1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/thread_info.h> 73 #include <linux/wanrouter.h> 74 #include <linux/if_bridge.h> 75 #include <linux/if_frad.h> 76 #include <linux/if_vlan.h> 77 #include <linux/init.h> 78 #include <linux/poll.h> 79 #include <linux/cache.h> 80 #include <linux/module.h> 81 #include <linux/highmem.h> 82 #include <linux/mount.h> 83 #include <linux/security.h> 84 #include <linux/syscalls.h> 85 #include <linux/compat.h> 86 #include <linux/kmod.h> 87 #include <linux/audit.h> 88 #include <linux/wireless.h> 89 #include <linux/nsproxy.h> 90 91 #include <asm/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 102 unsigned long nr_segs, loff_t pos); 103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 104 unsigned long nr_segs, loff_t pos); 105 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 106 107 static int sock_close(struct inode *inode, struct file *file); 108 static unsigned int sock_poll(struct file *file, 109 struct poll_table_struct *wait); 110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 111 #ifdef CONFIG_COMPAT 112 static long compat_sock_ioctl(struct file *file, 113 unsigned int cmd, unsigned long arg); 114 #endif 115 static int sock_fasync(int fd, struct file *filp, int on); 116 static ssize_t sock_sendpage(struct file *file, struct page *page, 117 int offset, size_t size, loff_t *ppos, int more); 118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 119 struct pipe_inode_info *pipe, size_t len, 120 unsigned int flags); 121 122 /* 123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 124 * in the operation structures but are done directly via the socketcall() multiplexor. 125 */ 126 127 static const struct file_operations socket_file_ops = { 128 .owner = THIS_MODULE, 129 .llseek = no_llseek, 130 .aio_read = sock_aio_read, 131 .aio_write = sock_aio_write, 132 .poll = sock_poll, 133 .unlocked_ioctl = sock_ioctl, 134 #ifdef CONFIG_COMPAT 135 .compat_ioctl = compat_sock_ioctl, 136 #endif 137 .mmap = sock_mmap, 138 .open = sock_no_open, /* special open code to disallow open via /proc */ 139 .release = sock_close, 140 .fasync = sock_fasync, 141 .sendpage = sock_sendpage, 142 .splice_write = generic_splice_sendpage, 143 .splice_read = sock_splice_read, 144 }; 145 146 /* 147 * The protocol list. Each protocol is registered in here. 148 */ 149 150 static DEFINE_SPINLOCK(net_family_lock); 151 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 152 153 /* 154 * Statistics counters of the socket lists 155 */ 156 157 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 158 159 /* 160 * Support routines. 161 * Move socket addresses back and forth across the kernel/user 162 * divide and look after the messy bits. 163 */ 164 165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 166 16 for IP, 16 for IPX, 167 24 for IPv6, 168 about 80 for AX.25 169 must be at least one bigger than 170 the AF_UNIX size (see net/unix/af_unix.c 171 :unix_mkname()). 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 214 int __user *ulen) 215 { 216 int err; 217 int len; 218 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0 || len > sizeof(struct sockaddr_storage)) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 #define SOCKFS_MAGIC 0x534F434B 240 241 static struct kmem_cache *sock_inode_cachep __read_mostly; 242 243 static struct inode *sock_alloc_inode(struct super_block *sb) 244 { 245 struct socket_alloc *ei; 246 247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 248 if (!ei) 249 return NULL; 250 init_waitqueue_head(&ei->socket.wait); 251 252 ei->socket.fasync_list = NULL; 253 ei->socket.state = SS_UNCONNECTED; 254 ei->socket.flags = 0; 255 ei->socket.ops = NULL; 256 ei->socket.sk = NULL; 257 ei->socket.file = NULL; 258 259 return &ei->vfs_inode; 260 } 261 262 static void sock_destroy_inode(struct inode *inode) 263 { 264 kmem_cache_free(sock_inode_cachep, 265 container_of(inode, struct socket_alloc, vfs_inode)); 266 } 267 268 static void init_once(void *foo) 269 { 270 struct socket_alloc *ei = (struct socket_alloc *)foo; 271 272 inode_init_once(&ei->vfs_inode); 273 } 274 275 static int init_inodecache(void) 276 { 277 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 278 sizeof(struct socket_alloc), 279 0, 280 (SLAB_HWCACHE_ALIGN | 281 SLAB_RECLAIM_ACCOUNT | 282 SLAB_MEM_SPREAD), 283 init_once); 284 if (sock_inode_cachep == NULL) 285 return -ENOMEM; 286 return 0; 287 } 288 289 static struct super_operations sockfs_ops = { 290 .alloc_inode = sock_alloc_inode, 291 .destroy_inode =sock_destroy_inode, 292 .statfs = simple_statfs, 293 }; 294 295 static int sockfs_get_sb(struct file_system_type *fs_type, 296 int flags, const char *dev_name, void *data, 297 struct vfsmount *mnt) 298 { 299 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 300 mnt); 301 } 302 303 static struct vfsmount *sock_mnt __read_mostly; 304 305 static struct file_system_type sock_fs_type = { 306 .name = "sockfs", 307 .get_sb = sockfs_get_sb, 308 .kill_sb = kill_anon_super, 309 }; 310 311 static int sockfs_delete_dentry(struct dentry *dentry) 312 { 313 /* 314 * At creation time, we pretended this dentry was hashed 315 * (by clearing DCACHE_UNHASHED bit in d_flags) 316 * At delete time, we restore the truth : not hashed. 317 * (so that dput() can proceed correctly) 318 */ 319 dentry->d_flags |= DCACHE_UNHASHED; 320 return 0; 321 } 322 323 /* 324 * sockfs_dname() is called from d_path(). 325 */ 326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 327 { 328 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 329 dentry->d_inode->i_ino); 330 } 331 332 static struct dentry_operations sockfs_dentry_operations = { 333 .d_delete = sockfs_delete_dentry, 334 .d_dname = sockfs_dname, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_fd(struct file **filep, int flags) 355 { 356 int fd; 357 358 fd = get_unused_fd_flags(flags); 359 if (likely(fd >= 0)) { 360 struct file *file = get_empty_filp(); 361 362 *filep = file; 363 if (unlikely(!file)) { 364 put_unused_fd(fd); 365 return -ENFILE; 366 } 367 } else 368 *filep = NULL; 369 return fd; 370 } 371 372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags) 373 { 374 struct dentry *dentry; 375 struct qstr name = { .name = "" }; 376 377 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 378 if (unlikely(!dentry)) 379 return -ENOMEM; 380 381 dentry->d_op = &sockfs_dentry_operations; 382 /* 383 * We dont want to push this dentry into global dentry hash table. 384 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 385 * This permits a working /proc/$pid/fd/XXX on sockets 386 */ 387 dentry->d_flags &= ~DCACHE_UNHASHED; 388 d_instantiate(dentry, SOCK_INODE(sock)); 389 390 sock->file = file; 391 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 392 &socket_file_ops); 393 SOCK_INODE(sock)->i_fop = &socket_file_ops; 394 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 395 file->f_pos = 0; 396 file->private_data = sock; 397 398 return 0; 399 } 400 401 int sock_map_fd(struct socket *sock, int flags) 402 { 403 struct file *newfile; 404 int fd = sock_alloc_fd(&newfile, flags); 405 406 if (likely(fd >= 0)) { 407 int err = sock_attach_fd(sock, newfile, flags); 408 409 if (unlikely(err < 0)) { 410 put_filp(newfile); 411 put_unused_fd(fd); 412 return err; 413 } 414 fd_install(fd, newfile); 415 } 416 return fd; 417 } 418 419 static struct socket *sock_from_file(struct file *file, int *err) 420 { 421 if (file->f_op == &socket_file_ops) 422 return file->private_data; /* set in sock_map_fd */ 423 424 *err = -ENOTSOCK; 425 return NULL; 426 } 427 428 /** 429 * sockfd_lookup - Go from a file number to its socket slot 430 * @fd: file handle 431 * @err: pointer to an error code return 432 * 433 * The file handle passed in is locked and the socket it is bound 434 * too is returned. If an error occurs the err pointer is overwritten 435 * with a negative errno code and NULL is returned. The function checks 436 * for both invalid handles and passing a handle which is not a socket. 437 * 438 * On a success the socket object pointer is returned. 439 */ 440 441 struct socket *sockfd_lookup(int fd, int *err) 442 { 443 struct file *file; 444 struct socket *sock; 445 446 file = fget(fd); 447 if (!file) { 448 *err = -EBADF; 449 return NULL; 450 } 451 452 sock = sock_from_file(file, err); 453 if (!sock) 454 fput(file); 455 return sock; 456 } 457 458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 459 { 460 struct file *file; 461 struct socket *sock; 462 463 *err = -EBADF; 464 file = fget_light(fd, fput_needed); 465 if (file) { 466 sock = sock_from_file(file, err); 467 if (sock) 468 return sock; 469 fput_light(file, *fput_needed); 470 } 471 return NULL; 472 } 473 474 /** 475 * sock_alloc - allocate a socket 476 * 477 * Allocate a new inode and socket object. The two are bound together 478 * and initialised. The socket is then returned. If we are out of inodes 479 * NULL is returned. 480 */ 481 482 static struct socket *sock_alloc(void) 483 { 484 struct inode *inode; 485 struct socket *sock; 486 487 inode = new_inode(sock_mnt->mnt_sb); 488 if (!inode) 489 return NULL; 490 491 sock = SOCKET_I(inode); 492 493 inode->i_mode = S_IFSOCK | S_IRWXUGO; 494 inode->i_uid = current->fsuid; 495 inode->i_gid = current->fsgid; 496 497 get_cpu_var(sockets_in_use)++; 498 put_cpu_var(sockets_in_use); 499 return sock; 500 } 501 502 /* 503 * In theory you can't get an open on this inode, but /proc provides 504 * a back door. Remember to keep it shut otherwise you'll let the 505 * creepy crawlies in. 506 */ 507 508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 509 { 510 return -ENXIO; 511 } 512 513 const struct file_operations bad_sock_fops = { 514 .owner = THIS_MODULE, 515 .open = sock_no_open, 516 }; 517 518 /** 519 * sock_release - close a socket 520 * @sock: socket to close 521 * 522 * The socket is released from the protocol stack if it has a release 523 * callback, and the inode is then released if the socket is bound to 524 * an inode not a file. 525 */ 526 527 void sock_release(struct socket *sock) 528 { 529 if (sock->ops) { 530 struct module *owner = sock->ops->owner; 531 532 sock->ops->release(sock); 533 sock->ops = NULL; 534 module_put(owner); 535 } 536 537 if (sock->fasync_list) 538 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 539 540 get_cpu_var(sockets_in_use)--; 541 put_cpu_var(sockets_in_use); 542 if (!sock->file) { 543 iput(SOCK_INODE(sock)); 544 return; 545 } 546 sock->file = NULL; 547 } 548 549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 550 struct msghdr *msg, size_t size) 551 { 552 struct sock_iocb *si = kiocb_to_siocb(iocb); 553 int err; 554 555 si->sock = sock; 556 si->scm = NULL; 557 si->msg = msg; 558 si->size = size; 559 560 err = security_socket_sendmsg(sock, msg, size); 561 if (err) 562 return err; 563 564 return sock->ops->sendmsg(iocb, sock, msg, size); 565 } 566 567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 568 { 569 struct kiocb iocb; 570 struct sock_iocb siocb; 571 int ret; 572 573 init_sync_kiocb(&iocb, NULL); 574 iocb.private = &siocb; 575 ret = __sock_sendmsg(&iocb, sock, msg, size); 576 if (-EIOCBQUEUED == ret) 577 ret = wait_on_sync_kiocb(&iocb); 578 return ret; 579 } 580 581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 582 struct kvec *vec, size_t num, size_t size) 583 { 584 mm_segment_t oldfs = get_fs(); 585 int result; 586 587 set_fs(KERNEL_DS); 588 /* 589 * the following is safe, since for compiler definitions of kvec and 590 * iovec are identical, yielding the same in-core layout and alignment 591 */ 592 msg->msg_iov = (struct iovec *)vec; 593 msg->msg_iovlen = num; 594 result = sock_sendmsg(sock, msg, size); 595 set_fs(oldfs); 596 return result; 597 } 598 599 /* 600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 601 */ 602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 603 struct sk_buff *skb) 604 { 605 ktime_t kt = skb->tstamp; 606 607 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 608 struct timeval tv; 609 /* Race occurred between timestamp enabling and packet 610 receiving. Fill in the current time for now. */ 611 if (kt.tv64 == 0) 612 kt = ktime_get_real(); 613 skb->tstamp = kt; 614 tv = ktime_to_timeval(kt); 615 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 616 } else { 617 struct timespec ts; 618 /* Race occurred between timestamp enabling and packet 619 receiving. Fill in the current time for now. */ 620 if (kt.tv64 == 0) 621 kt = ktime_get_real(); 622 skb->tstamp = kt; 623 ts = ktime_to_timespec(kt); 624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 625 } 626 } 627 628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 629 630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 631 struct msghdr *msg, size_t size, int flags) 632 { 633 int err; 634 struct sock_iocb *si = kiocb_to_siocb(iocb); 635 636 si->sock = sock; 637 si->scm = NULL; 638 si->msg = msg; 639 si->size = size; 640 si->flags = flags; 641 642 err = security_socket_recvmsg(sock, msg, size, flags); 643 if (err) 644 return err; 645 646 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 647 } 648 649 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 650 size_t size, int flags) 651 { 652 struct kiocb iocb; 653 struct sock_iocb siocb; 654 int ret; 655 656 init_sync_kiocb(&iocb, NULL); 657 iocb.private = &siocb; 658 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 659 if (-EIOCBQUEUED == ret) 660 ret = wait_on_sync_kiocb(&iocb); 661 return ret; 662 } 663 664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 665 struct kvec *vec, size_t num, size_t size, int flags) 666 { 667 mm_segment_t oldfs = get_fs(); 668 int result; 669 670 set_fs(KERNEL_DS); 671 /* 672 * the following is safe, since for compiler definitions of kvec and 673 * iovec are identical, yielding the same in-core layout and alignment 674 */ 675 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 676 result = sock_recvmsg(sock, msg, size, flags); 677 set_fs(oldfs); 678 return result; 679 } 680 681 static void sock_aio_dtor(struct kiocb *iocb) 682 { 683 kfree(iocb->private); 684 } 685 686 static ssize_t sock_sendpage(struct file *file, struct page *page, 687 int offset, size_t size, loff_t *ppos, int more) 688 { 689 struct socket *sock; 690 int flags; 691 692 sock = file->private_data; 693 694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 695 if (more) 696 flags |= MSG_MORE; 697 698 return sock->ops->sendpage(sock, page, offset, size, flags); 699 } 700 701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 702 struct pipe_inode_info *pipe, size_t len, 703 unsigned int flags) 704 { 705 struct socket *sock = file->private_data; 706 707 if (unlikely(!sock->ops->splice_read)) 708 return -EINVAL; 709 710 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 711 } 712 713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 714 struct sock_iocb *siocb) 715 { 716 if (!is_sync_kiocb(iocb)) { 717 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 718 if (!siocb) 719 return NULL; 720 iocb->ki_dtor = sock_aio_dtor; 721 } 722 723 siocb->kiocb = iocb; 724 iocb->private = siocb; 725 return siocb; 726 } 727 728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 729 struct file *file, const struct iovec *iov, 730 unsigned long nr_segs) 731 { 732 struct socket *sock = file->private_data; 733 size_t size = 0; 734 int i; 735 736 for (i = 0; i < nr_segs; i++) 737 size += iov[i].iov_len; 738 739 msg->msg_name = NULL; 740 msg->msg_namelen = 0; 741 msg->msg_control = NULL; 742 msg->msg_controllen = 0; 743 msg->msg_iov = (struct iovec *)iov; 744 msg->msg_iovlen = nr_segs; 745 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 746 747 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 748 } 749 750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 751 unsigned long nr_segs, loff_t pos) 752 { 753 struct sock_iocb siocb, *x; 754 755 if (pos != 0) 756 return -ESPIPE; 757 758 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 759 return 0; 760 761 762 x = alloc_sock_iocb(iocb, &siocb); 763 if (!x) 764 return -ENOMEM; 765 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 766 } 767 768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 769 struct file *file, const struct iovec *iov, 770 unsigned long nr_segs) 771 { 772 struct socket *sock = file->private_data; 773 size_t size = 0; 774 int i; 775 776 for (i = 0; i < nr_segs; i++) 777 size += iov[i].iov_len; 778 779 msg->msg_name = NULL; 780 msg->msg_namelen = 0; 781 msg->msg_control = NULL; 782 msg->msg_controllen = 0; 783 msg->msg_iov = (struct iovec *)iov; 784 msg->msg_iovlen = nr_segs; 785 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 786 if (sock->type == SOCK_SEQPACKET) 787 msg->msg_flags |= MSG_EOR; 788 789 return __sock_sendmsg(iocb, sock, msg, size); 790 } 791 792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 793 unsigned long nr_segs, loff_t pos) 794 { 795 struct sock_iocb siocb, *x; 796 797 if (pos != 0) 798 return -ESPIPE; 799 800 x = alloc_sock_iocb(iocb, &siocb); 801 if (!x) 802 return -ENOMEM; 803 804 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 805 } 806 807 /* 808 * Atomic setting of ioctl hooks to avoid race 809 * with module unload. 810 */ 811 812 static DEFINE_MUTEX(br_ioctl_mutex); 813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 814 815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 816 { 817 mutex_lock(&br_ioctl_mutex); 818 br_ioctl_hook = hook; 819 mutex_unlock(&br_ioctl_mutex); 820 } 821 822 EXPORT_SYMBOL(brioctl_set); 823 824 static DEFINE_MUTEX(vlan_ioctl_mutex); 825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 826 827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 828 { 829 mutex_lock(&vlan_ioctl_mutex); 830 vlan_ioctl_hook = hook; 831 mutex_unlock(&vlan_ioctl_mutex); 832 } 833 834 EXPORT_SYMBOL(vlan_ioctl_set); 835 836 static DEFINE_MUTEX(dlci_ioctl_mutex); 837 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 838 839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 840 { 841 mutex_lock(&dlci_ioctl_mutex); 842 dlci_ioctl_hook = hook; 843 mutex_unlock(&dlci_ioctl_mutex); 844 } 845 846 EXPORT_SYMBOL(dlci_ioctl_set); 847 848 /* 849 * With an ioctl, arg may well be a user mode pointer, but we don't know 850 * what to do with it - that's up to the protocol still. 851 */ 852 853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 854 { 855 struct socket *sock; 856 struct sock *sk; 857 void __user *argp = (void __user *)arg; 858 int pid, err; 859 struct net *net; 860 861 sock = file->private_data; 862 sk = sock->sk; 863 net = sock_net(sk); 864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 865 err = dev_ioctl(net, cmd, argp); 866 } else 867 #ifdef CONFIG_WIRELESS_EXT 868 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 869 err = dev_ioctl(net, cmd, argp); 870 } else 871 #endif /* CONFIG_WIRELESS_EXT */ 872 switch (cmd) { 873 case FIOSETOWN: 874 case SIOCSPGRP: 875 err = -EFAULT; 876 if (get_user(pid, (int __user *)argp)) 877 break; 878 err = f_setown(sock->file, pid, 1); 879 break; 880 case FIOGETOWN: 881 case SIOCGPGRP: 882 err = put_user(f_getown(sock->file), 883 (int __user *)argp); 884 break; 885 case SIOCGIFBR: 886 case SIOCSIFBR: 887 case SIOCBRADDBR: 888 case SIOCBRDELBR: 889 err = -ENOPKG; 890 if (!br_ioctl_hook) 891 request_module("bridge"); 892 893 mutex_lock(&br_ioctl_mutex); 894 if (br_ioctl_hook) 895 err = br_ioctl_hook(net, cmd, argp); 896 mutex_unlock(&br_ioctl_mutex); 897 break; 898 case SIOCGIFVLAN: 899 case SIOCSIFVLAN: 900 err = -ENOPKG; 901 if (!vlan_ioctl_hook) 902 request_module("8021q"); 903 904 mutex_lock(&vlan_ioctl_mutex); 905 if (vlan_ioctl_hook) 906 err = vlan_ioctl_hook(net, argp); 907 mutex_unlock(&vlan_ioctl_mutex); 908 break; 909 case SIOCADDDLCI: 910 case SIOCDELDLCI: 911 err = -ENOPKG; 912 if (!dlci_ioctl_hook) 913 request_module("dlci"); 914 915 mutex_lock(&dlci_ioctl_mutex); 916 if (dlci_ioctl_hook) 917 err = dlci_ioctl_hook(cmd, argp); 918 mutex_unlock(&dlci_ioctl_mutex); 919 break; 920 default: 921 err = sock->ops->ioctl(sock, cmd, arg); 922 923 /* 924 * If this ioctl is unknown try to hand it down 925 * to the NIC driver. 926 */ 927 if (err == -ENOIOCTLCMD) 928 err = dev_ioctl(net, cmd, argp); 929 break; 930 } 931 return err; 932 } 933 934 int sock_create_lite(int family, int type, int protocol, struct socket **res) 935 { 936 int err; 937 struct socket *sock = NULL; 938 939 err = security_socket_create(family, type, protocol, 1); 940 if (err) 941 goto out; 942 943 sock = sock_alloc(); 944 if (!sock) { 945 err = -ENOMEM; 946 goto out; 947 } 948 949 sock->type = type; 950 err = security_socket_post_create(sock, family, type, protocol, 1); 951 if (err) 952 goto out_release; 953 954 out: 955 *res = sock; 956 return err; 957 out_release: 958 sock_release(sock); 959 sock = NULL; 960 goto out; 961 } 962 963 /* No kernel lock held - perfect */ 964 static unsigned int sock_poll(struct file *file, poll_table *wait) 965 { 966 struct socket *sock; 967 968 /* 969 * We can't return errors to poll, so it's either yes or no. 970 */ 971 sock = file->private_data; 972 return sock->ops->poll(file, sock, wait); 973 } 974 975 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 976 { 977 struct socket *sock = file->private_data; 978 979 return sock->ops->mmap(file, sock, vma); 980 } 981 982 static int sock_close(struct inode *inode, struct file *filp) 983 { 984 /* 985 * It was possible the inode is NULL we were 986 * closing an unfinished socket. 987 */ 988 989 if (!inode) { 990 printk(KERN_DEBUG "sock_close: NULL inode\n"); 991 return 0; 992 } 993 sock_release(SOCKET_I(inode)); 994 return 0; 995 } 996 997 /* 998 * Update the socket async list 999 * 1000 * Fasync_list locking strategy. 1001 * 1002 * 1. fasync_list is modified only under process context socket lock 1003 * i.e. under semaphore. 1004 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1005 * or under socket lock. 1006 * 3. fasync_list can be used from softirq context, so that 1007 * modification under socket lock have to be enhanced with 1008 * write_lock_bh(&sk->sk_callback_lock). 1009 * --ANK (990710) 1010 */ 1011 1012 static int sock_fasync(int fd, struct file *filp, int on) 1013 { 1014 struct fasync_struct *fa, *fna = NULL, **prev; 1015 struct socket *sock; 1016 struct sock *sk; 1017 1018 if (on) { 1019 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1020 if (fna == NULL) 1021 return -ENOMEM; 1022 } 1023 1024 sock = filp->private_data; 1025 1026 sk = sock->sk; 1027 if (sk == NULL) { 1028 kfree(fna); 1029 return -EINVAL; 1030 } 1031 1032 lock_sock(sk); 1033 1034 prev = &(sock->fasync_list); 1035 1036 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1037 if (fa->fa_file == filp) 1038 break; 1039 1040 if (on) { 1041 if (fa != NULL) { 1042 write_lock_bh(&sk->sk_callback_lock); 1043 fa->fa_fd = fd; 1044 write_unlock_bh(&sk->sk_callback_lock); 1045 1046 kfree(fna); 1047 goto out; 1048 } 1049 fna->fa_file = filp; 1050 fna->fa_fd = fd; 1051 fna->magic = FASYNC_MAGIC; 1052 fna->fa_next = sock->fasync_list; 1053 write_lock_bh(&sk->sk_callback_lock); 1054 sock->fasync_list = fna; 1055 write_unlock_bh(&sk->sk_callback_lock); 1056 } else { 1057 if (fa != NULL) { 1058 write_lock_bh(&sk->sk_callback_lock); 1059 *prev = fa->fa_next; 1060 write_unlock_bh(&sk->sk_callback_lock); 1061 kfree(fa); 1062 } 1063 } 1064 1065 out: 1066 release_sock(sock->sk); 1067 return 0; 1068 } 1069 1070 /* This function may be called only under socket lock or callback_lock */ 1071 1072 int sock_wake_async(struct socket *sock, int how, int band) 1073 { 1074 if (!sock || !sock->fasync_list) 1075 return -1; 1076 switch (how) { 1077 case SOCK_WAKE_WAITD: 1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1079 break; 1080 goto call_kill; 1081 case SOCK_WAKE_SPACE: 1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1083 break; 1084 /* fall through */ 1085 case SOCK_WAKE_IO: 1086 call_kill: 1087 __kill_fasync(sock->fasync_list, SIGIO, band); 1088 break; 1089 case SOCK_WAKE_URG: 1090 __kill_fasync(sock->fasync_list, SIGURG, band); 1091 } 1092 return 0; 1093 } 1094 1095 static int __sock_create(struct net *net, int family, int type, int protocol, 1096 struct socket **res, int kern) 1097 { 1098 int err; 1099 struct socket *sock; 1100 const struct net_proto_family *pf; 1101 1102 /* 1103 * Check protocol is in range 1104 */ 1105 if (family < 0 || family >= NPROTO) 1106 return -EAFNOSUPPORT; 1107 if (type < 0 || type >= SOCK_MAX) 1108 return -EINVAL; 1109 1110 /* Compatibility. 1111 1112 This uglymoron is moved from INET layer to here to avoid 1113 deadlock in module load. 1114 */ 1115 if (family == PF_INET && type == SOCK_PACKET) { 1116 static int warned; 1117 if (!warned) { 1118 warned = 1; 1119 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1120 current->comm); 1121 } 1122 family = PF_PACKET; 1123 } 1124 1125 err = security_socket_create(family, type, protocol, kern); 1126 if (err) 1127 return err; 1128 1129 /* 1130 * Allocate the socket and allow the family to set things up. if 1131 * the protocol is 0, the family is instructed to select an appropriate 1132 * default. 1133 */ 1134 sock = sock_alloc(); 1135 if (!sock) { 1136 if (net_ratelimit()) 1137 printk(KERN_WARNING "socket: no more sockets\n"); 1138 return -ENFILE; /* Not exactly a match, but its the 1139 closest posix thing */ 1140 } 1141 1142 sock->type = type; 1143 1144 #ifdef CONFIG_MODULES 1145 /* Attempt to load a protocol module if the find failed. 1146 * 1147 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1148 * requested real, full-featured networking support upon configuration. 1149 * Otherwise module support will break! 1150 */ 1151 if (net_families[family] == NULL) 1152 request_module("net-pf-%d", family); 1153 #endif 1154 1155 rcu_read_lock(); 1156 pf = rcu_dereference(net_families[family]); 1157 err = -EAFNOSUPPORT; 1158 if (!pf) 1159 goto out_release; 1160 1161 /* 1162 * We will call the ->create function, that possibly is in a loadable 1163 * module, so we have to bump that loadable module refcnt first. 1164 */ 1165 if (!try_module_get(pf->owner)) 1166 goto out_release; 1167 1168 /* Now protected by module ref count */ 1169 rcu_read_unlock(); 1170 1171 err = pf->create(net, sock, protocol); 1172 if (err < 0) 1173 goto out_module_put; 1174 1175 /* 1176 * Now to bump the refcnt of the [loadable] module that owns this 1177 * socket at sock_release time we decrement its refcnt. 1178 */ 1179 if (!try_module_get(sock->ops->owner)) 1180 goto out_module_busy; 1181 1182 /* 1183 * Now that we're done with the ->create function, the [loadable] 1184 * module can have its refcnt decremented 1185 */ 1186 module_put(pf->owner); 1187 err = security_socket_post_create(sock, family, type, protocol, kern); 1188 if (err) 1189 goto out_sock_release; 1190 *res = sock; 1191 1192 return 0; 1193 1194 out_module_busy: 1195 err = -EAFNOSUPPORT; 1196 out_module_put: 1197 sock->ops = NULL; 1198 module_put(pf->owner); 1199 out_sock_release: 1200 sock_release(sock); 1201 return err; 1202 1203 out_release: 1204 rcu_read_unlock(); 1205 goto out_sock_release; 1206 } 1207 1208 int sock_create(int family, int type, int protocol, struct socket **res) 1209 { 1210 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1211 } 1212 1213 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1214 { 1215 return __sock_create(&init_net, family, type, protocol, res, 1); 1216 } 1217 1218 asmlinkage long sys_socket(int family, int type, int protocol) 1219 { 1220 int retval; 1221 struct socket *sock; 1222 int flags; 1223 1224 /* Check the SOCK_* constants for consistency. */ 1225 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1226 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1227 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1228 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1229 1230 flags = type & ~SOCK_TYPE_MASK; 1231 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1232 return -EINVAL; 1233 type &= SOCK_TYPE_MASK; 1234 1235 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1236 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1237 1238 retval = sock_create(family, type, protocol, &sock); 1239 if (retval < 0) 1240 goto out; 1241 1242 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1243 if (retval < 0) 1244 goto out_release; 1245 1246 out: 1247 /* It may be already another descriptor 8) Not kernel problem. */ 1248 return retval; 1249 1250 out_release: 1251 sock_release(sock); 1252 return retval; 1253 } 1254 1255 /* 1256 * Create a pair of connected sockets. 1257 */ 1258 1259 asmlinkage long sys_socketpair(int family, int type, int protocol, 1260 int __user *usockvec) 1261 { 1262 struct socket *sock1, *sock2; 1263 int fd1, fd2, err; 1264 struct file *newfile1, *newfile2; 1265 int flags; 1266 1267 flags = type & ~SOCK_TYPE_MASK; 1268 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1269 return -EINVAL; 1270 type &= SOCK_TYPE_MASK; 1271 1272 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1273 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1274 1275 /* 1276 * Obtain the first socket and check if the underlying protocol 1277 * supports the socketpair call. 1278 */ 1279 1280 err = sock_create(family, type, protocol, &sock1); 1281 if (err < 0) 1282 goto out; 1283 1284 err = sock_create(family, type, protocol, &sock2); 1285 if (err < 0) 1286 goto out_release_1; 1287 1288 err = sock1->ops->socketpair(sock1, sock2); 1289 if (err < 0) 1290 goto out_release_both; 1291 1292 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC); 1293 if (unlikely(fd1 < 0)) { 1294 err = fd1; 1295 goto out_release_both; 1296 } 1297 1298 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC); 1299 if (unlikely(fd2 < 0)) { 1300 err = fd2; 1301 put_filp(newfile1); 1302 put_unused_fd(fd1); 1303 goto out_release_both; 1304 } 1305 1306 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK); 1307 if (unlikely(err < 0)) { 1308 goto out_fd2; 1309 } 1310 1311 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK); 1312 if (unlikely(err < 0)) { 1313 fput(newfile1); 1314 goto out_fd1; 1315 } 1316 1317 err = audit_fd_pair(fd1, fd2); 1318 if (err < 0) { 1319 fput(newfile1); 1320 fput(newfile2); 1321 goto out_fd; 1322 } 1323 1324 fd_install(fd1, newfile1); 1325 fd_install(fd2, newfile2); 1326 /* fd1 and fd2 may be already another descriptors. 1327 * Not kernel problem. 1328 */ 1329 1330 err = put_user(fd1, &usockvec[0]); 1331 if (!err) 1332 err = put_user(fd2, &usockvec[1]); 1333 if (!err) 1334 return 0; 1335 1336 sys_close(fd2); 1337 sys_close(fd1); 1338 return err; 1339 1340 out_release_both: 1341 sock_release(sock2); 1342 out_release_1: 1343 sock_release(sock1); 1344 out: 1345 return err; 1346 1347 out_fd2: 1348 put_filp(newfile1); 1349 sock_release(sock1); 1350 out_fd1: 1351 put_filp(newfile2); 1352 sock_release(sock2); 1353 out_fd: 1354 put_unused_fd(fd1); 1355 put_unused_fd(fd2); 1356 goto out; 1357 } 1358 1359 /* 1360 * Bind a name to a socket. Nothing much to do here since it's 1361 * the protocol's responsibility to handle the local address. 1362 * 1363 * We move the socket address to kernel space before we call 1364 * the protocol layer (having also checked the address is ok). 1365 */ 1366 1367 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1368 { 1369 struct socket *sock; 1370 struct sockaddr_storage address; 1371 int err, fput_needed; 1372 1373 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1374 if (sock) { 1375 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1376 if (err >= 0) { 1377 err = security_socket_bind(sock, 1378 (struct sockaddr *)&address, 1379 addrlen); 1380 if (!err) 1381 err = sock->ops->bind(sock, 1382 (struct sockaddr *) 1383 &address, addrlen); 1384 } 1385 fput_light(sock->file, fput_needed); 1386 } 1387 return err; 1388 } 1389 1390 /* 1391 * Perform a listen. Basically, we allow the protocol to do anything 1392 * necessary for a listen, and if that works, we mark the socket as 1393 * ready for listening. 1394 */ 1395 1396 asmlinkage long sys_listen(int fd, int backlog) 1397 { 1398 struct socket *sock; 1399 int err, fput_needed; 1400 int somaxconn; 1401 1402 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1403 if (sock) { 1404 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1405 if ((unsigned)backlog > somaxconn) 1406 backlog = somaxconn; 1407 1408 err = security_socket_listen(sock, backlog); 1409 if (!err) 1410 err = sock->ops->listen(sock, backlog); 1411 1412 fput_light(sock->file, fput_needed); 1413 } 1414 return err; 1415 } 1416 1417 /* 1418 * For accept, we attempt to create a new socket, set up the link 1419 * with the client, wake up the client, then return the new 1420 * connected fd. We collect the address of the connector in kernel 1421 * space and move it to user at the very end. This is unclean because 1422 * we open the socket then return an error. 1423 * 1424 * 1003.1g adds the ability to recvmsg() to query connection pending 1425 * status to recvmsg. We need to add that support in a way thats 1426 * clean when we restucture accept also. 1427 */ 1428 1429 long do_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1430 int __user *upeer_addrlen, int flags) 1431 { 1432 struct socket *sock, *newsock; 1433 struct file *newfile; 1434 int err, len, newfd, fput_needed; 1435 struct sockaddr_storage address; 1436 1437 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1438 return -EINVAL; 1439 1440 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1441 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1442 1443 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1444 if (!sock) 1445 goto out; 1446 1447 err = -ENFILE; 1448 if (!(newsock = sock_alloc())) 1449 goto out_put; 1450 1451 newsock->type = sock->type; 1452 newsock->ops = sock->ops; 1453 1454 /* 1455 * We don't need try_module_get here, as the listening socket (sock) 1456 * has the protocol module (sock->ops->owner) held. 1457 */ 1458 __module_get(newsock->ops->owner); 1459 1460 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC); 1461 if (unlikely(newfd < 0)) { 1462 err = newfd; 1463 sock_release(newsock); 1464 goto out_put; 1465 } 1466 1467 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK); 1468 if (err < 0) 1469 goto out_fd_simple; 1470 1471 err = security_socket_accept(sock, newsock); 1472 if (err) 1473 goto out_fd; 1474 1475 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1476 if (err < 0) 1477 goto out_fd; 1478 1479 if (upeer_sockaddr) { 1480 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1481 &len, 2) < 0) { 1482 err = -ECONNABORTED; 1483 goto out_fd; 1484 } 1485 err = move_addr_to_user((struct sockaddr *)&address, 1486 len, upeer_sockaddr, upeer_addrlen); 1487 if (err < 0) 1488 goto out_fd; 1489 } 1490 1491 /* File flags are not inherited via accept() unlike another OSes. */ 1492 1493 fd_install(newfd, newfile); 1494 err = newfd; 1495 1496 security_socket_post_accept(sock, newsock); 1497 1498 out_put: 1499 fput_light(sock->file, fput_needed); 1500 out: 1501 return err; 1502 out_fd_simple: 1503 sock_release(newsock); 1504 put_filp(newfile); 1505 put_unused_fd(newfd); 1506 goto out_put; 1507 out_fd: 1508 fput(newfile); 1509 put_unused_fd(newfd); 1510 goto out_put; 1511 } 1512 1513 #if 0 1514 #ifdef HAVE_SET_RESTORE_SIGMASK 1515 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr, 1516 int __user *upeer_addrlen, 1517 const sigset_t __user *sigmask, 1518 size_t sigsetsize, int flags) 1519 { 1520 sigset_t ksigmask, sigsaved; 1521 int ret; 1522 1523 if (sigmask) { 1524 /* XXX: Don't preclude handling different sized sigset_t's. */ 1525 if (sigsetsize != sizeof(sigset_t)) 1526 return -EINVAL; 1527 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1528 return -EFAULT; 1529 1530 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1531 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1532 } 1533 1534 ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags); 1535 1536 if (ret < 0 && signal_pending(current)) { 1537 /* 1538 * Don't restore the signal mask yet. Let do_signal() deliver 1539 * the signal on the way back to userspace, before the signal 1540 * mask is restored. 1541 */ 1542 if (sigmask) { 1543 memcpy(¤t->saved_sigmask, &sigsaved, 1544 sizeof(sigsaved)); 1545 set_restore_sigmask(); 1546 } 1547 } else if (sigmask) 1548 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1549 1550 return ret; 1551 } 1552 #else 1553 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr, 1554 int __user *upeer_addrlen, 1555 const sigset_t __user *sigmask, 1556 size_t sigsetsize, int flags) 1557 { 1558 /* The platform does not support restoring the signal mask in the 1559 * return path. So we do not allow using paccept() with a signal 1560 * mask. */ 1561 if (sigmask) 1562 return -EINVAL; 1563 1564 return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags); 1565 } 1566 #endif 1567 #endif 1568 1569 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1570 int __user *upeer_addrlen) 1571 { 1572 return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0); 1573 } 1574 1575 /* 1576 * Attempt to connect to a socket with the server address. The address 1577 * is in user space so we verify it is OK and move it to kernel space. 1578 * 1579 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1580 * break bindings 1581 * 1582 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1583 * other SEQPACKET protocols that take time to connect() as it doesn't 1584 * include the -EINPROGRESS status for such sockets. 1585 */ 1586 1587 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1588 int addrlen) 1589 { 1590 struct socket *sock; 1591 struct sockaddr_storage address; 1592 int err, fput_needed; 1593 1594 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1595 if (!sock) 1596 goto out; 1597 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1598 if (err < 0) 1599 goto out_put; 1600 1601 err = 1602 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1603 if (err) 1604 goto out_put; 1605 1606 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1607 sock->file->f_flags); 1608 out_put: 1609 fput_light(sock->file, fput_needed); 1610 out: 1611 return err; 1612 } 1613 1614 /* 1615 * Get the local address ('name') of a socket object. Move the obtained 1616 * name to user space. 1617 */ 1618 1619 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1620 int __user *usockaddr_len) 1621 { 1622 struct socket *sock; 1623 struct sockaddr_storage address; 1624 int len, err, fput_needed; 1625 1626 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1627 if (!sock) 1628 goto out; 1629 1630 err = security_socket_getsockname(sock); 1631 if (err) 1632 goto out_put; 1633 1634 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1635 if (err) 1636 goto out_put; 1637 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1638 1639 out_put: 1640 fput_light(sock->file, fput_needed); 1641 out: 1642 return err; 1643 } 1644 1645 /* 1646 * Get the remote address ('name') of a socket object. Move the obtained 1647 * name to user space. 1648 */ 1649 1650 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1651 int __user *usockaddr_len) 1652 { 1653 struct socket *sock; 1654 struct sockaddr_storage address; 1655 int len, err, fput_needed; 1656 1657 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1658 if (sock != NULL) { 1659 err = security_socket_getpeername(sock); 1660 if (err) { 1661 fput_light(sock->file, fput_needed); 1662 return err; 1663 } 1664 1665 err = 1666 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1667 1); 1668 if (!err) 1669 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1670 usockaddr_len); 1671 fput_light(sock->file, fput_needed); 1672 } 1673 return err; 1674 } 1675 1676 /* 1677 * Send a datagram to a given address. We move the address into kernel 1678 * space and check the user space data area is readable before invoking 1679 * the protocol. 1680 */ 1681 1682 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1683 unsigned flags, struct sockaddr __user *addr, 1684 int addr_len) 1685 { 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int err; 1689 struct msghdr msg; 1690 struct iovec iov; 1691 int fput_needed; 1692 1693 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1694 if (!sock) 1695 goto out; 1696 1697 iov.iov_base = buff; 1698 iov.iov_len = len; 1699 msg.msg_name = NULL; 1700 msg.msg_iov = &iov; 1701 msg.msg_iovlen = 1; 1702 msg.msg_control = NULL; 1703 msg.msg_controllen = 0; 1704 msg.msg_namelen = 0; 1705 if (addr) { 1706 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1707 if (err < 0) 1708 goto out_put; 1709 msg.msg_name = (struct sockaddr *)&address; 1710 msg.msg_namelen = addr_len; 1711 } 1712 if (sock->file->f_flags & O_NONBLOCK) 1713 flags |= MSG_DONTWAIT; 1714 msg.msg_flags = flags; 1715 err = sock_sendmsg(sock, &msg, len); 1716 1717 out_put: 1718 fput_light(sock->file, fput_needed); 1719 out: 1720 return err; 1721 } 1722 1723 /* 1724 * Send a datagram down a socket. 1725 */ 1726 1727 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1728 { 1729 return sys_sendto(fd, buff, len, flags, NULL, 0); 1730 } 1731 1732 /* 1733 * Receive a frame from the socket and optionally record the address of the 1734 * sender. We verify the buffers are writable and if needed move the 1735 * sender address from kernel to user space. 1736 */ 1737 1738 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1739 unsigned flags, struct sockaddr __user *addr, 1740 int __user *addr_len) 1741 { 1742 struct socket *sock; 1743 struct iovec iov; 1744 struct msghdr msg; 1745 struct sockaddr_storage address; 1746 int err, err2; 1747 int fput_needed; 1748 1749 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1750 if (!sock) 1751 goto out; 1752 1753 msg.msg_control = NULL; 1754 msg.msg_controllen = 0; 1755 msg.msg_iovlen = 1; 1756 msg.msg_iov = &iov; 1757 iov.iov_len = size; 1758 iov.iov_base = ubuf; 1759 msg.msg_name = (struct sockaddr *)&address; 1760 msg.msg_namelen = sizeof(address); 1761 if (sock->file->f_flags & O_NONBLOCK) 1762 flags |= MSG_DONTWAIT; 1763 err = sock_recvmsg(sock, &msg, size, flags); 1764 1765 if (err >= 0 && addr != NULL) { 1766 err2 = move_addr_to_user((struct sockaddr *)&address, 1767 msg.msg_namelen, addr, addr_len); 1768 if (err2 < 0) 1769 err = err2; 1770 } 1771 1772 fput_light(sock->file, fput_needed); 1773 out: 1774 return err; 1775 } 1776 1777 /* 1778 * Receive a datagram from a socket. 1779 */ 1780 1781 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1782 unsigned flags) 1783 { 1784 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1785 } 1786 1787 /* 1788 * Set a socket option. Because we don't know the option lengths we have 1789 * to pass the user mode parameter for the protocols to sort out. 1790 */ 1791 1792 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1793 char __user *optval, int optlen) 1794 { 1795 int err, fput_needed; 1796 struct socket *sock; 1797 1798 if (optlen < 0) 1799 return -EINVAL; 1800 1801 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1802 if (sock != NULL) { 1803 err = security_socket_setsockopt(sock, level, optname); 1804 if (err) 1805 goto out_put; 1806 1807 if (level == SOL_SOCKET) 1808 err = 1809 sock_setsockopt(sock, level, optname, optval, 1810 optlen); 1811 else 1812 err = 1813 sock->ops->setsockopt(sock, level, optname, optval, 1814 optlen); 1815 out_put: 1816 fput_light(sock->file, fput_needed); 1817 } 1818 return err; 1819 } 1820 1821 /* 1822 * Get a socket option. Because we don't know the option lengths we have 1823 * to pass a user mode parameter for the protocols to sort out. 1824 */ 1825 1826 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1827 char __user *optval, int __user *optlen) 1828 { 1829 int err, fput_needed; 1830 struct socket *sock; 1831 1832 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1833 if (sock != NULL) { 1834 err = security_socket_getsockopt(sock, level, optname); 1835 if (err) 1836 goto out_put; 1837 1838 if (level == SOL_SOCKET) 1839 err = 1840 sock_getsockopt(sock, level, optname, optval, 1841 optlen); 1842 else 1843 err = 1844 sock->ops->getsockopt(sock, level, optname, optval, 1845 optlen); 1846 out_put: 1847 fput_light(sock->file, fput_needed); 1848 } 1849 return err; 1850 } 1851 1852 /* 1853 * Shutdown a socket. 1854 */ 1855 1856 asmlinkage long sys_shutdown(int fd, int how) 1857 { 1858 int err, fput_needed; 1859 struct socket *sock; 1860 1861 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1862 if (sock != NULL) { 1863 err = security_socket_shutdown(sock, how); 1864 if (!err) 1865 err = sock->ops->shutdown(sock, how); 1866 fput_light(sock->file, fput_needed); 1867 } 1868 return err; 1869 } 1870 1871 /* A couple of helpful macros for getting the address of the 32/64 bit 1872 * fields which are the same type (int / unsigned) on our platforms. 1873 */ 1874 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1875 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1876 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1877 1878 /* 1879 * BSD sendmsg interface 1880 */ 1881 1882 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1883 { 1884 struct compat_msghdr __user *msg_compat = 1885 (struct compat_msghdr __user *)msg; 1886 struct socket *sock; 1887 struct sockaddr_storage address; 1888 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1889 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1890 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1891 /* 20 is size of ipv6_pktinfo */ 1892 unsigned char *ctl_buf = ctl; 1893 struct msghdr msg_sys; 1894 int err, ctl_len, iov_size, total_len; 1895 int fput_needed; 1896 1897 err = -EFAULT; 1898 if (MSG_CMSG_COMPAT & flags) { 1899 if (get_compat_msghdr(&msg_sys, msg_compat)) 1900 return -EFAULT; 1901 } 1902 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1903 return -EFAULT; 1904 1905 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1906 if (!sock) 1907 goto out; 1908 1909 /* do not move before msg_sys is valid */ 1910 err = -EMSGSIZE; 1911 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1912 goto out_put; 1913 1914 /* Check whether to allocate the iovec area */ 1915 err = -ENOMEM; 1916 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1917 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1918 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1919 if (!iov) 1920 goto out_put; 1921 } 1922 1923 /* This will also move the address data into kernel space */ 1924 if (MSG_CMSG_COMPAT & flags) { 1925 err = verify_compat_iovec(&msg_sys, iov, 1926 (struct sockaddr *)&address, 1927 VERIFY_READ); 1928 } else 1929 err = verify_iovec(&msg_sys, iov, 1930 (struct sockaddr *)&address, 1931 VERIFY_READ); 1932 if (err < 0) 1933 goto out_freeiov; 1934 total_len = err; 1935 1936 err = -ENOBUFS; 1937 1938 if (msg_sys.msg_controllen > INT_MAX) 1939 goto out_freeiov; 1940 ctl_len = msg_sys.msg_controllen; 1941 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1942 err = 1943 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1944 sizeof(ctl)); 1945 if (err) 1946 goto out_freeiov; 1947 ctl_buf = msg_sys.msg_control; 1948 ctl_len = msg_sys.msg_controllen; 1949 } else if (ctl_len) { 1950 if (ctl_len > sizeof(ctl)) { 1951 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1952 if (ctl_buf == NULL) 1953 goto out_freeiov; 1954 } 1955 err = -EFAULT; 1956 /* 1957 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1958 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1959 * checking falls down on this. 1960 */ 1961 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1962 ctl_len)) 1963 goto out_freectl; 1964 msg_sys.msg_control = ctl_buf; 1965 } 1966 msg_sys.msg_flags = flags; 1967 1968 if (sock->file->f_flags & O_NONBLOCK) 1969 msg_sys.msg_flags |= MSG_DONTWAIT; 1970 err = sock_sendmsg(sock, &msg_sys, total_len); 1971 1972 out_freectl: 1973 if (ctl_buf != ctl) 1974 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1975 out_freeiov: 1976 if (iov != iovstack) 1977 sock_kfree_s(sock->sk, iov, iov_size); 1978 out_put: 1979 fput_light(sock->file, fput_needed); 1980 out: 1981 return err; 1982 } 1983 1984 /* 1985 * BSD recvmsg interface 1986 */ 1987 1988 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1989 unsigned int flags) 1990 { 1991 struct compat_msghdr __user *msg_compat = 1992 (struct compat_msghdr __user *)msg; 1993 struct socket *sock; 1994 struct iovec iovstack[UIO_FASTIOV]; 1995 struct iovec *iov = iovstack; 1996 struct msghdr msg_sys; 1997 unsigned long cmsg_ptr; 1998 int err, iov_size, total_len, len; 1999 int fput_needed; 2000 2001 /* kernel mode address */ 2002 struct sockaddr_storage addr; 2003 2004 /* user mode address pointers */ 2005 struct sockaddr __user *uaddr; 2006 int __user *uaddr_len; 2007 2008 if (MSG_CMSG_COMPAT & flags) { 2009 if (get_compat_msghdr(&msg_sys, msg_compat)) 2010 return -EFAULT; 2011 } 2012 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 2013 return -EFAULT; 2014 2015 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2016 if (!sock) 2017 goto out; 2018 2019 err = -EMSGSIZE; 2020 if (msg_sys.msg_iovlen > UIO_MAXIOV) 2021 goto out_put; 2022 2023 /* Check whether to allocate the iovec area */ 2024 err = -ENOMEM; 2025 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 2026 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 2027 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2028 if (!iov) 2029 goto out_put; 2030 } 2031 2032 /* 2033 * Save the user-mode address (verify_iovec will change the 2034 * kernel msghdr to use the kernel address space) 2035 */ 2036 2037 uaddr = (__force void __user *)msg_sys.msg_name; 2038 uaddr_len = COMPAT_NAMELEN(msg); 2039 if (MSG_CMSG_COMPAT & flags) { 2040 err = verify_compat_iovec(&msg_sys, iov, 2041 (struct sockaddr *)&addr, 2042 VERIFY_WRITE); 2043 } else 2044 err = verify_iovec(&msg_sys, iov, 2045 (struct sockaddr *)&addr, 2046 VERIFY_WRITE); 2047 if (err < 0) 2048 goto out_freeiov; 2049 total_len = err; 2050 2051 cmsg_ptr = (unsigned long)msg_sys.msg_control; 2052 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2053 2054 if (sock->file->f_flags & O_NONBLOCK) 2055 flags |= MSG_DONTWAIT; 2056 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 2057 if (err < 0) 2058 goto out_freeiov; 2059 len = err; 2060 2061 if (uaddr != NULL) { 2062 err = move_addr_to_user((struct sockaddr *)&addr, 2063 msg_sys.msg_namelen, uaddr, 2064 uaddr_len); 2065 if (err < 0) 2066 goto out_freeiov; 2067 } 2068 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 2069 COMPAT_FLAGS(msg)); 2070 if (err) 2071 goto out_freeiov; 2072 if (MSG_CMSG_COMPAT & flags) 2073 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2074 &msg_compat->msg_controllen); 2075 else 2076 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2077 &msg->msg_controllen); 2078 if (err) 2079 goto out_freeiov; 2080 err = len; 2081 2082 out_freeiov: 2083 if (iov != iovstack) 2084 sock_kfree_s(sock->sk, iov, iov_size); 2085 out_put: 2086 fput_light(sock->file, fput_needed); 2087 out: 2088 return err; 2089 } 2090 2091 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2092 2093 /* Argument list sizes for sys_socketcall */ 2094 #define AL(x) ((x) * sizeof(unsigned long)) 2095 static const unsigned char nargs[19]={ 2096 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2097 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2098 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2099 AL(6) 2100 }; 2101 2102 #undef AL 2103 2104 /* 2105 * System call vectors. 2106 * 2107 * Argument checking cleaned up. Saved 20% in size. 2108 * This function doesn't need to set the kernel lock because 2109 * it is set by the callees. 2110 */ 2111 2112 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2113 { 2114 unsigned long a[6]; 2115 unsigned long a0, a1; 2116 int err; 2117 2118 if (call < 1 || call > SYS_PACCEPT) 2119 return -EINVAL; 2120 2121 /* copy_from_user should be SMP safe. */ 2122 if (copy_from_user(a, args, nargs[call])) 2123 return -EFAULT; 2124 2125 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2126 if (err) 2127 return err; 2128 2129 a0 = a[0]; 2130 a1 = a[1]; 2131 2132 switch (call) { 2133 case SYS_SOCKET: 2134 err = sys_socket(a0, a1, a[2]); 2135 break; 2136 case SYS_BIND: 2137 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2138 break; 2139 case SYS_CONNECT: 2140 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2141 break; 2142 case SYS_LISTEN: 2143 err = sys_listen(a0, a1); 2144 break; 2145 case SYS_ACCEPT: 2146 err = 2147 do_accept(a0, (struct sockaddr __user *)a1, 2148 (int __user *)a[2], 0); 2149 break; 2150 case SYS_GETSOCKNAME: 2151 err = 2152 sys_getsockname(a0, (struct sockaddr __user *)a1, 2153 (int __user *)a[2]); 2154 break; 2155 case SYS_GETPEERNAME: 2156 err = 2157 sys_getpeername(a0, (struct sockaddr __user *)a1, 2158 (int __user *)a[2]); 2159 break; 2160 case SYS_SOCKETPAIR: 2161 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2162 break; 2163 case SYS_SEND: 2164 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2165 break; 2166 case SYS_SENDTO: 2167 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2168 (struct sockaddr __user *)a[4], a[5]); 2169 break; 2170 case SYS_RECV: 2171 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2172 break; 2173 case SYS_RECVFROM: 2174 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2175 (struct sockaddr __user *)a[4], 2176 (int __user *)a[5]); 2177 break; 2178 case SYS_SHUTDOWN: 2179 err = sys_shutdown(a0, a1); 2180 break; 2181 case SYS_SETSOCKOPT: 2182 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2183 break; 2184 case SYS_GETSOCKOPT: 2185 err = 2186 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2187 (int __user *)a[4]); 2188 break; 2189 case SYS_SENDMSG: 2190 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2191 break; 2192 case SYS_RECVMSG: 2193 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2194 break; 2195 case SYS_PACCEPT: 2196 err = 2197 sys_paccept(a0, (struct sockaddr __user *)a1, 2198 (int __user *)a[2], 2199 (const sigset_t __user *) a[3], 2200 a[4], a[5]); 2201 break; 2202 default: 2203 err = -EINVAL; 2204 break; 2205 } 2206 return err; 2207 } 2208 2209 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2210 2211 /** 2212 * sock_register - add a socket protocol handler 2213 * @ops: description of protocol 2214 * 2215 * This function is called by a protocol handler that wants to 2216 * advertise its address family, and have it linked into the 2217 * socket interface. The value ops->family coresponds to the 2218 * socket system call protocol family. 2219 */ 2220 int sock_register(const struct net_proto_family *ops) 2221 { 2222 int err; 2223 2224 if (ops->family >= NPROTO) { 2225 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2226 NPROTO); 2227 return -ENOBUFS; 2228 } 2229 2230 spin_lock(&net_family_lock); 2231 if (net_families[ops->family]) 2232 err = -EEXIST; 2233 else { 2234 net_families[ops->family] = ops; 2235 err = 0; 2236 } 2237 spin_unlock(&net_family_lock); 2238 2239 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2240 return err; 2241 } 2242 2243 /** 2244 * sock_unregister - remove a protocol handler 2245 * @family: protocol family to remove 2246 * 2247 * This function is called by a protocol handler that wants to 2248 * remove its address family, and have it unlinked from the 2249 * new socket creation. 2250 * 2251 * If protocol handler is a module, then it can use module reference 2252 * counts to protect against new references. If protocol handler is not 2253 * a module then it needs to provide its own protection in 2254 * the ops->create routine. 2255 */ 2256 void sock_unregister(int family) 2257 { 2258 BUG_ON(family < 0 || family >= NPROTO); 2259 2260 spin_lock(&net_family_lock); 2261 net_families[family] = NULL; 2262 spin_unlock(&net_family_lock); 2263 2264 synchronize_rcu(); 2265 2266 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2267 } 2268 2269 static int __init sock_init(void) 2270 { 2271 /* 2272 * Initialize sock SLAB cache. 2273 */ 2274 2275 sk_init(); 2276 2277 /* 2278 * Initialize skbuff SLAB cache 2279 */ 2280 skb_init(); 2281 2282 /* 2283 * Initialize the protocols module. 2284 */ 2285 2286 init_inodecache(); 2287 register_filesystem(&sock_fs_type); 2288 sock_mnt = kern_mount(&sock_fs_type); 2289 2290 /* The real protocol initialization is performed in later initcalls. 2291 */ 2292 2293 #ifdef CONFIG_NETFILTER 2294 netfilter_init(); 2295 #endif 2296 2297 return 0; 2298 } 2299 2300 core_initcall(sock_init); /* early initcall */ 2301 2302 #ifdef CONFIG_PROC_FS 2303 void socket_seq_show(struct seq_file *seq) 2304 { 2305 int cpu; 2306 int counter = 0; 2307 2308 for_each_possible_cpu(cpu) 2309 counter += per_cpu(sockets_in_use, cpu); 2310 2311 /* It can be negative, by the way. 8) */ 2312 if (counter < 0) 2313 counter = 0; 2314 2315 seq_printf(seq, "sockets: used %d\n", counter); 2316 } 2317 #endif /* CONFIG_PROC_FS */ 2318 2319 #ifdef CONFIG_COMPAT 2320 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2321 unsigned long arg) 2322 { 2323 struct socket *sock = file->private_data; 2324 int ret = -ENOIOCTLCMD; 2325 struct sock *sk; 2326 struct net *net; 2327 2328 sk = sock->sk; 2329 net = sock_net(sk); 2330 2331 if (sock->ops->compat_ioctl) 2332 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2333 2334 if (ret == -ENOIOCTLCMD && 2335 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2336 ret = compat_wext_handle_ioctl(net, cmd, arg); 2337 2338 return ret; 2339 } 2340 #endif 2341 2342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2343 { 2344 return sock->ops->bind(sock, addr, addrlen); 2345 } 2346 2347 int kernel_listen(struct socket *sock, int backlog) 2348 { 2349 return sock->ops->listen(sock, backlog); 2350 } 2351 2352 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2353 { 2354 struct sock *sk = sock->sk; 2355 int err; 2356 2357 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2358 newsock); 2359 if (err < 0) 2360 goto done; 2361 2362 err = sock->ops->accept(sock, *newsock, flags); 2363 if (err < 0) { 2364 sock_release(*newsock); 2365 *newsock = NULL; 2366 goto done; 2367 } 2368 2369 (*newsock)->ops = sock->ops; 2370 2371 done: 2372 return err; 2373 } 2374 2375 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2376 int flags) 2377 { 2378 return sock->ops->connect(sock, addr, addrlen, flags); 2379 } 2380 2381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2382 int *addrlen) 2383 { 2384 return sock->ops->getname(sock, addr, addrlen, 0); 2385 } 2386 2387 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2388 int *addrlen) 2389 { 2390 return sock->ops->getname(sock, addr, addrlen, 1); 2391 } 2392 2393 int kernel_getsockopt(struct socket *sock, int level, int optname, 2394 char *optval, int *optlen) 2395 { 2396 mm_segment_t oldfs = get_fs(); 2397 int err; 2398 2399 set_fs(KERNEL_DS); 2400 if (level == SOL_SOCKET) 2401 err = sock_getsockopt(sock, level, optname, optval, optlen); 2402 else 2403 err = sock->ops->getsockopt(sock, level, optname, optval, 2404 optlen); 2405 set_fs(oldfs); 2406 return err; 2407 } 2408 2409 int kernel_setsockopt(struct socket *sock, int level, int optname, 2410 char *optval, int optlen) 2411 { 2412 mm_segment_t oldfs = get_fs(); 2413 int err; 2414 2415 set_fs(KERNEL_DS); 2416 if (level == SOL_SOCKET) 2417 err = sock_setsockopt(sock, level, optname, optval, optlen); 2418 else 2419 err = sock->ops->setsockopt(sock, level, optname, optval, 2420 optlen); 2421 set_fs(oldfs); 2422 return err; 2423 } 2424 2425 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2426 size_t size, int flags) 2427 { 2428 if (sock->ops->sendpage) 2429 return sock->ops->sendpage(sock, page, offset, size, flags); 2430 2431 return sock_no_sendpage(sock, page, offset, size, flags); 2432 } 2433 2434 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2435 { 2436 mm_segment_t oldfs = get_fs(); 2437 int err; 2438 2439 set_fs(KERNEL_DS); 2440 err = sock->ops->ioctl(sock, cmd, arg); 2441 set_fs(oldfs); 2442 2443 return err; 2444 } 2445 2446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2447 { 2448 return sock->ops->shutdown(sock, how); 2449 } 2450 2451 EXPORT_SYMBOL(sock_create); 2452 EXPORT_SYMBOL(sock_create_kern); 2453 EXPORT_SYMBOL(sock_create_lite); 2454 EXPORT_SYMBOL(sock_map_fd); 2455 EXPORT_SYMBOL(sock_recvmsg); 2456 EXPORT_SYMBOL(sock_register); 2457 EXPORT_SYMBOL(sock_release); 2458 EXPORT_SYMBOL(sock_sendmsg); 2459 EXPORT_SYMBOL(sock_unregister); 2460 EXPORT_SYMBOL(sock_wake_async); 2461 EXPORT_SYMBOL(sockfd_lookup); 2462 EXPORT_SYMBOL(kernel_sendmsg); 2463 EXPORT_SYMBOL(kernel_recvmsg); 2464 EXPORT_SYMBOL(kernel_bind); 2465 EXPORT_SYMBOL(kernel_listen); 2466 EXPORT_SYMBOL(kernel_accept); 2467 EXPORT_SYMBOL(kernel_connect); 2468 EXPORT_SYMBOL(kernel_getsockname); 2469 EXPORT_SYMBOL(kernel_getpeername); 2470 EXPORT_SYMBOL(kernel_getsockopt); 2471 EXPORT_SYMBOL(kernel_setsockopt); 2472 EXPORT_SYMBOL(kernel_sendpage); 2473 EXPORT_SYMBOL(kernel_sock_ioctl); 2474 EXPORT_SYMBOL(kernel_sock_shutdown); 2475