc, vfs_inode));
258 }
259 
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 	struct socket_alloc *ei = (struct socket_alloc *)foo;
263 
264 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 	    == SLAB_CTOR_CONSTRUCTOR)
266 		inode_init_once(&ei->vfs_inode);
267 }
268 
269 static int init_inodecache(void)
270 {
271 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 					      sizeof(struct socket_alloc),
273 					      0,
274 					      (SLAB_HWCACHE_ALIGN |
275 					       SLAB_RECLAIM_ACCOUNT |
276 					       SLAB_MEM_SPREAD),
277 					      init_once,
278 					      NULL);
279 	if (sock_inode_cachep == NULL)
280 		return -ENOMEM;
281 	return 0;
282 }
283 
284 static struct super_operations sockfs_ops = {
285 	.alloc_inode =	sock_alloc_inode,
286 	.destroy_inode =sock_destroy_inode,
287 	.statfs =	simple_statfs,
288 };
289 
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 			 int flags, const char *dev_name, void *data,
292 			 struct vfsmount *mnt)
293 {
294 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
295 			     mnt);
296 }
297 
298 static struct vfsmount *sock_mnt __read_mostly;
299 
300 static struct file_system_type sock_fs_type = {
301 	.name =		"sockfs",
302 	.get_sb =	sockfs_get_sb,
303 	.kill_sb =	kill_anon_super,
304 };
305 
306 static int sockfs_delete_dentry(struct dentry *dentry)
307 {
308 	/*
309 	 * At creation time, we pretended this dentry was hashed
310 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 	 * At delete time, we restore the truth : not hashed.
312 	 * (so that dput() can proceed correctly)
313 	 */
314 	dentry->d_flags |= DCACHE_UNHASHED;
315 	return 0;
316 }
317 static struct dentry_operations sockfs_dentry_operations = {
318 	.d_delete = sockfs_delete_dentry,
319 };
320 
321 /*
322  *	Obtains the first available file descriptor and sets it up for use.
323  *
324  *	These functions create file structures and maps them to fd space
325  *	of the current process. On success it returns file descriptor
326  *	and file struct implicitly stored in sock->file.
327  *	Note that another thread may close file descriptor before we return
328  *	from this function. We use the fact that now we do not refer
329  *	to socket after mapping. If one day we will need it, this
330  *	function will increment ref. count on file by 1.
331  *
332  *	In any case returned fd MAY BE not valid!
333  *	This race condition is unavoidable
334  *	with shared fd spaces, we cannot solve it inside kernel,
335  *	but we take care of internal coherence yet.
336  */
337 
338 static int sock_alloc_fd(struct file **filep)
339 {
340 	int fd;
341 
342 	fd = get_unused_fd();
343 	if (likely(fd >= 0)) {
344 		struct file *file = get_empty_filp();
345 
346 		*filep = file;
347 		if (unlikely(!file)) {
348 			put_unused_fd(fd);
349 			return -ENFILE;
350 		}
351 	} else
352 		*filep = NULL;
353 	return fd;
354 }
355 
356 static int sock_attach_fd(struct socket *sock, struct file *file)
357 {
358 	struct qstr this;
359 	char name[32];
360 
361 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
362 	this.name = name;
363 	this.hash = 0;
364 
365 	file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 	if (unlikely(!file->f_path.dentry))
367 		return -ENOMEM;
368 
369 	file->f_path.dentry->d_op = &sockfs_dentry_operations;
370 	/*
371 	 * We dont want to push this dentry into global dentry hash table.
372 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 	 * This permits a working /proc/$pid/fd/XXX on sockets
374 	 */
375 	file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
376 	d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
377 	file->f_path.mnt = mntget(sock_mnt);
378 	file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
379 
380 	sock->file = file;
381 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
382 	file->f_mode = FMODE_READ | FMODE_WRITE;
383 	file->f_flags = O_RDWR;
384 	file->f_pos = 0;
385 	file->private_data = sock;
386 
387 	return 0;
388 }
389 
390 int sock_map_fd(struct socket *sock)
391 {
392 	struct file *newfile;
393 	int fd = sock_alloc_fd(&newfile);
394 
395 	if (likely(fd >= 0)) {
396 		int err = sock_attach_fd(sock, newfile);
397 
398 		if (unlikely(err < 0)) {
399 			put_filp(newfile);
400 			put_unused_fd(fd);
401 			return err;
402 		}
403 		fd_install(fd, newfile);
404 	}
405 	return fd;
406 }
407 
408 static struct socket *sock_from_file(struct file *file, int *err)
409 {
410 	struct inode *inode;
411 	struct socket *sock;
412 
413 	if (file->f_op == &socket_file_ops)
414 		return file->private_data;	/* set in sock_map_fd */
415 
416 	inode = file->f_path.dentry->d_inode;
417 	if (!S_ISSOCK(inode->i_mode)) {
418 		*err = -ENOTSOCK;
419 		return NULL;
420 	}
421 
422 	sock = SOCKET_I(inode);
423 	if (sock->file != file) {
424 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
425 		sock->file = file;
426 	}
427 	return sock;
428 }
429 
430 /**
431  *	sockfd_lookup	- 	Go from a file number to its socket slot
432  *	@fd: file handle
433  *	@err: pointer to an error code return
434  *
435  *	The file handle passed in is locked and the socket it is bound
436  *	too is returned. If an error occurs the err pointer is overwritten
437  *	with a negative errno code and NULL is returned. The function checks
438  *	for both invalid handles and passing a handle which is not a socket.
439  *
440  *	On a success the socket object pointer is returned.
441  */
442 
443 struct socket *sockfd_lookup(int fd, int *err)
444 {
445 	struct file *file;
446 	struct socket *sock;
447 
448 	file = fget(fd);
449 	if (!file) {
450 		*err = -EBADF;
451 		return NULL;
452 	}
453 
454 	sock = sock_from_file(file, err);
455 	if (!sock)
456 		fput(file);
457 	return sock;
458 }
459 
460 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
461 {
462 	struct file *file;
463 	struct socket *sock;
464 
465 	*err = -EBADF;
466 	file = fget_light(fd, fput_needed);
467 	if (file) {
468 		sock = sock_from_file(file, err);
469 		if (sock)
470 			return sock;
471 		fput_light(file, *fput_needed);
472 	}
473 	return NULL;
474 }
475 
476 /**
477  *	sock_alloc	-	allocate a socket
478  *
479  *	Allocate a new inode and socket object. The two are bound together
480  *	and initialised. The socket is then returned. If we are out of inodes
481  *	NULL is returned.
482  */
483 
484 static struct socket *sock_alloc(void)
485 {
486 	struct inode *inode;
487 	struct socket *sock;
488 
489 	inode = new_inode(sock_mnt->mnt_sb);
490 	if (!inode)
491 		return NULL;
492 
493 	sock = SOCKET_I(inode);
494 
495 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
496 	inode->i_uid = current->fsuid;
497 	inode->i_gid = current->fsgid;
498 
499 	get_cpu_var(sockets_in_use)++;
500 	put_cpu_var(sockets_in_use);
501 	return sock;
502 }
503 
504 /*
505  *	In theory you can't get an open on this inode, but /proc provides
506  *	a back door. Remember to keep it shut otherwise you'll let the
507  *	creepy crawlies in.
508  */
509 
510 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
511 {
512 	return -ENXIO;
513 }
514 
515 const struct file_operations bad_sock_fops = {
516 	.owner = THIS_MODULE,
517 	.open = sock_no_open,
518 };
519 
520 /**
521  *	sock_release	-	close a socket
522  *	@sock: socket to close
523  *
524  *	The socket is released from the protocol stack if it has a release
525  *	callback, and the inode is then released if the socket is bound to
526  *	an inode not a file.
527  */
528 
529 void sock_release(struct socket *sock)
530 {
531 	if (sock->ops) {
532 		struct module *owner = sock->ops->owner;
533 
534 		sock->ops->release(sock);
535 		sock->ops = NULL;
536 		module_put(owner);
537 	}
538 
539 	if (sock->fasync_list)
540 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
541 
542 	get_cpu_var(sockets_in_use)--;
543 	put_cpu_var(sockets_in_use);
544 	if (!sock->file) {
545 		iput(SOCK_INODE(sock));
546 		return;
547 	}
548 	sock->file = NULL;
549 }
550 
551 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
552 				 struct msghdr *msg, size_t size)
553 {
554 	struct sock_iocb *si = kiocb_to_siocb(iocb);
555 	int err;
556 
557 	si->sock = sock;
558 	si->scm = NULL;
559 	si->msg = msg;
560 	si->size = size;
561 
562 	err = security_socket_sendmsg(sock, msg, size);
563 	if (err)
564 		return err;
565 
566 	return sock->ops->sendmsg(iocb, sock, msg, size);
567 }
568 
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
570 {
571 	struct kiocb iocb;
572 	struct sock_iocb siocb;
573 	int ret;
574 
575 	init_sync_kiocb(&iocb, NULL);
576 	iocb.private = &siocb;
577 	ret = __sock_sendmsg(&iocb, sock, msg, size);
578 	if (-EIOCBQUEUED == ret)
579 		ret = wait_on_sync_kiocb(&iocb);
580 	return ret;
581 }
582 
583 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
584 		   struct kvec *vec, size_t num, size_t size)
585 {
586 	mm_segment_t oldfs = get_fs();
587 	int result;
588 
589 	set_fs(KERNEL_DS);
590 	/*
591 	 * the following is safe, since for compiler definitions of kvec and
592 	 * iovec are identical, yielding the same in-core layout and alignment
593 	 */
594 	msg->msg_iov = (struct iovec *)vec;
595 	msg->msg_iovlen = num;
596 	result = sock_sendmsg(sock, msg, size);
597 	set_fs(oldfs);
598 	return result;
599 }
600 
601 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
602 				 struct msghdr *msg, size_t size, int flags)
603 {
604 	int err;
605 	struct sock_iocb *si = kiocb_to_siocb(iocb);
606 
607 	si->sock = sock;
608 	si->scm = NULL;
609 	si->msg = msg;
610 	si->size = size;
611 	si->flags = flags;
612 
613 	err = security_socket_recvmsg(sock, msg, size, flags);
614 	if (err)
615 		return err;
616 
617 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
618 }
619 
620 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
621 		 size_t size, int flags)
622 {
623 	struct kiocb iocb;
624 	struct sock_iocb siocb;
625 	int ret;
626 
627 	init_sync_kiocb(&iocb, NULL);
628 	iocb.private = &siocb;
629 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
630 	if (-EIOCBQUEUED == ret)
631 		ret = wait_on_sync_kiocb(&iocb);
632 	return ret;
633 }
634 
635 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
636 		   struct kvec *vec, size_t num, size_t size, int flags)
637 {
638 	mm_segment_t oldfs = get_fs();
639 	int result;
640 
641 	set_fs(KERNEL_DS);
642 	/*
643 	 * the following is safe, since for compiler definitions of kvec and
644 	 * iovec are identical, yielding the same in-core layout and alignment
645 	 */
646 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
647 	result = sock_recvmsg(sock, msg, size, flags);
648 	set_fs(oldfs);
649 	return result;
650 }
651 
652 static void sock_aio_dtor(struct kiocb *iocb)
653 {
654 	kfree(iocb->private);
655 }
656 
657 static ssize_t sock_sendpage(struct file *file, struct page *page,
658 			     int offset, size_t size, loff_t *ppos, int more)
659 {
660 	struct socket *sock;
661 	int flags;
662 
663 	sock = file->private_data;
664 
665 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
666 	if (more)
667 		flags |= MSG_MORE;
668 
669 	return sock->ops->sendpage(sock, page, offset, size, flags);
670 }
671 
672 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
673 					 struct sock_iocb *siocb)
674 {
675 	if (!is_sync_kiocb(iocb)) {
676 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
677 		if (!siocb)
678 			return NULL;
679 		iocb->ki_dtor = sock_aio_dtor;
680 	}
681 
682 	siocb->kiocb = iocb;
683 	iocb->private = siocb;
684 	return siocb;
685 }
686 
687 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
688 		struct file *file, const struct iovec *iov,
689 		unsigned long nr_segs)
690 {
691 	struct socket *sock = file->private_data;
692 	size_t size = 0;
693 	int i;
694 
695 	for (i = 0; i < nr_segs; i++)
696 		size += iov[i].iov_len;
697 
698 	msg->msg_name = NULL;
699 	msg->msg_namelen = 0;
700 	msg->msg_control = NULL;
701 	msg->msg_controllen = 0;
702 	msg->msg_iov = (struct iovec *)iov;
703 	msg->msg_iovlen = nr_segs;
704 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
705 
706 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
707 }
708 
709 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
710 				unsigned long nr_segs, loff_t pos)
711 {
712 	struct sock_iocb siocb, *x;
713 
714 	if (pos != 0)
715 		return -ESPIPE;
716 
717 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
718 		return 0;
719 
720 
721 	x = alloc_sock_iocb(iocb, &siocb);
722 	if (!x)
723 		return -ENOMEM;
724 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
725 }
726 
727 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
728 			struct file *file, const struct iovec *iov,
729 			unsigned long nr_segs)
730 {
731 	struct socket *sock = file->private_data;
732 	size_t size = 0;
733 	int i;
734 
735 	for (i = 0; i < nr_segs; i++)
736 		size += iov[i].iov_len;
737 
738 	msg->msg_name = NULL;
739 	msg->msg_namelen = 0;
740 	msg->msg_control = NULL;
741 	msg->msg_controllen = 0;
742 	msg->msg_iov = (struct iovec *)iov;
743 	msg->msg_iovlen = nr_segs;
744 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 	if (sock->type == SOCK_SEQPACKET)
746 		msg->msg_flags |= MSG_EOR;
747 
748 	return __sock_sendmsg(iocb, sock, msg, size);
749 }
750 
751 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
752 			  unsigned long nr_segs, loff_t pos)
753 {
754 	struct sock_iocb siocb, *x;
755 
756 	if (pos != 0)
757 		return -ESPIPE;
758 
759 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
760 		return 0;
761 
762 	x = alloc_sock_iocb(iocb, &siocb);
763 	if (!x)
764 		return -ENOMEM;
765 
766 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
767 }
768 
769 /*
770  * Atomic setting of ioctl hooks to avoid race
771  * with module unload.
772  */
773 
774 static DEFINE_MUTEX(br_ioctl_mutex);
775 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
776 
777 void brioctl_set(int (*hook) (unsigned int, void __user *))
778 {
779 	mutex_lock(&br_ioctl_mutex);
780 	br_ioctl_hook = hook;
781 	mutex_unlock(&br_ioctl_mutex);
782 }
783 
784 EXPORT_SYMBOL(brioctl_set);
785 
786 static DEFINE_MUTEX(vlan_ioctl_mutex);
787 static int (*vlan_ioctl_hook) (void __user *arg);
788 
789 void vlan_ioctl_set(int (*hook) (void __user *))
790 {
791 	mutex_lock(&vlan_ioctl_mutex);
792 	vlan_ioctl_hook = hook;
793 	mutex_unlock(&vlan_ioctl_mutex);
794 }
795 
796 EXPORT_SYMBOL(vlan_ioctl_set);
797 
798 static DEFINE_MUTEX(dlci_ioctl_mutex);
799 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
800 
801 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
802 {
803 	mutex_lock(&dlci_ioctl_mutex);
804 	dlci_ioctl_hook = hook;
805 	mutex_unlock(&dlci_ioctl_mutex);
806 }
807 
808 EXPORT_SYMBOL(dlci_ioctl_set);
809 
810 /*
811  *	With an ioctl, arg may well be a user mode pointer, but we don't know
812  *	what to do with it - that's up to the protocol still.
813  */
814 
815 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
816 {
817 	struct socket *sock;
818 	void __user *argp = (void __user *)arg;
819 	int pid, err;
820 
821 	sock = file->private_data;
822 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
823 		err = dev_ioctl(cmd, argp);
824 	} else
825 #ifdef CONFIG_WIRELESS_EXT
826 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
827 		err = dev_ioctl(cmd, argp);
828 	} else
829 #endif				/* CONFIG_WIRELESS_EXT */
830 		switch (cmd) {
831 		case FIOSETOWN:
832 		case SIOCSPGRP:
833 			err = -EFAULT;
834 			if (get_user(pid, (int __user *)argp))
835 				break;
836 			err = f_setown(sock->file, pid, 1);
837 			break;
838 		case FIOGETOWN:
839 		case SIOCGPGRP:
840 			err = put_user(f_getown(sock->file),
841 				       (int __user *)argp);
842 			break;
843 		case SIOCGIFBR:
844 		case SIOCSIFBR:
845 		case SIOCBRADDBR:
846 		case SIOCBRDELBR:
847 			err = -ENOPKG;
848 			if (!br_ioctl_hook)
849 				request_module("bridge");
850 
851 			mutex_lock(&br_ioctl_mutex);
852 			if (br_ioctl_hook)
853 				err = br_ioctl_hook(cmd, argp);
854 			mutex_unlock(&br_ioctl_mutex);
855 			break;
856 		case SIOCGIFVLAN:
857 		case SIOCSIFVLAN:
858 			err = -ENOPKG;
859 			if (!vlan_ioctl_hook)
860 				request_module("8021q");
861 
862 			mutex_lock(&vlan_ioctl_mutex);
863 			if (vlan_ioctl_hook)
864 				err = vlan_ioctl_hook(argp);
865 			mutex_unlock(&vlan_ioctl_mutex);
866 			break;
867 		case SIOCADDDLCI:
868 		case SIOCDELDLCI:
869 			err = -ENOPKG;
870 			if (!dlci_ioctl_hook)
871 				request_module("dlci");
872 
873 			if (dlci_ioctl_hook) {
874 				mutex_lock(&dlci_ioctl_mutex);
875 				err = dlci_ioctl_hook(cmd, argp);
876 				mutex_unlock(&dlci_ioctl_mutex);
877 			}
878 			break;
879 		default:
880 			err = sock->ops->ioctl(sock, cmd, arg);
881 
882 			/*
883 			 * If this ioctl is unknown try to hand it down
884 			 * to the NIC driver.
885 			 */
886 			if (err == -ENOIOCTLCMD)
887 				err = dev_ioctl(cmd, argp);
888 			break;
889 		}
890 	return err;
891 }
892 
893 int sock_create_lite(int family, int type, int protocol, struct socket **res)
894 {
895 	int err;
896 	struct socket *sock = NULL;
897 
898 	err = security_socket_create(family, type, protocol, 1);
899 	if (err)
900 		goto out;
901 
902 	sock = sock_alloc();
903 	if (!sock) {
904 		err = -ENOMEM;
905 		goto out;
906 	}
907 
908 	sock->type = type;
909 	err = security_socket_post_create(sock, family, type, protocol, 1);
910 	if (err)
911 		goto out_release;
912 
913 out:
914 	*res = sock;
915 	return err;
916 out_release:
917 	sock_release(sock);
918 	sock = NULL;
919 	goto out;
920 }
921 
922 /* No kernel lock held - perfect */
923 static unsigned int sock_poll(struct file *file, poll_table *wait)
924 {
925 	struct socket *sock;
926 
927 	/*
928 	 *      We can't return errors to poll, so it's either yes or no.
929 	 */
930 	sock = file->private_data;
931 	return sock->ops->poll(file, sock, wait);
932 }
933 
934 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
935 {
936 	struct socket *sock = file->private_data;
937 
938 	return sock->ops->mmap(file, sock, vma);
939 }
940 
941 static int sock_close(struct inode *inode, struct file *filp)
942 {
943 	/*
944 	 *      It was possible the inode is NULL we were
945 	 *      closing an unfinished socket.
946 	 */
947 
948 	if (!inode) {
949 		printk(KERN_DEBUG "sock_close: NULL inode\n");
950 		return 0;
951 	}
952 	sock_fasync(-1, filp, 0);
953 	sock_release(SOCKET_I(inode));
954 	return 0;
955 }
956 
957 /*
958  *	Update the socket async list
959  *
960  *	Fasync_list locking strategy.
961  *
962  *	1. fasync_list is modified only under process context socket lock
963  *	   i.e. under semaphore.
964  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
965  *	   or under socket lock.
966  *	3. fasync_list can be used from softirq context, so that
967  *	   modification under socket lock have to be enhanced with
968  *	   write_lock_bh(&sk->sk_callback_lock).
969  *							--ANK (990710)
970  */
971 
972 static int sock_fasync(int fd, struct file *filp, int on)
973 {
974 	struct fasync_struct *fa, *fna = NULL, **prev;
975 	struct socket *sock;
976 	struct sock *sk;
977 
978 	if (on) {
979 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
980 		if (fna == NULL)
981 			return -ENOMEM;
982 	}
983 
984 	sock = filp->private_data;
985 
986 	sk = sock->sk;
987 	if (sk == NULL) {
988 		kfree(fna);
989 		return -EINVAL;
990 	}
991 
992 	lock_sock(sk);
993 
994 	prev = &(sock->fasync_list);
995 
996 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
997 		if (fa->fa_file == filp)
998 			break;
999 
1000 	if (on) {
1001 		if (fa != NULL) {
1002 			write_lock_bh(&sk->sk_callback_lock);
1003 			fa->fa_fd = fd;
1004 			write_unlock_bh(&sk->sk_callback_lock);
1005 
1006 			kfree(fna);
1007 			goto out;
1008 		}
1009 		fna->fa_file = filp;
1010 		fna->fa_fd = fd;
1011 		fna->magic = FASYNC_MAGIC;
1012 		fna->fa_next = sock->fasync_list;
1013 		write_lock_bh(&sk->sk_callback_lock);
1014 		sock->fasync_list = fna;
1015 		write_unlock_bh(&sk->sk_callback_lock);
1016 	} else {
1017 		if (fa != NULL) {
1018 			write_lock_bh(&sk->sk_callback_lock);
1019 			*prev = fa->fa_next;
1020 			write_unlock_bh(&sk->sk_callback_lock);
1021 			kfree(fa);
1022 		}
1023 	}
1024 
1025 out:
1026 	release_sock(sock->sk);
1027 	return 0;
1028 }
1029 
1030 /* This function may be called only under socket lock or callback_lock */
1031 
1032 int sock_wake_async(struct socket *sock, int how, int band)
1033 {
1034 	if (!sock || !sock->fasync_list)
1035 		return -1;
1036 	switch (how) {
1037 	case 1:
1038 
1039 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1040 			break;
1041 		goto call_kill;
1042 	case 2:
1043 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1044 			break;
1045 		/* fall through */
1046 	case 0:
1047 call_kill:
1048 		__kill_fasync(sock->fasync_list, SIGIO, band);
1049 		break;
1050 	case 3:
1051 		__kill_fasync(sock->fasync_list, SIGURG, band);
1052 	}
1053 	return 0;
1054 }
1055 
1056 static int __sock_create(int family, int type, int protocol,
1057 			 struct socket **res, int kern)
1058 {
1059 	int err;
1060 	struct socket *sock;
1061 	const struct net_proto_family *pf;
1062 
1063 	/*
1064 	 *      Check protocol is in range
1065 	 */
1066 	if (family < 0 || family >= NPROTO)
1067 		return -EAFNOSUPPORT;
1068 	if (type < 0 || type >= SOCK_MAX)
1069 		return -EINVAL;
1070 
1071 	/* Compatibility.
1072 
1073 	   This uglymoron is moved from INET layer to here to avoid
1074 	   deadlock in module load.
1075 	 */
1076 	if (family == PF_INET && type == SOCK_PACKET) {
1077 		static int warned;
1078 		if (!warned) {
1079 			warned = 1;
1080 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1081 			       current->comm);
1082 		}
1083 		family = PF_PACKET;
1084 	}
1085 
1086 	err = security_socket_create(family, type, protocol, kern);
1087 	if (err)
1088 		return err;
1089 
1090 	/*
1091 	 *	Allocate the socket and allow the family to set things up. if
1092 	 *	the protocol is 0, the family is instructed to select an appropriate
1093 	 *	default.
1094 	 */
1095 	sock = sock_alloc();
1096 	if (!sock) {
1097 		if (net_ratelimit())
1098 			printk(KERN_WARNING "socket: no more sockets\n");
1099 		return -ENFILE;	/* Not exactly a match, but its the
1100 				   closest posix thing */
1101 	}
1102 
1103 	sock->type = type;
1104 
1105 #if defined(CONFIG_KMOD)
1106 	/* Attempt to load a protocol module if the find failed.
1107 	 *
1108 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1109 	 * requested real, full-featured networking support upon configuration.
1110 	 * Otherwise module support will break!
1111 	 */
1112 	if (net_families[family] == NULL)
1113 		request_module("net-pf-%d", family);
1114 #endif
1115 
1116 	rcu_read_lock();
1117 	pf = rcu_dereference(net_families[family]);
1118 	err = -EAFNOSUPPORT;
1119 	if (!pf)
1120 		goto out_release;
1121 
1122 	/*
1123 	 * We will call the ->create function, that possibly is in a loadable
1124 	 * module, so we have to bump that loadable module refcnt first.
1125 	 */
1126 	if (!try_module_get(pf->owner))
1127 		goto out_release;
1128 
1129 	/* Now protected by module ref count */
1130 	rcu_read_unlock();
1131 
1132 	err = pf->create(sock, protocol);
1133 	if (err < 0)
1134 		goto out_module_put;
1135 
1136 	/*
1137 	 * Now to bump the refcnt of the [loadable] module that owns this
1138 	 * socket at sock_release time we decrement its refcnt.
1139 	 */
1140 	if (!try_module_get(sock->ops->owner))
1141 		goto out_module_busy;
1142 
1143 	/*
1144 	 * Now that we're done with the ->create function, the [loadable]
1145 	 * module can have its refcnt decremented
1146 	 */
1147 	module_put(pf->owner);
1148 	err = security_socket_post_create(sock, family, type, protocol, kern);
1149 	if (err)
1150 		goto out_release;
1151 	*res = sock;
1152 
1153 	return 0;
1154 
1155 out_module_busy:
1156 	err = -EAFNOSUPPORT;
1157 out_module_put:
1158 	sock->ops = NULL;
1159 	module_put(pf->owner);
1160 out_sock_release:
1161 	sock_release(sock);
1162 	return err;
1163 
1164 out_release:
1165 	rcu_read_unlock();
1166 	goto out_sock_release;
1167 }
1168 
1169 int sock_create(int family, int type, int protocol, struct socket **res)
1170 {
1171 	return __sock_create(family, type, protocol, res, 0);
1172 }
1173 
1174 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1175 {
1176 	return __sock_create(family, type, protocol, res, 1);
1177 }
1178 
1179 asmlinkage long sys_socket(int family, int type, int protocol)
1180 {
1181 	int retval;
1182 	struct socket *sock;
1183 
1184 	retval = sock_create(family, type, protocol, &sock);
1185 	if (retval < 0)
1186 		goto out;
1187 
1188 	retval = sock_map_fd(sock);
1189 	if (retval < 0)
1190 		goto out_release;
1191 
1192 out:
1193 	/* It may be already another descriptor 8) Not kernel problem. */
1194 	return retval;
1195 
1196 out_release:
1197 	sock_release(sock);
1198 	return retval;
1199 }
1200 
1201 /*
1202  *	Create a pair of connected sockets.
1203  */
1204 
1205 asmlinkage long sys_socketpair(int family, int type, int protocol,
1206 			       int __user *usockvec)
1207 {
1208 	struct socket *sock1, *sock2;
1209 	int fd1, fd2, err;
1210 
1211 	/*
1212 	 * Obtain the first socket and check if the underlying protocol
1213 	 * supports the socketpair call.
1214 	 */
1215 
1216 	err = sock_create(family, type, protocol, &sock1);
1217 	if (err < 0)
1218 		goto out;
1219 
1220 	err = sock_create(family, type, protocol, &sock2);
1221 	if (err < 0)
1222 		goto out_release_1;
1223 
1224 	err = sock1->ops->socketpair(sock1, sock2);
1225 	if (err < 0)
1226 		goto out_release_both;
1227 
1228 	fd1 = fd2 = -1;
1229 
1230 	err = sock_map_fd(sock1);
1231 	if (err < 0)
1232 		goto out_release_both;
1233 	fd1 = err;
1234 
1235 	err = sock_map_fd(sock2);
1236 	if (err < 0)
1237 		goto out_close_1;
1238 	fd2 = err;
1239 
1240 	/* fd1 and fd2 may be already another descriptors.
1241 	 * Not kernel problem.
1242 	 */
1243 
1244 	err = put_user(fd1, &usockvec[0]);
1245 	if (!err)
1246 		err = put_user(fd2, &usockvec[1]);
1247 	if (!err)
1248 		return 0;
1249 
1250 	sys_close(fd2);
1251 	sys_close(fd1);
1252 	return err;
1253 
1254 out_close_1:
1255 	sock_release(sock2);
1256 	sys_close(fd1);
1257 	return err;
1258 
1259 out_release_both:
1260 	sock_release(sock2);
1261 out_release_1:
1262 	sock_release(sock1);
1263 out:
1264 	return err;
1265 }
1266 
1267 /*
1268  *	Bind a name to a socket. Nothing much to do here since it's
1269  *	the protocol's responsibility to handle the local address.
1270  *
1271  *	We move the socket address to kernel space before we call
1272  *	the protocol layer (having also checked the address is ok).
1273  */
1274 
1275 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1276 {
1277 	struct socket *sock;
1278 	char address[MAX_SOCK_ADDR];
1279 	int err, fput_needed;
1280 
1281 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1282 	if(sock) {
1283 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1284 		if (err >= 0) {
1285 			err = security_socket_bind(sock,
1286 						   (struct sockaddr *)address,
1287 						   addrlen);
1288 			if (!err)
1289 				err = sock->ops->bind(sock,
1290 						      (struct sockaddr *)
1291 						      address, addrlen);
1292 		}
1293 		fput_light(sock->file, fput_needed);
1294 	}
1295 	return err;
1296 }
1297 
1298 /*
1299  *	Perform a listen. Basically, we allow the protocol to do anything
1300  *	necessary for a listen, and if that works, we mark the socket as
1301  *	ready for listening.
1302  */
1303 
1304 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1305 
1306 asmlinkage long sys_listen(int fd, int backlog)
1307 {
1308 	struct socket *sock;
1309 	int err, fput_needed;
1310 
1311 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1312 	if (sock) {
1313 		if ((unsigned)backlog > sysctl_somaxconn)
1314 			backlog = sysctl_somaxconn;
1315 
1316 		err = security_socket_listen(sock, backlog);
1317 		if (!err)
1318 			err = sock->ops->listen(sock, backlog);
1319 
1320 		fput_light(sock->file, fput_needed);
1321 	}
1322 	return err;
1323 }
1324 
1325 /*
1326  *	For accept, we attempt to create a new socket, set up the link
1327  *	with the client, wake up the client, then return the new
1328  *	connected fd. We collect the address of the connector in kernel
1329  *	space and move it to user at the very end. This is unclean because
1330  *	we open the socket then return an error.
1331  *
1332  *	1003.1g adds the ability to recvmsg() to query connection pending
1333  *	status to recvmsg. We need to add that support in a way thats
1334  *	clean when we restucture accept also.
1335  */
1336 
1337 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1338 			   int __user *upeer_addrlen)
1339 {
1340 	struct socket *sock, *newsock;
1341 	struct file *newfile;
1342 	int err, len, newfd, fput_needed;
1343 	char address[MAX_SOCK_ADDR];
1344 
1345 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1346 	if (!sock)
1347 		goto out;
1348 
1349 	err = -ENFILE;
1350 	if (!(newsock = sock_alloc()))
1351 		goto out_put;
1352 
1353 	newsock->type = sock->type;
1354 	newsock->ops = sock->ops;
1355 
1356 	/*
1357 	 * We don't need try_module_get here, as the listening socket (sock)
1358 	 * has the protocol module (sock->ops->owner) held.
1359 	 */
1360 	__module_get(newsock->ops->owner);
1361 
1362 	newfd = sock_alloc_fd(&newfile);
1363 	if (unlikely(newfd < 0)) {
1364 		err = newfd;
1365 		sock_release(newsock);
1366 		goto out_put;
1367 	}
1368 
1369 	err = sock_attach_fd(newsock, newfile);
1370 	if (err < 0)
1371 		goto out_fd;
1372 
1373 	err = security_socket_accept(sock, newsock);
1374 	if (err)
1375 		goto out_fd;
1376 
1377 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1378 	if (err < 0)
1379 		goto out_fd;
1380 
1381 	if (upeer_sockaddr) {
1382 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1383 					  &len, 2) < 0) {
1384 			err = -ECONNABORTED;
1385 			goto out_fd;
1386 		}
1387 		err = move_addr_to_user(address, len, upeer_sockaddr,
1388 					upeer_addrlen);
1389 		if (err < 0)
1390 			goto out_fd;
1391 	}
1392 
1393 	/* File flags are not inherited via accept() unlike another OSes. */
1394 
1395 	fd_install(newfd, newfile);
1396 	err = newfd;
1397 
1398 	security_socket_post_accept(sock, newsock);
1399 
1400 out_put:
1401 	fput_light(sock->file, fput_needed);
1402 out:
1403 	return err;
1404 out_fd:
1405 	fput(newfile);
1406 	put_unused_fd(newfd);
1407 	goto out_put;
1408 }
1409 
1410 /*
1411  *	Attempt to connect to a socket with the server address.  The address
1412  *	is in user space so we verify it is OK and move it to kernel space.
1413  *
1414  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1415  *	break bindings
1416  *
1417  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1418  *	other SEQPACKET protocols that take time to connect() as it doesn't
1419  *	include the -EINPROGRESS status for such sockets.
1420  */
1421 
1422 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1423 			    int addrlen)
1424 {
1425 	struct socket *sock;
1426 	char address[MAX_SOCK_ADDR];
1427 	int err, fput_needed;
1428 
1429 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430 	if (!sock)
1431 		goto out;
1432 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1433 	if (err < 0)
1434 		goto out_put;
1435 
1436 	err =
1437 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1438 	if (err)
1439 		goto out_put;
1440 
1441 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1442 				 sock->file->f_flags);
1443 out_put:
1444 	fput_light(sock->file, fput_needed);
1445 out:
1446 	return err;
1447 }
1448 
1449 /*
1450  *	Get the local address ('name') of a socket object. Move the obtained
1451  *	name to user space.
1452  */
1453 
1454 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1455 				int __user *usockaddr_len)
1456 {
1457 	struct socket *sock;
1458 	char address[MAX_SOCK_ADDR];
1459 	int len, err, fput_needed;
1460 
1461 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1462 	if (!sock)
1463 		goto out;
1464 
1465 	err = security_socket_getsockname(sock);
1466 	if (err)
1467 		goto out_put;
1468 
1469 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1470 	if (err)
1471 		goto out_put;
1472 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1473 
1474 out_put:
1475 	fput_light(sock->file, fput_needed);
1476 out:
1477 	return err;
1478 }
1479 
1480 /*
1481  *	Get the remote address ('name') of a socket object. Move the obtained
1482  *	name to user space.
1483  */
1484 
1485 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1486 				int __user *usockaddr_len)
1487 {
1488 	struct socket *sock;
1489 	char address[MAX_SOCK_ADDR];
1490 	int len, err, fput_needed;
1491 
1492 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493 	if (sock != NULL) {
1494 		err = security_socket_getpeername(sock);
1495 		if (err) {
1496 			fput_light(sock->file, fput_needed);
1497 			return err;
1498 		}
1499 
1500 		err =
1501 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1502 				       1);
1503 		if (!err)
1504 			err = move_addr_to_user(address, len, usockaddr,
1505 						usockaddr_len);
1506 		fput_light(sock->file, fput_needed);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  *	Send a datagram to a given address. We move the address into kernel
1513  *	space and check the user space data area is readable before invoking
1514  *	the protocol.
1515  */
1516 
1517 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1518 			   unsigned flags, struct sockaddr __user *addr,
1519 			   int addr_len)
1520 {
1521 	struct socket *sock;
1522 	char address[MAX_SOCK_ADDR];
1523 	int err;
1524 	struct msghdr msg;
1525 	struct iovec iov;
1526 	int fput_needed;
1527 	struct file *sock_file;
1528 
1529 	sock_file = fget_light(fd, &fput_needed);
1530 	if (!sock_file)
1531 		return -EBADF;
1532 
1533 	sock = sock_from_file(sock_file, &err);
1534 	if (!sock)
1535 		goto out_put;
1536 	iov.iov_base = buff;
1537 	iov.iov_len = len;
1538 	msg.msg_name = NULL;
1539 	msg.msg_iov = &iov;
1540 	msg.msg_iovlen = 1;
1541 	msg.msg_control = NULL;
1542 	msg.msg_controllen = 0;
1543 	msg.msg_namelen = 0;
1544 	if (addr) {
1545 		err = move_addr_to_kernel(addr, addr_len, address);
1546 		if (err < 0)
1547 			goto out_put;
1548 		msg.msg_name = address;
1549 		msg.msg_namelen = addr_len;
1550 	}
1551 	if (sock->file->f_flags & O_NONBLOCK)
1552 		flags |= MSG_DONTWAIT;
1553 	msg.msg_flags = flags;
1554 	err = sock_sendmsg(sock, &msg, len);
1555 
1556 out_put:
1557 	fput_light(sock_file, fput_needed);
1558 	return err;
1559 }
1560 
1561 /*
1562  *	Send a datagram down a socket.
1563  */
1564 
1565 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1566 {
1567 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1568 }
1569 
1570 /*
1571  *	Receive a frame from the socket and optionally record the address of the
1572  *	sender. We verify the buffers are writable and if needed move the
1573  *	sender address from kernel to user space.
1574  */
1575 
1576 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1577 			     unsigned flags, struct sockaddr __user *addr,
1578 			     int __user *addr_len)
1579 {
1580 	struct socket *sock;
1581 	struct iovec iov;
1582 	struct msghdr msg;
1583 	char address[MAX_SOCK_ADDR];
1584 	int err, err2;
1585 	struct file *sock_file;
1586 	int fput_needed;
1587 
1588 	sock_file = fget_light(fd, &fput_needed);
1589 	if (!sock_file)
1590 		return -EBADF;
1591 
1592 	sock = sock_from_file(sock_file, &err);
1593 	if (!sock)
1594 		goto out;
1595 
1596 	msg.msg_control = NULL;
1597 	msg.msg_controllen = 0;
1598 	msg.msg_iovlen = 1;
1599 	msg.msg_iov = &iov;
1600 	iov.iov_len = size;
1601 	iov.iov_base = ubuf;
1602 	msg.msg_name = address;
1603 	msg.msg_namelen = MAX_SOCK_ADDR;
1604 	if (sock->file->f_flags & O_NONBLOCK)
1605 		flags |= MSG_DONTWAIT;
1606 	err = sock_recvmsg(sock, &msg, size, flags);
1607 
1608 	if (err >= 0 && addr != NULL) {
1609 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1610 		if (err2 < 0)
1611 			err = err2;
1612 	}
1613 out:
1614 	fput_light(sock_file, fput_needed);
1615 	return err;
1616 }
1617 
1618 /*
1619  *	Receive a datagram from a socket.
1620  */
1621 
1622 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1623 			 unsigned flags)
1624 {
1625 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1626 }
1627 
1628 /*
1629  *	Set a socket option. Because we don't know the option lengths we have
1630  *	to pass the user mode parameter for the protocols to sort out.
1631  */
1632 
1633 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1634 			       char __user *optval, int optlen)
1635 {
1636 	int err, fput_needed;
1637 	struct socket *sock;
1638 
1639 	if (optlen < 0)
1640 		return -EINVAL;
1641 
1642 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643 	if (sock != NULL) {
1644 		err = security_socket_setsockopt(sock, level, optname);
1645 		if (err)
1646 			goto out_put;
1647 
1648 		if (level == SOL_SOCKET)
1649 			err =
1650 			    sock_setsockopt(sock, level, optname, optval,
1651 					    optlen);
1652 		else
1653 			err =
1654 			    sock->ops->setsockopt(sock, level, optname, optval,
1655 						  optlen);
1656 out_put:
1657 		fput_light(sock->file, fput_needed);
1658 	}
1659 	return err;
1660 }
1661 
1662 /*
1663  *	Get a socket option. Because we don't know the option lengths we have
1664  *	to pass a user mode parameter for the protocols to sort out.
1665  */
1666 
1667 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1668 			       char __user *optval, int __user *optlen)
1669 {
1670 	int err, fput_needed;
1671 	struct socket *sock;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (sock != NULL) {
1675 		err = security_socket_getsockopt(sock, level, optname);
1676 		if (err)
1677 			goto out_put;
1678 
1679 		if (level == SOL_SOCKET)
1680 			err =
1681 			    sock_getsockopt(sock, level, optname, optval,
1682 					    optlen);
1683 		else
1684 			err =
1685 			    sock->ops->getsockopt(sock, level, optname, optval,
1686 						  optlen);
1687 out_put:
1688 		fput_light(sock->file, fput_needed);
1689 	}
1690 	return err;
1691 }
1692 
1693 /*
1694  *	Shutdown a socket.
1695  */
1696 
1697 asmlinkage long sys_shutdown(int fd, int how)
1698 {
1699 	int err, fput_needed;
1700 	struct socket *sock;
1701 
1702 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1703 	if (sock != NULL) {
1704 		err = security_socket_shutdown(sock, how);
1705 		if (!err)
1706 			err = sock->ops->shutdown(sock, how);
1707 		fput_light(sock->file, fput_needed);
1708 	}
1709 	return err;
1710 }
1711 
1712 /* A couple of helpful macros for getting the address of the 32/64 bit
1713  * fields which are the same type (int / unsigned) on our platforms.
1714  */
1715 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1716 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1717 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1718 
1719 /*
1720  *	BSD sendmsg interface
1721  */
1722 
1723 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1724 {
1725 	struct compat_msghdr __user *msg_compat =
1726 	    (struct compat_msghdr __user *)msg;
1727 	struct socket *sock;
1728 	char address[MAX_SOCK_ADDR];
1729 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1730 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1731 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1732 	/* 20 is size of ipv6_pktinfo */
1733 	unsigned char *ctl_buf = ctl;
1734 	struct msghdr msg_sys;
1735 	int err, ctl_len, iov_size, total_len;
1736 	int fput_needed;
1737 
1738 	err = -EFAULT;
1739 	if (MSG_CMSG_COMPAT & flags) {
1740 		if (get_compat_msghdr(&msg_sys, msg_compat))
1741 			return -EFAULT;
1742 	}
1743 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1744 		return -EFAULT;
1745 
1746 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1747 	if (!sock)
1748 		goto out;
1749 
1750 	/* do not move before msg_sys is valid */
1751 	err = -EMSGSIZE;
1752 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1753 		goto out_put;
1754 
1755 	/* Check whether to allocate the iovec area */
1756 	err = -ENOMEM;
1757 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1758 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1759 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1760 		if (!iov)
1761 			goto out_put;
1762 	}
1763 
1764 	/* This will also move the address data into kernel space */
1765 	if (MSG_CMSG_COMPAT & flags) {
1766 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1767 	} else
1768 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1769 	if (err < 0)
1770 		goto out_freeiov;
1771 	total_len = err;
1772 
1773 	err = -ENOBUFS;
1774 
1775 	if (msg_sys.msg_controllen > INT_MAX)
1776 		goto out_freeiov;
1777 	ctl_len = msg_sys.msg_controllen;
1778 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1779 		err =
1780 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1781 						     sizeof(ctl));
1782 		if (err)
1783 			goto out_freeiov;
1784 		ctl_buf = msg_sys.msg_control;
1785 		ctl_len = msg_sys.msg_controllen;
1786 	} else if (ctl_len) {
1787 		if (ctl_len > sizeof(ctl)) {
1788 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1789 			if (ctl_buf == NULL)
1790 				goto out_freeiov;
1791 		}
1792 		err = -EFAULT;
1793 		/*
1794 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1795 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1796 		 * checking falls down on this.
1797 		 */
1798 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1799 				   ctl_len))
1800 			goto out_freectl;
1801 		msg_sys.msg_control = ctl_buf;
1802 	}
1803 	msg_sys.msg_flags = flags;
1804 
1805 	if (sock->file->f_flags & O_NONBLOCK)
1806 		msg_sys.msg_flags |= MSG_DONTWAIT;
1807 	err = sock_sendmsg(sock, &msg_sys, total_len);
1808 
1809 out_freectl:
1810 	if (ctl_buf != ctl)
1811 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1812 out_freeiov:
1813 	if (iov != iovstack)
1814 		sock_kfree_s(sock->sk, iov, iov_size);
1815 out_put:
1816 	fput_light(sock->file, fput_needed);
1817 out:
1818 	return err;
1819 }
1820 
1821 /*
1822  *	BSD recvmsg interface
1823  */
1824 
1825 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1826 			    unsigned int flags)
1827 {
1828 	struct compat_msghdr __user *msg_compat =
1829 	    (struct compat_msghdr __user *)msg;
1830 	struct socket *sock;
1831 	struct iovec iovstack[UIO_FASTIOV];
1832 	struct iovec *iov = iovstack;
1833 	struct msghdr msg_sys;
1834 	unsigned long cmsg_ptr;
1835 	int err, iov_size, total_len, len;
1836 	int fput_needed;
1837 
1838 	/* kernel mode address */
1839 	char addr[MAX_SOCK_ADDR];
1840 
1841 	/* user mode address pointers */
1842 	struct sockaddr __user *uaddr;
1843 	int __user *uaddr_len;
1844 
1845 	if (MSG_CMSG_COMPAT & flags) {
1846 		if (get_compat_msghdr(&msg_sys, msg_compat))
1847 			return -EFAULT;
1848 	}
1849 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1850 		return -EFAULT;
1851 
1852 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 	if (!sock)
1854 		goto out;
1855 
1856 	err = -EMSGSIZE;
1857 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1858 		goto out_put;
1859 
1860 	/* Check whether to allocate the iovec area */
1861 	err = -ENOMEM;
1862 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1863 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1864 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1865 		if (!iov)
1866 			goto out_put;
1867 	}
1868 
1869 	/*
1870 	 *      Save the user-mode address (verify_iovec will change the
1871 	 *      kernel msghdr to use the kernel address space)
1872 	 */
1873 
1874 	uaddr = (void __user *)msg_sys.msg_name;
1875 	uaddr_len = COMPAT_NAMELEN(msg);
1876 	if (MSG_CMSG_COMPAT & flags) {
1877 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1878 	} else
1879 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1880 	if (err < 0)
1881 		goto out_freeiov;
1882 	total_len = err;
1883 
1884 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1885 	msg_sys.msg_flags = 0;
1886 	if (MSG_CMSG_COMPAT & flags)
1887 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1888 
1889 	if (sock->file->f_flags & O_NONBLOCK)
1890 		flags |= MSG_DONTWAIT;
1891 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1892 	if (err < 0)
1893 		goto out_freeiov;
1894 	len = err;
1895 
1896 	if (uaddr != NULL) {
1897 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1898 					uaddr_len);
1899 		if (err < 0)
1900 			goto out_freeiov;
1901 	}
1902 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1903 			 COMPAT_FLAGS(msg));
1904 	if (err)
1905 		goto out_freeiov;
1906 	if (MSG_CMSG_COMPAT & flags)
1907 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1908 				 &msg_compat->msg_controllen);
1909 	else
1910 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1911 				 &msg->msg_controllen);
1912 	if (err)
1913 		goto out_freeiov;
1914 	err = len;
1915 
1916 out_freeiov:
1917 	if (iov != iovstack)
1918 		sock_kfree_s(sock->sk, iov, iov_size);
1919 out_put:
1920 	fput_light(sock->file, fput_needed);
1921 out:
1922 	return err;
1923 }
1924 
1925 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1926 
1927 /* Argument list sizes for sys_socketcall */
1928 #define AL(x) ((x) * sizeof(unsigned long))
1929 static const unsigned char nargs[18]={
1930 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1931 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1932 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1933 };
1934 
1935 #undef AL
1936 
1937 /*
1938  *	System call vectors.
1939  *
1940  *	Argument checking cleaned up. Saved 20% in size.
1941  *  This function doesn't need to set the kernel lock because
1942  *  it is set by the callees.
1943  */
1944 
1945 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1946 {
1947 	unsigned long a[6];
1948 	unsigned long a0, a1;
1949 	int err;
1950 
1951 	if (call < 1 || call > SYS_RECVMSG)
1952 		return -EINVAL;
1953 
1954 	/* copy_from_user should be SMP safe. */
1955 	if (copy_from_user(a, args, nargs[call]))
1956 		return -EFAULT;
1957 
1958 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1959 	if (err)
1960 		return err;
1961 
1962 	a0 = a[0];
1963 	a1 = a[1];
1964 
1965 	switch (call) {
1966 	case SYS_SOCKET:
1967 		err = sys_socket(a0, a1, a[2]);
1968 		break;
1969 	case SYS_BIND:
1970 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
1971 		break;
1972 	case SYS_CONNECT:
1973 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1974 		break;
1975 	case SYS_LISTEN:
1976 		err = sys_listen(a0, a1);
1977 		break;
1978 	case SYS_ACCEPT:
1979 		err =
1980 		    sys_accept(a0, (struct sockaddr __user *)a1,
1981 			       (int __user *)a[2]);
1982 		break;
1983 	case SYS_GETSOCKNAME:
1984 		err =
1985 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
1986 				    (int __user *)a[2]);
1987 		break;
1988 	case SYS_GETPEERNAME:
1989 		err =
1990 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
1991 				    (int __user *)a[2]);
1992 		break;
1993 	case SYS_SOCKETPAIR:
1994 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
1995 		break;
1996 	case SYS_SEND:
1997 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1998 		break;
1999 	case SYS_SENDTO:
2000 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2001 				 (struct sockaddr __user *)a[4], a[5]);
2002 		break;
2003 	case SYS_RECV:
2004 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2005 		break;
2006 	case SYS_RECVFROM:
2007 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2008 				   (struct sockaddr __user *)a[4],
2009 				   (int __user *)a[5]);
2010 		break;
2011 	case SYS_SHUTDOWN:
2012 		err = sys_shutdown(a0, a1);
2013 		break;
2014 	case SYS_SETSOCKOPT:
2015 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2016 		break;
2017 	case SYS_GETSOCKOPT:
2018 		err =
2019 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2020 				   (int __user *)a[4]);
2021 		break;
2022 	case SYS_SENDMSG:
2023 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2024 		break;
2025 	case SYS_RECVMSG:
2026 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2027 		break;
2028 	default:
2029 		err = -EINVAL;
2030 		break;
2031 	}
2032 	return err;
2033 }
2034 
2035 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2036 
2037 /**
2038  *	sock_register - add a socket protocol handler
2039  *	@ops: description of protocol
2040  *
2041  *	This function is called by a protocol handler that wants to
2042  *	advertise its address family, and have it linked into the
2043  *	socket interface. The value ops->family coresponds to the
2044  *	socket system call protocol family.
2045  */
2046 int sock_register(const struct net_proto_family *ops)
2047 {
2048 	int err;
2049 
2050 	if (ops->family >= NPROTO) {
2051 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2052 		       NPROTO);
2053 		return -ENOBUFS;
2054 	}
2055 
2056 	spin_lock(&net_family_lock);
2057 	if (net_families[ops->family])
2058 		err = -EEXIST;
2059 	else {
2060 		net_families[ops->family] = ops;
2061 		err = 0;
2062 	}
2063 	spin_unlock(&net_family_lock);
2064 
2065 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2066 	return err;
2067 }
2068 
2069 /**
2070  *	sock_unregister - remove a protocol handler
2071  *	@family: protocol family to remove
2072  *
2073  *	This function is called by a protocol handler that wants to
2074  *	remove its address family, and have it unlinked from the
2075  *	new socket creation.
2076  *
2077  *	If protocol handler is a module, then it can use module reference
2078  *	counts to protect against new references. If protocol handler is not
2079  *	a module then it needs to provide its own protection in
2080  *	the ops->create routine.
2081  */
2082 void sock_unregister(int family)
2083 {
2084 	BUG_ON(family < 0 || family >= NPROTO);
2085 
2086 	spin_lock(&net_family_lock);
2087 	net_families[family] = NULL;
2088 	spin_unlock(&net_family_lock);
2089 
2090 	synchronize_rcu();
2091 
2092 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2093 }
2094 
2095 static int __init sock_init(void)
2096 {
2097 	/*
2098 	 *      Initialize sock SLAB cache.
2099 	 */
2100 
2101 	sk_init();
2102 
2103 	/*
2104 	 *      Initialize skbuff SLAB cache
2105 	 */
2106 	skb_init();
2107 
2108 	/*
2109 	 *      Initialize the protocols module.
2110 	 */
2111 
2112 	init_inodecache();
2113 	register_filesystem(&sock_fs_type);
2114 	sock_mnt = kern_mount(&sock_fs_type);
2115 
2116 	/* The real protocol initialization is performed in later initcalls.
2117 	 */
2118 
2119 #ifdef CONFIG_NETFILTER
2120 	netfilter_init();
2121 #endif
2122 
2123 	return 0;
2124 }
2125 
2126 core_initcall(sock_init);	/* early initcall */
2127 
2128 #ifdef CONFIG_PROC_FS
2129 void socket_seq_show(struct seq_file *seq)
2130 {
2131 	int cpu;
2132 	int counter = 0;
2133 
2134 	for_each_possible_cpu(cpu)
2135 	    counter += per_cpu(sockets_in_use, cpu);
2136 
2137 	/* It can be negative, by the way. 8) */
2138 	if (counter < 0)
2139 		counter = 0;
2140 
2141 	seq_printf(seq, "sockets: used %d\n", counter);
2142 }
2143 #endif				/* CONFIG_PROC_FS */
2144 
2145 #ifdef CONFIG_COMPAT
2146 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2147 			      unsigned long arg)
2148 {
2149 	struct socket *sock = file->private_data;
2150 	int ret = -ENOIOCTLCMD;
2151 
2152 	if (sock->ops->compat_ioctl)
2153 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2154 
2155 	return ret;
2156 }
2157 #endif
2158 
2159 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2160 {
2161 	return sock->ops->bind(sock, addr, addrlen);
2162 }
2163 
2164 int kernel_listen(struct socket *sock, int backlog)
2165 {
2166 	return sock->ops->listen(sock, backlog);
2167 }
2168 
2169 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2170 {
2171 	struct sock *sk = sock->sk;
2172 	int err;
2173 
2174 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2175 			       newsock);
2176 	if (err < 0)
2177 		goto done;
2178 
2179 	err = sock->ops->accept(sock, *newsock, flags);
2180 	if (err < 0) {
2181 		sock_release(*newsock);
2182 		goto done;
2183 	}
2184 
2185 	(*newsock)->ops = sock->ops;
2186 
2187 done:
2188 	return err;
2189 }
2190 
2191 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2192                    int flags)
2193 {
2194 	return sock->ops->connect(sock, addr, addrlen, flags);
2195 }
2196 
2197 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2198 			 int *addrlen)
2199 {
2200 	return sock->ops->getname(sock, addr, addrlen, 0);
2201 }
2202 
2203 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2204 			 int *addrlen)
2205 {
2206 	return sock->ops->getname(sock, addr, addrlen, 1);
2207 }
2208 
2209 int kernel_getsockopt(struct socket *sock, int level, int optname,
2210 			char *optval, int *optlen)
2211 {
2212 	mm_segment_t oldfs = get_fs();
2213 	int err;
2214 
2215 	set_fs(KERNEL_DS);
2216 	if (level == SOL_SOCKET)
2217 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2218 	else
2219 		err = sock->ops->getsockopt(sock, level, optname, optval,
2220 					    optlen);
2221 	set_fs(oldfs);
2222 	return err;
2223 }
2224 
2225 int kernel_setsockopt(struct socket *sock, int level, int optname,
2226 			char *optval, int optlen)
2227 {
2228 	mm_segment_t oldfs = get_fs();
2229 	int err;
2230 
2231 	set_fs(KERNEL_DS);
2232 	if (level == SOL_SOCKET)
2233 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2234 	else
2235 		err = sock->ops->setsockopt(sock, level, optname, optval,
2236 					    optlen);
2237 	set_fs(oldfs);
2238 	return err;
2239 }
2240 
2241 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2242 		    size_t size, int flags)
2243 {
2244 	if (sock->ops->sendpage)
2245 		return sock->ops->sendpage(sock, page, offset, size, flags);
2246 
2247 	return sock_no_sendpage(sock, page, offset, size, flags);
2248 }
2249 
2250 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2251 {
2252 	mm_segment_t oldfs = get_fs();
2253 	int err;
2254 
2255 	set_fs(KERNEL_DS);
2256 	err = sock->ops->ioctl(sock, cmd, arg);
2257 	set_fs(oldfs);
2258 
2259 	return err;
2260 }
2261 
2262 /* ABI emulation layers need these two */
2263 EXPORT_SYMBOL(move_addr_to_kernel);
2264 EXPORT_SYMBOL(move_addr_to_user);
2265 EXPORT_SYMBOL(sock_create);
2266 EXPORT_SYMBOL(sock_create_kern);
2267 EXPORT_SYMBOL(sock_create_lite);
2268 EXPORT_SYMBOL(sock_map_fd);
2269 EXPORT_SYMBOL(sock_recvmsg);
2270 EXPORT_SYMBOL(sock_register);
2271 EXPORT_SYMBOL(sock_release);
2272 EXPORT_SYMBOL(sock_sendmsg);
2273 EXPORT_SYMBOL(sock_unregister);
2274 EXPORT_SYMBOL(sock_wake_async);
2275 EXPORT_SYMBOL(sockfd_lookup);
2276 EXPORT_SYMBOL(kernel_sendmsg);
2277 EXPORT_SYMBOL(kernel_recvmsg);
2278 EXPORT_SYMBOL(kernel_bind);
2279 EXPORT_SYMBOL(kernel_listen);
2280 EXPORT_SYMBOL(kernel_accept);
2281 EXPORT_SYMBOL(kernel_connect);
2282 EXPORT_SYMBOL(kernel_getsockname);
2283 EXPORT_SYMBOL(kernel_getpeername);
2284 EXPORT_SYMBOL(kernel_getsockopt);
2285 EXPORT_SYMBOL(kernel_setsockopt);
2286 EXPORT_SYMBOL(kernel_sendpage);
2287 EXPORT_SYMBOL(kernel_sock_ioctl);
2288