1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 88 #include <asm/uaccess.h> 89 #include <asm/unistd.h> 90 91 #include <net/compat.h> 92 93 #include <net/sock.h> 94 #include <linux/netfilter.h> 95 96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103 static int sock_close(struct inode *inode, struct file *file); 104 static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107 #ifdef CONFIG_COMPAT 108 static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #endif 111 static int sock_fasync(int fd, struct file *filp, int on); 112 static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115 /* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120 static struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127 #ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129 #endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136 }; 137 138 /* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142 static DEFINE_SPINLOCK(net_family_lock); 143 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145 /* 146 * Statistics counters of the socket lists 147 */ 148 149 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151 /* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178 { 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207 { 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229 } 230 231 #define SOCKFS_MAGIC 0x534F434B 232 233 static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_destroy_inode(struct inode *inode) 255 { 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258 } 259 260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261 { 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) 265 == SLAB_CTOR_CONSTRUCTOR) 266 inode_init_once(&ei->vfs_inode); 267 } 268 269 static int init_inodecache(void) 270 { 271 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 272 sizeof(struct socket_alloc), 273 0, 274 (SLAB_HWCACHE_ALIGN | 275 SLAB_RECLAIM_ACCOUNT | 276 SLAB_MEM_SPREAD), 277 init_once, 278 NULL); 279 if (sock_inode_cachep == NULL) 280 return -ENOMEM; 281 return 0; 282 } 283 284 static struct super_operations sockfs_ops = { 285 .alloc_inode = sock_alloc_inode, 286 .destroy_inode =sock_destroy_inode, 287 .statfs = simple_statfs, 288 }; 289 290 static int sockfs_get_sb(struct file_system_type *fs_type, 291 int flags, const char *dev_name, void *data, 292 struct vfsmount *mnt) 293 { 294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 295 mnt); 296 } 297 298 static struct vfsmount *sock_mnt __read_mostly; 299 300 static struct file_system_type sock_fs_type = { 301 .name = "sockfs", 302 .get_sb = sockfs_get_sb, 303 .kill_sb = kill_anon_super, 304 }; 305 306 static int sockfs_delete_dentry(struct dentry *dentry) 307 { 308 /* 309 * At creation time, we pretended this dentry was hashed 310 * (by clearing DCACHE_UNHASHED bit in d_flags) 311 * At delete time, we restore the truth : not hashed. 312 * (so that dput() can proceed correctly) 313 */ 314 dentry->d_flags |= DCACHE_UNHASHED; 315 return 0; 316 } 317 static struct dentry_operations sockfs_dentry_operations = { 318 .d_delete = sockfs_delete_dentry, 319 }; 320 321 /* 322 * Obtains the first available file descriptor and sets it up for use. 323 * 324 * These functions create file structures and maps them to fd space 325 * of the current process. On success it returns file descriptor 326 * and file struct implicitly stored in sock->file. 327 * Note that another thread may close file descriptor before we return 328 * from this function. We use the fact that now we do not refer 329 * to socket after mapping. If one day we will need it, this 330 * function will increment ref. count on file by 1. 331 * 332 * In any case returned fd MAY BE not valid! 333 * This race condition is unavoidable 334 * with shared fd spaces, we cannot solve it inside kernel, 335 * but we take care of internal coherence yet. 336 */ 337 338 static int sock_alloc_fd(struct file **filep) 339 { 340 int fd; 341 342 fd = get_unused_fd(); 343 if (likely(fd >= 0)) { 344 struct file *file = get_empty_filp(); 345 346 *filep = file; 347 if (unlikely(!file)) { 348 put_unused_fd(fd); 349 return -ENFILE; 350 } 351 } else 352 *filep = NULL; 353 return fd; 354 } 355 356 static int sock_attach_fd(struct socket *sock, struct file *file) 357 { 358 struct qstr this; 359 char name[32]; 360 361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 362 this.name = name; 363 this.hash = 0; 364 365 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 366 if (unlikely(!file->f_path.dentry)) 367 return -ENOMEM; 368 369 file->f_path.dentry->d_op = &sockfs_dentry_operations; 370 /* 371 * We dont want to push this dentry into global dentry hash table. 372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 373 * This permits a working /proc/$pid/fd/XXX on sockets 374 */ 375 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 376 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 377 file->f_path.mnt = mntget(sock_mnt); 378 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 379 380 sock->file = file; 381 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 382 file->f_mode = FMODE_READ | FMODE_WRITE; 383 file->f_flags = O_RDWR; 384 file->f_pos = 0; 385 file->private_data = sock; 386 387 return 0; 388 } 389 390 int sock_map_fd(struct socket *sock) 391 { 392 struct file *newfile; 393 int fd = sock_alloc_fd(&newfile); 394 395 if (likely(fd >= 0)) { 396 int err = sock_attach_fd(sock, newfile); 397 398 if (unlikely(err < 0)) { 399 put_filp(newfile); 400 put_unused_fd(fd); 401 return err; 402 } 403 fd_install(fd, newfile); 404 } 405 return fd; 406 } 407 408 static struct socket *sock_from_file(struct file *file, int *err) 409 { 410 struct inode *inode; 411 struct socket *sock; 412 413 if (file->f_op == &socket_file_ops) 414 return file->private_data; /* set in sock_map_fd */ 415 416 inode = file->f_path.dentry->d_inode; 417 if (!S_ISSOCK(inode->i_mode)) { 418 *err = -ENOTSOCK; 419 return NULL; 420 } 421 422 sock = SOCKET_I(inode); 423 if (sock->file != file) { 424 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 425 sock->file = file; 426 } 427 return sock; 428 } 429 430 /** 431 * sockfd_lookup - Go from a file number to its socket slot 432 * @fd: file handle 433 * @err: pointer to an error code return 434 * 435 * The file handle passed in is locked and the socket it is bound 436 * too is returned. If an error occurs the err pointer is overwritten 437 * with a negative errno code and NULL is returned. The function checks 438 * for both invalid handles and passing a handle which is not a socket. 439 * 440 * On a success the socket object pointer is returned. 441 */ 442 443 struct socket *sockfd_lookup(int fd, int *err) 444 { 445 struct file *file; 446 struct socket *sock; 447 448 file = fget(fd); 449 if (!file) { 450 *err = -EBADF; 451 return NULL; 452 } 453 454 sock = sock_from_file(file, err); 455 if (!sock) 456 fput(file); 457 return sock; 458 } 459 460 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 461 { 462 struct file *file; 463 struct socket *sock; 464 465 *err = -EBADF; 466 file = fget_light(fd, fput_needed); 467 if (file) { 468 sock = sock_from_file(file, err); 469 if (sock) 470 return sock; 471 fput_light(file, *fput_needed); 472 } 473 return NULL; 474 } 475 476 /** 477 * sock_alloc - allocate a socket 478 * 479 * Allocate a new inode and socket object. The two are bound together 480 * and initialised. The socket is then returned. If we are out of inodes 481 * NULL is returned. 482 */ 483 484 static struct socket *sock_alloc(void) 485 { 486 struct inode *inode; 487 struct socket *sock; 488 489 inode = new_inode(sock_mnt->mnt_sb); 490 if (!inode) 491 return NULL; 492 493 sock = SOCKET_I(inode); 494 495 inode->i_mode = S_IFSOCK | S_IRWXUGO; 496 inode->i_uid = current->fsuid; 497 inode->i_gid = current->fsgid; 498 499 get_cpu_var(sockets_in_use)++; 500 put_cpu_var(sockets_in_use); 501 return sock; 502 } 503 504 /* 505 * In theory you can't get an open on this inode, but /proc provides 506 * a back door. Remember to keep it shut otherwise you'll let the 507 * creepy crawlies in. 508 */ 509 510 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 511 { 512 return -ENXIO; 513 } 514 515 const struct file_operations bad_sock_fops = { 516 .owner = THIS_MODULE, 517 .open = sock_no_open, 518 }; 519 520 /** 521 * sock_release - close a socket 522 * @sock: socket to close 523 * 524 * The socket is released from the protocol stack if it has a release 525 * callback, and the inode is then released if the socket is bound to 526 * an inode not a file. 527 */ 528 529 void sock_release(struct socket *sock) 530 { 531 if (sock->ops) { 532 struct module *owner = sock->ops->owner; 533 534 sock->ops->release(sock); 535 sock->ops = NULL; 536 module_put(owner); 537 } 538 539 if (sock->fasync_list) 540 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 541 542 get_cpu_var(sockets_in_use)--; 543 put_cpu_var(sockets_in_use); 544 if (!sock->file) { 545 iput(SOCK_INODE(sock)); 546 return; 547 } 548 sock->file = NULL; 549 } 550 551 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 552 struct msghdr *msg, size_t size) 553 { 554 struct sock_iocb *si = kiocb_to_siocb(iocb); 555 int err; 556 557 si->sock = sock; 558 si->scm = NULL; 559 si->msg = msg; 560 si->size = size; 561 562 err = security_socket_sendmsg(sock, msg, size); 563 if (err) 564 return err; 565 566 return sock->ops->sendmsg(iocb, sock, msg, size); 567 } 568 569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 570 { 571 struct kiocb iocb; 572 struct sock_iocb siocb; 573 int ret; 574 575 init_sync_kiocb(&iocb, NULL); 576 iocb.private = &siocb; 577 ret = __sock_sendmsg(&iocb, sock, msg, size); 578 if (-EIOCBQUEUED == ret) 579 ret = wait_on_sync_kiocb(&iocb); 580 return ret; 581 } 582 583 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 584 struct kvec *vec, size_t num, size_t size) 585 { 586 mm_segment_t oldfs = get_fs(); 587 int result; 588 589 set_fs(KERNEL_DS); 590 /* 591 * the following is safe, since for compiler definitions of kvec and 592 * iovec are identical, yielding the same in-core layout and alignment 593 */ 594 msg->msg_iov = (struct iovec *)vec; 595 msg->msg_iovlen = num; 596 result = sock_sendmsg(sock, msg, size); 597 set_fs(oldfs); 598 return result; 599 } 600 601 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 602 struct msghdr *msg, size_t size, int flags) 603 { 604 int err; 605 struct sock_iocb *si = kiocb_to_siocb(iocb); 606 607 si->sock = sock; 608 si->scm = NULL; 609 si->msg = msg; 610 si->size = size; 611 si->flags = flags; 612 613 err = security_socket_recvmsg(sock, msg, size, flags); 614 if (err) 615 return err; 616 617 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 618 } 619 620 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 621 size_t size, int flags) 622 { 623 struct kiocb iocb; 624 struct sock_iocb siocb; 625 int ret; 626 627 init_sync_kiocb(&iocb, NULL); 628 iocb.private = &siocb; 629 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 630 if (-EIOCBQUEUED == ret) 631 ret = wait_on_sync_kiocb(&iocb); 632 return ret; 633 } 634 635 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size, int flags) 637 { 638 mm_segment_t oldfs = get_fs(); 639 int result; 640 641 set_fs(KERNEL_DS); 642 /* 643 * the following is safe, since for compiler definitions of kvec and 644 * iovec are identical, yielding the same in-core layout and alignment 645 */ 646 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 647 result = sock_recvmsg(sock, msg, size, flags); 648 set_fs(oldfs); 649 return result; 650 } 651 652 static void sock_aio_dtor(struct kiocb *iocb) 653 { 654 kfree(iocb->private); 655 } 656 657 static ssize_t sock_sendpage(struct file *file, struct page *page, 658 int offset, size_t size, loff_t *ppos, int more) 659 { 660 struct socket *sock; 661 int flags; 662 663 sock = file->private_data; 664 665 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 666 if (more) 667 flags |= MSG_MORE; 668 669 return sock->ops->sendpage(sock, page, offset, size, flags); 670 } 671 672 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 673 struct sock_iocb *siocb) 674 { 675 if (!is_sync_kiocb(iocb)) { 676 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 677 if (!siocb) 678 return NULL; 679 iocb->ki_dtor = sock_aio_dtor; 680 } 681 682 siocb->kiocb = iocb; 683 iocb->private = siocb; 684 return siocb; 685 } 686 687 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 688 struct file *file, const struct iovec *iov, 689 unsigned long nr_segs) 690 { 691 struct socket *sock = file->private_data; 692 size_t size = 0; 693 int i; 694 695 for (i = 0; i < nr_segs; i++) 696 size += iov[i].iov_len; 697 698 msg->msg_name = NULL; 699 msg->msg_namelen = 0; 700 msg->msg_control = NULL; 701 msg->msg_controllen = 0; 702 msg->msg_iov = (struct iovec *)iov; 703 msg->msg_iovlen = nr_segs; 704 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 705 706 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 707 } 708 709 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 710 unsigned long nr_segs, loff_t pos) 711 { 712 struct sock_iocb siocb, *x; 713 714 if (pos != 0) 715 return -ESPIPE; 716 717 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 718 return 0; 719 720 721 x = alloc_sock_iocb(iocb, &siocb); 722 if (!x) 723 return -ENOMEM; 724 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 725 } 726 727 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 728 struct file *file, const struct iovec *iov, 729 unsigned long nr_segs) 730 { 731 struct socket *sock = file->private_data; 732 size_t size = 0; 733 int i; 734 735 for (i = 0; i < nr_segs; i++) 736 size += iov[i].iov_len; 737 738 msg->msg_name = NULL; 739 msg->msg_namelen = 0; 740 msg->msg_control = NULL; 741 msg->msg_controllen = 0; 742 msg->msg_iov = (struct iovec *)iov; 743 msg->msg_iovlen = nr_segs; 744 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 745 if (sock->type == SOCK_SEQPACKET) 746 msg->msg_flags |= MSG_EOR; 747 748 return __sock_sendmsg(iocb, sock, msg, size); 749 } 750 751 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 752 unsigned long nr_segs, loff_t pos) 753 { 754 struct sock_iocb siocb, *x; 755 756 if (pos != 0) 757 return -ESPIPE; 758 759 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 760 return 0; 761 762 x = alloc_sock_iocb(iocb, &siocb); 763 if (!x) 764 return -ENOMEM; 765 766 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 767 } 768 769 /* 770 * Atomic setting of ioctl hooks to avoid race 771 * with module unload. 772 */ 773 774 static DEFINE_MUTEX(br_ioctl_mutex); 775 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 776 777 void brioctl_set(int (*hook) (unsigned int, void __user *)) 778 { 779 mutex_lock(&br_ioctl_mutex); 780 br_ioctl_hook = hook; 781 mutex_unlock(&br_ioctl_mutex); 782 } 783 784 EXPORT_SYMBOL(brioctl_set); 785 786 static DEFINE_MUTEX(vlan_ioctl_mutex); 787 static int (*vlan_ioctl_hook) (void __user *arg); 788 789 void vlan_ioctl_set(int (*hook) (void __user *)) 790 { 791 mutex_lock(&vlan_ioctl_mutex); 792 vlan_ioctl_hook = hook; 793 mutex_unlock(&vlan_ioctl_mutex); 794 } 795 796 EXPORT_SYMBOL(vlan_ioctl_set); 797 798 static DEFINE_MUTEX(dlci_ioctl_mutex); 799 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 800 801 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 802 { 803 mutex_lock(&dlci_ioctl_mutex); 804 dlci_ioctl_hook = hook; 805 mutex_unlock(&dlci_ioctl_mutex); 806 } 807 808 EXPORT_SYMBOL(dlci_ioctl_set); 809 810 /* 811 * With an ioctl, arg may well be a user mode pointer, but we don't know 812 * what to do with it - that's up to the protocol still. 813 */ 814 815 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 816 { 817 struct socket *sock; 818 void __user *argp = (void __user *)arg; 819 int pid, err; 820 821 sock = file->private_data; 822 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 823 err = dev_ioctl(cmd, argp); 824 } else 825 #ifdef CONFIG_WIRELESS_EXT 826 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 827 err = dev_ioctl(cmd, argp); 828 } else 829 #endif /* CONFIG_WIRELESS_EXT */ 830 switch (cmd) { 831 case FIOSETOWN: 832 case SIOCSPGRP: 833 err = -EFAULT; 834 if (get_user(pid, (int __user *)argp)) 835 break; 836 err = f_setown(sock->file, pid, 1); 837 break; 838 case FIOGETOWN: 839 case SIOCGPGRP: 840 err = put_user(f_getown(sock->file), 841 (int __user *)argp); 842 break; 843 case SIOCGIFBR: 844 case SIOCSIFBR: 845 case SIOCBRADDBR: 846 case SIOCBRDELBR: 847 err = -ENOPKG; 848 if (!br_ioctl_hook) 849 request_module("bridge"); 850 851 mutex_lock(&br_ioctl_mutex); 852 if (br_ioctl_hook) 853 err = br_ioctl_hook(cmd, argp); 854 mutex_unlock(&br_ioctl_mutex); 855 break; 856 case SIOCGIFVLAN: 857 case SIOCSIFVLAN: 858 err = -ENOPKG; 859 if (!vlan_ioctl_hook) 860 request_module("8021q"); 861 862 mutex_lock(&vlan_ioctl_mutex); 863 if (vlan_ioctl_hook) 864 err = vlan_ioctl_hook(argp); 865 mutex_unlock(&vlan_ioctl_mutex); 866 break; 867 case SIOCADDDLCI: 868 case SIOCDELDLCI: 869 err = -ENOPKG; 870 if (!dlci_ioctl_hook) 871 request_module("dlci"); 872 873 if (dlci_ioctl_hook) { 874 mutex_lock(&dlci_ioctl_mutex); 875 err = dlci_ioctl_hook(cmd, argp); 876 mutex_unlock(&dlci_ioctl_mutex); 877 } 878 break; 879 default: 880 err = sock->ops->ioctl(sock, cmd, arg); 881 882 /* 883 * If this ioctl is unknown try to hand it down 884 * to the NIC driver. 885 */ 886 if (err == -ENOIOCTLCMD) 887 err = dev_ioctl(cmd, argp); 888 break; 889 } 890 return err; 891 } 892 893 int sock_create_lite(int family, int type, int protocol, struct socket **res) 894 { 895 int err; 896 struct socket *sock = NULL; 897 898 err = security_socket_create(family, type, protocol, 1); 899 if (err) 900 goto out; 901 902 sock = sock_alloc(); 903 if (!sock) { 904 err = -ENOMEM; 905 goto out; 906 } 907 908 sock->type = type; 909 err = security_socket_post_create(sock, family, type, protocol, 1); 910 if (err) 911 goto out_release; 912 913 out: 914 *res = sock; 915 return err; 916 out_release: 917 sock_release(sock); 918 sock = NULL; 919 goto out; 920 } 921 922 /* No kernel lock held - perfect */ 923 static unsigned int sock_poll(struct file *file, poll_table *wait) 924 { 925 struct socket *sock; 926 927 /* 928 * We can't return errors to poll, so it's either yes or no. 929 */ 930 sock = file->private_data; 931 return sock->ops->poll(file, sock, wait); 932 } 933 934 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 935 { 936 struct socket *sock = file->private_data; 937 938 return sock->ops->mmap(file, sock, vma); 939 } 940 941 static int sock_close(struct inode *inode, struct file *filp) 942 { 943 /* 944 * It was possible the inode is NULL we were 945 * closing an unfinished socket. 946 */ 947 948 if (!inode) { 949 printk(KERN_DEBUG "sock_close: NULL inode\n"); 950 return 0; 951 } 952 sock_fasync(-1, filp, 0); 953 sock_release(SOCKET_I(inode)); 954 return 0; 955 } 956 957 /* 958 * Update the socket async list 959 * 960 * Fasync_list locking strategy. 961 * 962 * 1. fasync_list is modified only under process context socket lock 963 * i.e. under semaphore. 964 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 965 * or under socket lock. 966 * 3. fasync_list can be used from softirq context, so that 967 * modification under socket lock have to be enhanced with 968 * write_lock_bh(&sk->sk_callback_lock). 969 * --ANK (990710) 970 */ 971 972 static int sock_fasync(int fd, struct file *filp, int on) 973 { 974 struct fasync_struct *fa, *fna = NULL, **prev; 975 struct socket *sock; 976 struct sock *sk; 977 978 if (on) { 979 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 980 if (fna == NULL) 981 return -ENOMEM; 982 } 983 984 sock = filp->private_data; 985 986 sk = sock->sk; 987 if (sk == NULL) { 988 kfree(fna); 989 return -EINVAL; 990 } 991 992 lock_sock(sk); 993 994 prev = &(sock->fasync_list); 995 996 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 997 if (fa->fa_file == filp) 998 break; 999 1000 if (on) { 1001 if (fa != NULL) { 1002 write_lock_bh(&sk->sk_callback_lock); 1003 fa->fa_fd = fd; 1004 write_unlock_bh(&sk->sk_callback_lock); 1005 1006 kfree(fna); 1007 goto out; 1008 } 1009 fna->fa_file = filp; 1010 fna->fa_fd = fd; 1011 fna->magic = FASYNC_MAGIC; 1012 fna->fa_next = sock->fasync_list; 1013 write_lock_bh(&sk->sk_callback_lock); 1014 sock->fasync_list = fna; 1015 write_unlock_bh(&sk->sk_callback_lock); 1016 } else { 1017 if (fa != NULL) { 1018 write_lock_bh(&sk->sk_callback_lock); 1019 *prev = fa->fa_next; 1020 write_unlock_bh(&sk->sk_callback_lock); 1021 kfree(fa); 1022 } 1023 } 1024 1025 out: 1026 release_sock(sock->sk); 1027 return 0; 1028 } 1029 1030 /* This function may be called only under socket lock or callback_lock */ 1031 1032 int sock_wake_async(struct socket *sock, int how, int band) 1033 { 1034 if (!sock || !sock->fasync_list) 1035 return -1; 1036 switch (how) { 1037 case 1: 1038 1039 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1040 break; 1041 goto call_kill; 1042 case 2: 1043 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1044 break; 1045 /* fall through */ 1046 case 0: 1047 call_kill: 1048 __kill_fasync(sock->fasync_list, SIGIO, band); 1049 break; 1050 case 3: 1051 __kill_fasync(sock->fasync_list, SIGURG, band); 1052 } 1053 return 0; 1054 } 1055 1056 static int __sock_create(int family, int type, int protocol, 1057 struct socket **res, int kern) 1058 { 1059 int err; 1060 struct socket *sock; 1061 const struct net_proto_family *pf; 1062 1063 /* 1064 * Check protocol is in range 1065 */ 1066 if (family < 0 || family >= NPROTO) 1067 return -EAFNOSUPPORT; 1068 if (type < 0 || type >= SOCK_MAX) 1069 return -EINVAL; 1070 1071 /* Compatibility. 1072 1073 This uglymoron is moved from INET layer to here to avoid 1074 deadlock in module load. 1075 */ 1076 if (family == PF_INET && type == SOCK_PACKET) { 1077 static int warned; 1078 if (!warned) { 1079 warned = 1; 1080 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1081 current->comm); 1082 } 1083 family = PF_PACKET; 1084 } 1085 1086 err = security_socket_create(family, type, protocol, kern); 1087 if (err) 1088 return err; 1089 1090 /* 1091 * Allocate the socket and allow the family to set things up. if 1092 * the protocol is 0, the family is instructed to select an appropriate 1093 * default. 1094 */ 1095 sock = sock_alloc(); 1096 if (!sock) { 1097 if (net_ratelimit()) 1098 printk(KERN_WARNING "socket: no more sockets\n"); 1099 return -ENFILE; /* Not exactly a match, but its the 1100 closest posix thing */ 1101 } 1102 1103 sock->type = type; 1104 1105 #if defined(CONFIG_KMOD) 1106 /* Attempt to load a protocol module if the find failed. 1107 * 1108 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1109 * requested real, full-featured networking support upon configuration. 1110 * Otherwise module support will break! 1111 */ 1112 if (net_families[family] == NULL) 1113 request_module("net-pf-%d", family); 1114 #endif 1115 1116 rcu_read_lock(); 1117 pf = rcu_dereference(net_families[family]); 1118 err = -EAFNOSUPPORT; 1119 if (!pf) 1120 goto out_release; 1121 1122 /* 1123 * We will call the ->create function, that possibly is in a loadable 1124 * module, so we have to bump that loadable module refcnt first. 1125 */ 1126 if (!try_module_get(pf->owner)) 1127 goto out_release; 1128 1129 /* Now protected by module ref count */ 1130 rcu_read_unlock(); 1131 1132 err = pf->create(sock, protocol); 1133 if (err < 0) 1134 goto out_module_put; 1135 1136 /* 1137 * Now to bump the refcnt of the [loadable] module that owns this 1138 * socket at sock_release time we decrement its refcnt. 1139 */ 1140 if (!try_module_get(sock->ops->owner)) 1141 goto out_module_busy; 1142 1143 /* 1144 * Now that we're done with the ->create function, the [loadable] 1145 * module can have its refcnt decremented 1146 */ 1147 module_put(pf->owner); 1148 err = security_socket_post_create(sock, family, type, protocol, kern); 1149 if (err) 1150 goto out_release; 1151 *res = sock; 1152 1153 return 0; 1154 1155 out_module_busy: 1156 err = -EAFNOSUPPORT; 1157 out_module_put: 1158 sock->ops = NULL; 1159 module_put(pf->owner); 1160 out_sock_release: 1161 sock_release(sock); 1162 return err; 1163 1164 out_release: 1165 rcu_read_unlock(); 1166 goto out_sock_release; 1167 } 1168 1169 int sock_create(int family, int type, int protocol, struct socket **res) 1170 { 1171 return __sock_create(family, type, protocol, res, 0); 1172 } 1173 1174 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1175 { 1176 return __sock_create(family, type, protocol, res, 1); 1177 } 1178 1179 asmlinkage long sys_socket(int family, int type, int protocol) 1180 { 1181 int retval; 1182 struct socket *sock; 1183 1184 retval = sock_create(family, type, protocol, &sock); 1185 if (retval < 0) 1186 goto out; 1187 1188 retval = sock_map_fd(sock); 1189 if (retval < 0) 1190 goto out_release; 1191 1192 out: 1193 /* It may be already another descriptor 8) Not kernel problem. */ 1194 return retval; 1195 1196 out_release: 1197 sock_release(sock); 1198 return retval; 1199 } 1200 1201 /* 1202 * Create a pair of connected sockets. 1203 */ 1204 1205 asmlinkage long sys_socketpair(int family, int type, int protocol, 1206 int __user *usockvec) 1207 { 1208 struct socket *sock1, *sock2; 1209 int fd1, fd2, err; 1210 1211 /* 1212 * Obtain the first socket and check if the underlying protocol 1213 * supports the socketpair call. 1214 */ 1215 1216 err = sock_create(family, type, protocol, &sock1); 1217 if (err < 0) 1218 goto out; 1219 1220 err = sock_create(family, type, protocol, &sock2); 1221 if (err < 0) 1222 goto out_release_1; 1223 1224 err = sock1->ops->socketpair(sock1, sock2); 1225 if (err < 0) 1226 goto out_release_both; 1227 1228 fd1 = fd2 = -1; 1229 1230 err = sock_map_fd(sock1); 1231 if (err < 0) 1232 goto out_release_both; 1233 fd1 = err; 1234 1235 err = sock_map_fd(sock2); 1236 if (err < 0) 1237 goto out_close_1; 1238 fd2 = err; 1239 1240 /* fd1 and fd2 may be already another descriptors. 1241 * Not kernel problem. 1242 */ 1243 1244 err = put_user(fd1, &usockvec[0]); 1245 if (!err) 1246 err = put_user(fd2, &usockvec[1]); 1247 if (!err) 1248 return 0; 1249 1250 sys_close(fd2); 1251 sys_close(fd1); 1252 return err; 1253 1254 out_close_1: 1255 sock_release(sock2); 1256 sys_close(fd1); 1257 return err; 1258 1259 out_release_both: 1260 sock_release(sock2); 1261 out_release_1: 1262 sock_release(sock1); 1263 out: 1264 return err; 1265 } 1266 1267 /* 1268 * Bind a name to a socket. Nothing much to do here since it's 1269 * the protocol's responsibility to handle the local address. 1270 * 1271 * We move the socket address to kernel space before we call 1272 * the protocol layer (having also checked the address is ok). 1273 */ 1274 1275 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1276 { 1277 struct socket *sock; 1278 char address[MAX_SOCK_ADDR]; 1279 int err, fput_needed; 1280 1281 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1282 if(sock) { 1283 err = move_addr_to_kernel(umyaddr, addrlen, address); 1284 if (err >= 0) { 1285 err = security_socket_bind(sock, 1286 (struct sockaddr *)address, 1287 addrlen); 1288 if (!err) 1289 err = sock->ops->bind(sock, 1290 (struct sockaddr *) 1291 address, addrlen); 1292 } 1293 fput_light(sock->file, fput_needed); 1294 } 1295 return err; 1296 } 1297 1298 /* 1299 * Perform a listen. Basically, we allow the protocol to do anything 1300 * necessary for a listen, and if that works, we mark the socket as 1301 * ready for listening. 1302 */ 1303 1304 int sysctl_somaxconn __read_mostly = SOMAXCONN; 1305 1306 asmlinkage long sys_listen(int fd, int backlog) 1307 { 1308 struct socket *sock; 1309 int err, fput_needed; 1310 1311 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1312 if (sock) { 1313 if ((unsigned)backlog > sysctl_somaxconn) 1314 backlog = sysctl_somaxconn; 1315 1316 err = security_socket_listen(sock, backlog); 1317 if (!err) 1318 err = sock->ops->listen(sock, backlog); 1319 1320 fput_light(sock->file, fput_needed); 1321 } 1322 return err; 1323 } 1324 1325 /* 1326 * For accept, we attempt to create a new socket, set up the link 1327 * with the client, wake up the client, then return the new 1328 * connected fd. We collect the address of the connector in kernel 1329 * space and move it to user at the very end. This is unclean because 1330 * we open the socket then return an error. 1331 * 1332 * 1003.1g adds the ability to recvmsg() to query connection pending 1333 * status to recvmsg. We need to add that support in a way thats 1334 * clean when we restucture accept also. 1335 */ 1336 1337 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1338 int __user *upeer_addrlen) 1339 { 1340 struct socket *sock, *newsock; 1341 struct file *newfile; 1342 int err, len, newfd, fput_needed; 1343 char address[MAX_SOCK_ADDR]; 1344 1345 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1346 if (!sock) 1347 goto out; 1348 1349 err = -ENFILE; 1350 if (!(newsock = sock_alloc())) 1351 goto out_put; 1352 1353 newsock->type = sock->type; 1354 newsock->ops = sock->ops; 1355 1356 /* 1357 * We don't need try_module_get here, as the listening socket (sock) 1358 * has the protocol module (sock->ops->owner) held. 1359 */ 1360 __module_get(newsock->ops->owner); 1361 1362 newfd = sock_alloc_fd(&newfile); 1363 if (unlikely(newfd < 0)) { 1364 err = newfd; 1365 sock_release(newsock); 1366 goto out_put; 1367 } 1368 1369 err = sock_attach_fd(newsock, newfile); 1370 if (err < 0) 1371 goto out_fd; 1372 1373 err = security_socket_accept(sock, newsock); 1374 if (err) 1375 goto out_fd; 1376 1377 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1378 if (err < 0) 1379 goto out_fd; 1380 1381 if (upeer_sockaddr) { 1382 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1383 &len, 2) < 0) { 1384 err = -ECONNABORTED; 1385 goto out_fd; 1386 } 1387 err = move_addr_to_user(address, len, upeer_sockaddr, 1388 upeer_addrlen); 1389 if (err < 0) 1390 goto out_fd; 1391 } 1392 1393 /* File flags are not inherited via accept() unlike another OSes. */ 1394 1395 fd_install(newfd, newfile); 1396 err = newfd; 1397 1398 security_socket_post_accept(sock, newsock); 1399 1400 out_put: 1401 fput_light(sock->file, fput_needed); 1402 out: 1403 return err; 1404 out_fd: 1405 fput(newfile); 1406 put_unused_fd(newfd); 1407 goto out_put; 1408 } 1409 1410 /* 1411 * Attempt to connect to a socket with the server address. The address 1412 * is in user space so we verify it is OK and move it to kernel space. 1413 * 1414 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1415 * break bindings 1416 * 1417 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1418 * other SEQPACKET protocols that take time to connect() as it doesn't 1419 * include the -EINPROGRESS status for such sockets. 1420 */ 1421 1422 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1423 int addrlen) 1424 { 1425 struct socket *sock; 1426 char address[MAX_SOCK_ADDR]; 1427 int err, fput_needed; 1428 1429 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1430 if (!sock) 1431 goto out; 1432 err = move_addr_to_kernel(uservaddr, addrlen, address); 1433 if (err < 0) 1434 goto out_put; 1435 1436 err = 1437 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1438 if (err) 1439 goto out_put; 1440 1441 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1442 sock->file->f_flags); 1443 out_put: 1444 fput_light(sock->file, fput_needed); 1445 out: 1446 return err; 1447 } 1448 1449 /* 1450 * Get the local address ('name') of a socket object. Move the obtained 1451 * name to user space. 1452 */ 1453 1454 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1455 int __user *usockaddr_len) 1456 { 1457 struct socket *sock; 1458 char address[MAX_SOCK_ADDR]; 1459 int len, err, fput_needed; 1460 1461 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1462 if (!sock) 1463 goto out; 1464 1465 err = security_socket_getsockname(sock); 1466 if (err) 1467 goto out_put; 1468 1469 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1470 if (err) 1471 goto out_put; 1472 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1473 1474 out_put: 1475 fput_light(sock->file, fput_needed); 1476 out: 1477 return err; 1478 } 1479 1480 /* 1481 * Get the remote address ('name') of a socket object. Move the obtained 1482 * name to user space. 1483 */ 1484 1485 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1486 int __user *usockaddr_len) 1487 { 1488 struct socket *sock; 1489 char address[MAX_SOCK_ADDR]; 1490 int len, err, fput_needed; 1491 1492 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1493 if (sock != NULL) { 1494 err = security_socket_getpeername(sock); 1495 if (err) { 1496 fput_light(sock->file, fput_needed); 1497 return err; 1498 } 1499 1500 err = 1501 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1502 1); 1503 if (!err) 1504 err = move_addr_to_user(address, len, usockaddr, 1505 usockaddr_len); 1506 fput_light(sock->file, fput_needed); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * Send a datagram to a given address. We move the address into kernel 1513 * space and check the user space data area is readable before invoking 1514 * the protocol. 1515 */ 1516 1517 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1518 unsigned flags, struct sockaddr __user *addr, 1519 int addr_len) 1520 { 1521 struct socket *sock; 1522 char address[MAX_SOCK_ADDR]; 1523 int err; 1524 struct msghdr msg; 1525 struct iovec iov; 1526 int fput_needed; 1527 struct file *sock_file; 1528 1529 sock_file = fget_light(fd, &fput_needed); 1530 if (!sock_file) 1531 return -EBADF; 1532 1533 sock = sock_from_file(sock_file, &err); 1534 if (!sock) 1535 goto out_put; 1536 iov.iov_base = buff; 1537 iov.iov_len = len; 1538 msg.msg_name = NULL; 1539 msg.msg_iov = &iov; 1540 msg.msg_iovlen = 1; 1541 msg.msg_control = NULL; 1542 msg.msg_controllen = 0; 1543 msg.msg_namelen = 0; 1544 if (addr) { 1545 err = move_addr_to_kernel(addr, addr_len, address); 1546 if (err < 0) 1547 goto out_put; 1548 msg.msg_name = address; 1549 msg.msg_namelen = addr_len; 1550 } 1551 if (sock->file->f_flags & O_NONBLOCK) 1552 flags |= MSG_DONTWAIT; 1553 msg.msg_flags = flags; 1554 err = sock_sendmsg(sock, &msg, len); 1555 1556 out_put: 1557 fput_light(sock_file, fput_needed); 1558 return err; 1559 } 1560 1561 /* 1562 * Send a datagram down a socket. 1563 */ 1564 1565 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1566 { 1567 return sys_sendto(fd, buff, len, flags, NULL, 0); 1568 } 1569 1570 /* 1571 * Receive a frame from the socket and optionally record the address of the 1572 * sender. We verify the buffers are writable and if needed move the 1573 * sender address from kernel to user space. 1574 */ 1575 1576 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1577 unsigned flags, struct sockaddr __user *addr, 1578 int __user *addr_len) 1579 { 1580 struct socket *sock; 1581 struct iovec iov; 1582 struct msghdr msg; 1583 char address[MAX_SOCK_ADDR]; 1584 int err, err2; 1585 struct file *sock_file; 1586 int fput_needed; 1587 1588 sock_file = fget_light(fd, &fput_needed); 1589 if (!sock_file) 1590 return -EBADF; 1591 1592 sock = sock_from_file(sock_file, &err); 1593 if (!sock) 1594 goto out; 1595 1596 msg.msg_control = NULL; 1597 msg.msg_controllen = 0; 1598 msg.msg_iovlen = 1; 1599 msg.msg_iov = &iov; 1600 iov.iov_len = size; 1601 iov.iov_base = ubuf; 1602 msg.msg_name = address; 1603 msg.msg_namelen = MAX_SOCK_ADDR; 1604 if (sock->file->f_flags & O_NONBLOCK) 1605 flags |= MSG_DONTWAIT; 1606 err = sock_recvmsg(sock, &msg, size, flags); 1607 1608 if (err >= 0 && addr != NULL) { 1609 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1610 if (err2 < 0) 1611 err = err2; 1612 } 1613 out: 1614 fput_light(sock_file, fput_needed); 1615 return err; 1616 } 1617 1618 /* 1619 * Receive a datagram from a socket. 1620 */ 1621 1622 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1623 unsigned flags) 1624 { 1625 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1626 } 1627 1628 /* 1629 * Set a socket option. Because we don't know the option lengths we have 1630 * to pass the user mode parameter for the protocols to sort out. 1631 */ 1632 1633 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1634 char __user *optval, int optlen) 1635 { 1636 int err, fput_needed; 1637 struct socket *sock; 1638 1639 if (optlen < 0) 1640 return -EINVAL; 1641 1642 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1643 if (sock != NULL) { 1644 err = security_socket_setsockopt(sock, level, optname); 1645 if (err) 1646 goto out_put; 1647 1648 if (level == SOL_SOCKET) 1649 err = 1650 sock_setsockopt(sock, level, optname, optval, 1651 optlen); 1652 else 1653 err = 1654 sock->ops->setsockopt(sock, level, optname, optval, 1655 optlen); 1656 out_put: 1657 fput_light(sock->file, fput_needed); 1658 } 1659 return err; 1660 } 1661 1662 /* 1663 * Get a socket option. Because we don't know the option lengths we have 1664 * to pass a user mode parameter for the protocols to sort out. 1665 */ 1666 1667 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1668 char __user *optval, int __user *optlen) 1669 { 1670 int err, fput_needed; 1671 struct socket *sock; 1672 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (sock != NULL) { 1675 err = security_socket_getsockopt(sock, level, optname); 1676 if (err) 1677 goto out_put; 1678 1679 if (level == SOL_SOCKET) 1680 err = 1681 sock_getsockopt(sock, level, optname, optval, 1682 optlen); 1683 else 1684 err = 1685 sock->ops->getsockopt(sock, level, optname, optval, 1686 optlen); 1687 out_put: 1688 fput_light(sock->file, fput_needed); 1689 } 1690 return err; 1691 } 1692 1693 /* 1694 * Shutdown a socket. 1695 */ 1696 1697 asmlinkage long sys_shutdown(int fd, int how) 1698 { 1699 int err, fput_needed; 1700 struct socket *sock; 1701 1702 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1703 if (sock != NULL) { 1704 err = security_socket_shutdown(sock, how); 1705 if (!err) 1706 err = sock->ops->shutdown(sock, how); 1707 fput_light(sock->file, fput_needed); 1708 } 1709 return err; 1710 } 1711 1712 /* A couple of helpful macros for getting the address of the 32/64 bit 1713 * fields which are the same type (int / unsigned) on our platforms. 1714 */ 1715 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1716 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1717 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1718 1719 /* 1720 * BSD sendmsg interface 1721 */ 1722 1723 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1724 { 1725 struct compat_msghdr __user *msg_compat = 1726 (struct compat_msghdr __user *)msg; 1727 struct socket *sock; 1728 char address[MAX_SOCK_ADDR]; 1729 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1730 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1731 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1732 /* 20 is size of ipv6_pktinfo */ 1733 unsigned char *ctl_buf = ctl; 1734 struct msghdr msg_sys; 1735 int err, ctl_len, iov_size, total_len; 1736 int fput_needed; 1737 1738 err = -EFAULT; 1739 if (MSG_CMSG_COMPAT & flags) { 1740 if (get_compat_msghdr(&msg_sys, msg_compat)) 1741 return -EFAULT; 1742 } 1743 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1744 return -EFAULT; 1745 1746 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1747 if (!sock) 1748 goto out; 1749 1750 /* do not move before msg_sys is valid */ 1751 err = -EMSGSIZE; 1752 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1753 goto out_put; 1754 1755 /* Check whether to allocate the iovec area */ 1756 err = -ENOMEM; 1757 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1758 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1759 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1760 if (!iov) 1761 goto out_put; 1762 } 1763 1764 /* This will also move the address data into kernel space */ 1765 if (MSG_CMSG_COMPAT & flags) { 1766 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1767 } else 1768 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1769 if (err < 0) 1770 goto out_freeiov; 1771 total_len = err; 1772 1773 err = -ENOBUFS; 1774 1775 if (msg_sys.msg_controllen > INT_MAX) 1776 goto out_freeiov; 1777 ctl_len = msg_sys.msg_controllen; 1778 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1779 err = 1780 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1781 sizeof(ctl)); 1782 if (err) 1783 goto out_freeiov; 1784 ctl_buf = msg_sys.msg_control; 1785 ctl_len = msg_sys.msg_controllen; 1786 } else if (ctl_len) { 1787 if (ctl_len > sizeof(ctl)) { 1788 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1789 if (ctl_buf == NULL) 1790 goto out_freeiov; 1791 } 1792 err = -EFAULT; 1793 /* 1794 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1795 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1796 * checking falls down on this. 1797 */ 1798 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1799 ctl_len)) 1800 goto out_freectl; 1801 msg_sys.msg_control = ctl_buf; 1802 } 1803 msg_sys.msg_flags = flags; 1804 1805 if (sock->file->f_flags & O_NONBLOCK) 1806 msg_sys.msg_flags |= MSG_DONTWAIT; 1807 err = sock_sendmsg(sock, &msg_sys, total_len); 1808 1809 out_freectl: 1810 if (ctl_buf != ctl) 1811 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1812 out_freeiov: 1813 if (iov != iovstack) 1814 sock_kfree_s(sock->sk, iov, iov_size); 1815 out_put: 1816 fput_light(sock->file, fput_needed); 1817 out: 1818 return err; 1819 } 1820 1821 /* 1822 * BSD recvmsg interface 1823 */ 1824 1825 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1826 unsigned int flags) 1827 { 1828 struct compat_msghdr __user *msg_compat = 1829 (struct compat_msghdr __user *)msg; 1830 struct socket *sock; 1831 struct iovec iovstack[UIO_FASTIOV]; 1832 struct iovec *iov = iovstack; 1833 struct msghdr msg_sys; 1834 unsigned long cmsg_ptr; 1835 int err, iov_size, total_len, len; 1836 int fput_needed; 1837 1838 /* kernel mode address */ 1839 char addr[MAX_SOCK_ADDR]; 1840 1841 /* user mode address pointers */ 1842 struct sockaddr __user *uaddr; 1843 int __user *uaddr_len; 1844 1845 if (MSG_CMSG_COMPAT & flags) { 1846 if (get_compat_msghdr(&msg_sys, msg_compat)) 1847 return -EFAULT; 1848 } 1849 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1850 return -EFAULT; 1851 1852 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1853 if (!sock) 1854 goto out; 1855 1856 err = -EMSGSIZE; 1857 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1858 goto out_put; 1859 1860 /* Check whether to allocate the iovec area */ 1861 err = -ENOMEM; 1862 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1863 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1864 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1865 if (!iov) 1866 goto out_put; 1867 } 1868 1869 /* 1870 * Save the user-mode address (verify_iovec will change the 1871 * kernel msghdr to use the kernel address space) 1872 */ 1873 1874 uaddr = (void __user *)msg_sys.msg_name; 1875 uaddr_len = COMPAT_NAMELEN(msg); 1876 if (MSG_CMSG_COMPAT & flags) { 1877 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1878 } else 1879 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1880 if (err < 0) 1881 goto out_freeiov; 1882 total_len = err; 1883 1884 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1885 msg_sys.msg_flags = 0; 1886 if (MSG_CMSG_COMPAT & flags) 1887 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1888 1889 if (sock->file->f_flags & O_NONBLOCK) 1890 flags |= MSG_DONTWAIT; 1891 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1892 if (err < 0) 1893 goto out_freeiov; 1894 len = err; 1895 1896 if (uaddr != NULL) { 1897 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1898 uaddr_len); 1899 if (err < 0) 1900 goto out_freeiov; 1901 } 1902 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1903 COMPAT_FLAGS(msg)); 1904 if (err) 1905 goto out_freeiov; 1906 if (MSG_CMSG_COMPAT & flags) 1907 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1908 &msg_compat->msg_controllen); 1909 else 1910 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1911 &msg->msg_controllen); 1912 if (err) 1913 goto out_freeiov; 1914 err = len; 1915 1916 out_freeiov: 1917 if (iov != iovstack) 1918 sock_kfree_s(sock->sk, iov, iov_size); 1919 out_put: 1920 fput_light(sock->file, fput_needed); 1921 out: 1922 return err; 1923 } 1924 1925 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1926 1927 /* Argument list sizes for sys_socketcall */ 1928 #define AL(x) ((x) * sizeof(unsigned long)) 1929 static const unsigned char nargs[18]={ 1930 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1931 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1932 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1933 }; 1934 1935 #undef AL 1936 1937 /* 1938 * System call vectors. 1939 * 1940 * Argument checking cleaned up. Saved 20% in size. 1941 * This function doesn't need to set the kernel lock because 1942 * it is set by the callees. 1943 */ 1944 1945 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1946 { 1947 unsigned long a[6]; 1948 unsigned long a0, a1; 1949 int err; 1950 1951 if (call < 1 || call > SYS_RECVMSG) 1952 return -EINVAL; 1953 1954 /* copy_from_user should be SMP safe. */ 1955 if (copy_from_user(a, args, nargs[call])) 1956 return -EFAULT; 1957 1958 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 1959 if (err) 1960 return err; 1961 1962 a0 = a[0]; 1963 a1 = a[1]; 1964 1965 switch (call) { 1966 case SYS_SOCKET: 1967 err = sys_socket(a0, a1, a[2]); 1968 break; 1969 case SYS_BIND: 1970 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 1971 break; 1972 case SYS_CONNECT: 1973 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1974 break; 1975 case SYS_LISTEN: 1976 err = sys_listen(a0, a1); 1977 break; 1978 case SYS_ACCEPT: 1979 err = 1980 sys_accept(a0, (struct sockaddr __user *)a1, 1981 (int __user *)a[2]); 1982 break; 1983 case SYS_GETSOCKNAME: 1984 err = 1985 sys_getsockname(a0, (struct sockaddr __user *)a1, 1986 (int __user *)a[2]); 1987 break; 1988 case SYS_GETPEERNAME: 1989 err = 1990 sys_getpeername(a0, (struct sockaddr __user *)a1, 1991 (int __user *)a[2]); 1992 break; 1993 case SYS_SOCKETPAIR: 1994 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 1995 break; 1996 case SYS_SEND: 1997 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1998 break; 1999 case SYS_SENDTO: 2000 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2001 (struct sockaddr __user *)a[4], a[5]); 2002 break; 2003 case SYS_RECV: 2004 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2005 break; 2006 case SYS_RECVFROM: 2007 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2008 (struct sockaddr __user *)a[4], 2009 (int __user *)a[5]); 2010 break; 2011 case SYS_SHUTDOWN: 2012 err = sys_shutdown(a0, a1); 2013 break; 2014 case SYS_SETSOCKOPT: 2015 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2016 break; 2017 case SYS_GETSOCKOPT: 2018 err = 2019 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2020 (int __user *)a[4]); 2021 break; 2022 case SYS_SENDMSG: 2023 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2024 break; 2025 case SYS_RECVMSG: 2026 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2027 break; 2028 default: 2029 err = -EINVAL; 2030 break; 2031 } 2032 return err; 2033 } 2034 2035 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2036 2037 /** 2038 * sock_register - add a socket protocol handler 2039 * @ops: description of protocol 2040 * 2041 * This function is called by a protocol handler that wants to 2042 * advertise its address family, and have it linked into the 2043 * socket interface. The value ops->family coresponds to the 2044 * socket system call protocol family. 2045 */ 2046 int sock_register(const struct net_proto_family *ops) 2047 { 2048 int err; 2049 2050 if (ops->family >= NPROTO) { 2051 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2052 NPROTO); 2053 return -ENOBUFS; 2054 } 2055 2056 spin_lock(&net_family_lock); 2057 if (net_families[ops->family]) 2058 err = -EEXIST; 2059 else { 2060 net_families[ops->family] = ops; 2061 err = 0; 2062 } 2063 spin_unlock(&net_family_lock); 2064 2065 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2066 return err; 2067 } 2068 2069 /** 2070 * sock_unregister - remove a protocol handler 2071 * @family: protocol family to remove 2072 * 2073 * This function is called by a protocol handler that wants to 2074 * remove its address family, and have it unlinked from the 2075 * new socket creation. 2076 * 2077 * If protocol handler is a module, then it can use module reference 2078 * counts to protect against new references. If protocol handler is not 2079 * a module then it needs to provide its own protection in 2080 * the ops->create routine. 2081 */ 2082 void sock_unregister(int family) 2083 { 2084 BUG_ON(family < 0 || family >= NPROTO); 2085 2086 spin_lock(&net_family_lock); 2087 net_families[family] = NULL; 2088 spin_unlock(&net_family_lock); 2089 2090 synchronize_rcu(); 2091 2092 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2093 } 2094 2095 static int __init sock_init(void) 2096 { 2097 /* 2098 * Initialize sock SLAB cache. 2099 */ 2100 2101 sk_init(); 2102 2103 /* 2104 * Initialize skbuff SLAB cache 2105 */ 2106 skb_init(); 2107 2108 /* 2109 * Initialize the protocols module. 2110 */ 2111 2112 init_inodecache(); 2113 register_filesystem(&sock_fs_type); 2114 sock_mnt = kern_mount(&sock_fs_type); 2115 2116 /* The real protocol initialization is performed in later initcalls. 2117 */ 2118 2119 #ifdef CONFIG_NETFILTER 2120 netfilter_init(); 2121 #endif 2122 2123 return 0; 2124 } 2125 2126 core_initcall(sock_init); /* early initcall */ 2127 2128 #ifdef CONFIG_PROC_FS 2129 void socket_seq_show(struct seq_file *seq) 2130 { 2131 int cpu; 2132 int counter = 0; 2133 2134 for_each_possible_cpu(cpu) 2135 counter += per_cpu(sockets_in_use, cpu); 2136 2137 /* It can be negative, by the way. 8) */ 2138 if (counter < 0) 2139 counter = 0; 2140 2141 seq_printf(seq, "sockets: used %d\n", counter); 2142 } 2143 #endif /* CONFIG_PROC_FS */ 2144 2145 #ifdef CONFIG_COMPAT 2146 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2147 unsigned long arg) 2148 { 2149 struct socket *sock = file->private_data; 2150 int ret = -ENOIOCTLCMD; 2151 2152 if (sock->ops->compat_ioctl) 2153 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2154 2155 return ret; 2156 } 2157 #endif 2158 2159 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2160 { 2161 return sock->ops->bind(sock, addr, addrlen); 2162 } 2163 2164 int kernel_listen(struct socket *sock, int backlog) 2165 { 2166 return sock->ops->listen(sock, backlog); 2167 } 2168 2169 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2170 { 2171 struct sock *sk = sock->sk; 2172 int err; 2173 2174 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2175 newsock); 2176 if (err < 0) 2177 goto done; 2178 2179 err = sock->ops->accept(sock, *newsock, flags); 2180 if (err < 0) { 2181 sock_release(*newsock); 2182 goto done; 2183 } 2184 2185 (*newsock)->ops = sock->ops; 2186 2187 done: 2188 return err; 2189 } 2190 2191 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2192 int flags) 2193 { 2194 return sock->ops->connect(sock, addr, addrlen, flags); 2195 } 2196 2197 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2198 int *addrlen) 2199 { 2200 return sock->ops->getname(sock, addr, addrlen, 0); 2201 } 2202 2203 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2204 int *addrlen) 2205 { 2206 return sock->ops->getname(sock, addr, addrlen, 1); 2207 } 2208 2209 int kernel_getsockopt(struct socket *sock, int level, int optname, 2210 char *optval, int *optlen) 2211 { 2212 mm_segment_t oldfs = get_fs(); 2213 int err; 2214 2215 set_fs(KERNEL_DS); 2216 if (level == SOL_SOCKET) 2217 err = sock_getsockopt(sock, level, optname, optval, optlen); 2218 else 2219 err = sock->ops->getsockopt(sock, level, optname, optval, 2220 optlen); 2221 set_fs(oldfs); 2222 return err; 2223 } 2224 2225 int kernel_setsockopt(struct socket *sock, int level, int optname, 2226 char *optval, int optlen) 2227 { 2228 mm_segment_t oldfs = get_fs(); 2229 int err; 2230 2231 set_fs(KERNEL_DS); 2232 if (level == SOL_SOCKET) 2233 err = sock_setsockopt(sock, level, optname, optval, optlen); 2234 else 2235 err = sock->ops->setsockopt(sock, level, optname, optval, 2236 optlen); 2237 set_fs(oldfs); 2238 return err; 2239 } 2240 2241 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2242 size_t size, int flags) 2243 { 2244 if (sock->ops->sendpage) 2245 return sock->ops->sendpage(sock, page, offset, size, flags); 2246 2247 return sock_no_sendpage(sock, page, offset, size, flags); 2248 } 2249 2250 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2251 { 2252 mm_segment_t oldfs = get_fs(); 2253 int err; 2254 2255 set_fs(KERNEL_DS); 2256 err = sock->ops->ioctl(sock, cmd, arg); 2257 set_fs(oldfs); 2258 2259 return err; 2260 } 2261 2262 /* ABI emulation layers need these two */ 2263 EXPORT_SYMBOL(move_addr_to_kernel); 2264 EXPORT_SYMBOL(move_addr_to_user); 2265 EXPORT_SYMBOL(sock_create); 2266 EXPORT_SYMBOL(sock_create_kern); 2267 EXPORT_SYMBOL(sock_create_lite); 2268 EXPORT_SYMBOL(sock_map_fd); 2269 EXPORT_SYMBOL(sock_recvmsg); 2270 EXPORT_SYMBOL(sock_register); 2271 EXPORT_SYMBOL(sock_release); 2272 EXPORT_SYMBOL(sock_sendmsg); 2273 EXPORT_SYMBOL(sock_unregister); 2274 EXPORT_SYMBOL(sock_wake_async); 2275 EXPORT_SYMBOL(sockfd_lookup); 2276 EXPORT_SYMBOL(kernel_sendmsg); 2277 EXPORT_SYMBOL(kernel_recvmsg); 2278 EXPORT_SYMBOL(kernel_bind); 2279 EXPORT_SYMBOL(kernel_listen); 2280 EXPORT_SYMBOL(kernel_accept); 2281 EXPORT_SYMBOL(kernel_connect); 2282 EXPORT_SYMBOL(kernel_getsockname); 2283 EXPORT_SYMBOL(kernel_getpeername); 2284 EXPORT_SYMBOL(kernel_getsockopt); 2285 EXPORT_SYMBOL(kernel_setsockopt); 2286 EXPORT_SYMBOL(kernel_sendpage); 2287 EXPORT_SYMBOL(kernel_sock_ioctl); 2288