1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 91 #include <asm/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/sockios.h> 104 #include <linux/atalk.h> 105 106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 108 unsigned long nr_segs, loff_t pos); 109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 112 113 static int sock_close(struct inode *inode, struct file *file); 114 static unsigned int sock_poll(struct file *file, 115 struct poll_table_struct *wait); 116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 117 #ifdef CONFIG_COMPAT 118 static long compat_sock_ioctl(struct file *file, 119 unsigned int cmd, unsigned long arg); 120 #endif 121 static int sock_fasync(int fd, struct file *filp, int on); 122 static ssize_t sock_sendpage(struct file *file, struct page *page, 123 int offset, size_t size, loff_t *ppos, int more); 124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 125 struct pipe_inode_info *pipe, size_t len, 126 unsigned int flags); 127 128 /* 129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 130 * in the operation structures but are done directly via the socketcall() multiplexor. 131 */ 132 133 static const struct file_operations socket_file_ops = { 134 .owner = THIS_MODULE, 135 .llseek = no_llseek, 136 .aio_read = sock_aio_read, 137 .aio_write = sock_aio_write, 138 .poll = sock_poll, 139 .unlocked_ioctl = sock_ioctl, 140 #ifdef CONFIG_COMPAT 141 .compat_ioctl = compat_sock_ioctl, 142 #endif 143 .mmap = sock_mmap, 144 .open = sock_no_open, /* special open code to disallow open via /proc */ 145 .release = sock_close, 146 .fasync = sock_fasync, 147 .sendpage = sock_sendpage, 148 .splice_write = generic_splice_sendpage, 149 .splice_read = sock_splice_read, 150 }; 151 152 /* 153 * The protocol list. Each protocol is registered in here. 154 */ 155 156 static DEFINE_SPINLOCK(net_family_lock); 157 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 158 159 /* 160 * Statistics counters of the socket lists 161 */ 162 163 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 172 16 for IP, 16 for IPX, 173 24 for IPv6, 174 about 80 for AX.25 175 must be at least one bigger than 176 the AF_UNIX size (see net/unix/af_unix.c 177 :unix_mkname()). 178 */ 179 180 /** 181 * move_addr_to_kernel - copy a socket address into kernel space 182 * @uaddr: Address in user space 183 * @kaddr: Address in kernel space 184 * @ulen: Length in user space 185 * 186 * The address is copied into kernel space. If the provided address is 187 * too long an error code of -EINVAL is returned. If the copy gives 188 * invalid addresses -EFAULT is returned. On a success 0 is returned. 189 */ 190 191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 192 { 193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 194 return -EINVAL; 195 if (ulen == 0) 196 return 0; 197 if (copy_from_user(kaddr, uaddr, ulen)) 198 return -EFAULT; 199 return audit_sockaddr(ulen, kaddr); 200 } 201 202 /** 203 * move_addr_to_user - copy an address to user space 204 * @kaddr: kernel space address 205 * @klen: length of address in kernel 206 * @uaddr: user space address 207 * @ulen: pointer to user length field 208 * 209 * The value pointed to by ulen on entry is the buffer length available. 210 * This is overwritten with the buffer space used. -EINVAL is returned 211 * if an overlong buffer is specified or a negative buffer size. -EFAULT 212 * is returned if either the buffer or the length field are not 213 * accessible. 214 * After copying the data up to the limit the user specifies, the true 215 * length of the data is written over the length limit the user 216 * specified. Zero is returned for a success. 217 */ 218 219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 220 int __user *ulen) 221 { 222 int err; 223 int len; 224 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0 || len > sizeof(struct sockaddr_storage)) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 252 if (!ei) 253 return NULL; 254 init_waitqueue_head(&ei->socket.wait); 255 256 ei->socket.fasync_list = NULL; 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 kmem_cache_free(sock_inode_cachep, 269 container_of(inode, struct socket_alloc, vfs_inode)); 270 } 271 272 static void init_once(void *foo) 273 { 274 struct socket_alloc *ei = (struct socket_alloc *)foo; 275 276 inode_init_once(&ei->vfs_inode); 277 } 278 279 static int init_inodecache(void) 280 { 281 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 282 sizeof(struct socket_alloc), 283 0, 284 (SLAB_HWCACHE_ALIGN | 285 SLAB_RECLAIM_ACCOUNT | 286 SLAB_MEM_SPREAD), 287 init_once); 288 if (sock_inode_cachep == NULL) 289 return -ENOMEM; 290 return 0; 291 } 292 293 static const struct super_operations sockfs_ops = { 294 .alloc_inode = sock_alloc_inode, 295 .destroy_inode =sock_destroy_inode, 296 .statfs = simple_statfs, 297 }; 298 299 static int sockfs_get_sb(struct file_system_type *fs_type, 300 int flags, const char *dev_name, void *data, 301 struct vfsmount *mnt) 302 { 303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 304 mnt); 305 } 306 307 static struct vfsmount *sock_mnt __read_mostly; 308 309 static struct file_system_type sock_fs_type = { 310 .name = "sockfs", 311 .get_sb = sockfs_get_sb, 312 .kill_sb = kill_anon_super, 313 }; 314 315 static int sockfs_delete_dentry(struct dentry *dentry) 316 { 317 /* 318 * At creation time, we pretended this dentry was hashed 319 * (by clearing DCACHE_UNHASHED bit in d_flags) 320 * At delete time, we restore the truth : not hashed. 321 * (so that dput() can proceed correctly) 322 */ 323 dentry->d_flags |= DCACHE_UNHASHED; 324 return 0; 325 } 326 327 /* 328 * sockfs_dname() is called from d_path(). 329 */ 330 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 331 { 332 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 333 dentry->d_inode->i_ino); 334 } 335 336 static const struct dentry_operations sockfs_dentry_operations = { 337 .d_delete = sockfs_delete_dentry, 338 .d_dname = sockfs_dname, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 static int sock_alloc_fd(struct file **filep, int flags) 359 { 360 int fd; 361 362 fd = get_unused_fd_flags(flags); 363 if (likely(fd >= 0)) { 364 struct file *file = get_empty_filp(); 365 366 *filep = file; 367 if (unlikely(!file)) { 368 put_unused_fd(fd); 369 return -ENFILE; 370 } 371 } else 372 *filep = NULL; 373 return fd; 374 } 375 376 static int sock_attach_fd(struct socket *sock, struct file *file, int flags) 377 { 378 struct dentry *dentry; 379 struct qstr name = { .name = "" }; 380 381 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 382 if (unlikely(!dentry)) 383 return -ENOMEM; 384 385 dentry->d_op = &sockfs_dentry_operations; 386 /* 387 * We dont want to push this dentry into global dentry hash table. 388 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 389 * This permits a working /proc/$pid/fd/XXX on sockets 390 */ 391 dentry->d_flags &= ~DCACHE_UNHASHED; 392 d_instantiate(dentry, SOCK_INODE(sock)); 393 394 sock->file = file; 395 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 396 &socket_file_ops); 397 SOCK_INODE(sock)->i_fop = &socket_file_ops; 398 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 399 file->f_pos = 0; 400 file->private_data = sock; 401 402 return 0; 403 } 404 405 int sock_map_fd(struct socket *sock, int flags) 406 { 407 struct file *newfile; 408 int fd = sock_alloc_fd(&newfile, flags); 409 410 if (likely(fd >= 0)) { 411 int err = sock_attach_fd(sock, newfile, flags); 412 413 if (unlikely(err < 0)) { 414 put_filp(newfile); 415 put_unused_fd(fd); 416 return err; 417 } 418 fd_install(fd, newfile); 419 } 420 return fd; 421 } 422 423 static struct socket *sock_from_file(struct file *file, int *err) 424 { 425 if (file->f_op == &socket_file_ops) 426 return file->private_data; /* set in sock_map_fd */ 427 428 *err = -ENOTSOCK; 429 return NULL; 430 } 431 432 /** 433 * sockfd_lookup - Go from a file number to its socket slot 434 * @fd: file handle 435 * @err: pointer to an error code return 436 * 437 * The file handle passed in is locked and the socket it is bound 438 * too is returned. If an error occurs the err pointer is overwritten 439 * with a negative errno code and NULL is returned. The function checks 440 * for both invalid handles and passing a handle which is not a socket. 441 * 442 * On a success the socket object pointer is returned. 443 */ 444 445 struct socket *sockfd_lookup(int fd, int *err) 446 { 447 struct file *file; 448 struct socket *sock; 449 450 file = fget(fd); 451 if (!file) { 452 *err = -EBADF; 453 return NULL; 454 } 455 456 sock = sock_from_file(file, err); 457 if (!sock) 458 fput(file); 459 return sock; 460 } 461 462 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 463 { 464 struct file *file; 465 struct socket *sock; 466 467 *err = -EBADF; 468 file = fget_light(fd, fput_needed); 469 if (file) { 470 sock = sock_from_file(file, err); 471 if (sock) 472 return sock; 473 fput_light(file, *fput_needed); 474 } 475 return NULL; 476 } 477 478 /** 479 * sock_alloc - allocate a socket 480 * 481 * Allocate a new inode and socket object. The two are bound together 482 * and initialised. The socket is then returned. If we are out of inodes 483 * NULL is returned. 484 */ 485 486 static struct socket *sock_alloc(void) 487 { 488 struct inode *inode; 489 struct socket *sock; 490 491 inode = new_inode(sock_mnt->mnt_sb); 492 if (!inode) 493 return NULL; 494 495 sock = SOCKET_I(inode); 496 497 kmemcheck_annotate_bitfield(sock, type); 498 inode->i_mode = S_IFSOCK | S_IRWXUGO; 499 inode->i_uid = current_fsuid(); 500 inode->i_gid = current_fsgid(); 501 502 percpu_add(sockets_in_use, 1); 503 return sock; 504 } 505 506 /* 507 * In theory you can't get an open on this inode, but /proc provides 508 * a back door. Remember to keep it shut otherwise you'll let the 509 * creepy crawlies in. 510 */ 511 512 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 513 { 514 return -ENXIO; 515 } 516 517 const struct file_operations bad_sock_fops = { 518 .owner = THIS_MODULE, 519 .open = sock_no_open, 520 }; 521 522 /** 523 * sock_release - close a socket 524 * @sock: socket to close 525 * 526 * The socket is released from the protocol stack if it has a release 527 * callback, and the inode is then released if the socket is bound to 528 * an inode not a file. 529 */ 530 531 void sock_release(struct socket *sock) 532 { 533 if (sock->ops) { 534 struct module *owner = sock->ops->owner; 535 536 sock->ops->release(sock); 537 sock->ops = NULL; 538 module_put(owner); 539 } 540 541 if (sock->fasync_list) 542 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 543 544 percpu_sub(sockets_in_use, 1); 545 if (!sock->file) { 546 iput(SOCK_INODE(sock)); 547 return; 548 } 549 sock->file = NULL; 550 } 551 552 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk, 553 union skb_shared_tx *shtx) 554 { 555 shtx->flags = 0; 556 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 557 shtx->hardware = 1; 558 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 559 shtx->software = 1; 560 return 0; 561 } 562 EXPORT_SYMBOL(sock_tx_timestamp); 563 564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 565 struct msghdr *msg, size_t size) 566 { 567 struct sock_iocb *si = kiocb_to_siocb(iocb); 568 int err; 569 570 si->sock = sock; 571 si->scm = NULL; 572 si->msg = msg; 573 si->size = size; 574 575 err = security_socket_sendmsg(sock, msg, size); 576 if (err) 577 return err; 578 579 return sock->ops->sendmsg(iocb, sock, msg, size); 580 } 581 582 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 583 { 584 struct kiocb iocb; 585 struct sock_iocb siocb; 586 int ret; 587 588 init_sync_kiocb(&iocb, NULL); 589 iocb.private = &siocb; 590 ret = __sock_sendmsg(&iocb, sock, msg, size); 591 if (-EIOCBQUEUED == ret) 592 ret = wait_on_sync_kiocb(&iocb); 593 return ret; 594 } 595 596 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 597 struct kvec *vec, size_t num, size_t size) 598 { 599 mm_segment_t oldfs = get_fs(); 600 int result; 601 602 set_fs(KERNEL_DS); 603 /* 604 * the following is safe, since for compiler definitions of kvec and 605 * iovec are identical, yielding the same in-core layout and alignment 606 */ 607 msg->msg_iov = (struct iovec *)vec; 608 msg->msg_iovlen = num; 609 result = sock_sendmsg(sock, msg, size); 610 set_fs(oldfs); 611 return result; 612 } 613 614 static int ktime2ts(ktime_t kt, struct timespec *ts) 615 { 616 if (kt.tv64) { 617 *ts = ktime_to_timespec(kt); 618 return 1; 619 } else { 620 return 0; 621 } 622 } 623 624 /* 625 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 626 */ 627 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 628 struct sk_buff *skb) 629 { 630 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 631 struct timespec ts[3]; 632 int empty = 1; 633 struct skb_shared_hwtstamps *shhwtstamps = 634 skb_hwtstamps(skb); 635 636 /* Race occurred between timestamp enabling and packet 637 receiving. Fill in the current time for now. */ 638 if (need_software_tstamp && skb->tstamp.tv64 == 0) 639 __net_timestamp(skb); 640 641 if (need_software_tstamp) { 642 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 643 struct timeval tv; 644 skb_get_timestamp(skb, &tv); 645 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 646 sizeof(tv), &tv); 647 } else { 648 struct timespec ts; 649 skb_get_timestampns(skb, &ts); 650 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 651 sizeof(ts), &ts); 652 } 653 } 654 655 656 memset(ts, 0, sizeof(ts)); 657 if (skb->tstamp.tv64 && 658 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 659 skb_get_timestampns(skb, ts + 0); 660 empty = 0; 661 } 662 if (shhwtstamps) { 663 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 664 ktime2ts(shhwtstamps->syststamp, ts + 1)) 665 empty = 0; 666 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 667 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 668 empty = 0; 669 } 670 if (!empty) 671 put_cmsg(msg, SOL_SOCKET, 672 SCM_TIMESTAMPING, sizeof(ts), &ts); 673 } 674 675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 676 677 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 678 { 679 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 680 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 681 sizeof(__u32), &skb->dropcount); 682 } 683 684 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 685 struct sk_buff *skb) 686 { 687 sock_recv_timestamp(msg, sk, skb); 688 sock_recv_drops(msg, sk, skb); 689 } 690 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops); 691 692 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 693 struct msghdr *msg, size_t size, int flags) 694 { 695 struct sock_iocb *si = kiocb_to_siocb(iocb); 696 697 si->sock = sock; 698 si->scm = NULL; 699 si->msg = msg; 700 si->size = size; 701 si->flags = flags; 702 703 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 704 } 705 706 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 707 struct msghdr *msg, size_t size, int flags) 708 { 709 int err = security_socket_recvmsg(sock, msg, size, flags); 710 711 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 712 } 713 714 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 715 size_t size, int flags) 716 { 717 struct kiocb iocb; 718 struct sock_iocb siocb; 719 int ret; 720 721 init_sync_kiocb(&iocb, NULL); 722 iocb.private = &siocb; 723 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 724 if (-EIOCBQUEUED == ret) 725 ret = wait_on_sync_kiocb(&iocb); 726 return ret; 727 } 728 729 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 730 size_t size, int flags) 731 { 732 struct kiocb iocb; 733 struct sock_iocb siocb; 734 int ret; 735 736 init_sync_kiocb(&iocb, NULL); 737 iocb.private = &siocb; 738 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 739 if (-EIOCBQUEUED == ret) 740 ret = wait_on_sync_kiocb(&iocb); 741 return ret; 742 } 743 744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 745 struct kvec *vec, size_t num, size_t size, int flags) 746 { 747 mm_segment_t oldfs = get_fs(); 748 int result; 749 750 set_fs(KERNEL_DS); 751 /* 752 * the following is safe, since for compiler definitions of kvec and 753 * iovec are identical, yielding the same in-core layout and alignment 754 */ 755 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 756 result = sock_recvmsg(sock, msg, size, flags); 757 set_fs(oldfs); 758 return result; 759 } 760 761 static void sock_aio_dtor(struct kiocb *iocb) 762 { 763 kfree(iocb->private); 764 } 765 766 static ssize_t sock_sendpage(struct file *file, struct page *page, 767 int offset, size_t size, loff_t *ppos, int more) 768 { 769 struct socket *sock; 770 int flags; 771 772 sock = file->private_data; 773 774 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 775 if (more) 776 flags |= MSG_MORE; 777 778 return kernel_sendpage(sock, page, offset, size, flags); 779 } 780 781 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 782 struct pipe_inode_info *pipe, size_t len, 783 unsigned int flags) 784 { 785 struct socket *sock = file->private_data; 786 787 if (unlikely(!sock->ops->splice_read)) 788 return -EINVAL; 789 790 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 791 } 792 793 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 794 struct sock_iocb *siocb) 795 { 796 if (!is_sync_kiocb(iocb)) { 797 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 798 if (!siocb) 799 return NULL; 800 iocb->ki_dtor = sock_aio_dtor; 801 } 802 803 siocb->kiocb = iocb; 804 iocb->private = siocb; 805 return siocb; 806 } 807 808 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 809 struct file *file, const struct iovec *iov, 810 unsigned long nr_segs) 811 { 812 struct socket *sock = file->private_data; 813 size_t size = 0; 814 int i; 815 816 for (i = 0; i < nr_segs; i++) 817 size += iov[i].iov_len; 818 819 msg->msg_name = NULL; 820 msg->msg_namelen = 0; 821 msg->msg_control = NULL; 822 msg->msg_controllen = 0; 823 msg->msg_iov = (struct iovec *)iov; 824 msg->msg_iovlen = nr_segs; 825 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 826 827 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 828 } 829 830 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 831 unsigned long nr_segs, loff_t pos) 832 { 833 struct sock_iocb siocb, *x; 834 835 if (pos != 0) 836 return -ESPIPE; 837 838 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 839 return 0; 840 841 842 x = alloc_sock_iocb(iocb, &siocb); 843 if (!x) 844 return -ENOMEM; 845 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 846 } 847 848 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 849 struct file *file, const struct iovec *iov, 850 unsigned long nr_segs) 851 { 852 struct socket *sock = file->private_data; 853 size_t size = 0; 854 int i; 855 856 for (i = 0; i < nr_segs; i++) 857 size += iov[i].iov_len; 858 859 msg->msg_name = NULL; 860 msg->msg_namelen = 0; 861 msg->msg_control = NULL; 862 msg->msg_controllen = 0; 863 msg->msg_iov = (struct iovec *)iov; 864 msg->msg_iovlen = nr_segs; 865 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 866 if (sock->type == SOCK_SEQPACKET) 867 msg->msg_flags |= MSG_EOR; 868 869 return __sock_sendmsg(iocb, sock, msg, size); 870 } 871 872 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 873 unsigned long nr_segs, loff_t pos) 874 { 875 struct sock_iocb siocb, *x; 876 877 if (pos != 0) 878 return -ESPIPE; 879 880 x = alloc_sock_iocb(iocb, &siocb); 881 if (!x) 882 return -ENOMEM; 883 884 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 885 } 886 887 /* 888 * Atomic setting of ioctl hooks to avoid race 889 * with module unload. 890 */ 891 892 static DEFINE_MUTEX(br_ioctl_mutex); 893 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 894 895 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 896 { 897 mutex_lock(&br_ioctl_mutex); 898 br_ioctl_hook = hook; 899 mutex_unlock(&br_ioctl_mutex); 900 } 901 902 EXPORT_SYMBOL(brioctl_set); 903 904 static DEFINE_MUTEX(vlan_ioctl_mutex); 905 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 906 907 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 908 { 909 mutex_lock(&vlan_ioctl_mutex); 910 vlan_ioctl_hook = hook; 911 mutex_unlock(&vlan_ioctl_mutex); 912 } 913 914 EXPORT_SYMBOL(vlan_ioctl_set); 915 916 static DEFINE_MUTEX(dlci_ioctl_mutex); 917 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 918 919 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 920 { 921 mutex_lock(&dlci_ioctl_mutex); 922 dlci_ioctl_hook = hook; 923 mutex_unlock(&dlci_ioctl_mutex); 924 } 925 926 EXPORT_SYMBOL(dlci_ioctl_set); 927 928 static long sock_do_ioctl(struct net *net, struct socket *sock, 929 unsigned int cmd, unsigned long arg) 930 { 931 int err; 932 void __user *argp = (void __user *)arg; 933 934 err = sock->ops->ioctl(sock, cmd, arg); 935 936 /* 937 * If this ioctl is unknown try to hand it down 938 * to the NIC driver. 939 */ 940 if (err == -ENOIOCTLCMD) 941 err = dev_ioctl(net, cmd, argp); 942 943 return err; 944 } 945 946 /* 947 * With an ioctl, arg may well be a user mode pointer, but we don't know 948 * what to do with it - that's up to the protocol still. 949 */ 950 951 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 952 { 953 struct socket *sock; 954 struct sock *sk; 955 void __user *argp = (void __user *)arg; 956 int pid, err; 957 struct net *net; 958 959 sock = file->private_data; 960 sk = sock->sk; 961 net = sock_net(sk); 962 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 963 err = dev_ioctl(net, cmd, argp); 964 } else 965 #ifdef CONFIG_WEXT_CORE 966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 967 err = dev_ioctl(net, cmd, argp); 968 } else 969 #endif 970 switch (cmd) { 971 case FIOSETOWN: 972 case SIOCSPGRP: 973 err = -EFAULT; 974 if (get_user(pid, (int __user *)argp)) 975 break; 976 err = f_setown(sock->file, pid, 1); 977 break; 978 case FIOGETOWN: 979 case SIOCGPGRP: 980 err = put_user(f_getown(sock->file), 981 (int __user *)argp); 982 break; 983 case SIOCGIFBR: 984 case SIOCSIFBR: 985 case SIOCBRADDBR: 986 case SIOCBRDELBR: 987 err = -ENOPKG; 988 if (!br_ioctl_hook) 989 request_module("bridge"); 990 991 mutex_lock(&br_ioctl_mutex); 992 if (br_ioctl_hook) 993 err = br_ioctl_hook(net, cmd, argp); 994 mutex_unlock(&br_ioctl_mutex); 995 break; 996 case SIOCGIFVLAN: 997 case SIOCSIFVLAN: 998 err = -ENOPKG; 999 if (!vlan_ioctl_hook) 1000 request_module("8021q"); 1001 1002 mutex_lock(&vlan_ioctl_mutex); 1003 if (vlan_ioctl_hook) 1004 err = vlan_ioctl_hook(net, argp); 1005 mutex_unlock(&vlan_ioctl_mutex); 1006 break; 1007 case SIOCADDDLCI: 1008 case SIOCDELDLCI: 1009 err = -ENOPKG; 1010 if (!dlci_ioctl_hook) 1011 request_module("dlci"); 1012 1013 mutex_lock(&dlci_ioctl_mutex); 1014 if (dlci_ioctl_hook) 1015 err = dlci_ioctl_hook(cmd, argp); 1016 mutex_unlock(&dlci_ioctl_mutex); 1017 break; 1018 default: 1019 err = sock_do_ioctl(net, sock, cmd, arg); 1020 break; 1021 } 1022 return err; 1023 } 1024 1025 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1026 { 1027 int err; 1028 struct socket *sock = NULL; 1029 1030 err = security_socket_create(family, type, protocol, 1); 1031 if (err) 1032 goto out; 1033 1034 sock = sock_alloc(); 1035 if (!sock) { 1036 err = -ENOMEM; 1037 goto out; 1038 } 1039 1040 sock->type = type; 1041 err = security_socket_post_create(sock, family, type, protocol, 1); 1042 if (err) 1043 goto out_release; 1044 1045 out: 1046 *res = sock; 1047 return err; 1048 out_release: 1049 sock_release(sock); 1050 sock = NULL; 1051 goto out; 1052 } 1053 1054 /* No kernel lock held - perfect */ 1055 static unsigned int sock_poll(struct file *file, poll_table *wait) 1056 { 1057 struct socket *sock; 1058 1059 /* 1060 * We can't return errors to poll, so it's either yes or no. 1061 */ 1062 sock = file->private_data; 1063 return sock->ops->poll(file, sock, wait); 1064 } 1065 1066 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1067 { 1068 struct socket *sock = file->private_data; 1069 1070 return sock->ops->mmap(file, sock, vma); 1071 } 1072 1073 static int sock_close(struct inode *inode, struct file *filp) 1074 { 1075 /* 1076 * It was possible the inode is NULL we were 1077 * closing an unfinished socket. 1078 */ 1079 1080 if (!inode) { 1081 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1082 return 0; 1083 } 1084 sock_release(SOCKET_I(inode)); 1085 return 0; 1086 } 1087 1088 /* 1089 * Update the socket async list 1090 * 1091 * Fasync_list locking strategy. 1092 * 1093 * 1. fasync_list is modified only under process context socket lock 1094 * i.e. under semaphore. 1095 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1096 * or under socket lock. 1097 * 3. fasync_list can be used from softirq context, so that 1098 * modification under socket lock have to be enhanced with 1099 * write_lock_bh(&sk->sk_callback_lock). 1100 * --ANK (990710) 1101 */ 1102 1103 static int sock_fasync(int fd, struct file *filp, int on) 1104 { 1105 struct fasync_struct *fa, *fna = NULL, **prev; 1106 struct socket *sock; 1107 struct sock *sk; 1108 1109 if (on) { 1110 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1111 if (fna == NULL) 1112 return -ENOMEM; 1113 } 1114 1115 sock = filp->private_data; 1116 1117 sk = sock->sk; 1118 if (sk == NULL) { 1119 kfree(fna); 1120 return -EINVAL; 1121 } 1122 1123 lock_sock(sk); 1124 1125 spin_lock(&filp->f_lock); 1126 if (on) 1127 filp->f_flags |= FASYNC; 1128 else 1129 filp->f_flags &= ~FASYNC; 1130 spin_unlock(&filp->f_lock); 1131 1132 prev = &(sock->fasync_list); 1133 1134 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1135 if (fa->fa_file == filp) 1136 break; 1137 1138 if (on) { 1139 if (fa != NULL) { 1140 write_lock_bh(&sk->sk_callback_lock); 1141 fa->fa_fd = fd; 1142 write_unlock_bh(&sk->sk_callback_lock); 1143 1144 kfree(fna); 1145 goto out; 1146 } 1147 fna->fa_file = filp; 1148 fna->fa_fd = fd; 1149 fna->magic = FASYNC_MAGIC; 1150 fna->fa_next = sock->fasync_list; 1151 write_lock_bh(&sk->sk_callback_lock); 1152 sock->fasync_list = fna; 1153 sock_set_flag(sk, SOCK_FASYNC); 1154 write_unlock_bh(&sk->sk_callback_lock); 1155 } else { 1156 if (fa != NULL) { 1157 write_lock_bh(&sk->sk_callback_lock); 1158 *prev = fa->fa_next; 1159 if (!sock->fasync_list) 1160 sock_reset_flag(sk, SOCK_FASYNC); 1161 write_unlock_bh(&sk->sk_callback_lock); 1162 kfree(fa); 1163 } 1164 } 1165 1166 out: 1167 release_sock(sock->sk); 1168 return 0; 1169 } 1170 1171 /* This function may be called only under socket lock or callback_lock */ 1172 1173 int sock_wake_async(struct socket *sock, int how, int band) 1174 { 1175 if (!sock || !sock->fasync_list) 1176 return -1; 1177 switch (how) { 1178 case SOCK_WAKE_WAITD: 1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1180 break; 1181 goto call_kill; 1182 case SOCK_WAKE_SPACE: 1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1184 break; 1185 /* fall through */ 1186 case SOCK_WAKE_IO: 1187 call_kill: 1188 __kill_fasync(sock->fasync_list, SIGIO, band); 1189 break; 1190 case SOCK_WAKE_URG: 1191 __kill_fasync(sock->fasync_list, SIGURG, band); 1192 } 1193 return 0; 1194 } 1195 1196 static int __sock_create(struct net *net, int family, int type, int protocol, 1197 struct socket **res, int kern) 1198 { 1199 int err; 1200 struct socket *sock; 1201 const struct net_proto_family *pf; 1202 1203 /* 1204 * Check protocol is in range 1205 */ 1206 if (family < 0 || family >= NPROTO) 1207 return -EAFNOSUPPORT; 1208 if (type < 0 || type >= SOCK_MAX) 1209 return -EINVAL; 1210 1211 /* Compatibility. 1212 1213 This uglymoron is moved from INET layer to here to avoid 1214 deadlock in module load. 1215 */ 1216 if (family == PF_INET && type == SOCK_PACKET) { 1217 static int warned; 1218 if (!warned) { 1219 warned = 1; 1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1221 current->comm); 1222 } 1223 family = PF_PACKET; 1224 } 1225 1226 err = security_socket_create(family, type, protocol, kern); 1227 if (err) 1228 return err; 1229 1230 /* 1231 * Allocate the socket and allow the family to set things up. if 1232 * the protocol is 0, the family is instructed to select an appropriate 1233 * default. 1234 */ 1235 sock = sock_alloc(); 1236 if (!sock) { 1237 if (net_ratelimit()) 1238 printk(KERN_WARNING "socket: no more sockets\n"); 1239 return -ENFILE; /* Not exactly a match, but its the 1240 closest posix thing */ 1241 } 1242 1243 sock->type = type; 1244 1245 #ifdef CONFIG_MODULES 1246 /* Attempt to load a protocol module if the find failed. 1247 * 1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1249 * requested real, full-featured networking support upon configuration. 1250 * Otherwise module support will break! 1251 */ 1252 if (net_families[family] == NULL) 1253 request_module("net-pf-%d", family); 1254 #endif 1255 1256 rcu_read_lock(); 1257 pf = rcu_dereference(net_families[family]); 1258 err = -EAFNOSUPPORT; 1259 if (!pf) 1260 goto out_release; 1261 1262 /* 1263 * We will call the ->create function, that possibly is in a loadable 1264 * module, so we have to bump that loadable module refcnt first. 1265 */ 1266 if (!try_module_get(pf->owner)) 1267 goto out_release; 1268 1269 /* Now protected by module ref count */ 1270 rcu_read_unlock(); 1271 1272 err = pf->create(net, sock, protocol, kern); 1273 if (err < 0) 1274 goto out_module_put; 1275 1276 /* 1277 * Now to bump the refcnt of the [loadable] module that owns this 1278 * socket at sock_release time we decrement its refcnt. 1279 */ 1280 if (!try_module_get(sock->ops->owner)) 1281 goto out_module_busy; 1282 1283 /* 1284 * Now that we're done with the ->create function, the [loadable] 1285 * module can have its refcnt decremented 1286 */ 1287 module_put(pf->owner); 1288 err = security_socket_post_create(sock, family, type, protocol, kern); 1289 if (err) 1290 goto out_sock_release; 1291 *res = sock; 1292 1293 return 0; 1294 1295 out_module_busy: 1296 err = -EAFNOSUPPORT; 1297 out_module_put: 1298 sock->ops = NULL; 1299 module_put(pf->owner); 1300 out_sock_release: 1301 sock_release(sock); 1302 return err; 1303 1304 out_release: 1305 rcu_read_unlock(); 1306 goto out_sock_release; 1307 } 1308 1309 int sock_create(int family, int type, int protocol, struct socket **res) 1310 { 1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1312 } 1313 1314 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1315 { 1316 return __sock_create(&init_net, family, type, protocol, res, 1); 1317 } 1318 1319 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1320 { 1321 int retval; 1322 struct socket *sock; 1323 int flags; 1324 1325 /* Check the SOCK_* constants for consistency. */ 1326 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1327 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1328 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1329 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1330 1331 flags = type & ~SOCK_TYPE_MASK; 1332 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1333 return -EINVAL; 1334 type &= SOCK_TYPE_MASK; 1335 1336 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1337 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1338 1339 retval = sock_create(family, type, protocol, &sock); 1340 if (retval < 0) 1341 goto out; 1342 1343 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1344 if (retval < 0) 1345 goto out_release; 1346 1347 out: 1348 /* It may be already another descriptor 8) Not kernel problem. */ 1349 return retval; 1350 1351 out_release: 1352 sock_release(sock); 1353 return retval; 1354 } 1355 1356 /* 1357 * Create a pair of connected sockets. 1358 */ 1359 1360 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1361 int __user *, usockvec) 1362 { 1363 struct socket *sock1, *sock2; 1364 int fd1, fd2, err; 1365 struct file *newfile1, *newfile2; 1366 int flags; 1367 1368 flags = type & ~SOCK_TYPE_MASK; 1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1370 return -EINVAL; 1371 type &= SOCK_TYPE_MASK; 1372 1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1375 1376 /* 1377 * Obtain the first socket and check if the underlying protocol 1378 * supports the socketpair call. 1379 */ 1380 1381 err = sock_create(family, type, protocol, &sock1); 1382 if (err < 0) 1383 goto out; 1384 1385 err = sock_create(family, type, protocol, &sock2); 1386 if (err < 0) 1387 goto out_release_1; 1388 1389 err = sock1->ops->socketpair(sock1, sock2); 1390 if (err < 0) 1391 goto out_release_both; 1392 1393 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC); 1394 if (unlikely(fd1 < 0)) { 1395 err = fd1; 1396 goto out_release_both; 1397 } 1398 1399 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC); 1400 if (unlikely(fd2 < 0)) { 1401 err = fd2; 1402 put_filp(newfile1); 1403 put_unused_fd(fd1); 1404 goto out_release_both; 1405 } 1406 1407 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK); 1408 if (unlikely(err < 0)) { 1409 goto out_fd2; 1410 } 1411 1412 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK); 1413 if (unlikely(err < 0)) { 1414 fput(newfile1); 1415 goto out_fd1; 1416 } 1417 1418 audit_fd_pair(fd1, fd2); 1419 fd_install(fd1, newfile1); 1420 fd_install(fd2, newfile2); 1421 /* fd1 and fd2 may be already another descriptors. 1422 * Not kernel problem. 1423 */ 1424 1425 err = put_user(fd1, &usockvec[0]); 1426 if (!err) 1427 err = put_user(fd2, &usockvec[1]); 1428 if (!err) 1429 return 0; 1430 1431 sys_close(fd2); 1432 sys_close(fd1); 1433 return err; 1434 1435 out_release_both: 1436 sock_release(sock2); 1437 out_release_1: 1438 sock_release(sock1); 1439 out: 1440 return err; 1441 1442 out_fd2: 1443 put_filp(newfile1); 1444 sock_release(sock1); 1445 out_fd1: 1446 put_filp(newfile2); 1447 sock_release(sock2); 1448 put_unused_fd(fd1); 1449 put_unused_fd(fd2); 1450 goto out; 1451 } 1452 1453 /* 1454 * Bind a name to a socket. Nothing much to do here since it's 1455 * the protocol's responsibility to handle the local address. 1456 * 1457 * We move the socket address to kernel space before we call 1458 * the protocol layer (having also checked the address is ok). 1459 */ 1460 1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1462 { 1463 struct socket *sock; 1464 struct sockaddr_storage address; 1465 int err, fput_needed; 1466 1467 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1468 if (sock) { 1469 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1470 if (err >= 0) { 1471 err = security_socket_bind(sock, 1472 (struct sockaddr *)&address, 1473 addrlen); 1474 if (!err) 1475 err = sock->ops->bind(sock, 1476 (struct sockaddr *) 1477 &address, addrlen); 1478 } 1479 fput_light(sock->file, fput_needed); 1480 } 1481 return err; 1482 } 1483 1484 /* 1485 * Perform a listen. Basically, we allow the protocol to do anything 1486 * necessary for a listen, and if that works, we mark the socket as 1487 * ready for listening. 1488 */ 1489 1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1491 { 1492 struct socket *sock; 1493 int err, fput_needed; 1494 int somaxconn; 1495 1496 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1497 if (sock) { 1498 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1499 if ((unsigned)backlog > somaxconn) 1500 backlog = somaxconn; 1501 1502 err = security_socket_listen(sock, backlog); 1503 if (!err) 1504 err = sock->ops->listen(sock, backlog); 1505 1506 fput_light(sock->file, fput_needed); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * For accept, we attempt to create a new socket, set up the link 1513 * with the client, wake up the client, then return the new 1514 * connected fd. We collect the address of the connector in kernel 1515 * space and move it to user at the very end. This is unclean because 1516 * we open the socket then return an error. 1517 * 1518 * 1003.1g adds the ability to recvmsg() to query connection pending 1519 * status to recvmsg. We need to add that support in a way thats 1520 * clean when we restucture accept also. 1521 */ 1522 1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1524 int __user *, upeer_addrlen, int, flags) 1525 { 1526 struct socket *sock, *newsock; 1527 struct file *newfile; 1528 int err, len, newfd, fput_needed; 1529 struct sockaddr_storage address; 1530 1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1532 return -EINVAL; 1533 1534 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1535 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1536 1537 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1538 if (!sock) 1539 goto out; 1540 1541 err = -ENFILE; 1542 if (!(newsock = sock_alloc())) 1543 goto out_put; 1544 1545 newsock->type = sock->type; 1546 newsock->ops = sock->ops; 1547 1548 /* 1549 * We don't need try_module_get here, as the listening socket (sock) 1550 * has the protocol module (sock->ops->owner) held. 1551 */ 1552 __module_get(newsock->ops->owner); 1553 1554 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC); 1555 if (unlikely(newfd < 0)) { 1556 err = newfd; 1557 sock_release(newsock); 1558 goto out_put; 1559 } 1560 1561 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK); 1562 if (err < 0) 1563 goto out_fd_simple; 1564 1565 err = security_socket_accept(sock, newsock); 1566 if (err) 1567 goto out_fd; 1568 1569 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1570 if (err < 0) 1571 goto out_fd; 1572 1573 if (upeer_sockaddr) { 1574 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1575 &len, 2) < 0) { 1576 err = -ECONNABORTED; 1577 goto out_fd; 1578 } 1579 err = move_addr_to_user((struct sockaddr *)&address, 1580 len, upeer_sockaddr, upeer_addrlen); 1581 if (err < 0) 1582 goto out_fd; 1583 } 1584 1585 /* File flags are not inherited via accept() unlike another OSes. */ 1586 1587 fd_install(newfd, newfile); 1588 err = newfd; 1589 1590 out_put: 1591 fput_light(sock->file, fput_needed); 1592 out: 1593 return err; 1594 out_fd_simple: 1595 sock_release(newsock); 1596 put_filp(newfile); 1597 put_unused_fd(newfd); 1598 goto out_put; 1599 out_fd: 1600 fput(newfile); 1601 put_unused_fd(newfd); 1602 goto out_put; 1603 } 1604 1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1606 int __user *, upeer_addrlen) 1607 { 1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1609 } 1610 1611 /* 1612 * Attempt to connect to a socket with the server address. The address 1613 * is in user space so we verify it is OK and move it to kernel space. 1614 * 1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1616 * break bindings 1617 * 1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1619 * other SEQPACKET protocols that take time to connect() as it doesn't 1620 * include the -EINPROGRESS status for such sockets. 1621 */ 1622 1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1624 int, addrlen) 1625 { 1626 struct socket *sock; 1627 struct sockaddr_storage address; 1628 int err, fput_needed; 1629 1630 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1631 if (!sock) 1632 goto out; 1633 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1634 if (err < 0) 1635 goto out_put; 1636 1637 err = 1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1639 if (err) 1640 goto out_put; 1641 1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1643 sock->file->f_flags); 1644 out_put: 1645 fput_light(sock->file, fput_needed); 1646 out: 1647 return err; 1648 } 1649 1650 /* 1651 * Get the local address ('name') of a socket object. Move the obtained 1652 * name to user space. 1653 */ 1654 1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1656 int __user *, usockaddr_len) 1657 { 1658 struct socket *sock; 1659 struct sockaddr_storage address; 1660 int len, err, fput_needed; 1661 1662 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1663 if (!sock) 1664 goto out; 1665 1666 err = security_socket_getsockname(sock); 1667 if (err) 1668 goto out_put; 1669 1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1671 if (err) 1672 goto out_put; 1673 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1674 1675 out_put: 1676 fput_light(sock->file, fput_needed); 1677 out: 1678 return err; 1679 } 1680 1681 /* 1682 * Get the remote address ('name') of a socket object. Move the obtained 1683 * name to user space. 1684 */ 1685 1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1687 int __user *, usockaddr_len) 1688 { 1689 struct socket *sock; 1690 struct sockaddr_storage address; 1691 int len, err, fput_needed; 1692 1693 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1694 if (sock != NULL) { 1695 err = security_socket_getpeername(sock); 1696 if (err) { 1697 fput_light(sock->file, fput_needed); 1698 return err; 1699 } 1700 1701 err = 1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1703 1); 1704 if (!err) 1705 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1706 usockaddr_len); 1707 fput_light(sock->file, fput_needed); 1708 } 1709 return err; 1710 } 1711 1712 /* 1713 * Send a datagram to a given address. We move the address into kernel 1714 * space and check the user space data area is readable before invoking 1715 * the protocol. 1716 */ 1717 1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1719 unsigned, flags, struct sockaddr __user *, addr, 1720 int, addr_len) 1721 { 1722 struct socket *sock; 1723 struct sockaddr_storage address; 1724 int err; 1725 struct msghdr msg; 1726 struct iovec iov; 1727 int fput_needed; 1728 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (!sock) 1731 goto out; 1732 1733 iov.iov_base = buff; 1734 iov.iov_len = len; 1735 msg.msg_name = NULL; 1736 msg.msg_iov = &iov; 1737 msg.msg_iovlen = 1; 1738 msg.msg_control = NULL; 1739 msg.msg_controllen = 0; 1740 msg.msg_namelen = 0; 1741 if (addr) { 1742 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1743 if (err < 0) 1744 goto out_put; 1745 msg.msg_name = (struct sockaddr *)&address; 1746 msg.msg_namelen = addr_len; 1747 } 1748 if (sock->file->f_flags & O_NONBLOCK) 1749 flags |= MSG_DONTWAIT; 1750 msg.msg_flags = flags; 1751 err = sock_sendmsg(sock, &msg, len); 1752 1753 out_put: 1754 fput_light(sock->file, fput_needed); 1755 out: 1756 return err; 1757 } 1758 1759 /* 1760 * Send a datagram down a socket. 1761 */ 1762 1763 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1764 unsigned, flags) 1765 { 1766 return sys_sendto(fd, buff, len, flags, NULL, 0); 1767 } 1768 1769 /* 1770 * Receive a frame from the socket and optionally record the address of the 1771 * sender. We verify the buffers are writable and if needed move the 1772 * sender address from kernel to user space. 1773 */ 1774 1775 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1776 unsigned, flags, struct sockaddr __user *, addr, 1777 int __user *, addr_len) 1778 { 1779 struct socket *sock; 1780 struct iovec iov; 1781 struct msghdr msg; 1782 struct sockaddr_storage address; 1783 int err, err2; 1784 int fput_needed; 1785 1786 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1787 if (!sock) 1788 goto out; 1789 1790 msg.msg_control = NULL; 1791 msg.msg_controllen = 0; 1792 msg.msg_iovlen = 1; 1793 msg.msg_iov = &iov; 1794 iov.iov_len = size; 1795 iov.iov_base = ubuf; 1796 msg.msg_name = (struct sockaddr *)&address; 1797 msg.msg_namelen = sizeof(address); 1798 if (sock->file->f_flags & O_NONBLOCK) 1799 flags |= MSG_DONTWAIT; 1800 err = sock_recvmsg(sock, &msg, size, flags); 1801 1802 if (err >= 0 && addr != NULL) { 1803 err2 = move_addr_to_user((struct sockaddr *)&address, 1804 msg.msg_namelen, addr, addr_len); 1805 if (err2 < 0) 1806 err = err2; 1807 } 1808 1809 fput_light(sock->file, fput_needed); 1810 out: 1811 return err; 1812 } 1813 1814 /* 1815 * Receive a datagram from a socket. 1816 */ 1817 1818 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1819 unsigned flags) 1820 { 1821 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1822 } 1823 1824 /* 1825 * Set a socket option. Because we don't know the option lengths we have 1826 * to pass the user mode parameter for the protocols to sort out. 1827 */ 1828 1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1830 char __user *, optval, int, optlen) 1831 { 1832 int err, fput_needed; 1833 struct socket *sock; 1834 1835 if (optlen < 0) 1836 return -EINVAL; 1837 1838 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1839 if (sock != NULL) { 1840 err = security_socket_setsockopt(sock, level, optname); 1841 if (err) 1842 goto out_put; 1843 1844 if (level == SOL_SOCKET) 1845 err = 1846 sock_setsockopt(sock, level, optname, optval, 1847 optlen); 1848 else 1849 err = 1850 sock->ops->setsockopt(sock, level, optname, optval, 1851 optlen); 1852 out_put: 1853 fput_light(sock->file, fput_needed); 1854 } 1855 return err; 1856 } 1857 1858 /* 1859 * Get a socket option. Because we don't know the option lengths we have 1860 * to pass a user mode parameter for the protocols to sort out. 1861 */ 1862 1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1864 char __user *, optval, int __user *, optlen) 1865 { 1866 int err, fput_needed; 1867 struct socket *sock; 1868 1869 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1870 if (sock != NULL) { 1871 err = security_socket_getsockopt(sock, level, optname); 1872 if (err) 1873 goto out_put; 1874 1875 if (level == SOL_SOCKET) 1876 err = 1877 sock_getsockopt(sock, level, optname, optval, 1878 optlen); 1879 else 1880 err = 1881 sock->ops->getsockopt(sock, level, optname, optval, 1882 optlen); 1883 out_put: 1884 fput_light(sock->file, fput_needed); 1885 } 1886 return err; 1887 } 1888 1889 /* 1890 * Shutdown a socket. 1891 */ 1892 1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1894 { 1895 int err, fput_needed; 1896 struct socket *sock; 1897 1898 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1899 if (sock != NULL) { 1900 err = security_socket_shutdown(sock, how); 1901 if (!err) 1902 err = sock->ops->shutdown(sock, how); 1903 fput_light(sock->file, fput_needed); 1904 } 1905 return err; 1906 } 1907 1908 /* A couple of helpful macros for getting the address of the 32/64 bit 1909 * fields which are the same type (int / unsigned) on our platforms. 1910 */ 1911 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1912 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1913 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1914 1915 /* 1916 * BSD sendmsg interface 1917 */ 1918 1919 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1920 { 1921 struct compat_msghdr __user *msg_compat = 1922 (struct compat_msghdr __user *)msg; 1923 struct socket *sock; 1924 struct sockaddr_storage address; 1925 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1926 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1927 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1928 /* 20 is size of ipv6_pktinfo */ 1929 unsigned char *ctl_buf = ctl; 1930 struct msghdr msg_sys; 1931 int err, ctl_len, iov_size, total_len; 1932 int fput_needed; 1933 1934 err = -EFAULT; 1935 if (MSG_CMSG_COMPAT & flags) { 1936 if (get_compat_msghdr(&msg_sys, msg_compat)) 1937 return -EFAULT; 1938 } 1939 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1940 return -EFAULT; 1941 1942 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1943 if (!sock) 1944 goto out; 1945 1946 /* do not move before msg_sys is valid */ 1947 err = -EMSGSIZE; 1948 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1949 goto out_put; 1950 1951 /* Check whether to allocate the iovec area */ 1952 err = -ENOMEM; 1953 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1954 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1955 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1956 if (!iov) 1957 goto out_put; 1958 } 1959 1960 /* This will also move the address data into kernel space */ 1961 if (MSG_CMSG_COMPAT & flags) { 1962 err = verify_compat_iovec(&msg_sys, iov, 1963 (struct sockaddr *)&address, 1964 VERIFY_READ); 1965 } else 1966 err = verify_iovec(&msg_sys, iov, 1967 (struct sockaddr *)&address, 1968 VERIFY_READ); 1969 if (err < 0) 1970 goto out_freeiov; 1971 total_len = err; 1972 1973 err = -ENOBUFS; 1974 1975 if (msg_sys.msg_controllen > INT_MAX) 1976 goto out_freeiov; 1977 ctl_len = msg_sys.msg_controllen; 1978 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1979 err = 1980 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1981 sizeof(ctl)); 1982 if (err) 1983 goto out_freeiov; 1984 ctl_buf = msg_sys.msg_control; 1985 ctl_len = msg_sys.msg_controllen; 1986 } else if (ctl_len) { 1987 if (ctl_len > sizeof(ctl)) { 1988 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1989 if (ctl_buf == NULL) 1990 goto out_freeiov; 1991 } 1992 err = -EFAULT; 1993 /* 1994 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1995 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1996 * checking falls down on this. 1997 */ 1998 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1999 ctl_len)) 2000 goto out_freectl; 2001 msg_sys.msg_control = ctl_buf; 2002 } 2003 msg_sys.msg_flags = flags; 2004 2005 if (sock->file->f_flags & O_NONBLOCK) 2006 msg_sys.msg_flags |= MSG_DONTWAIT; 2007 err = sock_sendmsg(sock, &msg_sys, total_len); 2008 2009 out_freectl: 2010 if (ctl_buf != ctl) 2011 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2012 out_freeiov: 2013 if (iov != iovstack) 2014 sock_kfree_s(sock->sk, iov, iov_size); 2015 out_put: 2016 fput_light(sock->file, fput_needed); 2017 out: 2018 return err; 2019 } 2020 2021 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2022 struct msghdr *msg_sys, unsigned flags, int nosec) 2023 { 2024 struct compat_msghdr __user *msg_compat = 2025 (struct compat_msghdr __user *)msg; 2026 struct iovec iovstack[UIO_FASTIOV]; 2027 struct iovec *iov = iovstack; 2028 unsigned long cmsg_ptr; 2029 int err, iov_size, total_len, len; 2030 2031 /* kernel mode address */ 2032 struct sockaddr_storage addr; 2033 2034 /* user mode address pointers */ 2035 struct sockaddr __user *uaddr; 2036 int __user *uaddr_len; 2037 2038 if (MSG_CMSG_COMPAT & flags) { 2039 if (get_compat_msghdr(msg_sys, msg_compat)) 2040 return -EFAULT; 2041 } 2042 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2043 return -EFAULT; 2044 2045 err = -EMSGSIZE; 2046 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2047 goto out; 2048 2049 /* Check whether to allocate the iovec area */ 2050 err = -ENOMEM; 2051 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 2052 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2053 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2054 if (!iov) 2055 goto out; 2056 } 2057 2058 /* 2059 * Save the user-mode address (verify_iovec will change the 2060 * kernel msghdr to use the kernel address space) 2061 */ 2062 2063 uaddr = (__force void __user *)msg_sys->msg_name; 2064 uaddr_len = COMPAT_NAMELEN(msg); 2065 if (MSG_CMSG_COMPAT & flags) { 2066 err = verify_compat_iovec(msg_sys, iov, 2067 (struct sockaddr *)&addr, 2068 VERIFY_WRITE); 2069 } else 2070 err = verify_iovec(msg_sys, iov, 2071 (struct sockaddr *)&addr, 2072 VERIFY_WRITE); 2073 if (err < 0) 2074 goto out_freeiov; 2075 total_len = err; 2076 2077 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2078 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2079 2080 if (sock->file->f_flags & O_NONBLOCK) 2081 flags |= MSG_DONTWAIT; 2082 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2083 total_len, flags); 2084 if (err < 0) 2085 goto out_freeiov; 2086 len = err; 2087 2088 if (uaddr != NULL) { 2089 err = move_addr_to_user((struct sockaddr *)&addr, 2090 msg_sys->msg_namelen, uaddr, 2091 uaddr_len); 2092 if (err < 0) 2093 goto out_freeiov; 2094 } 2095 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2096 COMPAT_FLAGS(msg)); 2097 if (err) 2098 goto out_freeiov; 2099 if (MSG_CMSG_COMPAT & flags) 2100 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2101 &msg_compat->msg_controllen); 2102 else 2103 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2104 &msg->msg_controllen); 2105 if (err) 2106 goto out_freeiov; 2107 err = len; 2108 2109 out_freeiov: 2110 if (iov != iovstack) 2111 sock_kfree_s(sock->sk, iov, iov_size); 2112 out: 2113 return err; 2114 } 2115 2116 /* 2117 * BSD recvmsg interface 2118 */ 2119 2120 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2121 unsigned int, flags) 2122 { 2123 int fput_needed, err; 2124 struct msghdr msg_sys; 2125 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2126 2127 if (!sock) 2128 goto out; 2129 2130 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2131 2132 fput_light(sock->file, fput_needed); 2133 out: 2134 return err; 2135 } 2136 2137 /* 2138 * Linux recvmmsg interface 2139 */ 2140 2141 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2142 unsigned int flags, struct timespec *timeout) 2143 { 2144 int fput_needed, err, datagrams; 2145 struct socket *sock; 2146 struct mmsghdr __user *entry; 2147 struct compat_mmsghdr __user *compat_entry; 2148 struct msghdr msg_sys; 2149 struct timespec end_time; 2150 2151 if (timeout && 2152 poll_select_set_timeout(&end_time, timeout->tv_sec, 2153 timeout->tv_nsec)) 2154 return -EINVAL; 2155 2156 datagrams = 0; 2157 2158 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2159 if (!sock) 2160 return err; 2161 2162 err = sock_error(sock->sk); 2163 if (err) 2164 goto out_put; 2165 2166 entry = mmsg; 2167 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2168 2169 while (datagrams < vlen) { 2170 /* 2171 * No need to ask LSM for more than the first datagram. 2172 */ 2173 if (MSG_CMSG_COMPAT & flags) { 2174 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2175 &msg_sys, flags, datagrams); 2176 if (err < 0) 2177 break; 2178 err = __put_user(err, &compat_entry->msg_len); 2179 ++compat_entry; 2180 } else { 2181 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2182 &msg_sys, flags, datagrams); 2183 if (err < 0) 2184 break; 2185 err = put_user(err, &entry->msg_len); 2186 ++entry; 2187 } 2188 2189 if (err) 2190 break; 2191 ++datagrams; 2192 2193 if (timeout) { 2194 ktime_get_ts(timeout); 2195 *timeout = timespec_sub(end_time, *timeout); 2196 if (timeout->tv_sec < 0) { 2197 timeout->tv_sec = timeout->tv_nsec = 0; 2198 break; 2199 } 2200 2201 /* Timeout, return less than vlen datagrams */ 2202 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2203 break; 2204 } 2205 2206 /* Out of band data, return right away */ 2207 if (msg_sys.msg_flags & MSG_OOB) 2208 break; 2209 } 2210 2211 out_put: 2212 fput_light(sock->file, fput_needed); 2213 2214 if (err == 0) 2215 return datagrams; 2216 2217 if (datagrams != 0) { 2218 /* 2219 * We may return less entries than requested (vlen) if the 2220 * sock is non block and there aren't enough datagrams... 2221 */ 2222 if (err != -EAGAIN) { 2223 /* 2224 * ... or if recvmsg returns an error after we 2225 * received some datagrams, where we record the 2226 * error to return on the next call or if the 2227 * app asks about it using getsockopt(SO_ERROR). 2228 */ 2229 sock->sk->sk_err = -err; 2230 } 2231 2232 return datagrams; 2233 } 2234 2235 return err; 2236 } 2237 2238 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2239 unsigned int, vlen, unsigned int, flags, 2240 struct timespec __user *, timeout) 2241 { 2242 int datagrams; 2243 struct timespec timeout_sys; 2244 2245 if (!timeout) 2246 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2247 2248 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2249 return -EFAULT; 2250 2251 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2252 2253 if (datagrams > 0 && 2254 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2255 datagrams = -EFAULT; 2256 2257 return datagrams; 2258 } 2259 2260 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2261 /* Argument list sizes for sys_socketcall */ 2262 #define AL(x) ((x) * sizeof(unsigned long)) 2263 static const unsigned char nargs[20] = { 2264 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2265 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2266 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2267 AL(4),AL(5) 2268 }; 2269 2270 #undef AL 2271 2272 /* 2273 * System call vectors. 2274 * 2275 * Argument checking cleaned up. Saved 20% in size. 2276 * This function doesn't need to set the kernel lock because 2277 * it is set by the callees. 2278 */ 2279 2280 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2281 { 2282 unsigned long a[6]; 2283 unsigned long a0, a1; 2284 int err; 2285 unsigned int len; 2286 2287 if (call < 1 || call > SYS_RECVMMSG) 2288 return -EINVAL; 2289 2290 len = nargs[call]; 2291 if (len > sizeof(a)) 2292 return -EINVAL; 2293 2294 /* copy_from_user should be SMP safe. */ 2295 if (copy_from_user(a, args, len)) 2296 return -EFAULT; 2297 2298 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2299 2300 a0 = a[0]; 2301 a1 = a[1]; 2302 2303 switch (call) { 2304 case SYS_SOCKET: 2305 err = sys_socket(a0, a1, a[2]); 2306 break; 2307 case SYS_BIND: 2308 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2309 break; 2310 case SYS_CONNECT: 2311 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2312 break; 2313 case SYS_LISTEN: 2314 err = sys_listen(a0, a1); 2315 break; 2316 case SYS_ACCEPT: 2317 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2318 (int __user *)a[2], 0); 2319 break; 2320 case SYS_GETSOCKNAME: 2321 err = 2322 sys_getsockname(a0, (struct sockaddr __user *)a1, 2323 (int __user *)a[2]); 2324 break; 2325 case SYS_GETPEERNAME: 2326 err = 2327 sys_getpeername(a0, (struct sockaddr __user *)a1, 2328 (int __user *)a[2]); 2329 break; 2330 case SYS_SOCKETPAIR: 2331 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2332 break; 2333 case SYS_SEND: 2334 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2335 break; 2336 case SYS_SENDTO: 2337 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2338 (struct sockaddr __user *)a[4], a[5]); 2339 break; 2340 case SYS_RECV: 2341 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2342 break; 2343 case SYS_RECVFROM: 2344 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2345 (struct sockaddr __user *)a[4], 2346 (int __user *)a[5]); 2347 break; 2348 case SYS_SHUTDOWN: 2349 err = sys_shutdown(a0, a1); 2350 break; 2351 case SYS_SETSOCKOPT: 2352 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2353 break; 2354 case SYS_GETSOCKOPT: 2355 err = 2356 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2357 (int __user *)a[4]); 2358 break; 2359 case SYS_SENDMSG: 2360 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2361 break; 2362 case SYS_RECVMSG: 2363 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2364 break; 2365 case SYS_RECVMMSG: 2366 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2367 (struct timespec __user *)a[4]); 2368 break; 2369 case SYS_ACCEPT4: 2370 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2371 (int __user *)a[2], a[3]); 2372 break; 2373 default: 2374 err = -EINVAL; 2375 break; 2376 } 2377 return err; 2378 } 2379 2380 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2381 2382 /** 2383 * sock_register - add a socket protocol handler 2384 * @ops: description of protocol 2385 * 2386 * This function is called by a protocol handler that wants to 2387 * advertise its address family, and have it linked into the 2388 * socket interface. The value ops->family coresponds to the 2389 * socket system call protocol family. 2390 */ 2391 int sock_register(const struct net_proto_family *ops) 2392 { 2393 int err; 2394 2395 if (ops->family >= NPROTO) { 2396 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2397 NPROTO); 2398 return -ENOBUFS; 2399 } 2400 2401 spin_lock(&net_family_lock); 2402 if (net_families[ops->family]) 2403 err = -EEXIST; 2404 else { 2405 net_families[ops->family] = ops; 2406 err = 0; 2407 } 2408 spin_unlock(&net_family_lock); 2409 2410 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2411 return err; 2412 } 2413 2414 /** 2415 * sock_unregister - remove a protocol handler 2416 * @family: protocol family to remove 2417 * 2418 * This function is called by a protocol handler that wants to 2419 * remove its address family, and have it unlinked from the 2420 * new socket creation. 2421 * 2422 * If protocol handler is a module, then it can use module reference 2423 * counts to protect against new references. If protocol handler is not 2424 * a module then it needs to provide its own protection in 2425 * the ops->create routine. 2426 */ 2427 void sock_unregister(int family) 2428 { 2429 BUG_ON(family < 0 || family >= NPROTO); 2430 2431 spin_lock(&net_family_lock); 2432 net_families[family] = NULL; 2433 spin_unlock(&net_family_lock); 2434 2435 synchronize_rcu(); 2436 2437 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2438 } 2439 2440 static int __init sock_init(void) 2441 { 2442 /* 2443 * Initialize sock SLAB cache. 2444 */ 2445 2446 sk_init(); 2447 2448 /* 2449 * Initialize skbuff SLAB cache 2450 */ 2451 skb_init(); 2452 2453 /* 2454 * Initialize the protocols module. 2455 */ 2456 2457 init_inodecache(); 2458 register_filesystem(&sock_fs_type); 2459 sock_mnt = kern_mount(&sock_fs_type); 2460 2461 /* The real protocol initialization is performed in later initcalls. 2462 */ 2463 2464 #ifdef CONFIG_NETFILTER 2465 netfilter_init(); 2466 #endif 2467 2468 return 0; 2469 } 2470 2471 core_initcall(sock_init); /* early initcall */ 2472 2473 #ifdef CONFIG_PROC_FS 2474 void socket_seq_show(struct seq_file *seq) 2475 { 2476 int cpu; 2477 int counter = 0; 2478 2479 for_each_possible_cpu(cpu) 2480 counter += per_cpu(sockets_in_use, cpu); 2481 2482 /* It can be negative, by the way. 8) */ 2483 if (counter < 0) 2484 counter = 0; 2485 2486 seq_printf(seq, "sockets: used %d\n", counter); 2487 } 2488 #endif /* CONFIG_PROC_FS */ 2489 2490 #ifdef CONFIG_COMPAT 2491 static int do_siocgstamp(struct net *net, struct socket *sock, 2492 unsigned int cmd, struct compat_timeval __user *up) 2493 { 2494 mm_segment_t old_fs = get_fs(); 2495 struct timeval ktv; 2496 int err; 2497 2498 set_fs(KERNEL_DS); 2499 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2500 set_fs(old_fs); 2501 if (!err) { 2502 err = put_user(ktv.tv_sec, &up->tv_sec); 2503 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2504 } 2505 return err; 2506 } 2507 2508 static int do_siocgstampns(struct net *net, struct socket *sock, 2509 unsigned int cmd, struct compat_timespec __user *up) 2510 { 2511 mm_segment_t old_fs = get_fs(); 2512 struct timespec kts; 2513 int err; 2514 2515 set_fs(KERNEL_DS); 2516 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2517 set_fs(old_fs); 2518 if (!err) { 2519 err = put_user(kts.tv_sec, &up->tv_sec); 2520 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2521 } 2522 return err; 2523 } 2524 2525 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2526 { 2527 struct ifreq __user *uifr; 2528 int err; 2529 2530 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2531 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2532 return -EFAULT; 2533 2534 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2535 if (err) 2536 return err; 2537 2538 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2539 return -EFAULT; 2540 2541 return 0; 2542 } 2543 2544 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2545 { 2546 struct compat_ifconf ifc32; 2547 struct ifconf ifc; 2548 struct ifconf __user *uifc; 2549 struct compat_ifreq __user *ifr32; 2550 struct ifreq __user *ifr; 2551 unsigned int i, j; 2552 int err; 2553 2554 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2555 return -EFAULT; 2556 2557 if (ifc32.ifcbuf == 0) { 2558 ifc32.ifc_len = 0; 2559 ifc.ifc_len = 0; 2560 ifc.ifc_req = NULL; 2561 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2562 } else { 2563 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) * 2564 sizeof (struct ifreq); 2565 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2566 ifc.ifc_len = len; 2567 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2568 ifr32 = compat_ptr(ifc32.ifcbuf); 2569 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) { 2570 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2571 return -EFAULT; 2572 ifr++; 2573 ifr32++; 2574 } 2575 } 2576 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2577 return -EFAULT; 2578 2579 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2580 if (err) 2581 return err; 2582 2583 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2584 return -EFAULT; 2585 2586 ifr = ifc.ifc_req; 2587 ifr32 = compat_ptr(ifc32.ifcbuf); 2588 for (i = 0, j = 0; 2589 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2590 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) { 2591 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq))) 2592 return -EFAULT; 2593 ifr32++; 2594 ifr++; 2595 } 2596 2597 if (ifc32.ifcbuf == 0) { 2598 /* Translate from 64-bit structure multiple to 2599 * a 32-bit one. 2600 */ 2601 i = ifc.ifc_len; 2602 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2603 ifc32.ifc_len = i; 2604 } else { 2605 ifc32.ifc_len = i; 2606 } 2607 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2608 return -EFAULT; 2609 2610 return 0; 2611 } 2612 2613 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2614 { 2615 struct ifreq __user *ifr; 2616 u32 data; 2617 void __user *datap; 2618 2619 ifr = compat_alloc_user_space(sizeof(*ifr)); 2620 2621 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2622 return -EFAULT; 2623 2624 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2625 return -EFAULT; 2626 2627 datap = compat_ptr(data); 2628 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2629 return -EFAULT; 2630 2631 return dev_ioctl(net, SIOCETHTOOL, ifr); 2632 } 2633 2634 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2635 { 2636 void __user *uptr; 2637 compat_uptr_t uptr32; 2638 struct ifreq __user *uifr; 2639 2640 uifr = compat_alloc_user_space(sizeof (*uifr)); 2641 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2642 return -EFAULT; 2643 2644 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2645 return -EFAULT; 2646 2647 uptr = compat_ptr(uptr32); 2648 2649 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2650 return -EFAULT; 2651 2652 return dev_ioctl(net, SIOCWANDEV, uifr); 2653 } 2654 2655 static int bond_ioctl(struct net *net, unsigned int cmd, 2656 struct compat_ifreq __user *ifr32) 2657 { 2658 struct ifreq kifr; 2659 struct ifreq __user *uifr; 2660 mm_segment_t old_fs; 2661 int err; 2662 u32 data; 2663 void __user *datap; 2664 2665 switch (cmd) { 2666 case SIOCBONDENSLAVE: 2667 case SIOCBONDRELEASE: 2668 case SIOCBONDSETHWADDR: 2669 case SIOCBONDCHANGEACTIVE: 2670 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2671 return -EFAULT; 2672 2673 old_fs = get_fs(); 2674 set_fs (KERNEL_DS); 2675 err = dev_ioctl(net, cmd, &kifr); 2676 set_fs (old_fs); 2677 2678 return err; 2679 case SIOCBONDSLAVEINFOQUERY: 2680 case SIOCBONDINFOQUERY: 2681 uifr = compat_alloc_user_space(sizeof(*uifr)); 2682 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2683 return -EFAULT; 2684 2685 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2686 return -EFAULT; 2687 2688 datap = compat_ptr(data); 2689 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2690 return -EFAULT; 2691 2692 return dev_ioctl(net, cmd, uifr); 2693 default: 2694 return -EINVAL; 2695 }; 2696 } 2697 2698 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2699 struct compat_ifreq __user *u_ifreq32) 2700 { 2701 struct ifreq __user *u_ifreq64; 2702 char tmp_buf[IFNAMSIZ]; 2703 void __user *data64; 2704 u32 data32; 2705 2706 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2707 IFNAMSIZ)) 2708 return -EFAULT; 2709 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2710 return -EFAULT; 2711 data64 = compat_ptr(data32); 2712 2713 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2714 2715 /* Don't check these user accesses, just let that get trapped 2716 * in the ioctl handler instead. 2717 */ 2718 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2719 IFNAMSIZ)) 2720 return -EFAULT; 2721 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2722 return -EFAULT; 2723 2724 return dev_ioctl(net, cmd, u_ifreq64); 2725 } 2726 2727 static int dev_ifsioc(struct net *net, struct socket *sock, 2728 unsigned int cmd, struct compat_ifreq __user *uifr32) 2729 { 2730 struct ifreq __user *uifr; 2731 int err; 2732 2733 uifr = compat_alloc_user_space(sizeof(*uifr)); 2734 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2735 return -EFAULT; 2736 2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2738 2739 if (!err) { 2740 switch (cmd) { 2741 case SIOCGIFFLAGS: 2742 case SIOCGIFMETRIC: 2743 case SIOCGIFMTU: 2744 case SIOCGIFMEM: 2745 case SIOCGIFHWADDR: 2746 case SIOCGIFINDEX: 2747 case SIOCGIFADDR: 2748 case SIOCGIFBRDADDR: 2749 case SIOCGIFDSTADDR: 2750 case SIOCGIFNETMASK: 2751 case SIOCGIFPFLAGS: 2752 case SIOCGIFTXQLEN: 2753 case SIOCGMIIPHY: 2754 case SIOCGMIIREG: 2755 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2756 err = -EFAULT; 2757 break; 2758 } 2759 } 2760 return err; 2761 } 2762 2763 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2764 struct compat_ifreq __user *uifr32) 2765 { 2766 struct ifreq ifr; 2767 struct compat_ifmap __user *uifmap32; 2768 mm_segment_t old_fs; 2769 int err; 2770 2771 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2772 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2773 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2774 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2775 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2776 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2777 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2778 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2779 if (err) 2780 return -EFAULT; 2781 2782 old_fs = get_fs(); 2783 set_fs (KERNEL_DS); 2784 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2785 set_fs (old_fs); 2786 2787 if (cmd == SIOCGIFMAP && !err) { 2788 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2789 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2790 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2791 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2792 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2793 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2794 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2795 if (err) 2796 err = -EFAULT; 2797 } 2798 return err; 2799 } 2800 2801 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2802 { 2803 void __user *uptr; 2804 compat_uptr_t uptr32; 2805 struct ifreq __user *uifr; 2806 2807 uifr = compat_alloc_user_space(sizeof (*uifr)); 2808 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2809 return -EFAULT; 2810 2811 if (get_user(uptr32, &uifr32->ifr_data)) 2812 return -EFAULT; 2813 2814 uptr = compat_ptr(uptr32); 2815 2816 if (put_user(uptr, &uifr->ifr_data)) 2817 return -EFAULT; 2818 2819 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2820 } 2821 2822 struct rtentry32 { 2823 u32 rt_pad1; 2824 struct sockaddr rt_dst; /* target address */ 2825 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2826 struct sockaddr rt_genmask; /* target network mask (IP) */ 2827 unsigned short rt_flags; 2828 short rt_pad2; 2829 u32 rt_pad3; 2830 unsigned char rt_tos; 2831 unsigned char rt_class; 2832 short rt_pad4; 2833 short rt_metric; /* +1 for binary compatibility! */ 2834 /* char * */ u32 rt_dev; /* forcing the device at add */ 2835 u32 rt_mtu; /* per route MTU/Window */ 2836 u32 rt_window; /* Window clamping */ 2837 unsigned short rt_irtt; /* Initial RTT */ 2838 }; 2839 2840 struct in6_rtmsg32 { 2841 struct in6_addr rtmsg_dst; 2842 struct in6_addr rtmsg_src; 2843 struct in6_addr rtmsg_gateway; 2844 u32 rtmsg_type; 2845 u16 rtmsg_dst_len; 2846 u16 rtmsg_src_len; 2847 u32 rtmsg_metric; 2848 u32 rtmsg_info; 2849 u32 rtmsg_flags; 2850 s32 rtmsg_ifindex; 2851 }; 2852 2853 static int routing_ioctl(struct net *net, struct socket *sock, 2854 unsigned int cmd, void __user *argp) 2855 { 2856 int ret; 2857 void *r = NULL; 2858 struct in6_rtmsg r6; 2859 struct rtentry r4; 2860 char devname[16]; 2861 u32 rtdev; 2862 mm_segment_t old_fs = get_fs(); 2863 2864 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2865 struct in6_rtmsg32 __user *ur6 = argp; 2866 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2867 3 * sizeof(struct in6_addr)); 2868 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type)); 2869 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2870 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2871 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2872 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info)); 2873 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2874 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2875 2876 r = (void *) &r6; 2877 } else { /* ipv4 */ 2878 struct rtentry32 __user *ur4 = argp; 2879 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst), 2880 3 * sizeof(struct sockaddr)); 2881 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags)); 2882 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric)); 2883 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu)); 2884 ret |= __get_user (r4.rt_window, &(ur4->rt_window)); 2885 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt)); 2886 ret |= __get_user (rtdev, &(ur4->rt_dev)); 2887 if (rtdev) { 2888 ret |= copy_from_user (devname, compat_ptr(rtdev), 15); 2889 r4.rt_dev = devname; devname[15] = 0; 2890 } else 2891 r4.rt_dev = NULL; 2892 2893 r = (void *) &r4; 2894 } 2895 2896 if (ret) { 2897 ret = -EFAULT; 2898 goto out; 2899 } 2900 2901 set_fs (KERNEL_DS); 2902 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2903 set_fs (old_fs); 2904 2905 out: 2906 return ret; 2907 } 2908 2909 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2910 * for some operations; this forces use of the newer bridge-utils that 2911 * use compatiable ioctls 2912 */ 2913 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2914 { 2915 compat_ulong_t tmp; 2916 2917 if (get_user(tmp, argp)) 2918 return -EFAULT; 2919 if (tmp == BRCTL_GET_VERSION) 2920 return BRCTL_VERSION + 1; 2921 return -EINVAL; 2922 } 2923 2924 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2925 unsigned int cmd, unsigned long arg) 2926 { 2927 void __user *argp = compat_ptr(arg); 2928 struct sock *sk = sock->sk; 2929 struct net *net = sock_net(sk); 2930 2931 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2932 return siocdevprivate_ioctl(net, cmd, argp); 2933 2934 switch (cmd) { 2935 case SIOCSIFBR: 2936 case SIOCGIFBR: 2937 return old_bridge_ioctl(argp); 2938 case SIOCGIFNAME: 2939 return dev_ifname32(net, argp); 2940 case SIOCGIFCONF: 2941 return dev_ifconf(net, argp); 2942 case SIOCETHTOOL: 2943 return ethtool_ioctl(net, argp); 2944 case SIOCWANDEV: 2945 return compat_siocwandev(net, argp); 2946 case SIOCGIFMAP: 2947 case SIOCSIFMAP: 2948 return compat_sioc_ifmap(net, cmd, argp); 2949 case SIOCBONDENSLAVE: 2950 case SIOCBONDRELEASE: 2951 case SIOCBONDSETHWADDR: 2952 case SIOCBONDSLAVEINFOQUERY: 2953 case SIOCBONDINFOQUERY: 2954 case SIOCBONDCHANGEACTIVE: 2955 return bond_ioctl(net, cmd, argp); 2956 case SIOCADDRT: 2957 case SIOCDELRT: 2958 return routing_ioctl(net, sock, cmd, argp); 2959 case SIOCGSTAMP: 2960 return do_siocgstamp(net, sock, cmd, argp); 2961 case SIOCGSTAMPNS: 2962 return do_siocgstampns(net, sock, cmd, argp); 2963 case SIOCSHWTSTAMP: 2964 return compat_siocshwtstamp(net, argp); 2965 2966 case FIOSETOWN: 2967 case SIOCSPGRP: 2968 case FIOGETOWN: 2969 case SIOCGPGRP: 2970 case SIOCBRADDBR: 2971 case SIOCBRDELBR: 2972 case SIOCGIFVLAN: 2973 case SIOCSIFVLAN: 2974 case SIOCADDDLCI: 2975 case SIOCDELDLCI: 2976 return sock_ioctl(file, cmd, arg); 2977 2978 case SIOCGIFFLAGS: 2979 case SIOCSIFFLAGS: 2980 case SIOCGIFMETRIC: 2981 case SIOCSIFMETRIC: 2982 case SIOCGIFMTU: 2983 case SIOCSIFMTU: 2984 case SIOCGIFMEM: 2985 case SIOCSIFMEM: 2986 case SIOCGIFHWADDR: 2987 case SIOCSIFHWADDR: 2988 case SIOCADDMULTI: 2989 case SIOCDELMULTI: 2990 case SIOCGIFINDEX: 2991 case SIOCGIFADDR: 2992 case SIOCSIFADDR: 2993 case SIOCSIFHWBROADCAST: 2994 case SIOCDIFADDR: 2995 case SIOCGIFBRDADDR: 2996 case SIOCSIFBRDADDR: 2997 case SIOCGIFDSTADDR: 2998 case SIOCSIFDSTADDR: 2999 case SIOCGIFNETMASK: 3000 case SIOCSIFNETMASK: 3001 case SIOCSIFPFLAGS: 3002 case SIOCGIFPFLAGS: 3003 case SIOCGIFTXQLEN: 3004 case SIOCSIFTXQLEN: 3005 case SIOCBRADDIF: 3006 case SIOCBRDELIF: 3007 case SIOCSIFNAME: 3008 case SIOCGMIIPHY: 3009 case SIOCGMIIREG: 3010 case SIOCSMIIREG: 3011 return dev_ifsioc(net, sock, cmd, argp); 3012 3013 case SIOCSARP: 3014 case SIOCGARP: 3015 case SIOCDARP: 3016 case SIOCATMARK: 3017 return sock_do_ioctl(net, sock, cmd, arg); 3018 } 3019 3020 /* Prevent warning from compat_sys_ioctl, these always 3021 * result in -EINVAL in the native case anyway. */ 3022 switch (cmd) { 3023 case SIOCRTMSG: 3024 case SIOCGIFCOUNT: 3025 case SIOCSRARP: 3026 case SIOCGRARP: 3027 case SIOCDRARP: 3028 case SIOCSIFLINK: 3029 case SIOCGIFSLAVE: 3030 case SIOCSIFSLAVE: 3031 return -EINVAL; 3032 } 3033 3034 return -ENOIOCTLCMD; 3035 } 3036 3037 static long compat_sock_ioctl(struct file *file, unsigned cmd, 3038 unsigned long arg) 3039 { 3040 struct socket *sock = file->private_data; 3041 int ret = -ENOIOCTLCMD; 3042 struct sock *sk; 3043 struct net *net; 3044 3045 sk = sock->sk; 3046 net = sock_net(sk); 3047 3048 if (sock->ops->compat_ioctl) 3049 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3050 3051 if (ret == -ENOIOCTLCMD && 3052 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3053 ret = compat_wext_handle_ioctl(net, cmd, arg); 3054 3055 if (ret == -ENOIOCTLCMD) 3056 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3057 3058 return ret; 3059 } 3060 #endif 3061 3062 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3063 { 3064 return sock->ops->bind(sock, addr, addrlen); 3065 } 3066 3067 int kernel_listen(struct socket *sock, int backlog) 3068 { 3069 return sock->ops->listen(sock, backlog); 3070 } 3071 3072 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3073 { 3074 struct sock *sk = sock->sk; 3075 int err; 3076 3077 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3078 newsock); 3079 if (err < 0) 3080 goto done; 3081 3082 err = sock->ops->accept(sock, *newsock, flags); 3083 if (err < 0) { 3084 sock_release(*newsock); 3085 *newsock = NULL; 3086 goto done; 3087 } 3088 3089 (*newsock)->ops = sock->ops; 3090 __module_get((*newsock)->ops->owner); 3091 3092 done: 3093 return err; 3094 } 3095 3096 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3097 int flags) 3098 { 3099 return sock->ops->connect(sock, addr, addrlen, flags); 3100 } 3101 3102 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3103 int *addrlen) 3104 { 3105 return sock->ops->getname(sock, addr, addrlen, 0); 3106 } 3107 3108 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3109 int *addrlen) 3110 { 3111 return sock->ops->getname(sock, addr, addrlen, 1); 3112 } 3113 3114 int kernel_getsockopt(struct socket *sock, int level, int optname, 3115 char *optval, int *optlen) 3116 { 3117 mm_segment_t oldfs = get_fs(); 3118 int err; 3119 3120 set_fs(KERNEL_DS); 3121 if (level == SOL_SOCKET) 3122 err = sock_getsockopt(sock, level, optname, optval, optlen); 3123 else 3124 err = sock->ops->getsockopt(sock, level, optname, optval, 3125 optlen); 3126 set_fs(oldfs); 3127 return err; 3128 } 3129 3130 int kernel_setsockopt(struct socket *sock, int level, int optname, 3131 char *optval, unsigned int optlen) 3132 { 3133 mm_segment_t oldfs = get_fs(); 3134 int err; 3135 3136 set_fs(KERNEL_DS); 3137 if (level == SOL_SOCKET) 3138 err = sock_setsockopt(sock, level, optname, optval, optlen); 3139 else 3140 err = sock->ops->setsockopt(sock, level, optname, optval, 3141 optlen); 3142 set_fs(oldfs); 3143 return err; 3144 } 3145 3146 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3147 size_t size, int flags) 3148 { 3149 if (sock->ops->sendpage) 3150 return sock->ops->sendpage(sock, page, offset, size, flags); 3151 3152 return sock_no_sendpage(sock, page, offset, size, flags); 3153 } 3154 3155 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3156 { 3157 mm_segment_t oldfs = get_fs(); 3158 int err; 3159 3160 set_fs(KERNEL_DS); 3161 err = sock->ops->ioctl(sock, cmd, arg); 3162 set_fs(oldfs); 3163 3164 return err; 3165 } 3166 3167 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3168 { 3169 return sock->ops->shutdown(sock, how); 3170 } 3171 3172 EXPORT_SYMBOL(sock_create); 3173 EXPORT_SYMBOL(sock_create_kern); 3174 EXPORT_SYMBOL(sock_create_lite); 3175 EXPORT_SYMBOL(sock_map_fd); 3176 EXPORT_SYMBOL(sock_recvmsg); 3177 EXPORT_SYMBOL(sock_register); 3178 EXPORT_SYMBOL(sock_release); 3179 EXPORT_SYMBOL(sock_sendmsg); 3180 EXPORT_SYMBOL(sock_unregister); 3181 EXPORT_SYMBOL(sock_wake_async); 3182 EXPORT_SYMBOL(sockfd_lookup); 3183 EXPORT_SYMBOL(kernel_sendmsg); 3184 EXPORT_SYMBOL(kernel_recvmsg); 3185 EXPORT_SYMBOL(kernel_bind); 3186 EXPORT_SYMBOL(kernel_listen); 3187 EXPORT_SYMBOL(kernel_accept); 3188 EXPORT_SYMBOL(kernel_connect); 3189 EXPORT_SYMBOL(kernel_getsockname); 3190 EXPORT_SYMBOL(kernel_getpeername); 3191 EXPORT_SYMBOL(kernel_getsockopt); 3192 EXPORT_SYMBOL(kernel_setsockopt); 3193 EXPORT_SYMBOL(kernel_sendpage); 3194 EXPORT_SYMBOL(kernel_sock_ioctl); 3195 EXPORT_SYMBOL(kernel_sock_shutdown); 3196