1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 int fd; 355 356 fd = get_unused_fd_flags(flags); 357 if (unlikely(fd < 0)) 358 return fd; 359 360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 361 if (unlikely(!path.dentry)) { 362 put_unused_fd(fd); 363 return -ENOMEM; 364 } 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(!file)) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 put_unused_fd(fd); 377 return -ENFILE; 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 385 *f = file; 386 return fd; 387 } 388 389 int sock_map_fd(struct socket *sock, int flags) 390 { 391 struct file *newfile; 392 int fd = sock_alloc_file(sock, &newfile, flags); 393 394 if (likely(fd >= 0)) 395 fd_install(fd, newfile); 396 397 return fd; 398 } 399 EXPORT_SYMBOL(sock_map_fd); 400 401 struct socket *sock_from_file(struct file *file, int *err) 402 { 403 if (file->f_op == &socket_file_ops) 404 return file->private_data; /* set in sock_map_fd */ 405 406 *err = -ENOTSOCK; 407 return NULL; 408 } 409 EXPORT_SYMBOL(sock_from_file); 410 411 /** 412 * sockfd_lookup - Go from a file number to its socket slot 413 * @fd: file handle 414 * @err: pointer to an error code return 415 * 416 * The file handle passed in is locked and the socket it is bound 417 * too is returned. If an error occurs the err pointer is overwritten 418 * with a negative errno code and NULL is returned. The function checks 419 * for both invalid handles and passing a handle which is not a socket. 420 * 421 * On a success the socket object pointer is returned. 422 */ 423 424 struct socket *sockfd_lookup(int fd, int *err) 425 { 426 struct file *file; 427 struct socket *sock; 428 429 file = fget(fd); 430 if (!file) { 431 *err = -EBADF; 432 return NULL; 433 } 434 435 sock = sock_from_file(file, err); 436 if (!sock) 437 fput(file); 438 return sock; 439 } 440 EXPORT_SYMBOL(sockfd_lookup); 441 442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 443 { 444 struct file *file; 445 struct socket *sock; 446 447 *err = -EBADF; 448 file = fget_light(fd, fput_needed); 449 if (file) { 450 sock = sock_from_file(file, err); 451 if (sock) 452 return sock; 453 fput_light(file, *fput_needed); 454 } 455 return NULL; 456 } 457 458 /** 459 * sock_alloc - allocate a socket 460 * 461 * Allocate a new inode and socket object. The two are bound together 462 * and initialised. The socket is then returned. If we are out of inodes 463 * NULL is returned. 464 */ 465 466 static struct socket *sock_alloc(void) 467 { 468 struct inode *inode; 469 struct socket *sock; 470 471 inode = new_inode_pseudo(sock_mnt->mnt_sb); 472 if (!inode) 473 return NULL; 474 475 sock = SOCKET_I(inode); 476 477 kmemcheck_annotate_bitfield(sock, type); 478 inode->i_ino = get_next_ino(); 479 inode->i_mode = S_IFSOCK | S_IRWXUGO; 480 inode->i_uid = current_fsuid(); 481 inode->i_gid = current_fsgid(); 482 483 this_cpu_add(sockets_in_use, 1); 484 return sock; 485 } 486 487 /* 488 * In theory you can't get an open on this inode, but /proc provides 489 * a back door. Remember to keep it shut otherwise you'll let the 490 * creepy crawlies in. 491 */ 492 493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 494 { 495 return -ENXIO; 496 } 497 498 const struct file_operations bad_sock_fops = { 499 .owner = THIS_MODULE, 500 .open = sock_no_open, 501 .llseek = noop_llseek, 502 }; 503 504 /** 505 * sock_release - close a socket 506 * @sock: socket to close 507 * 508 * The socket is released from the protocol stack if it has a release 509 * callback, and the inode is then released if the socket is bound to 510 * an inode not a file. 511 */ 512 513 void sock_release(struct socket *sock) 514 { 515 if (sock->ops) { 516 struct module *owner = sock->ops->owner; 517 518 sock->ops->release(sock); 519 sock->ops = NULL; 520 module_put(owner); 521 } 522 523 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 524 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 525 526 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 527 return; 528 529 this_cpu_sub(sockets_in_use, 1); 530 if (!sock->file) { 531 iput(SOCK_INODE(sock)); 532 return; 533 } 534 sock->file = NULL; 535 } 536 EXPORT_SYMBOL(sock_release); 537 538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 539 { 540 *tx_flags = 0; 541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 542 *tx_flags |= SKBTX_HW_TSTAMP; 543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 544 *tx_flags |= SKBTX_SW_TSTAMP; 545 if (sock_flag(sk, SOCK_WIFI_STATUS)) 546 *tx_flags |= SKBTX_WIFI_STATUS; 547 return 0; 548 } 549 EXPORT_SYMBOL(sock_tx_timestamp); 550 551 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 552 struct msghdr *msg, size_t size) 553 { 554 struct sock_iocb *si = kiocb_to_siocb(iocb); 555 556 sock_update_classid(sock->sk); 557 558 si->sock = sock; 559 si->scm = NULL; 560 si->msg = msg; 561 si->size = size; 562 563 return sock->ops->sendmsg(iocb, sock, msg, size); 564 } 565 566 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 567 struct msghdr *msg, size_t size) 568 { 569 int err = security_socket_sendmsg(sock, msg, size); 570 571 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 572 } 573 574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 575 { 576 struct kiocb iocb; 577 struct sock_iocb siocb; 578 int ret; 579 580 init_sync_kiocb(&iocb, NULL); 581 iocb.private = &siocb; 582 ret = __sock_sendmsg(&iocb, sock, msg, size); 583 if (-EIOCBQUEUED == ret) 584 ret = wait_on_sync_kiocb(&iocb); 585 return ret; 586 } 587 EXPORT_SYMBOL(sock_sendmsg); 588 589 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 590 { 591 struct kiocb iocb; 592 struct sock_iocb siocb; 593 int ret; 594 595 init_sync_kiocb(&iocb, NULL); 596 iocb.private = &siocb; 597 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 598 if (-EIOCBQUEUED == ret) 599 ret = wait_on_sync_kiocb(&iocb); 600 return ret; 601 } 602 603 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 604 struct kvec *vec, size_t num, size_t size) 605 { 606 mm_segment_t oldfs = get_fs(); 607 int result; 608 609 set_fs(KERNEL_DS); 610 /* 611 * the following is safe, since for compiler definitions of kvec and 612 * iovec are identical, yielding the same in-core layout and alignment 613 */ 614 msg->msg_iov = (struct iovec *)vec; 615 msg->msg_iovlen = num; 616 result = sock_sendmsg(sock, msg, size); 617 set_fs(oldfs); 618 return result; 619 } 620 EXPORT_SYMBOL(kernel_sendmsg); 621 622 static int ktime2ts(ktime_t kt, struct timespec *ts) 623 { 624 if (kt.tv64) { 625 *ts = ktime_to_timespec(kt); 626 return 1; 627 } else { 628 return 0; 629 } 630 } 631 632 /* 633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 634 */ 635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 636 struct sk_buff *skb) 637 { 638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 639 struct timespec ts[3]; 640 int empty = 1; 641 struct skb_shared_hwtstamps *shhwtstamps = 642 skb_hwtstamps(skb); 643 644 /* Race occurred between timestamp enabling and packet 645 receiving. Fill in the current time for now. */ 646 if (need_software_tstamp && skb->tstamp.tv64 == 0) 647 __net_timestamp(skb); 648 649 if (need_software_tstamp) { 650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 651 struct timeval tv; 652 skb_get_timestamp(skb, &tv); 653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 654 sizeof(tv), &tv); 655 } else { 656 skb_get_timestampns(skb, &ts[0]); 657 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 658 sizeof(ts[0]), &ts[0]); 659 } 660 } 661 662 663 memset(ts, 0, sizeof(ts)); 664 if (skb->tstamp.tv64 && 665 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 666 skb_get_timestampns(skb, ts + 0); 667 empty = 0; 668 } 669 if (shhwtstamps) { 670 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 671 ktime2ts(shhwtstamps->syststamp, ts + 1)) 672 empty = 0; 673 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 674 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 675 empty = 0; 676 } 677 if (!empty) 678 put_cmsg(msg, SOL_SOCKET, 679 SCM_TIMESTAMPING, sizeof(ts), &ts); 680 } 681 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 682 683 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 684 struct sk_buff *skb) 685 { 686 int ack; 687 688 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 689 return; 690 if (!skb->wifi_acked_valid) 691 return; 692 693 ack = skb->wifi_acked; 694 695 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 696 } 697 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 698 699 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 700 struct sk_buff *skb) 701 { 702 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 703 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 704 sizeof(__u32), &skb->dropcount); 705 } 706 707 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 708 struct sk_buff *skb) 709 { 710 sock_recv_timestamp(msg, sk, skb); 711 sock_recv_drops(msg, sk, skb); 712 } 713 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 714 715 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 716 struct msghdr *msg, size_t size, int flags) 717 { 718 struct sock_iocb *si = kiocb_to_siocb(iocb); 719 720 sock_update_classid(sock->sk); 721 722 si->sock = sock; 723 si->scm = NULL; 724 si->msg = msg; 725 si->size = size; 726 si->flags = flags; 727 728 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 729 } 730 731 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 732 struct msghdr *msg, size_t size, int flags) 733 { 734 int err = security_socket_recvmsg(sock, msg, size, flags); 735 736 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 737 } 738 739 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 740 size_t size, int flags) 741 { 742 struct kiocb iocb; 743 struct sock_iocb siocb; 744 int ret; 745 746 init_sync_kiocb(&iocb, NULL); 747 iocb.private = &siocb; 748 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 749 if (-EIOCBQUEUED == ret) 750 ret = wait_on_sync_kiocb(&iocb); 751 return ret; 752 } 753 EXPORT_SYMBOL(sock_recvmsg); 754 755 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 756 size_t size, int flags) 757 { 758 struct kiocb iocb; 759 struct sock_iocb siocb; 760 int ret; 761 762 init_sync_kiocb(&iocb, NULL); 763 iocb.private = &siocb; 764 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 765 if (-EIOCBQUEUED == ret) 766 ret = wait_on_sync_kiocb(&iocb); 767 return ret; 768 } 769 770 /** 771 * kernel_recvmsg - Receive a message from a socket (kernel space) 772 * @sock: The socket to receive the message from 773 * @msg: Received message 774 * @vec: Input s/g array for message data 775 * @num: Size of input s/g array 776 * @size: Number of bytes to read 777 * @flags: Message flags (MSG_DONTWAIT, etc...) 778 * 779 * On return the msg structure contains the scatter/gather array passed in the 780 * vec argument. The array is modified so that it consists of the unfilled 781 * portion of the original array. 782 * 783 * The returned value is the total number of bytes received, or an error. 784 */ 785 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 786 struct kvec *vec, size_t num, size_t size, int flags) 787 { 788 mm_segment_t oldfs = get_fs(); 789 int result; 790 791 set_fs(KERNEL_DS); 792 /* 793 * the following is safe, since for compiler definitions of kvec and 794 * iovec are identical, yielding the same in-core layout and alignment 795 */ 796 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 797 result = sock_recvmsg(sock, msg, size, flags); 798 set_fs(oldfs); 799 return result; 800 } 801 EXPORT_SYMBOL(kernel_recvmsg); 802 803 static void sock_aio_dtor(struct kiocb *iocb) 804 { 805 kfree(iocb->private); 806 } 807 808 static ssize_t sock_sendpage(struct file *file, struct page *page, 809 int offset, size_t size, loff_t *ppos, int more) 810 { 811 struct socket *sock; 812 int flags; 813 814 sock = file->private_data; 815 816 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 817 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 818 flags |= more; 819 820 return kernel_sendpage(sock, page, offset, size, flags); 821 } 822 823 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 824 struct pipe_inode_info *pipe, size_t len, 825 unsigned int flags) 826 { 827 struct socket *sock = file->private_data; 828 829 if (unlikely(!sock->ops->splice_read)) 830 return -EINVAL; 831 832 sock_update_classid(sock->sk); 833 834 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 835 } 836 837 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 838 struct sock_iocb *siocb) 839 { 840 if (!is_sync_kiocb(iocb)) { 841 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 842 if (!siocb) 843 return NULL; 844 iocb->ki_dtor = sock_aio_dtor; 845 } 846 847 siocb->kiocb = iocb; 848 iocb->private = siocb; 849 return siocb; 850 } 851 852 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 853 struct file *file, const struct iovec *iov, 854 unsigned long nr_segs) 855 { 856 struct socket *sock = file->private_data; 857 size_t size = 0; 858 int i; 859 860 for (i = 0; i < nr_segs; i++) 861 size += iov[i].iov_len; 862 863 msg->msg_name = NULL; 864 msg->msg_namelen = 0; 865 msg->msg_control = NULL; 866 msg->msg_controllen = 0; 867 msg->msg_iov = (struct iovec *)iov; 868 msg->msg_iovlen = nr_segs; 869 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 870 871 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 872 } 873 874 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 875 unsigned long nr_segs, loff_t pos) 876 { 877 struct sock_iocb siocb, *x; 878 879 if (pos != 0) 880 return -ESPIPE; 881 882 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 883 return 0; 884 885 886 x = alloc_sock_iocb(iocb, &siocb); 887 if (!x) 888 return -ENOMEM; 889 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 890 } 891 892 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 893 struct file *file, const struct iovec *iov, 894 unsigned long nr_segs) 895 { 896 struct socket *sock = file->private_data; 897 size_t size = 0; 898 int i; 899 900 for (i = 0; i < nr_segs; i++) 901 size += iov[i].iov_len; 902 903 msg->msg_name = NULL; 904 msg->msg_namelen = 0; 905 msg->msg_control = NULL; 906 msg->msg_controllen = 0; 907 msg->msg_iov = (struct iovec *)iov; 908 msg->msg_iovlen = nr_segs; 909 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 910 if (sock->type == SOCK_SEQPACKET) 911 msg->msg_flags |= MSG_EOR; 912 913 return __sock_sendmsg(iocb, sock, msg, size); 914 } 915 916 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 917 unsigned long nr_segs, loff_t pos) 918 { 919 struct sock_iocb siocb, *x; 920 921 if (pos != 0) 922 return -ESPIPE; 923 924 x = alloc_sock_iocb(iocb, &siocb); 925 if (!x) 926 return -ENOMEM; 927 928 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 929 } 930 931 /* 932 * Atomic setting of ioctl hooks to avoid race 933 * with module unload. 934 */ 935 936 static DEFINE_MUTEX(br_ioctl_mutex); 937 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 938 939 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 940 { 941 mutex_lock(&br_ioctl_mutex); 942 br_ioctl_hook = hook; 943 mutex_unlock(&br_ioctl_mutex); 944 } 945 EXPORT_SYMBOL(brioctl_set); 946 947 static DEFINE_MUTEX(vlan_ioctl_mutex); 948 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 949 950 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 951 { 952 mutex_lock(&vlan_ioctl_mutex); 953 vlan_ioctl_hook = hook; 954 mutex_unlock(&vlan_ioctl_mutex); 955 } 956 EXPORT_SYMBOL(vlan_ioctl_set); 957 958 static DEFINE_MUTEX(dlci_ioctl_mutex); 959 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 960 961 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 962 { 963 mutex_lock(&dlci_ioctl_mutex); 964 dlci_ioctl_hook = hook; 965 mutex_unlock(&dlci_ioctl_mutex); 966 } 967 EXPORT_SYMBOL(dlci_ioctl_set); 968 969 static long sock_do_ioctl(struct net *net, struct socket *sock, 970 unsigned int cmd, unsigned long arg) 971 { 972 int err; 973 void __user *argp = (void __user *)arg; 974 975 err = sock->ops->ioctl(sock, cmd, arg); 976 977 /* 978 * If this ioctl is unknown try to hand it down 979 * to the NIC driver. 980 */ 981 if (err == -ENOIOCTLCMD) 982 err = dev_ioctl(net, cmd, argp); 983 984 return err; 985 } 986 987 /* 988 * With an ioctl, arg may well be a user mode pointer, but we don't know 989 * what to do with it - that's up to the protocol still. 990 */ 991 992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 993 { 994 struct socket *sock; 995 struct sock *sk; 996 void __user *argp = (void __user *)arg; 997 int pid, err; 998 struct net *net; 999 1000 sock = file->private_data; 1001 sk = sock->sk; 1002 net = sock_net(sk); 1003 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1004 err = dev_ioctl(net, cmd, argp); 1005 } else 1006 #ifdef CONFIG_WEXT_CORE 1007 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1008 err = dev_ioctl(net, cmd, argp); 1009 } else 1010 #endif 1011 switch (cmd) { 1012 case FIOSETOWN: 1013 case SIOCSPGRP: 1014 err = -EFAULT; 1015 if (get_user(pid, (int __user *)argp)) 1016 break; 1017 err = f_setown(sock->file, pid, 1); 1018 break; 1019 case FIOGETOWN: 1020 case SIOCGPGRP: 1021 err = put_user(f_getown(sock->file), 1022 (int __user *)argp); 1023 break; 1024 case SIOCGIFBR: 1025 case SIOCSIFBR: 1026 case SIOCBRADDBR: 1027 case SIOCBRDELBR: 1028 err = -ENOPKG; 1029 if (!br_ioctl_hook) 1030 request_module("bridge"); 1031 1032 mutex_lock(&br_ioctl_mutex); 1033 if (br_ioctl_hook) 1034 err = br_ioctl_hook(net, cmd, argp); 1035 mutex_unlock(&br_ioctl_mutex); 1036 break; 1037 case SIOCGIFVLAN: 1038 case SIOCSIFVLAN: 1039 err = -ENOPKG; 1040 if (!vlan_ioctl_hook) 1041 request_module("8021q"); 1042 1043 mutex_lock(&vlan_ioctl_mutex); 1044 if (vlan_ioctl_hook) 1045 err = vlan_ioctl_hook(net, argp); 1046 mutex_unlock(&vlan_ioctl_mutex); 1047 break; 1048 case SIOCADDDLCI: 1049 case SIOCDELDLCI: 1050 err = -ENOPKG; 1051 if (!dlci_ioctl_hook) 1052 request_module("dlci"); 1053 1054 mutex_lock(&dlci_ioctl_mutex); 1055 if (dlci_ioctl_hook) 1056 err = dlci_ioctl_hook(cmd, argp); 1057 mutex_unlock(&dlci_ioctl_mutex); 1058 break; 1059 default: 1060 err = sock_do_ioctl(net, sock, cmd, arg); 1061 break; 1062 } 1063 return err; 1064 } 1065 1066 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1067 { 1068 int err; 1069 struct socket *sock = NULL; 1070 1071 err = security_socket_create(family, type, protocol, 1); 1072 if (err) 1073 goto out; 1074 1075 sock = sock_alloc(); 1076 if (!sock) { 1077 err = -ENOMEM; 1078 goto out; 1079 } 1080 1081 sock->type = type; 1082 err = security_socket_post_create(sock, family, type, protocol, 1); 1083 if (err) 1084 goto out_release; 1085 1086 out: 1087 *res = sock; 1088 return err; 1089 out_release: 1090 sock_release(sock); 1091 sock = NULL; 1092 goto out; 1093 } 1094 EXPORT_SYMBOL(sock_create_lite); 1095 1096 /* No kernel lock held - perfect */ 1097 static unsigned int sock_poll(struct file *file, poll_table *wait) 1098 { 1099 struct socket *sock; 1100 1101 /* 1102 * We can't return errors to poll, so it's either yes or no. 1103 */ 1104 sock = file->private_data; 1105 return sock->ops->poll(file, sock, wait); 1106 } 1107 1108 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1109 { 1110 struct socket *sock = file->private_data; 1111 1112 return sock->ops->mmap(file, sock, vma); 1113 } 1114 1115 static int sock_close(struct inode *inode, struct file *filp) 1116 { 1117 /* 1118 * It was possible the inode is NULL we were 1119 * closing an unfinished socket. 1120 */ 1121 1122 if (!inode) { 1123 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1124 return 0; 1125 } 1126 sock_release(SOCKET_I(inode)); 1127 return 0; 1128 } 1129 1130 /* 1131 * Update the socket async list 1132 * 1133 * Fasync_list locking strategy. 1134 * 1135 * 1. fasync_list is modified only under process context socket lock 1136 * i.e. under semaphore. 1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1138 * or under socket lock 1139 */ 1140 1141 static int sock_fasync(int fd, struct file *filp, int on) 1142 { 1143 struct socket *sock = filp->private_data; 1144 struct sock *sk = sock->sk; 1145 struct socket_wq *wq; 1146 1147 if (sk == NULL) 1148 return -EINVAL; 1149 1150 lock_sock(sk); 1151 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1152 fasync_helper(fd, filp, on, &wq->fasync_list); 1153 1154 if (!wq->fasync_list) 1155 sock_reset_flag(sk, SOCK_FASYNC); 1156 else 1157 sock_set_flag(sk, SOCK_FASYNC); 1158 1159 release_sock(sk); 1160 return 0; 1161 } 1162 1163 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1164 1165 int sock_wake_async(struct socket *sock, int how, int band) 1166 { 1167 struct socket_wq *wq; 1168 1169 if (!sock) 1170 return -1; 1171 rcu_read_lock(); 1172 wq = rcu_dereference(sock->wq); 1173 if (!wq || !wq->fasync_list) { 1174 rcu_read_unlock(); 1175 return -1; 1176 } 1177 switch (how) { 1178 case SOCK_WAKE_WAITD: 1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1180 break; 1181 goto call_kill; 1182 case SOCK_WAKE_SPACE: 1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1184 break; 1185 /* fall through */ 1186 case SOCK_WAKE_IO: 1187 call_kill: 1188 kill_fasync(&wq->fasync_list, SIGIO, band); 1189 break; 1190 case SOCK_WAKE_URG: 1191 kill_fasync(&wq->fasync_list, SIGURG, band); 1192 } 1193 rcu_read_unlock(); 1194 return 0; 1195 } 1196 EXPORT_SYMBOL(sock_wake_async); 1197 1198 int __sock_create(struct net *net, int family, int type, int protocol, 1199 struct socket **res, int kern) 1200 { 1201 int err; 1202 struct socket *sock; 1203 const struct net_proto_family *pf; 1204 1205 /* 1206 * Check protocol is in range 1207 */ 1208 if (family < 0 || family >= NPROTO) 1209 return -EAFNOSUPPORT; 1210 if (type < 0 || type >= SOCK_MAX) 1211 return -EINVAL; 1212 1213 /* Compatibility. 1214 1215 This uglymoron is moved from INET layer to here to avoid 1216 deadlock in module load. 1217 */ 1218 if (family == PF_INET && type == SOCK_PACKET) { 1219 static int warned; 1220 if (!warned) { 1221 warned = 1; 1222 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1223 current->comm); 1224 } 1225 family = PF_PACKET; 1226 } 1227 1228 err = security_socket_create(family, type, protocol, kern); 1229 if (err) 1230 return err; 1231 1232 /* 1233 * Allocate the socket and allow the family to set things up. if 1234 * the protocol is 0, the family is instructed to select an appropriate 1235 * default. 1236 */ 1237 sock = sock_alloc(); 1238 if (!sock) { 1239 net_warn_ratelimited("socket: no more sockets\n"); 1240 return -ENFILE; /* Not exactly a match, but its the 1241 closest posix thing */ 1242 } 1243 1244 sock->type = type; 1245 1246 #ifdef CONFIG_MODULES 1247 /* Attempt to load a protocol module if the find failed. 1248 * 1249 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1250 * requested real, full-featured networking support upon configuration. 1251 * Otherwise module support will break! 1252 */ 1253 if (rcu_access_pointer(net_families[family]) == NULL) 1254 request_module("net-pf-%d", family); 1255 #endif 1256 1257 rcu_read_lock(); 1258 pf = rcu_dereference(net_families[family]); 1259 err = -EAFNOSUPPORT; 1260 if (!pf) 1261 goto out_release; 1262 1263 /* 1264 * We will call the ->create function, that possibly is in a loadable 1265 * module, so we have to bump that loadable module refcnt first. 1266 */ 1267 if (!try_module_get(pf->owner)) 1268 goto out_release; 1269 1270 /* Now protected by module ref count */ 1271 rcu_read_unlock(); 1272 1273 err = pf->create(net, sock, protocol, kern); 1274 if (err < 0) 1275 goto out_module_put; 1276 1277 /* 1278 * Now to bump the refcnt of the [loadable] module that owns this 1279 * socket at sock_release time we decrement its refcnt. 1280 */ 1281 if (!try_module_get(sock->ops->owner)) 1282 goto out_module_busy; 1283 1284 /* 1285 * Now that we're done with the ->create function, the [loadable] 1286 * module can have its refcnt decremented 1287 */ 1288 module_put(pf->owner); 1289 err = security_socket_post_create(sock, family, type, protocol, kern); 1290 if (err) 1291 goto out_sock_release; 1292 *res = sock; 1293 1294 return 0; 1295 1296 out_module_busy: 1297 err = -EAFNOSUPPORT; 1298 out_module_put: 1299 sock->ops = NULL; 1300 module_put(pf->owner); 1301 out_sock_release: 1302 sock_release(sock); 1303 return err; 1304 1305 out_release: 1306 rcu_read_unlock(); 1307 goto out_sock_release; 1308 } 1309 EXPORT_SYMBOL(__sock_create); 1310 1311 int sock_create(int family, int type, int protocol, struct socket **res) 1312 { 1313 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1314 } 1315 EXPORT_SYMBOL(sock_create); 1316 1317 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1318 { 1319 return __sock_create(&init_net, family, type, protocol, res, 1); 1320 } 1321 EXPORT_SYMBOL(sock_create_kern); 1322 1323 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1324 { 1325 int retval; 1326 struct socket *sock; 1327 int flags; 1328 1329 /* Check the SOCK_* constants for consistency. */ 1330 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1331 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1332 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1333 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1334 1335 flags = type & ~SOCK_TYPE_MASK; 1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1337 return -EINVAL; 1338 type &= SOCK_TYPE_MASK; 1339 1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1342 1343 retval = sock_create(family, type, protocol, &sock); 1344 if (retval < 0) 1345 goto out; 1346 1347 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1348 if (retval < 0) 1349 goto out_release; 1350 1351 out: 1352 /* It may be already another descriptor 8) Not kernel problem. */ 1353 return retval; 1354 1355 out_release: 1356 sock_release(sock); 1357 return retval; 1358 } 1359 1360 /* 1361 * Create a pair of connected sockets. 1362 */ 1363 1364 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1365 int __user *, usockvec) 1366 { 1367 struct socket *sock1, *sock2; 1368 int fd1, fd2, err; 1369 struct file *newfile1, *newfile2; 1370 int flags; 1371 1372 flags = type & ~SOCK_TYPE_MASK; 1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1374 return -EINVAL; 1375 type &= SOCK_TYPE_MASK; 1376 1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1379 1380 /* 1381 * Obtain the first socket and check if the underlying protocol 1382 * supports the socketpair call. 1383 */ 1384 1385 err = sock_create(family, type, protocol, &sock1); 1386 if (err < 0) 1387 goto out; 1388 1389 err = sock_create(family, type, protocol, &sock2); 1390 if (err < 0) 1391 goto out_release_1; 1392 1393 err = sock1->ops->socketpair(sock1, sock2); 1394 if (err < 0) 1395 goto out_release_both; 1396 1397 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1398 if (unlikely(fd1 < 0)) { 1399 err = fd1; 1400 goto out_release_both; 1401 } 1402 1403 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1404 if (unlikely(fd2 < 0)) { 1405 err = fd2; 1406 fput(newfile1); 1407 put_unused_fd(fd1); 1408 sock_release(sock2); 1409 goto out; 1410 } 1411 1412 audit_fd_pair(fd1, fd2); 1413 fd_install(fd1, newfile1); 1414 fd_install(fd2, newfile2); 1415 /* fd1 and fd2 may be already another descriptors. 1416 * Not kernel problem. 1417 */ 1418 1419 err = put_user(fd1, &usockvec[0]); 1420 if (!err) 1421 err = put_user(fd2, &usockvec[1]); 1422 if (!err) 1423 return 0; 1424 1425 sys_close(fd2); 1426 sys_close(fd1); 1427 return err; 1428 1429 out_release_both: 1430 sock_release(sock2); 1431 out_release_1: 1432 sock_release(sock1); 1433 out: 1434 return err; 1435 } 1436 1437 /* 1438 * Bind a name to a socket. Nothing much to do here since it's 1439 * the protocol's responsibility to handle the local address. 1440 * 1441 * We move the socket address to kernel space before we call 1442 * the protocol layer (having also checked the address is ok). 1443 */ 1444 1445 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1446 { 1447 struct socket *sock; 1448 struct sockaddr_storage address; 1449 int err, fput_needed; 1450 1451 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1452 if (sock) { 1453 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1454 if (err >= 0) { 1455 err = security_socket_bind(sock, 1456 (struct sockaddr *)&address, 1457 addrlen); 1458 if (!err) 1459 err = sock->ops->bind(sock, 1460 (struct sockaddr *) 1461 &address, addrlen); 1462 } 1463 fput_light(sock->file, fput_needed); 1464 } 1465 return err; 1466 } 1467 1468 /* 1469 * Perform a listen. Basically, we allow the protocol to do anything 1470 * necessary for a listen, and if that works, we mark the socket as 1471 * ready for listening. 1472 */ 1473 1474 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1475 { 1476 struct socket *sock; 1477 int err, fput_needed; 1478 int somaxconn; 1479 1480 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1481 if (sock) { 1482 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1483 if ((unsigned int)backlog > somaxconn) 1484 backlog = somaxconn; 1485 1486 err = security_socket_listen(sock, backlog); 1487 if (!err) 1488 err = sock->ops->listen(sock, backlog); 1489 1490 fput_light(sock->file, fput_needed); 1491 } 1492 return err; 1493 } 1494 1495 /* 1496 * For accept, we attempt to create a new socket, set up the link 1497 * with the client, wake up the client, then return the new 1498 * connected fd. We collect the address of the connector in kernel 1499 * space and move it to user at the very end. This is unclean because 1500 * we open the socket then return an error. 1501 * 1502 * 1003.1g adds the ability to recvmsg() to query connection pending 1503 * status to recvmsg. We need to add that support in a way thats 1504 * clean when we restucture accept also. 1505 */ 1506 1507 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1508 int __user *, upeer_addrlen, int, flags) 1509 { 1510 struct socket *sock, *newsock; 1511 struct file *newfile; 1512 int err, len, newfd, fput_needed; 1513 struct sockaddr_storage address; 1514 1515 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1516 return -EINVAL; 1517 1518 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1519 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1520 1521 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1522 if (!sock) 1523 goto out; 1524 1525 err = -ENFILE; 1526 newsock = sock_alloc(); 1527 if (!newsock) 1528 goto out_put; 1529 1530 newsock->type = sock->type; 1531 newsock->ops = sock->ops; 1532 1533 /* 1534 * We don't need try_module_get here, as the listening socket (sock) 1535 * has the protocol module (sock->ops->owner) held. 1536 */ 1537 __module_get(newsock->ops->owner); 1538 1539 newfd = sock_alloc_file(newsock, &newfile, flags); 1540 if (unlikely(newfd < 0)) { 1541 err = newfd; 1542 sock_release(newsock); 1543 goto out_put; 1544 } 1545 1546 err = security_socket_accept(sock, newsock); 1547 if (err) 1548 goto out_fd; 1549 1550 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1551 if (err < 0) 1552 goto out_fd; 1553 1554 if (upeer_sockaddr) { 1555 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1556 &len, 2) < 0) { 1557 err = -ECONNABORTED; 1558 goto out_fd; 1559 } 1560 err = move_addr_to_user(&address, 1561 len, upeer_sockaddr, upeer_addrlen); 1562 if (err < 0) 1563 goto out_fd; 1564 } 1565 1566 /* File flags are not inherited via accept() unlike another OSes. */ 1567 1568 fd_install(newfd, newfile); 1569 err = newfd; 1570 1571 out_put: 1572 fput_light(sock->file, fput_needed); 1573 out: 1574 return err; 1575 out_fd: 1576 fput(newfile); 1577 put_unused_fd(newfd); 1578 goto out_put; 1579 } 1580 1581 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1582 int __user *, upeer_addrlen) 1583 { 1584 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1585 } 1586 1587 /* 1588 * Attempt to connect to a socket with the server address. The address 1589 * is in user space so we verify it is OK and move it to kernel space. 1590 * 1591 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1592 * break bindings 1593 * 1594 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1595 * other SEQPACKET protocols that take time to connect() as it doesn't 1596 * include the -EINPROGRESS status for such sockets. 1597 */ 1598 1599 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1600 int, addrlen) 1601 { 1602 struct socket *sock; 1603 struct sockaddr_storage address; 1604 int err, fput_needed; 1605 1606 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1607 if (!sock) 1608 goto out; 1609 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1610 if (err < 0) 1611 goto out_put; 1612 1613 err = 1614 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1615 if (err) 1616 goto out_put; 1617 1618 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1619 sock->file->f_flags); 1620 out_put: 1621 fput_light(sock->file, fput_needed); 1622 out: 1623 return err; 1624 } 1625 1626 /* 1627 * Get the local address ('name') of a socket object. Move the obtained 1628 * name to user space. 1629 */ 1630 1631 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1632 int __user *, usockaddr_len) 1633 { 1634 struct socket *sock; 1635 struct sockaddr_storage address; 1636 int len, err, fput_needed; 1637 1638 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1639 if (!sock) 1640 goto out; 1641 1642 err = security_socket_getsockname(sock); 1643 if (err) 1644 goto out_put; 1645 1646 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1647 if (err) 1648 goto out_put; 1649 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1650 1651 out_put: 1652 fput_light(sock->file, fput_needed); 1653 out: 1654 return err; 1655 } 1656 1657 /* 1658 * Get the remote address ('name') of a socket object. Move the obtained 1659 * name to user space. 1660 */ 1661 1662 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1663 int __user *, usockaddr_len) 1664 { 1665 struct socket *sock; 1666 struct sockaddr_storage address; 1667 int len, err, fput_needed; 1668 1669 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1670 if (sock != NULL) { 1671 err = security_socket_getpeername(sock); 1672 if (err) { 1673 fput_light(sock->file, fput_needed); 1674 return err; 1675 } 1676 1677 err = 1678 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1679 1); 1680 if (!err) 1681 err = move_addr_to_user(&address, len, usockaddr, 1682 usockaddr_len); 1683 fput_light(sock->file, fput_needed); 1684 } 1685 return err; 1686 } 1687 1688 /* 1689 * Send a datagram to a given address. We move the address into kernel 1690 * space and check the user space data area is readable before invoking 1691 * the protocol. 1692 */ 1693 1694 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1695 unsigned int, flags, struct sockaddr __user *, addr, 1696 int, addr_len) 1697 { 1698 struct socket *sock; 1699 struct sockaddr_storage address; 1700 int err; 1701 struct msghdr msg; 1702 struct iovec iov; 1703 int fput_needed; 1704 1705 if (len > INT_MAX) 1706 len = INT_MAX; 1707 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1708 if (!sock) 1709 goto out; 1710 1711 iov.iov_base = buff; 1712 iov.iov_len = len; 1713 msg.msg_name = NULL; 1714 msg.msg_iov = &iov; 1715 msg.msg_iovlen = 1; 1716 msg.msg_control = NULL; 1717 msg.msg_controllen = 0; 1718 msg.msg_namelen = 0; 1719 if (addr) { 1720 err = move_addr_to_kernel(addr, addr_len, &address); 1721 if (err < 0) 1722 goto out_put; 1723 msg.msg_name = (struct sockaddr *)&address; 1724 msg.msg_namelen = addr_len; 1725 } 1726 if (sock->file->f_flags & O_NONBLOCK) 1727 flags |= MSG_DONTWAIT; 1728 msg.msg_flags = flags; 1729 err = sock_sendmsg(sock, &msg, len); 1730 1731 out_put: 1732 fput_light(sock->file, fput_needed); 1733 out: 1734 return err; 1735 } 1736 1737 /* 1738 * Send a datagram down a socket. 1739 */ 1740 1741 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1742 unsigned int, flags) 1743 { 1744 return sys_sendto(fd, buff, len, flags, NULL, 0); 1745 } 1746 1747 /* 1748 * Receive a frame from the socket and optionally record the address of the 1749 * sender. We verify the buffers are writable and if needed move the 1750 * sender address from kernel to user space. 1751 */ 1752 1753 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1754 unsigned int, flags, struct sockaddr __user *, addr, 1755 int __user *, addr_len) 1756 { 1757 struct socket *sock; 1758 struct iovec iov; 1759 struct msghdr msg; 1760 struct sockaddr_storage address; 1761 int err, err2; 1762 int fput_needed; 1763 1764 if (size > INT_MAX) 1765 size = INT_MAX; 1766 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1767 if (!sock) 1768 goto out; 1769 1770 msg.msg_control = NULL; 1771 msg.msg_controllen = 0; 1772 msg.msg_iovlen = 1; 1773 msg.msg_iov = &iov; 1774 iov.iov_len = size; 1775 iov.iov_base = ubuf; 1776 msg.msg_name = (struct sockaddr *)&address; 1777 msg.msg_namelen = sizeof(address); 1778 if (sock->file->f_flags & O_NONBLOCK) 1779 flags |= MSG_DONTWAIT; 1780 err = sock_recvmsg(sock, &msg, size, flags); 1781 1782 if (err >= 0 && addr != NULL) { 1783 err2 = move_addr_to_user(&address, 1784 msg.msg_namelen, addr, addr_len); 1785 if (err2 < 0) 1786 err = err2; 1787 } 1788 1789 fput_light(sock->file, fput_needed); 1790 out: 1791 return err; 1792 } 1793 1794 /* 1795 * Receive a datagram from a socket. 1796 */ 1797 1798 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1799 unsigned int flags) 1800 { 1801 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1802 } 1803 1804 /* 1805 * Set a socket option. Because we don't know the option lengths we have 1806 * to pass the user mode parameter for the protocols to sort out. 1807 */ 1808 1809 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1810 char __user *, optval, int, optlen) 1811 { 1812 int err, fput_needed; 1813 struct socket *sock; 1814 1815 if (optlen < 0) 1816 return -EINVAL; 1817 1818 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1819 if (sock != NULL) { 1820 err = security_socket_setsockopt(sock, level, optname); 1821 if (err) 1822 goto out_put; 1823 1824 if (level == SOL_SOCKET) 1825 err = 1826 sock_setsockopt(sock, level, optname, optval, 1827 optlen); 1828 else 1829 err = 1830 sock->ops->setsockopt(sock, level, optname, optval, 1831 optlen); 1832 out_put: 1833 fput_light(sock->file, fput_needed); 1834 } 1835 return err; 1836 } 1837 1838 /* 1839 * Get a socket option. Because we don't know the option lengths we have 1840 * to pass a user mode parameter for the protocols to sort out. 1841 */ 1842 1843 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1844 char __user *, optval, int __user *, optlen) 1845 { 1846 int err, fput_needed; 1847 struct socket *sock; 1848 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (sock != NULL) { 1851 err = security_socket_getsockopt(sock, level, optname); 1852 if (err) 1853 goto out_put; 1854 1855 if (level == SOL_SOCKET) 1856 err = 1857 sock_getsockopt(sock, level, optname, optval, 1858 optlen); 1859 else 1860 err = 1861 sock->ops->getsockopt(sock, level, optname, optval, 1862 optlen); 1863 out_put: 1864 fput_light(sock->file, fput_needed); 1865 } 1866 return err; 1867 } 1868 1869 /* 1870 * Shutdown a socket. 1871 */ 1872 1873 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1874 { 1875 int err, fput_needed; 1876 struct socket *sock; 1877 1878 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1879 if (sock != NULL) { 1880 err = security_socket_shutdown(sock, how); 1881 if (!err) 1882 err = sock->ops->shutdown(sock, how); 1883 fput_light(sock->file, fput_needed); 1884 } 1885 return err; 1886 } 1887 1888 /* A couple of helpful macros for getting the address of the 32/64 bit 1889 * fields which are the same type (int / unsigned) on our platforms. 1890 */ 1891 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1892 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1893 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1894 1895 struct used_address { 1896 struct sockaddr_storage name; 1897 unsigned int name_len; 1898 }; 1899 1900 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1901 struct msghdr *msg_sys, unsigned int flags, 1902 struct used_address *used_address) 1903 { 1904 struct compat_msghdr __user *msg_compat = 1905 (struct compat_msghdr __user *)msg; 1906 struct sockaddr_storage address; 1907 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1908 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1909 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1910 /* 20 is size of ipv6_pktinfo */ 1911 unsigned char *ctl_buf = ctl; 1912 int err, ctl_len, total_len; 1913 1914 err = -EFAULT; 1915 if (MSG_CMSG_COMPAT & flags) { 1916 if (get_compat_msghdr(msg_sys, msg_compat)) 1917 return -EFAULT; 1918 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1919 return -EFAULT; 1920 1921 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1922 err = -EMSGSIZE; 1923 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1924 goto out; 1925 err = -ENOMEM; 1926 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 1927 GFP_KERNEL); 1928 if (!iov) 1929 goto out; 1930 } 1931 1932 /* This will also move the address data into kernel space */ 1933 if (MSG_CMSG_COMPAT & flags) { 1934 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 1935 } else 1936 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 1937 if (err < 0) 1938 goto out_freeiov; 1939 total_len = err; 1940 1941 err = -ENOBUFS; 1942 1943 if (msg_sys->msg_controllen > INT_MAX) 1944 goto out_freeiov; 1945 ctl_len = msg_sys->msg_controllen; 1946 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1947 err = 1948 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1949 sizeof(ctl)); 1950 if (err) 1951 goto out_freeiov; 1952 ctl_buf = msg_sys->msg_control; 1953 ctl_len = msg_sys->msg_controllen; 1954 } else if (ctl_len) { 1955 if (ctl_len > sizeof(ctl)) { 1956 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1957 if (ctl_buf == NULL) 1958 goto out_freeiov; 1959 } 1960 err = -EFAULT; 1961 /* 1962 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1963 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1964 * checking falls down on this. 1965 */ 1966 if (copy_from_user(ctl_buf, 1967 (void __user __force *)msg_sys->msg_control, 1968 ctl_len)) 1969 goto out_freectl; 1970 msg_sys->msg_control = ctl_buf; 1971 } 1972 msg_sys->msg_flags = flags; 1973 1974 if (sock->file->f_flags & O_NONBLOCK) 1975 msg_sys->msg_flags |= MSG_DONTWAIT; 1976 /* 1977 * If this is sendmmsg() and current destination address is same as 1978 * previously succeeded address, omit asking LSM's decision. 1979 * used_address->name_len is initialized to UINT_MAX so that the first 1980 * destination address never matches. 1981 */ 1982 if (used_address && msg_sys->msg_name && 1983 used_address->name_len == msg_sys->msg_namelen && 1984 !memcmp(&used_address->name, msg_sys->msg_name, 1985 used_address->name_len)) { 1986 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 1987 goto out_freectl; 1988 } 1989 err = sock_sendmsg(sock, msg_sys, total_len); 1990 /* 1991 * If this is sendmmsg() and sending to current destination address was 1992 * successful, remember it. 1993 */ 1994 if (used_address && err >= 0) { 1995 used_address->name_len = msg_sys->msg_namelen; 1996 if (msg_sys->msg_name) 1997 memcpy(&used_address->name, msg_sys->msg_name, 1998 used_address->name_len); 1999 } 2000 2001 out_freectl: 2002 if (ctl_buf != ctl) 2003 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2004 out_freeiov: 2005 if (iov != iovstack) 2006 kfree(iov); 2007 out: 2008 return err; 2009 } 2010 2011 /* 2012 * BSD sendmsg interface 2013 */ 2014 2015 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2016 { 2017 int fput_needed, err; 2018 struct msghdr msg_sys; 2019 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2020 2021 if (!sock) 2022 goto out; 2023 2024 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2025 2026 fput_light(sock->file, fput_needed); 2027 out: 2028 return err; 2029 } 2030 2031 /* 2032 * Linux sendmmsg interface 2033 */ 2034 2035 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2036 unsigned int flags) 2037 { 2038 int fput_needed, err, datagrams; 2039 struct socket *sock; 2040 struct mmsghdr __user *entry; 2041 struct compat_mmsghdr __user *compat_entry; 2042 struct msghdr msg_sys; 2043 struct used_address used_address; 2044 2045 if (vlen > UIO_MAXIOV) 2046 vlen = UIO_MAXIOV; 2047 2048 datagrams = 0; 2049 2050 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2051 if (!sock) 2052 return err; 2053 2054 used_address.name_len = UINT_MAX; 2055 entry = mmsg; 2056 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2057 err = 0; 2058 2059 while (datagrams < vlen) { 2060 if (MSG_CMSG_COMPAT & flags) { 2061 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2062 &msg_sys, flags, &used_address); 2063 if (err < 0) 2064 break; 2065 err = __put_user(err, &compat_entry->msg_len); 2066 ++compat_entry; 2067 } else { 2068 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2069 &msg_sys, flags, &used_address); 2070 if (err < 0) 2071 break; 2072 err = put_user(err, &entry->msg_len); 2073 ++entry; 2074 } 2075 2076 if (err) 2077 break; 2078 ++datagrams; 2079 } 2080 2081 fput_light(sock->file, fput_needed); 2082 2083 /* We only return an error if no datagrams were able to be sent */ 2084 if (datagrams != 0) 2085 return datagrams; 2086 2087 return err; 2088 } 2089 2090 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2091 unsigned int, vlen, unsigned int, flags) 2092 { 2093 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2094 } 2095 2096 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2097 struct msghdr *msg_sys, unsigned int flags, int nosec) 2098 { 2099 struct compat_msghdr __user *msg_compat = 2100 (struct compat_msghdr __user *)msg; 2101 struct iovec iovstack[UIO_FASTIOV]; 2102 struct iovec *iov = iovstack; 2103 unsigned long cmsg_ptr; 2104 int err, total_len, len; 2105 2106 /* kernel mode address */ 2107 struct sockaddr_storage addr; 2108 2109 /* user mode address pointers */ 2110 struct sockaddr __user *uaddr; 2111 int __user *uaddr_len; 2112 2113 if (MSG_CMSG_COMPAT & flags) { 2114 if (get_compat_msghdr(msg_sys, msg_compat)) 2115 return -EFAULT; 2116 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2117 return -EFAULT; 2118 2119 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2120 err = -EMSGSIZE; 2121 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2122 goto out; 2123 err = -ENOMEM; 2124 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2125 GFP_KERNEL); 2126 if (!iov) 2127 goto out; 2128 } 2129 2130 /* 2131 * Save the user-mode address (verify_iovec will change the 2132 * kernel msghdr to use the kernel address space) 2133 */ 2134 2135 uaddr = (__force void __user *)msg_sys->msg_name; 2136 uaddr_len = COMPAT_NAMELEN(msg); 2137 if (MSG_CMSG_COMPAT & flags) { 2138 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2139 } else 2140 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2141 if (err < 0) 2142 goto out_freeiov; 2143 total_len = err; 2144 2145 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2146 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2147 2148 if (sock->file->f_flags & O_NONBLOCK) 2149 flags |= MSG_DONTWAIT; 2150 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2151 total_len, flags); 2152 if (err < 0) 2153 goto out_freeiov; 2154 len = err; 2155 2156 if (uaddr != NULL) { 2157 err = move_addr_to_user(&addr, 2158 msg_sys->msg_namelen, uaddr, 2159 uaddr_len); 2160 if (err < 0) 2161 goto out_freeiov; 2162 } 2163 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2164 COMPAT_FLAGS(msg)); 2165 if (err) 2166 goto out_freeiov; 2167 if (MSG_CMSG_COMPAT & flags) 2168 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2169 &msg_compat->msg_controllen); 2170 else 2171 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2172 &msg->msg_controllen); 2173 if (err) 2174 goto out_freeiov; 2175 err = len; 2176 2177 out_freeiov: 2178 if (iov != iovstack) 2179 kfree(iov); 2180 out: 2181 return err; 2182 } 2183 2184 /* 2185 * BSD recvmsg interface 2186 */ 2187 2188 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2189 unsigned int, flags) 2190 { 2191 int fput_needed, err; 2192 struct msghdr msg_sys; 2193 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2194 2195 if (!sock) 2196 goto out; 2197 2198 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2199 2200 fput_light(sock->file, fput_needed); 2201 out: 2202 return err; 2203 } 2204 2205 /* 2206 * Linux recvmmsg interface 2207 */ 2208 2209 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2210 unsigned int flags, struct timespec *timeout) 2211 { 2212 int fput_needed, err, datagrams; 2213 struct socket *sock; 2214 struct mmsghdr __user *entry; 2215 struct compat_mmsghdr __user *compat_entry; 2216 struct msghdr msg_sys; 2217 struct timespec end_time; 2218 2219 if (timeout && 2220 poll_select_set_timeout(&end_time, timeout->tv_sec, 2221 timeout->tv_nsec)) 2222 return -EINVAL; 2223 2224 datagrams = 0; 2225 2226 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2227 if (!sock) 2228 return err; 2229 2230 err = sock_error(sock->sk); 2231 if (err) 2232 goto out_put; 2233 2234 entry = mmsg; 2235 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2236 2237 while (datagrams < vlen) { 2238 /* 2239 * No need to ask LSM for more than the first datagram. 2240 */ 2241 if (MSG_CMSG_COMPAT & flags) { 2242 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2243 &msg_sys, flags & ~MSG_WAITFORONE, 2244 datagrams); 2245 if (err < 0) 2246 break; 2247 err = __put_user(err, &compat_entry->msg_len); 2248 ++compat_entry; 2249 } else { 2250 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2251 &msg_sys, flags & ~MSG_WAITFORONE, 2252 datagrams); 2253 if (err < 0) 2254 break; 2255 err = put_user(err, &entry->msg_len); 2256 ++entry; 2257 } 2258 2259 if (err) 2260 break; 2261 ++datagrams; 2262 2263 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2264 if (flags & MSG_WAITFORONE) 2265 flags |= MSG_DONTWAIT; 2266 2267 if (timeout) { 2268 ktime_get_ts(timeout); 2269 *timeout = timespec_sub(end_time, *timeout); 2270 if (timeout->tv_sec < 0) { 2271 timeout->tv_sec = timeout->tv_nsec = 0; 2272 break; 2273 } 2274 2275 /* Timeout, return less than vlen datagrams */ 2276 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2277 break; 2278 } 2279 2280 /* Out of band data, return right away */ 2281 if (msg_sys.msg_flags & MSG_OOB) 2282 break; 2283 } 2284 2285 out_put: 2286 fput_light(sock->file, fput_needed); 2287 2288 if (err == 0) 2289 return datagrams; 2290 2291 if (datagrams != 0) { 2292 /* 2293 * We may return less entries than requested (vlen) if the 2294 * sock is non block and there aren't enough datagrams... 2295 */ 2296 if (err != -EAGAIN) { 2297 /* 2298 * ... or if recvmsg returns an error after we 2299 * received some datagrams, where we record the 2300 * error to return on the next call or if the 2301 * app asks about it using getsockopt(SO_ERROR). 2302 */ 2303 sock->sk->sk_err = -err; 2304 } 2305 2306 return datagrams; 2307 } 2308 2309 return err; 2310 } 2311 2312 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2313 unsigned int, vlen, unsigned int, flags, 2314 struct timespec __user *, timeout) 2315 { 2316 int datagrams; 2317 struct timespec timeout_sys; 2318 2319 if (!timeout) 2320 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2321 2322 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2323 return -EFAULT; 2324 2325 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2326 2327 if (datagrams > 0 && 2328 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2329 datagrams = -EFAULT; 2330 2331 return datagrams; 2332 } 2333 2334 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2335 /* Argument list sizes for sys_socketcall */ 2336 #define AL(x) ((x) * sizeof(unsigned long)) 2337 static const unsigned char nargs[21] = { 2338 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2339 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2340 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2341 AL(4), AL(5), AL(4) 2342 }; 2343 2344 #undef AL 2345 2346 /* 2347 * System call vectors. 2348 * 2349 * Argument checking cleaned up. Saved 20% in size. 2350 * This function doesn't need to set the kernel lock because 2351 * it is set by the callees. 2352 */ 2353 2354 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2355 { 2356 unsigned long a[6]; 2357 unsigned long a0, a1; 2358 int err; 2359 unsigned int len; 2360 2361 if (call < 1 || call > SYS_SENDMMSG) 2362 return -EINVAL; 2363 2364 len = nargs[call]; 2365 if (len > sizeof(a)) 2366 return -EINVAL; 2367 2368 /* copy_from_user should be SMP safe. */ 2369 if (copy_from_user(a, args, len)) 2370 return -EFAULT; 2371 2372 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2373 2374 a0 = a[0]; 2375 a1 = a[1]; 2376 2377 switch (call) { 2378 case SYS_SOCKET: 2379 err = sys_socket(a0, a1, a[2]); 2380 break; 2381 case SYS_BIND: 2382 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2383 break; 2384 case SYS_CONNECT: 2385 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2386 break; 2387 case SYS_LISTEN: 2388 err = sys_listen(a0, a1); 2389 break; 2390 case SYS_ACCEPT: 2391 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2392 (int __user *)a[2], 0); 2393 break; 2394 case SYS_GETSOCKNAME: 2395 err = 2396 sys_getsockname(a0, (struct sockaddr __user *)a1, 2397 (int __user *)a[2]); 2398 break; 2399 case SYS_GETPEERNAME: 2400 err = 2401 sys_getpeername(a0, (struct sockaddr __user *)a1, 2402 (int __user *)a[2]); 2403 break; 2404 case SYS_SOCKETPAIR: 2405 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2406 break; 2407 case SYS_SEND: 2408 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2409 break; 2410 case SYS_SENDTO: 2411 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2412 (struct sockaddr __user *)a[4], a[5]); 2413 break; 2414 case SYS_RECV: 2415 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2416 break; 2417 case SYS_RECVFROM: 2418 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2419 (struct sockaddr __user *)a[4], 2420 (int __user *)a[5]); 2421 break; 2422 case SYS_SHUTDOWN: 2423 err = sys_shutdown(a0, a1); 2424 break; 2425 case SYS_SETSOCKOPT: 2426 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2427 break; 2428 case SYS_GETSOCKOPT: 2429 err = 2430 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2431 (int __user *)a[4]); 2432 break; 2433 case SYS_SENDMSG: 2434 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2435 break; 2436 case SYS_SENDMMSG: 2437 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2438 break; 2439 case SYS_RECVMSG: 2440 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2441 break; 2442 case SYS_RECVMMSG: 2443 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2444 (struct timespec __user *)a[4]); 2445 break; 2446 case SYS_ACCEPT4: 2447 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2448 (int __user *)a[2], a[3]); 2449 break; 2450 default: 2451 err = -EINVAL; 2452 break; 2453 } 2454 return err; 2455 } 2456 2457 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2458 2459 /** 2460 * sock_register - add a socket protocol handler 2461 * @ops: description of protocol 2462 * 2463 * This function is called by a protocol handler that wants to 2464 * advertise its address family, and have it linked into the 2465 * socket interface. The value ops->family coresponds to the 2466 * socket system call protocol family. 2467 */ 2468 int sock_register(const struct net_proto_family *ops) 2469 { 2470 int err; 2471 2472 if (ops->family >= NPROTO) { 2473 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2474 NPROTO); 2475 return -ENOBUFS; 2476 } 2477 2478 spin_lock(&net_family_lock); 2479 if (rcu_dereference_protected(net_families[ops->family], 2480 lockdep_is_held(&net_family_lock))) 2481 err = -EEXIST; 2482 else { 2483 rcu_assign_pointer(net_families[ops->family], ops); 2484 err = 0; 2485 } 2486 spin_unlock(&net_family_lock); 2487 2488 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2489 return err; 2490 } 2491 EXPORT_SYMBOL(sock_register); 2492 2493 /** 2494 * sock_unregister - remove a protocol handler 2495 * @family: protocol family to remove 2496 * 2497 * This function is called by a protocol handler that wants to 2498 * remove its address family, and have it unlinked from the 2499 * new socket creation. 2500 * 2501 * If protocol handler is a module, then it can use module reference 2502 * counts to protect against new references. If protocol handler is not 2503 * a module then it needs to provide its own protection in 2504 * the ops->create routine. 2505 */ 2506 void sock_unregister(int family) 2507 { 2508 BUG_ON(family < 0 || family >= NPROTO); 2509 2510 spin_lock(&net_family_lock); 2511 RCU_INIT_POINTER(net_families[family], NULL); 2512 spin_unlock(&net_family_lock); 2513 2514 synchronize_rcu(); 2515 2516 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2517 } 2518 EXPORT_SYMBOL(sock_unregister); 2519 2520 static int __init sock_init(void) 2521 { 2522 int err; 2523 /* 2524 * Initialize the network sysctl infrastructure. 2525 */ 2526 err = net_sysctl_init(); 2527 if (err) 2528 goto out; 2529 2530 /* 2531 * Initialize sock SLAB cache. 2532 */ 2533 2534 sk_init(); 2535 2536 /* 2537 * Initialize skbuff SLAB cache 2538 */ 2539 skb_init(); 2540 2541 /* 2542 * Initialize the protocols module. 2543 */ 2544 2545 init_inodecache(); 2546 2547 err = register_filesystem(&sock_fs_type); 2548 if (err) 2549 goto out_fs; 2550 sock_mnt = kern_mount(&sock_fs_type); 2551 if (IS_ERR(sock_mnt)) { 2552 err = PTR_ERR(sock_mnt); 2553 goto out_mount; 2554 } 2555 2556 /* The real protocol initialization is performed in later initcalls. 2557 */ 2558 2559 #ifdef CONFIG_NETFILTER 2560 netfilter_init(); 2561 #endif 2562 2563 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2564 skb_timestamping_init(); 2565 #endif 2566 2567 out: 2568 return err; 2569 2570 out_mount: 2571 unregister_filesystem(&sock_fs_type); 2572 out_fs: 2573 goto out; 2574 } 2575 2576 core_initcall(sock_init); /* early initcall */ 2577 2578 #ifdef CONFIG_PROC_FS 2579 void socket_seq_show(struct seq_file *seq) 2580 { 2581 int cpu; 2582 int counter = 0; 2583 2584 for_each_possible_cpu(cpu) 2585 counter += per_cpu(sockets_in_use, cpu); 2586 2587 /* It can be negative, by the way. 8) */ 2588 if (counter < 0) 2589 counter = 0; 2590 2591 seq_printf(seq, "sockets: used %d\n", counter); 2592 } 2593 #endif /* CONFIG_PROC_FS */ 2594 2595 #ifdef CONFIG_COMPAT 2596 static int do_siocgstamp(struct net *net, struct socket *sock, 2597 unsigned int cmd, void __user *up) 2598 { 2599 mm_segment_t old_fs = get_fs(); 2600 struct timeval ktv; 2601 int err; 2602 2603 set_fs(KERNEL_DS); 2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2605 set_fs(old_fs); 2606 if (!err) 2607 err = compat_put_timeval(&ktv, up); 2608 2609 return err; 2610 } 2611 2612 static int do_siocgstampns(struct net *net, struct socket *sock, 2613 unsigned int cmd, void __user *up) 2614 { 2615 mm_segment_t old_fs = get_fs(); 2616 struct timespec kts; 2617 int err; 2618 2619 set_fs(KERNEL_DS); 2620 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2621 set_fs(old_fs); 2622 if (!err) 2623 err = compat_put_timespec(&kts, up); 2624 2625 return err; 2626 } 2627 2628 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2629 { 2630 struct ifreq __user *uifr; 2631 int err; 2632 2633 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2634 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2635 return -EFAULT; 2636 2637 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2638 if (err) 2639 return err; 2640 2641 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2642 return -EFAULT; 2643 2644 return 0; 2645 } 2646 2647 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2648 { 2649 struct compat_ifconf ifc32; 2650 struct ifconf ifc; 2651 struct ifconf __user *uifc; 2652 struct compat_ifreq __user *ifr32; 2653 struct ifreq __user *ifr; 2654 unsigned int i, j; 2655 int err; 2656 2657 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2658 return -EFAULT; 2659 2660 memset(&ifc, 0, sizeof(ifc)); 2661 if (ifc32.ifcbuf == 0) { 2662 ifc32.ifc_len = 0; 2663 ifc.ifc_len = 0; 2664 ifc.ifc_req = NULL; 2665 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2666 } else { 2667 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2668 sizeof(struct ifreq); 2669 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2670 ifc.ifc_len = len; 2671 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2672 ifr32 = compat_ptr(ifc32.ifcbuf); 2673 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2674 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2675 return -EFAULT; 2676 ifr++; 2677 ifr32++; 2678 } 2679 } 2680 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2681 return -EFAULT; 2682 2683 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2684 if (err) 2685 return err; 2686 2687 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2688 return -EFAULT; 2689 2690 ifr = ifc.ifc_req; 2691 ifr32 = compat_ptr(ifc32.ifcbuf); 2692 for (i = 0, j = 0; 2693 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2694 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2695 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2696 return -EFAULT; 2697 ifr32++; 2698 ifr++; 2699 } 2700 2701 if (ifc32.ifcbuf == 0) { 2702 /* Translate from 64-bit structure multiple to 2703 * a 32-bit one. 2704 */ 2705 i = ifc.ifc_len; 2706 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2707 ifc32.ifc_len = i; 2708 } else { 2709 ifc32.ifc_len = i; 2710 } 2711 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2712 return -EFAULT; 2713 2714 return 0; 2715 } 2716 2717 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2718 { 2719 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2720 bool convert_in = false, convert_out = false; 2721 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2722 struct ethtool_rxnfc __user *rxnfc; 2723 struct ifreq __user *ifr; 2724 u32 rule_cnt = 0, actual_rule_cnt; 2725 u32 ethcmd; 2726 u32 data; 2727 int ret; 2728 2729 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2730 return -EFAULT; 2731 2732 compat_rxnfc = compat_ptr(data); 2733 2734 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2735 return -EFAULT; 2736 2737 /* Most ethtool structures are defined without padding. 2738 * Unfortunately struct ethtool_rxnfc is an exception. 2739 */ 2740 switch (ethcmd) { 2741 default: 2742 break; 2743 case ETHTOOL_GRXCLSRLALL: 2744 /* Buffer size is variable */ 2745 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2746 return -EFAULT; 2747 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2748 return -ENOMEM; 2749 buf_size += rule_cnt * sizeof(u32); 2750 /* fall through */ 2751 case ETHTOOL_GRXRINGS: 2752 case ETHTOOL_GRXCLSRLCNT: 2753 case ETHTOOL_GRXCLSRULE: 2754 case ETHTOOL_SRXCLSRLINS: 2755 convert_out = true; 2756 /* fall through */ 2757 case ETHTOOL_SRXCLSRLDEL: 2758 buf_size += sizeof(struct ethtool_rxnfc); 2759 convert_in = true; 2760 break; 2761 } 2762 2763 ifr = compat_alloc_user_space(buf_size); 2764 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2765 2766 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2767 return -EFAULT; 2768 2769 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2770 &ifr->ifr_ifru.ifru_data)) 2771 return -EFAULT; 2772 2773 if (convert_in) { 2774 /* We expect there to be holes between fs.m_ext and 2775 * fs.ring_cookie and at the end of fs, but nowhere else. 2776 */ 2777 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2778 sizeof(compat_rxnfc->fs.m_ext) != 2779 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2780 sizeof(rxnfc->fs.m_ext)); 2781 BUILD_BUG_ON( 2782 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2783 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2784 offsetof(struct ethtool_rxnfc, fs.location) - 2785 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2786 2787 if (copy_in_user(rxnfc, compat_rxnfc, 2788 (void *)(&rxnfc->fs.m_ext + 1) - 2789 (void *)rxnfc) || 2790 copy_in_user(&rxnfc->fs.ring_cookie, 2791 &compat_rxnfc->fs.ring_cookie, 2792 (void *)(&rxnfc->fs.location + 1) - 2793 (void *)&rxnfc->fs.ring_cookie) || 2794 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2795 sizeof(rxnfc->rule_cnt))) 2796 return -EFAULT; 2797 } 2798 2799 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2800 if (ret) 2801 return ret; 2802 2803 if (convert_out) { 2804 if (copy_in_user(compat_rxnfc, rxnfc, 2805 (const void *)(&rxnfc->fs.m_ext + 1) - 2806 (const void *)rxnfc) || 2807 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2808 &rxnfc->fs.ring_cookie, 2809 (const void *)(&rxnfc->fs.location + 1) - 2810 (const void *)&rxnfc->fs.ring_cookie) || 2811 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2812 sizeof(rxnfc->rule_cnt))) 2813 return -EFAULT; 2814 2815 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2816 /* As an optimisation, we only copy the actual 2817 * number of rules that the underlying 2818 * function returned. Since Mallory might 2819 * change the rule count in user memory, we 2820 * check that it is less than the rule count 2821 * originally given (as the user buffer size), 2822 * which has been range-checked. 2823 */ 2824 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2825 return -EFAULT; 2826 if (actual_rule_cnt < rule_cnt) 2827 rule_cnt = actual_rule_cnt; 2828 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2829 &rxnfc->rule_locs[0], 2830 rule_cnt * sizeof(u32))) 2831 return -EFAULT; 2832 } 2833 } 2834 2835 return 0; 2836 } 2837 2838 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2839 { 2840 void __user *uptr; 2841 compat_uptr_t uptr32; 2842 struct ifreq __user *uifr; 2843 2844 uifr = compat_alloc_user_space(sizeof(*uifr)); 2845 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2846 return -EFAULT; 2847 2848 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2849 return -EFAULT; 2850 2851 uptr = compat_ptr(uptr32); 2852 2853 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2854 return -EFAULT; 2855 2856 return dev_ioctl(net, SIOCWANDEV, uifr); 2857 } 2858 2859 static int bond_ioctl(struct net *net, unsigned int cmd, 2860 struct compat_ifreq __user *ifr32) 2861 { 2862 struct ifreq kifr; 2863 struct ifreq __user *uifr; 2864 mm_segment_t old_fs; 2865 int err; 2866 u32 data; 2867 void __user *datap; 2868 2869 switch (cmd) { 2870 case SIOCBONDENSLAVE: 2871 case SIOCBONDRELEASE: 2872 case SIOCBONDSETHWADDR: 2873 case SIOCBONDCHANGEACTIVE: 2874 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2875 return -EFAULT; 2876 2877 old_fs = get_fs(); 2878 set_fs(KERNEL_DS); 2879 err = dev_ioctl(net, cmd, 2880 (struct ifreq __user __force *) &kifr); 2881 set_fs(old_fs); 2882 2883 return err; 2884 case SIOCBONDSLAVEINFOQUERY: 2885 case SIOCBONDINFOQUERY: 2886 uifr = compat_alloc_user_space(sizeof(*uifr)); 2887 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2888 return -EFAULT; 2889 2890 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2891 return -EFAULT; 2892 2893 datap = compat_ptr(data); 2894 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2895 return -EFAULT; 2896 2897 return dev_ioctl(net, cmd, uifr); 2898 default: 2899 return -ENOIOCTLCMD; 2900 } 2901 } 2902 2903 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2904 struct compat_ifreq __user *u_ifreq32) 2905 { 2906 struct ifreq __user *u_ifreq64; 2907 char tmp_buf[IFNAMSIZ]; 2908 void __user *data64; 2909 u32 data32; 2910 2911 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2912 IFNAMSIZ)) 2913 return -EFAULT; 2914 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2915 return -EFAULT; 2916 data64 = compat_ptr(data32); 2917 2918 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2919 2920 /* Don't check these user accesses, just let that get trapped 2921 * in the ioctl handler instead. 2922 */ 2923 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2924 IFNAMSIZ)) 2925 return -EFAULT; 2926 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2927 return -EFAULT; 2928 2929 return dev_ioctl(net, cmd, u_ifreq64); 2930 } 2931 2932 static int dev_ifsioc(struct net *net, struct socket *sock, 2933 unsigned int cmd, struct compat_ifreq __user *uifr32) 2934 { 2935 struct ifreq __user *uifr; 2936 int err; 2937 2938 uifr = compat_alloc_user_space(sizeof(*uifr)); 2939 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2940 return -EFAULT; 2941 2942 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2943 2944 if (!err) { 2945 switch (cmd) { 2946 case SIOCGIFFLAGS: 2947 case SIOCGIFMETRIC: 2948 case SIOCGIFMTU: 2949 case SIOCGIFMEM: 2950 case SIOCGIFHWADDR: 2951 case SIOCGIFINDEX: 2952 case SIOCGIFADDR: 2953 case SIOCGIFBRDADDR: 2954 case SIOCGIFDSTADDR: 2955 case SIOCGIFNETMASK: 2956 case SIOCGIFPFLAGS: 2957 case SIOCGIFTXQLEN: 2958 case SIOCGMIIPHY: 2959 case SIOCGMIIREG: 2960 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2961 err = -EFAULT; 2962 break; 2963 } 2964 } 2965 return err; 2966 } 2967 2968 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2969 struct compat_ifreq __user *uifr32) 2970 { 2971 struct ifreq ifr; 2972 struct compat_ifmap __user *uifmap32; 2973 mm_segment_t old_fs; 2974 int err; 2975 2976 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2977 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2978 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2979 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2980 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2981 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2982 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2983 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2984 if (err) 2985 return -EFAULT; 2986 2987 old_fs = get_fs(); 2988 set_fs(KERNEL_DS); 2989 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2990 set_fs(old_fs); 2991 2992 if (cmd == SIOCGIFMAP && !err) { 2993 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2994 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2995 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2996 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2997 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2998 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2999 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3000 if (err) 3001 err = -EFAULT; 3002 } 3003 return err; 3004 } 3005 3006 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3007 { 3008 void __user *uptr; 3009 compat_uptr_t uptr32; 3010 struct ifreq __user *uifr; 3011 3012 uifr = compat_alloc_user_space(sizeof(*uifr)); 3013 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3014 return -EFAULT; 3015 3016 if (get_user(uptr32, &uifr32->ifr_data)) 3017 return -EFAULT; 3018 3019 uptr = compat_ptr(uptr32); 3020 3021 if (put_user(uptr, &uifr->ifr_data)) 3022 return -EFAULT; 3023 3024 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3025 } 3026 3027 struct rtentry32 { 3028 u32 rt_pad1; 3029 struct sockaddr rt_dst; /* target address */ 3030 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3031 struct sockaddr rt_genmask; /* target network mask (IP) */ 3032 unsigned short rt_flags; 3033 short rt_pad2; 3034 u32 rt_pad3; 3035 unsigned char rt_tos; 3036 unsigned char rt_class; 3037 short rt_pad4; 3038 short rt_metric; /* +1 for binary compatibility! */ 3039 /* char * */ u32 rt_dev; /* forcing the device at add */ 3040 u32 rt_mtu; /* per route MTU/Window */ 3041 u32 rt_window; /* Window clamping */ 3042 unsigned short rt_irtt; /* Initial RTT */ 3043 }; 3044 3045 struct in6_rtmsg32 { 3046 struct in6_addr rtmsg_dst; 3047 struct in6_addr rtmsg_src; 3048 struct in6_addr rtmsg_gateway; 3049 u32 rtmsg_type; 3050 u16 rtmsg_dst_len; 3051 u16 rtmsg_src_len; 3052 u32 rtmsg_metric; 3053 u32 rtmsg_info; 3054 u32 rtmsg_flags; 3055 s32 rtmsg_ifindex; 3056 }; 3057 3058 static int routing_ioctl(struct net *net, struct socket *sock, 3059 unsigned int cmd, void __user *argp) 3060 { 3061 int ret; 3062 void *r = NULL; 3063 struct in6_rtmsg r6; 3064 struct rtentry r4; 3065 char devname[16]; 3066 u32 rtdev; 3067 mm_segment_t old_fs = get_fs(); 3068 3069 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3070 struct in6_rtmsg32 __user *ur6 = argp; 3071 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3072 3 * sizeof(struct in6_addr)); 3073 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3074 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3075 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3076 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3077 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3078 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3079 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3080 3081 r = (void *) &r6; 3082 } else { /* ipv4 */ 3083 struct rtentry32 __user *ur4 = argp; 3084 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3085 3 * sizeof(struct sockaddr)); 3086 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3087 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3088 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3089 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3090 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3091 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3092 if (rtdev) { 3093 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3094 r4.rt_dev = (char __user __force *)devname; 3095 devname[15] = 0; 3096 } else 3097 r4.rt_dev = NULL; 3098 3099 r = (void *) &r4; 3100 } 3101 3102 if (ret) { 3103 ret = -EFAULT; 3104 goto out; 3105 } 3106 3107 set_fs(KERNEL_DS); 3108 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3109 set_fs(old_fs); 3110 3111 out: 3112 return ret; 3113 } 3114 3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3116 * for some operations; this forces use of the newer bridge-utils that 3117 * use compatible ioctls 3118 */ 3119 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3120 { 3121 compat_ulong_t tmp; 3122 3123 if (get_user(tmp, argp)) 3124 return -EFAULT; 3125 if (tmp == BRCTL_GET_VERSION) 3126 return BRCTL_VERSION + 1; 3127 return -EINVAL; 3128 } 3129 3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3131 unsigned int cmd, unsigned long arg) 3132 { 3133 void __user *argp = compat_ptr(arg); 3134 struct sock *sk = sock->sk; 3135 struct net *net = sock_net(sk); 3136 3137 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3138 return siocdevprivate_ioctl(net, cmd, argp); 3139 3140 switch (cmd) { 3141 case SIOCSIFBR: 3142 case SIOCGIFBR: 3143 return old_bridge_ioctl(argp); 3144 case SIOCGIFNAME: 3145 return dev_ifname32(net, argp); 3146 case SIOCGIFCONF: 3147 return dev_ifconf(net, argp); 3148 case SIOCETHTOOL: 3149 return ethtool_ioctl(net, argp); 3150 case SIOCWANDEV: 3151 return compat_siocwandev(net, argp); 3152 case SIOCGIFMAP: 3153 case SIOCSIFMAP: 3154 return compat_sioc_ifmap(net, cmd, argp); 3155 case SIOCBONDENSLAVE: 3156 case SIOCBONDRELEASE: 3157 case SIOCBONDSETHWADDR: 3158 case SIOCBONDSLAVEINFOQUERY: 3159 case SIOCBONDINFOQUERY: 3160 case SIOCBONDCHANGEACTIVE: 3161 return bond_ioctl(net, cmd, argp); 3162 case SIOCADDRT: 3163 case SIOCDELRT: 3164 return routing_ioctl(net, sock, cmd, argp); 3165 case SIOCGSTAMP: 3166 return do_siocgstamp(net, sock, cmd, argp); 3167 case SIOCGSTAMPNS: 3168 return do_siocgstampns(net, sock, cmd, argp); 3169 case SIOCSHWTSTAMP: 3170 return compat_siocshwtstamp(net, argp); 3171 3172 case FIOSETOWN: 3173 case SIOCSPGRP: 3174 case FIOGETOWN: 3175 case SIOCGPGRP: 3176 case SIOCBRADDBR: 3177 case SIOCBRDELBR: 3178 case SIOCGIFVLAN: 3179 case SIOCSIFVLAN: 3180 case SIOCADDDLCI: 3181 case SIOCDELDLCI: 3182 return sock_ioctl(file, cmd, arg); 3183 3184 case SIOCGIFFLAGS: 3185 case SIOCSIFFLAGS: 3186 case SIOCGIFMETRIC: 3187 case SIOCSIFMETRIC: 3188 case SIOCGIFMTU: 3189 case SIOCSIFMTU: 3190 case SIOCGIFMEM: 3191 case SIOCSIFMEM: 3192 case SIOCGIFHWADDR: 3193 case SIOCSIFHWADDR: 3194 case SIOCADDMULTI: 3195 case SIOCDELMULTI: 3196 case SIOCGIFINDEX: 3197 case SIOCGIFADDR: 3198 case SIOCSIFADDR: 3199 case SIOCSIFHWBROADCAST: 3200 case SIOCDIFADDR: 3201 case SIOCGIFBRDADDR: 3202 case SIOCSIFBRDADDR: 3203 case SIOCGIFDSTADDR: 3204 case SIOCSIFDSTADDR: 3205 case SIOCGIFNETMASK: 3206 case SIOCSIFNETMASK: 3207 case SIOCSIFPFLAGS: 3208 case SIOCGIFPFLAGS: 3209 case SIOCGIFTXQLEN: 3210 case SIOCSIFTXQLEN: 3211 case SIOCBRADDIF: 3212 case SIOCBRDELIF: 3213 case SIOCSIFNAME: 3214 case SIOCGMIIPHY: 3215 case SIOCGMIIREG: 3216 case SIOCSMIIREG: 3217 return dev_ifsioc(net, sock, cmd, argp); 3218 3219 case SIOCSARP: 3220 case SIOCGARP: 3221 case SIOCDARP: 3222 case SIOCATMARK: 3223 return sock_do_ioctl(net, sock, cmd, arg); 3224 } 3225 3226 return -ENOIOCTLCMD; 3227 } 3228 3229 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3230 unsigned long arg) 3231 { 3232 struct socket *sock = file->private_data; 3233 int ret = -ENOIOCTLCMD; 3234 struct sock *sk; 3235 struct net *net; 3236 3237 sk = sock->sk; 3238 net = sock_net(sk); 3239 3240 if (sock->ops->compat_ioctl) 3241 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3242 3243 if (ret == -ENOIOCTLCMD && 3244 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3245 ret = compat_wext_handle_ioctl(net, cmd, arg); 3246 3247 if (ret == -ENOIOCTLCMD) 3248 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3249 3250 return ret; 3251 } 3252 #endif 3253 3254 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3255 { 3256 return sock->ops->bind(sock, addr, addrlen); 3257 } 3258 EXPORT_SYMBOL(kernel_bind); 3259 3260 int kernel_listen(struct socket *sock, int backlog) 3261 { 3262 return sock->ops->listen(sock, backlog); 3263 } 3264 EXPORT_SYMBOL(kernel_listen); 3265 3266 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3267 { 3268 struct sock *sk = sock->sk; 3269 int err; 3270 3271 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3272 newsock); 3273 if (err < 0) 3274 goto done; 3275 3276 err = sock->ops->accept(sock, *newsock, flags); 3277 if (err < 0) { 3278 sock_release(*newsock); 3279 *newsock = NULL; 3280 goto done; 3281 } 3282 3283 (*newsock)->ops = sock->ops; 3284 __module_get((*newsock)->ops->owner); 3285 3286 done: 3287 return err; 3288 } 3289 EXPORT_SYMBOL(kernel_accept); 3290 3291 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3292 int flags) 3293 { 3294 return sock->ops->connect(sock, addr, addrlen, flags); 3295 } 3296 EXPORT_SYMBOL(kernel_connect); 3297 3298 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3299 int *addrlen) 3300 { 3301 return sock->ops->getname(sock, addr, addrlen, 0); 3302 } 3303 EXPORT_SYMBOL(kernel_getsockname); 3304 3305 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3306 int *addrlen) 3307 { 3308 return sock->ops->getname(sock, addr, addrlen, 1); 3309 } 3310 EXPORT_SYMBOL(kernel_getpeername); 3311 3312 int kernel_getsockopt(struct socket *sock, int level, int optname, 3313 char *optval, int *optlen) 3314 { 3315 mm_segment_t oldfs = get_fs(); 3316 char __user *uoptval; 3317 int __user *uoptlen; 3318 int err; 3319 3320 uoptval = (char __user __force *) optval; 3321 uoptlen = (int __user __force *) optlen; 3322 3323 set_fs(KERNEL_DS); 3324 if (level == SOL_SOCKET) 3325 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3326 else 3327 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3328 uoptlen); 3329 set_fs(oldfs); 3330 return err; 3331 } 3332 EXPORT_SYMBOL(kernel_getsockopt); 3333 3334 int kernel_setsockopt(struct socket *sock, int level, int optname, 3335 char *optval, unsigned int optlen) 3336 { 3337 mm_segment_t oldfs = get_fs(); 3338 char __user *uoptval; 3339 int err; 3340 3341 uoptval = (char __user __force *) optval; 3342 3343 set_fs(KERNEL_DS); 3344 if (level == SOL_SOCKET) 3345 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3346 else 3347 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3348 optlen); 3349 set_fs(oldfs); 3350 return err; 3351 } 3352 EXPORT_SYMBOL(kernel_setsockopt); 3353 3354 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3355 size_t size, int flags) 3356 { 3357 sock_update_classid(sock->sk); 3358 3359 if (sock->ops->sendpage) 3360 return sock->ops->sendpage(sock, page, offset, size, flags); 3361 3362 return sock_no_sendpage(sock, page, offset, size, flags); 3363 } 3364 EXPORT_SYMBOL(kernel_sendpage); 3365 3366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3367 { 3368 mm_segment_t oldfs = get_fs(); 3369 int err; 3370 3371 set_fs(KERNEL_DS); 3372 err = sock->ops->ioctl(sock, cmd, arg); 3373 set_fs(oldfs); 3374 3375 return err; 3376 } 3377 EXPORT_SYMBOL(kernel_sock_ioctl); 3378 3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3380 { 3381 return sock->ops->shutdown(sock, how); 3382 } 3383 EXPORT_SYMBOL(kernel_sock_shutdown); 3384