1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 /* 135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 136 * in the operation structures but are done directly via the socketcall() multiplexor. 137 */ 138 139 static const struct file_operations socket_file_ops = { 140 .owner = THIS_MODULE, 141 .llseek = no_llseek, 142 .read_iter = sock_read_iter, 143 .write_iter = sock_write_iter, 144 .poll = sock_poll, 145 .unlocked_ioctl = sock_ioctl, 146 #ifdef CONFIG_COMPAT 147 .compat_ioctl = compat_sock_ioctl, 148 #endif 149 .mmap = sock_mmap, 150 .release = sock_close, 151 .fasync = sock_fasync, 152 .sendpage = sock_sendpage, 153 .splice_write = generic_splice_sendpage, 154 .splice_read = sock_splice_read, 155 }; 156 157 /* 158 * The protocol list. Each protocol is registered in here. 159 */ 160 161 static DEFINE_SPINLOCK(net_family_lock); 162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 163 164 /* 165 * Support routines. 166 * Move socket addresses back and forth across the kernel/user 167 * divide and look after the messy bits. 168 */ 169 170 /** 171 * move_addr_to_kernel - copy a socket address into kernel space 172 * @uaddr: Address in user space 173 * @kaddr: Address in kernel space 174 * @ulen: Length in user space 175 * 176 * The address is copied into kernel space. If the provided address is 177 * too long an error code of -EINVAL is returned. If the copy gives 178 * invalid addresses -EFAULT is returned. On a success 0 is returned. 179 */ 180 181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 182 { 183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 184 return -EINVAL; 185 if (ulen == 0) 186 return 0; 187 if (copy_from_user(kaddr, uaddr, ulen)) 188 return -EFAULT; 189 return audit_sockaddr(ulen, kaddr); 190 } 191 192 /** 193 * move_addr_to_user - copy an address to user space 194 * @kaddr: kernel space address 195 * @klen: length of address in kernel 196 * @uaddr: user space address 197 * @ulen: pointer to user length field 198 * 199 * The value pointed to by ulen on entry is the buffer length available. 200 * This is overwritten with the buffer space used. -EINVAL is returned 201 * if an overlong buffer is specified or a negative buffer size. -EFAULT 202 * is returned if either the buffer or the length field are not 203 * accessible. 204 * After copying the data up to the limit the user specifies, the true 205 * length of the data is written over the length limit the user 206 * specified. Zero is returned for a success. 207 */ 208 209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 210 void __user *uaddr, int __user *ulen) 211 { 212 int err; 213 int len; 214 215 BUG_ON(klen > sizeof(struct sockaddr_storage)); 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 static struct kmem_cache *sock_inode_cachep __read_mostly; 237 238 static struct inode *sock_alloc_inode(struct super_block *sb) 239 { 240 struct socket_alloc *ei; 241 struct socket_wq *wq; 242 243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 244 if (!ei) 245 return NULL; 246 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 247 if (!wq) { 248 kmem_cache_free(sock_inode_cachep, ei); 249 return NULL; 250 } 251 init_waitqueue_head(&wq->wait); 252 wq->fasync_list = NULL; 253 wq->flags = 0; 254 RCU_INIT_POINTER(ei->socket.wq, wq); 255 256 ei->socket.state = SS_UNCONNECTED; 257 ei->socket.flags = 0; 258 ei->socket.ops = NULL; 259 ei->socket.sk = NULL; 260 ei->socket.file = NULL; 261 262 return &ei->vfs_inode; 263 } 264 265 static void sock_destroy_inode(struct inode *inode) 266 { 267 struct socket_alloc *ei; 268 struct socket_wq *wq; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 wq = rcu_dereference_protected(ei->socket.wq, 1); 272 kfree_rcu(wq, rcu); 273 kmem_cache_free(sock_inode_cachep, ei); 274 } 275 276 static void init_once(void *foo) 277 { 278 struct socket_alloc *ei = (struct socket_alloc *)foo; 279 280 inode_init_once(&ei->vfs_inode); 281 } 282 283 static void init_inodecache(void) 284 { 285 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 286 sizeof(struct socket_alloc), 287 0, 288 (SLAB_HWCACHE_ALIGN | 289 SLAB_RECLAIM_ACCOUNT | 290 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 291 init_once); 292 BUG_ON(sock_inode_cachep == NULL); 293 } 294 295 static const struct super_operations sockfs_ops = { 296 .alloc_inode = sock_alloc_inode, 297 .destroy_inode = sock_destroy_inode, 298 .statfs = simple_statfs, 299 }; 300 301 /* 302 * sockfs_dname() is called from d_path(). 303 */ 304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 305 { 306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 307 d_inode(dentry)->i_ino); 308 } 309 310 static const struct dentry_operations sockfs_dentry_operations = { 311 .d_dname = sockfs_dname, 312 }; 313 314 static int sockfs_xattr_get(const struct xattr_handler *handler, 315 struct dentry *dentry, struct inode *inode, 316 const char *suffix, void *value, size_t size) 317 { 318 if (value) { 319 if (dentry->d_name.len + 1 > size) 320 return -ERANGE; 321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 322 } 323 return dentry->d_name.len + 1; 324 } 325 326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 329 330 static const struct xattr_handler sockfs_xattr_handler = { 331 .name = XATTR_NAME_SOCKPROTONAME, 332 .get = sockfs_xattr_get, 333 }; 334 335 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 336 struct dentry *dentry, struct inode *inode, 337 const char *suffix, const void *value, 338 size_t size, int flags) 339 { 340 /* Handled by LSM. */ 341 return -EAGAIN; 342 } 343 344 static const struct xattr_handler sockfs_security_xattr_handler = { 345 .prefix = XATTR_SECURITY_PREFIX, 346 .set = sockfs_security_xattr_set, 347 }; 348 349 static const struct xattr_handler *sockfs_xattr_handlers[] = { 350 &sockfs_xattr_handler, 351 &sockfs_security_xattr_handler, 352 NULL 353 }; 354 355 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 356 int flags, const char *dev_name, void *data) 357 { 358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 359 sockfs_xattr_handlers, 360 &sockfs_dentry_operations, SOCKFS_MAGIC); 361 } 362 363 static struct vfsmount *sock_mnt __read_mostly; 364 365 static struct file_system_type sock_fs_type = { 366 .name = "sockfs", 367 .mount = sockfs_mount, 368 .kill_sb = kill_anon_super, 369 }; 370 371 /* 372 * Obtains the first available file descriptor and sets it up for use. 373 * 374 * These functions create file structures and maps them to fd space 375 * of the current process. On success it returns file descriptor 376 * and file struct implicitly stored in sock->file. 377 * Note that another thread may close file descriptor before we return 378 * from this function. We use the fact that now we do not refer 379 * to socket after mapping. If one day we will need it, this 380 * function will increment ref. count on file by 1. 381 * 382 * In any case returned fd MAY BE not valid! 383 * This race condition is unavoidable 384 * with shared fd spaces, we cannot solve it inside kernel, 385 * but we take care of internal coherence yet. 386 */ 387 388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 389 { 390 struct qstr name = { .name = "" }; 391 struct path path; 392 struct file *file; 393 394 if (dname) { 395 name.name = dname; 396 name.len = strlen(name.name); 397 } else if (sock->sk) { 398 name.name = sock->sk->sk_prot_creator->name; 399 name.len = strlen(name.name); 400 } 401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 402 if (unlikely(!path.dentry)) { 403 sock_release(sock); 404 return ERR_PTR(-ENOMEM); 405 } 406 path.mnt = mntget(sock_mnt); 407 408 d_instantiate(path.dentry, SOCK_INODE(sock)); 409 410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 411 &socket_file_ops); 412 if (IS_ERR(file)) { 413 /* drop dentry, keep inode for a bit */ 414 ihold(d_inode(path.dentry)); 415 path_put(&path); 416 /* ... and now kill it properly */ 417 sock_release(sock); 418 return file; 419 } 420 421 sock->file = file; 422 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 sock->sk->sk_uid = iattr->ia_uid; 541 } 542 543 return err; 544 } 545 546 static const struct inode_operations sockfs_inode_ops = { 547 .listxattr = sockfs_listxattr, 548 .setattr = sockfs_setattr, 549 }; 550 551 /** 552 * sock_alloc - allocate a socket 553 * 554 * Allocate a new inode and socket object. The two are bound together 555 * and initialised. The socket is then returned. If we are out of inodes 556 * NULL is returned. 557 */ 558 559 struct socket *sock_alloc(void) 560 { 561 struct inode *inode; 562 struct socket *sock; 563 564 inode = new_inode_pseudo(sock_mnt->mnt_sb); 565 if (!inode) 566 return NULL; 567 568 sock = SOCKET_I(inode); 569 570 inode->i_ino = get_next_ino(); 571 inode->i_mode = S_IFSOCK | S_IRWXUGO; 572 inode->i_uid = current_fsuid(); 573 inode->i_gid = current_fsgid(); 574 inode->i_op = &sockfs_inode_ops; 575 576 return sock; 577 } 578 EXPORT_SYMBOL(sock_alloc); 579 580 /** 581 * sock_release - close a socket 582 * @sock: socket to close 583 * 584 * The socket is released from the protocol stack if it has a release 585 * callback, and the inode is then released if the socket is bound to 586 * an inode not a file. 587 */ 588 589 void sock_release(struct socket *sock) 590 { 591 if (sock->ops) { 592 struct module *owner = sock->ops->owner; 593 594 sock->ops->release(sock); 595 sock->ops = NULL; 596 module_put(owner); 597 } 598 599 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 600 pr_err("%s: fasync list not empty!\n", __func__); 601 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 EXPORT_SYMBOL(sock_release); 609 610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 611 { 612 u8 flags = *tx_flags; 613 614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 615 flags |= SKBTX_HW_TSTAMP; 616 617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 618 flags |= SKBTX_SW_TSTAMP; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 621 flags |= SKBTX_SCHED_TSTAMP; 622 623 *tx_flags = flags; 624 } 625 EXPORT_SYMBOL(__sock_tx_timestamp); 626 627 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 628 { 629 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 630 BUG_ON(ret == -EIOCBQUEUED); 631 return ret; 632 } 633 634 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 635 { 636 int err = security_socket_sendmsg(sock, msg, 637 msg_data_left(msg)); 638 639 return err ?: sock_sendmsg_nosec(sock, msg); 640 } 641 EXPORT_SYMBOL(sock_sendmsg); 642 643 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 647 return sock_sendmsg(sock, msg); 648 } 649 EXPORT_SYMBOL(kernel_sendmsg); 650 651 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 652 struct kvec *vec, size_t num, size_t size) 653 { 654 struct socket *sock = sk->sk_socket; 655 656 if (!sock->ops->sendmsg_locked) 657 return sock_no_sendmsg_locked(sk, msg, size); 658 659 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 660 661 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 662 } 663 EXPORT_SYMBOL(kernel_sendmsg_locked); 664 665 static bool skb_is_err_queue(const struct sk_buff *skb) 666 { 667 /* pkt_type of skbs enqueued on the error queue are set to 668 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 669 * in recvmsg, since skbs received on a local socket will never 670 * have a pkt_type of PACKET_OUTGOING. 671 */ 672 return skb->pkt_type == PACKET_OUTGOING; 673 } 674 675 /* On transmit, software and hardware timestamps are returned independently. 676 * As the two skb clones share the hardware timestamp, which may be updated 677 * before the software timestamp is received, a hardware TX timestamp may be 678 * returned only if there is no software TX timestamp. Ignore false software 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 681 * hardware timestamp. 682 */ 683 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 684 { 685 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 686 } 687 688 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 689 { 690 struct scm_ts_pktinfo ts_pktinfo; 691 struct net_device *orig_dev; 692 693 if (!skb_mac_header_was_set(skb)) 694 return; 695 696 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 697 698 rcu_read_lock(); 699 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 700 if (orig_dev) 701 ts_pktinfo.if_index = orig_dev->ifindex; 702 rcu_read_unlock(); 703 704 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 706 sizeof(ts_pktinfo), &ts_pktinfo); 707 } 708 709 /* 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 711 */ 712 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 713 struct sk_buff *skb) 714 { 715 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 716 struct scm_timestamping tss; 717 int empty = 1, false_tstamp = 0; 718 struct skb_shared_hwtstamps *shhwtstamps = 719 skb_hwtstamps(skb); 720 721 /* Race occurred between timestamp enabling and packet 722 receiving. Fill in the current time for now. */ 723 if (need_software_tstamp && skb->tstamp == 0) { 724 __net_timestamp(skb); 725 false_tstamp = 1; 726 } 727 728 if (need_software_tstamp) { 729 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 730 struct timeval tv; 731 skb_get_timestamp(skb, &tv); 732 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 733 sizeof(tv), &tv); 734 } else { 735 struct timespec ts; 736 skb_get_timestampns(skb, &ts); 737 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 738 sizeof(ts), &ts); 739 } 740 } 741 742 memset(&tss, 0, sizeof(tss)); 743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 744 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 745 empty = 0; 746 if (shhwtstamps && 747 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 748 !skb_is_swtx_tstamp(skb, false_tstamp) && 749 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 750 empty = 0; 751 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 752 !skb_is_err_queue(skb)) 753 put_ts_pktinfo(msg, skb); 754 } 755 if (!empty) { 756 put_cmsg(msg, SOL_SOCKET, 757 SCM_TIMESTAMPING, sizeof(tss), &tss); 758 759 if (skb_is_err_queue(skb) && skb->len && 760 SKB_EXT_ERR(skb)->opt_stats) 761 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 762 skb->len, skb->data); 763 } 764 } 765 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 766 767 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 768 struct sk_buff *skb) 769 { 770 int ack; 771 772 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 773 return; 774 if (!skb->wifi_acked_valid) 775 return; 776 777 ack = skb->wifi_acked; 778 779 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 780 } 781 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 782 783 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 784 struct sk_buff *skb) 785 { 786 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 787 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 788 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 789 } 790 791 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 792 struct sk_buff *skb) 793 { 794 sock_recv_timestamp(msg, sk, skb); 795 sock_recv_drops(msg, sk, skb); 796 } 797 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 798 799 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 800 int flags) 801 { 802 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 803 } 804 805 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 806 { 807 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 808 809 return err ?: sock_recvmsg_nosec(sock, msg, flags); 810 } 811 EXPORT_SYMBOL(sock_recvmsg); 812 813 /** 814 * kernel_recvmsg - Receive a message from a socket (kernel space) 815 * @sock: The socket to receive the message from 816 * @msg: Received message 817 * @vec: Input s/g array for message data 818 * @num: Size of input s/g array 819 * @size: Number of bytes to read 820 * @flags: Message flags (MSG_DONTWAIT, etc...) 821 * 822 * On return the msg structure contains the scatter/gather array passed in the 823 * vec argument. The array is modified so that it consists of the unfilled 824 * portion of the original array. 825 * 826 * The returned value is the total number of bytes received, or an error. 827 */ 828 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 829 struct kvec *vec, size_t num, size_t size, int flags) 830 { 831 mm_segment_t oldfs = get_fs(); 832 int result; 833 834 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 835 set_fs(KERNEL_DS); 836 result = sock_recvmsg(sock, msg, flags); 837 set_fs(oldfs); 838 return result; 839 } 840 EXPORT_SYMBOL(kernel_recvmsg); 841 842 static ssize_t sock_sendpage(struct file *file, struct page *page, 843 int offset, size_t size, loff_t *ppos, int more) 844 { 845 struct socket *sock; 846 int flags; 847 848 sock = file->private_data; 849 850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 852 flags |= more; 853 854 return kernel_sendpage(sock, page, offset, size, flags); 855 } 856 857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 858 struct pipe_inode_info *pipe, size_t len, 859 unsigned int flags) 860 { 861 struct socket *sock = file->private_data; 862 863 if (unlikely(!sock->ops->splice_read)) 864 return -EINVAL; 865 866 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 867 } 868 869 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 870 { 871 struct file *file = iocb->ki_filp; 872 struct socket *sock = file->private_data; 873 struct msghdr msg = {.msg_iter = *to, 874 .msg_iocb = iocb}; 875 ssize_t res; 876 877 if (file->f_flags & O_NONBLOCK) 878 msg.msg_flags = MSG_DONTWAIT; 879 880 if (iocb->ki_pos != 0) 881 return -ESPIPE; 882 883 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 884 return 0; 885 886 res = sock_recvmsg(sock, &msg, msg.msg_flags); 887 *to = msg.msg_iter; 888 return res; 889 } 890 891 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 892 { 893 struct file *file = iocb->ki_filp; 894 struct socket *sock = file->private_data; 895 struct msghdr msg = {.msg_iter = *from, 896 .msg_iocb = iocb}; 897 ssize_t res; 898 899 if (iocb->ki_pos != 0) 900 return -ESPIPE; 901 902 if (file->f_flags & O_NONBLOCK) 903 msg.msg_flags = MSG_DONTWAIT; 904 905 if (sock->type == SOCK_SEQPACKET) 906 msg.msg_flags |= MSG_EOR; 907 908 res = sock_sendmsg(sock, &msg); 909 *from = msg.msg_iter; 910 return res; 911 } 912 913 /* 914 * Atomic setting of ioctl hooks to avoid race 915 * with module unload. 916 */ 917 918 static DEFINE_MUTEX(br_ioctl_mutex); 919 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 920 921 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 922 { 923 mutex_lock(&br_ioctl_mutex); 924 br_ioctl_hook = hook; 925 mutex_unlock(&br_ioctl_mutex); 926 } 927 EXPORT_SYMBOL(brioctl_set); 928 929 static DEFINE_MUTEX(vlan_ioctl_mutex); 930 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 931 932 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 933 { 934 mutex_lock(&vlan_ioctl_mutex); 935 vlan_ioctl_hook = hook; 936 mutex_unlock(&vlan_ioctl_mutex); 937 } 938 EXPORT_SYMBOL(vlan_ioctl_set); 939 940 static DEFINE_MUTEX(dlci_ioctl_mutex); 941 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 942 943 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 944 { 945 mutex_lock(&dlci_ioctl_mutex); 946 dlci_ioctl_hook = hook; 947 mutex_unlock(&dlci_ioctl_mutex); 948 } 949 EXPORT_SYMBOL(dlci_ioctl_set); 950 951 static long sock_do_ioctl(struct net *net, struct socket *sock, 952 unsigned int cmd, unsigned long arg) 953 { 954 int err; 955 void __user *argp = (void __user *)arg; 956 957 err = sock->ops->ioctl(sock, cmd, arg); 958 959 /* 960 * If this ioctl is unknown try to hand it down 961 * to the NIC driver. 962 */ 963 if (err != -ENOIOCTLCMD) 964 return err; 965 966 if (cmd == SIOCGIFCONF) { 967 struct ifconf ifc; 968 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 969 return -EFAULT; 970 rtnl_lock(); 971 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 972 rtnl_unlock(); 973 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 974 err = -EFAULT; 975 } else { 976 struct ifreq ifr; 977 bool need_copyout; 978 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 979 return -EFAULT; 980 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 981 if (!err && need_copyout) 982 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 983 return -EFAULT; 984 } 985 return err; 986 } 987 988 /* 989 * With an ioctl, arg may well be a user mode pointer, but we don't know 990 * what to do with it - that's up to the protocol still. 991 */ 992 993 static struct ns_common *get_net_ns(struct ns_common *ns) 994 { 995 return &get_net(container_of(ns, struct net, ns))->ns; 996 } 997 998 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 999 { 1000 struct socket *sock; 1001 struct sock *sk; 1002 void __user *argp = (void __user *)arg; 1003 int pid, err; 1004 struct net *net; 1005 1006 sock = file->private_data; 1007 sk = sock->sk; 1008 net = sock_net(sk); 1009 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1010 struct ifreq ifr; 1011 bool need_copyout; 1012 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1013 return -EFAULT; 1014 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1015 if (!err && need_copyout) 1016 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1017 return -EFAULT; 1018 } else 1019 #ifdef CONFIG_WEXT_CORE 1020 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1021 err = wext_handle_ioctl(net, cmd, argp); 1022 } else 1023 #endif 1024 switch (cmd) { 1025 case FIOSETOWN: 1026 case SIOCSPGRP: 1027 err = -EFAULT; 1028 if (get_user(pid, (int __user *)argp)) 1029 break; 1030 err = f_setown(sock->file, pid, 1); 1031 break; 1032 case FIOGETOWN: 1033 case SIOCGPGRP: 1034 err = put_user(f_getown(sock->file), 1035 (int __user *)argp); 1036 break; 1037 case SIOCGIFBR: 1038 case SIOCSIFBR: 1039 case SIOCBRADDBR: 1040 case SIOCBRDELBR: 1041 err = -ENOPKG; 1042 if (!br_ioctl_hook) 1043 request_module("bridge"); 1044 1045 mutex_lock(&br_ioctl_mutex); 1046 if (br_ioctl_hook) 1047 err = br_ioctl_hook(net, cmd, argp); 1048 mutex_unlock(&br_ioctl_mutex); 1049 break; 1050 case SIOCGIFVLAN: 1051 case SIOCSIFVLAN: 1052 err = -ENOPKG; 1053 if (!vlan_ioctl_hook) 1054 request_module("8021q"); 1055 1056 mutex_lock(&vlan_ioctl_mutex); 1057 if (vlan_ioctl_hook) 1058 err = vlan_ioctl_hook(net, argp); 1059 mutex_unlock(&vlan_ioctl_mutex); 1060 break; 1061 case SIOCADDDLCI: 1062 case SIOCDELDLCI: 1063 err = -ENOPKG; 1064 if (!dlci_ioctl_hook) 1065 request_module("dlci"); 1066 1067 mutex_lock(&dlci_ioctl_mutex); 1068 if (dlci_ioctl_hook) 1069 err = dlci_ioctl_hook(cmd, argp); 1070 mutex_unlock(&dlci_ioctl_mutex); 1071 break; 1072 case SIOCGSKNS: 1073 err = -EPERM; 1074 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1075 break; 1076 1077 err = open_related_ns(&net->ns, get_net_ns); 1078 break; 1079 default: 1080 err = sock_do_ioctl(net, sock, cmd, arg); 1081 break; 1082 } 1083 return err; 1084 } 1085 1086 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1087 { 1088 int err; 1089 struct socket *sock = NULL; 1090 1091 err = security_socket_create(family, type, protocol, 1); 1092 if (err) 1093 goto out; 1094 1095 sock = sock_alloc(); 1096 if (!sock) { 1097 err = -ENOMEM; 1098 goto out; 1099 } 1100 1101 sock->type = type; 1102 err = security_socket_post_create(sock, family, type, protocol, 1); 1103 if (err) 1104 goto out_release; 1105 1106 out: 1107 *res = sock; 1108 return err; 1109 out_release: 1110 sock_release(sock); 1111 sock = NULL; 1112 goto out; 1113 } 1114 EXPORT_SYMBOL(sock_create_lite); 1115 1116 /* No kernel lock held - perfect */ 1117 static __poll_t sock_poll(struct file *file, poll_table *wait) 1118 { 1119 __poll_t busy_flag = 0; 1120 struct socket *sock; 1121 1122 /* 1123 * We can't return errors to poll, so it's either yes or no. 1124 */ 1125 sock = file->private_data; 1126 1127 if (sk_can_busy_loop(sock->sk)) { 1128 /* this socket can poll_ll so tell the system call */ 1129 busy_flag = POLL_BUSY_LOOP; 1130 1131 /* once, only if requested by syscall */ 1132 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1133 sk_busy_loop(sock->sk, 1); 1134 } 1135 1136 return busy_flag | sock->ops->poll(file, sock, wait); 1137 } 1138 1139 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1140 { 1141 struct socket *sock = file->private_data; 1142 1143 return sock->ops->mmap(file, sock, vma); 1144 } 1145 1146 static int sock_close(struct inode *inode, struct file *filp) 1147 { 1148 sock_release(SOCKET_I(inode)); 1149 return 0; 1150 } 1151 1152 /* 1153 * Update the socket async list 1154 * 1155 * Fasync_list locking strategy. 1156 * 1157 * 1. fasync_list is modified only under process context socket lock 1158 * i.e. under semaphore. 1159 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1160 * or under socket lock 1161 */ 1162 1163 static int sock_fasync(int fd, struct file *filp, int on) 1164 { 1165 struct socket *sock = filp->private_data; 1166 struct sock *sk = sock->sk; 1167 struct socket_wq *wq; 1168 1169 if (sk == NULL) 1170 return -EINVAL; 1171 1172 lock_sock(sk); 1173 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1174 fasync_helper(fd, filp, on, &wq->fasync_list); 1175 1176 if (!wq->fasync_list) 1177 sock_reset_flag(sk, SOCK_FASYNC); 1178 else 1179 sock_set_flag(sk, SOCK_FASYNC); 1180 1181 release_sock(sk); 1182 return 0; 1183 } 1184 1185 /* This function may be called only under rcu_lock */ 1186 1187 int sock_wake_async(struct socket_wq *wq, int how, int band) 1188 { 1189 if (!wq || !wq->fasync_list) 1190 return -1; 1191 1192 switch (how) { 1193 case SOCK_WAKE_WAITD: 1194 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1195 break; 1196 goto call_kill; 1197 case SOCK_WAKE_SPACE: 1198 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1199 break; 1200 /* fall through */ 1201 case SOCK_WAKE_IO: 1202 call_kill: 1203 kill_fasync(&wq->fasync_list, SIGIO, band); 1204 break; 1205 case SOCK_WAKE_URG: 1206 kill_fasync(&wq->fasync_list, SIGURG, band); 1207 } 1208 1209 return 0; 1210 } 1211 EXPORT_SYMBOL(sock_wake_async); 1212 1213 int __sock_create(struct net *net, int family, int type, int protocol, 1214 struct socket **res, int kern) 1215 { 1216 int err; 1217 struct socket *sock; 1218 const struct net_proto_family *pf; 1219 1220 /* 1221 * Check protocol is in range 1222 */ 1223 if (family < 0 || family >= NPROTO) 1224 return -EAFNOSUPPORT; 1225 if (type < 0 || type >= SOCK_MAX) 1226 return -EINVAL; 1227 1228 /* Compatibility. 1229 1230 This uglymoron is moved from INET layer to here to avoid 1231 deadlock in module load. 1232 */ 1233 if (family == PF_INET && type == SOCK_PACKET) { 1234 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1235 current->comm); 1236 family = PF_PACKET; 1237 } 1238 1239 err = security_socket_create(family, type, protocol, kern); 1240 if (err) 1241 return err; 1242 1243 /* 1244 * Allocate the socket and allow the family to set things up. if 1245 * the protocol is 0, the family is instructed to select an appropriate 1246 * default. 1247 */ 1248 sock = sock_alloc(); 1249 if (!sock) { 1250 net_warn_ratelimited("socket: no more sockets\n"); 1251 return -ENFILE; /* Not exactly a match, but its the 1252 closest posix thing */ 1253 } 1254 1255 sock->type = type; 1256 1257 #ifdef CONFIG_MODULES 1258 /* Attempt to load a protocol module if the find failed. 1259 * 1260 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1261 * requested real, full-featured networking support upon configuration. 1262 * Otherwise module support will break! 1263 */ 1264 if (rcu_access_pointer(net_families[family]) == NULL) 1265 request_module("net-pf-%d", family); 1266 #endif 1267 1268 rcu_read_lock(); 1269 pf = rcu_dereference(net_families[family]); 1270 err = -EAFNOSUPPORT; 1271 if (!pf) 1272 goto out_release; 1273 1274 /* 1275 * We will call the ->create function, that possibly is in a loadable 1276 * module, so we have to bump that loadable module refcnt first. 1277 */ 1278 if (!try_module_get(pf->owner)) 1279 goto out_release; 1280 1281 /* Now protected by module ref count */ 1282 rcu_read_unlock(); 1283 1284 err = pf->create(net, sock, protocol, kern); 1285 if (err < 0) 1286 goto out_module_put; 1287 1288 /* 1289 * Now to bump the refcnt of the [loadable] module that owns this 1290 * socket at sock_release time we decrement its refcnt. 1291 */ 1292 if (!try_module_get(sock->ops->owner)) 1293 goto out_module_busy; 1294 1295 /* 1296 * Now that we're done with the ->create function, the [loadable] 1297 * module can have its refcnt decremented 1298 */ 1299 module_put(pf->owner); 1300 err = security_socket_post_create(sock, family, type, protocol, kern); 1301 if (err) 1302 goto out_sock_release; 1303 *res = sock; 1304 1305 return 0; 1306 1307 out_module_busy: 1308 err = -EAFNOSUPPORT; 1309 out_module_put: 1310 sock->ops = NULL; 1311 module_put(pf->owner); 1312 out_sock_release: 1313 sock_release(sock); 1314 return err; 1315 1316 out_release: 1317 rcu_read_unlock(); 1318 goto out_sock_release; 1319 } 1320 EXPORT_SYMBOL(__sock_create); 1321 1322 int sock_create(int family, int type, int protocol, struct socket **res) 1323 { 1324 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1325 } 1326 EXPORT_SYMBOL(sock_create); 1327 1328 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1329 { 1330 return __sock_create(net, family, type, protocol, res, 1); 1331 } 1332 EXPORT_SYMBOL(sock_create_kern); 1333 1334 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1335 { 1336 int retval; 1337 struct socket *sock; 1338 int flags; 1339 1340 /* Check the SOCK_* constants for consistency. */ 1341 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1342 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1343 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1344 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1345 1346 flags = type & ~SOCK_TYPE_MASK; 1347 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1348 return -EINVAL; 1349 type &= SOCK_TYPE_MASK; 1350 1351 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1352 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1353 1354 retval = sock_create(family, type, protocol, &sock); 1355 if (retval < 0) 1356 return retval; 1357 1358 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1359 } 1360 1361 /* 1362 * Create a pair of connected sockets. 1363 */ 1364 1365 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1366 int __user *, usockvec) 1367 { 1368 struct socket *sock1, *sock2; 1369 int fd1, fd2, err; 1370 struct file *newfile1, *newfile2; 1371 int flags; 1372 1373 flags = type & ~SOCK_TYPE_MASK; 1374 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1375 return -EINVAL; 1376 type &= SOCK_TYPE_MASK; 1377 1378 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1379 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1380 1381 /* 1382 * reserve descriptors and make sure we won't fail 1383 * to return them to userland. 1384 */ 1385 fd1 = get_unused_fd_flags(flags); 1386 if (unlikely(fd1 < 0)) 1387 return fd1; 1388 1389 fd2 = get_unused_fd_flags(flags); 1390 if (unlikely(fd2 < 0)) { 1391 put_unused_fd(fd1); 1392 return fd2; 1393 } 1394 1395 err = put_user(fd1, &usockvec[0]); 1396 if (err) 1397 goto out; 1398 1399 err = put_user(fd2, &usockvec[1]); 1400 if (err) 1401 goto out; 1402 1403 /* 1404 * Obtain the first socket and check if the underlying protocol 1405 * supports the socketpair call. 1406 */ 1407 1408 err = sock_create(family, type, protocol, &sock1); 1409 if (unlikely(err < 0)) 1410 goto out; 1411 1412 err = sock_create(family, type, protocol, &sock2); 1413 if (unlikely(err < 0)) { 1414 sock_release(sock1); 1415 goto out; 1416 } 1417 1418 err = sock1->ops->socketpair(sock1, sock2); 1419 if (unlikely(err < 0)) { 1420 sock_release(sock2); 1421 sock_release(sock1); 1422 goto out; 1423 } 1424 1425 newfile1 = sock_alloc_file(sock1, flags, NULL); 1426 if (IS_ERR(newfile1)) { 1427 err = PTR_ERR(newfile1); 1428 sock_release(sock2); 1429 goto out; 1430 } 1431 1432 newfile2 = sock_alloc_file(sock2, flags, NULL); 1433 if (IS_ERR(newfile2)) { 1434 err = PTR_ERR(newfile2); 1435 fput(newfile1); 1436 goto out; 1437 } 1438 1439 audit_fd_pair(fd1, fd2); 1440 1441 fd_install(fd1, newfile1); 1442 fd_install(fd2, newfile2); 1443 return 0; 1444 1445 out: 1446 put_unused_fd(fd2); 1447 put_unused_fd(fd1); 1448 return err; 1449 } 1450 1451 /* 1452 * Bind a name to a socket. Nothing much to do here since it's 1453 * the protocol's responsibility to handle the local address. 1454 * 1455 * We move the socket address to kernel space before we call 1456 * the protocol layer (having also checked the address is ok). 1457 */ 1458 1459 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1460 { 1461 struct socket *sock; 1462 struct sockaddr_storage address; 1463 int err, fput_needed; 1464 1465 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1466 if (sock) { 1467 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1468 if (err >= 0) { 1469 err = security_socket_bind(sock, 1470 (struct sockaddr *)&address, 1471 addrlen); 1472 if (!err) 1473 err = sock->ops->bind(sock, 1474 (struct sockaddr *) 1475 &address, addrlen); 1476 } 1477 fput_light(sock->file, fput_needed); 1478 } 1479 return err; 1480 } 1481 1482 /* 1483 * Perform a listen. Basically, we allow the protocol to do anything 1484 * necessary for a listen, and if that works, we mark the socket as 1485 * ready for listening. 1486 */ 1487 1488 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1489 { 1490 struct socket *sock; 1491 int err, fput_needed; 1492 int somaxconn; 1493 1494 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1495 if (sock) { 1496 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1497 if ((unsigned int)backlog > somaxconn) 1498 backlog = somaxconn; 1499 1500 err = security_socket_listen(sock, backlog); 1501 if (!err) 1502 err = sock->ops->listen(sock, backlog); 1503 1504 fput_light(sock->file, fput_needed); 1505 } 1506 return err; 1507 } 1508 1509 /* 1510 * For accept, we attempt to create a new socket, set up the link 1511 * with the client, wake up the client, then return the new 1512 * connected fd. We collect the address of the connector in kernel 1513 * space and move it to user at the very end. This is unclean because 1514 * we open the socket then return an error. 1515 * 1516 * 1003.1g adds the ability to recvmsg() to query connection pending 1517 * status to recvmsg. We need to add that support in a way thats 1518 * clean when we restucture accept also. 1519 */ 1520 1521 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1522 int __user *, upeer_addrlen, int, flags) 1523 { 1524 struct socket *sock, *newsock; 1525 struct file *newfile; 1526 int err, len, newfd, fput_needed; 1527 struct sockaddr_storage address; 1528 1529 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1530 return -EINVAL; 1531 1532 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1533 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1534 1535 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1536 if (!sock) 1537 goto out; 1538 1539 err = -ENFILE; 1540 newsock = sock_alloc(); 1541 if (!newsock) 1542 goto out_put; 1543 1544 newsock->type = sock->type; 1545 newsock->ops = sock->ops; 1546 1547 /* 1548 * We don't need try_module_get here, as the listening socket (sock) 1549 * has the protocol module (sock->ops->owner) held. 1550 */ 1551 __module_get(newsock->ops->owner); 1552 1553 newfd = get_unused_fd_flags(flags); 1554 if (unlikely(newfd < 0)) { 1555 err = newfd; 1556 sock_release(newsock); 1557 goto out_put; 1558 } 1559 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1560 if (IS_ERR(newfile)) { 1561 err = PTR_ERR(newfile); 1562 put_unused_fd(newfd); 1563 goto out_put; 1564 } 1565 1566 err = security_socket_accept(sock, newsock); 1567 if (err) 1568 goto out_fd; 1569 1570 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1571 if (err < 0) 1572 goto out_fd; 1573 1574 if (upeer_sockaddr) { 1575 len = newsock->ops->getname(newsock, 1576 (struct sockaddr *)&address, 2); 1577 if (len < 0) { 1578 err = -ECONNABORTED; 1579 goto out_fd; 1580 } 1581 err = move_addr_to_user(&address, 1582 len, upeer_sockaddr, upeer_addrlen); 1583 if (err < 0) 1584 goto out_fd; 1585 } 1586 1587 /* File flags are not inherited via accept() unlike another OSes. */ 1588 1589 fd_install(newfd, newfile); 1590 err = newfd; 1591 1592 out_put: 1593 fput_light(sock->file, fput_needed); 1594 out: 1595 return err; 1596 out_fd: 1597 fput(newfile); 1598 put_unused_fd(newfd); 1599 goto out_put; 1600 } 1601 1602 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1603 int __user *, upeer_addrlen) 1604 { 1605 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1606 } 1607 1608 /* 1609 * Attempt to connect to a socket with the server address. The address 1610 * is in user space so we verify it is OK and move it to kernel space. 1611 * 1612 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1613 * break bindings 1614 * 1615 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1616 * other SEQPACKET protocols that take time to connect() as it doesn't 1617 * include the -EINPROGRESS status for such sockets. 1618 */ 1619 1620 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1621 int, addrlen) 1622 { 1623 struct socket *sock; 1624 struct sockaddr_storage address; 1625 int err, fput_needed; 1626 1627 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1628 if (!sock) 1629 goto out; 1630 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1631 if (err < 0) 1632 goto out_put; 1633 1634 err = 1635 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1636 if (err) 1637 goto out_put; 1638 1639 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1640 sock->file->f_flags); 1641 out_put: 1642 fput_light(sock->file, fput_needed); 1643 out: 1644 return err; 1645 } 1646 1647 /* 1648 * Get the local address ('name') of a socket object. Move the obtained 1649 * name to user space. 1650 */ 1651 1652 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1653 int __user *, usockaddr_len) 1654 { 1655 struct socket *sock; 1656 struct sockaddr_storage address; 1657 int err, fput_needed; 1658 1659 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1660 if (!sock) 1661 goto out; 1662 1663 err = security_socket_getsockname(sock); 1664 if (err) 1665 goto out_put; 1666 1667 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1668 if (err < 0) 1669 goto out_put; 1670 /* "err" is actually length in this case */ 1671 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1672 1673 out_put: 1674 fput_light(sock->file, fput_needed); 1675 out: 1676 return err; 1677 } 1678 1679 /* 1680 * Get the remote address ('name') of a socket object. Move the obtained 1681 * name to user space. 1682 */ 1683 1684 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1685 int __user *, usockaddr_len) 1686 { 1687 struct socket *sock; 1688 struct sockaddr_storage address; 1689 int err, fput_needed; 1690 1691 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1692 if (sock != NULL) { 1693 err = security_socket_getpeername(sock); 1694 if (err) { 1695 fput_light(sock->file, fput_needed); 1696 return err; 1697 } 1698 1699 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1700 if (err >= 0) 1701 /* "err" is actually length in this case */ 1702 err = move_addr_to_user(&address, err, usockaddr, 1703 usockaddr_len); 1704 fput_light(sock->file, fput_needed); 1705 } 1706 return err; 1707 } 1708 1709 /* 1710 * Send a datagram to a given address. We move the address into kernel 1711 * space and check the user space data area is readable before invoking 1712 * the protocol. 1713 */ 1714 1715 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1716 unsigned int, flags, struct sockaddr __user *, addr, 1717 int, addr_len) 1718 { 1719 struct socket *sock; 1720 struct sockaddr_storage address; 1721 int err; 1722 struct msghdr msg; 1723 struct iovec iov; 1724 int fput_needed; 1725 1726 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1727 if (unlikely(err)) 1728 return err; 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (!sock) 1731 goto out; 1732 1733 msg.msg_name = NULL; 1734 msg.msg_control = NULL; 1735 msg.msg_controllen = 0; 1736 msg.msg_namelen = 0; 1737 if (addr) { 1738 err = move_addr_to_kernel(addr, addr_len, &address); 1739 if (err < 0) 1740 goto out_put; 1741 msg.msg_name = (struct sockaddr *)&address; 1742 msg.msg_namelen = addr_len; 1743 } 1744 if (sock->file->f_flags & O_NONBLOCK) 1745 flags |= MSG_DONTWAIT; 1746 msg.msg_flags = flags; 1747 err = sock_sendmsg(sock, &msg); 1748 1749 out_put: 1750 fput_light(sock->file, fput_needed); 1751 out: 1752 return err; 1753 } 1754 1755 /* 1756 * Send a datagram down a socket. 1757 */ 1758 1759 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1760 unsigned int, flags) 1761 { 1762 return sys_sendto(fd, buff, len, flags, NULL, 0); 1763 } 1764 1765 /* 1766 * Receive a frame from the socket and optionally record the address of the 1767 * sender. We verify the buffers are writable and if needed move the 1768 * sender address from kernel to user space. 1769 */ 1770 1771 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1772 unsigned int, flags, struct sockaddr __user *, addr, 1773 int __user *, addr_len) 1774 { 1775 struct socket *sock; 1776 struct iovec iov; 1777 struct msghdr msg; 1778 struct sockaddr_storage address; 1779 int err, err2; 1780 int fput_needed; 1781 1782 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1783 if (unlikely(err)) 1784 return err; 1785 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1786 if (!sock) 1787 goto out; 1788 1789 msg.msg_control = NULL; 1790 msg.msg_controllen = 0; 1791 /* Save some cycles and don't copy the address if not needed */ 1792 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1793 /* We assume all kernel code knows the size of sockaddr_storage */ 1794 msg.msg_namelen = 0; 1795 msg.msg_iocb = NULL; 1796 msg.msg_flags = 0; 1797 if (sock->file->f_flags & O_NONBLOCK) 1798 flags |= MSG_DONTWAIT; 1799 err = sock_recvmsg(sock, &msg, flags); 1800 1801 if (err >= 0 && addr != NULL) { 1802 err2 = move_addr_to_user(&address, 1803 msg.msg_namelen, addr, addr_len); 1804 if (err2 < 0) 1805 err = err2; 1806 } 1807 1808 fput_light(sock->file, fput_needed); 1809 out: 1810 return err; 1811 } 1812 1813 /* 1814 * Receive a datagram from a socket. 1815 */ 1816 1817 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1818 unsigned int, flags) 1819 { 1820 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1821 } 1822 1823 /* 1824 * Set a socket option. Because we don't know the option lengths we have 1825 * to pass the user mode parameter for the protocols to sort out. 1826 */ 1827 1828 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1829 char __user *, optval, int, optlen) 1830 { 1831 int err, fput_needed; 1832 struct socket *sock; 1833 1834 if (optlen < 0) 1835 return -EINVAL; 1836 1837 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1838 if (sock != NULL) { 1839 err = security_socket_setsockopt(sock, level, optname); 1840 if (err) 1841 goto out_put; 1842 1843 if (level == SOL_SOCKET) 1844 err = 1845 sock_setsockopt(sock, level, optname, optval, 1846 optlen); 1847 else 1848 err = 1849 sock->ops->setsockopt(sock, level, optname, optval, 1850 optlen); 1851 out_put: 1852 fput_light(sock->file, fput_needed); 1853 } 1854 return err; 1855 } 1856 1857 /* 1858 * Get a socket option. Because we don't know the option lengths we have 1859 * to pass a user mode parameter for the protocols to sort out. 1860 */ 1861 1862 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1863 char __user *, optval, int __user *, optlen) 1864 { 1865 int err, fput_needed; 1866 struct socket *sock; 1867 1868 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1869 if (sock != NULL) { 1870 err = security_socket_getsockopt(sock, level, optname); 1871 if (err) 1872 goto out_put; 1873 1874 if (level == SOL_SOCKET) 1875 err = 1876 sock_getsockopt(sock, level, optname, optval, 1877 optlen); 1878 else 1879 err = 1880 sock->ops->getsockopt(sock, level, optname, optval, 1881 optlen); 1882 out_put: 1883 fput_light(sock->file, fput_needed); 1884 } 1885 return err; 1886 } 1887 1888 /* 1889 * Shutdown a socket. 1890 */ 1891 1892 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1893 { 1894 int err, fput_needed; 1895 struct socket *sock; 1896 1897 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1898 if (sock != NULL) { 1899 err = security_socket_shutdown(sock, how); 1900 if (!err) 1901 err = sock->ops->shutdown(sock, how); 1902 fput_light(sock->file, fput_needed); 1903 } 1904 return err; 1905 } 1906 1907 /* A couple of helpful macros for getting the address of the 32/64 bit 1908 * fields which are the same type (int / unsigned) on our platforms. 1909 */ 1910 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1911 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1912 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1913 1914 struct used_address { 1915 struct sockaddr_storage name; 1916 unsigned int name_len; 1917 }; 1918 1919 static int copy_msghdr_from_user(struct msghdr *kmsg, 1920 struct user_msghdr __user *umsg, 1921 struct sockaddr __user **save_addr, 1922 struct iovec **iov) 1923 { 1924 struct user_msghdr msg; 1925 ssize_t err; 1926 1927 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1928 return -EFAULT; 1929 1930 kmsg->msg_control = (void __force *)msg.msg_control; 1931 kmsg->msg_controllen = msg.msg_controllen; 1932 kmsg->msg_flags = msg.msg_flags; 1933 1934 kmsg->msg_namelen = msg.msg_namelen; 1935 if (!msg.msg_name) 1936 kmsg->msg_namelen = 0; 1937 1938 if (kmsg->msg_namelen < 0) 1939 return -EINVAL; 1940 1941 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1942 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1943 1944 if (save_addr) 1945 *save_addr = msg.msg_name; 1946 1947 if (msg.msg_name && kmsg->msg_namelen) { 1948 if (!save_addr) { 1949 err = move_addr_to_kernel(msg.msg_name, 1950 kmsg->msg_namelen, 1951 kmsg->msg_name); 1952 if (err < 0) 1953 return err; 1954 } 1955 } else { 1956 kmsg->msg_name = NULL; 1957 kmsg->msg_namelen = 0; 1958 } 1959 1960 if (msg.msg_iovlen > UIO_MAXIOV) 1961 return -EMSGSIZE; 1962 1963 kmsg->msg_iocb = NULL; 1964 1965 return import_iovec(save_addr ? READ : WRITE, 1966 msg.msg_iov, msg.msg_iovlen, 1967 UIO_FASTIOV, iov, &kmsg->msg_iter); 1968 } 1969 1970 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1971 struct msghdr *msg_sys, unsigned int flags, 1972 struct used_address *used_address, 1973 unsigned int allowed_msghdr_flags) 1974 { 1975 struct compat_msghdr __user *msg_compat = 1976 (struct compat_msghdr __user *)msg; 1977 struct sockaddr_storage address; 1978 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1979 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1980 __aligned(sizeof(__kernel_size_t)); 1981 /* 20 is size of ipv6_pktinfo */ 1982 unsigned char *ctl_buf = ctl; 1983 int ctl_len; 1984 ssize_t err; 1985 1986 msg_sys->msg_name = &address; 1987 1988 if (MSG_CMSG_COMPAT & flags) 1989 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1990 else 1991 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1992 if (err < 0) 1993 return err; 1994 1995 err = -ENOBUFS; 1996 1997 if (msg_sys->msg_controllen > INT_MAX) 1998 goto out_freeiov; 1999 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2000 ctl_len = msg_sys->msg_controllen; 2001 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2002 err = 2003 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2004 sizeof(ctl)); 2005 if (err) 2006 goto out_freeiov; 2007 ctl_buf = msg_sys->msg_control; 2008 ctl_len = msg_sys->msg_controllen; 2009 } else if (ctl_len) { 2010 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2011 CMSG_ALIGN(sizeof(struct cmsghdr))); 2012 if (ctl_len > sizeof(ctl)) { 2013 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2014 if (ctl_buf == NULL) 2015 goto out_freeiov; 2016 } 2017 err = -EFAULT; 2018 /* 2019 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2020 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2021 * checking falls down on this. 2022 */ 2023 if (copy_from_user(ctl_buf, 2024 (void __user __force *)msg_sys->msg_control, 2025 ctl_len)) 2026 goto out_freectl; 2027 msg_sys->msg_control = ctl_buf; 2028 } 2029 msg_sys->msg_flags = flags; 2030 2031 if (sock->file->f_flags & O_NONBLOCK) 2032 msg_sys->msg_flags |= MSG_DONTWAIT; 2033 /* 2034 * If this is sendmmsg() and current destination address is same as 2035 * previously succeeded address, omit asking LSM's decision. 2036 * used_address->name_len is initialized to UINT_MAX so that the first 2037 * destination address never matches. 2038 */ 2039 if (used_address && msg_sys->msg_name && 2040 used_address->name_len == msg_sys->msg_namelen && 2041 !memcmp(&used_address->name, msg_sys->msg_name, 2042 used_address->name_len)) { 2043 err = sock_sendmsg_nosec(sock, msg_sys); 2044 goto out_freectl; 2045 } 2046 err = sock_sendmsg(sock, msg_sys); 2047 /* 2048 * If this is sendmmsg() and sending to current destination address was 2049 * successful, remember it. 2050 */ 2051 if (used_address && err >= 0) { 2052 used_address->name_len = msg_sys->msg_namelen; 2053 if (msg_sys->msg_name) 2054 memcpy(&used_address->name, msg_sys->msg_name, 2055 used_address->name_len); 2056 } 2057 2058 out_freectl: 2059 if (ctl_buf != ctl) 2060 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2061 out_freeiov: 2062 kfree(iov); 2063 return err; 2064 } 2065 2066 /* 2067 * BSD sendmsg interface 2068 */ 2069 2070 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2071 { 2072 int fput_needed, err; 2073 struct msghdr msg_sys; 2074 struct socket *sock; 2075 2076 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2077 if (!sock) 2078 goto out; 2079 2080 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2081 2082 fput_light(sock->file, fput_needed); 2083 out: 2084 return err; 2085 } 2086 2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2088 { 2089 if (flags & MSG_CMSG_COMPAT) 2090 return -EINVAL; 2091 return __sys_sendmsg(fd, msg, flags); 2092 } 2093 2094 /* 2095 * Linux sendmmsg interface 2096 */ 2097 2098 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2099 unsigned int flags) 2100 { 2101 int fput_needed, err, datagrams; 2102 struct socket *sock; 2103 struct mmsghdr __user *entry; 2104 struct compat_mmsghdr __user *compat_entry; 2105 struct msghdr msg_sys; 2106 struct used_address used_address; 2107 unsigned int oflags = flags; 2108 2109 if (vlen > UIO_MAXIOV) 2110 vlen = UIO_MAXIOV; 2111 2112 datagrams = 0; 2113 2114 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2115 if (!sock) 2116 return err; 2117 2118 used_address.name_len = UINT_MAX; 2119 entry = mmsg; 2120 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2121 err = 0; 2122 flags |= MSG_BATCH; 2123 2124 while (datagrams < vlen) { 2125 if (datagrams == vlen - 1) 2126 flags = oflags; 2127 2128 if (MSG_CMSG_COMPAT & flags) { 2129 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2130 &msg_sys, flags, &used_address, MSG_EOR); 2131 if (err < 0) 2132 break; 2133 err = __put_user(err, &compat_entry->msg_len); 2134 ++compat_entry; 2135 } else { 2136 err = ___sys_sendmsg(sock, 2137 (struct user_msghdr __user *)entry, 2138 &msg_sys, flags, &used_address, MSG_EOR); 2139 if (err < 0) 2140 break; 2141 err = put_user(err, &entry->msg_len); 2142 ++entry; 2143 } 2144 2145 if (err) 2146 break; 2147 ++datagrams; 2148 if (msg_data_left(&msg_sys)) 2149 break; 2150 cond_resched(); 2151 } 2152 2153 fput_light(sock->file, fput_needed); 2154 2155 /* We only return an error if no datagrams were able to be sent */ 2156 if (datagrams != 0) 2157 return datagrams; 2158 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2163 unsigned int, vlen, unsigned int, flags) 2164 { 2165 if (flags & MSG_CMSG_COMPAT) 2166 return -EINVAL; 2167 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2168 } 2169 2170 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2171 struct msghdr *msg_sys, unsigned int flags, int nosec) 2172 { 2173 struct compat_msghdr __user *msg_compat = 2174 (struct compat_msghdr __user *)msg; 2175 struct iovec iovstack[UIO_FASTIOV]; 2176 struct iovec *iov = iovstack; 2177 unsigned long cmsg_ptr; 2178 int len; 2179 ssize_t err; 2180 2181 /* kernel mode address */ 2182 struct sockaddr_storage addr; 2183 2184 /* user mode address pointers */ 2185 struct sockaddr __user *uaddr; 2186 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2187 2188 msg_sys->msg_name = &addr; 2189 2190 if (MSG_CMSG_COMPAT & flags) 2191 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2192 else 2193 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2194 if (err < 0) 2195 return err; 2196 2197 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2198 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2199 2200 /* We assume all kernel code knows the size of sockaddr_storage */ 2201 msg_sys->msg_namelen = 0; 2202 2203 if (sock->file->f_flags & O_NONBLOCK) 2204 flags |= MSG_DONTWAIT; 2205 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2206 if (err < 0) 2207 goto out_freeiov; 2208 len = err; 2209 2210 if (uaddr != NULL) { 2211 err = move_addr_to_user(&addr, 2212 msg_sys->msg_namelen, uaddr, 2213 uaddr_len); 2214 if (err < 0) 2215 goto out_freeiov; 2216 } 2217 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2218 COMPAT_FLAGS(msg)); 2219 if (err) 2220 goto out_freeiov; 2221 if (MSG_CMSG_COMPAT & flags) 2222 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2223 &msg_compat->msg_controllen); 2224 else 2225 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2226 &msg->msg_controllen); 2227 if (err) 2228 goto out_freeiov; 2229 err = len; 2230 2231 out_freeiov: 2232 kfree(iov); 2233 return err; 2234 } 2235 2236 /* 2237 * BSD recvmsg interface 2238 */ 2239 2240 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2241 { 2242 int fput_needed, err; 2243 struct msghdr msg_sys; 2244 struct socket *sock; 2245 2246 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2247 if (!sock) 2248 goto out; 2249 2250 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2251 2252 fput_light(sock->file, fput_needed); 2253 out: 2254 return err; 2255 } 2256 2257 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2258 unsigned int, flags) 2259 { 2260 if (flags & MSG_CMSG_COMPAT) 2261 return -EINVAL; 2262 return __sys_recvmsg(fd, msg, flags); 2263 } 2264 2265 /* 2266 * Linux recvmmsg interface 2267 */ 2268 2269 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2270 unsigned int flags, struct timespec *timeout) 2271 { 2272 int fput_needed, err, datagrams; 2273 struct socket *sock; 2274 struct mmsghdr __user *entry; 2275 struct compat_mmsghdr __user *compat_entry; 2276 struct msghdr msg_sys; 2277 struct timespec64 end_time; 2278 struct timespec64 timeout64; 2279 2280 if (timeout && 2281 poll_select_set_timeout(&end_time, timeout->tv_sec, 2282 timeout->tv_nsec)) 2283 return -EINVAL; 2284 2285 datagrams = 0; 2286 2287 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2288 if (!sock) 2289 return err; 2290 2291 err = sock_error(sock->sk); 2292 if (err) { 2293 datagrams = err; 2294 goto out_put; 2295 } 2296 2297 entry = mmsg; 2298 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2299 2300 while (datagrams < vlen) { 2301 /* 2302 * No need to ask LSM for more than the first datagram. 2303 */ 2304 if (MSG_CMSG_COMPAT & flags) { 2305 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2306 &msg_sys, flags & ~MSG_WAITFORONE, 2307 datagrams); 2308 if (err < 0) 2309 break; 2310 err = __put_user(err, &compat_entry->msg_len); 2311 ++compat_entry; 2312 } else { 2313 err = ___sys_recvmsg(sock, 2314 (struct user_msghdr __user *)entry, 2315 &msg_sys, flags & ~MSG_WAITFORONE, 2316 datagrams); 2317 if (err < 0) 2318 break; 2319 err = put_user(err, &entry->msg_len); 2320 ++entry; 2321 } 2322 2323 if (err) 2324 break; 2325 ++datagrams; 2326 2327 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2328 if (flags & MSG_WAITFORONE) 2329 flags |= MSG_DONTWAIT; 2330 2331 if (timeout) { 2332 ktime_get_ts64(&timeout64); 2333 *timeout = timespec64_to_timespec( 2334 timespec64_sub(end_time, timeout64)); 2335 if (timeout->tv_sec < 0) { 2336 timeout->tv_sec = timeout->tv_nsec = 0; 2337 break; 2338 } 2339 2340 /* Timeout, return less than vlen datagrams */ 2341 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2342 break; 2343 } 2344 2345 /* Out of band data, return right away */ 2346 if (msg_sys.msg_flags & MSG_OOB) 2347 break; 2348 cond_resched(); 2349 } 2350 2351 if (err == 0) 2352 goto out_put; 2353 2354 if (datagrams == 0) { 2355 datagrams = err; 2356 goto out_put; 2357 } 2358 2359 /* 2360 * We may return less entries than requested (vlen) if the 2361 * sock is non block and there aren't enough datagrams... 2362 */ 2363 if (err != -EAGAIN) { 2364 /* 2365 * ... or if recvmsg returns an error after we 2366 * received some datagrams, where we record the 2367 * error to return on the next call or if the 2368 * app asks about it using getsockopt(SO_ERROR). 2369 */ 2370 sock->sk->sk_err = -err; 2371 } 2372 out_put: 2373 fput_light(sock->file, fput_needed); 2374 2375 return datagrams; 2376 } 2377 2378 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2379 unsigned int, vlen, unsigned int, flags, 2380 struct timespec __user *, timeout) 2381 { 2382 int datagrams; 2383 struct timespec timeout_sys; 2384 2385 if (flags & MSG_CMSG_COMPAT) 2386 return -EINVAL; 2387 2388 if (!timeout) 2389 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2390 2391 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2392 return -EFAULT; 2393 2394 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2395 2396 if (datagrams > 0 && 2397 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2398 datagrams = -EFAULT; 2399 2400 return datagrams; 2401 } 2402 2403 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2404 /* Argument list sizes for sys_socketcall */ 2405 #define AL(x) ((x) * sizeof(unsigned long)) 2406 static const unsigned char nargs[21] = { 2407 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2408 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2409 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2410 AL(4), AL(5), AL(4) 2411 }; 2412 2413 #undef AL 2414 2415 /* 2416 * System call vectors. 2417 * 2418 * Argument checking cleaned up. Saved 20% in size. 2419 * This function doesn't need to set the kernel lock because 2420 * it is set by the callees. 2421 */ 2422 2423 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2424 { 2425 unsigned long a[AUDITSC_ARGS]; 2426 unsigned long a0, a1; 2427 int err; 2428 unsigned int len; 2429 2430 if (call < 1 || call > SYS_SENDMMSG) 2431 return -EINVAL; 2432 2433 len = nargs[call]; 2434 if (len > sizeof(a)) 2435 return -EINVAL; 2436 2437 /* copy_from_user should be SMP safe. */ 2438 if (copy_from_user(a, args, len)) 2439 return -EFAULT; 2440 2441 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2442 if (err) 2443 return err; 2444 2445 a0 = a[0]; 2446 a1 = a[1]; 2447 2448 switch (call) { 2449 case SYS_SOCKET: 2450 err = sys_socket(a0, a1, a[2]); 2451 break; 2452 case SYS_BIND: 2453 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2454 break; 2455 case SYS_CONNECT: 2456 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2457 break; 2458 case SYS_LISTEN: 2459 err = sys_listen(a0, a1); 2460 break; 2461 case SYS_ACCEPT: 2462 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2463 (int __user *)a[2], 0); 2464 break; 2465 case SYS_GETSOCKNAME: 2466 err = 2467 sys_getsockname(a0, (struct sockaddr __user *)a1, 2468 (int __user *)a[2]); 2469 break; 2470 case SYS_GETPEERNAME: 2471 err = 2472 sys_getpeername(a0, (struct sockaddr __user *)a1, 2473 (int __user *)a[2]); 2474 break; 2475 case SYS_SOCKETPAIR: 2476 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2477 break; 2478 case SYS_SEND: 2479 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2480 break; 2481 case SYS_SENDTO: 2482 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2483 (struct sockaddr __user *)a[4], a[5]); 2484 break; 2485 case SYS_RECV: 2486 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2487 break; 2488 case SYS_RECVFROM: 2489 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2490 (struct sockaddr __user *)a[4], 2491 (int __user *)a[5]); 2492 break; 2493 case SYS_SHUTDOWN: 2494 err = sys_shutdown(a0, a1); 2495 break; 2496 case SYS_SETSOCKOPT: 2497 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2498 break; 2499 case SYS_GETSOCKOPT: 2500 err = 2501 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2502 (int __user *)a[4]); 2503 break; 2504 case SYS_SENDMSG: 2505 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2506 break; 2507 case SYS_SENDMMSG: 2508 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2509 break; 2510 case SYS_RECVMSG: 2511 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2512 break; 2513 case SYS_RECVMMSG: 2514 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2515 (struct timespec __user *)a[4]); 2516 break; 2517 case SYS_ACCEPT4: 2518 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2519 (int __user *)a[2], a[3]); 2520 break; 2521 default: 2522 err = -EINVAL; 2523 break; 2524 } 2525 return err; 2526 } 2527 2528 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2529 2530 /** 2531 * sock_register - add a socket protocol handler 2532 * @ops: description of protocol 2533 * 2534 * This function is called by a protocol handler that wants to 2535 * advertise its address family, and have it linked into the 2536 * socket interface. The value ops->family corresponds to the 2537 * socket system call protocol family. 2538 */ 2539 int sock_register(const struct net_proto_family *ops) 2540 { 2541 int err; 2542 2543 if (ops->family >= NPROTO) { 2544 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2545 return -ENOBUFS; 2546 } 2547 2548 spin_lock(&net_family_lock); 2549 if (rcu_dereference_protected(net_families[ops->family], 2550 lockdep_is_held(&net_family_lock))) 2551 err = -EEXIST; 2552 else { 2553 rcu_assign_pointer(net_families[ops->family], ops); 2554 err = 0; 2555 } 2556 spin_unlock(&net_family_lock); 2557 2558 pr_info("NET: Registered protocol family %d\n", ops->family); 2559 return err; 2560 } 2561 EXPORT_SYMBOL(sock_register); 2562 2563 /** 2564 * sock_unregister - remove a protocol handler 2565 * @family: protocol family to remove 2566 * 2567 * This function is called by a protocol handler that wants to 2568 * remove its address family, and have it unlinked from the 2569 * new socket creation. 2570 * 2571 * If protocol handler is a module, then it can use module reference 2572 * counts to protect against new references. If protocol handler is not 2573 * a module then it needs to provide its own protection in 2574 * the ops->create routine. 2575 */ 2576 void sock_unregister(int family) 2577 { 2578 BUG_ON(family < 0 || family >= NPROTO); 2579 2580 spin_lock(&net_family_lock); 2581 RCU_INIT_POINTER(net_families[family], NULL); 2582 spin_unlock(&net_family_lock); 2583 2584 synchronize_rcu(); 2585 2586 pr_info("NET: Unregistered protocol family %d\n", family); 2587 } 2588 EXPORT_SYMBOL(sock_unregister); 2589 2590 static int __init sock_init(void) 2591 { 2592 int err; 2593 /* 2594 * Initialize the network sysctl infrastructure. 2595 */ 2596 err = net_sysctl_init(); 2597 if (err) 2598 goto out; 2599 2600 /* 2601 * Initialize skbuff SLAB cache 2602 */ 2603 skb_init(); 2604 2605 /* 2606 * Initialize the protocols module. 2607 */ 2608 2609 init_inodecache(); 2610 2611 err = register_filesystem(&sock_fs_type); 2612 if (err) 2613 goto out_fs; 2614 sock_mnt = kern_mount(&sock_fs_type); 2615 if (IS_ERR(sock_mnt)) { 2616 err = PTR_ERR(sock_mnt); 2617 goto out_mount; 2618 } 2619 2620 /* The real protocol initialization is performed in later initcalls. 2621 */ 2622 2623 #ifdef CONFIG_NETFILTER 2624 err = netfilter_init(); 2625 if (err) 2626 goto out; 2627 #endif 2628 2629 ptp_classifier_init(); 2630 2631 out: 2632 return err; 2633 2634 out_mount: 2635 unregister_filesystem(&sock_fs_type); 2636 out_fs: 2637 goto out; 2638 } 2639 2640 core_initcall(sock_init); /* early initcall */ 2641 2642 #ifdef CONFIG_PROC_FS 2643 void socket_seq_show(struct seq_file *seq) 2644 { 2645 seq_printf(seq, "sockets: used %d\n", 2646 sock_inuse_get(seq->private)); 2647 } 2648 #endif /* CONFIG_PROC_FS */ 2649 2650 #ifdef CONFIG_COMPAT 2651 static int do_siocgstamp(struct net *net, struct socket *sock, 2652 unsigned int cmd, void __user *up) 2653 { 2654 mm_segment_t old_fs = get_fs(); 2655 struct timeval ktv; 2656 int err; 2657 2658 set_fs(KERNEL_DS); 2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2660 set_fs(old_fs); 2661 if (!err) 2662 err = compat_put_timeval(&ktv, up); 2663 2664 return err; 2665 } 2666 2667 static int do_siocgstampns(struct net *net, struct socket *sock, 2668 unsigned int cmd, void __user *up) 2669 { 2670 mm_segment_t old_fs = get_fs(); 2671 struct timespec kts; 2672 int err; 2673 2674 set_fs(KERNEL_DS); 2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2676 set_fs(old_fs); 2677 if (!err) 2678 err = compat_put_timespec(&kts, up); 2679 2680 return err; 2681 } 2682 2683 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2684 { 2685 struct compat_ifconf ifc32; 2686 struct ifconf ifc; 2687 int err; 2688 2689 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2690 return -EFAULT; 2691 2692 ifc.ifc_len = ifc32.ifc_len; 2693 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2694 2695 rtnl_lock(); 2696 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2697 rtnl_unlock(); 2698 if (err) 2699 return err; 2700 2701 ifc32.ifc_len = ifc.ifc_len; 2702 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2703 return -EFAULT; 2704 2705 return 0; 2706 } 2707 2708 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2709 { 2710 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2711 bool convert_in = false, convert_out = false; 2712 size_t buf_size = 0; 2713 struct ethtool_rxnfc __user *rxnfc = NULL; 2714 struct ifreq ifr; 2715 u32 rule_cnt = 0, actual_rule_cnt; 2716 u32 ethcmd; 2717 u32 data; 2718 int ret; 2719 2720 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2721 return -EFAULT; 2722 2723 compat_rxnfc = compat_ptr(data); 2724 2725 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2726 return -EFAULT; 2727 2728 /* Most ethtool structures are defined without padding. 2729 * Unfortunately struct ethtool_rxnfc is an exception. 2730 */ 2731 switch (ethcmd) { 2732 default: 2733 break; 2734 case ETHTOOL_GRXCLSRLALL: 2735 /* Buffer size is variable */ 2736 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2737 return -EFAULT; 2738 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2739 return -ENOMEM; 2740 buf_size += rule_cnt * sizeof(u32); 2741 /* fall through */ 2742 case ETHTOOL_GRXRINGS: 2743 case ETHTOOL_GRXCLSRLCNT: 2744 case ETHTOOL_GRXCLSRULE: 2745 case ETHTOOL_SRXCLSRLINS: 2746 convert_out = true; 2747 /* fall through */ 2748 case ETHTOOL_SRXCLSRLDEL: 2749 buf_size += sizeof(struct ethtool_rxnfc); 2750 convert_in = true; 2751 rxnfc = compat_alloc_user_space(buf_size); 2752 break; 2753 } 2754 2755 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2756 return -EFAULT; 2757 2758 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2759 2760 if (convert_in) { 2761 /* We expect there to be holes between fs.m_ext and 2762 * fs.ring_cookie and at the end of fs, but nowhere else. 2763 */ 2764 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2765 sizeof(compat_rxnfc->fs.m_ext) != 2766 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2767 sizeof(rxnfc->fs.m_ext)); 2768 BUILD_BUG_ON( 2769 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2770 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2771 offsetof(struct ethtool_rxnfc, fs.location) - 2772 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2773 2774 if (copy_in_user(rxnfc, compat_rxnfc, 2775 (void __user *)(&rxnfc->fs.m_ext + 1) - 2776 (void __user *)rxnfc) || 2777 copy_in_user(&rxnfc->fs.ring_cookie, 2778 &compat_rxnfc->fs.ring_cookie, 2779 (void __user *)(&rxnfc->fs.location + 1) - 2780 (void __user *)&rxnfc->fs.ring_cookie) || 2781 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2782 sizeof(rxnfc->rule_cnt))) 2783 return -EFAULT; 2784 } 2785 2786 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2787 if (ret) 2788 return ret; 2789 2790 if (convert_out) { 2791 if (copy_in_user(compat_rxnfc, rxnfc, 2792 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2793 (const void __user *)rxnfc) || 2794 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2795 &rxnfc->fs.ring_cookie, 2796 (const void __user *)(&rxnfc->fs.location + 1) - 2797 (const void __user *)&rxnfc->fs.ring_cookie) || 2798 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2799 sizeof(rxnfc->rule_cnt))) 2800 return -EFAULT; 2801 2802 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2803 /* As an optimisation, we only copy the actual 2804 * number of rules that the underlying 2805 * function returned. Since Mallory might 2806 * change the rule count in user memory, we 2807 * check that it is less than the rule count 2808 * originally given (as the user buffer size), 2809 * which has been range-checked. 2810 */ 2811 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2812 return -EFAULT; 2813 if (actual_rule_cnt < rule_cnt) 2814 rule_cnt = actual_rule_cnt; 2815 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2816 &rxnfc->rule_locs[0], 2817 rule_cnt * sizeof(u32))) 2818 return -EFAULT; 2819 } 2820 } 2821 2822 return 0; 2823 } 2824 2825 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2826 { 2827 compat_uptr_t uptr32; 2828 struct ifreq ifr; 2829 void __user *saved; 2830 int err; 2831 2832 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2833 return -EFAULT; 2834 2835 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2836 return -EFAULT; 2837 2838 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2839 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2840 2841 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2842 if (!err) { 2843 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2844 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2845 err = -EFAULT; 2846 } 2847 return err; 2848 } 2849 2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2852 struct compat_ifreq __user *u_ifreq32) 2853 { 2854 struct ifreq ifreq; 2855 u32 data32; 2856 2857 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2858 return -EFAULT; 2859 if (get_user(data32, &u_ifreq32->ifr_data)) 2860 return -EFAULT; 2861 ifreq.ifr_data = compat_ptr(data32); 2862 2863 return dev_ioctl(net, cmd, &ifreq, NULL); 2864 } 2865 2866 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2867 struct compat_ifreq __user *uifr32) 2868 { 2869 struct ifreq ifr; 2870 struct compat_ifmap __user *uifmap32; 2871 int err; 2872 2873 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2874 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2875 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2876 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2877 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2878 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2879 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2880 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2881 if (err) 2882 return -EFAULT; 2883 2884 err = dev_ioctl(net, cmd, &ifr, NULL); 2885 2886 if (cmd == SIOCGIFMAP && !err) { 2887 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2888 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2889 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2890 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2891 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2892 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2893 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2894 if (err) 2895 err = -EFAULT; 2896 } 2897 return err; 2898 } 2899 2900 struct rtentry32 { 2901 u32 rt_pad1; 2902 struct sockaddr rt_dst; /* target address */ 2903 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2904 struct sockaddr rt_genmask; /* target network mask (IP) */ 2905 unsigned short rt_flags; 2906 short rt_pad2; 2907 u32 rt_pad3; 2908 unsigned char rt_tos; 2909 unsigned char rt_class; 2910 short rt_pad4; 2911 short rt_metric; /* +1 for binary compatibility! */ 2912 /* char * */ u32 rt_dev; /* forcing the device at add */ 2913 u32 rt_mtu; /* per route MTU/Window */ 2914 u32 rt_window; /* Window clamping */ 2915 unsigned short rt_irtt; /* Initial RTT */ 2916 }; 2917 2918 struct in6_rtmsg32 { 2919 struct in6_addr rtmsg_dst; 2920 struct in6_addr rtmsg_src; 2921 struct in6_addr rtmsg_gateway; 2922 u32 rtmsg_type; 2923 u16 rtmsg_dst_len; 2924 u16 rtmsg_src_len; 2925 u32 rtmsg_metric; 2926 u32 rtmsg_info; 2927 u32 rtmsg_flags; 2928 s32 rtmsg_ifindex; 2929 }; 2930 2931 static int routing_ioctl(struct net *net, struct socket *sock, 2932 unsigned int cmd, void __user *argp) 2933 { 2934 int ret; 2935 void *r = NULL; 2936 struct in6_rtmsg r6; 2937 struct rtentry r4; 2938 char devname[16]; 2939 u32 rtdev; 2940 mm_segment_t old_fs = get_fs(); 2941 2942 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2943 struct in6_rtmsg32 __user *ur6 = argp; 2944 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2945 3 * sizeof(struct in6_addr)); 2946 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2947 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2948 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2949 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2950 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2951 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2952 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2953 2954 r = (void *) &r6; 2955 } else { /* ipv4 */ 2956 struct rtentry32 __user *ur4 = argp; 2957 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2958 3 * sizeof(struct sockaddr)); 2959 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 2960 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 2961 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2962 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 2963 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2964 ret |= get_user(rtdev, &(ur4->rt_dev)); 2965 if (rtdev) { 2966 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2967 r4.rt_dev = (char __user __force *)devname; 2968 devname[15] = 0; 2969 } else 2970 r4.rt_dev = NULL; 2971 2972 r = (void *) &r4; 2973 } 2974 2975 if (ret) { 2976 ret = -EFAULT; 2977 goto out; 2978 } 2979 2980 set_fs(KERNEL_DS); 2981 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2982 set_fs(old_fs); 2983 2984 out: 2985 return ret; 2986 } 2987 2988 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2989 * for some operations; this forces use of the newer bridge-utils that 2990 * use compatible ioctls 2991 */ 2992 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2993 { 2994 compat_ulong_t tmp; 2995 2996 if (get_user(tmp, argp)) 2997 return -EFAULT; 2998 if (tmp == BRCTL_GET_VERSION) 2999 return BRCTL_VERSION + 1; 3000 return -EINVAL; 3001 } 3002 3003 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3004 unsigned int cmd, unsigned long arg) 3005 { 3006 void __user *argp = compat_ptr(arg); 3007 struct sock *sk = sock->sk; 3008 struct net *net = sock_net(sk); 3009 3010 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3011 return compat_ifr_data_ioctl(net, cmd, argp); 3012 3013 switch (cmd) { 3014 case SIOCSIFBR: 3015 case SIOCGIFBR: 3016 return old_bridge_ioctl(argp); 3017 case SIOCGIFCONF: 3018 return compat_dev_ifconf(net, argp); 3019 case SIOCETHTOOL: 3020 return ethtool_ioctl(net, argp); 3021 case SIOCWANDEV: 3022 return compat_siocwandev(net, argp); 3023 case SIOCGIFMAP: 3024 case SIOCSIFMAP: 3025 return compat_sioc_ifmap(net, cmd, argp); 3026 case SIOCADDRT: 3027 case SIOCDELRT: 3028 return routing_ioctl(net, sock, cmd, argp); 3029 case SIOCGSTAMP: 3030 return do_siocgstamp(net, sock, cmd, argp); 3031 case SIOCGSTAMPNS: 3032 return do_siocgstampns(net, sock, cmd, argp); 3033 case SIOCBONDSLAVEINFOQUERY: 3034 case SIOCBONDINFOQUERY: 3035 case SIOCSHWTSTAMP: 3036 case SIOCGHWTSTAMP: 3037 return compat_ifr_data_ioctl(net, cmd, argp); 3038 3039 case FIOSETOWN: 3040 case SIOCSPGRP: 3041 case FIOGETOWN: 3042 case SIOCGPGRP: 3043 case SIOCBRADDBR: 3044 case SIOCBRDELBR: 3045 case SIOCGIFVLAN: 3046 case SIOCSIFVLAN: 3047 case SIOCADDDLCI: 3048 case SIOCDELDLCI: 3049 case SIOCGSKNS: 3050 return sock_ioctl(file, cmd, arg); 3051 3052 case SIOCGIFFLAGS: 3053 case SIOCSIFFLAGS: 3054 case SIOCGIFMETRIC: 3055 case SIOCSIFMETRIC: 3056 case SIOCGIFMTU: 3057 case SIOCSIFMTU: 3058 case SIOCGIFMEM: 3059 case SIOCSIFMEM: 3060 case SIOCGIFHWADDR: 3061 case SIOCSIFHWADDR: 3062 case SIOCADDMULTI: 3063 case SIOCDELMULTI: 3064 case SIOCGIFINDEX: 3065 case SIOCGIFADDR: 3066 case SIOCSIFADDR: 3067 case SIOCSIFHWBROADCAST: 3068 case SIOCDIFADDR: 3069 case SIOCGIFBRDADDR: 3070 case SIOCSIFBRDADDR: 3071 case SIOCGIFDSTADDR: 3072 case SIOCSIFDSTADDR: 3073 case SIOCGIFNETMASK: 3074 case SIOCSIFNETMASK: 3075 case SIOCSIFPFLAGS: 3076 case SIOCGIFPFLAGS: 3077 case SIOCGIFTXQLEN: 3078 case SIOCSIFTXQLEN: 3079 case SIOCBRADDIF: 3080 case SIOCBRDELIF: 3081 case SIOCSIFNAME: 3082 case SIOCGMIIPHY: 3083 case SIOCGMIIREG: 3084 case SIOCSMIIREG: 3085 case SIOCSARP: 3086 case SIOCGARP: 3087 case SIOCDARP: 3088 case SIOCATMARK: 3089 case SIOCBONDENSLAVE: 3090 case SIOCBONDRELEASE: 3091 case SIOCBONDSETHWADDR: 3092 case SIOCBONDCHANGEACTIVE: 3093 case SIOCGIFNAME: 3094 return sock_do_ioctl(net, sock, cmd, arg); 3095 } 3096 3097 return -ENOIOCTLCMD; 3098 } 3099 3100 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3101 unsigned long arg) 3102 { 3103 struct socket *sock = file->private_data; 3104 int ret = -ENOIOCTLCMD; 3105 struct sock *sk; 3106 struct net *net; 3107 3108 sk = sock->sk; 3109 net = sock_net(sk); 3110 3111 if (sock->ops->compat_ioctl) 3112 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3113 3114 if (ret == -ENOIOCTLCMD && 3115 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3116 ret = compat_wext_handle_ioctl(net, cmd, arg); 3117 3118 if (ret == -ENOIOCTLCMD) 3119 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3120 3121 return ret; 3122 } 3123 #endif 3124 3125 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3126 { 3127 return sock->ops->bind(sock, addr, addrlen); 3128 } 3129 EXPORT_SYMBOL(kernel_bind); 3130 3131 int kernel_listen(struct socket *sock, int backlog) 3132 { 3133 return sock->ops->listen(sock, backlog); 3134 } 3135 EXPORT_SYMBOL(kernel_listen); 3136 3137 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3138 { 3139 struct sock *sk = sock->sk; 3140 int err; 3141 3142 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3143 newsock); 3144 if (err < 0) 3145 goto done; 3146 3147 err = sock->ops->accept(sock, *newsock, flags, true); 3148 if (err < 0) { 3149 sock_release(*newsock); 3150 *newsock = NULL; 3151 goto done; 3152 } 3153 3154 (*newsock)->ops = sock->ops; 3155 __module_get((*newsock)->ops->owner); 3156 3157 done: 3158 return err; 3159 } 3160 EXPORT_SYMBOL(kernel_accept); 3161 3162 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3163 int flags) 3164 { 3165 return sock->ops->connect(sock, addr, addrlen, flags); 3166 } 3167 EXPORT_SYMBOL(kernel_connect); 3168 3169 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3170 { 3171 return sock->ops->getname(sock, addr, 0); 3172 } 3173 EXPORT_SYMBOL(kernel_getsockname); 3174 3175 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3176 { 3177 return sock->ops->getname(sock, addr, 1); 3178 } 3179 EXPORT_SYMBOL(kernel_getpeername); 3180 3181 int kernel_getsockopt(struct socket *sock, int level, int optname, 3182 char *optval, int *optlen) 3183 { 3184 mm_segment_t oldfs = get_fs(); 3185 char __user *uoptval; 3186 int __user *uoptlen; 3187 int err; 3188 3189 uoptval = (char __user __force *) optval; 3190 uoptlen = (int __user __force *) optlen; 3191 3192 set_fs(KERNEL_DS); 3193 if (level == SOL_SOCKET) 3194 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3195 else 3196 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3197 uoptlen); 3198 set_fs(oldfs); 3199 return err; 3200 } 3201 EXPORT_SYMBOL(kernel_getsockopt); 3202 3203 int kernel_setsockopt(struct socket *sock, int level, int optname, 3204 char *optval, unsigned int optlen) 3205 { 3206 mm_segment_t oldfs = get_fs(); 3207 char __user *uoptval; 3208 int err; 3209 3210 uoptval = (char __user __force *) optval; 3211 3212 set_fs(KERNEL_DS); 3213 if (level == SOL_SOCKET) 3214 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3215 else 3216 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3217 optlen); 3218 set_fs(oldfs); 3219 return err; 3220 } 3221 EXPORT_SYMBOL(kernel_setsockopt); 3222 3223 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3224 size_t size, int flags) 3225 { 3226 if (sock->ops->sendpage) 3227 return sock->ops->sendpage(sock, page, offset, size, flags); 3228 3229 return sock_no_sendpage(sock, page, offset, size, flags); 3230 } 3231 EXPORT_SYMBOL(kernel_sendpage); 3232 3233 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3234 size_t size, int flags) 3235 { 3236 struct socket *sock = sk->sk_socket; 3237 3238 if (sock->ops->sendpage_locked) 3239 return sock->ops->sendpage_locked(sk, page, offset, size, 3240 flags); 3241 3242 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3243 } 3244 EXPORT_SYMBOL(kernel_sendpage_locked); 3245 3246 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3247 { 3248 return sock->ops->shutdown(sock, how); 3249 } 3250 EXPORT_SYMBOL(kernel_sock_shutdown); 3251 3252 /* This routine returns the IP overhead imposed by a socket i.e. 3253 * the length of the underlying IP header, depending on whether 3254 * this is an IPv4 or IPv6 socket and the length from IP options turned 3255 * on at the socket. Assumes that the caller has a lock on the socket. 3256 */ 3257 u32 kernel_sock_ip_overhead(struct sock *sk) 3258 { 3259 struct inet_sock *inet; 3260 struct ip_options_rcu *opt; 3261 u32 overhead = 0; 3262 #if IS_ENABLED(CONFIG_IPV6) 3263 struct ipv6_pinfo *np; 3264 struct ipv6_txoptions *optv6 = NULL; 3265 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3266 3267 if (!sk) 3268 return overhead; 3269 3270 switch (sk->sk_family) { 3271 case AF_INET: 3272 inet = inet_sk(sk); 3273 overhead += sizeof(struct iphdr); 3274 opt = rcu_dereference_protected(inet->inet_opt, 3275 sock_owned_by_user(sk)); 3276 if (opt) 3277 overhead += opt->opt.optlen; 3278 return overhead; 3279 #if IS_ENABLED(CONFIG_IPV6) 3280 case AF_INET6: 3281 np = inet6_sk(sk); 3282 overhead += sizeof(struct ipv6hdr); 3283 if (np) 3284 optv6 = rcu_dereference_protected(np->opt, 3285 sock_owned_by_user(sk)); 3286 if (optv6) 3287 overhead += (optv6->opt_flen + optv6->opt_nflen); 3288 return overhead; 3289 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3290 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3291 return overhead; 3292 } 3293 } 3294 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3295