xref: /linux/net/socket.c (revision 9708fb630d19ee51ae3aeb3a533e3010da0e8570)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 /*
135  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
136  *	in the operation structures but are done directly via the socketcall() multiplexor.
137  */
138 
139 static const struct file_operations socket_file_ops = {
140 	.owner =	THIS_MODULE,
141 	.llseek =	no_llseek,
142 	.read_iter =	sock_read_iter,
143 	.write_iter =	sock_write_iter,
144 	.poll =		sock_poll,
145 	.unlocked_ioctl = sock_ioctl,
146 #ifdef CONFIG_COMPAT
147 	.compat_ioctl = compat_sock_ioctl,
148 #endif
149 	.mmap =		sock_mmap,
150 	.release =	sock_close,
151 	.fasync =	sock_fasync,
152 	.sendpage =	sock_sendpage,
153 	.splice_write = generic_splice_sendpage,
154 	.splice_read =	sock_splice_read,
155 };
156 
157 /*
158  *	The protocol list. Each protocol is registered in here.
159  */
160 
161 static DEFINE_SPINLOCK(net_family_lock);
162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163 
164 /*
165  * Support routines.
166  * Move socket addresses back and forth across the kernel/user
167  * divide and look after the messy bits.
168  */
169 
170 /**
171  *	move_addr_to_kernel	-	copy a socket address into kernel space
172  *	@uaddr: Address in user space
173  *	@kaddr: Address in kernel space
174  *	@ulen: Length in user space
175  *
176  *	The address is copied into kernel space. If the provided address is
177  *	too long an error code of -EINVAL is returned. If the copy gives
178  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
179  */
180 
181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
182 {
183 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
184 		return -EINVAL;
185 	if (ulen == 0)
186 		return 0;
187 	if (copy_from_user(kaddr, uaddr, ulen))
188 		return -EFAULT;
189 	return audit_sockaddr(ulen, kaddr);
190 }
191 
192 /**
193  *	move_addr_to_user	-	copy an address to user space
194  *	@kaddr: kernel space address
195  *	@klen: length of address in kernel
196  *	@uaddr: user space address
197  *	@ulen: pointer to user length field
198  *
199  *	The value pointed to by ulen on entry is the buffer length available.
200  *	This is overwritten with the buffer space used. -EINVAL is returned
201  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
202  *	is returned if either the buffer or the length field are not
203  *	accessible.
204  *	After copying the data up to the limit the user specifies, the true
205  *	length of the data is written over the length limit the user
206  *	specified. Zero is returned for a success.
207  */
208 
209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
210 			     void __user *uaddr, int __user *ulen)
211 {
212 	int err;
213 	int len;
214 
215 	BUG_ON(klen > sizeof(struct sockaddr_storage));
216 	err = get_user(len, ulen);
217 	if (err)
218 		return err;
219 	if (len > klen)
220 		len = klen;
221 	if (len < 0)
222 		return -EINVAL;
223 	if (len) {
224 		if (audit_sockaddr(klen, kaddr))
225 			return -ENOMEM;
226 		if (copy_to_user(uaddr, kaddr, len))
227 			return -EFAULT;
228 	}
229 	/*
230 	 *      "fromlen shall refer to the value before truncation.."
231 	 *                      1003.1g
232 	 */
233 	return __put_user(klen, ulen);
234 }
235 
236 static struct kmem_cache *sock_inode_cachep __read_mostly;
237 
238 static struct inode *sock_alloc_inode(struct super_block *sb)
239 {
240 	struct socket_alloc *ei;
241 	struct socket_wq *wq;
242 
243 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
244 	if (!ei)
245 		return NULL;
246 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
247 	if (!wq) {
248 		kmem_cache_free(sock_inode_cachep, ei);
249 		return NULL;
250 	}
251 	init_waitqueue_head(&wq->wait);
252 	wq->fasync_list = NULL;
253 	wq->flags = 0;
254 	RCU_INIT_POINTER(ei->socket.wq, wq);
255 
256 	ei->socket.state = SS_UNCONNECTED;
257 	ei->socket.flags = 0;
258 	ei->socket.ops = NULL;
259 	ei->socket.sk = NULL;
260 	ei->socket.file = NULL;
261 
262 	return &ei->vfs_inode;
263 }
264 
265 static void sock_destroy_inode(struct inode *inode)
266 {
267 	struct socket_alloc *ei;
268 	struct socket_wq *wq;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	wq = rcu_dereference_protected(ei->socket.wq, 1);
272 	kfree_rcu(wq, rcu);
273 	kmem_cache_free(sock_inode_cachep, ei);
274 }
275 
276 static void init_once(void *foo)
277 {
278 	struct socket_alloc *ei = (struct socket_alloc *)foo;
279 
280 	inode_init_once(&ei->vfs_inode);
281 }
282 
283 static void init_inodecache(void)
284 {
285 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 					      sizeof(struct socket_alloc),
287 					      0,
288 					      (SLAB_HWCACHE_ALIGN |
289 					       SLAB_RECLAIM_ACCOUNT |
290 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 					      init_once);
292 	BUG_ON(sock_inode_cachep == NULL);
293 }
294 
295 static const struct super_operations sockfs_ops = {
296 	.alloc_inode	= sock_alloc_inode,
297 	.destroy_inode	= sock_destroy_inode,
298 	.statfs		= simple_statfs,
299 };
300 
301 /*
302  * sockfs_dname() is called from d_path().
303  */
304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 {
306 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 				d_inode(dentry)->i_ino);
308 }
309 
310 static const struct dentry_operations sockfs_dentry_operations = {
311 	.d_dname  = sockfs_dname,
312 };
313 
314 static int sockfs_xattr_get(const struct xattr_handler *handler,
315 			    struct dentry *dentry, struct inode *inode,
316 			    const char *suffix, void *value, size_t size)
317 {
318 	if (value) {
319 		if (dentry->d_name.len + 1 > size)
320 			return -ERANGE;
321 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 	}
323 	return dentry->d_name.len + 1;
324 }
325 
326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 
330 static const struct xattr_handler sockfs_xattr_handler = {
331 	.name = XATTR_NAME_SOCKPROTONAME,
332 	.get = sockfs_xattr_get,
333 };
334 
335 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 				     struct dentry *dentry, struct inode *inode,
337 				     const char *suffix, const void *value,
338 				     size_t size, int flags)
339 {
340 	/* Handled by LSM. */
341 	return -EAGAIN;
342 }
343 
344 static const struct xattr_handler sockfs_security_xattr_handler = {
345 	.prefix = XATTR_SECURITY_PREFIX,
346 	.set = sockfs_security_xattr_set,
347 };
348 
349 static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 	&sockfs_xattr_handler,
351 	&sockfs_security_xattr_handler,
352 	NULL
353 };
354 
355 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
356 			 int flags, const char *dev_name, void *data)
357 {
358 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
359 				  sockfs_xattr_handlers,
360 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
361 }
362 
363 static struct vfsmount *sock_mnt __read_mostly;
364 
365 static struct file_system_type sock_fs_type = {
366 	.name =		"sockfs",
367 	.mount =	sockfs_mount,
368 	.kill_sb =	kill_anon_super,
369 };
370 
371 /*
372  *	Obtains the first available file descriptor and sets it up for use.
373  *
374  *	These functions create file structures and maps them to fd space
375  *	of the current process. On success it returns file descriptor
376  *	and file struct implicitly stored in sock->file.
377  *	Note that another thread may close file descriptor before we return
378  *	from this function. We use the fact that now we do not refer
379  *	to socket after mapping. If one day we will need it, this
380  *	function will increment ref. count on file by 1.
381  *
382  *	In any case returned fd MAY BE not valid!
383  *	This race condition is unavoidable
384  *	with shared fd spaces, we cannot solve it inside kernel,
385  *	but we take care of internal coherence yet.
386  */
387 
388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 {
390 	struct qstr name = { .name = "" };
391 	struct path path;
392 	struct file *file;
393 
394 	if (dname) {
395 		name.name = dname;
396 		name.len = strlen(name.name);
397 	} else if (sock->sk) {
398 		name.name = sock->sk->sk_prot_creator->name;
399 		name.len = strlen(name.name);
400 	}
401 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
402 	if (unlikely(!path.dentry)) {
403 		sock_release(sock);
404 		return ERR_PTR(-ENOMEM);
405 	}
406 	path.mnt = mntget(sock_mnt);
407 
408 	d_instantiate(path.dentry, SOCK_INODE(sock));
409 
410 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
411 		  &socket_file_ops);
412 	if (IS_ERR(file)) {
413 		/* drop dentry, keep inode for a bit */
414 		ihold(d_inode(path.dentry));
415 		path_put(&path);
416 		/* ... and now kill it properly */
417 		sock_release(sock);
418 		return file;
419 	}
420 
421 	sock->file = file;
422 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
423 	file->private_data = sock;
424 	return file;
425 }
426 EXPORT_SYMBOL(sock_alloc_file);
427 
428 static int sock_map_fd(struct socket *sock, int flags)
429 {
430 	struct file *newfile;
431 	int fd = get_unused_fd_flags(flags);
432 	if (unlikely(fd < 0)) {
433 		sock_release(sock);
434 		return fd;
435 	}
436 
437 	newfile = sock_alloc_file(sock, flags, NULL);
438 	if (likely(!IS_ERR(newfile))) {
439 		fd_install(fd, newfile);
440 		return fd;
441 	}
442 
443 	put_unused_fd(fd);
444 	return PTR_ERR(newfile);
445 }
446 
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 	if (file->f_op == &socket_file_ops)
450 		return file->private_data;	/* set in sock_map_fd */
451 
452 	*err = -ENOTSOCK;
453 	return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456 
457 /**
458  *	sockfd_lookup - Go from a file number to its socket slot
459  *	@fd: file handle
460  *	@err: pointer to an error code return
461  *
462  *	The file handle passed in is locked and the socket it is bound
463  *	to is returned. If an error occurs the err pointer is overwritten
464  *	with a negative errno code and NULL is returned. The function checks
465  *	for both invalid handles and passing a handle which is not a socket.
466  *
467  *	On a success the socket object pointer is returned.
468  */
469 
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 	struct file *file;
473 	struct socket *sock;
474 
475 	file = fget(fd);
476 	if (!file) {
477 		*err = -EBADF;
478 		return NULL;
479 	}
480 
481 	sock = sock_from_file(file, err);
482 	if (!sock)
483 		fput(file);
484 	return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487 
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 	struct fd f = fdget(fd);
491 	struct socket *sock;
492 
493 	*err = -EBADF;
494 	if (f.file) {
495 		sock = sock_from_file(f.file, err);
496 		if (likely(sock)) {
497 			*fput_needed = f.flags;
498 			return sock;
499 		}
500 		fdput(f);
501 	}
502 	return NULL;
503 }
504 
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 				size_t size)
507 {
508 	ssize_t len;
509 	ssize_t used = 0;
510 
511 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 	if (len < 0)
513 		return len;
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		buffer += len;
519 	}
520 
521 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 		buffer += len;
528 	}
529 
530 	return used;
531 }
532 
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 	int err = simple_setattr(dentry, iattr);
536 
537 	if (!err && (iattr->ia_valid & ATTR_UID)) {
538 		struct socket *sock = SOCKET_I(d_inode(dentry));
539 
540 		sock->sk->sk_uid = iattr->ia_uid;
541 	}
542 
543 	return err;
544 }
545 
546 static const struct inode_operations sockfs_inode_ops = {
547 	.listxattr = sockfs_listxattr,
548 	.setattr = sockfs_setattr,
549 };
550 
551 /**
552  *	sock_alloc	-	allocate a socket
553  *
554  *	Allocate a new inode and socket object. The two are bound together
555  *	and initialised. The socket is then returned. If we are out of inodes
556  *	NULL is returned.
557  */
558 
559 struct socket *sock_alloc(void)
560 {
561 	struct inode *inode;
562 	struct socket *sock;
563 
564 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
565 	if (!inode)
566 		return NULL;
567 
568 	sock = SOCKET_I(inode);
569 
570 	inode->i_ino = get_next_ino();
571 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
572 	inode->i_uid = current_fsuid();
573 	inode->i_gid = current_fsgid();
574 	inode->i_op = &sockfs_inode_ops;
575 
576 	return sock;
577 }
578 EXPORT_SYMBOL(sock_alloc);
579 
580 /**
581  *	sock_release	-	close a socket
582  *	@sock: socket to close
583  *
584  *	The socket is released from the protocol stack if it has a release
585  *	callback, and the inode is then released if the socket is bound to
586  *	an inode not a file.
587  */
588 
589 void sock_release(struct socket *sock)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		sock->ops->release(sock);
595 		sock->ops = NULL;
596 		module_put(owner);
597 	}
598 
599 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
600 		pr_err("%s: fasync list not empty!\n", __func__);
601 
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 EXPORT_SYMBOL(sock_release);
609 
610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
611 {
612 	u8 flags = *tx_flags;
613 
614 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
615 		flags |= SKBTX_HW_TSTAMP;
616 
617 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
618 		flags |= SKBTX_SW_TSTAMP;
619 
620 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 		flags |= SKBTX_SCHED_TSTAMP;
622 
623 	*tx_flags = flags;
624 }
625 EXPORT_SYMBOL(__sock_tx_timestamp);
626 
627 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
628 {
629 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
630 	BUG_ON(ret == -EIOCBQUEUED);
631 	return ret;
632 }
633 
634 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
635 {
636 	int err = security_socket_sendmsg(sock, msg,
637 					  msg_data_left(msg));
638 
639 	return err ?: sock_sendmsg_nosec(sock, msg);
640 }
641 EXPORT_SYMBOL(sock_sendmsg);
642 
643 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
644 		   struct kvec *vec, size_t num, size_t size)
645 {
646 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
647 	return sock_sendmsg(sock, msg);
648 }
649 EXPORT_SYMBOL(kernel_sendmsg);
650 
651 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
652 			  struct kvec *vec, size_t num, size_t size)
653 {
654 	struct socket *sock = sk->sk_socket;
655 
656 	if (!sock->ops->sendmsg_locked)
657 		return sock_no_sendmsg_locked(sk, msg, size);
658 
659 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
660 
661 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
662 }
663 EXPORT_SYMBOL(kernel_sendmsg_locked);
664 
665 static bool skb_is_err_queue(const struct sk_buff *skb)
666 {
667 	/* pkt_type of skbs enqueued on the error queue are set to
668 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
669 	 * in recvmsg, since skbs received on a local socket will never
670 	 * have a pkt_type of PACKET_OUTGOING.
671 	 */
672 	return skb->pkt_type == PACKET_OUTGOING;
673 }
674 
675 /* On transmit, software and hardware timestamps are returned independently.
676  * As the two skb clones share the hardware timestamp, which may be updated
677  * before the software timestamp is received, a hardware TX timestamp may be
678  * returned only if there is no software TX timestamp. Ignore false software
679  * timestamps, which may be made in the __sock_recv_timestamp() call when the
680  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
681  * hardware timestamp.
682  */
683 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
684 {
685 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
686 }
687 
688 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
689 {
690 	struct scm_ts_pktinfo ts_pktinfo;
691 	struct net_device *orig_dev;
692 
693 	if (!skb_mac_header_was_set(skb))
694 		return;
695 
696 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
697 
698 	rcu_read_lock();
699 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
700 	if (orig_dev)
701 		ts_pktinfo.if_index = orig_dev->ifindex;
702 	rcu_read_unlock();
703 
704 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
705 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
706 		 sizeof(ts_pktinfo), &ts_pktinfo);
707 }
708 
709 /*
710  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
711  */
712 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
713 	struct sk_buff *skb)
714 {
715 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
716 	struct scm_timestamping tss;
717 	int empty = 1, false_tstamp = 0;
718 	struct skb_shared_hwtstamps *shhwtstamps =
719 		skb_hwtstamps(skb);
720 
721 	/* Race occurred between timestamp enabling and packet
722 	   receiving.  Fill in the current time for now. */
723 	if (need_software_tstamp && skb->tstamp == 0) {
724 		__net_timestamp(skb);
725 		false_tstamp = 1;
726 	}
727 
728 	if (need_software_tstamp) {
729 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
730 			struct timeval tv;
731 			skb_get_timestamp(skb, &tv);
732 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
733 				 sizeof(tv), &tv);
734 		} else {
735 			struct timespec ts;
736 			skb_get_timestampns(skb, &ts);
737 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
738 				 sizeof(ts), &ts);
739 		}
740 	}
741 
742 	memset(&tss, 0, sizeof(tss));
743 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
744 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
745 		empty = 0;
746 	if (shhwtstamps &&
747 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
748 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
749 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
750 		empty = 0;
751 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
752 		    !skb_is_err_queue(skb))
753 			put_ts_pktinfo(msg, skb);
754 	}
755 	if (!empty) {
756 		put_cmsg(msg, SOL_SOCKET,
757 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
758 
759 		if (skb_is_err_queue(skb) && skb->len &&
760 		    SKB_EXT_ERR(skb)->opt_stats)
761 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
762 				 skb->len, skb->data);
763 	}
764 }
765 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
766 
767 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
768 	struct sk_buff *skb)
769 {
770 	int ack;
771 
772 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
773 		return;
774 	if (!skb->wifi_acked_valid)
775 		return;
776 
777 	ack = skb->wifi_acked;
778 
779 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
780 }
781 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
782 
783 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
784 				   struct sk_buff *skb)
785 {
786 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
787 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
788 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
789 }
790 
791 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
792 	struct sk_buff *skb)
793 {
794 	sock_recv_timestamp(msg, sk, skb);
795 	sock_recv_drops(msg, sk, skb);
796 }
797 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
798 
799 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
800 				     int flags)
801 {
802 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
803 }
804 
805 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
806 {
807 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
808 
809 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
810 }
811 EXPORT_SYMBOL(sock_recvmsg);
812 
813 /**
814  * kernel_recvmsg - Receive a message from a socket (kernel space)
815  * @sock:       The socket to receive the message from
816  * @msg:        Received message
817  * @vec:        Input s/g array for message data
818  * @num:        Size of input s/g array
819  * @size:       Number of bytes to read
820  * @flags:      Message flags (MSG_DONTWAIT, etc...)
821  *
822  * On return the msg structure contains the scatter/gather array passed in the
823  * vec argument. The array is modified so that it consists of the unfilled
824  * portion of the original array.
825  *
826  * The returned value is the total number of bytes received, or an error.
827  */
828 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
829 		   struct kvec *vec, size_t num, size_t size, int flags)
830 {
831 	mm_segment_t oldfs = get_fs();
832 	int result;
833 
834 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
835 	set_fs(KERNEL_DS);
836 	result = sock_recvmsg(sock, msg, flags);
837 	set_fs(oldfs);
838 	return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841 
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 			     int offset, size_t size, loff_t *ppos, int more)
844 {
845 	struct socket *sock;
846 	int flags;
847 
848 	sock = file->private_data;
849 
850 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 	flags |= more;
853 
854 	return kernel_sendpage(sock, page, offset, size, flags);
855 }
856 
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 				struct pipe_inode_info *pipe, size_t len,
859 				unsigned int flags)
860 {
861 	struct socket *sock = file->private_data;
862 
863 	if (unlikely(!sock->ops->splice_read))
864 		return -EINVAL;
865 
866 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868 
869 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
870 {
871 	struct file *file = iocb->ki_filp;
872 	struct socket *sock = file->private_data;
873 	struct msghdr msg = {.msg_iter = *to,
874 			     .msg_iocb = iocb};
875 	ssize_t res;
876 
877 	if (file->f_flags & O_NONBLOCK)
878 		msg.msg_flags = MSG_DONTWAIT;
879 
880 	if (iocb->ki_pos != 0)
881 		return -ESPIPE;
882 
883 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
884 		return 0;
885 
886 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
887 	*to = msg.msg_iter;
888 	return res;
889 }
890 
891 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
892 {
893 	struct file *file = iocb->ki_filp;
894 	struct socket *sock = file->private_data;
895 	struct msghdr msg = {.msg_iter = *from,
896 			     .msg_iocb = iocb};
897 	ssize_t res;
898 
899 	if (iocb->ki_pos != 0)
900 		return -ESPIPE;
901 
902 	if (file->f_flags & O_NONBLOCK)
903 		msg.msg_flags = MSG_DONTWAIT;
904 
905 	if (sock->type == SOCK_SEQPACKET)
906 		msg.msg_flags |= MSG_EOR;
907 
908 	res = sock_sendmsg(sock, &msg);
909 	*from = msg.msg_iter;
910 	return res;
911 }
912 
913 /*
914  * Atomic setting of ioctl hooks to avoid race
915  * with module unload.
916  */
917 
918 static DEFINE_MUTEX(br_ioctl_mutex);
919 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
920 
921 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
922 {
923 	mutex_lock(&br_ioctl_mutex);
924 	br_ioctl_hook = hook;
925 	mutex_unlock(&br_ioctl_mutex);
926 }
927 EXPORT_SYMBOL(brioctl_set);
928 
929 static DEFINE_MUTEX(vlan_ioctl_mutex);
930 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
931 
932 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
933 {
934 	mutex_lock(&vlan_ioctl_mutex);
935 	vlan_ioctl_hook = hook;
936 	mutex_unlock(&vlan_ioctl_mutex);
937 }
938 EXPORT_SYMBOL(vlan_ioctl_set);
939 
940 static DEFINE_MUTEX(dlci_ioctl_mutex);
941 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
942 
943 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
944 {
945 	mutex_lock(&dlci_ioctl_mutex);
946 	dlci_ioctl_hook = hook;
947 	mutex_unlock(&dlci_ioctl_mutex);
948 }
949 EXPORT_SYMBOL(dlci_ioctl_set);
950 
951 static long sock_do_ioctl(struct net *net, struct socket *sock,
952 				 unsigned int cmd, unsigned long arg)
953 {
954 	int err;
955 	void __user *argp = (void __user *)arg;
956 
957 	err = sock->ops->ioctl(sock, cmd, arg);
958 
959 	/*
960 	 * If this ioctl is unknown try to hand it down
961 	 * to the NIC driver.
962 	 */
963 	if (err != -ENOIOCTLCMD)
964 		return err;
965 
966 	if (cmd == SIOCGIFCONF) {
967 		struct ifconf ifc;
968 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
969 			return -EFAULT;
970 		rtnl_lock();
971 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
972 		rtnl_unlock();
973 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
974 			err = -EFAULT;
975 	} else {
976 		struct ifreq ifr;
977 		bool need_copyout;
978 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
979 			return -EFAULT;
980 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
981 		if (!err && need_copyout)
982 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
983 				return -EFAULT;
984 	}
985 	return err;
986 }
987 
988 /*
989  *	With an ioctl, arg may well be a user mode pointer, but we don't know
990  *	what to do with it - that's up to the protocol still.
991  */
992 
993 static struct ns_common *get_net_ns(struct ns_common *ns)
994 {
995 	return &get_net(container_of(ns, struct net, ns))->ns;
996 }
997 
998 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
999 {
1000 	struct socket *sock;
1001 	struct sock *sk;
1002 	void __user *argp = (void __user *)arg;
1003 	int pid, err;
1004 	struct net *net;
1005 
1006 	sock = file->private_data;
1007 	sk = sock->sk;
1008 	net = sock_net(sk);
1009 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1010 		struct ifreq ifr;
1011 		bool need_copyout;
1012 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1013 			return -EFAULT;
1014 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1015 		if (!err && need_copyout)
1016 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1017 				return -EFAULT;
1018 	} else
1019 #ifdef CONFIG_WEXT_CORE
1020 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1021 		err = wext_handle_ioctl(net, cmd, argp);
1022 	} else
1023 #endif
1024 		switch (cmd) {
1025 		case FIOSETOWN:
1026 		case SIOCSPGRP:
1027 			err = -EFAULT;
1028 			if (get_user(pid, (int __user *)argp))
1029 				break;
1030 			err = f_setown(sock->file, pid, 1);
1031 			break;
1032 		case FIOGETOWN:
1033 		case SIOCGPGRP:
1034 			err = put_user(f_getown(sock->file),
1035 				       (int __user *)argp);
1036 			break;
1037 		case SIOCGIFBR:
1038 		case SIOCSIFBR:
1039 		case SIOCBRADDBR:
1040 		case SIOCBRDELBR:
1041 			err = -ENOPKG;
1042 			if (!br_ioctl_hook)
1043 				request_module("bridge");
1044 
1045 			mutex_lock(&br_ioctl_mutex);
1046 			if (br_ioctl_hook)
1047 				err = br_ioctl_hook(net, cmd, argp);
1048 			mutex_unlock(&br_ioctl_mutex);
1049 			break;
1050 		case SIOCGIFVLAN:
1051 		case SIOCSIFVLAN:
1052 			err = -ENOPKG;
1053 			if (!vlan_ioctl_hook)
1054 				request_module("8021q");
1055 
1056 			mutex_lock(&vlan_ioctl_mutex);
1057 			if (vlan_ioctl_hook)
1058 				err = vlan_ioctl_hook(net, argp);
1059 			mutex_unlock(&vlan_ioctl_mutex);
1060 			break;
1061 		case SIOCADDDLCI:
1062 		case SIOCDELDLCI:
1063 			err = -ENOPKG;
1064 			if (!dlci_ioctl_hook)
1065 				request_module("dlci");
1066 
1067 			mutex_lock(&dlci_ioctl_mutex);
1068 			if (dlci_ioctl_hook)
1069 				err = dlci_ioctl_hook(cmd, argp);
1070 			mutex_unlock(&dlci_ioctl_mutex);
1071 			break;
1072 		case SIOCGSKNS:
1073 			err = -EPERM;
1074 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1075 				break;
1076 
1077 			err = open_related_ns(&net->ns, get_net_ns);
1078 			break;
1079 		default:
1080 			err = sock_do_ioctl(net, sock, cmd, arg);
1081 			break;
1082 		}
1083 	return err;
1084 }
1085 
1086 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1087 {
1088 	int err;
1089 	struct socket *sock = NULL;
1090 
1091 	err = security_socket_create(family, type, protocol, 1);
1092 	if (err)
1093 		goto out;
1094 
1095 	sock = sock_alloc();
1096 	if (!sock) {
1097 		err = -ENOMEM;
1098 		goto out;
1099 	}
1100 
1101 	sock->type = type;
1102 	err = security_socket_post_create(sock, family, type, protocol, 1);
1103 	if (err)
1104 		goto out_release;
1105 
1106 out:
1107 	*res = sock;
1108 	return err;
1109 out_release:
1110 	sock_release(sock);
1111 	sock = NULL;
1112 	goto out;
1113 }
1114 EXPORT_SYMBOL(sock_create_lite);
1115 
1116 /* No kernel lock held - perfect */
1117 static __poll_t sock_poll(struct file *file, poll_table *wait)
1118 {
1119 	__poll_t busy_flag = 0;
1120 	struct socket *sock;
1121 
1122 	/*
1123 	 *      We can't return errors to poll, so it's either yes or no.
1124 	 */
1125 	sock = file->private_data;
1126 
1127 	if (sk_can_busy_loop(sock->sk)) {
1128 		/* this socket can poll_ll so tell the system call */
1129 		busy_flag = POLL_BUSY_LOOP;
1130 
1131 		/* once, only if requested by syscall */
1132 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1133 			sk_busy_loop(sock->sk, 1);
1134 	}
1135 
1136 	return busy_flag | sock->ops->poll(file, sock, wait);
1137 }
1138 
1139 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1140 {
1141 	struct socket *sock = file->private_data;
1142 
1143 	return sock->ops->mmap(file, sock, vma);
1144 }
1145 
1146 static int sock_close(struct inode *inode, struct file *filp)
1147 {
1148 	sock_release(SOCKET_I(inode));
1149 	return 0;
1150 }
1151 
1152 /*
1153  *	Update the socket async list
1154  *
1155  *	Fasync_list locking strategy.
1156  *
1157  *	1. fasync_list is modified only under process context socket lock
1158  *	   i.e. under semaphore.
1159  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1160  *	   or under socket lock
1161  */
1162 
1163 static int sock_fasync(int fd, struct file *filp, int on)
1164 {
1165 	struct socket *sock = filp->private_data;
1166 	struct sock *sk = sock->sk;
1167 	struct socket_wq *wq;
1168 
1169 	if (sk == NULL)
1170 		return -EINVAL;
1171 
1172 	lock_sock(sk);
1173 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1174 	fasync_helper(fd, filp, on, &wq->fasync_list);
1175 
1176 	if (!wq->fasync_list)
1177 		sock_reset_flag(sk, SOCK_FASYNC);
1178 	else
1179 		sock_set_flag(sk, SOCK_FASYNC);
1180 
1181 	release_sock(sk);
1182 	return 0;
1183 }
1184 
1185 /* This function may be called only under rcu_lock */
1186 
1187 int sock_wake_async(struct socket_wq *wq, int how, int band)
1188 {
1189 	if (!wq || !wq->fasync_list)
1190 		return -1;
1191 
1192 	switch (how) {
1193 	case SOCK_WAKE_WAITD:
1194 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1195 			break;
1196 		goto call_kill;
1197 	case SOCK_WAKE_SPACE:
1198 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1199 			break;
1200 		/* fall through */
1201 	case SOCK_WAKE_IO:
1202 call_kill:
1203 		kill_fasync(&wq->fasync_list, SIGIO, band);
1204 		break;
1205 	case SOCK_WAKE_URG:
1206 		kill_fasync(&wq->fasync_list, SIGURG, band);
1207 	}
1208 
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL(sock_wake_async);
1212 
1213 int __sock_create(struct net *net, int family, int type, int protocol,
1214 			 struct socket **res, int kern)
1215 {
1216 	int err;
1217 	struct socket *sock;
1218 	const struct net_proto_family *pf;
1219 
1220 	/*
1221 	 *      Check protocol is in range
1222 	 */
1223 	if (family < 0 || family >= NPROTO)
1224 		return -EAFNOSUPPORT;
1225 	if (type < 0 || type >= SOCK_MAX)
1226 		return -EINVAL;
1227 
1228 	/* Compatibility.
1229 
1230 	   This uglymoron is moved from INET layer to here to avoid
1231 	   deadlock in module load.
1232 	 */
1233 	if (family == PF_INET && type == SOCK_PACKET) {
1234 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1235 			     current->comm);
1236 		family = PF_PACKET;
1237 	}
1238 
1239 	err = security_socket_create(family, type, protocol, kern);
1240 	if (err)
1241 		return err;
1242 
1243 	/*
1244 	 *	Allocate the socket and allow the family to set things up. if
1245 	 *	the protocol is 0, the family is instructed to select an appropriate
1246 	 *	default.
1247 	 */
1248 	sock = sock_alloc();
1249 	if (!sock) {
1250 		net_warn_ratelimited("socket: no more sockets\n");
1251 		return -ENFILE;	/* Not exactly a match, but its the
1252 				   closest posix thing */
1253 	}
1254 
1255 	sock->type = type;
1256 
1257 #ifdef CONFIG_MODULES
1258 	/* Attempt to load a protocol module if the find failed.
1259 	 *
1260 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1261 	 * requested real, full-featured networking support upon configuration.
1262 	 * Otherwise module support will break!
1263 	 */
1264 	if (rcu_access_pointer(net_families[family]) == NULL)
1265 		request_module("net-pf-%d", family);
1266 #endif
1267 
1268 	rcu_read_lock();
1269 	pf = rcu_dereference(net_families[family]);
1270 	err = -EAFNOSUPPORT;
1271 	if (!pf)
1272 		goto out_release;
1273 
1274 	/*
1275 	 * We will call the ->create function, that possibly is in a loadable
1276 	 * module, so we have to bump that loadable module refcnt first.
1277 	 */
1278 	if (!try_module_get(pf->owner))
1279 		goto out_release;
1280 
1281 	/* Now protected by module ref count */
1282 	rcu_read_unlock();
1283 
1284 	err = pf->create(net, sock, protocol, kern);
1285 	if (err < 0)
1286 		goto out_module_put;
1287 
1288 	/*
1289 	 * Now to bump the refcnt of the [loadable] module that owns this
1290 	 * socket at sock_release time we decrement its refcnt.
1291 	 */
1292 	if (!try_module_get(sock->ops->owner))
1293 		goto out_module_busy;
1294 
1295 	/*
1296 	 * Now that we're done with the ->create function, the [loadable]
1297 	 * module can have its refcnt decremented
1298 	 */
1299 	module_put(pf->owner);
1300 	err = security_socket_post_create(sock, family, type, protocol, kern);
1301 	if (err)
1302 		goto out_sock_release;
1303 	*res = sock;
1304 
1305 	return 0;
1306 
1307 out_module_busy:
1308 	err = -EAFNOSUPPORT;
1309 out_module_put:
1310 	sock->ops = NULL;
1311 	module_put(pf->owner);
1312 out_sock_release:
1313 	sock_release(sock);
1314 	return err;
1315 
1316 out_release:
1317 	rcu_read_unlock();
1318 	goto out_sock_release;
1319 }
1320 EXPORT_SYMBOL(__sock_create);
1321 
1322 int sock_create(int family, int type, int protocol, struct socket **res)
1323 {
1324 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1325 }
1326 EXPORT_SYMBOL(sock_create);
1327 
1328 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1329 {
1330 	return __sock_create(net, family, type, protocol, res, 1);
1331 }
1332 EXPORT_SYMBOL(sock_create_kern);
1333 
1334 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1335 {
1336 	int retval;
1337 	struct socket *sock;
1338 	int flags;
1339 
1340 	/* Check the SOCK_* constants for consistency.  */
1341 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1342 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1343 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1344 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1345 
1346 	flags = type & ~SOCK_TYPE_MASK;
1347 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1348 		return -EINVAL;
1349 	type &= SOCK_TYPE_MASK;
1350 
1351 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1352 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1353 
1354 	retval = sock_create(family, type, protocol, &sock);
1355 	if (retval < 0)
1356 		return retval;
1357 
1358 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1359 }
1360 
1361 /*
1362  *	Create a pair of connected sockets.
1363  */
1364 
1365 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366 		int __user *, usockvec)
1367 {
1368 	struct socket *sock1, *sock2;
1369 	int fd1, fd2, err;
1370 	struct file *newfile1, *newfile2;
1371 	int flags;
1372 
1373 	flags = type & ~SOCK_TYPE_MASK;
1374 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375 		return -EINVAL;
1376 	type &= SOCK_TYPE_MASK;
1377 
1378 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380 
1381 	/*
1382 	 * reserve descriptors and make sure we won't fail
1383 	 * to return them to userland.
1384 	 */
1385 	fd1 = get_unused_fd_flags(flags);
1386 	if (unlikely(fd1 < 0))
1387 		return fd1;
1388 
1389 	fd2 = get_unused_fd_flags(flags);
1390 	if (unlikely(fd2 < 0)) {
1391 		put_unused_fd(fd1);
1392 		return fd2;
1393 	}
1394 
1395 	err = put_user(fd1, &usockvec[0]);
1396 	if (err)
1397 		goto out;
1398 
1399 	err = put_user(fd2, &usockvec[1]);
1400 	if (err)
1401 		goto out;
1402 
1403 	/*
1404 	 * Obtain the first socket and check if the underlying protocol
1405 	 * supports the socketpair call.
1406 	 */
1407 
1408 	err = sock_create(family, type, protocol, &sock1);
1409 	if (unlikely(err < 0))
1410 		goto out;
1411 
1412 	err = sock_create(family, type, protocol, &sock2);
1413 	if (unlikely(err < 0)) {
1414 		sock_release(sock1);
1415 		goto out;
1416 	}
1417 
1418 	err = sock1->ops->socketpair(sock1, sock2);
1419 	if (unlikely(err < 0)) {
1420 		sock_release(sock2);
1421 		sock_release(sock1);
1422 		goto out;
1423 	}
1424 
1425 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1426 	if (IS_ERR(newfile1)) {
1427 		err = PTR_ERR(newfile1);
1428 		sock_release(sock2);
1429 		goto out;
1430 	}
1431 
1432 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1433 	if (IS_ERR(newfile2)) {
1434 		err = PTR_ERR(newfile2);
1435 		fput(newfile1);
1436 		goto out;
1437 	}
1438 
1439 	audit_fd_pair(fd1, fd2);
1440 
1441 	fd_install(fd1, newfile1);
1442 	fd_install(fd2, newfile2);
1443 	return 0;
1444 
1445 out:
1446 	put_unused_fd(fd2);
1447 	put_unused_fd(fd1);
1448 	return err;
1449 }
1450 
1451 /*
1452  *	Bind a name to a socket. Nothing much to do here since it's
1453  *	the protocol's responsibility to handle the local address.
1454  *
1455  *	We move the socket address to kernel space before we call
1456  *	the protocol layer (having also checked the address is ok).
1457  */
1458 
1459 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1460 {
1461 	struct socket *sock;
1462 	struct sockaddr_storage address;
1463 	int err, fput_needed;
1464 
1465 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1466 	if (sock) {
1467 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1468 		if (err >= 0) {
1469 			err = security_socket_bind(sock,
1470 						   (struct sockaddr *)&address,
1471 						   addrlen);
1472 			if (!err)
1473 				err = sock->ops->bind(sock,
1474 						      (struct sockaddr *)
1475 						      &address, addrlen);
1476 		}
1477 		fput_light(sock->file, fput_needed);
1478 	}
1479 	return err;
1480 }
1481 
1482 /*
1483  *	Perform a listen. Basically, we allow the protocol to do anything
1484  *	necessary for a listen, and if that works, we mark the socket as
1485  *	ready for listening.
1486  */
1487 
1488 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1489 {
1490 	struct socket *sock;
1491 	int err, fput_needed;
1492 	int somaxconn;
1493 
1494 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1495 	if (sock) {
1496 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1497 		if ((unsigned int)backlog > somaxconn)
1498 			backlog = somaxconn;
1499 
1500 		err = security_socket_listen(sock, backlog);
1501 		if (!err)
1502 			err = sock->ops->listen(sock, backlog);
1503 
1504 		fput_light(sock->file, fput_needed);
1505 	}
1506 	return err;
1507 }
1508 
1509 /*
1510  *	For accept, we attempt to create a new socket, set up the link
1511  *	with the client, wake up the client, then return the new
1512  *	connected fd. We collect the address of the connector in kernel
1513  *	space and move it to user at the very end. This is unclean because
1514  *	we open the socket then return an error.
1515  *
1516  *	1003.1g adds the ability to recvmsg() to query connection pending
1517  *	status to recvmsg. We need to add that support in a way thats
1518  *	clean when we restucture accept also.
1519  */
1520 
1521 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1522 		int __user *, upeer_addrlen, int, flags)
1523 {
1524 	struct socket *sock, *newsock;
1525 	struct file *newfile;
1526 	int err, len, newfd, fput_needed;
1527 	struct sockaddr_storage address;
1528 
1529 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1530 		return -EINVAL;
1531 
1532 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1533 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1534 
1535 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536 	if (!sock)
1537 		goto out;
1538 
1539 	err = -ENFILE;
1540 	newsock = sock_alloc();
1541 	if (!newsock)
1542 		goto out_put;
1543 
1544 	newsock->type = sock->type;
1545 	newsock->ops = sock->ops;
1546 
1547 	/*
1548 	 * We don't need try_module_get here, as the listening socket (sock)
1549 	 * has the protocol module (sock->ops->owner) held.
1550 	 */
1551 	__module_get(newsock->ops->owner);
1552 
1553 	newfd = get_unused_fd_flags(flags);
1554 	if (unlikely(newfd < 0)) {
1555 		err = newfd;
1556 		sock_release(newsock);
1557 		goto out_put;
1558 	}
1559 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1560 	if (IS_ERR(newfile)) {
1561 		err = PTR_ERR(newfile);
1562 		put_unused_fd(newfd);
1563 		goto out_put;
1564 	}
1565 
1566 	err = security_socket_accept(sock, newsock);
1567 	if (err)
1568 		goto out_fd;
1569 
1570 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1571 	if (err < 0)
1572 		goto out_fd;
1573 
1574 	if (upeer_sockaddr) {
1575 		len = newsock->ops->getname(newsock,
1576 					(struct sockaddr *)&address, 2);
1577 		if (len < 0) {
1578 			err = -ECONNABORTED;
1579 			goto out_fd;
1580 		}
1581 		err = move_addr_to_user(&address,
1582 					len, upeer_sockaddr, upeer_addrlen);
1583 		if (err < 0)
1584 			goto out_fd;
1585 	}
1586 
1587 	/* File flags are not inherited via accept() unlike another OSes. */
1588 
1589 	fd_install(newfd, newfile);
1590 	err = newfd;
1591 
1592 out_put:
1593 	fput_light(sock->file, fput_needed);
1594 out:
1595 	return err;
1596 out_fd:
1597 	fput(newfile);
1598 	put_unused_fd(newfd);
1599 	goto out_put;
1600 }
1601 
1602 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1603 		int __user *, upeer_addrlen)
1604 {
1605 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1606 }
1607 
1608 /*
1609  *	Attempt to connect to a socket with the server address.  The address
1610  *	is in user space so we verify it is OK and move it to kernel space.
1611  *
1612  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1613  *	break bindings
1614  *
1615  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1616  *	other SEQPACKET protocols that take time to connect() as it doesn't
1617  *	include the -EINPROGRESS status for such sockets.
1618  */
1619 
1620 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1621 		int, addrlen)
1622 {
1623 	struct socket *sock;
1624 	struct sockaddr_storage address;
1625 	int err, fput_needed;
1626 
1627 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 	if (!sock)
1629 		goto out;
1630 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1631 	if (err < 0)
1632 		goto out_put;
1633 
1634 	err =
1635 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1636 	if (err)
1637 		goto out_put;
1638 
1639 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1640 				 sock->file->f_flags);
1641 out_put:
1642 	fput_light(sock->file, fput_needed);
1643 out:
1644 	return err;
1645 }
1646 
1647 /*
1648  *	Get the local address ('name') of a socket object. Move the obtained
1649  *	name to user space.
1650  */
1651 
1652 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1653 		int __user *, usockaddr_len)
1654 {
1655 	struct socket *sock;
1656 	struct sockaddr_storage address;
1657 	int err, fput_needed;
1658 
1659 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1660 	if (!sock)
1661 		goto out;
1662 
1663 	err = security_socket_getsockname(sock);
1664 	if (err)
1665 		goto out_put;
1666 
1667 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1668 	if (err < 0)
1669 		goto out_put;
1670         /* "err" is actually length in this case */
1671 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1672 
1673 out_put:
1674 	fput_light(sock->file, fput_needed);
1675 out:
1676 	return err;
1677 }
1678 
1679 /*
1680  *	Get the remote address ('name') of a socket object. Move the obtained
1681  *	name to user space.
1682  */
1683 
1684 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1685 		int __user *, usockaddr_len)
1686 {
1687 	struct socket *sock;
1688 	struct sockaddr_storage address;
1689 	int err, fput_needed;
1690 
1691 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692 	if (sock != NULL) {
1693 		err = security_socket_getpeername(sock);
1694 		if (err) {
1695 			fput_light(sock->file, fput_needed);
1696 			return err;
1697 		}
1698 
1699 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1700 		if (err >= 0)
1701 			/* "err" is actually length in this case */
1702 			err = move_addr_to_user(&address, err, usockaddr,
1703 						usockaddr_len);
1704 		fput_light(sock->file, fput_needed);
1705 	}
1706 	return err;
1707 }
1708 
1709 /*
1710  *	Send a datagram to a given address. We move the address into kernel
1711  *	space and check the user space data area is readable before invoking
1712  *	the protocol.
1713  */
1714 
1715 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1716 		unsigned int, flags, struct sockaddr __user *, addr,
1717 		int, addr_len)
1718 {
1719 	struct socket *sock;
1720 	struct sockaddr_storage address;
1721 	int err;
1722 	struct msghdr msg;
1723 	struct iovec iov;
1724 	int fput_needed;
1725 
1726 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1727 	if (unlikely(err))
1728 		return err;
1729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 	if (!sock)
1731 		goto out;
1732 
1733 	msg.msg_name = NULL;
1734 	msg.msg_control = NULL;
1735 	msg.msg_controllen = 0;
1736 	msg.msg_namelen = 0;
1737 	if (addr) {
1738 		err = move_addr_to_kernel(addr, addr_len, &address);
1739 		if (err < 0)
1740 			goto out_put;
1741 		msg.msg_name = (struct sockaddr *)&address;
1742 		msg.msg_namelen = addr_len;
1743 	}
1744 	if (sock->file->f_flags & O_NONBLOCK)
1745 		flags |= MSG_DONTWAIT;
1746 	msg.msg_flags = flags;
1747 	err = sock_sendmsg(sock, &msg);
1748 
1749 out_put:
1750 	fput_light(sock->file, fput_needed);
1751 out:
1752 	return err;
1753 }
1754 
1755 /*
1756  *	Send a datagram down a socket.
1757  */
1758 
1759 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1760 		unsigned int, flags)
1761 {
1762 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1763 }
1764 
1765 /*
1766  *	Receive a frame from the socket and optionally record the address of the
1767  *	sender. We verify the buffers are writable and if needed move the
1768  *	sender address from kernel to user space.
1769  */
1770 
1771 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1772 		unsigned int, flags, struct sockaddr __user *, addr,
1773 		int __user *, addr_len)
1774 {
1775 	struct socket *sock;
1776 	struct iovec iov;
1777 	struct msghdr msg;
1778 	struct sockaddr_storage address;
1779 	int err, err2;
1780 	int fput_needed;
1781 
1782 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1783 	if (unlikely(err))
1784 		return err;
1785 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1786 	if (!sock)
1787 		goto out;
1788 
1789 	msg.msg_control = NULL;
1790 	msg.msg_controllen = 0;
1791 	/* Save some cycles and don't copy the address if not needed */
1792 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1793 	/* We assume all kernel code knows the size of sockaddr_storage */
1794 	msg.msg_namelen = 0;
1795 	msg.msg_iocb = NULL;
1796 	msg.msg_flags = 0;
1797 	if (sock->file->f_flags & O_NONBLOCK)
1798 		flags |= MSG_DONTWAIT;
1799 	err = sock_recvmsg(sock, &msg, flags);
1800 
1801 	if (err >= 0 && addr != NULL) {
1802 		err2 = move_addr_to_user(&address,
1803 					 msg.msg_namelen, addr, addr_len);
1804 		if (err2 < 0)
1805 			err = err2;
1806 	}
1807 
1808 	fput_light(sock->file, fput_needed);
1809 out:
1810 	return err;
1811 }
1812 
1813 /*
1814  *	Receive a datagram from a socket.
1815  */
1816 
1817 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1818 		unsigned int, flags)
1819 {
1820 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1821 }
1822 
1823 /*
1824  *	Set a socket option. Because we don't know the option lengths we have
1825  *	to pass the user mode parameter for the protocols to sort out.
1826  */
1827 
1828 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1829 		char __user *, optval, int, optlen)
1830 {
1831 	int err, fput_needed;
1832 	struct socket *sock;
1833 
1834 	if (optlen < 0)
1835 		return -EINVAL;
1836 
1837 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1838 	if (sock != NULL) {
1839 		err = security_socket_setsockopt(sock, level, optname);
1840 		if (err)
1841 			goto out_put;
1842 
1843 		if (level == SOL_SOCKET)
1844 			err =
1845 			    sock_setsockopt(sock, level, optname, optval,
1846 					    optlen);
1847 		else
1848 			err =
1849 			    sock->ops->setsockopt(sock, level, optname, optval,
1850 						  optlen);
1851 out_put:
1852 		fput_light(sock->file, fput_needed);
1853 	}
1854 	return err;
1855 }
1856 
1857 /*
1858  *	Get a socket option. Because we don't know the option lengths we have
1859  *	to pass a user mode parameter for the protocols to sort out.
1860  */
1861 
1862 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1863 		char __user *, optval, int __user *, optlen)
1864 {
1865 	int err, fput_needed;
1866 	struct socket *sock;
1867 
1868 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1869 	if (sock != NULL) {
1870 		err = security_socket_getsockopt(sock, level, optname);
1871 		if (err)
1872 			goto out_put;
1873 
1874 		if (level == SOL_SOCKET)
1875 			err =
1876 			    sock_getsockopt(sock, level, optname, optval,
1877 					    optlen);
1878 		else
1879 			err =
1880 			    sock->ops->getsockopt(sock, level, optname, optval,
1881 						  optlen);
1882 out_put:
1883 		fput_light(sock->file, fput_needed);
1884 	}
1885 	return err;
1886 }
1887 
1888 /*
1889  *	Shutdown a socket.
1890  */
1891 
1892 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1893 {
1894 	int err, fput_needed;
1895 	struct socket *sock;
1896 
1897 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1898 	if (sock != NULL) {
1899 		err = security_socket_shutdown(sock, how);
1900 		if (!err)
1901 			err = sock->ops->shutdown(sock, how);
1902 		fput_light(sock->file, fput_needed);
1903 	}
1904 	return err;
1905 }
1906 
1907 /* A couple of helpful macros for getting the address of the 32/64 bit
1908  * fields which are the same type (int / unsigned) on our platforms.
1909  */
1910 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1911 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1912 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1913 
1914 struct used_address {
1915 	struct sockaddr_storage name;
1916 	unsigned int name_len;
1917 };
1918 
1919 static int copy_msghdr_from_user(struct msghdr *kmsg,
1920 				 struct user_msghdr __user *umsg,
1921 				 struct sockaddr __user **save_addr,
1922 				 struct iovec **iov)
1923 {
1924 	struct user_msghdr msg;
1925 	ssize_t err;
1926 
1927 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1928 		return -EFAULT;
1929 
1930 	kmsg->msg_control = (void __force *)msg.msg_control;
1931 	kmsg->msg_controllen = msg.msg_controllen;
1932 	kmsg->msg_flags = msg.msg_flags;
1933 
1934 	kmsg->msg_namelen = msg.msg_namelen;
1935 	if (!msg.msg_name)
1936 		kmsg->msg_namelen = 0;
1937 
1938 	if (kmsg->msg_namelen < 0)
1939 		return -EINVAL;
1940 
1941 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1942 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1943 
1944 	if (save_addr)
1945 		*save_addr = msg.msg_name;
1946 
1947 	if (msg.msg_name && kmsg->msg_namelen) {
1948 		if (!save_addr) {
1949 			err = move_addr_to_kernel(msg.msg_name,
1950 						  kmsg->msg_namelen,
1951 						  kmsg->msg_name);
1952 			if (err < 0)
1953 				return err;
1954 		}
1955 	} else {
1956 		kmsg->msg_name = NULL;
1957 		kmsg->msg_namelen = 0;
1958 	}
1959 
1960 	if (msg.msg_iovlen > UIO_MAXIOV)
1961 		return -EMSGSIZE;
1962 
1963 	kmsg->msg_iocb = NULL;
1964 
1965 	return import_iovec(save_addr ? READ : WRITE,
1966 			    msg.msg_iov, msg.msg_iovlen,
1967 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1968 }
1969 
1970 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1971 			 struct msghdr *msg_sys, unsigned int flags,
1972 			 struct used_address *used_address,
1973 			 unsigned int allowed_msghdr_flags)
1974 {
1975 	struct compat_msghdr __user *msg_compat =
1976 	    (struct compat_msghdr __user *)msg;
1977 	struct sockaddr_storage address;
1978 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1979 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1980 				__aligned(sizeof(__kernel_size_t));
1981 	/* 20 is size of ipv6_pktinfo */
1982 	unsigned char *ctl_buf = ctl;
1983 	int ctl_len;
1984 	ssize_t err;
1985 
1986 	msg_sys->msg_name = &address;
1987 
1988 	if (MSG_CMSG_COMPAT & flags)
1989 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1990 	else
1991 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1992 	if (err < 0)
1993 		return err;
1994 
1995 	err = -ENOBUFS;
1996 
1997 	if (msg_sys->msg_controllen > INT_MAX)
1998 		goto out_freeiov;
1999 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2000 	ctl_len = msg_sys->msg_controllen;
2001 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2002 		err =
2003 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2004 						     sizeof(ctl));
2005 		if (err)
2006 			goto out_freeiov;
2007 		ctl_buf = msg_sys->msg_control;
2008 		ctl_len = msg_sys->msg_controllen;
2009 	} else if (ctl_len) {
2010 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2011 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2012 		if (ctl_len > sizeof(ctl)) {
2013 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2014 			if (ctl_buf == NULL)
2015 				goto out_freeiov;
2016 		}
2017 		err = -EFAULT;
2018 		/*
2019 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2020 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2021 		 * checking falls down on this.
2022 		 */
2023 		if (copy_from_user(ctl_buf,
2024 				   (void __user __force *)msg_sys->msg_control,
2025 				   ctl_len))
2026 			goto out_freectl;
2027 		msg_sys->msg_control = ctl_buf;
2028 	}
2029 	msg_sys->msg_flags = flags;
2030 
2031 	if (sock->file->f_flags & O_NONBLOCK)
2032 		msg_sys->msg_flags |= MSG_DONTWAIT;
2033 	/*
2034 	 * If this is sendmmsg() and current destination address is same as
2035 	 * previously succeeded address, omit asking LSM's decision.
2036 	 * used_address->name_len is initialized to UINT_MAX so that the first
2037 	 * destination address never matches.
2038 	 */
2039 	if (used_address && msg_sys->msg_name &&
2040 	    used_address->name_len == msg_sys->msg_namelen &&
2041 	    !memcmp(&used_address->name, msg_sys->msg_name,
2042 		    used_address->name_len)) {
2043 		err = sock_sendmsg_nosec(sock, msg_sys);
2044 		goto out_freectl;
2045 	}
2046 	err = sock_sendmsg(sock, msg_sys);
2047 	/*
2048 	 * If this is sendmmsg() and sending to current destination address was
2049 	 * successful, remember it.
2050 	 */
2051 	if (used_address && err >= 0) {
2052 		used_address->name_len = msg_sys->msg_namelen;
2053 		if (msg_sys->msg_name)
2054 			memcpy(&used_address->name, msg_sys->msg_name,
2055 			       used_address->name_len);
2056 	}
2057 
2058 out_freectl:
2059 	if (ctl_buf != ctl)
2060 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2061 out_freeiov:
2062 	kfree(iov);
2063 	return err;
2064 }
2065 
2066 /*
2067  *	BSD sendmsg interface
2068  */
2069 
2070 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2071 {
2072 	int fput_needed, err;
2073 	struct msghdr msg_sys;
2074 	struct socket *sock;
2075 
2076 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2077 	if (!sock)
2078 		goto out;
2079 
2080 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2081 
2082 	fput_light(sock->file, fput_needed);
2083 out:
2084 	return err;
2085 }
2086 
2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2088 {
2089 	if (flags & MSG_CMSG_COMPAT)
2090 		return -EINVAL;
2091 	return __sys_sendmsg(fd, msg, flags);
2092 }
2093 
2094 /*
2095  *	Linux sendmmsg interface
2096  */
2097 
2098 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2099 		   unsigned int flags)
2100 {
2101 	int fput_needed, err, datagrams;
2102 	struct socket *sock;
2103 	struct mmsghdr __user *entry;
2104 	struct compat_mmsghdr __user *compat_entry;
2105 	struct msghdr msg_sys;
2106 	struct used_address used_address;
2107 	unsigned int oflags = flags;
2108 
2109 	if (vlen > UIO_MAXIOV)
2110 		vlen = UIO_MAXIOV;
2111 
2112 	datagrams = 0;
2113 
2114 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2115 	if (!sock)
2116 		return err;
2117 
2118 	used_address.name_len = UINT_MAX;
2119 	entry = mmsg;
2120 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2121 	err = 0;
2122 	flags |= MSG_BATCH;
2123 
2124 	while (datagrams < vlen) {
2125 		if (datagrams == vlen - 1)
2126 			flags = oflags;
2127 
2128 		if (MSG_CMSG_COMPAT & flags) {
2129 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2130 					     &msg_sys, flags, &used_address, MSG_EOR);
2131 			if (err < 0)
2132 				break;
2133 			err = __put_user(err, &compat_entry->msg_len);
2134 			++compat_entry;
2135 		} else {
2136 			err = ___sys_sendmsg(sock,
2137 					     (struct user_msghdr __user *)entry,
2138 					     &msg_sys, flags, &used_address, MSG_EOR);
2139 			if (err < 0)
2140 				break;
2141 			err = put_user(err, &entry->msg_len);
2142 			++entry;
2143 		}
2144 
2145 		if (err)
2146 			break;
2147 		++datagrams;
2148 		if (msg_data_left(&msg_sys))
2149 			break;
2150 		cond_resched();
2151 	}
2152 
2153 	fput_light(sock->file, fput_needed);
2154 
2155 	/* We only return an error if no datagrams were able to be sent */
2156 	if (datagrams != 0)
2157 		return datagrams;
2158 
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2163 		unsigned int, vlen, unsigned int, flags)
2164 {
2165 	if (flags & MSG_CMSG_COMPAT)
2166 		return -EINVAL;
2167 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2168 }
2169 
2170 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2171 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2172 {
2173 	struct compat_msghdr __user *msg_compat =
2174 	    (struct compat_msghdr __user *)msg;
2175 	struct iovec iovstack[UIO_FASTIOV];
2176 	struct iovec *iov = iovstack;
2177 	unsigned long cmsg_ptr;
2178 	int len;
2179 	ssize_t err;
2180 
2181 	/* kernel mode address */
2182 	struct sockaddr_storage addr;
2183 
2184 	/* user mode address pointers */
2185 	struct sockaddr __user *uaddr;
2186 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2187 
2188 	msg_sys->msg_name = &addr;
2189 
2190 	if (MSG_CMSG_COMPAT & flags)
2191 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2192 	else
2193 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2194 	if (err < 0)
2195 		return err;
2196 
2197 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2198 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2199 
2200 	/* We assume all kernel code knows the size of sockaddr_storage */
2201 	msg_sys->msg_namelen = 0;
2202 
2203 	if (sock->file->f_flags & O_NONBLOCK)
2204 		flags |= MSG_DONTWAIT;
2205 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2206 	if (err < 0)
2207 		goto out_freeiov;
2208 	len = err;
2209 
2210 	if (uaddr != NULL) {
2211 		err = move_addr_to_user(&addr,
2212 					msg_sys->msg_namelen, uaddr,
2213 					uaddr_len);
2214 		if (err < 0)
2215 			goto out_freeiov;
2216 	}
2217 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2218 			 COMPAT_FLAGS(msg));
2219 	if (err)
2220 		goto out_freeiov;
2221 	if (MSG_CMSG_COMPAT & flags)
2222 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2223 				 &msg_compat->msg_controllen);
2224 	else
2225 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2226 				 &msg->msg_controllen);
2227 	if (err)
2228 		goto out_freeiov;
2229 	err = len;
2230 
2231 out_freeiov:
2232 	kfree(iov);
2233 	return err;
2234 }
2235 
2236 /*
2237  *	BSD recvmsg interface
2238  */
2239 
2240 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2241 {
2242 	int fput_needed, err;
2243 	struct msghdr msg_sys;
2244 	struct socket *sock;
2245 
2246 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2247 	if (!sock)
2248 		goto out;
2249 
2250 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2251 
2252 	fput_light(sock->file, fput_needed);
2253 out:
2254 	return err;
2255 }
2256 
2257 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2258 		unsigned int, flags)
2259 {
2260 	if (flags & MSG_CMSG_COMPAT)
2261 		return -EINVAL;
2262 	return __sys_recvmsg(fd, msg, flags);
2263 }
2264 
2265 /*
2266  *     Linux recvmmsg interface
2267  */
2268 
2269 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2270 		   unsigned int flags, struct timespec *timeout)
2271 {
2272 	int fput_needed, err, datagrams;
2273 	struct socket *sock;
2274 	struct mmsghdr __user *entry;
2275 	struct compat_mmsghdr __user *compat_entry;
2276 	struct msghdr msg_sys;
2277 	struct timespec64 end_time;
2278 	struct timespec64 timeout64;
2279 
2280 	if (timeout &&
2281 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2282 				    timeout->tv_nsec))
2283 		return -EINVAL;
2284 
2285 	datagrams = 0;
2286 
2287 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2288 	if (!sock)
2289 		return err;
2290 
2291 	err = sock_error(sock->sk);
2292 	if (err) {
2293 		datagrams = err;
2294 		goto out_put;
2295 	}
2296 
2297 	entry = mmsg;
2298 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2299 
2300 	while (datagrams < vlen) {
2301 		/*
2302 		 * No need to ask LSM for more than the first datagram.
2303 		 */
2304 		if (MSG_CMSG_COMPAT & flags) {
2305 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2306 					     &msg_sys, flags & ~MSG_WAITFORONE,
2307 					     datagrams);
2308 			if (err < 0)
2309 				break;
2310 			err = __put_user(err, &compat_entry->msg_len);
2311 			++compat_entry;
2312 		} else {
2313 			err = ___sys_recvmsg(sock,
2314 					     (struct user_msghdr __user *)entry,
2315 					     &msg_sys, flags & ~MSG_WAITFORONE,
2316 					     datagrams);
2317 			if (err < 0)
2318 				break;
2319 			err = put_user(err, &entry->msg_len);
2320 			++entry;
2321 		}
2322 
2323 		if (err)
2324 			break;
2325 		++datagrams;
2326 
2327 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2328 		if (flags & MSG_WAITFORONE)
2329 			flags |= MSG_DONTWAIT;
2330 
2331 		if (timeout) {
2332 			ktime_get_ts64(&timeout64);
2333 			*timeout = timespec64_to_timespec(
2334 					timespec64_sub(end_time, timeout64));
2335 			if (timeout->tv_sec < 0) {
2336 				timeout->tv_sec = timeout->tv_nsec = 0;
2337 				break;
2338 			}
2339 
2340 			/* Timeout, return less than vlen datagrams */
2341 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2342 				break;
2343 		}
2344 
2345 		/* Out of band data, return right away */
2346 		if (msg_sys.msg_flags & MSG_OOB)
2347 			break;
2348 		cond_resched();
2349 	}
2350 
2351 	if (err == 0)
2352 		goto out_put;
2353 
2354 	if (datagrams == 0) {
2355 		datagrams = err;
2356 		goto out_put;
2357 	}
2358 
2359 	/*
2360 	 * We may return less entries than requested (vlen) if the
2361 	 * sock is non block and there aren't enough datagrams...
2362 	 */
2363 	if (err != -EAGAIN) {
2364 		/*
2365 		 * ... or  if recvmsg returns an error after we
2366 		 * received some datagrams, where we record the
2367 		 * error to return on the next call or if the
2368 		 * app asks about it using getsockopt(SO_ERROR).
2369 		 */
2370 		sock->sk->sk_err = -err;
2371 	}
2372 out_put:
2373 	fput_light(sock->file, fput_needed);
2374 
2375 	return datagrams;
2376 }
2377 
2378 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2379 		unsigned int, vlen, unsigned int, flags,
2380 		struct timespec __user *, timeout)
2381 {
2382 	int datagrams;
2383 	struct timespec timeout_sys;
2384 
2385 	if (flags & MSG_CMSG_COMPAT)
2386 		return -EINVAL;
2387 
2388 	if (!timeout)
2389 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2390 
2391 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2392 		return -EFAULT;
2393 
2394 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2395 
2396 	if (datagrams > 0 &&
2397 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2398 		datagrams = -EFAULT;
2399 
2400 	return datagrams;
2401 }
2402 
2403 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2404 /* Argument list sizes for sys_socketcall */
2405 #define AL(x) ((x) * sizeof(unsigned long))
2406 static const unsigned char nargs[21] = {
2407 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2408 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2409 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2410 	AL(4), AL(5), AL(4)
2411 };
2412 
2413 #undef AL
2414 
2415 /*
2416  *	System call vectors.
2417  *
2418  *	Argument checking cleaned up. Saved 20% in size.
2419  *  This function doesn't need to set the kernel lock because
2420  *  it is set by the callees.
2421  */
2422 
2423 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2424 {
2425 	unsigned long a[AUDITSC_ARGS];
2426 	unsigned long a0, a1;
2427 	int err;
2428 	unsigned int len;
2429 
2430 	if (call < 1 || call > SYS_SENDMMSG)
2431 		return -EINVAL;
2432 
2433 	len = nargs[call];
2434 	if (len > sizeof(a))
2435 		return -EINVAL;
2436 
2437 	/* copy_from_user should be SMP safe. */
2438 	if (copy_from_user(a, args, len))
2439 		return -EFAULT;
2440 
2441 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2442 	if (err)
2443 		return err;
2444 
2445 	a0 = a[0];
2446 	a1 = a[1];
2447 
2448 	switch (call) {
2449 	case SYS_SOCKET:
2450 		err = sys_socket(a0, a1, a[2]);
2451 		break;
2452 	case SYS_BIND:
2453 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2454 		break;
2455 	case SYS_CONNECT:
2456 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2457 		break;
2458 	case SYS_LISTEN:
2459 		err = sys_listen(a0, a1);
2460 		break;
2461 	case SYS_ACCEPT:
2462 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2463 				  (int __user *)a[2], 0);
2464 		break;
2465 	case SYS_GETSOCKNAME:
2466 		err =
2467 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2468 				    (int __user *)a[2]);
2469 		break;
2470 	case SYS_GETPEERNAME:
2471 		err =
2472 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2473 				    (int __user *)a[2]);
2474 		break;
2475 	case SYS_SOCKETPAIR:
2476 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2477 		break;
2478 	case SYS_SEND:
2479 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2480 		break;
2481 	case SYS_SENDTO:
2482 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2483 				 (struct sockaddr __user *)a[4], a[5]);
2484 		break;
2485 	case SYS_RECV:
2486 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2487 		break;
2488 	case SYS_RECVFROM:
2489 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2490 				   (struct sockaddr __user *)a[4],
2491 				   (int __user *)a[5]);
2492 		break;
2493 	case SYS_SHUTDOWN:
2494 		err = sys_shutdown(a0, a1);
2495 		break;
2496 	case SYS_SETSOCKOPT:
2497 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2498 		break;
2499 	case SYS_GETSOCKOPT:
2500 		err =
2501 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2502 				   (int __user *)a[4]);
2503 		break;
2504 	case SYS_SENDMSG:
2505 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2506 		break;
2507 	case SYS_SENDMMSG:
2508 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2509 		break;
2510 	case SYS_RECVMSG:
2511 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2512 		break;
2513 	case SYS_RECVMMSG:
2514 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2515 				   (struct timespec __user *)a[4]);
2516 		break;
2517 	case SYS_ACCEPT4:
2518 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2519 				  (int __user *)a[2], a[3]);
2520 		break;
2521 	default:
2522 		err = -EINVAL;
2523 		break;
2524 	}
2525 	return err;
2526 }
2527 
2528 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2529 
2530 /**
2531  *	sock_register - add a socket protocol handler
2532  *	@ops: description of protocol
2533  *
2534  *	This function is called by a protocol handler that wants to
2535  *	advertise its address family, and have it linked into the
2536  *	socket interface. The value ops->family corresponds to the
2537  *	socket system call protocol family.
2538  */
2539 int sock_register(const struct net_proto_family *ops)
2540 {
2541 	int err;
2542 
2543 	if (ops->family >= NPROTO) {
2544 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2545 		return -ENOBUFS;
2546 	}
2547 
2548 	spin_lock(&net_family_lock);
2549 	if (rcu_dereference_protected(net_families[ops->family],
2550 				      lockdep_is_held(&net_family_lock)))
2551 		err = -EEXIST;
2552 	else {
2553 		rcu_assign_pointer(net_families[ops->family], ops);
2554 		err = 0;
2555 	}
2556 	spin_unlock(&net_family_lock);
2557 
2558 	pr_info("NET: Registered protocol family %d\n", ops->family);
2559 	return err;
2560 }
2561 EXPORT_SYMBOL(sock_register);
2562 
2563 /**
2564  *	sock_unregister - remove a protocol handler
2565  *	@family: protocol family to remove
2566  *
2567  *	This function is called by a protocol handler that wants to
2568  *	remove its address family, and have it unlinked from the
2569  *	new socket creation.
2570  *
2571  *	If protocol handler is a module, then it can use module reference
2572  *	counts to protect against new references. If protocol handler is not
2573  *	a module then it needs to provide its own protection in
2574  *	the ops->create routine.
2575  */
2576 void sock_unregister(int family)
2577 {
2578 	BUG_ON(family < 0 || family >= NPROTO);
2579 
2580 	spin_lock(&net_family_lock);
2581 	RCU_INIT_POINTER(net_families[family], NULL);
2582 	spin_unlock(&net_family_lock);
2583 
2584 	synchronize_rcu();
2585 
2586 	pr_info("NET: Unregistered protocol family %d\n", family);
2587 }
2588 EXPORT_SYMBOL(sock_unregister);
2589 
2590 static int __init sock_init(void)
2591 {
2592 	int err;
2593 	/*
2594 	 *      Initialize the network sysctl infrastructure.
2595 	 */
2596 	err = net_sysctl_init();
2597 	if (err)
2598 		goto out;
2599 
2600 	/*
2601 	 *      Initialize skbuff SLAB cache
2602 	 */
2603 	skb_init();
2604 
2605 	/*
2606 	 *      Initialize the protocols module.
2607 	 */
2608 
2609 	init_inodecache();
2610 
2611 	err = register_filesystem(&sock_fs_type);
2612 	if (err)
2613 		goto out_fs;
2614 	sock_mnt = kern_mount(&sock_fs_type);
2615 	if (IS_ERR(sock_mnt)) {
2616 		err = PTR_ERR(sock_mnt);
2617 		goto out_mount;
2618 	}
2619 
2620 	/* The real protocol initialization is performed in later initcalls.
2621 	 */
2622 
2623 #ifdef CONFIG_NETFILTER
2624 	err = netfilter_init();
2625 	if (err)
2626 		goto out;
2627 #endif
2628 
2629 	ptp_classifier_init();
2630 
2631 out:
2632 	return err;
2633 
2634 out_mount:
2635 	unregister_filesystem(&sock_fs_type);
2636 out_fs:
2637 	goto out;
2638 }
2639 
2640 core_initcall(sock_init);	/* early initcall */
2641 
2642 #ifdef CONFIG_PROC_FS
2643 void socket_seq_show(struct seq_file *seq)
2644 {
2645 	seq_printf(seq, "sockets: used %d\n",
2646 		   sock_inuse_get(seq->private));
2647 }
2648 #endif				/* CONFIG_PROC_FS */
2649 
2650 #ifdef CONFIG_COMPAT
2651 static int do_siocgstamp(struct net *net, struct socket *sock,
2652 			 unsigned int cmd, void __user *up)
2653 {
2654 	mm_segment_t old_fs = get_fs();
2655 	struct timeval ktv;
2656 	int err;
2657 
2658 	set_fs(KERNEL_DS);
2659 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2660 	set_fs(old_fs);
2661 	if (!err)
2662 		err = compat_put_timeval(&ktv, up);
2663 
2664 	return err;
2665 }
2666 
2667 static int do_siocgstampns(struct net *net, struct socket *sock,
2668 			   unsigned int cmd, void __user *up)
2669 {
2670 	mm_segment_t old_fs = get_fs();
2671 	struct timespec kts;
2672 	int err;
2673 
2674 	set_fs(KERNEL_DS);
2675 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2676 	set_fs(old_fs);
2677 	if (!err)
2678 		err = compat_put_timespec(&kts, up);
2679 
2680 	return err;
2681 }
2682 
2683 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2684 {
2685 	struct compat_ifconf ifc32;
2686 	struct ifconf ifc;
2687 	int err;
2688 
2689 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2690 		return -EFAULT;
2691 
2692 	ifc.ifc_len = ifc32.ifc_len;
2693 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2694 
2695 	rtnl_lock();
2696 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2697 	rtnl_unlock();
2698 	if (err)
2699 		return err;
2700 
2701 	ifc32.ifc_len = ifc.ifc_len;
2702 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2703 		return -EFAULT;
2704 
2705 	return 0;
2706 }
2707 
2708 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2709 {
2710 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2711 	bool convert_in = false, convert_out = false;
2712 	size_t buf_size = 0;
2713 	struct ethtool_rxnfc __user *rxnfc = NULL;
2714 	struct ifreq ifr;
2715 	u32 rule_cnt = 0, actual_rule_cnt;
2716 	u32 ethcmd;
2717 	u32 data;
2718 	int ret;
2719 
2720 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2721 		return -EFAULT;
2722 
2723 	compat_rxnfc = compat_ptr(data);
2724 
2725 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2726 		return -EFAULT;
2727 
2728 	/* Most ethtool structures are defined without padding.
2729 	 * Unfortunately struct ethtool_rxnfc is an exception.
2730 	 */
2731 	switch (ethcmd) {
2732 	default:
2733 		break;
2734 	case ETHTOOL_GRXCLSRLALL:
2735 		/* Buffer size is variable */
2736 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2737 			return -EFAULT;
2738 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2739 			return -ENOMEM;
2740 		buf_size += rule_cnt * sizeof(u32);
2741 		/* fall through */
2742 	case ETHTOOL_GRXRINGS:
2743 	case ETHTOOL_GRXCLSRLCNT:
2744 	case ETHTOOL_GRXCLSRULE:
2745 	case ETHTOOL_SRXCLSRLINS:
2746 		convert_out = true;
2747 		/* fall through */
2748 	case ETHTOOL_SRXCLSRLDEL:
2749 		buf_size += sizeof(struct ethtool_rxnfc);
2750 		convert_in = true;
2751 		rxnfc = compat_alloc_user_space(buf_size);
2752 		break;
2753 	}
2754 
2755 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2756 		return -EFAULT;
2757 
2758 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2759 
2760 	if (convert_in) {
2761 		/* We expect there to be holes between fs.m_ext and
2762 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2763 		 */
2764 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2765 			     sizeof(compat_rxnfc->fs.m_ext) !=
2766 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2767 			     sizeof(rxnfc->fs.m_ext));
2768 		BUILD_BUG_ON(
2769 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2770 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2771 			offsetof(struct ethtool_rxnfc, fs.location) -
2772 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2773 
2774 		if (copy_in_user(rxnfc, compat_rxnfc,
2775 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2776 				 (void __user *)rxnfc) ||
2777 		    copy_in_user(&rxnfc->fs.ring_cookie,
2778 				 &compat_rxnfc->fs.ring_cookie,
2779 				 (void __user *)(&rxnfc->fs.location + 1) -
2780 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2781 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2782 				 sizeof(rxnfc->rule_cnt)))
2783 			return -EFAULT;
2784 	}
2785 
2786 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2787 	if (ret)
2788 		return ret;
2789 
2790 	if (convert_out) {
2791 		if (copy_in_user(compat_rxnfc, rxnfc,
2792 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2793 				 (const void __user *)rxnfc) ||
2794 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2795 				 &rxnfc->fs.ring_cookie,
2796 				 (const void __user *)(&rxnfc->fs.location + 1) -
2797 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2798 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2799 				 sizeof(rxnfc->rule_cnt)))
2800 			return -EFAULT;
2801 
2802 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2803 			/* As an optimisation, we only copy the actual
2804 			 * number of rules that the underlying
2805 			 * function returned.  Since Mallory might
2806 			 * change the rule count in user memory, we
2807 			 * check that it is less than the rule count
2808 			 * originally given (as the user buffer size),
2809 			 * which has been range-checked.
2810 			 */
2811 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2812 				return -EFAULT;
2813 			if (actual_rule_cnt < rule_cnt)
2814 				rule_cnt = actual_rule_cnt;
2815 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2816 					 &rxnfc->rule_locs[0],
2817 					 rule_cnt * sizeof(u32)))
2818 				return -EFAULT;
2819 		}
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2826 {
2827 	compat_uptr_t uptr32;
2828 	struct ifreq ifr;
2829 	void __user *saved;
2830 	int err;
2831 
2832 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2833 		return -EFAULT;
2834 
2835 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2836 		return -EFAULT;
2837 
2838 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2839 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2840 
2841 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2842 	if (!err) {
2843 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2844 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2845 			err = -EFAULT;
2846 	}
2847 	return err;
2848 }
2849 
2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2852 				 struct compat_ifreq __user *u_ifreq32)
2853 {
2854 	struct ifreq ifreq;
2855 	u32 data32;
2856 
2857 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2858 		return -EFAULT;
2859 	if (get_user(data32, &u_ifreq32->ifr_data))
2860 		return -EFAULT;
2861 	ifreq.ifr_data = compat_ptr(data32);
2862 
2863 	return dev_ioctl(net, cmd, &ifreq, NULL);
2864 }
2865 
2866 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2867 			struct compat_ifreq __user *uifr32)
2868 {
2869 	struct ifreq ifr;
2870 	struct compat_ifmap __user *uifmap32;
2871 	int err;
2872 
2873 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2874 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2875 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2876 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2877 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2878 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2879 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2880 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2881 	if (err)
2882 		return -EFAULT;
2883 
2884 	err = dev_ioctl(net, cmd, &ifr, NULL);
2885 
2886 	if (cmd == SIOCGIFMAP && !err) {
2887 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2888 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2889 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2890 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2891 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2892 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2893 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2894 		if (err)
2895 			err = -EFAULT;
2896 	}
2897 	return err;
2898 }
2899 
2900 struct rtentry32 {
2901 	u32		rt_pad1;
2902 	struct sockaddr rt_dst;         /* target address               */
2903 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2904 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2905 	unsigned short	rt_flags;
2906 	short		rt_pad2;
2907 	u32		rt_pad3;
2908 	unsigned char	rt_tos;
2909 	unsigned char	rt_class;
2910 	short		rt_pad4;
2911 	short		rt_metric;      /* +1 for binary compatibility! */
2912 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2913 	u32		rt_mtu;         /* per route MTU/Window         */
2914 	u32		rt_window;      /* Window clamping              */
2915 	unsigned short  rt_irtt;        /* Initial RTT                  */
2916 };
2917 
2918 struct in6_rtmsg32 {
2919 	struct in6_addr		rtmsg_dst;
2920 	struct in6_addr		rtmsg_src;
2921 	struct in6_addr		rtmsg_gateway;
2922 	u32			rtmsg_type;
2923 	u16			rtmsg_dst_len;
2924 	u16			rtmsg_src_len;
2925 	u32			rtmsg_metric;
2926 	u32			rtmsg_info;
2927 	u32			rtmsg_flags;
2928 	s32			rtmsg_ifindex;
2929 };
2930 
2931 static int routing_ioctl(struct net *net, struct socket *sock,
2932 			 unsigned int cmd, void __user *argp)
2933 {
2934 	int ret;
2935 	void *r = NULL;
2936 	struct in6_rtmsg r6;
2937 	struct rtentry r4;
2938 	char devname[16];
2939 	u32 rtdev;
2940 	mm_segment_t old_fs = get_fs();
2941 
2942 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2943 		struct in6_rtmsg32 __user *ur6 = argp;
2944 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2945 			3 * sizeof(struct in6_addr));
2946 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2947 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2948 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2949 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2950 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2951 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2952 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2953 
2954 		r = (void *) &r6;
2955 	} else { /* ipv4 */
2956 		struct rtentry32 __user *ur4 = argp;
2957 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2958 					3 * sizeof(struct sockaddr));
2959 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
2960 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
2961 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
2962 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
2963 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
2964 		ret |= get_user(rtdev, &(ur4->rt_dev));
2965 		if (rtdev) {
2966 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2967 			r4.rt_dev = (char __user __force *)devname;
2968 			devname[15] = 0;
2969 		} else
2970 			r4.rt_dev = NULL;
2971 
2972 		r = (void *) &r4;
2973 	}
2974 
2975 	if (ret) {
2976 		ret = -EFAULT;
2977 		goto out;
2978 	}
2979 
2980 	set_fs(KERNEL_DS);
2981 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2982 	set_fs(old_fs);
2983 
2984 out:
2985 	return ret;
2986 }
2987 
2988 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2989  * for some operations; this forces use of the newer bridge-utils that
2990  * use compatible ioctls
2991  */
2992 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2993 {
2994 	compat_ulong_t tmp;
2995 
2996 	if (get_user(tmp, argp))
2997 		return -EFAULT;
2998 	if (tmp == BRCTL_GET_VERSION)
2999 		return BRCTL_VERSION + 1;
3000 	return -EINVAL;
3001 }
3002 
3003 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3004 			 unsigned int cmd, unsigned long arg)
3005 {
3006 	void __user *argp = compat_ptr(arg);
3007 	struct sock *sk = sock->sk;
3008 	struct net *net = sock_net(sk);
3009 
3010 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3011 		return compat_ifr_data_ioctl(net, cmd, argp);
3012 
3013 	switch (cmd) {
3014 	case SIOCSIFBR:
3015 	case SIOCGIFBR:
3016 		return old_bridge_ioctl(argp);
3017 	case SIOCGIFCONF:
3018 		return compat_dev_ifconf(net, argp);
3019 	case SIOCETHTOOL:
3020 		return ethtool_ioctl(net, argp);
3021 	case SIOCWANDEV:
3022 		return compat_siocwandev(net, argp);
3023 	case SIOCGIFMAP:
3024 	case SIOCSIFMAP:
3025 		return compat_sioc_ifmap(net, cmd, argp);
3026 	case SIOCADDRT:
3027 	case SIOCDELRT:
3028 		return routing_ioctl(net, sock, cmd, argp);
3029 	case SIOCGSTAMP:
3030 		return do_siocgstamp(net, sock, cmd, argp);
3031 	case SIOCGSTAMPNS:
3032 		return do_siocgstampns(net, sock, cmd, argp);
3033 	case SIOCBONDSLAVEINFOQUERY:
3034 	case SIOCBONDINFOQUERY:
3035 	case SIOCSHWTSTAMP:
3036 	case SIOCGHWTSTAMP:
3037 		return compat_ifr_data_ioctl(net, cmd, argp);
3038 
3039 	case FIOSETOWN:
3040 	case SIOCSPGRP:
3041 	case FIOGETOWN:
3042 	case SIOCGPGRP:
3043 	case SIOCBRADDBR:
3044 	case SIOCBRDELBR:
3045 	case SIOCGIFVLAN:
3046 	case SIOCSIFVLAN:
3047 	case SIOCADDDLCI:
3048 	case SIOCDELDLCI:
3049 	case SIOCGSKNS:
3050 		return sock_ioctl(file, cmd, arg);
3051 
3052 	case SIOCGIFFLAGS:
3053 	case SIOCSIFFLAGS:
3054 	case SIOCGIFMETRIC:
3055 	case SIOCSIFMETRIC:
3056 	case SIOCGIFMTU:
3057 	case SIOCSIFMTU:
3058 	case SIOCGIFMEM:
3059 	case SIOCSIFMEM:
3060 	case SIOCGIFHWADDR:
3061 	case SIOCSIFHWADDR:
3062 	case SIOCADDMULTI:
3063 	case SIOCDELMULTI:
3064 	case SIOCGIFINDEX:
3065 	case SIOCGIFADDR:
3066 	case SIOCSIFADDR:
3067 	case SIOCSIFHWBROADCAST:
3068 	case SIOCDIFADDR:
3069 	case SIOCGIFBRDADDR:
3070 	case SIOCSIFBRDADDR:
3071 	case SIOCGIFDSTADDR:
3072 	case SIOCSIFDSTADDR:
3073 	case SIOCGIFNETMASK:
3074 	case SIOCSIFNETMASK:
3075 	case SIOCSIFPFLAGS:
3076 	case SIOCGIFPFLAGS:
3077 	case SIOCGIFTXQLEN:
3078 	case SIOCSIFTXQLEN:
3079 	case SIOCBRADDIF:
3080 	case SIOCBRDELIF:
3081 	case SIOCSIFNAME:
3082 	case SIOCGMIIPHY:
3083 	case SIOCGMIIREG:
3084 	case SIOCSMIIREG:
3085 	case SIOCSARP:
3086 	case SIOCGARP:
3087 	case SIOCDARP:
3088 	case SIOCATMARK:
3089 	case SIOCBONDENSLAVE:
3090 	case SIOCBONDRELEASE:
3091 	case SIOCBONDSETHWADDR:
3092 	case SIOCBONDCHANGEACTIVE:
3093 	case SIOCGIFNAME:
3094 		return sock_do_ioctl(net, sock, cmd, arg);
3095 	}
3096 
3097 	return -ENOIOCTLCMD;
3098 }
3099 
3100 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3101 			      unsigned long arg)
3102 {
3103 	struct socket *sock = file->private_data;
3104 	int ret = -ENOIOCTLCMD;
3105 	struct sock *sk;
3106 	struct net *net;
3107 
3108 	sk = sock->sk;
3109 	net = sock_net(sk);
3110 
3111 	if (sock->ops->compat_ioctl)
3112 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3113 
3114 	if (ret == -ENOIOCTLCMD &&
3115 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3116 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3117 
3118 	if (ret == -ENOIOCTLCMD)
3119 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3120 
3121 	return ret;
3122 }
3123 #endif
3124 
3125 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3126 {
3127 	return sock->ops->bind(sock, addr, addrlen);
3128 }
3129 EXPORT_SYMBOL(kernel_bind);
3130 
3131 int kernel_listen(struct socket *sock, int backlog)
3132 {
3133 	return sock->ops->listen(sock, backlog);
3134 }
3135 EXPORT_SYMBOL(kernel_listen);
3136 
3137 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3138 {
3139 	struct sock *sk = sock->sk;
3140 	int err;
3141 
3142 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3143 			       newsock);
3144 	if (err < 0)
3145 		goto done;
3146 
3147 	err = sock->ops->accept(sock, *newsock, flags, true);
3148 	if (err < 0) {
3149 		sock_release(*newsock);
3150 		*newsock = NULL;
3151 		goto done;
3152 	}
3153 
3154 	(*newsock)->ops = sock->ops;
3155 	__module_get((*newsock)->ops->owner);
3156 
3157 done:
3158 	return err;
3159 }
3160 EXPORT_SYMBOL(kernel_accept);
3161 
3162 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3163 		   int flags)
3164 {
3165 	return sock->ops->connect(sock, addr, addrlen, flags);
3166 }
3167 EXPORT_SYMBOL(kernel_connect);
3168 
3169 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3170 {
3171 	return sock->ops->getname(sock, addr, 0);
3172 }
3173 EXPORT_SYMBOL(kernel_getsockname);
3174 
3175 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3176 {
3177 	return sock->ops->getname(sock, addr, 1);
3178 }
3179 EXPORT_SYMBOL(kernel_getpeername);
3180 
3181 int kernel_getsockopt(struct socket *sock, int level, int optname,
3182 			char *optval, int *optlen)
3183 {
3184 	mm_segment_t oldfs = get_fs();
3185 	char __user *uoptval;
3186 	int __user *uoptlen;
3187 	int err;
3188 
3189 	uoptval = (char __user __force *) optval;
3190 	uoptlen = (int __user __force *) optlen;
3191 
3192 	set_fs(KERNEL_DS);
3193 	if (level == SOL_SOCKET)
3194 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3195 	else
3196 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3197 					    uoptlen);
3198 	set_fs(oldfs);
3199 	return err;
3200 }
3201 EXPORT_SYMBOL(kernel_getsockopt);
3202 
3203 int kernel_setsockopt(struct socket *sock, int level, int optname,
3204 			char *optval, unsigned int optlen)
3205 {
3206 	mm_segment_t oldfs = get_fs();
3207 	char __user *uoptval;
3208 	int err;
3209 
3210 	uoptval = (char __user __force *) optval;
3211 
3212 	set_fs(KERNEL_DS);
3213 	if (level == SOL_SOCKET)
3214 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3215 	else
3216 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3217 					    optlen);
3218 	set_fs(oldfs);
3219 	return err;
3220 }
3221 EXPORT_SYMBOL(kernel_setsockopt);
3222 
3223 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3224 		    size_t size, int flags)
3225 {
3226 	if (sock->ops->sendpage)
3227 		return sock->ops->sendpage(sock, page, offset, size, flags);
3228 
3229 	return sock_no_sendpage(sock, page, offset, size, flags);
3230 }
3231 EXPORT_SYMBOL(kernel_sendpage);
3232 
3233 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3234 			   size_t size, int flags)
3235 {
3236 	struct socket *sock = sk->sk_socket;
3237 
3238 	if (sock->ops->sendpage_locked)
3239 		return sock->ops->sendpage_locked(sk, page, offset, size,
3240 						  flags);
3241 
3242 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3243 }
3244 EXPORT_SYMBOL(kernel_sendpage_locked);
3245 
3246 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3247 {
3248 	return sock->ops->shutdown(sock, how);
3249 }
3250 EXPORT_SYMBOL(kernel_sock_shutdown);
3251 
3252 /* This routine returns the IP overhead imposed by a socket i.e.
3253  * the length of the underlying IP header, depending on whether
3254  * this is an IPv4 or IPv6 socket and the length from IP options turned
3255  * on at the socket. Assumes that the caller has a lock on the socket.
3256  */
3257 u32 kernel_sock_ip_overhead(struct sock *sk)
3258 {
3259 	struct inet_sock *inet;
3260 	struct ip_options_rcu *opt;
3261 	u32 overhead = 0;
3262 #if IS_ENABLED(CONFIG_IPV6)
3263 	struct ipv6_pinfo *np;
3264 	struct ipv6_txoptions *optv6 = NULL;
3265 #endif /* IS_ENABLED(CONFIG_IPV6) */
3266 
3267 	if (!sk)
3268 		return overhead;
3269 
3270 	switch (sk->sk_family) {
3271 	case AF_INET:
3272 		inet = inet_sk(sk);
3273 		overhead += sizeof(struct iphdr);
3274 		opt = rcu_dereference_protected(inet->inet_opt,
3275 						sock_owned_by_user(sk));
3276 		if (opt)
3277 			overhead += opt->opt.optlen;
3278 		return overhead;
3279 #if IS_ENABLED(CONFIG_IPV6)
3280 	case AF_INET6:
3281 		np = inet6_sk(sk);
3282 		overhead += sizeof(struct ipv6hdr);
3283 		if (np)
3284 			optv6 = rcu_dereference_protected(np->opt,
3285 							  sock_owned_by_user(sk));
3286 		if (optv6)
3287 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3288 		return overhead;
3289 #endif /* IS_ENABLED(CONFIG_IPV6) */
3290 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3291 		return overhead;
3292 	}
3293 }
3294 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3295