xref: /linux/net/socket.c (revision 98b8788ae91694499d1995035625bea16a4db0c4)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
105 
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 			 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 			  unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
112 
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 			      struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 			      unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 			     int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 			        struct pipe_inode_info *pipe, size_t len,
126 				unsigned int flags);
127 
128 /*
129  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130  *	in the operation structures but are done directly via the socketcall() multiplexor.
131  */
132 
133 static const struct file_operations socket_file_ops = {
134 	.owner =	THIS_MODULE,
135 	.llseek =	no_llseek,
136 	.aio_read =	sock_aio_read,
137 	.aio_write =	sock_aio_write,
138 	.poll =		sock_poll,
139 	.unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 	.compat_ioctl = compat_sock_ioctl,
142 #endif
143 	.mmap =		sock_mmap,
144 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
145 	.release =	sock_close,
146 	.fasync =	sock_fasync,
147 	.sendpage =	sock_sendpage,
148 	.splice_write = generic_splice_sendpage,
149 	.splice_read =	sock_splice_read,
150 };
151 
152 /*
153  *	The protocol list. Each protocol is registered in here.
154  */
155 
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
158 
159 /*
160  *	Statistics counters of the socket lists
161  */
162 
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
172 					   16 for IP, 16 for IPX,
173 					   24 for IPv6,
174 					   about 80 for AX.25
175 					   must be at least one bigger than
176 					   the AF_UNIX size (see net/unix/af_unix.c
177 					   :unix_mkname()).
178 					 */
179 
180 /**
181  *	move_addr_to_kernel	-	copy a socket address into kernel space
182  *	@uaddr: Address in user space
183  *	@kaddr: Address in kernel space
184  *	@ulen: Length in user space
185  *
186  *	The address is copied into kernel space. If the provided address is
187  *	too long an error code of -EINVAL is returned. If the copy gives
188  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
189  */
190 
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
192 {
193 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 		return -EINVAL;
195 	if (ulen == 0)
196 		return 0;
197 	if (copy_from_user(kaddr, uaddr, ulen))
198 		return -EFAULT;
199 	return audit_sockaddr(ulen, kaddr);
200 }
201 
202 /**
203  *	move_addr_to_user	-	copy an address to user space
204  *	@kaddr: kernel space address
205  *	@klen: length of address in kernel
206  *	@uaddr: user space address
207  *	@ulen: pointer to user length field
208  *
209  *	The value pointed to by ulen on entry is the buffer length available.
210  *	This is overwritten with the buffer space used. -EINVAL is returned
211  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
212  *	is returned if either the buffer or the length field are not
213  *	accessible.
214  *	After copying the data up to the limit the user specifies, the true
215  *	length of the data is written over the length limit the user
216  *	specified. Zero is returned for a success.
217  */
218 
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 		      int __user *ulen)
221 {
222 	int err;
223 	int len;
224 
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0 || len > sizeof(struct sockaddr_storage))
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	init_waitqueue_head(&ei->socket.wait);
255 
256 	ei->socket.fasync_list = NULL;
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	kmem_cache_free(sock_inode_cachep,
269 			container_of(inode, struct socket_alloc, vfs_inode));
270 }
271 
272 static void init_once(void *foo)
273 {
274 	struct socket_alloc *ei = (struct socket_alloc *)foo;
275 
276 	inode_init_once(&ei->vfs_inode);
277 }
278 
279 static int init_inodecache(void)
280 {
281 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 					      sizeof(struct socket_alloc),
283 					      0,
284 					      (SLAB_HWCACHE_ALIGN |
285 					       SLAB_RECLAIM_ACCOUNT |
286 					       SLAB_MEM_SPREAD),
287 					      init_once);
288 	if (sock_inode_cachep == NULL)
289 		return -ENOMEM;
290 	return 0;
291 }
292 
293 static const struct super_operations sockfs_ops = {
294 	.alloc_inode =	sock_alloc_inode,
295 	.destroy_inode =sock_destroy_inode,
296 	.statfs =	simple_statfs,
297 };
298 
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 			 int flags, const char *dev_name, void *data,
301 			 struct vfsmount *mnt)
302 {
303 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 			     mnt);
305 }
306 
307 static struct vfsmount *sock_mnt __read_mostly;
308 
309 static struct file_system_type sock_fs_type = {
310 	.name =		"sockfs",
311 	.get_sb =	sockfs_get_sb,
312 	.kill_sb =	kill_anon_super,
313 };
314 
315 static int sockfs_delete_dentry(struct dentry *dentry)
316 {
317 	/*
318 	 * At creation time, we pretended this dentry was hashed
319 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
320 	 * At delete time, we restore the truth : not hashed.
321 	 * (so that dput() can proceed correctly)
322 	 */
323 	dentry->d_flags |= DCACHE_UNHASHED;
324 	return 0;
325 }
326 
327 /*
328  * sockfs_dname() is called from d_path().
329  */
330 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
331 {
332 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
333 				dentry->d_inode->i_ino);
334 }
335 
336 static const struct dentry_operations sockfs_dentry_operations = {
337 	.d_delete = sockfs_delete_dentry,
338 	.d_dname  = sockfs_dname,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
358 static int sock_alloc_fd(struct file **filep, int flags)
359 {
360 	int fd;
361 
362 	fd = get_unused_fd_flags(flags);
363 	if (likely(fd >= 0)) {
364 		struct file *file = get_empty_filp();
365 
366 		*filep = file;
367 		if (unlikely(!file)) {
368 			put_unused_fd(fd);
369 			return -ENFILE;
370 		}
371 	} else
372 		*filep = NULL;
373 	return fd;
374 }
375 
376 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
377 {
378 	struct dentry *dentry;
379 	struct qstr name = { .name = "" };
380 
381 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
382 	if (unlikely(!dentry))
383 		return -ENOMEM;
384 
385 	dentry->d_op = &sockfs_dentry_operations;
386 	/*
387 	 * We dont want to push this dentry into global dentry hash table.
388 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
389 	 * This permits a working /proc/$pid/fd/XXX on sockets
390 	 */
391 	dentry->d_flags &= ~DCACHE_UNHASHED;
392 	d_instantiate(dentry, SOCK_INODE(sock));
393 
394 	sock->file = file;
395 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
396 		  &socket_file_ops);
397 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
398 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
399 	file->f_pos = 0;
400 	file->private_data = sock;
401 
402 	return 0;
403 }
404 
405 int sock_map_fd(struct socket *sock, int flags)
406 {
407 	struct file *newfile;
408 	int fd = sock_alloc_fd(&newfile, flags);
409 
410 	if (likely(fd >= 0)) {
411 		int err = sock_attach_fd(sock, newfile, flags);
412 
413 		if (unlikely(err < 0)) {
414 			put_filp(newfile);
415 			put_unused_fd(fd);
416 			return err;
417 		}
418 		fd_install(fd, newfile);
419 	}
420 	return fd;
421 }
422 
423 static struct socket *sock_from_file(struct file *file, int *err)
424 {
425 	if (file->f_op == &socket_file_ops)
426 		return file->private_data;	/* set in sock_map_fd */
427 
428 	*err = -ENOTSOCK;
429 	return NULL;
430 }
431 
432 /**
433  *	sockfd_lookup	- 	Go from a file number to its socket slot
434  *	@fd: file handle
435  *	@err: pointer to an error code return
436  *
437  *	The file handle passed in is locked and the socket it is bound
438  *	too is returned. If an error occurs the err pointer is overwritten
439  *	with a negative errno code and NULL is returned. The function checks
440  *	for both invalid handles and passing a handle which is not a socket.
441  *
442  *	On a success the socket object pointer is returned.
443  */
444 
445 struct socket *sockfd_lookup(int fd, int *err)
446 {
447 	struct file *file;
448 	struct socket *sock;
449 
450 	file = fget(fd);
451 	if (!file) {
452 		*err = -EBADF;
453 		return NULL;
454 	}
455 
456 	sock = sock_from_file(file, err);
457 	if (!sock)
458 		fput(file);
459 	return sock;
460 }
461 
462 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
463 {
464 	struct file *file;
465 	struct socket *sock;
466 
467 	*err = -EBADF;
468 	file = fget_light(fd, fput_needed);
469 	if (file) {
470 		sock = sock_from_file(file, err);
471 		if (sock)
472 			return sock;
473 		fput_light(file, *fput_needed);
474 	}
475 	return NULL;
476 }
477 
478 /**
479  *	sock_alloc	-	allocate a socket
480  *
481  *	Allocate a new inode and socket object. The two are bound together
482  *	and initialised. The socket is then returned. If we are out of inodes
483  *	NULL is returned.
484  */
485 
486 static struct socket *sock_alloc(void)
487 {
488 	struct inode *inode;
489 	struct socket *sock;
490 
491 	inode = new_inode(sock_mnt->mnt_sb);
492 	if (!inode)
493 		return NULL;
494 
495 	sock = SOCKET_I(inode);
496 
497 	kmemcheck_annotate_bitfield(sock, type);
498 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
499 	inode->i_uid = current_fsuid();
500 	inode->i_gid = current_fsgid();
501 
502 	percpu_add(sockets_in_use, 1);
503 	return sock;
504 }
505 
506 /*
507  *	In theory you can't get an open on this inode, but /proc provides
508  *	a back door. Remember to keep it shut otherwise you'll let the
509  *	creepy crawlies in.
510  */
511 
512 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
513 {
514 	return -ENXIO;
515 }
516 
517 const struct file_operations bad_sock_fops = {
518 	.owner = THIS_MODULE,
519 	.open = sock_no_open,
520 };
521 
522 /**
523  *	sock_release	-	close a socket
524  *	@sock: socket to close
525  *
526  *	The socket is released from the protocol stack if it has a release
527  *	callback, and the inode is then released if the socket is bound to
528  *	an inode not a file.
529  */
530 
531 void sock_release(struct socket *sock)
532 {
533 	if (sock->ops) {
534 		struct module *owner = sock->ops->owner;
535 
536 		sock->ops->release(sock);
537 		sock->ops = NULL;
538 		module_put(owner);
539 	}
540 
541 	if (sock->fasync_list)
542 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
543 
544 	percpu_sub(sockets_in_use, 1);
545 	if (!sock->file) {
546 		iput(SOCK_INODE(sock));
547 		return;
548 	}
549 	sock->file = NULL;
550 }
551 
552 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
553 		      union skb_shared_tx *shtx)
554 {
555 	shtx->flags = 0;
556 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
557 		shtx->hardware = 1;
558 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
559 		shtx->software = 1;
560 	return 0;
561 }
562 EXPORT_SYMBOL(sock_tx_timestamp);
563 
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 				 struct msghdr *msg, size_t size)
566 {
567 	struct sock_iocb *si = kiocb_to_siocb(iocb);
568 	int err;
569 
570 	si->sock = sock;
571 	si->scm = NULL;
572 	si->msg = msg;
573 	si->size = size;
574 
575 	err = security_socket_sendmsg(sock, msg, size);
576 	if (err)
577 		return err;
578 
579 	return sock->ops->sendmsg(iocb, sock, msg, size);
580 }
581 
582 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
583 {
584 	struct kiocb iocb;
585 	struct sock_iocb siocb;
586 	int ret;
587 
588 	init_sync_kiocb(&iocb, NULL);
589 	iocb.private = &siocb;
590 	ret = __sock_sendmsg(&iocb, sock, msg, size);
591 	if (-EIOCBQUEUED == ret)
592 		ret = wait_on_sync_kiocb(&iocb);
593 	return ret;
594 }
595 
596 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
597 		   struct kvec *vec, size_t num, size_t size)
598 {
599 	mm_segment_t oldfs = get_fs();
600 	int result;
601 
602 	set_fs(KERNEL_DS);
603 	/*
604 	 * the following is safe, since for compiler definitions of kvec and
605 	 * iovec are identical, yielding the same in-core layout and alignment
606 	 */
607 	msg->msg_iov = (struct iovec *)vec;
608 	msg->msg_iovlen = num;
609 	result = sock_sendmsg(sock, msg, size);
610 	set_fs(oldfs);
611 	return result;
612 }
613 
614 static int ktime2ts(ktime_t kt, struct timespec *ts)
615 {
616 	if (kt.tv64) {
617 		*ts = ktime_to_timespec(kt);
618 		return 1;
619 	} else {
620 		return 0;
621 	}
622 }
623 
624 /*
625  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
626  */
627 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
628 	struct sk_buff *skb)
629 {
630 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
631 	struct timespec ts[3];
632 	int empty = 1;
633 	struct skb_shared_hwtstamps *shhwtstamps =
634 		skb_hwtstamps(skb);
635 
636 	/* Race occurred between timestamp enabling and packet
637 	   receiving.  Fill in the current time for now. */
638 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
639 		__net_timestamp(skb);
640 
641 	if (need_software_tstamp) {
642 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
643 			struct timeval tv;
644 			skb_get_timestamp(skb, &tv);
645 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
646 				 sizeof(tv), &tv);
647 		} else {
648 			struct timespec ts;
649 			skb_get_timestampns(skb, &ts);
650 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
651 				 sizeof(ts), &ts);
652 		}
653 	}
654 
655 
656 	memset(ts, 0, sizeof(ts));
657 	if (skb->tstamp.tv64 &&
658 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
659 		skb_get_timestampns(skb, ts + 0);
660 		empty = 0;
661 	}
662 	if (shhwtstamps) {
663 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
664 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
665 			empty = 0;
666 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
667 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
668 			empty = 0;
669 	}
670 	if (!empty)
671 		put_cmsg(msg, SOL_SOCKET,
672 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
673 }
674 
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676 
677 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
678 {
679 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
680 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
681 			sizeof(__u32), &skb->dropcount);
682 }
683 
684 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
685 	struct sk_buff *skb)
686 {
687 	sock_recv_timestamp(msg, sk, skb);
688 	sock_recv_drops(msg, sk, skb);
689 }
690 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
691 
692 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
693 				       struct msghdr *msg, size_t size, int flags)
694 {
695 	struct sock_iocb *si = kiocb_to_siocb(iocb);
696 
697 	si->sock = sock;
698 	si->scm = NULL;
699 	si->msg = msg;
700 	si->size = size;
701 	si->flags = flags;
702 
703 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
704 }
705 
706 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
707 				 struct msghdr *msg, size_t size, int flags)
708 {
709 	int err = security_socket_recvmsg(sock, msg, size, flags);
710 
711 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
712 }
713 
714 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
715 		 size_t size, int flags)
716 {
717 	struct kiocb iocb;
718 	struct sock_iocb siocb;
719 	int ret;
720 
721 	init_sync_kiocb(&iocb, NULL);
722 	iocb.private = &siocb;
723 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
724 	if (-EIOCBQUEUED == ret)
725 		ret = wait_on_sync_kiocb(&iocb);
726 	return ret;
727 }
728 
729 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
730 			      size_t size, int flags)
731 {
732 	struct kiocb iocb;
733 	struct sock_iocb siocb;
734 	int ret;
735 
736 	init_sync_kiocb(&iocb, NULL);
737 	iocb.private = &siocb;
738 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
739 	if (-EIOCBQUEUED == ret)
740 		ret = wait_on_sync_kiocb(&iocb);
741 	return ret;
742 }
743 
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 		   struct kvec *vec, size_t num, size_t size, int flags)
746 {
747 	mm_segment_t oldfs = get_fs();
748 	int result;
749 
750 	set_fs(KERNEL_DS);
751 	/*
752 	 * the following is safe, since for compiler definitions of kvec and
753 	 * iovec are identical, yielding the same in-core layout and alignment
754 	 */
755 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
756 	result = sock_recvmsg(sock, msg, size, flags);
757 	set_fs(oldfs);
758 	return result;
759 }
760 
761 static void sock_aio_dtor(struct kiocb *iocb)
762 {
763 	kfree(iocb->private);
764 }
765 
766 static ssize_t sock_sendpage(struct file *file, struct page *page,
767 			     int offset, size_t size, loff_t *ppos, int more)
768 {
769 	struct socket *sock;
770 	int flags;
771 
772 	sock = file->private_data;
773 
774 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
775 	if (more)
776 		flags |= MSG_MORE;
777 
778 	return kernel_sendpage(sock, page, offset, size, flags);
779 }
780 
781 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
782 			        struct pipe_inode_info *pipe, size_t len,
783 				unsigned int flags)
784 {
785 	struct socket *sock = file->private_data;
786 
787 	if (unlikely(!sock->ops->splice_read))
788 		return -EINVAL;
789 
790 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
791 }
792 
793 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
794 					 struct sock_iocb *siocb)
795 {
796 	if (!is_sync_kiocb(iocb)) {
797 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
798 		if (!siocb)
799 			return NULL;
800 		iocb->ki_dtor = sock_aio_dtor;
801 	}
802 
803 	siocb->kiocb = iocb;
804 	iocb->private = siocb;
805 	return siocb;
806 }
807 
808 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
809 		struct file *file, const struct iovec *iov,
810 		unsigned long nr_segs)
811 {
812 	struct socket *sock = file->private_data;
813 	size_t size = 0;
814 	int i;
815 
816 	for (i = 0; i < nr_segs; i++)
817 		size += iov[i].iov_len;
818 
819 	msg->msg_name = NULL;
820 	msg->msg_namelen = 0;
821 	msg->msg_control = NULL;
822 	msg->msg_controllen = 0;
823 	msg->msg_iov = (struct iovec *)iov;
824 	msg->msg_iovlen = nr_segs;
825 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
826 
827 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
828 }
829 
830 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
831 				unsigned long nr_segs, loff_t pos)
832 {
833 	struct sock_iocb siocb, *x;
834 
835 	if (pos != 0)
836 		return -ESPIPE;
837 
838 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
839 		return 0;
840 
841 
842 	x = alloc_sock_iocb(iocb, &siocb);
843 	if (!x)
844 		return -ENOMEM;
845 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847 
848 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
849 			struct file *file, const struct iovec *iov,
850 			unsigned long nr_segs)
851 {
852 	struct socket *sock = file->private_data;
853 	size_t size = 0;
854 	int i;
855 
856 	for (i = 0; i < nr_segs; i++)
857 		size += iov[i].iov_len;
858 
859 	msg->msg_name = NULL;
860 	msg->msg_namelen = 0;
861 	msg->msg_control = NULL;
862 	msg->msg_controllen = 0;
863 	msg->msg_iov = (struct iovec *)iov;
864 	msg->msg_iovlen = nr_segs;
865 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 	if (sock->type == SOCK_SEQPACKET)
867 		msg->msg_flags |= MSG_EOR;
868 
869 	return __sock_sendmsg(iocb, sock, msg, size);
870 }
871 
872 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
873 			  unsigned long nr_segs, loff_t pos)
874 {
875 	struct sock_iocb siocb, *x;
876 
877 	if (pos != 0)
878 		return -ESPIPE;
879 
880 	x = alloc_sock_iocb(iocb, &siocb);
881 	if (!x)
882 		return -ENOMEM;
883 
884 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
885 }
886 
887 /*
888  * Atomic setting of ioctl hooks to avoid race
889  * with module unload.
890  */
891 
892 static DEFINE_MUTEX(br_ioctl_mutex);
893 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
894 
895 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
896 {
897 	mutex_lock(&br_ioctl_mutex);
898 	br_ioctl_hook = hook;
899 	mutex_unlock(&br_ioctl_mutex);
900 }
901 
902 EXPORT_SYMBOL(brioctl_set);
903 
904 static DEFINE_MUTEX(vlan_ioctl_mutex);
905 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
906 
907 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
908 {
909 	mutex_lock(&vlan_ioctl_mutex);
910 	vlan_ioctl_hook = hook;
911 	mutex_unlock(&vlan_ioctl_mutex);
912 }
913 
914 EXPORT_SYMBOL(vlan_ioctl_set);
915 
916 static DEFINE_MUTEX(dlci_ioctl_mutex);
917 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
918 
919 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
920 {
921 	mutex_lock(&dlci_ioctl_mutex);
922 	dlci_ioctl_hook = hook;
923 	mutex_unlock(&dlci_ioctl_mutex);
924 }
925 
926 EXPORT_SYMBOL(dlci_ioctl_set);
927 
928 static long sock_do_ioctl(struct net *net, struct socket *sock,
929 				 unsigned int cmd, unsigned long arg)
930 {
931 	int err;
932 	void __user *argp = (void __user *)arg;
933 
934 	err = sock->ops->ioctl(sock, cmd, arg);
935 
936 	/*
937 	 * If this ioctl is unknown try to hand it down
938 	 * to the NIC driver.
939 	 */
940 	if (err == -ENOIOCTLCMD)
941 		err = dev_ioctl(net, cmd, argp);
942 
943 	return err;
944 }
945 
946 /*
947  *	With an ioctl, arg may well be a user mode pointer, but we don't know
948  *	what to do with it - that's up to the protocol still.
949  */
950 
951 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
952 {
953 	struct socket *sock;
954 	struct sock *sk;
955 	void __user *argp = (void __user *)arg;
956 	int pid, err;
957 	struct net *net;
958 
959 	sock = file->private_data;
960 	sk = sock->sk;
961 	net = sock_net(sk);
962 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
963 		err = dev_ioctl(net, cmd, argp);
964 	} else
965 #ifdef CONFIG_WEXT_CORE
966 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
967 		err = dev_ioctl(net, cmd, argp);
968 	} else
969 #endif
970 		switch (cmd) {
971 		case FIOSETOWN:
972 		case SIOCSPGRP:
973 			err = -EFAULT;
974 			if (get_user(pid, (int __user *)argp))
975 				break;
976 			err = f_setown(sock->file, pid, 1);
977 			break;
978 		case FIOGETOWN:
979 		case SIOCGPGRP:
980 			err = put_user(f_getown(sock->file),
981 				       (int __user *)argp);
982 			break;
983 		case SIOCGIFBR:
984 		case SIOCSIFBR:
985 		case SIOCBRADDBR:
986 		case SIOCBRDELBR:
987 			err = -ENOPKG;
988 			if (!br_ioctl_hook)
989 				request_module("bridge");
990 
991 			mutex_lock(&br_ioctl_mutex);
992 			if (br_ioctl_hook)
993 				err = br_ioctl_hook(net, cmd, argp);
994 			mutex_unlock(&br_ioctl_mutex);
995 			break;
996 		case SIOCGIFVLAN:
997 		case SIOCSIFVLAN:
998 			err = -ENOPKG;
999 			if (!vlan_ioctl_hook)
1000 				request_module("8021q");
1001 
1002 			mutex_lock(&vlan_ioctl_mutex);
1003 			if (vlan_ioctl_hook)
1004 				err = vlan_ioctl_hook(net, argp);
1005 			mutex_unlock(&vlan_ioctl_mutex);
1006 			break;
1007 		case SIOCADDDLCI:
1008 		case SIOCDELDLCI:
1009 			err = -ENOPKG;
1010 			if (!dlci_ioctl_hook)
1011 				request_module("dlci");
1012 
1013 			mutex_lock(&dlci_ioctl_mutex);
1014 			if (dlci_ioctl_hook)
1015 				err = dlci_ioctl_hook(cmd, argp);
1016 			mutex_unlock(&dlci_ioctl_mutex);
1017 			break;
1018 		default:
1019 			err = sock_do_ioctl(net, sock, cmd, arg);
1020 			break;
1021 		}
1022 	return err;
1023 }
1024 
1025 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1026 {
1027 	int err;
1028 	struct socket *sock = NULL;
1029 
1030 	err = security_socket_create(family, type, protocol, 1);
1031 	if (err)
1032 		goto out;
1033 
1034 	sock = sock_alloc();
1035 	if (!sock) {
1036 		err = -ENOMEM;
1037 		goto out;
1038 	}
1039 
1040 	sock->type = type;
1041 	err = security_socket_post_create(sock, family, type, protocol, 1);
1042 	if (err)
1043 		goto out_release;
1044 
1045 out:
1046 	*res = sock;
1047 	return err;
1048 out_release:
1049 	sock_release(sock);
1050 	sock = NULL;
1051 	goto out;
1052 }
1053 
1054 /* No kernel lock held - perfect */
1055 static unsigned int sock_poll(struct file *file, poll_table *wait)
1056 {
1057 	struct socket *sock;
1058 
1059 	/*
1060 	 *      We can't return errors to poll, so it's either yes or no.
1061 	 */
1062 	sock = file->private_data;
1063 	return sock->ops->poll(file, sock, wait);
1064 }
1065 
1066 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1067 {
1068 	struct socket *sock = file->private_data;
1069 
1070 	return sock->ops->mmap(file, sock, vma);
1071 }
1072 
1073 static int sock_close(struct inode *inode, struct file *filp)
1074 {
1075 	/*
1076 	 *      It was possible the inode is NULL we were
1077 	 *      closing an unfinished socket.
1078 	 */
1079 
1080 	if (!inode) {
1081 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1082 		return 0;
1083 	}
1084 	sock_release(SOCKET_I(inode));
1085 	return 0;
1086 }
1087 
1088 /*
1089  *	Update the socket async list
1090  *
1091  *	Fasync_list locking strategy.
1092  *
1093  *	1. fasync_list is modified only under process context socket lock
1094  *	   i.e. under semaphore.
1095  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1096  *	   or under socket lock.
1097  *	3. fasync_list can be used from softirq context, so that
1098  *	   modification under socket lock have to be enhanced with
1099  *	   write_lock_bh(&sk->sk_callback_lock).
1100  *							--ANK (990710)
1101  */
1102 
1103 static int sock_fasync(int fd, struct file *filp, int on)
1104 {
1105 	struct fasync_struct *fa, *fna = NULL, **prev;
1106 	struct socket *sock;
1107 	struct sock *sk;
1108 
1109 	if (on) {
1110 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1111 		if (fna == NULL)
1112 			return -ENOMEM;
1113 	}
1114 
1115 	sock = filp->private_data;
1116 
1117 	sk = sock->sk;
1118 	if (sk == NULL) {
1119 		kfree(fna);
1120 		return -EINVAL;
1121 	}
1122 
1123 	lock_sock(sk);
1124 
1125 	spin_lock(&filp->f_lock);
1126 	if (on)
1127 		filp->f_flags |= FASYNC;
1128 	else
1129 		filp->f_flags &= ~FASYNC;
1130 	spin_unlock(&filp->f_lock);
1131 
1132 	prev = &(sock->fasync_list);
1133 
1134 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1135 		if (fa->fa_file == filp)
1136 			break;
1137 
1138 	if (on) {
1139 		if (fa != NULL) {
1140 			write_lock_bh(&sk->sk_callback_lock);
1141 			fa->fa_fd = fd;
1142 			write_unlock_bh(&sk->sk_callback_lock);
1143 
1144 			kfree(fna);
1145 			goto out;
1146 		}
1147 		fna->fa_file = filp;
1148 		fna->fa_fd = fd;
1149 		fna->magic = FASYNC_MAGIC;
1150 		fna->fa_next = sock->fasync_list;
1151 		write_lock_bh(&sk->sk_callback_lock);
1152 		sock->fasync_list = fna;
1153 		sock_set_flag(sk, SOCK_FASYNC);
1154 		write_unlock_bh(&sk->sk_callback_lock);
1155 	} else {
1156 		if (fa != NULL) {
1157 			write_lock_bh(&sk->sk_callback_lock);
1158 			*prev = fa->fa_next;
1159 			if (!sock->fasync_list)
1160 				sock_reset_flag(sk, SOCK_FASYNC);
1161 			write_unlock_bh(&sk->sk_callback_lock);
1162 			kfree(fa);
1163 		}
1164 	}
1165 
1166 out:
1167 	release_sock(sock->sk);
1168 	return 0;
1169 }
1170 
1171 /* This function may be called only under socket lock or callback_lock */
1172 
1173 int sock_wake_async(struct socket *sock, int how, int band)
1174 {
1175 	if (!sock || !sock->fasync_list)
1176 		return -1;
1177 	switch (how) {
1178 	case SOCK_WAKE_WAITD:
1179 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 			break;
1181 		goto call_kill;
1182 	case SOCK_WAKE_SPACE:
1183 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 			break;
1185 		/* fall through */
1186 	case SOCK_WAKE_IO:
1187 call_kill:
1188 		__kill_fasync(sock->fasync_list, SIGIO, band);
1189 		break;
1190 	case SOCK_WAKE_URG:
1191 		__kill_fasync(sock->fasync_list, SIGURG, band);
1192 	}
1193 	return 0;
1194 }
1195 
1196 static int __sock_create(struct net *net, int family, int type, int protocol,
1197 			 struct socket **res, int kern)
1198 {
1199 	int err;
1200 	struct socket *sock;
1201 	const struct net_proto_family *pf;
1202 
1203 	/*
1204 	 *      Check protocol is in range
1205 	 */
1206 	if (family < 0 || family >= NPROTO)
1207 		return -EAFNOSUPPORT;
1208 	if (type < 0 || type >= SOCK_MAX)
1209 		return -EINVAL;
1210 
1211 	/* Compatibility.
1212 
1213 	   This uglymoron is moved from INET layer to here to avoid
1214 	   deadlock in module load.
1215 	 */
1216 	if (family == PF_INET && type == SOCK_PACKET) {
1217 		static int warned;
1218 		if (!warned) {
1219 			warned = 1;
1220 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 			       current->comm);
1222 		}
1223 		family = PF_PACKET;
1224 	}
1225 
1226 	err = security_socket_create(family, type, protocol, kern);
1227 	if (err)
1228 		return err;
1229 
1230 	/*
1231 	 *	Allocate the socket and allow the family to set things up. if
1232 	 *	the protocol is 0, the family is instructed to select an appropriate
1233 	 *	default.
1234 	 */
1235 	sock = sock_alloc();
1236 	if (!sock) {
1237 		if (net_ratelimit())
1238 			printk(KERN_WARNING "socket: no more sockets\n");
1239 		return -ENFILE;	/* Not exactly a match, but its the
1240 				   closest posix thing */
1241 	}
1242 
1243 	sock->type = type;
1244 
1245 #ifdef CONFIG_MODULES
1246 	/* Attempt to load a protocol module if the find failed.
1247 	 *
1248 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 	 * requested real, full-featured networking support upon configuration.
1250 	 * Otherwise module support will break!
1251 	 */
1252 	if (net_families[family] == NULL)
1253 		request_module("net-pf-%d", family);
1254 #endif
1255 
1256 	rcu_read_lock();
1257 	pf = rcu_dereference(net_families[family]);
1258 	err = -EAFNOSUPPORT;
1259 	if (!pf)
1260 		goto out_release;
1261 
1262 	/*
1263 	 * We will call the ->create function, that possibly is in a loadable
1264 	 * module, so we have to bump that loadable module refcnt first.
1265 	 */
1266 	if (!try_module_get(pf->owner))
1267 		goto out_release;
1268 
1269 	/* Now protected by module ref count */
1270 	rcu_read_unlock();
1271 
1272 	err = pf->create(net, sock, protocol, kern);
1273 	if (err < 0)
1274 		goto out_module_put;
1275 
1276 	/*
1277 	 * Now to bump the refcnt of the [loadable] module that owns this
1278 	 * socket at sock_release time we decrement its refcnt.
1279 	 */
1280 	if (!try_module_get(sock->ops->owner))
1281 		goto out_module_busy;
1282 
1283 	/*
1284 	 * Now that we're done with the ->create function, the [loadable]
1285 	 * module can have its refcnt decremented
1286 	 */
1287 	module_put(pf->owner);
1288 	err = security_socket_post_create(sock, family, type, protocol, kern);
1289 	if (err)
1290 		goto out_sock_release;
1291 	*res = sock;
1292 
1293 	return 0;
1294 
1295 out_module_busy:
1296 	err = -EAFNOSUPPORT;
1297 out_module_put:
1298 	sock->ops = NULL;
1299 	module_put(pf->owner);
1300 out_sock_release:
1301 	sock_release(sock);
1302 	return err;
1303 
1304 out_release:
1305 	rcu_read_unlock();
1306 	goto out_sock_release;
1307 }
1308 
1309 int sock_create(int family, int type, int protocol, struct socket **res)
1310 {
1311 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1312 }
1313 
1314 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1315 {
1316 	return __sock_create(&init_net, family, type, protocol, res, 1);
1317 }
1318 
1319 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1320 {
1321 	int retval;
1322 	struct socket *sock;
1323 	int flags;
1324 
1325 	/* Check the SOCK_* constants for consistency.  */
1326 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1327 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1328 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1329 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1330 
1331 	flags = type & ~SOCK_TYPE_MASK;
1332 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1333 		return -EINVAL;
1334 	type &= SOCK_TYPE_MASK;
1335 
1336 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1337 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1338 
1339 	retval = sock_create(family, type, protocol, &sock);
1340 	if (retval < 0)
1341 		goto out;
1342 
1343 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1344 	if (retval < 0)
1345 		goto out_release;
1346 
1347 out:
1348 	/* It may be already another descriptor 8) Not kernel problem. */
1349 	return retval;
1350 
1351 out_release:
1352 	sock_release(sock);
1353 	return retval;
1354 }
1355 
1356 /*
1357  *	Create a pair of connected sockets.
1358  */
1359 
1360 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1361 		int __user *, usockvec)
1362 {
1363 	struct socket *sock1, *sock2;
1364 	int fd1, fd2, err;
1365 	struct file *newfile1, *newfile2;
1366 	int flags;
1367 
1368 	flags = type & ~SOCK_TYPE_MASK;
1369 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 		return -EINVAL;
1371 	type &= SOCK_TYPE_MASK;
1372 
1373 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1375 
1376 	/*
1377 	 * Obtain the first socket and check if the underlying protocol
1378 	 * supports the socketpair call.
1379 	 */
1380 
1381 	err = sock_create(family, type, protocol, &sock1);
1382 	if (err < 0)
1383 		goto out;
1384 
1385 	err = sock_create(family, type, protocol, &sock2);
1386 	if (err < 0)
1387 		goto out_release_1;
1388 
1389 	err = sock1->ops->socketpair(sock1, sock2);
1390 	if (err < 0)
1391 		goto out_release_both;
1392 
1393 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1394 	if (unlikely(fd1 < 0)) {
1395 		err = fd1;
1396 		goto out_release_both;
1397 	}
1398 
1399 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1400 	if (unlikely(fd2 < 0)) {
1401 		err = fd2;
1402 		put_filp(newfile1);
1403 		put_unused_fd(fd1);
1404 		goto out_release_both;
1405 	}
1406 
1407 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1408 	if (unlikely(err < 0)) {
1409 		goto out_fd2;
1410 	}
1411 
1412 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1413 	if (unlikely(err < 0)) {
1414 		fput(newfile1);
1415 		goto out_fd1;
1416 	}
1417 
1418 	audit_fd_pair(fd1, fd2);
1419 	fd_install(fd1, newfile1);
1420 	fd_install(fd2, newfile2);
1421 	/* fd1 and fd2 may be already another descriptors.
1422 	 * Not kernel problem.
1423 	 */
1424 
1425 	err = put_user(fd1, &usockvec[0]);
1426 	if (!err)
1427 		err = put_user(fd2, &usockvec[1]);
1428 	if (!err)
1429 		return 0;
1430 
1431 	sys_close(fd2);
1432 	sys_close(fd1);
1433 	return err;
1434 
1435 out_release_both:
1436 	sock_release(sock2);
1437 out_release_1:
1438 	sock_release(sock1);
1439 out:
1440 	return err;
1441 
1442 out_fd2:
1443 	put_filp(newfile1);
1444 	sock_release(sock1);
1445 out_fd1:
1446 	put_filp(newfile2);
1447 	sock_release(sock2);
1448 	put_unused_fd(fd1);
1449 	put_unused_fd(fd2);
1450 	goto out;
1451 }
1452 
1453 /*
1454  *	Bind a name to a socket. Nothing much to do here since it's
1455  *	the protocol's responsibility to handle the local address.
1456  *
1457  *	We move the socket address to kernel space before we call
1458  *	the protocol layer (having also checked the address is ok).
1459  */
1460 
1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1462 {
1463 	struct socket *sock;
1464 	struct sockaddr_storage address;
1465 	int err, fput_needed;
1466 
1467 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 	if (sock) {
1469 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1470 		if (err >= 0) {
1471 			err = security_socket_bind(sock,
1472 						   (struct sockaddr *)&address,
1473 						   addrlen);
1474 			if (!err)
1475 				err = sock->ops->bind(sock,
1476 						      (struct sockaddr *)
1477 						      &address, addrlen);
1478 		}
1479 		fput_light(sock->file, fput_needed);
1480 	}
1481 	return err;
1482 }
1483 
1484 /*
1485  *	Perform a listen. Basically, we allow the protocol to do anything
1486  *	necessary for a listen, and if that works, we mark the socket as
1487  *	ready for listening.
1488  */
1489 
1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1491 {
1492 	struct socket *sock;
1493 	int err, fput_needed;
1494 	int somaxconn;
1495 
1496 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 	if (sock) {
1498 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1499 		if ((unsigned)backlog > somaxconn)
1500 			backlog = somaxconn;
1501 
1502 		err = security_socket_listen(sock, backlog);
1503 		if (!err)
1504 			err = sock->ops->listen(sock, backlog);
1505 
1506 		fput_light(sock->file, fput_needed);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  *	For accept, we attempt to create a new socket, set up the link
1513  *	with the client, wake up the client, then return the new
1514  *	connected fd. We collect the address of the connector in kernel
1515  *	space and move it to user at the very end. This is unclean because
1516  *	we open the socket then return an error.
1517  *
1518  *	1003.1g adds the ability to recvmsg() to query connection pending
1519  *	status to recvmsg. We need to add that support in a way thats
1520  *	clean when we restucture accept also.
1521  */
1522 
1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1524 		int __user *, upeer_addrlen, int, flags)
1525 {
1526 	struct socket *sock, *newsock;
1527 	struct file *newfile;
1528 	int err, len, newfd, fput_needed;
1529 	struct sockaddr_storage address;
1530 
1531 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 		return -EINVAL;
1533 
1534 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1535 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1536 
1537 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 	if (!sock)
1539 		goto out;
1540 
1541 	err = -ENFILE;
1542 	if (!(newsock = sock_alloc()))
1543 		goto out_put;
1544 
1545 	newsock->type = sock->type;
1546 	newsock->ops = sock->ops;
1547 
1548 	/*
1549 	 * We don't need try_module_get here, as the listening socket (sock)
1550 	 * has the protocol module (sock->ops->owner) held.
1551 	 */
1552 	__module_get(newsock->ops->owner);
1553 
1554 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1555 	if (unlikely(newfd < 0)) {
1556 		err = newfd;
1557 		sock_release(newsock);
1558 		goto out_put;
1559 	}
1560 
1561 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1562 	if (err < 0)
1563 		goto out_fd_simple;
1564 
1565 	err = security_socket_accept(sock, newsock);
1566 	if (err)
1567 		goto out_fd;
1568 
1569 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1570 	if (err < 0)
1571 		goto out_fd;
1572 
1573 	if (upeer_sockaddr) {
1574 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1575 					  &len, 2) < 0) {
1576 			err = -ECONNABORTED;
1577 			goto out_fd;
1578 		}
1579 		err = move_addr_to_user((struct sockaddr *)&address,
1580 					len, upeer_sockaddr, upeer_addrlen);
1581 		if (err < 0)
1582 			goto out_fd;
1583 	}
1584 
1585 	/* File flags are not inherited via accept() unlike another OSes. */
1586 
1587 	fd_install(newfd, newfile);
1588 	err = newfd;
1589 
1590 out_put:
1591 	fput_light(sock->file, fput_needed);
1592 out:
1593 	return err;
1594 out_fd_simple:
1595 	sock_release(newsock);
1596 	put_filp(newfile);
1597 	put_unused_fd(newfd);
1598 	goto out_put;
1599 out_fd:
1600 	fput(newfile);
1601 	put_unused_fd(newfd);
1602 	goto out_put;
1603 }
1604 
1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606 		int __user *, upeer_addrlen)
1607 {
1608 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1609 }
1610 
1611 /*
1612  *	Attempt to connect to a socket with the server address.  The address
1613  *	is in user space so we verify it is OK and move it to kernel space.
1614  *
1615  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1616  *	break bindings
1617  *
1618  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619  *	other SEQPACKET protocols that take time to connect() as it doesn't
1620  *	include the -EINPROGRESS status for such sockets.
1621  */
1622 
1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1624 		int, addrlen)
1625 {
1626 	struct socket *sock;
1627 	struct sockaddr_storage address;
1628 	int err, fput_needed;
1629 
1630 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 	if (!sock)
1632 		goto out;
1633 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1634 	if (err < 0)
1635 		goto out_put;
1636 
1637 	err =
1638 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1639 	if (err)
1640 		goto out_put;
1641 
1642 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643 				 sock->file->f_flags);
1644 out_put:
1645 	fput_light(sock->file, fput_needed);
1646 out:
1647 	return err;
1648 }
1649 
1650 /*
1651  *	Get the local address ('name') of a socket object. Move the obtained
1652  *	name to user space.
1653  */
1654 
1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656 		int __user *, usockaddr_len)
1657 {
1658 	struct socket *sock;
1659 	struct sockaddr_storage address;
1660 	int len, err, fput_needed;
1661 
1662 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 	if (!sock)
1664 		goto out;
1665 
1666 	err = security_socket_getsockname(sock);
1667 	if (err)
1668 		goto out_put;
1669 
1670 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1671 	if (err)
1672 		goto out_put;
1673 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1674 
1675 out_put:
1676 	fput_light(sock->file, fput_needed);
1677 out:
1678 	return err;
1679 }
1680 
1681 /*
1682  *	Get the remote address ('name') of a socket object. Move the obtained
1683  *	name to user space.
1684  */
1685 
1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687 		int __user *, usockaddr_len)
1688 {
1689 	struct socket *sock;
1690 	struct sockaddr_storage address;
1691 	int len, err, fput_needed;
1692 
1693 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 	if (sock != NULL) {
1695 		err = security_socket_getpeername(sock);
1696 		if (err) {
1697 			fput_light(sock->file, fput_needed);
1698 			return err;
1699 		}
1700 
1701 		err =
1702 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1703 				       1);
1704 		if (!err)
1705 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1706 						usockaddr_len);
1707 		fput_light(sock->file, fput_needed);
1708 	}
1709 	return err;
1710 }
1711 
1712 /*
1713  *	Send a datagram to a given address. We move the address into kernel
1714  *	space and check the user space data area is readable before invoking
1715  *	the protocol.
1716  */
1717 
1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719 		unsigned, flags, struct sockaddr __user *, addr,
1720 		int, addr_len)
1721 {
1722 	struct socket *sock;
1723 	struct sockaddr_storage address;
1724 	int err;
1725 	struct msghdr msg;
1726 	struct iovec iov;
1727 	int fput_needed;
1728 
1729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 	if (!sock)
1731 		goto out;
1732 
1733 	iov.iov_base = buff;
1734 	iov.iov_len = len;
1735 	msg.msg_name = NULL;
1736 	msg.msg_iov = &iov;
1737 	msg.msg_iovlen = 1;
1738 	msg.msg_control = NULL;
1739 	msg.msg_controllen = 0;
1740 	msg.msg_namelen = 0;
1741 	if (addr) {
1742 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1743 		if (err < 0)
1744 			goto out_put;
1745 		msg.msg_name = (struct sockaddr *)&address;
1746 		msg.msg_namelen = addr_len;
1747 	}
1748 	if (sock->file->f_flags & O_NONBLOCK)
1749 		flags |= MSG_DONTWAIT;
1750 	msg.msg_flags = flags;
1751 	err = sock_sendmsg(sock, &msg, len);
1752 
1753 out_put:
1754 	fput_light(sock->file, fput_needed);
1755 out:
1756 	return err;
1757 }
1758 
1759 /*
1760  *	Send a datagram down a socket.
1761  */
1762 
1763 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1764 		unsigned, flags)
1765 {
1766 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1767 }
1768 
1769 /*
1770  *	Receive a frame from the socket and optionally record the address of the
1771  *	sender. We verify the buffers are writable and if needed move the
1772  *	sender address from kernel to user space.
1773  */
1774 
1775 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1776 		unsigned, flags, struct sockaddr __user *, addr,
1777 		int __user *, addr_len)
1778 {
1779 	struct socket *sock;
1780 	struct iovec iov;
1781 	struct msghdr msg;
1782 	struct sockaddr_storage address;
1783 	int err, err2;
1784 	int fput_needed;
1785 
1786 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 	if (!sock)
1788 		goto out;
1789 
1790 	msg.msg_control = NULL;
1791 	msg.msg_controllen = 0;
1792 	msg.msg_iovlen = 1;
1793 	msg.msg_iov = &iov;
1794 	iov.iov_len = size;
1795 	iov.iov_base = ubuf;
1796 	msg.msg_name = (struct sockaddr *)&address;
1797 	msg.msg_namelen = sizeof(address);
1798 	if (sock->file->f_flags & O_NONBLOCK)
1799 		flags |= MSG_DONTWAIT;
1800 	err = sock_recvmsg(sock, &msg, size, flags);
1801 
1802 	if (err >= 0 && addr != NULL) {
1803 		err2 = move_addr_to_user((struct sockaddr *)&address,
1804 					 msg.msg_namelen, addr, addr_len);
1805 		if (err2 < 0)
1806 			err = err2;
1807 	}
1808 
1809 	fput_light(sock->file, fput_needed);
1810 out:
1811 	return err;
1812 }
1813 
1814 /*
1815  *	Receive a datagram from a socket.
1816  */
1817 
1818 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1819 			 unsigned flags)
1820 {
1821 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1822 }
1823 
1824 /*
1825  *	Set a socket option. Because we don't know the option lengths we have
1826  *	to pass the user mode parameter for the protocols to sort out.
1827  */
1828 
1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1830 		char __user *, optval, int, optlen)
1831 {
1832 	int err, fput_needed;
1833 	struct socket *sock;
1834 
1835 	if (optlen < 0)
1836 		return -EINVAL;
1837 
1838 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839 	if (sock != NULL) {
1840 		err = security_socket_setsockopt(sock, level, optname);
1841 		if (err)
1842 			goto out_put;
1843 
1844 		if (level == SOL_SOCKET)
1845 			err =
1846 			    sock_setsockopt(sock, level, optname, optval,
1847 					    optlen);
1848 		else
1849 			err =
1850 			    sock->ops->setsockopt(sock, level, optname, optval,
1851 						  optlen);
1852 out_put:
1853 		fput_light(sock->file, fput_needed);
1854 	}
1855 	return err;
1856 }
1857 
1858 /*
1859  *	Get a socket option. Because we don't know the option lengths we have
1860  *	to pass a user mode parameter for the protocols to sort out.
1861  */
1862 
1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1864 		char __user *, optval, int __user *, optlen)
1865 {
1866 	int err, fput_needed;
1867 	struct socket *sock;
1868 
1869 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 	if (sock != NULL) {
1871 		err = security_socket_getsockopt(sock, level, optname);
1872 		if (err)
1873 			goto out_put;
1874 
1875 		if (level == SOL_SOCKET)
1876 			err =
1877 			    sock_getsockopt(sock, level, optname, optval,
1878 					    optlen);
1879 		else
1880 			err =
1881 			    sock->ops->getsockopt(sock, level, optname, optval,
1882 						  optlen);
1883 out_put:
1884 		fput_light(sock->file, fput_needed);
1885 	}
1886 	return err;
1887 }
1888 
1889 /*
1890  *	Shutdown a socket.
1891  */
1892 
1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1894 {
1895 	int err, fput_needed;
1896 	struct socket *sock;
1897 
1898 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 	if (sock != NULL) {
1900 		err = security_socket_shutdown(sock, how);
1901 		if (!err)
1902 			err = sock->ops->shutdown(sock, how);
1903 		fput_light(sock->file, fput_needed);
1904 	}
1905 	return err;
1906 }
1907 
1908 /* A couple of helpful macros for getting the address of the 32/64 bit
1909  * fields which are the same type (int / unsigned) on our platforms.
1910  */
1911 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1912 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1913 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1914 
1915 /*
1916  *	BSD sendmsg interface
1917  */
1918 
1919 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1920 {
1921 	struct compat_msghdr __user *msg_compat =
1922 	    (struct compat_msghdr __user *)msg;
1923 	struct socket *sock;
1924 	struct sockaddr_storage address;
1925 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1926 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1927 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1928 	/* 20 is size of ipv6_pktinfo */
1929 	unsigned char *ctl_buf = ctl;
1930 	struct msghdr msg_sys;
1931 	int err, ctl_len, iov_size, total_len;
1932 	int fput_needed;
1933 
1934 	err = -EFAULT;
1935 	if (MSG_CMSG_COMPAT & flags) {
1936 		if (get_compat_msghdr(&msg_sys, msg_compat))
1937 			return -EFAULT;
1938 	}
1939 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1940 		return -EFAULT;
1941 
1942 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 	if (!sock)
1944 		goto out;
1945 
1946 	/* do not move before msg_sys is valid */
1947 	err = -EMSGSIZE;
1948 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1949 		goto out_put;
1950 
1951 	/* Check whether to allocate the iovec area */
1952 	err = -ENOMEM;
1953 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1954 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1955 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1956 		if (!iov)
1957 			goto out_put;
1958 	}
1959 
1960 	/* This will also move the address data into kernel space */
1961 	if (MSG_CMSG_COMPAT & flags) {
1962 		err = verify_compat_iovec(&msg_sys, iov,
1963 					  (struct sockaddr *)&address,
1964 					  VERIFY_READ);
1965 	} else
1966 		err = verify_iovec(&msg_sys, iov,
1967 				   (struct sockaddr *)&address,
1968 				   VERIFY_READ);
1969 	if (err < 0)
1970 		goto out_freeiov;
1971 	total_len = err;
1972 
1973 	err = -ENOBUFS;
1974 
1975 	if (msg_sys.msg_controllen > INT_MAX)
1976 		goto out_freeiov;
1977 	ctl_len = msg_sys.msg_controllen;
1978 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1979 		err =
1980 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1981 						     sizeof(ctl));
1982 		if (err)
1983 			goto out_freeiov;
1984 		ctl_buf = msg_sys.msg_control;
1985 		ctl_len = msg_sys.msg_controllen;
1986 	} else if (ctl_len) {
1987 		if (ctl_len > sizeof(ctl)) {
1988 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1989 			if (ctl_buf == NULL)
1990 				goto out_freeiov;
1991 		}
1992 		err = -EFAULT;
1993 		/*
1994 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1995 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1996 		 * checking falls down on this.
1997 		 */
1998 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1999 				   ctl_len))
2000 			goto out_freectl;
2001 		msg_sys.msg_control = ctl_buf;
2002 	}
2003 	msg_sys.msg_flags = flags;
2004 
2005 	if (sock->file->f_flags & O_NONBLOCK)
2006 		msg_sys.msg_flags |= MSG_DONTWAIT;
2007 	err = sock_sendmsg(sock, &msg_sys, total_len);
2008 
2009 out_freectl:
2010 	if (ctl_buf != ctl)
2011 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2012 out_freeiov:
2013 	if (iov != iovstack)
2014 		sock_kfree_s(sock->sk, iov, iov_size);
2015 out_put:
2016 	fput_light(sock->file, fput_needed);
2017 out:
2018 	return err;
2019 }
2020 
2021 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2022 			 struct msghdr *msg_sys, unsigned flags, int nosec)
2023 {
2024 	struct compat_msghdr __user *msg_compat =
2025 	    (struct compat_msghdr __user *)msg;
2026 	struct iovec iovstack[UIO_FASTIOV];
2027 	struct iovec *iov = iovstack;
2028 	unsigned long cmsg_ptr;
2029 	int err, iov_size, total_len, len;
2030 
2031 	/* kernel mode address */
2032 	struct sockaddr_storage addr;
2033 
2034 	/* user mode address pointers */
2035 	struct sockaddr __user *uaddr;
2036 	int __user *uaddr_len;
2037 
2038 	if (MSG_CMSG_COMPAT & flags) {
2039 		if (get_compat_msghdr(msg_sys, msg_compat))
2040 			return -EFAULT;
2041 	}
2042 	else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2043 		return -EFAULT;
2044 
2045 	err = -EMSGSIZE;
2046 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
2047 		goto out;
2048 
2049 	/* Check whether to allocate the iovec area */
2050 	err = -ENOMEM;
2051 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2052 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2053 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2054 		if (!iov)
2055 			goto out;
2056 	}
2057 
2058 	/*
2059 	 *      Save the user-mode address (verify_iovec will change the
2060 	 *      kernel msghdr to use the kernel address space)
2061 	 */
2062 
2063 	uaddr = (__force void __user *)msg_sys->msg_name;
2064 	uaddr_len = COMPAT_NAMELEN(msg);
2065 	if (MSG_CMSG_COMPAT & flags) {
2066 		err = verify_compat_iovec(msg_sys, iov,
2067 					  (struct sockaddr *)&addr,
2068 					  VERIFY_WRITE);
2069 	} else
2070 		err = verify_iovec(msg_sys, iov,
2071 				   (struct sockaddr *)&addr,
2072 				   VERIFY_WRITE);
2073 	if (err < 0)
2074 		goto out_freeiov;
2075 	total_len = err;
2076 
2077 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2078 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2079 
2080 	if (sock->file->f_flags & O_NONBLOCK)
2081 		flags |= MSG_DONTWAIT;
2082 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2083 							  total_len, flags);
2084 	if (err < 0)
2085 		goto out_freeiov;
2086 	len = err;
2087 
2088 	if (uaddr != NULL) {
2089 		err = move_addr_to_user((struct sockaddr *)&addr,
2090 					msg_sys->msg_namelen, uaddr,
2091 					uaddr_len);
2092 		if (err < 0)
2093 			goto out_freeiov;
2094 	}
2095 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2096 			 COMPAT_FLAGS(msg));
2097 	if (err)
2098 		goto out_freeiov;
2099 	if (MSG_CMSG_COMPAT & flags)
2100 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2101 				 &msg_compat->msg_controllen);
2102 	else
2103 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2104 				 &msg->msg_controllen);
2105 	if (err)
2106 		goto out_freeiov;
2107 	err = len;
2108 
2109 out_freeiov:
2110 	if (iov != iovstack)
2111 		sock_kfree_s(sock->sk, iov, iov_size);
2112 out:
2113 	return err;
2114 }
2115 
2116 /*
2117  *	BSD recvmsg interface
2118  */
2119 
2120 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2121 		unsigned int, flags)
2122 {
2123 	int fput_needed, err;
2124 	struct msghdr msg_sys;
2125 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126 
2127 	if (!sock)
2128 		goto out;
2129 
2130 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2131 
2132 	fput_light(sock->file, fput_needed);
2133 out:
2134 	return err;
2135 }
2136 
2137 /*
2138  *     Linux recvmmsg interface
2139  */
2140 
2141 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2142 		   unsigned int flags, struct timespec *timeout)
2143 {
2144 	int fput_needed, err, datagrams;
2145 	struct socket *sock;
2146 	struct mmsghdr __user *entry;
2147 	struct compat_mmsghdr __user *compat_entry;
2148 	struct msghdr msg_sys;
2149 	struct timespec end_time;
2150 
2151 	if (timeout &&
2152 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2153 				    timeout->tv_nsec))
2154 		return -EINVAL;
2155 
2156 	datagrams = 0;
2157 
2158 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 	if (!sock)
2160 		return err;
2161 
2162 	err = sock_error(sock->sk);
2163 	if (err)
2164 		goto out_put;
2165 
2166 	entry = mmsg;
2167 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2168 
2169 	while (datagrams < vlen) {
2170 		/*
2171 		 * No need to ask LSM for more than the first datagram.
2172 		 */
2173 		if (MSG_CMSG_COMPAT & flags) {
2174 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2175 					    &msg_sys, flags, datagrams);
2176 			if (err < 0)
2177 				break;
2178 			err = __put_user(err, &compat_entry->msg_len);
2179 			++compat_entry;
2180 		} else {
2181 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2182 					    &msg_sys, flags, datagrams);
2183 			if (err < 0)
2184 				break;
2185 			err = put_user(err, &entry->msg_len);
2186 			++entry;
2187 		}
2188 
2189 		if (err)
2190 			break;
2191 		++datagrams;
2192 
2193 		if (timeout) {
2194 			ktime_get_ts(timeout);
2195 			*timeout = timespec_sub(end_time, *timeout);
2196 			if (timeout->tv_sec < 0) {
2197 				timeout->tv_sec = timeout->tv_nsec = 0;
2198 				break;
2199 			}
2200 
2201 			/* Timeout, return less than vlen datagrams */
2202 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2203 				break;
2204 		}
2205 
2206 		/* Out of band data, return right away */
2207 		if (msg_sys.msg_flags & MSG_OOB)
2208 			break;
2209 	}
2210 
2211 out_put:
2212 	fput_light(sock->file, fput_needed);
2213 
2214 	if (err == 0)
2215 		return datagrams;
2216 
2217 	if (datagrams != 0) {
2218 		/*
2219 		 * We may return less entries than requested (vlen) if the
2220 		 * sock is non block and there aren't enough datagrams...
2221 		 */
2222 		if (err != -EAGAIN) {
2223 			/*
2224 			 * ... or  if recvmsg returns an error after we
2225 			 * received some datagrams, where we record the
2226 			 * error to return on the next call or if the
2227 			 * app asks about it using getsockopt(SO_ERROR).
2228 			 */
2229 			sock->sk->sk_err = -err;
2230 		}
2231 
2232 		return datagrams;
2233 	}
2234 
2235 	return err;
2236 }
2237 
2238 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239 		unsigned int, vlen, unsigned int, flags,
2240 		struct timespec __user *, timeout)
2241 {
2242 	int datagrams;
2243 	struct timespec timeout_sys;
2244 
2245 	if (!timeout)
2246 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2247 
2248 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2249 		return -EFAULT;
2250 
2251 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2252 
2253 	if (datagrams > 0 &&
2254 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2255 		datagrams = -EFAULT;
2256 
2257 	return datagrams;
2258 }
2259 
2260 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2261 /* Argument list sizes for sys_socketcall */
2262 #define AL(x) ((x) * sizeof(unsigned long))
2263 static const unsigned char nargs[20] = {
2264 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2265 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2266 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2267 	AL(4),AL(5)
2268 };
2269 
2270 #undef AL
2271 
2272 /*
2273  *	System call vectors.
2274  *
2275  *	Argument checking cleaned up. Saved 20% in size.
2276  *  This function doesn't need to set the kernel lock because
2277  *  it is set by the callees.
2278  */
2279 
2280 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2281 {
2282 	unsigned long a[6];
2283 	unsigned long a0, a1;
2284 	int err;
2285 	unsigned int len;
2286 
2287 	if (call < 1 || call > SYS_RECVMMSG)
2288 		return -EINVAL;
2289 
2290 	len = nargs[call];
2291 	if (len > sizeof(a))
2292 		return -EINVAL;
2293 
2294 	/* copy_from_user should be SMP safe. */
2295 	if (copy_from_user(a, args, len))
2296 		return -EFAULT;
2297 
2298 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2299 
2300 	a0 = a[0];
2301 	a1 = a[1];
2302 
2303 	switch (call) {
2304 	case SYS_SOCKET:
2305 		err = sys_socket(a0, a1, a[2]);
2306 		break;
2307 	case SYS_BIND:
2308 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2309 		break;
2310 	case SYS_CONNECT:
2311 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2312 		break;
2313 	case SYS_LISTEN:
2314 		err = sys_listen(a0, a1);
2315 		break;
2316 	case SYS_ACCEPT:
2317 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2318 				  (int __user *)a[2], 0);
2319 		break;
2320 	case SYS_GETSOCKNAME:
2321 		err =
2322 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2323 				    (int __user *)a[2]);
2324 		break;
2325 	case SYS_GETPEERNAME:
2326 		err =
2327 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2328 				    (int __user *)a[2]);
2329 		break;
2330 	case SYS_SOCKETPAIR:
2331 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2332 		break;
2333 	case SYS_SEND:
2334 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2335 		break;
2336 	case SYS_SENDTO:
2337 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2338 				 (struct sockaddr __user *)a[4], a[5]);
2339 		break;
2340 	case SYS_RECV:
2341 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2342 		break;
2343 	case SYS_RECVFROM:
2344 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2345 				   (struct sockaddr __user *)a[4],
2346 				   (int __user *)a[5]);
2347 		break;
2348 	case SYS_SHUTDOWN:
2349 		err = sys_shutdown(a0, a1);
2350 		break;
2351 	case SYS_SETSOCKOPT:
2352 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2353 		break;
2354 	case SYS_GETSOCKOPT:
2355 		err =
2356 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2357 				   (int __user *)a[4]);
2358 		break;
2359 	case SYS_SENDMSG:
2360 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2361 		break;
2362 	case SYS_RECVMSG:
2363 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2364 		break;
2365 	case SYS_RECVMMSG:
2366 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2367 				   (struct timespec __user *)a[4]);
2368 		break;
2369 	case SYS_ACCEPT4:
2370 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2371 				  (int __user *)a[2], a[3]);
2372 		break;
2373 	default:
2374 		err = -EINVAL;
2375 		break;
2376 	}
2377 	return err;
2378 }
2379 
2380 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2381 
2382 /**
2383  *	sock_register - add a socket protocol handler
2384  *	@ops: description of protocol
2385  *
2386  *	This function is called by a protocol handler that wants to
2387  *	advertise its address family, and have it linked into the
2388  *	socket interface. The value ops->family coresponds to the
2389  *	socket system call protocol family.
2390  */
2391 int sock_register(const struct net_proto_family *ops)
2392 {
2393 	int err;
2394 
2395 	if (ops->family >= NPROTO) {
2396 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2397 		       NPROTO);
2398 		return -ENOBUFS;
2399 	}
2400 
2401 	spin_lock(&net_family_lock);
2402 	if (net_families[ops->family])
2403 		err = -EEXIST;
2404 	else {
2405 		net_families[ops->family] = ops;
2406 		err = 0;
2407 	}
2408 	spin_unlock(&net_family_lock);
2409 
2410 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2411 	return err;
2412 }
2413 
2414 /**
2415  *	sock_unregister - remove a protocol handler
2416  *	@family: protocol family to remove
2417  *
2418  *	This function is called by a protocol handler that wants to
2419  *	remove its address family, and have it unlinked from the
2420  *	new socket creation.
2421  *
2422  *	If protocol handler is a module, then it can use module reference
2423  *	counts to protect against new references. If protocol handler is not
2424  *	a module then it needs to provide its own protection in
2425  *	the ops->create routine.
2426  */
2427 void sock_unregister(int family)
2428 {
2429 	BUG_ON(family < 0 || family >= NPROTO);
2430 
2431 	spin_lock(&net_family_lock);
2432 	net_families[family] = NULL;
2433 	spin_unlock(&net_family_lock);
2434 
2435 	synchronize_rcu();
2436 
2437 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2438 }
2439 
2440 static int __init sock_init(void)
2441 {
2442 	/*
2443 	 *      Initialize sock SLAB cache.
2444 	 */
2445 
2446 	sk_init();
2447 
2448 	/*
2449 	 *      Initialize skbuff SLAB cache
2450 	 */
2451 	skb_init();
2452 
2453 	/*
2454 	 *      Initialize the protocols module.
2455 	 */
2456 
2457 	init_inodecache();
2458 	register_filesystem(&sock_fs_type);
2459 	sock_mnt = kern_mount(&sock_fs_type);
2460 
2461 	/* The real protocol initialization is performed in later initcalls.
2462 	 */
2463 
2464 #ifdef CONFIG_NETFILTER
2465 	netfilter_init();
2466 #endif
2467 
2468 	return 0;
2469 }
2470 
2471 core_initcall(sock_init);	/* early initcall */
2472 
2473 #ifdef CONFIG_PROC_FS
2474 void socket_seq_show(struct seq_file *seq)
2475 {
2476 	int cpu;
2477 	int counter = 0;
2478 
2479 	for_each_possible_cpu(cpu)
2480 	    counter += per_cpu(sockets_in_use, cpu);
2481 
2482 	/* It can be negative, by the way. 8) */
2483 	if (counter < 0)
2484 		counter = 0;
2485 
2486 	seq_printf(seq, "sockets: used %d\n", counter);
2487 }
2488 #endif				/* CONFIG_PROC_FS */
2489 
2490 #ifdef CONFIG_COMPAT
2491 static int do_siocgstamp(struct net *net, struct socket *sock,
2492 			 unsigned int cmd, struct compat_timeval __user *up)
2493 {
2494 	mm_segment_t old_fs = get_fs();
2495 	struct timeval ktv;
2496 	int err;
2497 
2498 	set_fs(KERNEL_DS);
2499 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2500 	set_fs(old_fs);
2501 	if (!err) {
2502 		err = put_user(ktv.tv_sec, &up->tv_sec);
2503 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2504 	}
2505 	return err;
2506 }
2507 
2508 static int do_siocgstampns(struct net *net, struct socket *sock,
2509 			 unsigned int cmd, struct compat_timespec __user *up)
2510 {
2511 	mm_segment_t old_fs = get_fs();
2512 	struct timespec kts;
2513 	int err;
2514 
2515 	set_fs(KERNEL_DS);
2516 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2517 	set_fs(old_fs);
2518 	if (!err) {
2519 		err = put_user(kts.tv_sec, &up->tv_sec);
2520 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2521 	}
2522 	return err;
2523 }
2524 
2525 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2526 {
2527 	struct ifreq __user *uifr;
2528 	int err;
2529 
2530 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2531 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2532 		return -EFAULT;
2533 
2534 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2535 	if (err)
2536 		return err;
2537 
2538 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2539 		return -EFAULT;
2540 
2541 	return 0;
2542 }
2543 
2544 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2545 {
2546 	struct compat_ifconf ifc32;
2547 	struct ifconf ifc;
2548 	struct ifconf __user *uifc;
2549 	struct compat_ifreq __user *ifr32;
2550 	struct ifreq __user *ifr;
2551 	unsigned int i, j;
2552 	int err;
2553 
2554 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2555 		return -EFAULT;
2556 
2557 	if (ifc32.ifcbuf == 0) {
2558 		ifc32.ifc_len = 0;
2559 		ifc.ifc_len = 0;
2560 		ifc.ifc_req = NULL;
2561 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2562 	} else {
2563 		size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2564 			sizeof (struct ifreq);
2565 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2566 		ifc.ifc_len = len;
2567 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2568 		ifr32 = compat_ptr(ifc32.ifcbuf);
2569 		for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2570 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2571 				return -EFAULT;
2572 			ifr++;
2573 			ifr32++;
2574 		}
2575 	}
2576 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2577 		return -EFAULT;
2578 
2579 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2580 	if (err)
2581 		return err;
2582 
2583 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2584 		return -EFAULT;
2585 
2586 	ifr = ifc.ifc_req;
2587 	ifr32 = compat_ptr(ifc32.ifcbuf);
2588 	for (i = 0, j = 0;
2589              i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2590 	     i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2591 		if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2592 			return -EFAULT;
2593 		ifr32++;
2594 		ifr++;
2595 	}
2596 
2597 	if (ifc32.ifcbuf == 0) {
2598 		/* Translate from 64-bit structure multiple to
2599 		 * a 32-bit one.
2600 		 */
2601 		i = ifc.ifc_len;
2602 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2603 		ifc32.ifc_len = i;
2604 	} else {
2605 		ifc32.ifc_len = i;
2606 	}
2607 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2608 		return -EFAULT;
2609 
2610 	return 0;
2611 }
2612 
2613 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2614 {
2615 	struct ifreq __user *ifr;
2616 	u32 data;
2617 	void __user *datap;
2618 
2619 	ifr = compat_alloc_user_space(sizeof(*ifr));
2620 
2621 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2622 		return -EFAULT;
2623 
2624 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2625 		return -EFAULT;
2626 
2627 	datap = compat_ptr(data);
2628 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2629 		return -EFAULT;
2630 
2631 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2632 }
2633 
2634 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2635 {
2636 	void __user *uptr;
2637 	compat_uptr_t uptr32;
2638 	struct ifreq __user *uifr;
2639 
2640 	uifr = compat_alloc_user_space(sizeof (*uifr));
2641 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2642 		return -EFAULT;
2643 
2644 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2645 		return -EFAULT;
2646 
2647 	uptr = compat_ptr(uptr32);
2648 
2649 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2650 		return -EFAULT;
2651 
2652 	return dev_ioctl(net, SIOCWANDEV, uifr);
2653 }
2654 
2655 static int bond_ioctl(struct net *net, unsigned int cmd,
2656 			 struct compat_ifreq __user *ifr32)
2657 {
2658 	struct ifreq kifr;
2659 	struct ifreq __user *uifr;
2660 	mm_segment_t old_fs;
2661 	int err;
2662 	u32 data;
2663 	void __user *datap;
2664 
2665 	switch (cmd) {
2666 	case SIOCBONDENSLAVE:
2667 	case SIOCBONDRELEASE:
2668 	case SIOCBONDSETHWADDR:
2669 	case SIOCBONDCHANGEACTIVE:
2670 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2671 			return -EFAULT;
2672 
2673 		old_fs = get_fs();
2674 		set_fs (KERNEL_DS);
2675 		err = dev_ioctl(net, cmd, &kifr);
2676 		set_fs (old_fs);
2677 
2678 		return err;
2679 	case SIOCBONDSLAVEINFOQUERY:
2680 	case SIOCBONDINFOQUERY:
2681 		uifr = compat_alloc_user_space(sizeof(*uifr));
2682 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2683 			return -EFAULT;
2684 
2685 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 			return -EFAULT;
2687 
2688 		datap = compat_ptr(data);
2689 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2690 			return -EFAULT;
2691 
2692 		return dev_ioctl(net, cmd, uifr);
2693 	default:
2694 		return -EINVAL;
2695 	};
2696 }
2697 
2698 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2699 				 struct compat_ifreq __user *u_ifreq32)
2700 {
2701 	struct ifreq __user *u_ifreq64;
2702 	char tmp_buf[IFNAMSIZ];
2703 	void __user *data64;
2704 	u32 data32;
2705 
2706 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2707 			   IFNAMSIZ))
2708 		return -EFAULT;
2709 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2710 		return -EFAULT;
2711 	data64 = compat_ptr(data32);
2712 
2713 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2714 
2715 	/* Don't check these user accesses, just let that get trapped
2716 	 * in the ioctl handler instead.
2717 	 */
2718 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2719 			 IFNAMSIZ))
2720 		return -EFAULT;
2721 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2722 		return -EFAULT;
2723 
2724 	return dev_ioctl(net, cmd, u_ifreq64);
2725 }
2726 
2727 static int dev_ifsioc(struct net *net, struct socket *sock,
2728 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2729 {
2730 	struct ifreq __user *uifr;
2731 	int err;
2732 
2733 	uifr = compat_alloc_user_space(sizeof(*uifr));
2734 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2735 		return -EFAULT;
2736 
2737 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2738 
2739 	if (!err) {
2740 		switch (cmd) {
2741 		case SIOCGIFFLAGS:
2742 		case SIOCGIFMETRIC:
2743 		case SIOCGIFMTU:
2744 		case SIOCGIFMEM:
2745 		case SIOCGIFHWADDR:
2746 		case SIOCGIFINDEX:
2747 		case SIOCGIFADDR:
2748 		case SIOCGIFBRDADDR:
2749 		case SIOCGIFDSTADDR:
2750 		case SIOCGIFNETMASK:
2751 		case SIOCGIFPFLAGS:
2752 		case SIOCGIFTXQLEN:
2753 		case SIOCGMIIPHY:
2754 		case SIOCGMIIREG:
2755 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2756 				err = -EFAULT;
2757 			break;
2758 		}
2759 	}
2760 	return err;
2761 }
2762 
2763 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2764 			struct compat_ifreq __user *uifr32)
2765 {
2766 	struct ifreq ifr;
2767 	struct compat_ifmap __user *uifmap32;
2768 	mm_segment_t old_fs;
2769 	int err;
2770 
2771 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2772 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2773 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2774 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2775 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2776 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2777 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2778 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2779 	if (err)
2780 		return -EFAULT;
2781 
2782 	old_fs = get_fs();
2783 	set_fs (KERNEL_DS);
2784 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2785 	set_fs (old_fs);
2786 
2787 	if (cmd == SIOCGIFMAP && !err) {
2788 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2789 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2790 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2791 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2792 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2793 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2794 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2795 		if (err)
2796 			err = -EFAULT;
2797 	}
2798 	return err;
2799 }
2800 
2801 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2802 {
2803 	void __user *uptr;
2804 	compat_uptr_t uptr32;
2805 	struct ifreq __user *uifr;
2806 
2807 	uifr = compat_alloc_user_space(sizeof (*uifr));
2808 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2809 		return -EFAULT;
2810 
2811 	if (get_user(uptr32, &uifr32->ifr_data))
2812 		return -EFAULT;
2813 
2814 	uptr = compat_ptr(uptr32);
2815 
2816 	if (put_user(uptr, &uifr->ifr_data))
2817 		return -EFAULT;
2818 
2819 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2820 }
2821 
2822 struct rtentry32 {
2823 	u32   		rt_pad1;
2824 	struct sockaddr rt_dst;         /* target address               */
2825 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2826 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2827 	unsigned short  rt_flags;
2828 	short           rt_pad2;
2829 	u32   		rt_pad3;
2830 	unsigned char   rt_tos;
2831 	unsigned char   rt_class;
2832 	short           rt_pad4;
2833 	short           rt_metric;      /* +1 for binary compatibility! */
2834 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2835 	u32   		rt_mtu;         /* per route MTU/Window         */
2836 	u32   		rt_window;      /* Window clamping              */
2837 	unsigned short  rt_irtt;        /* Initial RTT                  */
2838 };
2839 
2840 struct in6_rtmsg32 {
2841 	struct in6_addr		rtmsg_dst;
2842 	struct in6_addr		rtmsg_src;
2843 	struct in6_addr		rtmsg_gateway;
2844 	u32			rtmsg_type;
2845 	u16			rtmsg_dst_len;
2846 	u16			rtmsg_src_len;
2847 	u32			rtmsg_metric;
2848 	u32			rtmsg_info;
2849 	u32			rtmsg_flags;
2850 	s32			rtmsg_ifindex;
2851 };
2852 
2853 static int routing_ioctl(struct net *net, struct socket *sock,
2854 			 unsigned int cmd, void __user *argp)
2855 {
2856 	int ret;
2857 	void *r = NULL;
2858 	struct in6_rtmsg r6;
2859 	struct rtentry r4;
2860 	char devname[16];
2861 	u32 rtdev;
2862 	mm_segment_t old_fs = get_fs();
2863 
2864 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2865 		struct in6_rtmsg32 __user *ur6 = argp;
2866 		ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2867 			3 * sizeof(struct in6_addr));
2868 		ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2869 		ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2870 		ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2871 		ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2872 		ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2873 		ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2874 		ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2875 
2876 		r = (void *) &r6;
2877 	} else { /* ipv4 */
2878 		struct rtentry32 __user *ur4 = argp;
2879 		ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2880 					3 * sizeof(struct sockaddr));
2881 		ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2882 		ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2883 		ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2884 		ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2885 		ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2886 		ret |= __get_user (rtdev, &(ur4->rt_dev));
2887 		if (rtdev) {
2888 			ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2889 			r4.rt_dev = devname; devname[15] = 0;
2890 		} else
2891 			r4.rt_dev = NULL;
2892 
2893 		r = (void *) &r4;
2894 	}
2895 
2896 	if (ret) {
2897 		ret = -EFAULT;
2898 		goto out;
2899 	}
2900 
2901 	set_fs (KERNEL_DS);
2902 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2903 	set_fs (old_fs);
2904 
2905 out:
2906 	return ret;
2907 }
2908 
2909 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2910  * for some operations; this forces use of the newer bridge-utils that
2911  * use compatiable ioctls
2912  */
2913 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2914 {
2915 	compat_ulong_t tmp;
2916 
2917 	if (get_user(tmp, argp))
2918 		return -EFAULT;
2919 	if (tmp == BRCTL_GET_VERSION)
2920 		return BRCTL_VERSION + 1;
2921 	return -EINVAL;
2922 }
2923 
2924 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2925 			 unsigned int cmd, unsigned long arg)
2926 {
2927 	void __user *argp = compat_ptr(arg);
2928 	struct sock *sk = sock->sk;
2929 	struct net *net = sock_net(sk);
2930 
2931 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2932 		return siocdevprivate_ioctl(net, cmd, argp);
2933 
2934 	switch (cmd) {
2935 	case SIOCSIFBR:
2936 	case SIOCGIFBR:
2937 		return old_bridge_ioctl(argp);
2938 	case SIOCGIFNAME:
2939 		return dev_ifname32(net, argp);
2940 	case SIOCGIFCONF:
2941 		return dev_ifconf(net, argp);
2942 	case SIOCETHTOOL:
2943 		return ethtool_ioctl(net, argp);
2944 	case SIOCWANDEV:
2945 		return compat_siocwandev(net, argp);
2946 	case SIOCGIFMAP:
2947 	case SIOCSIFMAP:
2948 		return compat_sioc_ifmap(net, cmd, argp);
2949 	case SIOCBONDENSLAVE:
2950 	case SIOCBONDRELEASE:
2951 	case SIOCBONDSETHWADDR:
2952 	case SIOCBONDSLAVEINFOQUERY:
2953 	case SIOCBONDINFOQUERY:
2954 	case SIOCBONDCHANGEACTIVE:
2955 		return bond_ioctl(net, cmd, argp);
2956 	case SIOCADDRT:
2957 	case SIOCDELRT:
2958 		return routing_ioctl(net, sock, cmd, argp);
2959 	case SIOCGSTAMP:
2960 		return do_siocgstamp(net, sock, cmd, argp);
2961 	case SIOCGSTAMPNS:
2962 		return do_siocgstampns(net, sock, cmd, argp);
2963 	case SIOCSHWTSTAMP:
2964 		return compat_siocshwtstamp(net, argp);
2965 
2966 	case FIOSETOWN:
2967 	case SIOCSPGRP:
2968 	case FIOGETOWN:
2969 	case SIOCGPGRP:
2970 	case SIOCBRADDBR:
2971 	case SIOCBRDELBR:
2972 	case SIOCGIFVLAN:
2973 	case SIOCSIFVLAN:
2974 	case SIOCADDDLCI:
2975 	case SIOCDELDLCI:
2976 		return sock_ioctl(file, cmd, arg);
2977 
2978 	case SIOCGIFFLAGS:
2979 	case SIOCSIFFLAGS:
2980 	case SIOCGIFMETRIC:
2981 	case SIOCSIFMETRIC:
2982 	case SIOCGIFMTU:
2983 	case SIOCSIFMTU:
2984 	case SIOCGIFMEM:
2985 	case SIOCSIFMEM:
2986 	case SIOCGIFHWADDR:
2987 	case SIOCSIFHWADDR:
2988 	case SIOCADDMULTI:
2989 	case SIOCDELMULTI:
2990 	case SIOCGIFINDEX:
2991 	case SIOCGIFADDR:
2992 	case SIOCSIFADDR:
2993 	case SIOCSIFHWBROADCAST:
2994 	case SIOCDIFADDR:
2995 	case SIOCGIFBRDADDR:
2996 	case SIOCSIFBRDADDR:
2997 	case SIOCGIFDSTADDR:
2998 	case SIOCSIFDSTADDR:
2999 	case SIOCGIFNETMASK:
3000 	case SIOCSIFNETMASK:
3001 	case SIOCSIFPFLAGS:
3002 	case SIOCGIFPFLAGS:
3003 	case SIOCGIFTXQLEN:
3004 	case SIOCSIFTXQLEN:
3005 	case SIOCBRADDIF:
3006 	case SIOCBRDELIF:
3007 	case SIOCSIFNAME:
3008 	case SIOCGMIIPHY:
3009 	case SIOCGMIIREG:
3010 	case SIOCSMIIREG:
3011 		return dev_ifsioc(net, sock, cmd, argp);
3012 
3013 	case SIOCSARP:
3014 	case SIOCGARP:
3015 	case SIOCDARP:
3016 	case SIOCATMARK:
3017 		return sock_do_ioctl(net, sock, cmd, arg);
3018 	}
3019 
3020 	/* Prevent warning from compat_sys_ioctl, these always
3021 	 * result in -EINVAL in the native case anyway. */
3022 	switch (cmd) {
3023 	case SIOCRTMSG:
3024 	case SIOCGIFCOUNT:
3025 	case SIOCSRARP:
3026 	case SIOCGRARP:
3027 	case SIOCDRARP:
3028 	case SIOCSIFLINK:
3029 	case SIOCGIFSLAVE:
3030 	case SIOCSIFSLAVE:
3031 		return -EINVAL;
3032 	}
3033 
3034 	return -ENOIOCTLCMD;
3035 }
3036 
3037 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3038 			      unsigned long arg)
3039 {
3040 	struct socket *sock = file->private_data;
3041 	int ret = -ENOIOCTLCMD;
3042 	struct sock *sk;
3043 	struct net *net;
3044 
3045 	sk = sock->sk;
3046 	net = sock_net(sk);
3047 
3048 	if (sock->ops->compat_ioctl)
3049 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3050 
3051 	if (ret == -ENOIOCTLCMD &&
3052 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3053 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3054 
3055 	if (ret == -ENOIOCTLCMD)
3056 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3057 
3058 	return ret;
3059 }
3060 #endif
3061 
3062 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3063 {
3064 	return sock->ops->bind(sock, addr, addrlen);
3065 }
3066 
3067 int kernel_listen(struct socket *sock, int backlog)
3068 {
3069 	return sock->ops->listen(sock, backlog);
3070 }
3071 
3072 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3073 {
3074 	struct sock *sk = sock->sk;
3075 	int err;
3076 
3077 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3078 			       newsock);
3079 	if (err < 0)
3080 		goto done;
3081 
3082 	err = sock->ops->accept(sock, *newsock, flags);
3083 	if (err < 0) {
3084 		sock_release(*newsock);
3085 		*newsock = NULL;
3086 		goto done;
3087 	}
3088 
3089 	(*newsock)->ops = sock->ops;
3090 	__module_get((*newsock)->ops->owner);
3091 
3092 done:
3093 	return err;
3094 }
3095 
3096 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3097 		   int flags)
3098 {
3099 	return sock->ops->connect(sock, addr, addrlen, flags);
3100 }
3101 
3102 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3103 			 int *addrlen)
3104 {
3105 	return sock->ops->getname(sock, addr, addrlen, 0);
3106 }
3107 
3108 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3109 			 int *addrlen)
3110 {
3111 	return sock->ops->getname(sock, addr, addrlen, 1);
3112 }
3113 
3114 int kernel_getsockopt(struct socket *sock, int level, int optname,
3115 			char *optval, int *optlen)
3116 {
3117 	mm_segment_t oldfs = get_fs();
3118 	int err;
3119 
3120 	set_fs(KERNEL_DS);
3121 	if (level == SOL_SOCKET)
3122 		err = sock_getsockopt(sock, level, optname, optval, optlen);
3123 	else
3124 		err = sock->ops->getsockopt(sock, level, optname, optval,
3125 					    optlen);
3126 	set_fs(oldfs);
3127 	return err;
3128 }
3129 
3130 int kernel_setsockopt(struct socket *sock, int level, int optname,
3131 			char *optval, unsigned int optlen)
3132 {
3133 	mm_segment_t oldfs = get_fs();
3134 	int err;
3135 
3136 	set_fs(KERNEL_DS);
3137 	if (level == SOL_SOCKET)
3138 		err = sock_setsockopt(sock, level, optname, optval, optlen);
3139 	else
3140 		err = sock->ops->setsockopt(sock, level, optname, optval,
3141 					    optlen);
3142 	set_fs(oldfs);
3143 	return err;
3144 }
3145 
3146 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3147 		    size_t size, int flags)
3148 {
3149 	if (sock->ops->sendpage)
3150 		return sock->ops->sendpage(sock, page, offset, size, flags);
3151 
3152 	return sock_no_sendpage(sock, page, offset, size, flags);
3153 }
3154 
3155 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3156 {
3157 	mm_segment_t oldfs = get_fs();
3158 	int err;
3159 
3160 	set_fs(KERNEL_DS);
3161 	err = sock->ops->ioctl(sock, cmd, arg);
3162 	set_fs(oldfs);
3163 
3164 	return err;
3165 }
3166 
3167 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3168 {
3169 	return sock->ops->shutdown(sock, how);
3170 }
3171 
3172 EXPORT_SYMBOL(sock_create);
3173 EXPORT_SYMBOL(sock_create_kern);
3174 EXPORT_SYMBOL(sock_create_lite);
3175 EXPORT_SYMBOL(sock_map_fd);
3176 EXPORT_SYMBOL(sock_recvmsg);
3177 EXPORT_SYMBOL(sock_register);
3178 EXPORT_SYMBOL(sock_release);
3179 EXPORT_SYMBOL(sock_sendmsg);
3180 EXPORT_SYMBOL(sock_unregister);
3181 EXPORT_SYMBOL(sock_wake_async);
3182 EXPORT_SYMBOL(sockfd_lookup);
3183 EXPORT_SYMBOL(kernel_sendmsg);
3184 EXPORT_SYMBOL(kernel_recvmsg);
3185 EXPORT_SYMBOL(kernel_bind);
3186 EXPORT_SYMBOL(kernel_listen);
3187 EXPORT_SYMBOL(kernel_accept);
3188 EXPORT_SYMBOL(kernel_connect);
3189 EXPORT_SYMBOL(kernel_getsockname);
3190 EXPORT_SYMBOL(kernel_getpeername);
3191 EXPORT_SYMBOL(kernel_getsockopt);
3192 EXPORT_SYMBOL(kernel_setsockopt);
3193 EXPORT_SYMBOL(kernel_sendpage);
3194 EXPORT_SYMBOL(kernel_sock_ioctl);
3195 EXPORT_SYMBOL(kernel_sock_shutdown);
3196