xref: /linux/net/socket.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 	int fd;
355 
356 	fd = get_unused_fd_flags(flags);
357 	if (unlikely(fd < 0))
358 		return fd;
359 
360 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 	if (unlikely(!path.dentry)) {
362 		put_unused_fd(fd);
363 		return -ENOMEM;
364 	}
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(!file)) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		put_unused_fd(fd);
377 		return -ENFILE;
378 	}
379 
380 	sock->file = file;
381 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 	file->f_pos = 0;
383 	file->private_data = sock;
384 
385 	*f = file;
386 	return fd;
387 }
388 
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 	struct file *newfile;
392 	int fd = sock_alloc_file(sock, &newfile, flags);
393 
394 	if (likely(fd >= 0))
395 		fd_install(fd, newfile);
396 
397 	return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400 
401 struct socket *sock_from_file(struct file *file, int *err)
402 {
403 	if (file->f_op == &socket_file_ops)
404 		return file->private_data;	/* set in sock_map_fd */
405 
406 	*err = -ENOTSOCK;
407 	return NULL;
408 }
409 EXPORT_SYMBOL(sock_from_file);
410 
411 /**
412  *	sockfd_lookup - Go from a file number to its socket slot
413  *	@fd: file handle
414  *	@err: pointer to an error code return
415  *
416  *	The file handle passed in is locked and the socket it is bound
417  *	too is returned. If an error occurs the err pointer is overwritten
418  *	with a negative errno code and NULL is returned. The function checks
419  *	for both invalid handles and passing a handle which is not a socket.
420  *
421  *	On a success the socket object pointer is returned.
422  */
423 
424 struct socket *sockfd_lookup(int fd, int *err)
425 {
426 	struct file *file;
427 	struct socket *sock;
428 
429 	file = fget(fd);
430 	if (!file) {
431 		*err = -EBADF;
432 		return NULL;
433 	}
434 
435 	sock = sock_from_file(file, err);
436 	if (!sock)
437 		fput(file);
438 	return sock;
439 }
440 EXPORT_SYMBOL(sockfd_lookup);
441 
442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
443 {
444 	struct file *file;
445 	struct socket *sock;
446 
447 	*err = -EBADF;
448 	file = fget_light(fd, fput_needed);
449 	if (file) {
450 		sock = sock_from_file(file, err);
451 		if (sock)
452 			return sock;
453 		fput_light(file, *fput_needed);
454 	}
455 	return NULL;
456 }
457 
458 /**
459  *	sock_alloc	-	allocate a socket
460  *
461  *	Allocate a new inode and socket object. The two are bound together
462  *	and initialised. The socket is then returned. If we are out of inodes
463  *	NULL is returned.
464  */
465 
466 static struct socket *sock_alloc(void)
467 {
468 	struct inode *inode;
469 	struct socket *sock;
470 
471 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
472 	if (!inode)
473 		return NULL;
474 
475 	sock = SOCKET_I(inode);
476 
477 	kmemcheck_annotate_bitfield(sock, type);
478 	inode->i_ino = get_next_ino();
479 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
480 	inode->i_uid = current_fsuid();
481 	inode->i_gid = current_fsgid();
482 
483 	this_cpu_add(sockets_in_use, 1);
484 	return sock;
485 }
486 
487 /*
488  *	In theory you can't get an open on this inode, but /proc provides
489  *	a back door. Remember to keep it shut otherwise you'll let the
490  *	creepy crawlies in.
491  */
492 
493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
494 {
495 	return -ENXIO;
496 }
497 
498 const struct file_operations bad_sock_fops = {
499 	.owner = THIS_MODULE,
500 	.open = sock_no_open,
501 	.llseek = noop_llseek,
502 };
503 
504 /**
505  *	sock_release	-	close a socket
506  *	@sock: socket to close
507  *
508  *	The socket is released from the protocol stack if it has a release
509  *	callback, and the inode is then released if the socket is bound to
510  *	an inode not a file.
511  */
512 
513 void sock_release(struct socket *sock)
514 {
515 	if (sock->ops) {
516 		struct module *owner = sock->ops->owner;
517 
518 		sock->ops->release(sock);
519 		sock->ops = NULL;
520 		module_put(owner);
521 	}
522 
523 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
524 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
525 
526 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
527 		return;
528 
529 	this_cpu_sub(sockets_in_use, 1);
530 	if (!sock->file) {
531 		iput(SOCK_INODE(sock));
532 		return;
533 	}
534 	sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537 
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 	*tx_flags = 0;
541 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 		*tx_flags |= SKBTX_HW_TSTAMP;
543 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 		*tx_flags |= SKBTX_SW_TSTAMP;
545 	if (sock_flag(sk, SOCK_WIFI_STATUS))
546 		*tx_flags |= SKBTX_WIFI_STATUS;
547 	return 0;
548 }
549 EXPORT_SYMBOL(sock_tx_timestamp);
550 
551 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
552 				       struct msghdr *msg, size_t size)
553 {
554 	struct sock_iocb *si = kiocb_to_siocb(iocb);
555 
556 	sock_update_classid(sock->sk);
557 
558 	si->sock = sock;
559 	si->scm = NULL;
560 	si->msg = msg;
561 	si->size = size;
562 
563 	return sock->ops->sendmsg(iocb, sock, msg, size);
564 }
565 
566 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
567 				 struct msghdr *msg, size_t size)
568 {
569 	int err = security_socket_sendmsg(sock, msg, size);
570 
571 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
572 }
573 
574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
575 {
576 	struct kiocb iocb;
577 	struct sock_iocb siocb;
578 	int ret;
579 
580 	init_sync_kiocb(&iocb, NULL);
581 	iocb.private = &siocb;
582 	ret = __sock_sendmsg(&iocb, sock, msg, size);
583 	if (-EIOCBQUEUED == ret)
584 		ret = wait_on_sync_kiocb(&iocb);
585 	return ret;
586 }
587 EXPORT_SYMBOL(sock_sendmsg);
588 
589 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
590 {
591 	struct kiocb iocb;
592 	struct sock_iocb siocb;
593 	int ret;
594 
595 	init_sync_kiocb(&iocb, NULL);
596 	iocb.private = &siocb;
597 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
598 	if (-EIOCBQUEUED == ret)
599 		ret = wait_on_sync_kiocb(&iocb);
600 	return ret;
601 }
602 
603 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
604 		   struct kvec *vec, size_t num, size_t size)
605 {
606 	mm_segment_t oldfs = get_fs();
607 	int result;
608 
609 	set_fs(KERNEL_DS);
610 	/*
611 	 * the following is safe, since for compiler definitions of kvec and
612 	 * iovec are identical, yielding the same in-core layout and alignment
613 	 */
614 	msg->msg_iov = (struct iovec *)vec;
615 	msg->msg_iovlen = num;
616 	result = sock_sendmsg(sock, msg, size);
617 	set_fs(oldfs);
618 	return result;
619 }
620 EXPORT_SYMBOL(kernel_sendmsg);
621 
622 static int ktime2ts(ktime_t kt, struct timespec *ts)
623 {
624 	if (kt.tv64) {
625 		*ts = ktime_to_timespec(kt);
626 		return 1;
627 	} else {
628 		return 0;
629 	}
630 }
631 
632 /*
633  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634  */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 	struct sk_buff *skb)
637 {
638 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 	struct timespec ts[3];
640 	int empty = 1;
641 	struct skb_shared_hwtstamps *shhwtstamps =
642 		skb_hwtstamps(skb);
643 
644 	/* Race occurred between timestamp enabling and packet
645 	   receiving.  Fill in the current time for now. */
646 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 		__net_timestamp(skb);
648 
649 	if (need_software_tstamp) {
650 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 			struct timeval tv;
652 			skb_get_timestamp(skb, &tv);
653 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 				 sizeof(tv), &tv);
655 		} else {
656 			skb_get_timestampns(skb, &ts[0]);
657 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 				 sizeof(ts[0]), &ts[0]);
659 		}
660 	}
661 
662 
663 	memset(ts, 0, sizeof(ts));
664 	if (skb->tstamp.tv64 &&
665 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
666 		skb_get_timestampns(skb, ts + 0);
667 		empty = 0;
668 	}
669 	if (shhwtstamps) {
670 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
671 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
672 			empty = 0;
673 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
674 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
675 			empty = 0;
676 	}
677 	if (!empty)
678 		put_cmsg(msg, SOL_SOCKET,
679 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
680 }
681 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
682 
683 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
684 	struct sk_buff *skb)
685 {
686 	int ack;
687 
688 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
689 		return;
690 	if (!skb->wifi_acked_valid)
691 		return;
692 
693 	ack = skb->wifi_acked;
694 
695 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
696 }
697 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
698 
699 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
700 				   struct sk_buff *skb)
701 {
702 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
703 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
704 			sizeof(__u32), &skb->dropcount);
705 }
706 
707 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
708 	struct sk_buff *skb)
709 {
710 	sock_recv_timestamp(msg, sk, skb);
711 	sock_recv_drops(msg, sk, skb);
712 }
713 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
714 
715 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
716 				       struct msghdr *msg, size_t size, int flags)
717 {
718 	struct sock_iocb *si = kiocb_to_siocb(iocb);
719 
720 	sock_update_classid(sock->sk);
721 
722 	si->sock = sock;
723 	si->scm = NULL;
724 	si->msg = msg;
725 	si->size = size;
726 	si->flags = flags;
727 
728 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
729 }
730 
731 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
732 				 struct msghdr *msg, size_t size, int flags)
733 {
734 	int err = security_socket_recvmsg(sock, msg, size, flags);
735 
736 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
737 }
738 
739 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
740 		 size_t size, int flags)
741 {
742 	struct kiocb iocb;
743 	struct sock_iocb siocb;
744 	int ret;
745 
746 	init_sync_kiocb(&iocb, NULL);
747 	iocb.private = &siocb;
748 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
749 	if (-EIOCBQUEUED == ret)
750 		ret = wait_on_sync_kiocb(&iocb);
751 	return ret;
752 }
753 EXPORT_SYMBOL(sock_recvmsg);
754 
755 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
756 			      size_t size, int flags)
757 {
758 	struct kiocb iocb;
759 	struct sock_iocb siocb;
760 	int ret;
761 
762 	init_sync_kiocb(&iocb, NULL);
763 	iocb.private = &siocb;
764 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
765 	if (-EIOCBQUEUED == ret)
766 		ret = wait_on_sync_kiocb(&iocb);
767 	return ret;
768 }
769 
770 /**
771  * kernel_recvmsg - Receive a message from a socket (kernel space)
772  * @sock:       The socket to receive the message from
773  * @msg:        Received message
774  * @vec:        Input s/g array for message data
775  * @num:        Size of input s/g array
776  * @size:       Number of bytes to read
777  * @flags:      Message flags (MSG_DONTWAIT, etc...)
778  *
779  * On return the msg structure contains the scatter/gather array passed in the
780  * vec argument. The array is modified so that it consists of the unfilled
781  * portion of the original array.
782  *
783  * The returned value is the total number of bytes received, or an error.
784  */
785 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
786 		   struct kvec *vec, size_t num, size_t size, int flags)
787 {
788 	mm_segment_t oldfs = get_fs();
789 	int result;
790 
791 	set_fs(KERNEL_DS);
792 	/*
793 	 * the following is safe, since for compiler definitions of kvec and
794 	 * iovec are identical, yielding the same in-core layout and alignment
795 	 */
796 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
797 	result = sock_recvmsg(sock, msg, size, flags);
798 	set_fs(oldfs);
799 	return result;
800 }
801 EXPORT_SYMBOL(kernel_recvmsg);
802 
803 static void sock_aio_dtor(struct kiocb *iocb)
804 {
805 	kfree(iocb->private);
806 }
807 
808 static ssize_t sock_sendpage(struct file *file, struct page *page,
809 			     int offset, size_t size, loff_t *ppos, int more)
810 {
811 	struct socket *sock;
812 	int flags;
813 
814 	sock = file->private_data;
815 
816 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
817 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
818 	flags |= more;
819 
820 	return kernel_sendpage(sock, page, offset, size, flags);
821 }
822 
823 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
824 				struct pipe_inode_info *pipe, size_t len,
825 				unsigned int flags)
826 {
827 	struct socket *sock = file->private_data;
828 
829 	if (unlikely(!sock->ops->splice_read))
830 		return -EINVAL;
831 
832 	sock_update_classid(sock->sk);
833 
834 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
835 }
836 
837 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
838 					 struct sock_iocb *siocb)
839 {
840 	if (!is_sync_kiocb(iocb)) {
841 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
842 		if (!siocb)
843 			return NULL;
844 		iocb->ki_dtor = sock_aio_dtor;
845 	}
846 
847 	siocb->kiocb = iocb;
848 	iocb->private = siocb;
849 	return siocb;
850 }
851 
852 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
853 		struct file *file, const struct iovec *iov,
854 		unsigned long nr_segs)
855 {
856 	struct socket *sock = file->private_data;
857 	size_t size = 0;
858 	int i;
859 
860 	for (i = 0; i < nr_segs; i++)
861 		size += iov[i].iov_len;
862 
863 	msg->msg_name = NULL;
864 	msg->msg_namelen = 0;
865 	msg->msg_control = NULL;
866 	msg->msg_controllen = 0;
867 	msg->msg_iov = (struct iovec *)iov;
868 	msg->msg_iovlen = nr_segs;
869 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
870 
871 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
872 }
873 
874 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
875 				unsigned long nr_segs, loff_t pos)
876 {
877 	struct sock_iocb siocb, *x;
878 
879 	if (pos != 0)
880 		return -ESPIPE;
881 
882 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
883 		return 0;
884 
885 
886 	x = alloc_sock_iocb(iocb, &siocb);
887 	if (!x)
888 		return -ENOMEM;
889 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
890 }
891 
892 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
893 			struct file *file, const struct iovec *iov,
894 			unsigned long nr_segs)
895 {
896 	struct socket *sock = file->private_data;
897 	size_t size = 0;
898 	int i;
899 
900 	for (i = 0; i < nr_segs; i++)
901 		size += iov[i].iov_len;
902 
903 	msg->msg_name = NULL;
904 	msg->msg_namelen = 0;
905 	msg->msg_control = NULL;
906 	msg->msg_controllen = 0;
907 	msg->msg_iov = (struct iovec *)iov;
908 	msg->msg_iovlen = nr_segs;
909 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
910 	if (sock->type == SOCK_SEQPACKET)
911 		msg->msg_flags |= MSG_EOR;
912 
913 	return __sock_sendmsg(iocb, sock, msg, size);
914 }
915 
916 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
917 			  unsigned long nr_segs, loff_t pos)
918 {
919 	struct sock_iocb siocb, *x;
920 
921 	if (pos != 0)
922 		return -ESPIPE;
923 
924 	x = alloc_sock_iocb(iocb, &siocb);
925 	if (!x)
926 		return -ENOMEM;
927 
928 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
929 }
930 
931 /*
932  * Atomic setting of ioctl hooks to avoid race
933  * with module unload.
934  */
935 
936 static DEFINE_MUTEX(br_ioctl_mutex);
937 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
938 
939 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
940 {
941 	mutex_lock(&br_ioctl_mutex);
942 	br_ioctl_hook = hook;
943 	mutex_unlock(&br_ioctl_mutex);
944 }
945 EXPORT_SYMBOL(brioctl_set);
946 
947 static DEFINE_MUTEX(vlan_ioctl_mutex);
948 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
949 
950 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
951 {
952 	mutex_lock(&vlan_ioctl_mutex);
953 	vlan_ioctl_hook = hook;
954 	mutex_unlock(&vlan_ioctl_mutex);
955 }
956 EXPORT_SYMBOL(vlan_ioctl_set);
957 
958 static DEFINE_MUTEX(dlci_ioctl_mutex);
959 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
960 
961 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
962 {
963 	mutex_lock(&dlci_ioctl_mutex);
964 	dlci_ioctl_hook = hook;
965 	mutex_unlock(&dlci_ioctl_mutex);
966 }
967 EXPORT_SYMBOL(dlci_ioctl_set);
968 
969 static long sock_do_ioctl(struct net *net, struct socket *sock,
970 				 unsigned int cmd, unsigned long arg)
971 {
972 	int err;
973 	void __user *argp = (void __user *)arg;
974 
975 	err = sock->ops->ioctl(sock, cmd, arg);
976 
977 	/*
978 	 * If this ioctl is unknown try to hand it down
979 	 * to the NIC driver.
980 	 */
981 	if (err == -ENOIOCTLCMD)
982 		err = dev_ioctl(net, cmd, argp);
983 
984 	return err;
985 }
986 
987 /*
988  *	With an ioctl, arg may well be a user mode pointer, but we don't know
989  *	what to do with it - that's up to the protocol still.
990  */
991 
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 {
994 	struct socket *sock;
995 	struct sock *sk;
996 	void __user *argp = (void __user *)arg;
997 	int pid, err;
998 	struct net *net;
999 
1000 	sock = file->private_data;
1001 	sk = sock->sk;
1002 	net = sock_net(sk);
1003 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1004 		err = dev_ioctl(net, cmd, argp);
1005 	} else
1006 #ifdef CONFIG_WEXT_CORE
1007 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1008 		err = dev_ioctl(net, cmd, argp);
1009 	} else
1010 #endif
1011 		switch (cmd) {
1012 		case FIOSETOWN:
1013 		case SIOCSPGRP:
1014 			err = -EFAULT;
1015 			if (get_user(pid, (int __user *)argp))
1016 				break;
1017 			err = f_setown(sock->file, pid, 1);
1018 			break;
1019 		case FIOGETOWN:
1020 		case SIOCGPGRP:
1021 			err = put_user(f_getown(sock->file),
1022 				       (int __user *)argp);
1023 			break;
1024 		case SIOCGIFBR:
1025 		case SIOCSIFBR:
1026 		case SIOCBRADDBR:
1027 		case SIOCBRDELBR:
1028 			err = -ENOPKG;
1029 			if (!br_ioctl_hook)
1030 				request_module("bridge");
1031 
1032 			mutex_lock(&br_ioctl_mutex);
1033 			if (br_ioctl_hook)
1034 				err = br_ioctl_hook(net, cmd, argp);
1035 			mutex_unlock(&br_ioctl_mutex);
1036 			break;
1037 		case SIOCGIFVLAN:
1038 		case SIOCSIFVLAN:
1039 			err = -ENOPKG;
1040 			if (!vlan_ioctl_hook)
1041 				request_module("8021q");
1042 
1043 			mutex_lock(&vlan_ioctl_mutex);
1044 			if (vlan_ioctl_hook)
1045 				err = vlan_ioctl_hook(net, argp);
1046 			mutex_unlock(&vlan_ioctl_mutex);
1047 			break;
1048 		case SIOCADDDLCI:
1049 		case SIOCDELDLCI:
1050 			err = -ENOPKG;
1051 			if (!dlci_ioctl_hook)
1052 				request_module("dlci");
1053 
1054 			mutex_lock(&dlci_ioctl_mutex);
1055 			if (dlci_ioctl_hook)
1056 				err = dlci_ioctl_hook(cmd, argp);
1057 			mutex_unlock(&dlci_ioctl_mutex);
1058 			break;
1059 		default:
1060 			err = sock_do_ioctl(net, sock, cmd, arg);
1061 			break;
1062 		}
1063 	return err;
1064 }
1065 
1066 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1067 {
1068 	int err;
1069 	struct socket *sock = NULL;
1070 
1071 	err = security_socket_create(family, type, protocol, 1);
1072 	if (err)
1073 		goto out;
1074 
1075 	sock = sock_alloc();
1076 	if (!sock) {
1077 		err = -ENOMEM;
1078 		goto out;
1079 	}
1080 
1081 	sock->type = type;
1082 	err = security_socket_post_create(sock, family, type, protocol, 1);
1083 	if (err)
1084 		goto out_release;
1085 
1086 out:
1087 	*res = sock;
1088 	return err;
1089 out_release:
1090 	sock_release(sock);
1091 	sock = NULL;
1092 	goto out;
1093 }
1094 EXPORT_SYMBOL(sock_create_lite);
1095 
1096 /* No kernel lock held - perfect */
1097 static unsigned int sock_poll(struct file *file, poll_table *wait)
1098 {
1099 	struct socket *sock;
1100 
1101 	/*
1102 	 *      We can't return errors to poll, so it's either yes or no.
1103 	 */
1104 	sock = file->private_data;
1105 	return sock->ops->poll(file, sock, wait);
1106 }
1107 
1108 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1109 {
1110 	struct socket *sock = file->private_data;
1111 
1112 	return sock->ops->mmap(file, sock, vma);
1113 }
1114 
1115 static int sock_close(struct inode *inode, struct file *filp)
1116 {
1117 	/*
1118 	 *      It was possible the inode is NULL we were
1119 	 *      closing an unfinished socket.
1120 	 */
1121 
1122 	if (!inode) {
1123 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1124 		return 0;
1125 	}
1126 	sock_release(SOCKET_I(inode));
1127 	return 0;
1128 }
1129 
1130 /*
1131  *	Update the socket async list
1132  *
1133  *	Fasync_list locking strategy.
1134  *
1135  *	1. fasync_list is modified only under process context socket lock
1136  *	   i.e. under semaphore.
1137  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138  *	   or under socket lock
1139  */
1140 
1141 static int sock_fasync(int fd, struct file *filp, int on)
1142 {
1143 	struct socket *sock = filp->private_data;
1144 	struct sock *sk = sock->sk;
1145 	struct socket_wq *wq;
1146 
1147 	if (sk == NULL)
1148 		return -EINVAL;
1149 
1150 	lock_sock(sk);
1151 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1152 	fasync_helper(fd, filp, on, &wq->fasync_list);
1153 
1154 	if (!wq->fasync_list)
1155 		sock_reset_flag(sk, SOCK_FASYNC);
1156 	else
1157 		sock_set_flag(sk, SOCK_FASYNC);
1158 
1159 	release_sock(sk);
1160 	return 0;
1161 }
1162 
1163 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1164 
1165 int sock_wake_async(struct socket *sock, int how, int band)
1166 {
1167 	struct socket_wq *wq;
1168 
1169 	if (!sock)
1170 		return -1;
1171 	rcu_read_lock();
1172 	wq = rcu_dereference(sock->wq);
1173 	if (!wq || !wq->fasync_list) {
1174 		rcu_read_unlock();
1175 		return -1;
1176 	}
1177 	switch (how) {
1178 	case SOCK_WAKE_WAITD:
1179 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 			break;
1181 		goto call_kill;
1182 	case SOCK_WAKE_SPACE:
1183 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 			break;
1185 		/* fall through */
1186 	case SOCK_WAKE_IO:
1187 call_kill:
1188 		kill_fasync(&wq->fasync_list, SIGIO, band);
1189 		break;
1190 	case SOCK_WAKE_URG:
1191 		kill_fasync(&wq->fasync_list, SIGURG, band);
1192 	}
1193 	rcu_read_unlock();
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL(sock_wake_async);
1197 
1198 int __sock_create(struct net *net, int family, int type, int protocol,
1199 			 struct socket **res, int kern)
1200 {
1201 	int err;
1202 	struct socket *sock;
1203 	const struct net_proto_family *pf;
1204 
1205 	/*
1206 	 *      Check protocol is in range
1207 	 */
1208 	if (family < 0 || family >= NPROTO)
1209 		return -EAFNOSUPPORT;
1210 	if (type < 0 || type >= SOCK_MAX)
1211 		return -EINVAL;
1212 
1213 	/* Compatibility.
1214 
1215 	   This uglymoron is moved from INET layer to here to avoid
1216 	   deadlock in module load.
1217 	 */
1218 	if (family == PF_INET && type == SOCK_PACKET) {
1219 		static int warned;
1220 		if (!warned) {
1221 			warned = 1;
1222 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1223 			       current->comm);
1224 		}
1225 		family = PF_PACKET;
1226 	}
1227 
1228 	err = security_socket_create(family, type, protocol, kern);
1229 	if (err)
1230 		return err;
1231 
1232 	/*
1233 	 *	Allocate the socket and allow the family to set things up. if
1234 	 *	the protocol is 0, the family is instructed to select an appropriate
1235 	 *	default.
1236 	 */
1237 	sock = sock_alloc();
1238 	if (!sock) {
1239 		net_warn_ratelimited("socket: no more sockets\n");
1240 		return -ENFILE;	/* Not exactly a match, but its the
1241 				   closest posix thing */
1242 	}
1243 
1244 	sock->type = type;
1245 
1246 #ifdef CONFIG_MODULES
1247 	/* Attempt to load a protocol module if the find failed.
1248 	 *
1249 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1250 	 * requested real, full-featured networking support upon configuration.
1251 	 * Otherwise module support will break!
1252 	 */
1253 	if (rcu_access_pointer(net_families[family]) == NULL)
1254 		request_module("net-pf-%d", family);
1255 #endif
1256 
1257 	rcu_read_lock();
1258 	pf = rcu_dereference(net_families[family]);
1259 	err = -EAFNOSUPPORT;
1260 	if (!pf)
1261 		goto out_release;
1262 
1263 	/*
1264 	 * We will call the ->create function, that possibly is in a loadable
1265 	 * module, so we have to bump that loadable module refcnt first.
1266 	 */
1267 	if (!try_module_get(pf->owner))
1268 		goto out_release;
1269 
1270 	/* Now protected by module ref count */
1271 	rcu_read_unlock();
1272 
1273 	err = pf->create(net, sock, protocol, kern);
1274 	if (err < 0)
1275 		goto out_module_put;
1276 
1277 	/*
1278 	 * Now to bump the refcnt of the [loadable] module that owns this
1279 	 * socket at sock_release time we decrement its refcnt.
1280 	 */
1281 	if (!try_module_get(sock->ops->owner))
1282 		goto out_module_busy;
1283 
1284 	/*
1285 	 * Now that we're done with the ->create function, the [loadable]
1286 	 * module can have its refcnt decremented
1287 	 */
1288 	module_put(pf->owner);
1289 	err = security_socket_post_create(sock, family, type, protocol, kern);
1290 	if (err)
1291 		goto out_sock_release;
1292 	*res = sock;
1293 
1294 	return 0;
1295 
1296 out_module_busy:
1297 	err = -EAFNOSUPPORT;
1298 out_module_put:
1299 	sock->ops = NULL;
1300 	module_put(pf->owner);
1301 out_sock_release:
1302 	sock_release(sock);
1303 	return err;
1304 
1305 out_release:
1306 	rcu_read_unlock();
1307 	goto out_sock_release;
1308 }
1309 EXPORT_SYMBOL(__sock_create);
1310 
1311 int sock_create(int family, int type, int protocol, struct socket **res)
1312 {
1313 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1314 }
1315 EXPORT_SYMBOL(sock_create);
1316 
1317 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1318 {
1319 	return __sock_create(&init_net, family, type, protocol, res, 1);
1320 }
1321 EXPORT_SYMBOL(sock_create_kern);
1322 
1323 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1324 {
1325 	int retval;
1326 	struct socket *sock;
1327 	int flags;
1328 
1329 	/* Check the SOCK_* constants for consistency.  */
1330 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1331 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1332 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1333 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1334 
1335 	flags = type & ~SOCK_TYPE_MASK;
1336 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337 		return -EINVAL;
1338 	type &= SOCK_TYPE_MASK;
1339 
1340 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342 
1343 	retval = sock_create(family, type, protocol, &sock);
1344 	if (retval < 0)
1345 		goto out;
1346 
1347 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1348 	if (retval < 0)
1349 		goto out_release;
1350 
1351 out:
1352 	/* It may be already another descriptor 8) Not kernel problem. */
1353 	return retval;
1354 
1355 out_release:
1356 	sock_release(sock);
1357 	return retval;
1358 }
1359 
1360 /*
1361  *	Create a pair of connected sockets.
1362  */
1363 
1364 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1365 		int __user *, usockvec)
1366 {
1367 	struct socket *sock1, *sock2;
1368 	int fd1, fd2, err;
1369 	struct file *newfile1, *newfile2;
1370 	int flags;
1371 
1372 	flags = type & ~SOCK_TYPE_MASK;
1373 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 		return -EINVAL;
1375 	type &= SOCK_TYPE_MASK;
1376 
1377 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379 
1380 	/*
1381 	 * Obtain the first socket and check if the underlying protocol
1382 	 * supports the socketpair call.
1383 	 */
1384 
1385 	err = sock_create(family, type, protocol, &sock1);
1386 	if (err < 0)
1387 		goto out;
1388 
1389 	err = sock_create(family, type, protocol, &sock2);
1390 	if (err < 0)
1391 		goto out_release_1;
1392 
1393 	err = sock1->ops->socketpair(sock1, sock2);
1394 	if (err < 0)
1395 		goto out_release_both;
1396 
1397 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1398 	if (unlikely(fd1 < 0)) {
1399 		err = fd1;
1400 		goto out_release_both;
1401 	}
1402 
1403 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1404 	if (unlikely(fd2 < 0)) {
1405 		err = fd2;
1406 		fput(newfile1);
1407 		put_unused_fd(fd1);
1408 		sock_release(sock2);
1409 		goto out;
1410 	}
1411 
1412 	audit_fd_pair(fd1, fd2);
1413 	fd_install(fd1, newfile1);
1414 	fd_install(fd2, newfile2);
1415 	/* fd1 and fd2 may be already another descriptors.
1416 	 * Not kernel problem.
1417 	 */
1418 
1419 	err = put_user(fd1, &usockvec[0]);
1420 	if (!err)
1421 		err = put_user(fd2, &usockvec[1]);
1422 	if (!err)
1423 		return 0;
1424 
1425 	sys_close(fd2);
1426 	sys_close(fd1);
1427 	return err;
1428 
1429 out_release_both:
1430 	sock_release(sock2);
1431 out_release_1:
1432 	sock_release(sock1);
1433 out:
1434 	return err;
1435 }
1436 
1437 /*
1438  *	Bind a name to a socket. Nothing much to do here since it's
1439  *	the protocol's responsibility to handle the local address.
1440  *
1441  *	We move the socket address to kernel space before we call
1442  *	the protocol layer (having also checked the address is ok).
1443  */
1444 
1445 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1446 {
1447 	struct socket *sock;
1448 	struct sockaddr_storage address;
1449 	int err, fput_needed;
1450 
1451 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 	if (sock) {
1453 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1454 		if (err >= 0) {
1455 			err = security_socket_bind(sock,
1456 						   (struct sockaddr *)&address,
1457 						   addrlen);
1458 			if (!err)
1459 				err = sock->ops->bind(sock,
1460 						      (struct sockaddr *)
1461 						      &address, addrlen);
1462 		}
1463 		fput_light(sock->file, fput_needed);
1464 	}
1465 	return err;
1466 }
1467 
1468 /*
1469  *	Perform a listen. Basically, we allow the protocol to do anything
1470  *	necessary for a listen, and if that works, we mark the socket as
1471  *	ready for listening.
1472  */
1473 
1474 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1475 {
1476 	struct socket *sock;
1477 	int err, fput_needed;
1478 	int somaxconn;
1479 
1480 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 	if (sock) {
1482 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1483 		if ((unsigned int)backlog > somaxconn)
1484 			backlog = somaxconn;
1485 
1486 		err = security_socket_listen(sock, backlog);
1487 		if (!err)
1488 			err = sock->ops->listen(sock, backlog);
1489 
1490 		fput_light(sock->file, fput_needed);
1491 	}
1492 	return err;
1493 }
1494 
1495 /*
1496  *	For accept, we attempt to create a new socket, set up the link
1497  *	with the client, wake up the client, then return the new
1498  *	connected fd. We collect the address of the connector in kernel
1499  *	space and move it to user at the very end. This is unclean because
1500  *	we open the socket then return an error.
1501  *
1502  *	1003.1g adds the ability to recvmsg() to query connection pending
1503  *	status to recvmsg. We need to add that support in a way thats
1504  *	clean when we restucture accept also.
1505  */
1506 
1507 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508 		int __user *, upeer_addrlen, int, flags)
1509 {
1510 	struct socket *sock, *newsock;
1511 	struct file *newfile;
1512 	int err, len, newfd, fput_needed;
1513 	struct sockaddr_storage address;
1514 
1515 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516 		return -EINVAL;
1517 
1518 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1519 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1520 
1521 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1522 	if (!sock)
1523 		goto out;
1524 
1525 	err = -ENFILE;
1526 	newsock = sock_alloc();
1527 	if (!newsock)
1528 		goto out_put;
1529 
1530 	newsock->type = sock->type;
1531 	newsock->ops = sock->ops;
1532 
1533 	/*
1534 	 * We don't need try_module_get here, as the listening socket (sock)
1535 	 * has the protocol module (sock->ops->owner) held.
1536 	 */
1537 	__module_get(newsock->ops->owner);
1538 
1539 	newfd = sock_alloc_file(newsock, &newfile, flags);
1540 	if (unlikely(newfd < 0)) {
1541 		err = newfd;
1542 		sock_release(newsock);
1543 		goto out_put;
1544 	}
1545 
1546 	err = security_socket_accept(sock, newsock);
1547 	if (err)
1548 		goto out_fd;
1549 
1550 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1551 	if (err < 0)
1552 		goto out_fd;
1553 
1554 	if (upeer_sockaddr) {
1555 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1556 					  &len, 2) < 0) {
1557 			err = -ECONNABORTED;
1558 			goto out_fd;
1559 		}
1560 		err = move_addr_to_user(&address,
1561 					len, upeer_sockaddr, upeer_addrlen);
1562 		if (err < 0)
1563 			goto out_fd;
1564 	}
1565 
1566 	/* File flags are not inherited via accept() unlike another OSes. */
1567 
1568 	fd_install(newfd, newfile);
1569 	err = newfd;
1570 
1571 out_put:
1572 	fput_light(sock->file, fput_needed);
1573 out:
1574 	return err;
1575 out_fd:
1576 	fput(newfile);
1577 	put_unused_fd(newfd);
1578 	goto out_put;
1579 }
1580 
1581 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 		int __user *, upeer_addrlen)
1583 {
1584 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1585 }
1586 
1587 /*
1588  *	Attempt to connect to a socket with the server address.  The address
1589  *	is in user space so we verify it is OK and move it to kernel space.
1590  *
1591  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1592  *	break bindings
1593  *
1594  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1595  *	other SEQPACKET protocols that take time to connect() as it doesn't
1596  *	include the -EINPROGRESS status for such sockets.
1597  */
1598 
1599 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1600 		int, addrlen)
1601 {
1602 	struct socket *sock;
1603 	struct sockaddr_storage address;
1604 	int err, fput_needed;
1605 
1606 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1607 	if (!sock)
1608 		goto out;
1609 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1610 	if (err < 0)
1611 		goto out_put;
1612 
1613 	err =
1614 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1615 	if (err)
1616 		goto out_put;
1617 
1618 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1619 				 sock->file->f_flags);
1620 out_put:
1621 	fput_light(sock->file, fput_needed);
1622 out:
1623 	return err;
1624 }
1625 
1626 /*
1627  *	Get the local address ('name') of a socket object. Move the obtained
1628  *	name to user space.
1629  */
1630 
1631 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1632 		int __user *, usockaddr_len)
1633 {
1634 	struct socket *sock;
1635 	struct sockaddr_storage address;
1636 	int len, err, fput_needed;
1637 
1638 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 	if (!sock)
1640 		goto out;
1641 
1642 	err = security_socket_getsockname(sock);
1643 	if (err)
1644 		goto out_put;
1645 
1646 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1647 	if (err)
1648 		goto out_put;
1649 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1650 
1651 out_put:
1652 	fput_light(sock->file, fput_needed);
1653 out:
1654 	return err;
1655 }
1656 
1657 /*
1658  *	Get the remote address ('name') of a socket object. Move the obtained
1659  *	name to user space.
1660  */
1661 
1662 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1663 		int __user *, usockaddr_len)
1664 {
1665 	struct socket *sock;
1666 	struct sockaddr_storage address;
1667 	int len, err, fput_needed;
1668 
1669 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 	if (sock != NULL) {
1671 		err = security_socket_getpeername(sock);
1672 		if (err) {
1673 			fput_light(sock->file, fput_needed);
1674 			return err;
1675 		}
1676 
1677 		err =
1678 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1679 				       1);
1680 		if (!err)
1681 			err = move_addr_to_user(&address, len, usockaddr,
1682 						usockaddr_len);
1683 		fput_light(sock->file, fput_needed);
1684 	}
1685 	return err;
1686 }
1687 
1688 /*
1689  *	Send a datagram to a given address. We move the address into kernel
1690  *	space and check the user space data area is readable before invoking
1691  *	the protocol.
1692  */
1693 
1694 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1695 		unsigned int, flags, struct sockaddr __user *, addr,
1696 		int, addr_len)
1697 {
1698 	struct socket *sock;
1699 	struct sockaddr_storage address;
1700 	int err;
1701 	struct msghdr msg;
1702 	struct iovec iov;
1703 	int fput_needed;
1704 
1705 	if (len > INT_MAX)
1706 		len = INT_MAX;
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (!sock)
1709 		goto out;
1710 
1711 	iov.iov_base = buff;
1712 	iov.iov_len = len;
1713 	msg.msg_name = NULL;
1714 	msg.msg_iov = &iov;
1715 	msg.msg_iovlen = 1;
1716 	msg.msg_control = NULL;
1717 	msg.msg_controllen = 0;
1718 	msg.msg_namelen = 0;
1719 	if (addr) {
1720 		err = move_addr_to_kernel(addr, addr_len, &address);
1721 		if (err < 0)
1722 			goto out_put;
1723 		msg.msg_name = (struct sockaddr *)&address;
1724 		msg.msg_namelen = addr_len;
1725 	}
1726 	if (sock->file->f_flags & O_NONBLOCK)
1727 		flags |= MSG_DONTWAIT;
1728 	msg.msg_flags = flags;
1729 	err = sock_sendmsg(sock, &msg, len);
1730 
1731 out_put:
1732 	fput_light(sock->file, fput_needed);
1733 out:
1734 	return err;
1735 }
1736 
1737 /*
1738  *	Send a datagram down a socket.
1739  */
1740 
1741 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1742 		unsigned int, flags)
1743 {
1744 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1745 }
1746 
1747 /*
1748  *	Receive a frame from the socket and optionally record the address of the
1749  *	sender. We verify the buffers are writable and if needed move the
1750  *	sender address from kernel to user space.
1751  */
1752 
1753 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1754 		unsigned int, flags, struct sockaddr __user *, addr,
1755 		int __user *, addr_len)
1756 {
1757 	struct socket *sock;
1758 	struct iovec iov;
1759 	struct msghdr msg;
1760 	struct sockaddr_storage address;
1761 	int err, err2;
1762 	int fput_needed;
1763 
1764 	if (size > INT_MAX)
1765 		size = INT_MAX;
1766 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 	if (!sock)
1768 		goto out;
1769 
1770 	msg.msg_control = NULL;
1771 	msg.msg_controllen = 0;
1772 	msg.msg_iovlen = 1;
1773 	msg.msg_iov = &iov;
1774 	iov.iov_len = size;
1775 	iov.iov_base = ubuf;
1776 	msg.msg_name = (struct sockaddr *)&address;
1777 	msg.msg_namelen = sizeof(address);
1778 	if (sock->file->f_flags & O_NONBLOCK)
1779 		flags |= MSG_DONTWAIT;
1780 	err = sock_recvmsg(sock, &msg, size, flags);
1781 
1782 	if (err >= 0 && addr != NULL) {
1783 		err2 = move_addr_to_user(&address,
1784 					 msg.msg_namelen, addr, addr_len);
1785 		if (err2 < 0)
1786 			err = err2;
1787 	}
1788 
1789 	fput_light(sock->file, fput_needed);
1790 out:
1791 	return err;
1792 }
1793 
1794 /*
1795  *	Receive a datagram from a socket.
1796  */
1797 
1798 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1799 			 unsigned int flags)
1800 {
1801 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1802 }
1803 
1804 /*
1805  *	Set a socket option. Because we don't know the option lengths we have
1806  *	to pass the user mode parameter for the protocols to sort out.
1807  */
1808 
1809 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1810 		char __user *, optval, int, optlen)
1811 {
1812 	int err, fput_needed;
1813 	struct socket *sock;
1814 
1815 	if (optlen < 0)
1816 		return -EINVAL;
1817 
1818 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 	if (sock != NULL) {
1820 		err = security_socket_setsockopt(sock, level, optname);
1821 		if (err)
1822 			goto out_put;
1823 
1824 		if (level == SOL_SOCKET)
1825 			err =
1826 			    sock_setsockopt(sock, level, optname, optval,
1827 					    optlen);
1828 		else
1829 			err =
1830 			    sock->ops->setsockopt(sock, level, optname, optval,
1831 						  optlen);
1832 out_put:
1833 		fput_light(sock->file, fput_needed);
1834 	}
1835 	return err;
1836 }
1837 
1838 /*
1839  *	Get a socket option. Because we don't know the option lengths we have
1840  *	to pass a user mode parameter for the protocols to sort out.
1841  */
1842 
1843 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1844 		char __user *, optval, int __user *, optlen)
1845 {
1846 	int err, fput_needed;
1847 	struct socket *sock;
1848 
1849 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 	if (sock != NULL) {
1851 		err = security_socket_getsockopt(sock, level, optname);
1852 		if (err)
1853 			goto out_put;
1854 
1855 		if (level == SOL_SOCKET)
1856 			err =
1857 			    sock_getsockopt(sock, level, optname, optval,
1858 					    optlen);
1859 		else
1860 			err =
1861 			    sock->ops->getsockopt(sock, level, optname, optval,
1862 						  optlen);
1863 out_put:
1864 		fput_light(sock->file, fput_needed);
1865 	}
1866 	return err;
1867 }
1868 
1869 /*
1870  *	Shutdown a socket.
1871  */
1872 
1873 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1874 {
1875 	int err, fput_needed;
1876 	struct socket *sock;
1877 
1878 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879 	if (sock != NULL) {
1880 		err = security_socket_shutdown(sock, how);
1881 		if (!err)
1882 			err = sock->ops->shutdown(sock, how);
1883 		fput_light(sock->file, fput_needed);
1884 	}
1885 	return err;
1886 }
1887 
1888 /* A couple of helpful macros for getting the address of the 32/64 bit
1889  * fields which are the same type (int / unsigned) on our platforms.
1890  */
1891 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1892 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1893 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1894 
1895 struct used_address {
1896 	struct sockaddr_storage name;
1897 	unsigned int name_len;
1898 };
1899 
1900 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1901 			 struct msghdr *msg_sys, unsigned int flags,
1902 			 struct used_address *used_address)
1903 {
1904 	struct compat_msghdr __user *msg_compat =
1905 	    (struct compat_msghdr __user *)msg;
1906 	struct sockaddr_storage address;
1907 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1908 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1909 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1910 	/* 20 is size of ipv6_pktinfo */
1911 	unsigned char *ctl_buf = ctl;
1912 	int err, ctl_len, total_len;
1913 
1914 	err = -EFAULT;
1915 	if (MSG_CMSG_COMPAT & flags) {
1916 		if (get_compat_msghdr(msg_sys, msg_compat))
1917 			return -EFAULT;
1918 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1919 		return -EFAULT;
1920 
1921 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1922 		err = -EMSGSIZE;
1923 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1924 			goto out;
1925 		err = -ENOMEM;
1926 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1927 			      GFP_KERNEL);
1928 		if (!iov)
1929 			goto out;
1930 	}
1931 
1932 	/* This will also move the address data into kernel space */
1933 	if (MSG_CMSG_COMPAT & flags) {
1934 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1935 	} else
1936 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1937 	if (err < 0)
1938 		goto out_freeiov;
1939 	total_len = err;
1940 
1941 	err = -ENOBUFS;
1942 
1943 	if (msg_sys->msg_controllen > INT_MAX)
1944 		goto out_freeiov;
1945 	ctl_len = msg_sys->msg_controllen;
1946 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1947 		err =
1948 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1949 						     sizeof(ctl));
1950 		if (err)
1951 			goto out_freeiov;
1952 		ctl_buf = msg_sys->msg_control;
1953 		ctl_len = msg_sys->msg_controllen;
1954 	} else if (ctl_len) {
1955 		if (ctl_len > sizeof(ctl)) {
1956 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1957 			if (ctl_buf == NULL)
1958 				goto out_freeiov;
1959 		}
1960 		err = -EFAULT;
1961 		/*
1962 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1963 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1964 		 * checking falls down on this.
1965 		 */
1966 		if (copy_from_user(ctl_buf,
1967 				   (void __user __force *)msg_sys->msg_control,
1968 				   ctl_len))
1969 			goto out_freectl;
1970 		msg_sys->msg_control = ctl_buf;
1971 	}
1972 	msg_sys->msg_flags = flags;
1973 
1974 	if (sock->file->f_flags & O_NONBLOCK)
1975 		msg_sys->msg_flags |= MSG_DONTWAIT;
1976 	/*
1977 	 * If this is sendmmsg() and current destination address is same as
1978 	 * previously succeeded address, omit asking LSM's decision.
1979 	 * used_address->name_len is initialized to UINT_MAX so that the first
1980 	 * destination address never matches.
1981 	 */
1982 	if (used_address && msg_sys->msg_name &&
1983 	    used_address->name_len == msg_sys->msg_namelen &&
1984 	    !memcmp(&used_address->name, msg_sys->msg_name,
1985 		    used_address->name_len)) {
1986 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1987 		goto out_freectl;
1988 	}
1989 	err = sock_sendmsg(sock, msg_sys, total_len);
1990 	/*
1991 	 * If this is sendmmsg() and sending to current destination address was
1992 	 * successful, remember it.
1993 	 */
1994 	if (used_address && err >= 0) {
1995 		used_address->name_len = msg_sys->msg_namelen;
1996 		if (msg_sys->msg_name)
1997 			memcpy(&used_address->name, msg_sys->msg_name,
1998 			       used_address->name_len);
1999 	}
2000 
2001 out_freectl:
2002 	if (ctl_buf != ctl)
2003 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2004 out_freeiov:
2005 	if (iov != iovstack)
2006 		kfree(iov);
2007 out:
2008 	return err;
2009 }
2010 
2011 /*
2012  *	BSD sendmsg interface
2013  */
2014 
2015 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2016 {
2017 	int fput_needed, err;
2018 	struct msghdr msg_sys;
2019 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020 
2021 	if (!sock)
2022 		goto out;
2023 
2024 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2025 
2026 	fput_light(sock->file, fput_needed);
2027 out:
2028 	return err;
2029 }
2030 
2031 /*
2032  *	Linux sendmmsg interface
2033  */
2034 
2035 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036 		   unsigned int flags)
2037 {
2038 	int fput_needed, err, datagrams;
2039 	struct socket *sock;
2040 	struct mmsghdr __user *entry;
2041 	struct compat_mmsghdr __user *compat_entry;
2042 	struct msghdr msg_sys;
2043 	struct used_address used_address;
2044 
2045 	if (vlen > UIO_MAXIOV)
2046 		vlen = UIO_MAXIOV;
2047 
2048 	datagrams = 0;
2049 
2050 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2051 	if (!sock)
2052 		return err;
2053 
2054 	used_address.name_len = UINT_MAX;
2055 	entry = mmsg;
2056 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2057 	err = 0;
2058 
2059 	while (datagrams < vlen) {
2060 		if (MSG_CMSG_COMPAT & flags) {
2061 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2062 					    &msg_sys, flags, &used_address);
2063 			if (err < 0)
2064 				break;
2065 			err = __put_user(err, &compat_entry->msg_len);
2066 			++compat_entry;
2067 		} else {
2068 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2069 					    &msg_sys, flags, &used_address);
2070 			if (err < 0)
2071 				break;
2072 			err = put_user(err, &entry->msg_len);
2073 			++entry;
2074 		}
2075 
2076 		if (err)
2077 			break;
2078 		++datagrams;
2079 	}
2080 
2081 	fput_light(sock->file, fput_needed);
2082 
2083 	/* We only return an error if no datagrams were able to be sent */
2084 	if (datagrams != 0)
2085 		return datagrams;
2086 
2087 	return err;
2088 }
2089 
2090 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2091 		unsigned int, vlen, unsigned int, flags)
2092 {
2093 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2094 }
2095 
2096 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2097 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2098 {
2099 	struct compat_msghdr __user *msg_compat =
2100 	    (struct compat_msghdr __user *)msg;
2101 	struct iovec iovstack[UIO_FASTIOV];
2102 	struct iovec *iov = iovstack;
2103 	unsigned long cmsg_ptr;
2104 	int err, total_len, len;
2105 
2106 	/* kernel mode address */
2107 	struct sockaddr_storage addr;
2108 
2109 	/* user mode address pointers */
2110 	struct sockaddr __user *uaddr;
2111 	int __user *uaddr_len;
2112 
2113 	if (MSG_CMSG_COMPAT & flags) {
2114 		if (get_compat_msghdr(msg_sys, msg_compat))
2115 			return -EFAULT;
2116 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2117 		return -EFAULT;
2118 
2119 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2120 		err = -EMSGSIZE;
2121 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2122 			goto out;
2123 		err = -ENOMEM;
2124 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2125 			      GFP_KERNEL);
2126 		if (!iov)
2127 			goto out;
2128 	}
2129 
2130 	/*
2131 	 *      Save the user-mode address (verify_iovec will change the
2132 	 *      kernel msghdr to use the kernel address space)
2133 	 */
2134 
2135 	uaddr = (__force void __user *)msg_sys->msg_name;
2136 	uaddr_len = COMPAT_NAMELEN(msg);
2137 	if (MSG_CMSG_COMPAT & flags) {
2138 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2139 	} else
2140 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2141 	if (err < 0)
2142 		goto out_freeiov;
2143 	total_len = err;
2144 
2145 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2146 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2147 
2148 	if (sock->file->f_flags & O_NONBLOCK)
2149 		flags |= MSG_DONTWAIT;
2150 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2151 							  total_len, flags);
2152 	if (err < 0)
2153 		goto out_freeiov;
2154 	len = err;
2155 
2156 	if (uaddr != NULL) {
2157 		err = move_addr_to_user(&addr,
2158 					msg_sys->msg_namelen, uaddr,
2159 					uaddr_len);
2160 		if (err < 0)
2161 			goto out_freeiov;
2162 	}
2163 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2164 			 COMPAT_FLAGS(msg));
2165 	if (err)
2166 		goto out_freeiov;
2167 	if (MSG_CMSG_COMPAT & flags)
2168 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2169 				 &msg_compat->msg_controllen);
2170 	else
2171 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2172 				 &msg->msg_controllen);
2173 	if (err)
2174 		goto out_freeiov;
2175 	err = len;
2176 
2177 out_freeiov:
2178 	if (iov != iovstack)
2179 		kfree(iov);
2180 out:
2181 	return err;
2182 }
2183 
2184 /*
2185  *	BSD recvmsg interface
2186  */
2187 
2188 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2189 		unsigned int, flags)
2190 {
2191 	int fput_needed, err;
2192 	struct msghdr msg_sys;
2193 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2194 
2195 	if (!sock)
2196 		goto out;
2197 
2198 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2199 
2200 	fput_light(sock->file, fput_needed);
2201 out:
2202 	return err;
2203 }
2204 
2205 /*
2206  *     Linux recvmmsg interface
2207  */
2208 
2209 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2210 		   unsigned int flags, struct timespec *timeout)
2211 {
2212 	int fput_needed, err, datagrams;
2213 	struct socket *sock;
2214 	struct mmsghdr __user *entry;
2215 	struct compat_mmsghdr __user *compat_entry;
2216 	struct msghdr msg_sys;
2217 	struct timespec end_time;
2218 
2219 	if (timeout &&
2220 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 				    timeout->tv_nsec))
2222 		return -EINVAL;
2223 
2224 	datagrams = 0;
2225 
2226 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 	if (!sock)
2228 		return err;
2229 
2230 	err = sock_error(sock->sk);
2231 	if (err)
2232 		goto out_put;
2233 
2234 	entry = mmsg;
2235 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236 
2237 	while (datagrams < vlen) {
2238 		/*
2239 		 * No need to ask LSM for more than the first datagram.
2240 		 */
2241 		if (MSG_CMSG_COMPAT & flags) {
2242 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2243 					    &msg_sys, flags & ~MSG_WAITFORONE,
2244 					    datagrams);
2245 			if (err < 0)
2246 				break;
2247 			err = __put_user(err, &compat_entry->msg_len);
2248 			++compat_entry;
2249 		} else {
2250 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2251 					    &msg_sys, flags & ~MSG_WAITFORONE,
2252 					    datagrams);
2253 			if (err < 0)
2254 				break;
2255 			err = put_user(err, &entry->msg_len);
2256 			++entry;
2257 		}
2258 
2259 		if (err)
2260 			break;
2261 		++datagrams;
2262 
2263 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2264 		if (flags & MSG_WAITFORONE)
2265 			flags |= MSG_DONTWAIT;
2266 
2267 		if (timeout) {
2268 			ktime_get_ts(timeout);
2269 			*timeout = timespec_sub(end_time, *timeout);
2270 			if (timeout->tv_sec < 0) {
2271 				timeout->tv_sec = timeout->tv_nsec = 0;
2272 				break;
2273 			}
2274 
2275 			/* Timeout, return less than vlen datagrams */
2276 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2277 				break;
2278 		}
2279 
2280 		/* Out of band data, return right away */
2281 		if (msg_sys.msg_flags & MSG_OOB)
2282 			break;
2283 	}
2284 
2285 out_put:
2286 	fput_light(sock->file, fput_needed);
2287 
2288 	if (err == 0)
2289 		return datagrams;
2290 
2291 	if (datagrams != 0) {
2292 		/*
2293 		 * We may return less entries than requested (vlen) if the
2294 		 * sock is non block and there aren't enough datagrams...
2295 		 */
2296 		if (err != -EAGAIN) {
2297 			/*
2298 			 * ... or  if recvmsg returns an error after we
2299 			 * received some datagrams, where we record the
2300 			 * error to return on the next call or if the
2301 			 * app asks about it using getsockopt(SO_ERROR).
2302 			 */
2303 			sock->sk->sk_err = -err;
2304 		}
2305 
2306 		return datagrams;
2307 	}
2308 
2309 	return err;
2310 }
2311 
2312 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2313 		unsigned int, vlen, unsigned int, flags,
2314 		struct timespec __user *, timeout)
2315 {
2316 	int datagrams;
2317 	struct timespec timeout_sys;
2318 
2319 	if (!timeout)
2320 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2321 
2322 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2323 		return -EFAULT;
2324 
2325 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2326 
2327 	if (datagrams > 0 &&
2328 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2329 		datagrams = -EFAULT;
2330 
2331 	return datagrams;
2332 }
2333 
2334 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2335 /* Argument list sizes for sys_socketcall */
2336 #define AL(x) ((x) * sizeof(unsigned long))
2337 static const unsigned char nargs[21] = {
2338 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2339 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2340 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2341 	AL(4), AL(5), AL(4)
2342 };
2343 
2344 #undef AL
2345 
2346 /*
2347  *	System call vectors.
2348  *
2349  *	Argument checking cleaned up. Saved 20% in size.
2350  *  This function doesn't need to set the kernel lock because
2351  *  it is set by the callees.
2352  */
2353 
2354 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2355 {
2356 	unsigned long a[6];
2357 	unsigned long a0, a1;
2358 	int err;
2359 	unsigned int len;
2360 
2361 	if (call < 1 || call > SYS_SENDMMSG)
2362 		return -EINVAL;
2363 
2364 	len = nargs[call];
2365 	if (len > sizeof(a))
2366 		return -EINVAL;
2367 
2368 	/* copy_from_user should be SMP safe. */
2369 	if (copy_from_user(a, args, len))
2370 		return -EFAULT;
2371 
2372 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2373 
2374 	a0 = a[0];
2375 	a1 = a[1];
2376 
2377 	switch (call) {
2378 	case SYS_SOCKET:
2379 		err = sys_socket(a0, a1, a[2]);
2380 		break;
2381 	case SYS_BIND:
2382 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2383 		break;
2384 	case SYS_CONNECT:
2385 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2386 		break;
2387 	case SYS_LISTEN:
2388 		err = sys_listen(a0, a1);
2389 		break;
2390 	case SYS_ACCEPT:
2391 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2392 				  (int __user *)a[2], 0);
2393 		break;
2394 	case SYS_GETSOCKNAME:
2395 		err =
2396 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2397 				    (int __user *)a[2]);
2398 		break;
2399 	case SYS_GETPEERNAME:
2400 		err =
2401 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2402 				    (int __user *)a[2]);
2403 		break;
2404 	case SYS_SOCKETPAIR:
2405 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2406 		break;
2407 	case SYS_SEND:
2408 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2409 		break;
2410 	case SYS_SENDTO:
2411 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2412 				 (struct sockaddr __user *)a[4], a[5]);
2413 		break;
2414 	case SYS_RECV:
2415 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2416 		break;
2417 	case SYS_RECVFROM:
2418 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2419 				   (struct sockaddr __user *)a[4],
2420 				   (int __user *)a[5]);
2421 		break;
2422 	case SYS_SHUTDOWN:
2423 		err = sys_shutdown(a0, a1);
2424 		break;
2425 	case SYS_SETSOCKOPT:
2426 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2427 		break;
2428 	case SYS_GETSOCKOPT:
2429 		err =
2430 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2431 				   (int __user *)a[4]);
2432 		break;
2433 	case SYS_SENDMSG:
2434 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2435 		break;
2436 	case SYS_SENDMMSG:
2437 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2438 		break;
2439 	case SYS_RECVMSG:
2440 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2441 		break;
2442 	case SYS_RECVMMSG:
2443 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2444 				   (struct timespec __user *)a[4]);
2445 		break;
2446 	case SYS_ACCEPT4:
2447 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2448 				  (int __user *)a[2], a[3]);
2449 		break;
2450 	default:
2451 		err = -EINVAL;
2452 		break;
2453 	}
2454 	return err;
2455 }
2456 
2457 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2458 
2459 /**
2460  *	sock_register - add a socket protocol handler
2461  *	@ops: description of protocol
2462  *
2463  *	This function is called by a protocol handler that wants to
2464  *	advertise its address family, and have it linked into the
2465  *	socket interface. The value ops->family coresponds to the
2466  *	socket system call protocol family.
2467  */
2468 int sock_register(const struct net_proto_family *ops)
2469 {
2470 	int err;
2471 
2472 	if (ops->family >= NPROTO) {
2473 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2474 		       NPROTO);
2475 		return -ENOBUFS;
2476 	}
2477 
2478 	spin_lock(&net_family_lock);
2479 	if (rcu_dereference_protected(net_families[ops->family],
2480 				      lockdep_is_held(&net_family_lock)))
2481 		err = -EEXIST;
2482 	else {
2483 		rcu_assign_pointer(net_families[ops->family], ops);
2484 		err = 0;
2485 	}
2486 	spin_unlock(&net_family_lock);
2487 
2488 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2489 	return err;
2490 }
2491 EXPORT_SYMBOL(sock_register);
2492 
2493 /**
2494  *	sock_unregister - remove a protocol handler
2495  *	@family: protocol family to remove
2496  *
2497  *	This function is called by a protocol handler that wants to
2498  *	remove its address family, and have it unlinked from the
2499  *	new socket creation.
2500  *
2501  *	If protocol handler is a module, then it can use module reference
2502  *	counts to protect against new references. If protocol handler is not
2503  *	a module then it needs to provide its own protection in
2504  *	the ops->create routine.
2505  */
2506 void sock_unregister(int family)
2507 {
2508 	BUG_ON(family < 0 || family >= NPROTO);
2509 
2510 	spin_lock(&net_family_lock);
2511 	RCU_INIT_POINTER(net_families[family], NULL);
2512 	spin_unlock(&net_family_lock);
2513 
2514 	synchronize_rcu();
2515 
2516 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2517 }
2518 EXPORT_SYMBOL(sock_unregister);
2519 
2520 static int __init sock_init(void)
2521 {
2522 	int err;
2523 	/*
2524 	 *      Initialize the network sysctl infrastructure.
2525 	 */
2526 	err = net_sysctl_init();
2527 	if (err)
2528 		goto out;
2529 
2530 	/*
2531 	 *      Initialize sock SLAB cache.
2532 	 */
2533 
2534 	sk_init();
2535 
2536 	/*
2537 	 *      Initialize skbuff SLAB cache
2538 	 */
2539 	skb_init();
2540 
2541 	/*
2542 	 *      Initialize the protocols module.
2543 	 */
2544 
2545 	init_inodecache();
2546 
2547 	err = register_filesystem(&sock_fs_type);
2548 	if (err)
2549 		goto out_fs;
2550 	sock_mnt = kern_mount(&sock_fs_type);
2551 	if (IS_ERR(sock_mnt)) {
2552 		err = PTR_ERR(sock_mnt);
2553 		goto out_mount;
2554 	}
2555 
2556 	/* The real protocol initialization is performed in later initcalls.
2557 	 */
2558 
2559 #ifdef CONFIG_NETFILTER
2560 	netfilter_init();
2561 #endif
2562 
2563 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2564 	skb_timestamping_init();
2565 #endif
2566 
2567 out:
2568 	return err;
2569 
2570 out_mount:
2571 	unregister_filesystem(&sock_fs_type);
2572 out_fs:
2573 	goto out;
2574 }
2575 
2576 core_initcall(sock_init);	/* early initcall */
2577 
2578 #ifdef CONFIG_PROC_FS
2579 void socket_seq_show(struct seq_file *seq)
2580 {
2581 	int cpu;
2582 	int counter = 0;
2583 
2584 	for_each_possible_cpu(cpu)
2585 	    counter += per_cpu(sockets_in_use, cpu);
2586 
2587 	/* It can be negative, by the way. 8) */
2588 	if (counter < 0)
2589 		counter = 0;
2590 
2591 	seq_printf(seq, "sockets: used %d\n", counter);
2592 }
2593 #endif				/* CONFIG_PROC_FS */
2594 
2595 #ifdef CONFIG_COMPAT
2596 static int do_siocgstamp(struct net *net, struct socket *sock,
2597 			 unsigned int cmd, void __user *up)
2598 {
2599 	mm_segment_t old_fs = get_fs();
2600 	struct timeval ktv;
2601 	int err;
2602 
2603 	set_fs(KERNEL_DS);
2604 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2605 	set_fs(old_fs);
2606 	if (!err)
2607 		err = compat_put_timeval(&ktv, up);
2608 
2609 	return err;
2610 }
2611 
2612 static int do_siocgstampns(struct net *net, struct socket *sock,
2613 			   unsigned int cmd, void __user *up)
2614 {
2615 	mm_segment_t old_fs = get_fs();
2616 	struct timespec kts;
2617 	int err;
2618 
2619 	set_fs(KERNEL_DS);
2620 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2621 	set_fs(old_fs);
2622 	if (!err)
2623 		err = compat_put_timespec(&kts, up);
2624 
2625 	return err;
2626 }
2627 
2628 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2629 {
2630 	struct ifreq __user *uifr;
2631 	int err;
2632 
2633 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2634 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2635 		return -EFAULT;
2636 
2637 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2638 	if (err)
2639 		return err;
2640 
2641 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2642 		return -EFAULT;
2643 
2644 	return 0;
2645 }
2646 
2647 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2648 {
2649 	struct compat_ifconf ifc32;
2650 	struct ifconf ifc;
2651 	struct ifconf __user *uifc;
2652 	struct compat_ifreq __user *ifr32;
2653 	struct ifreq __user *ifr;
2654 	unsigned int i, j;
2655 	int err;
2656 
2657 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2658 		return -EFAULT;
2659 
2660 	memset(&ifc, 0, sizeof(ifc));
2661 	if (ifc32.ifcbuf == 0) {
2662 		ifc32.ifc_len = 0;
2663 		ifc.ifc_len = 0;
2664 		ifc.ifc_req = NULL;
2665 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2666 	} else {
2667 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2668 			sizeof(struct ifreq);
2669 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2670 		ifc.ifc_len = len;
2671 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2672 		ifr32 = compat_ptr(ifc32.ifcbuf);
2673 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2674 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2675 				return -EFAULT;
2676 			ifr++;
2677 			ifr32++;
2678 		}
2679 	}
2680 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2681 		return -EFAULT;
2682 
2683 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2684 	if (err)
2685 		return err;
2686 
2687 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2688 		return -EFAULT;
2689 
2690 	ifr = ifc.ifc_req;
2691 	ifr32 = compat_ptr(ifc32.ifcbuf);
2692 	for (i = 0, j = 0;
2693 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2694 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2695 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2696 			return -EFAULT;
2697 		ifr32++;
2698 		ifr++;
2699 	}
2700 
2701 	if (ifc32.ifcbuf == 0) {
2702 		/* Translate from 64-bit structure multiple to
2703 		 * a 32-bit one.
2704 		 */
2705 		i = ifc.ifc_len;
2706 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2707 		ifc32.ifc_len = i;
2708 	} else {
2709 		ifc32.ifc_len = i;
2710 	}
2711 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2712 		return -EFAULT;
2713 
2714 	return 0;
2715 }
2716 
2717 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2718 {
2719 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2720 	bool convert_in = false, convert_out = false;
2721 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2722 	struct ethtool_rxnfc __user *rxnfc;
2723 	struct ifreq __user *ifr;
2724 	u32 rule_cnt = 0, actual_rule_cnt;
2725 	u32 ethcmd;
2726 	u32 data;
2727 	int ret;
2728 
2729 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2730 		return -EFAULT;
2731 
2732 	compat_rxnfc = compat_ptr(data);
2733 
2734 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2735 		return -EFAULT;
2736 
2737 	/* Most ethtool structures are defined without padding.
2738 	 * Unfortunately struct ethtool_rxnfc is an exception.
2739 	 */
2740 	switch (ethcmd) {
2741 	default:
2742 		break;
2743 	case ETHTOOL_GRXCLSRLALL:
2744 		/* Buffer size is variable */
2745 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2746 			return -EFAULT;
2747 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2748 			return -ENOMEM;
2749 		buf_size += rule_cnt * sizeof(u32);
2750 		/* fall through */
2751 	case ETHTOOL_GRXRINGS:
2752 	case ETHTOOL_GRXCLSRLCNT:
2753 	case ETHTOOL_GRXCLSRULE:
2754 	case ETHTOOL_SRXCLSRLINS:
2755 		convert_out = true;
2756 		/* fall through */
2757 	case ETHTOOL_SRXCLSRLDEL:
2758 		buf_size += sizeof(struct ethtool_rxnfc);
2759 		convert_in = true;
2760 		break;
2761 	}
2762 
2763 	ifr = compat_alloc_user_space(buf_size);
2764 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2765 
2766 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2767 		return -EFAULT;
2768 
2769 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2770 		     &ifr->ifr_ifru.ifru_data))
2771 		return -EFAULT;
2772 
2773 	if (convert_in) {
2774 		/* We expect there to be holes between fs.m_ext and
2775 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2776 		 */
2777 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2778 			     sizeof(compat_rxnfc->fs.m_ext) !=
2779 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2780 			     sizeof(rxnfc->fs.m_ext));
2781 		BUILD_BUG_ON(
2782 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2783 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2784 			offsetof(struct ethtool_rxnfc, fs.location) -
2785 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2786 
2787 		if (copy_in_user(rxnfc, compat_rxnfc,
2788 				 (void *)(&rxnfc->fs.m_ext + 1) -
2789 				 (void *)rxnfc) ||
2790 		    copy_in_user(&rxnfc->fs.ring_cookie,
2791 				 &compat_rxnfc->fs.ring_cookie,
2792 				 (void *)(&rxnfc->fs.location + 1) -
2793 				 (void *)&rxnfc->fs.ring_cookie) ||
2794 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2795 				 sizeof(rxnfc->rule_cnt)))
2796 			return -EFAULT;
2797 	}
2798 
2799 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2800 	if (ret)
2801 		return ret;
2802 
2803 	if (convert_out) {
2804 		if (copy_in_user(compat_rxnfc, rxnfc,
2805 				 (const void *)(&rxnfc->fs.m_ext + 1) -
2806 				 (const void *)rxnfc) ||
2807 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2808 				 &rxnfc->fs.ring_cookie,
2809 				 (const void *)(&rxnfc->fs.location + 1) -
2810 				 (const void *)&rxnfc->fs.ring_cookie) ||
2811 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2812 				 sizeof(rxnfc->rule_cnt)))
2813 			return -EFAULT;
2814 
2815 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2816 			/* As an optimisation, we only copy the actual
2817 			 * number of rules that the underlying
2818 			 * function returned.  Since Mallory might
2819 			 * change the rule count in user memory, we
2820 			 * check that it is less than the rule count
2821 			 * originally given (as the user buffer size),
2822 			 * which has been range-checked.
2823 			 */
2824 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2825 				return -EFAULT;
2826 			if (actual_rule_cnt < rule_cnt)
2827 				rule_cnt = actual_rule_cnt;
2828 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2829 					 &rxnfc->rule_locs[0],
2830 					 rule_cnt * sizeof(u32)))
2831 				return -EFAULT;
2832 		}
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2839 {
2840 	void __user *uptr;
2841 	compat_uptr_t uptr32;
2842 	struct ifreq __user *uifr;
2843 
2844 	uifr = compat_alloc_user_space(sizeof(*uifr));
2845 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2846 		return -EFAULT;
2847 
2848 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2849 		return -EFAULT;
2850 
2851 	uptr = compat_ptr(uptr32);
2852 
2853 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2854 		return -EFAULT;
2855 
2856 	return dev_ioctl(net, SIOCWANDEV, uifr);
2857 }
2858 
2859 static int bond_ioctl(struct net *net, unsigned int cmd,
2860 			 struct compat_ifreq __user *ifr32)
2861 {
2862 	struct ifreq kifr;
2863 	struct ifreq __user *uifr;
2864 	mm_segment_t old_fs;
2865 	int err;
2866 	u32 data;
2867 	void __user *datap;
2868 
2869 	switch (cmd) {
2870 	case SIOCBONDENSLAVE:
2871 	case SIOCBONDRELEASE:
2872 	case SIOCBONDSETHWADDR:
2873 	case SIOCBONDCHANGEACTIVE:
2874 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875 			return -EFAULT;
2876 
2877 		old_fs = get_fs();
2878 		set_fs(KERNEL_DS);
2879 		err = dev_ioctl(net, cmd,
2880 				(struct ifreq __user __force *) &kifr);
2881 		set_fs(old_fs);
2882 
2883 		return err;
2884 	case SIOCBONDSLAVEINFOQUERY:
2885 	case SIOCBONDINFOQUERY:
2886 		uifr = compat_alloc_user_space(sizeof(*uifr));
2887 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2888 			return -EFAULT;
2889 
2890 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2891 			return -EFAULT;
2892 
2893 		datap = compat_ptr(data);
2894 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2895 			return -EFAULT;
2896 
2897 		return dev_ioctl(net, cmd, uifr);
2898 	default:
2899 		return -ENOIOCTLCMD;
2900 	}
2901 }
2902 
2903 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2904 				 struct compat_ifreq __user *u_ifreq32)
2905 {
2906 	struct ifreq __user *u_ifreq64;
2907 	char tmp_buf[IFNAMSIZ];
2908 	void __user *data64;
2909 	u32 data32;
2910 
2911 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2912 			   IFNAMSIZ))
2913 		return -EFAULT;
2914 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2915 		return -EFAULT;
2916 	data64 = compat_ptr(data32);
2917 
2918 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2919 
2920 	/* Don't check these user accesses, just let that get trapped
2921 	 * in the ioctl handler instead.
2922 	 */
2923 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2924 			 IFNAMSIZ))
2925 		return -EFAULT;
2926 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2927 		return -EFAULT;
2928 
2929 	return dev_ioctl(net, cmd, u_ifreq64);
2930 }
2931 
2932 static int dev_ifsioc(struct net *net, struct socket *sock,
2933 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2934 {
2935 	struct ifreq __user *uifr;
2936 	int err;
2937 
2938 	uifr = compat_alloc_user_space(sizeof(*uifr));
2939 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2940 		return -EFAULT;
2941 
2942 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2943 
2944 	if (!err) {
2945 		switch (cmd) {
2946 		case SIOCGIFFLAGS:
2947 		case SIOCGIFMETRIC:
2948 		case SIOCGIFMTU:
2949 		case SIOCGIFMEM:
2950 		case SIOCGIFHWADDR:
2951 		case SIOCGIFINDEX:
2952 		case SIOCGIFADDR:
2953 		case SIOCGIFBRDADDR:
2954 		case SIOCGIFDSTADDR:
2955 		case SIOCGIFNETMASK:
2956 		case SIOCGIFPFLAGS:
2957 		case SIOCGIFTXQLEN:
2958 		case SIOCGMIIPHY:
2959 		case SIOCGMIIREG:
2960 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2961 				err = -EFAULT;
2962 			break;
2963 		}
2964 	}
2965 	return err;
2966 }
2967 
2968 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2969 			struct compat_ifreq __user *uifr32)
2970 {
2971 	struct ifreq ifr;
2972 	struct compat_ifmap __user *uifmap32;
2973 	mm_segment_t old_fs;
2974 	int err;
2975 
2976 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2977 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2978 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2982 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2983 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2984 	if (err)
2985 		return -EFAULT;
2986 
2987 	old_fs = get_fs();
2988 	set_fs(KERNEL_DS);
2989 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2990 	set_fs(old_fs);
2991 
2992 	if (cmd == SIOCGIFMAP && !err) {
2993 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2994 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2995 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2996 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2997 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2998 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2999 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3000 		if (err)
3001 			err = -EFAULT;
3002 	}
3003 	return err;
3004 }
3005 
3006 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3007 {
3008 	void __user *uptr;
3009 	compat_uptr_t uptr32;
3010 	struct ifreq __user *uifr;
3011 
3012 	uifr = compat_alloc_user_space(sizeof(*uifr));
3013 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3014 		return -EFAULT;
3015 
3016 	if (get_user(uptr32, &uifr32->ifr_data))
3017 		return -EFAULT;
3018 
3019 	uptr = compat_ptr(uptr32);
3020 
3021 	if (put_user(uptr, &uifr->ifr_data))
3022 		return -EFAULT;
3023 
3024 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3025 }
3026 
3027 struct rtentry32 {
3028 	u32		rt_pad1;
3029 	struct sockaddr rt_dst;         /* target address               */
3030 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3031 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3032 	unsigned short	rt_flags;
3033 	short		rt_pad2;
3034 	u32		rt_pad3;
3035 	unsigned char	rt_tos;
3036 	unsigned char	rt_class;
3037 	short		rt_pad4;
3038 	short		rt_metric;      /* +1 for binary compatibility! */
3039 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3040 	u32		rt_mtu;         /* per route MTU/Window         */
3041 	u32		rt_window;      /* Window clamping              */
3042 	unsigned short  rt_irtt;        /* Initial RTT                  */
3043 };
3044 
3045 struct in6_rtmsg32 {
3046 	struct in6_addr		rtmsg_dst;
3047 	struct in6_addr		rtmsg_src;
3048 	struct in6_addr		rtmsg_gateway;
3049 	u32			rtmsg_type;
3050 	u16			rtmsg_dst_len;
3051 	u16			rtmsg_src_len;
3052 	u32			rtmsg_metric;
3053 	u32			rtmsg_info;
3054 	u32			rtmsg_flags;
3055 	s32			rtmsg_ifindex;
3056 };
3057 
3058 static int routing_ioctl(struct net *net, struct socket *sock,
3059 			 unsigned int cmd, void __user *argp)
3060 {
3061 	int ret;
3062 	void *r = NULL;
3063 	struct in6_rtmsg r6;
3064 	struct rtentry r4;
3065 	char devname[16];
3066 	u32 rtdev;
3067 	mm_segment_t old_fs = get_fs();
3068 
3069 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3070 		struct in6_rtmsg32 __user *ur6 = argp;
3071 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3072 			3 * sizeof(struct in6_addr));
3073 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3074 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3075 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3076 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3077 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3078 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3079 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3080 
3081 		r = (void *) &r6;
3082 	} else { /* ipv4 */
3083 		struct rtentry32 __user *ur4 = argp;
3084 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3085 					3 * sizeof(struct sockaddr));
3086 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3087 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3088 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3089 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3090 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3091 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3092 		if (rtdev) {
3093 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3094 			r4.rt_dev = (char __user __force *)devname;
3095 			devname[15] = 0;
3096 		} else
3097 			r4.rt_dev = NULL;
3098 
3099 		r = (void *) &r4;
3100 	}
3101 
3102 	if (ret) {
3103 		ret = -EFAULT;
3104 		goto out;
3105 	}
3106 
3107 	set_fs(KERNEL_DS);
3108 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109 	set_fs(old_fs);
3110 
3111 out:
3112 	return ret;
3113 }
3114 
3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3116  * for some operations; this forces use of the newer bridge-utils that
3117  * use compatible ioctls
3118  */
3119 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3120 {
3121 	compat_ulong_t tmp;
3122 
3123 	if (get_user(tmp, argp))
3124 		return -EFAULT;
3125 	if (tmp == BRCTL_GET_VERSION)
3126 		return BRCTL_VERSION + 1;
3127 	return -EINVAL;
3128 }
3129 
3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3131 			 unsigned int cmd, unsigned long arg)
3132 {
3133 	void __user *argp = compat_ptr(arg);
3134 	struct sock *sk = sock->sk;
3135 	struct net *net = sock_net(sk);
3136 
3137 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3138 		return siocdevprivate_ioctl(net, cmd, argp);
3139 
3140 	switch (cmd) {
3141 	case SIOCSIFBR:
3142 	case SIOCGIFBR:
3143 		return old_bridge_ioctl(argp);
3144 	case SIOCGIFNAME:
3145 		return dev_ifname32(net, argp);
3146 	case SIOCGIFCONF:
3147 		return dev_ifconf(net, argp);
3148 	case SIOCETHTOOL:
3149 		return ethtool_ioctl(net, argp);
3150 	case SIOCWANDEV:
3151 		return compat_siocwandev(net, argp);
3152 	case SIOCGIFMAP:
3153 	case SIOCSIFMAP:
3154 		return compat_sioc_ifmap(net, cmd, argp);
3155 	case SIOCBONDENSLAVE:
3156 	case SIOCBONDRELEASE:
3157 	case SIOCBONDSETHWADDR:
3158 	case SIOCBONDSLAVEINFOQUERY:
3159 	case SIOCBONDINFOQUERY:
3160 	case SIOCBONDCHANGEACTIVE:
3161 		return bond_ioctl(net, cmd, argp);
3162 	case SIOCADDRT:
3163 	case SIOCDELRT:
3164 		return routing_ioctl(net, sock, cmd, argp);
3165 	case SIOCGSTAMP:
3166 		return do_siocgstamp(net, sock, cmd, argp);
3167 	case SIOCGSTAMPNS:
3168 		return do_siocgstampns(net, sock, cmd, argp);
3169 	case SIOCSHWTSTAMP:
3170 		return compat_siocshwtstamp(net, argp);
3171 
3172 	case FIOSETOWN:
3173 	case SIOCSPGRP:
3174 	case FIOGETOWN:
3175 	case SIOCGPGRP:
3176 	case SIOCBRADDBR:
3177 	case SIOCBRDELBR:
3178 	case SIOCGIFVLAN:
3179 	case SIOCSIFVLAN:
3180 	case SIOCADDDLCI:
3181 	case SIOCDELDLCI:
3182 		return sock_ioctl(file, cmd, arg);
3183 
3184 	case SIOCGIFFLAGS:
3185 	case SIOCSIFFLAGS:
3186 	case SIOCGIFMETRIC:
3187 	case SIOCSIFMETRIC:
3188 	case SIOCGIFMTU:
3189 	case SIOCSIFMTU:
3190 	case SIOCGIFMEM:
3191 	case SIOCSIFMEM:
3192 	case SIOCGIFHWADDR:
3193 	case SIOCSIFHWADDR:
3194 	case SIOCADDMULTI:
3195 	case SIOCDELMULTI:
3196 	case SIOCGIFINDEX:
3197 	case SIOCGIFADDR:
3198 	case SIOCSIFADDR:
3199 	case SIOCSIFHWBROADCAST:
3200 	case SIOCDIFADDR:
3201 	case SIOCGIFBRDADDR:
3202 	case SIOCSIFBRDADDR:
3203 	case SIOCGIFDSTADDR:
3204 	case SIOCSIFDSTADDR:
3205 	case SIOCGIFNETMASK:
3206 	case SIOCSIFNETMASK:
3207 	case SIOCSIFPFLAGS:
3208 	case SIOCGIFPFLAGS:
3209 	case SIOCGIFTXQLEN:
3210 	case SIOCSIFTXQLEN:
3211 	case SIOCBRADDIF:
3212 	case SIOCBRDELIF:
3213 	case SIOCSIFNAME:
3214 	case SIOCGMIIPHY:
3215 	case SIOCGMIIREG:
3216 	case SIOCSMIIREG:
3217 		return dev_ifsioc(net, sock, cmd, argp);
3218 
3219 	case SIOCSARP:
3220 	case SIOCGARP:
3221 	case SIOCDARP:
3222 	case SIOCATMARK:
3223 		return sock_do_ioctl(net, sock, cmd, arg);
3224 	}
3225 
3226 	return -ENOIOCTLCMD;
3227 }
3228 
3229 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3230 			      unsigned long arg)
3231 {
3232 	struct socket *sock = file->private_data;
3233 	int ret = -ENOIOCTLCMD;
3234 	struct sock *sk;
3235 	struct net *net;
3236 
3237 	sk = sock->sk;
3238 	net = sock_net(sk);
3239 
3240 	if (sock->ops->compat_ioctl)
3241 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3242 
3243 	if (ret == -ENOIOCTLCMD &&
3244 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3245 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3246 
3247 	if (ret == -ENOIOCTLCMD)
3248 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3249 
3250 	return ret;
3251 }
3252 #endif
3253 
3254 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3255 {
3256 	return sock->ops->bind(sock, addr, addrlen);
3257 }
3258 EXPORT_SYMBOL(kernel_bind);
3259 
3260 int kernel_listen(struct socket *sock, int backlog)
3261 {
3262 	return sock->ops->listen(sock, backlog);
3263 }
3264 EXPORT_SYMBOL(kernel_listen);
3265 
3266 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3267 {
3268 	struct sock *sk = sock->sk;
3269 	int err;
3270 
3271 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3272 			       newsock);
3273 	if (err < 0)
3274 		goto done;
3275 
3276 	err = sock->ops->accept(sock, *newsock, flags);
3277 	if (err < 0) {
3278 		sock_release(*newsock);
3279 		*newsock = NULL;
3280 		goto done;
3281 	}
3282 
3283 	(*newsock)->ops = sock->ops;
3284 	__module_get((*newsock)->ops->owner);
3285 
3286 done:
3287 	return err;
3288 }
3289 EXPORT_SYMBOL(kernel_accept);
3290 
3291 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3292 		   int flags)
3293 {
3294 	return sock->ops->connect(sock, addr, addrlen, flags);
3295 }
3296 EXPORT_SYMBOL(kernel_connect);
3297 
3298 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3299 			 int *addrlen)
3300 {
3301 	return sock->ops->getname(sock, addr, addrlen, 0);
3302 }
3303 EXPORT_SYMBOL(kernel_getsockname);
3304 
3305 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3306 			 int *addrlen)
3307 {
3308 	return sock->ops->getname(sock, addr, addrlen, 1);
3309 }
3310 EXPORT_SYMBOL(kernel_getpeername);
3311 
3312 int kernel_getsockopt(struct socket *sock, int level, int optname,
3313 			char *optval, int *optlen)
3314 {
3315 	mm_segment_t oldfs = get_fs();
3316 	char __user *uoptval;
3317 	int __user *uoptlen;
3318 	int err;
3319 
3320 	uoptval = (char __user __force *) optval;
3321 	uoptlen = (int __user __force *) optlen;
3322 
3323 	set_fs(KERNEL_DS);
3324 	if (level == SOL_SOCKET)
3325 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3326 	else
3327 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3328 					    uoptlen);
3329 	set_fs(oldfs);
3330 	return err;
3331 }
3332 EXPORT_SYMBOL(kernel_getsockopt);
3333 
3334 int kernel_setsockopt(struct socket *sock, int level, int optname,
3335 			char *optval, unsigned int optlen)
3336 {
3337 	mm_segment_t oldfs = get_fs();
3338 	char __user *uoptval;
3339 	int err;
3340 
3341 	uoptval = (char __user __force *) optval;
3342 
3343 	set_fs(KERNEL_DS);
3344 	if (level == SOL_SOCKET)
3345 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3346 	else
3347 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3348 					    optlen);
3349 	set_fs(oldfs);
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(kernel_setsockopt);
3353 
3354 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3355 		    size_t size, int flags)
3356 {
3357 	sock_update_classid(sock->sk);
3358 
3359 	if (sock->ops->sendpage)
3360 		return sock->ops->sendpage(sock, page, offset, size, flags);
3361 
3362 	return sock_no_sendpage(sock, page, offset, size, flags);
3363 }
3364 EXPORT_SYMBOL(kernel_sendpage);
3365 
3366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3367 {
3368 	mm_segment_t oldfs = get_fs();
3369 	int err;
3370 
3371 	set_fs(KERNEL_DS);
3372 	err = sock->ops->ioctl(sock, cmd, arg);
3373 	set_fs(oldfs);
3374 
3375 	return err;
3376 }
3377 EXPORT_SYMBOL(kernel_sock_ioctl);
3378 
3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3380 {
3381 	return sock->ops->shutdown(sock, how);
3382 }
3383 EXPORT_SYMBOL(kernel_sock_shutdown);
3384