xref: /linux/net/socket.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/thread_info.h>
73 #include <linux/wanrouter.h>
74 #include <linux/if_bridge.h>
75 #include <linux/if_frad.h>
76 #include <linux/if_vlan.h>
77 #include <linux/init.h>
78 #include <linux/poll.h>
79 #include <linux/cache.h>
80 #include <linux/module.h>
81 #include <linux/highmem.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 #include <linux/nsproxy.h>
90 
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 			 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 			  unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106 
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 			      struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 			      unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 			     int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 			        struct pipe_inode_info *pipe, size_t len,
120 				unsigned int flags);
121 
122 /*
123  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124  *	in the operation structures but are done directly via the socketcall() multiplexor.
125  */
126 
127 static const struct file_operations socket_file_ops = {
128 	.owner =	THIS_MODULE,
129 	.llseek =	no_llseek,
130 	.aio_read =	sock_aio_read,
131 	.aio_write =	sock_aio_write,
132 	.poll =		sock_poll,
133 	.unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 	.compat_ioctl = compat_sock_ioctl,
136 #endif
137 	.mmap =		sock_mmap,
138 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
139 	.release =	sock_close,
140 	.fasync =	sock_fasync,
141 	.sendpage =	sock_sendpage,
142 	.splice_write = generic_splice_sendpage,
143 	.splice_read =	sock_splice_read,
144 };
145 
146 /*
147  *	The protocol list. Each protocol is registered in here.
148  */
149 
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152 
153 /*
154  *	Statistics counters of the socket lists
155  */
156 
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158 
159 /*
160  * Support routines.
161  * Move socket addresses back and forth across the kernel/user
162  * divide and look after the messy bits.
163  */
164 
165 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
166 					   16 for IP, 16 for IPX,
167 					   24 for IPv6,
168 					   about 80 for AX.25
169 					   must be at least one bigger than
170 					   the AF_UNIX size (see net/unix/af_unix.c
171 					   :unix_mkname()).
172 					 */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 		      int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	err = get_user(len, ulen);
220 	if (err)
221 		return err;
222 	if (len > klen)
223 		len = klen;
224 	if (len < 0 || len > sizeof(struct sockaddr_storage))
225 		return -EINVAL;
226 	if (len) {
227 		if (audit_sockaddr(klen, kaddr))
228 			return -ENOMEM;
229 		if (copy_to_user(uaddr, kaddr, len))
230 			return -EFAULT;
231 	}
232 	/*
233 	 *      "fromlen shall refer to the value before truncation.."
234 	 *                      1003.1g
235 	 */
236 	return __put_user(klen, ulen);
237 }
238 
239 #define SOCKFS_MAGIC 0x534F434B
240 
241 static struct kmem_cache *sock_inode_cachep __read_mostly;
242 
243 static struct inode *sock_alloc_inode(struct super_block *sb)
244 {
245 	struct socket_alloc *ei;
246 
247 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 	if (!ei)
249 		return NULL;
250 	init_waitqueue_head(&ei->socket.wait);
251 
252 	ei->socket.fasync_list = NULL;
253 	ei->socket.state = SS_UNCONNECTED;
254 	ei->socket.flags = 0;
255 	ei->socket.ops = NULL;
256 	ei->socket.sk = NULL;
257 	ei->socket.file = NULL;
258 
259 	return &ei->vfs_inode;
260 }
261 
262 static void sock_destroy_inode(struct inode *inode)
263 {
264 	kmem_cache_free(sock_inode_cachep,
265 			container_of(inode, struct socket_alloc, vfs_inode));
266 }
267 
268 static void init_once(void *foo)
269 {
270 	struct socket_alloc *ei = (struct socket_alloc *)foo;
271 
272 	inode_init_once(&ei->vfs_inode);
273 }
274 
275 static int init_inodecache(void)
276 {
277 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
278 					      sizeof(struct socket_alloc),
279 					      0,
280 					      (SLAB_HWCACHE_ALIGN |
281 					       SLAB_RECLAIM_ACCOUNT |
282 					       SLAB_MEM_SPREAD),
283 					      init_once);
284 	if (sock_inode_cachep == NULL)
285 		return -ENOMEM;
286 	return 0;
287 }
288 
289 static struct super_operations sockfs_ops = {
290 	.alloc_inode =	sock_alloc_inode,
291 	.destroy_inode =sock_destroy_inode,
292 	.statfs =	simple_statfs,
293 };
294 
295 static int sockfs_get_sb(struct file_system_type *fs_type,
296 			 int flags, const char *dev_name, void *data,
297 			 struct vfsmount *mnt)
298 {
299 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
300 			     mnt);
301 }
302 
303 static struct vfsmount *sock_mnt __read_mostly;
304 
305 static struct file_system_type sock_fs_type = {
306 	.name =		"sockfs",
307 	.get_sb =	sockfs_get_sb,
308 	.kill_sb =	kill_anon_super,
309 };
310 
311 static int sockfs_delete_dentry(struct dentry *dentry)
312 {
313 	/*
314 	 * At creation time, we pretended this dentry was hashed
315 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
316 	 * At delete time, we restore the truth : not hashed.
317 	 * (so that dput() can proceed correctly)
318 	 */
319 	dentry->d_flags |= DCACHE_UNHASHED;
320 	return 0;
321 }
322 
323 /*
324  * sockfs_dname() is called from d_path().
325  */
326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 {
328 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
329 				dentry->d_inode->i_ino);
330 }
331 
332 static struct dentry_operations sockfs_dentry_operations = {
333 	.d_delete = sockfs_delete_dentry,
334 	.d_dname  = sockfs_dname,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
354 static int sock_alloc_fd(struct file **filep, int flags)
355 {
356 	int fd;
357 
358 	fd = get_unused_fd_flags(flags);
359 	if (likely(fd >= 0)) {
360 		struct file *file = get_empty_filp();
361 
362 		*filep = file;
363 		if (unlikely(!file)) {
364 			put_unused_fd(fd);
365 			return -ENFILE;
366 		}
367 	} else
368 		*filep = NULL;
369 	return fd;
370 }
371 
372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
373 {
374 	struct dentry *dentry;
375 	struct qstr name = { .name = "" };
376 
377 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
378 	if (unlikely(!dentry))
379 		return -ENOMEM;
380 
381 	dentry->d_op = &sockfs_dentry_operations;
382 	/*
383 	 * We dont want to push this dentry into global dentry hash table.
384 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
385 	 * This permits a working /proc/$pid/fd/XXX on sockets
386 	 */
387 	dentry->d_flags &= ~DCACHE_UNHASHED;
388 	d_instantiate(dentry, SOCK_INODE(sock));
389 
390 	sock->file = file;
391 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
392 		  &socket_file_ops);
393 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
394 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
395 	file->f_pos = 0;
396 	file->private_data = sock;
397 
398 	return 0;
399 }
400 
401 int sock_map_fd(struct socket *sock, int flags)
402 {
403 	struct file *newfile;
404 	int fd = sock_alloc_fd(&newfile, flags);
405 
406 	if (likely(fd >= 0)) {
407 		int err = sock_attach_fd(sock, newfile, flags);
408 
409 		if (unlikely(err < 0)) {
410 			put_filp(newfile);
411 			put_unused_fd(fd);
412 			return err;
413 		}
414 		fd_install(fd, newfile);
415 	}
416 	return fd;
417 }
418 
419 static struct socket *sock_from_file(struct file *file, int *err)
420 {
421 	if (file->f_op == &socket_file_ops)
422 		return file->private_data;	/* set in sock_map_fd */
423 
424 	*err = -ENOTSOCK;
425 	return NULL;
426 }
427 
428 /**
429  *	sockfd_lookup	- 	Go from a file number to its socket slot
430  *	@fd: file handle
431  *	@err: pointer to an error code return
432  *
433  *	The file handle passed in is locked and the socket it is bound
434  *	too is returned. If an error occurs the err pointer is overwritten
435  *	with a negative errno code and NULL is returned. The function checks
436  *	for both invalid handles and passing a handle which is not a socket.
437  *
438  *	On a success the socket object pointer is returned.
439  */
440 
441 struct socket *sockfd_lookup(int fd, int *err)
442 {
443 	struct file *file;
444 	struct socket *sock;
445 
446 	file = fget(fd);
447 	if (!file) {
448 		*err = -EBADF;
449 		return NULL;
450 	}
451 
452 	sock = sock_from_file(file, err);
453 	if (!sock)
454 		fput(file);
455 	return sock;
456 }
457 
458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
459 {
460 	struct file *file;
461 	struct socket *sock;
462 
463 	*err = -EBADF;
464 	file = fget_light(fd, fput_needed);
465 	if (file) {
466 		sock = sock_from_file(file, err);
467 		if (sock)
468 			return sock;
469 		fput_light(file, *fput_needed);
470 	}
471 	return NULL;
472 }
473 
474 /**
475  *	sock_alloc	-	allocate a socket
476  *
477  *	Allocate a new inode and socket object. The two are bound together
478  *	and initialised. The socket is then returned. If we are out of inodes
479  *	NULL is returned.
480  */
481 
482 static struct socket *sock_alloc(void)
483 {
484 	struct inode *inode;
485 	struct socket *sock;
486 
487 	inode = new_inode(sock_mnt->mnt_sb);
488 	if (!inode)
489 		return NULL;
490 
491 	sock = SOCKET_I(inode);
492 
493 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
494 	inode->i_uid = current->fsuid;
495 	inode->i_gid = current->fsgid;
496 
497 	get_cpu_var(sockets_in_use)++;
498 	put_cpu_var(sockets_in_use);
499 	return sock;
500 }
501 
502 /*
503  *	In theory you can't get an open on this inode, but /proc provides
504  *	a back door. Remember to keep it shut otherwise you'll let the
505  *	creepy crawlies in.
506  */
507 
508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
509 {
510 	return -ENXIO;
511 }
512 
513 const struct file_operations bad_sock_fops = {
514 	.owner = THIS_MODULE,
515 	.open = sock_no_open,
516 };
517 
518 /**
519  *	sock_release	-	close a socket
520  *	@sock: socket to close
521  *
522  *	The socket is released from the protocol stack if it has a release
523  *	callback, and the inode is then released if the socket is bound to
524  *	an inode not a file.
525  */
526 
527 void sock_release(struct socket *sock)
528 {
529 	if (sock->ops) {
530 		struct module *owner = sock->ops->owner;
531 
532 		sock->ops->release(sock);
533 		sock->ops = NULL;
534 		module_put(owner);
535 	}
536 
537 	if (sock->fasync_list)
538 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
539 
540 	get_cpu_var(sockets_in_use)--;
541 	put_cpu_var(sockets_in_use);
542 	if (!sock->file) {
543 		iput(SOCK_INODE(sock));
544 		return;
545 	}
546 	sock->file = NULL;
547 }
548 
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 				 struct msghdr *msg, size_t size)
551 {
552 	struct sock_iocb *si = kiocb_to_siocb(iocb);
553 	int err;
554 
555 	si->sock = sock;
556 	si->scm = NULL;
557 	si->msg = msg;
558 	si->size = size;
559 
560 	err = security_socket_sendmsg(sock, msg, size);
561 	if (err)
562 		return err;
563 
564 	return sock->ops->sendmsg(iocb, sock, msg, size);
565 }
566 
567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 {
569 	struct kiocb iocb;
570 	struct sock_iocb siocb;
571 	int ret;
572 
573 	init_sync_kiocb(&iocb, NULL);
574 	iocb.private = &siocb;
575 	ret = __sock_sendmsg(&iocb, sock, msg, size);
576 	if (-EIOCBQUEUED == ret)
577 		ret = wait_on_sync_kiocb(&iocb);
578 	return ret;
579 }
580 
581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
582 		   struct kvec *vec, size_t num, size_t size)
583 {
584 	mm_segment_t oldfs = get_fs();
585 	int result;
586 
587 	set_fs(KERNEL_DS);
588 	/*
589 	 * the following is safe, since for compiler definitions of kvec and
590 	 * iovec are identical, yielding the same in-core layout and alignment
591 	 */
592 	msg->msg_iov = (struct iovec *)vec;
593 	msg->msg_iovlen = num;
594 	result = sock_sendmsg(sock, msg, size);
595 	set_fs(oldfs);
596 	return result;
597 }
598 
599 /*
600  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601  */
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 	struct sk_buff *skb)
604 {
605 	ktime_t kt = skb->tstamp;
606 
607 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
608 		struct timeval tv;
609 		/* Race occurred between timestamp enabling and packet
610 		   receiving.  Fill in the current time for now. */
611 		if (kt.tv64 == 0)
612 			kt = ktime_get_real();
613 		skb->tstamp = kt;
614 		tv = ktime_to_timeval(kt);
615 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
616 	} else {
617 		struct timespec ts;
618 		/* Race occurred between timestamp enabling and packet
619 		   receiving.  Fill in the current time for now. */
620 		if (kt.tv64 == 0)
621 			kt = ktime_get_real();
622 		skb->tstamp = kt;
623 		ts = ktime_to_timespec(kt);
624 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
625 	}
626 }
627 
628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
629 
630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
631 				 struct msghdr *msg, size_t size, int flags)
632 {
633 	int err;
634 	struct sock_iocb *si = kiocb_to_siocb(iocb);
635 
636 	si->sock = sock;
637 	si->scm = NULL;
638 	si->msg = msg;
639 	si->size = size;
640 	si->flags = flags;
641 
642 	err = security_socket_recvmsg(sock, msg, size, flags);
643 	if (err)
644 		return err;
645 
646 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 }
648 
649 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
650 		 size_t size, int flags)
651 {
652 	struct kiocb iocb;
653 	struct sock_iocb siocb;
654 	int ret;
655 
656 	init_sync_kiocb(&iocb, NULL);
657 	iocb.private = &siocb;
658 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
659 	if (-EIOCBQUEUED == ret)
660 		ret = wait_on_sync_kiocb(&iocb);
661 	return ret;
662 }
663 
664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
665 		   struct kvec *vec, size_t num, size_t size, int flags)
666 {
667 	mm_segment_t oldfs = get_fs();
668 	int result;
669 
670 	set_fs(KERNEL_DS);
671 	/*
672 	 * the following is safe, since for compiler definitions of kvec and
673 	 * iovec are identical, yielding the same in-core layout and alignment
674 	 */
675 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
676 	result = sock_recvmsg(sock, msg, size, flags);
677 	set_fs(oldfs);
678 	return result;
679 }
680 
681 static void sock_aio_dtor(struct kiocb *iocb)
682 {
683 	kfree(iocb->private);
684 }
685 
686 static ssize_t sock_sendpage(struct file *file, struct page *page,
687 			     int offset, size_t size, loff_t *ppos, int more)
688 {
689 	struct socket *sock;
690 	int flags;
691 
692 	sock = file->private_data;
693 
694 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
695 	if (more)
696 		flags |= MSG_MORE;
697 
698 	return sock->ops->sendpage(sock, page, offset, size, flags);
699 }
700 
701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
702 			        struct pipe_inode_info *pipe, size_t len,
703 				unsigned int flags)
704 {
705 	struct socket *sock = file->private_data;
706 
707 	if (unlikely(!sock->ops->splice_read))
708 		return -EINVAL;
709 
710 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
711 }
712 
713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
714 					 struct sock_iocb *siocb)
715 {
716 	if (!is_sync_kiocb(iocb)) {
717 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
718 		if (!siocb)
719 			return NULL;
720 		iocb->ki_dtor = sock_aio_dtor;
721 	}
722 
723 	siocb->kiocb = iocb;
724 	iocb->private = siocb;
725 	return siocb;
726 }
727 
728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
729 		struct file *file, const struct iovec *iov,
730 		unsigned long nr_segs)
731 {
732 	struct socket *sock = file->private_data;
733 	size_t size = 0;
734 	int i;
735 
736 	for (i = 0; i < nr_segs; i++)
737 		size += iov[i].iov_len;
738 
739 	msg->msg_name = NULL;
740 	msg->msg_namelen = 0;
741 	msg->msg_control = NULL;
742 	msg->msg_controllen = 0;
743 	msg->msg_iov = (struct iovec *)iov;
744 	msg->msg_iovlen = nr_segs;
745 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
746 
747 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
748 }
749 
750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
751 				unsigned long nr_segs, loff_t pos)
752 {
753 	struct sock_iocb siocb, *x;
754 
755 	if (pos != 0)
756 		return -ESPIPE;
757 
758 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
759 		return 0;
760 
761 
762 	x = alloc_sock_iocb(iocb, &siocb);
763 	if (!x)
764 		return -ENOMEM;
765 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
766 }
767 
768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
769 			struct file *file, const struct iovec *iov,
770 			unsigned long nr_segs)
771 {
772 	struct socket *sock = file->private_data;
773 	size_t size = 0;
774 	int i;
775 
776 	for (i = 0; i < nr_segs; i++)
777 		size += iov[i].iov_len;
778 
779 	msg->msg_name = NULL;
780 	msg->msg_namelen = 0;
781 	msg->msg_control = NULL;
782 	msg->msg_controllen = 0;
783 	msg->msg_iov = (struct iovec *)iov;
784 	msg->msg_iovlen = nr_segs;
785 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786 	if (sock->type == SOCK_SEQPACKET)
787 		msg->msg_flags |= MSG_EOR;
788 
789 	return __sock_sendmsg(iocb, sock, msg, size);
790 }
791 
792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
793 			  unsigned long nr_segs, loff_t pos)
794 {
795 	struct sock_iocb siocb, *x;
796 
797 	if (pos != 0)
798 		return -ESPIPE;
799 
800 	x = alloc_sock_iocb(iocb, &siocb);
801 	if (!x)
802 		return -ENOMEM;
803 
804 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
805 }
806 
807 /*
808  * Atomic setting of ioctl hooks to avoid race
809  * with module unload.
810  */
811 
812 static DEFINE_MUTEX(br_ioctl_mutex);
813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
814 
815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
816 {
817 	mutex_lock(&br_ioctl_mutex);
818 	br_ioctl_hook = hook;
819 	mutex_unlock(&br_ioctl_mutex);
820 }
821 
822 EXPORT_SYMBOL(brioctl_set);
823 
824 static DEFINE_MUTEX(vlan_ioctl_mutex);
825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
826 
827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
828 {
829 	mutex_lock(&vlan_ioctl_mutex);
830 	vlan_ioctl_hook = hook;
831 	mutex_unlock(&vlan_ioctl_mutex);
832 }
833 
834 EXPORT_SYMBOL(vlan_ioctl_set);
835 
836 static DEFINE_MUTEX(dlci_ioctl_mutex);
837 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
838 
839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
840 {
841 	mutex_lock(&dlci_ioctl_mutex);
842 	dlci_ioctl_hook = hook;
843 	mutex_unlock(&dlci_ioctl_mutex);
844 }
845 
846 EXPORT_SYMBOL(dlci_ioctl_set);
847 
848 /*
849  *	With an ioctl, arg may well be a user mode pointer, but we don't know
850  *	what to do with it - that's up to the protocol still.
851  */
852 
853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
854 {
855 	struct socket *sock;
856 	struct sock *sk;
857 	void __user *argp = (void __user *)arg;
858 	int pid, err;
859 	struct net *net;
860 
861 	sock = file->private_data;
862 	sk = sock->sk;
863 	net = sock_net(sk);
864 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
865 		err = dev_ioctl(net, cmd, argp);
866 	} else
867 #ifdef CONFIG_WIRELESS_EXT
868 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
869 		err = dev_ioctl(net, cmd, argp);
870 	} else
871 #endif				/* CONFIG_WIRELESS_EXT */
872 		switch (cmd) {
873 		case FIOSETOWN:
874 		case SIOCSPGRP:
875 			err = -EFAULT;
876 			if (get_user(pid, (int __user *)argp))
877 				break;
878 			err = f_setown(sock->file, pid, 1);
879 			break;
880 		case FIOGETOWN:
881 		case SIOCGPGRP:
882 			err = put_user(f_getown(sock->file),
883 				       (int __user *)argp);
884 			break;
885 		case SIOCGIFBR:
886 		case SIOCSIFBR:
887 		case SIOCBRADDBR:
888 		case SIOCBRDELBR:
889 			err = -ENOPKG;
890 			if (!br_ioctl_hook)
891 				request_module("bridge");
892 
893 			mutex_lock(&br_ioctl_mutex);
894 			if (br_ioctl_hook)
895 				err = br_ioctl_hook(net, cmd, argp);
896 			mutex_unlock(&br_ioctl_mutex);
897 			break;
898 		case SIOCGIFVLAN:
899 		case SIOCSIFVLAN:
900 			err = -ENOPKG;
901 			if (!vlan_ioctl_hook)
902 				request_module("8021q");
903 
904 			mutex_lock(&vlan_ioctl_mutex);
905 			if (vlan_ioctl_hook)
906 				err = vlan_ioctl_hook(net, argp);
907 			mutex_unlock(&vlan_ioctl_mutex);
908 			break;
909 		case SIOCADDDLCI:
910 		case SIOCDELDLCI:
911 			err = -ENOPKG;
912 			if (!dlci_ioctl_hook)
913 				request_module("dlci");
914 
915 			mutex_lock(&dlci_ioctl_mutex);
916 			if (dlci_ioctl_hook)
917 				err = dlci_ioctl_hook(cmd, argp);
918 			mutex_unlock(&dlci_ioctl_mutex);
919 			break;
920 		default:
921 			err = sock->ops->ioctl(sock, cmd, arg);
922 
923 			/*
924 			 * If this ioctl is unknown try to hand it down
925 			 * to the NIC driver.
926 			 */
927 			if (err == -ENOIOCTLCMD)
928 				err = dev_ioctl(net, cmd, argp);
929 			break;
930 		}
931 	return err;
932 }
933 
934 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 {
936 	int err;
937 	struct socket *sock = NULL;
938 
939 	err = security_socket_create(family, type, protocol, 1);
940 	if (err)
941 		goto out;
942 
943 	sock = sock_alloc();
944 	if (!sock) {
945 		err = -ENOMEM;
946 		goto out;
947 	}
948 
949 	sock->type = type;
950 	err = security_socket_post_create(sock, family, type, protocol, 1);
951 	if (err)
952 		goto out_release;
953 
954 out:
955 	*res = sock;
956 	return err;
957 out_release:
958 	sock_release(sock);
959 	sock = NULL;
960 	goto out;
961 }
962 
963 /* No kernel lock held - perfect */
964 static unsigned int sock_poll(struct file *file, poll_table *wait)
965 {
966 	struct socket *sock;
967 
968 	/*
969 	 *      We can't return errors to poll, so it's either yes or no.
970 	 */
971 	sock = file->private_data;
972 	return sock->ops->poll(file, sock, wait);
973 }
974 
975 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
976 {
977 	struct socket *sock = file->private_data;
978 
979 	return sock->ops->mmap(file, sock, vma);
980 }
981 
982 static int sock_close(struct inode *inode, struct file *filp)
983 {
984 	/*
985 	 *      It was possible the inode is NULL we were
986 	 *      closing an unfinished socket.
987 	 */
988 
989 	if (!inode) {
990 		printk(KERN_DEBUG "sock_close: NULL inode\n");
991 		return 0;
992 	}
993 	sock_release(SOCKET_I(inode));
994 	return 0;
995 }
996 
997 /*
998  *	Update the socket async list
999  *
1000  *	Fasync_list locking strategy.
1001  *
1002  *	1. fasync_list is modified only under process context socket lock
1003  *	   i.e. under semaphore.
1004  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1005  *	   or under socket lock.
1006  *	3. fasync_list can be used from softirq context, so that
1007  *	   modification under socket lock have to be enhanced with
1008  *	   write_lock_bh(&sk->sk_callback_lock).
1009  *							--ANK (990710)
1010  */
1011 
1012 static int sock_fasync(int fd, struct file *filp, int on)
1013 {
1014 	struct fasync_struct *fa, *fna = NULL, **prev;
1015 	struct socket *sock;
1016 	struct sock *sk;
1017 
1018 	if (on) {
1019 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1020 		if (fna == NULL)
1021 			return -ENOMEM;
1022 	}
1023 
1024 	sock = filp->private_data;
1025 
1026 	sk = sock->sk;
1027 	if (sk == NULL) {
1028 		kfree(fna);
1029 		return -EINVAL;
1030 	}
1031 
1032 	lock_sock(sk);
1033 
1034 	prev = &(sock->fasync_list);
1035 
1036 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1037 		if (fa->fa_file == filp)
1038 			break;
1039 
1040 	if (on) {
1041 		if (fa != NULL) {
1042 			write_lock_bh(&sk->sk_callback_lock);
1043 			fa->fa_fd = fd;
1044 			write_unlock_bh(&sk->sk_callback_lock);
1045 
1046 			kfree(fna);
1047 			goto out;
1048 		}
1049 		fna->fa_file = filp;
1050 		fna->fa_fd = fd;
1051 		fna->magic = FASYNC_MAGIC;
1052 		fna->fa_next = sock->fasync_list;
1053 		write_lock_bh(&sk->sk_callback_lock);
1054 		sock->fasync_list = fna;
1055 		write_unlock_bh(&sk->sk_callback_lock);
1056 	} else {
1057 		if (fa != NULL) {
1058 			write_lock_bh(&sk->sk_callback_lock);
1059 			*prev = fa->fa_next;
1060 			write_unlock_bh(&sk->sk_callback_lock);
1061 			kfree(fa);
1062 		}
1063 	}
1064 
1065 out:
1066 	release_sock(sock->sk);
1067 	return 0;
1068 }
1069 
1070 /* This function may be called only under socket lock or callback_lock */
1071 
1072 int sock_wake_async(struct socket *sock, int how, int band)
1073 {
1074 	if (!sock || !sock->fasync_list)
1075 		return -1;
1076 	switch (how) {
1077 	case SOCK_WAKE_WAITD:
1078 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079 			break;
1080 		goto call_kill;
1081 	case SOCK_WAKE_SPACE:
1082 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083 			break;
1084 		/* fall through */
1085 	case SOCK_WAKE_IO:
1086 call_kill:
1087 		__kill_fasync(sock->fasync_list, SIGIO, band);
1088 		break;
1089 	case SOCK_WAKE_URG:
1090 		__kill_fasync(sock->fasync_list, SIGURG, band);
1091 	}
1092 	return 0;
1093 }
1094 
1095 static int __sock_create(struct net *net, int family, int type, int protocol,
1096 			 struct socket **res, int kern)
1097 {
1098 	int err;
1099 	struct socket *sock;
1100 	const struct net_proto_family *pf;
1101 
1102 	/*
1103 	 *      Check protocol is in range
1104 	 */
1105 	if (family < 0 || family >= NPROTO)
1106 		return -EAFNOSUPPORT;
1107 	if (type < 0 || type >= SOCK_MAX)
1108 		return -EINVAL;
1109 
1110 	/* Compatibility.
1111 
1112 	   This uglymoron is moved from INET layer to here to avoid
1113 	   deadlock in module load.
1114 	 */
1115 	if (family == PF_INET && type == SOCK_PACKET) {
1116 		static int warned;
1117 		if (!warned) {
1118 			warned = 1;
1119 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1120 			       current->comm);
1121 		}
1122 		family = PF_PACKET;
1123 	}
1124 
1125 	err = security_socket_create(family, type, protocol, kern);
1126 	if (err)
1127 		return err;
1128 
1129 	/*
1130 	 *	Allocate the socket and allow the family to set things up. if
1131 	 *	the protocol is 0, the family is instructed to select an appropriate
1132 	 *	default.
1133 	 */
1134 	sock = sock_alloc();
1135 	if (!sock) {
1136 		if (net_ratelimit())
1137 			printk(KERN_WARNING "socket: no more sockets\n");
1138 		return -ENFILE;	/* Not exactly a match, but its the
1139 				   closest posix thing */
1140 	}
1141 
1142 	sock->type = type;
1143 
1144 #ifdef CONFIG_MODULES
1145 	/* Attempt to load a protocol module if the find failed.
1146 	 *
1147 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1148 	 * requested real, full-featured networking support upon configuration.
1149 	 * Otherwise module support will break!
1150 	 */
1151 	if (net_families[family] == NULL)
1152 		request_module("net-pf-%d", family);
1153 #endif
1154 
1155 	rcu_read_lock();
1156 	pf = rcu_dereference(net_families[family]);
1157 	err = -EAFNOSUPPORT;
1158 	if (!pf)
1159 		goto out_release;
1160 
1161 	/*
1162 	 * We will call the ->create function, that possibly is in a loadable
1163 	 * module, so we have to bump that loadable module refcnt first.
1164 	 */
1165 	if (!try_module_get(pf->owner))
1166 		goto out_release;
1167 
1168 	/* Now protected by module ref count */
1169 	rcu_read_unlock();
1170 
1171 	err = pf->create(net, sock, protocol);
1172 	if (err < 0)
1173 		goto out_module_put;
1174 
1175 	/*
1176 	 * Now to bump the refcnt of the [loadable] module that owns this
1177 	 * socket at sock_release time we decrement its refcnt.
1178 	 */
1179 	if (!try_module_get(sock->ops->owner))
1180 		goto out_module_busy;
1181 
1182 	/*
1183 	 * Now that we're done with the ->create function, the [loadable]
1184 	 * module can have its refcnt decremented
1185 	 */
1186 	module_put(pf->owner);
1187 	err = security_socket_post_create(sock, family, type, protocol, kern);
1188 	if (err)
1189 		goto out_sock_release;
1190 	*res = sock;
1191 
1192 	return 0;
1193 
1194 out_module_busy:
1195 	err = -EAFNOSUPPORT;
1196 out_module_put:
1197 	sock->ops = NULL;
1198 	module_put(pf->owner);
1199 out_sock_release:
1200 	sock_release(sock);
1201 	return err;
1202 
1203 out_release:
1204 	rcu_read_unlock();
1205 	goto out_sock_release;
1206 }
1207 
1208 int sock_create(int family, int type, int protocol, struct socket **res)
1209 {
1210 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1211 }
1212 
1213 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1214 {
1215 	return __sock_create(&init_net, family, type, protocol, res, 1);
1216 }
1217 
1218 asmlinkage long sys_socket(int family, int type, int protocol)
1219 {
1220 	int retval;
1221 	struct socket *sock;
1222 	int flags;
1223 
1224 	/* Check the SOCK_* constants for consistency.  */
1225 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1229 
1230 	flags = type & ~SOCK_TYPE_MASK;
1231 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232 		return -EINVAL;
1233 	type &= SOCK_TYPE_MASK;
1234 
1235 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1237 
1238 	retval = sock_create(family, type, protocol, &sock);
1239 	if (retval < 0)
1240 		goto out;
1241 
1242 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243 	if (retval < 0)
1244 		goto out_release;
1245 
1246 out:
1247 	/* It may be already another descriptor 8) Not kernel problem. */
1248 	return retval;
1249 
1250 out_release:
1251 	sock_release(sock);
1252 	return retval;
1253 }
1254 
1255 /*
1256  *	Create a pair of connected sockets.
1257  */
1258 
1259 asmlinkage long sys_socketpair(int family, int type, int protocol,
1260 			       int __user *usockvec)
1261 {
1262 	struct socket *sock1, *sock2;
1263 	int fd1, fd2, err;
1264 	struct file *newfile1, *newfile2;
1265 	int flags;
1266 
1267 	flags = type & ~SOCK_TYPE_MASK;
1268 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269 		return -EINVAL;
1270 	type &= SOCK_TYPE_MASK;
1271 
1272 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1274 
1275 	/*
1276 	 * Obtain the first socket and check if the underlying protocol
1277 	 * supports the socketpair call.
1278 	 */
1279 
1280 	err = sock_create(family, type, protocol, &sock1);
1281 	if (err < 0)
1282 		goto out;
1283 
1284 	err = sock_create(family, type, protocol, &sock2);
1285 	if (err < 0)
1286 		goto out_release_1;
1287 
1288 	err = sock1->ops->socketpair(sock1, sock2);
1289 	if (err < 0)
1290 		goto out_release_both;
1291 
1292 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1293 	if (unlikely(fd1 < 0)) {
1294 		err = fd1;
1295 		goto out_release_both;
1296 	}
1297 
1298 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1299 	if (unlikely(fd2 < 0)) {
1300 		err = fd2;
1301 		put_filp(newfile1);
1302 		put_unused_fd(fd1);
1303 		goto out_release_both;
1304 	}
1305 
1306 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1307 	if (unlikely(err < 0)) {
1308 		goto out_fd2;
1309 	}
1310 
1311 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1312 	if (unlikely(err < 0)) {
1313 		fput(newfile1);
1314 		goto out_fd1;
1315 	}
1316 
1317 	err = audit_fd_pair(fd1, fd2);
1318 	if (err < 0) {
1319 		fput(newfile1);
1320 		fput(newfile2);
1321 		goto out_fd;
1322 	}
1323 
1324 	fd_install(fd1, newfile1);
1325 	fd_install(fd2, newfile2);
1326 	/* fd1 and fd2 may be already another descriptors.
1327 	 * Not kernel problem.
1328 	 */
1329 
1330 	err = put_user(fd1, &usockvec[0]);
1331 	if (!err)
1332 		err = put_user(fd2, &usockvec[1]);
1333 	if (!err)
1334 		return 0;
1335 
1336 	sys_close(fd2);
1337 	sys_close(fd1);
1338 	return err;
1339 
1340 out_release_both:
1341 	sock_release(sock2);
1342 out_release_1:
1343 	sock_release(sock1);
1344 out:
1345 	return err;
1346 
1347 out_fd2:
1348 	put_filp(newfile1);
1349 	sock_release(sock1);
1350 out_fd1:
1351 	put_filp(newfile2);
1352 	sock_release(sock2);
1353 out_fd:
1354 	put_unused_fd(fd1);
1355 	put_unused_fd(fd2);
1356 	goto out;
1357 }
1358 
1359 /*
1360  *	Bind a name to a socket. Nothing much to do here since it's
1361  *	the protocol's responsibility to handle the local address.
1362  *
1363  *	We move the socket address to kernel space before we call
1364  *	the protocol layer (having also checked the address is ok).
1365  */
1366 
1367 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1368 {
1369 	struct socket *sock;
1370 	struct sockaddr_storage address;
1371 	int err, fput_needed;
1372 
1373 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1374 	if (sock) {
1375 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1376 		if (err >= 0) {
1377 			err = security_socket_bind(sock,
1378 						   (struct sockaddr *)&address,
1379 						   addrlen);
1380 			if (!err)
1381 				err = sock->ops->bind(sock,
1382 						      (struct sockaddr *)
1383 						      &address, addrlen);
1384 		}
1385 		fput_light(sock->file, fput_needed);
1386 	}
1387 	return err;
1388 }
1389 
1390 /*
1391  *	Perform a listen. Basically, we allow the protocol to do anything
1392  *	necessary for a listen, and if that works, we mark the socket as
1393  *	ready for listening.
1394  */
1395 
1396 asmlinkage long sys_listen(int fd, int backlog)
1397 {
1398 	struct socket *sock;
1399 	int err, fput_needed;
1400 	int somaxconn;
1401 
1402 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 	if (sock) {
1404 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1405 		if ((unsigned)backlog > somaxconn)
1406 			backlog = somaxconn;
1407 
1408 		err = security_socket_listen(sock, backlog);
1409 		if (!err)
1410 			err = sock->ops->listen(sock, backlog);
1411 
1412 		fput_light(sock->file, fput_needed);
1413 	}
1414 	return err;
1415 }
1416 
1417 /*
1418  *	For accept, we attempt to create a new socket, set up the link
1419  *	with the client, wake up the client, then return the new
1420  *	connected fd. We collect the address of the connector in kernel
1421  *	space and move it to user at the very end. This is unclean because
1422  *	we open the socket then return an error.
1423  *
1424  *	1003.1g adds the ability to recvmsg() to query connection pending
1425  *	status to recvmsg. We need to add that support in a way thats
1426  *	clean when we restucture accept also.
1427  */
1428 
1429 long do_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1430 	       int __user *upeer_addrlen, int flags)
1431 {
1432 	struct socket *sock, *newsock;
1433 	struct file *newfile;
1434 	int err, len, newfd, fput_needed;
1435 	struct sockaddr_storage address;
1436 
1437 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1438 		return -EINVAL;
1439 
1440 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1441 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1442 
1443 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 	if (!sock)
1445 		goto out;
1446 
1447 	err = -ENFILE;
1448 	if (!(newsock = sock_alloc()))
1449 		goto out_put;
1450 
1451 	newsock->type = sock->type;
1452 	newsock->ops = sock->ops;
1453 
1454 	/*
1455 	 * We don't need try_module_get here, as the listening socket (sock)
1456 	 * has the protocol module (sock->ops->owner) held.
1457 	 */
1458 	__module_get(newsock->ops->owner);
1459 
1460 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1461 	if (unlikely(newfd < 0)) {
1462 		err = newfd;
1463 		sock_release(newsock);
1464 		goto out_put;
1465 	}
1466 
1467 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1468 	if (err < 0)
1469 		goto out_fd_simple;
1470 
1471 	err = security_socket_accept(sock, newsock);
1472 	if (err)
1473 		goto out_fd;
1474 
1475 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1476 	if (err < 0)
1477 		goto out_fd;
1478 
1479 	if (upeer_sockaddr) {
1480 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1481 					  &len, 2) < 0) {
1482 			err = -ECONNABORTED;
1483 			goto out_fd;
1484 		}
1485 		err = move_addr_to_user((struct sockaddr *)&address,
1486 					len, upeer_sockaddr, upeer_addrlen);
1487 		if (err < 0)
1488 			goto out_fd;
1489 	}
1490 
1491 	/* File flags are not inherited via accept() unlike another OSes. */
1492 
1493 	fd_install(newfd, newfile);
1494 	err = newfd;
1495 
1496 	security_socket_post_accept(sock, newsock);
1497 
1498 out_put:
1499 	fput_light(sock->file, fput_needed);
1500 out:
1501 	return err;
1502 out_fd_simple:
1503 	sock_release(newsock);
1504 	put_filp(newfile);
1505 	put_unused_fd(newfd);
1506 	goto out_put;
1507 out_fd:
1508 	fput(newfile);
1509 	put_unused_fd(newfd);
1510 	goto out_put;
1511 }
1512 
1513 #if 0
1514 #ifdef HAVE_SET_RESTORE_SIGMASK
1515 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1516 			    int __user *upeer_addrlen,
1517 			    const sigset_t __user *sigmask,
1518 			    size_t sigsetsize, int flags)
1519 {
1520 	sigset_t ksigmask, sigsaved;
1521 	int ret;
1522 
1523 	if (sigmask) {
1524 		/* XXX: Don't preclude handling different sized sigset_t's.  */
1525 		if (sigsetsize != sizeof(sigset_t))
1526 			return -EINVAL;
1527 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1528 			return -EFAULT;
1529 
1530 		sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1531 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1532         }
1533 
1534 	ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1535 
1536 	if (ret < 0 && signal_pending(current)) {
1537 		/*
1538 		 * Don't restore the signal mask yet. Let do_signal() deliver
1539 		 * the signal on the way back to userspace, before the signal
1540 		 * mask is restored.
1541 		 */
1542 		if (sigmask) {
1543 			memcpy(&current->saved_sigmask, &sigsaved,
1544 			       sizeof(sigsaved));
1545 			set_restore_sigmask();
1546 		}
1547 	} else if (sigmask)
1548 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1549 
1550 	return ret;
1551 }
1552 #else
1553 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1554 			    int __user *upeer_addrlen,
1555 			    const sigset_t __user *sigmask,
1556 			    size_t sigsetsize, int flags)
1557 {
1558 	/* The platform does not support restoring the signal mask in the
1559 	 * return path.  So we do not allow using paccept() with a signal
1560 	 * mask.  */
1561 	if (sigmask)
1562 		return -EINVAL;
1563 
1564 	return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1565 }
1566 #endif
1567 #endif
1568 
1569 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1570 			   int __user *upeer_addrlen)
1571 {
1572 	return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0);
1573 }
1574 
1575 /*
1576  *	Attempt to connect to a socket with the server address.  The address
1577  *	is in user space so we verify it is OK and move it to kernel space.
1578  *
1579  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1580  *	break bindings
1581  *
1582  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1583  *	other SEQPACKET protocols that take time to connect() as it doesn't
1584  *	include the -EINPROGRESS status for such sockets.
1585  */
1586 
1587 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1588 			    int addrlen)
1589 {
1590 	struct socket *sock;
1591 	struct sockaddr_storage address;
1592 	int err, fput_needed;
1593 
1594 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 	if (!sock)
1596 		goto out;
1597 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1598 	if (err < 0)
1599 		goto out_put;
1600 
1601 	err =
1602 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1603 	if (err)
1604 		goto out_put;
1605 
1606 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1607 				 sock->file->f_flags);
1608 out_put:
1609 	fput_light(sock->file, fput_needed);
1610 out:
1611 	return err;
1612 }
1613 
1614 /*
1615  *	Get the local address ('name') of a socket object. Move the obtained
1616  *	name to user space.
1617  */
1618 
1619 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1620 				int __user *usockaddr_len)
1621 {
1622 	struct socket *sock;
1623 	struct sockaddr_storage address;
1624 	int len, err, fput_needed;
1625 
1626 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 	if (!sock)
1628 		goto out;
1629 
1630 	err = security_socket_getsockname(sock);
1631 	if (err)
1632 		goto out_put;
1633 
1634 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1635 	if (err)
1636 		goto out_put;
1637 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1638 
1639 out_put:
1640 	fput_light(sock->file, fput_needed);
1641 out:
1642 	return err;
1643 }
1644 
1645 /*
1646  *	Get the remote address ('name') of a socket object. Move the obtained
1647  *	name to user space.
1648  */
1649 
1650 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1651 				int __user *usockaddr_len)
1652 {
1653 	struct socket *sock;
1654 	struct sockaddr_storage address;
1655 	int len, err, fput_needed;
1656 
1657 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 	if (sock != NULL) {
1659 		err = security_socket_getpeername(sock);
1660 		if (err) {
1661 			fput_light(sock->file, fput_needed);
1662 			return err;
1663 		}
1664 
1665 		err =
1666 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1667 				       1);
1668 		if (!err)
1669 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1670 						usockaddr_len);
1671 		fput_light(sock->file, fput_needed);
1672 	}
1673 	return err;
1674 }
1675 
1676 /*
1677  *	Send a datagram to a given address. We move the address into kernel
1678  *	space and check the user space data area is readable before invoking
1679  *	the protocol.
1680  */
1681 
1682 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1683 			   unsigned flags, struct sockaddr __user *addr,
1684 			   int addr_len)
1685 {
1686 	struct socket *sock;
1687 	struct sockaddr_storage address;
1688 	int err;
1689 	struct msghdr msg;
1690 	struct iovec iov;
1691 	int fput_needed;
1692 
1693 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 	if (!sock)
1695 		goto out;
1696 
1697 	iov.iov_base = buff;
1698 	iov.iov_len = len;
1699 	msg.msg_name = NULL;
1700 	msg.msg_iov = &iov;
1701 	msg.msg_iovlen = 1;
1702 	msg.msg_control = NULL;
1703 	msg.msg_controllen = 0;
1704 	msg.msg_namelen = 0;
1705 	if (addr) {
1706 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1707 		if (err < 0)
1708 			goto out_put;
1709 		msg.msg_name = (struct sockaddr *)&address;
1710 		msg.msg_namelen = addr_len;
1711 	}
1712 	if (sock->file->f_flags & O_NONBLOCK)
1713 		flags |= MSG_DONTWAIT;
1714 	msg.msg_flags = flags;
1715 	err = sock_sendmsg(sock, &msg, len);
1716 
1717 out_put:
1718 	fput_light(sock->file, fput_needed);
1719 out:
1720 	return err;
1721 }
1722 
1723 /*
1724  *	Send a datagram down a socket.
1725  */
1726 
1727 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1728 {
1729 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1730 }
1731 
1732 /*
1733  *	Receive a frame from the socket and optionally record the address of the
1734  *	sender. We verify the buffers are writable and if needed move the
1735  *	sender address from kernel to user space.
1736  */
1737 
1738 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1739 			     unsigned flags, struct sockaddr __user *addr,
1740 			     int __user *addr_len)
1741 {
1742 	struct socket *sock;
1743 	struct iovec iov;
1744 	struct msghdr msg;
1745 	struct sockaddr_storage address;
1746 	int err, err2;
1747 	int fput_needed;
1748 
1749 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1750 	if (!sock)
1751 		goto out;
1752 
1753 	msg.msg_control = NULL;
1754 	msg.msg_controllen = 0;
1755 	msg.msg_iovlen = 1;
1756 	msg.msg_iov = &iov;
1757 	iov.iov_len = size;
1758 	iov.iov_base = ubuf;
1759 	msg.msg_name = (struct sockaddr *)&address;
1760 	msg.msg_namelen = sizeof(address);
1761 	if (sock->file->f_flags & O_NONBLOCK)
1762 		flags |= MSG_DONTWAIT;
1763 	err = sock_recvmsg(sock, &msg, size, flags);
1764 
1765 	if (err >= 0 && addr != NULL) {
1766 		err2 = move_addr_to_user((struct sockaddr *)&address,
1767 					 msg.msg_namelen, addr, addr_len);
1768 		if (err2 < 0)
1769 			err = err2;
1770 	}
1771 
1772 	fput_light(sock->file, fput_needed);
1773 out:
1774 	return err;
1775 }
1776 
1777 /*
1778  *	Receive a datagram from a socket.
1779  */
1780 
1781 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1782 			 unsigned flags)
1783 {
1784 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1785 }
1786 
1787 /*
1788  *	Set a socket option. Because we don't know the option lengths we have
1789  *	to pass the user mode parameter for the protocols to sort out.
1790  */
1791 
1792 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1793 			       char __user *optval, int optlen)
1794 {
1795 	int err, fput_needed;
1796 	struct socket *sock;
1797 
1798 	if (optlen < 0)
1799 		return -EINVAL;
1800 
1801 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1802 	if (sock != NULL) {
1803 		err = security_socket_setsockopt(sock, level, optname);
1804 		if (err)
1805 			goto out_put;
1806 
1807 		if (level == SOL_SOCKET)
1808 			err =
1809 			    sock_setsockopt(sock, level, optname, optval,
1810 					    optlen);
1811 		else
1812 			err =
1813 			    sock->ops->setsockopt(sock, level, optname, optval,
1814 						  optlen);
1815 out_put:
1816 		fput_light(sock->file, fput_needed);
1817 	}
1818 	return err;
1819 }
1820 
1821 /*
1822  *	Get a socket option. Because we don't know the option lengths we have
1823  *	to pass a user mode parameter for the protocols to sort out.
1824  */
1825 
1826 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1827 			       char __user *optval, int __user *optlen)
1828 {
1829 	int err, fput_needed;
1830 	struct socket *sock;
1831 
1832 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833 	if (sock != NULL) {
1834 		err = security_socket_getsockopt(sock, level, optname);
1835 		if (err)
1836 			goto out_put;
1837 
1838 		if (level == SOL_SOCKET)
1839 			err =
1840 			    sock_getsockopt(sock, level, optname, optval,
1841 					    optlen);
1842 		else
1843 			err =
1844 			    sock->ops->getsockopt(sock, level, optname, optval,
1845 						  optlen);
1846 out_put:
1847 		fput_light(sock->file, fput_needed);
1848 	}
1849 	return err;
1850 }
1851 
1852 /*
1853  *	Shutdown a socket.
1854  */
1855 
1856 asmlinkage long sys_shutdown(int fd, int how)
1857 {
1858 	int err, fput_needed;
1859 	struct socket *sock;
1860 
1861 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1862 	if (sock != NULL) {
1863 		err = security_socket_shutdown(sock, how);
1864 		if (!err)
1865 			err = sock->ops->shutdown(sock, how);
1866 		fput_light(sock->file, fput_needed);
1867 	}
1868 	return err;
1869 }
1870 
1871 /* A couple of helpful macros for getting the address of the 32/64 bit
1872  * fields which are the same type (int / unsigned) on our platforms.
1873  */
1874 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1875 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1876 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1877 
1878 /*
1879  *	BSD sendmsg interface
1880  */
1881 
1882 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1883 {
1884 	struct compat_msghdr __user *msg_compat =
1885 	    (struct compat_msghdr __user *)msg;
1886 	struct socket *sock;
1887 	struct sockaddr_storage address;
1888 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1889 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1890 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1891 	/* 20 is size of ipv6_pktinfo */
1892 	unsigned char *ctl_buf = ctl;
1893 	struct msghdr msg_sys;
1894 	int err, ctl_len, iov_size, total_len;
1895 	int fput_needed;
1896 
1897 	err = -EFAULT;
1898 	if (MSG_CMSG_COMPAT & flags) {
1899 		if (get_compat_msghdr(&msg_sys, msg_compat))
1900 			return -EFAULT;
1901 	}
1902 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1903 		return -EFAULT;
1904 
1905 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1906 	if (!sock)
1907 		goto out;
1908 
1909 	/* do not move before msg_sys is valid */
1910 	err = -EMSGSIZE;
1911 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1912 		goto out_put;
1913 
1914 	/* Check whether to allocate the iovec area */
1915 	err = -ENOMEM;
1916 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1917 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1918 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1919 		if (!iov)
1920 			goto out_put;
1921 	}
1922 
1923 	/* This will also move the address data into kernel space */
1924 	if (MSG_CMSG_COMPAT & flags) {
1925 		err = verify_compat_iovec(&msg_sys, iov,
1926 					  (struct sockaddr *)&address,
1927 					  VERIFY_READ);
1928 	} else
1929 		err = verify_iovec(&msg_sys, iov,
1930 				   (struct sockaddr *)&address,
1931 				   VERIFY_READ);
1932 	if (err < 0)
1933 		goto out_freeiov;
1934 	total_len = err;
1935 
1936 	err = -ENOBUFS;
1937 
1938 	if (msg_sys.msg_controllen > INT_MAX)
1939 		goto out_freeiov;
1940 	ctl_len = msg_sys.msg_controllen;
1941 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1942 		err =
1943 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1944 						     sizeof(ctl));
1945 		if (err)
1946 			goto out_freeiov;
1947 		ctl_buf = msg_sys.msg_control;
1948 		ctl_len = msg_sys.msg_controllen;
1949 	} else if (ctl_len) {
1950 		if (ctl_len > sizeof(ctl)) {
1951 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1952 			if (ctl_buf == NULL)
1953 				goto out_freeiov;
1954 		}
1955 		err = -EFAULT;
1956 		/*
1957 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1958 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1959 		 * checking falls down on this.
1960 		 */
1961 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1962 				   ctl_len))
1963 			goto out_freectl;
1964 		msg_sys.msg_control = ctl_buf;
1965 	}
1966 	msg_sys.msg_flags = flags;
1967 
1968 	if (sock->file->f_flags & O_NONBLOCK)
1969 		msg_sys.msg_flags |= MSG_DONTWAIT;
1970 	err = sock_sendmsg(sock, &msg_sys, total_len);
1971 
1972 out_freectl:
1973 	if (ctl_buf != ctl)
1974 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1975 out_freeiov:
1976 	if (iov != iovstack)
1977 		sock_kfree_s(sock->sk, iov, iov_size);
1978 out_put:
1979 	fput_light(sock->file, fput_needed);
1980 out:
1981 	return err;
1982 }
1983 
1984 /*
1985  *	BSD recvmsg interface
1986  */
1987 
1988 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1989 			    unsigned int flags)
1990 {
1991 	struct compat_msghdr __user *msg_compat =
1992 	    (struct compat_msghdr __user *)msg;
1993 	struct socket *sock;
1994 	struct iovec iovstack[UIO_FASTIOV];
1995 	struct iovec *iov = iovstack;
1996 	struct msghdr msg_sys;
1997 	unsigned long cmsg_ptr;
1998 	int err, iov_size, total_len, len;
1999 	int fput_needed;
2000 
2001 	/* kernel mode address */
2002 	struct sockaddr_storage addr;
2003 
2004 	/* user mode address pointers */
2005 	struct sockaddr __user *uaddr;
2006 	int __user *uaddr_len;
2007 
2008 	if (MSG_CMSG_COMPAT & flags) {
2009 		if (get_compat_msghdr(&msg_sys, msg_compat))
2010 			return -EFAULT;
2011 	}
2012 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2013 		return -EFAULT;
2014 
2015 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 	if (!sock)
2017 		goto out;
2018 
2019 	err = -EMSGSIZE;
2020 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
2021 		goto out_put;
2022 
2023 	/* Check whether to allocate the iovec area */
2024 	err = -ENOMEM;
2025 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2026 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2027 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2028 		if (!iov)
2029 			goto out_put;
2030 	}
2031 
2032 	/*
2033 	 *      Save the user-mode address (verify_iovec will change the
2034 	 *      kernel msghdr to use the kernel address space)
2035 	 */
2036 
2037 	uaddr = (__force void __user *)msg_sys.msg_name;
2038 	uaddr_len = COMPAT_NAMELEN(msg);
2039 	if (MSG_CMSG_COMPAT & flags) {
2040 		err = verify_compat_iovec(&msg_sys, iov,
2041 					  (struct sockaddr *)&addr,
2042 					  VERIFY_WRITE);
2043 	} else
2044 		err = verify_iovec(&msg_sys, iov,
2045 				   (struct sockaddr *)&addr,
2046 				   VERIFY_WRITE);
2047 	if (err < 0)
2048 		goto out_freeiov;
2049 	total_len = err;
2050 
2051 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
2052 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2053 
2054 	if (sock->file->f_flags & O_NONBLOCK)
2055 		flags |= MSG_DONTWAIT;
2056 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2057 	if (err < 0)
2058 		goto out_freeiov;
2059 	len = err;
2060 
2061 	if (uaddr != NULL) {
2062 		err = move_addr_to_user((struct sockaddr *)&addr,
2063 					msg_sys.msg_namelen, uaddr,
2064 					uaddr_len);
2065 		if (err < 0)
2066 			goto out_freeiov;
2067 	}
2068 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2069 			 COMPAT_FLAGS(msg));
2070 	if (err)
2071 		goto out_freeiov;
2072 	if (MSG_CMSG_COMPAT & flags)
2073 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2074 				 &msg_compat->msg_controllen);
2075 	else
2076 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2077 				 &msg->msg_controllen);
2078 	if (err)
2079 		goto out_freeiov;
2080 	err = len;
2081 
2082 out_freeiov:
2083 	if (iov != iovstack)
2084 		sock_kfree_s(sock->sk, iov, iov_size);
2085 out_put:
2086 	fput_light(sock->file, fput_needed);
2087 out:
2088 	return err;
2089 }
2090 
2091 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2092 
2093 /* Argument list sizes for sys_socketcall */
2094 #define AL(x) ((x) * sizeof(unsigned long))
2095 static const unsigned char nargs[19]={
2096 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2097 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2098 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2099 	AL(6)
2100 };
2101 
2102 #undef AL
2103 
2104 /*
2105  *	System call vectors.
2106  *
2107  *	Argument checking cleaned up. Saved 20% in size.
2108  *  This function doesn't need to set the kernel lock because
2109  *  it is set by the callees.
2110  */
2111 
2112 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2113 {
2114 	unsigned long a[6];
2115 	unsigned long a0, a1;
2116 	int err;
2117 
2118 	if (call < 1 || call > SYS_PACCEPT)
2119 		return -EINVAL;
2120 
2121 	/* copy_from_user should be SMP safe. */
2122 	if (copy_from_user(a, args, nargs[call]))
2123 		return -EFAULT;
2124 
2125 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2126 	if (err)
2127 		return err;
2128 
2129 	a0 = a[0];
2130 	a1 = a[1];
2131 
2132 	switch (call) {
2133 	case SYS_SOCKET:
2134 		err = sys_socket(a0, a1, a[2]);
2135 		break;
2136 	case SYS_BIND:
2137 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2138 		break;
2139 	case SYS_CONNECT:
2140 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2141 		break;
2142 	case SYS_LISTEN:
2143 		err = sys_listen(a0, a1);
2144 		break;
2145 	case SYS_ACCEPT:
2146 		err =
2147 		    do_accept(a0, (struct sockaddr __user *)a1,
2148 			      (int __user *)a[2], 0);
2149 		break;
2150 	case SYS_GETSOCKNAME:
2151 		err =
2152 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2153 				    (int __user *)a[2]);
2154 		break;
2155 	case SYS_GETPEERNAME:
2156 		err =
2157 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2158 				    (int __user *)a[2]);
2159 		break;
2160 	case SYS_SOCKETPAIR:
2161 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2162 		break;
2163 	case SYS_SEND:
2164 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2165 		break;
2166 	case SYS_SENDTO:
2167 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2168 				 (struct sockaddr __user *)a[4], a[5]);
2169 		break;
2170 	case SYS_RECV:
2171 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2172 		break;
2173 	case SYS_RECVFROM:
2174 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2175 				   (struct sockaddr __user *)a[4],
2176 				   (int __user *)a[5]);
2177 		break;
2178 	case SYS_SHUTDOWN:
2179 		err = sys_shutdown(a0, a1);
2180 		break;
2181 	case SYS_SETSOCKOPT:
2182 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2183 		break;
2184 	case SYS_GETSOCKOPT:
2185 		err =
2186 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2187 				   (int __user *)a[4]);
2188 		break;
2189 	case SYS_SENDMSG:
2190 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2191 		break;
2192 	case SYS_RECVMSG:
2193 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2194 		break;
2195 	case SYS_PACCEPT:
2196 		err =
2197 		    sys_paccept(a0, (struct sockaddr __user *)a1,
2198 			        (int __user *)a[2],
2199 				(const sigset_t __user *) a[3],
2200 				a[4], a[5]);
2201 		break;
2202 	default:
2203 		err = -EINVAL;
2204 		break;
2205 	}
2206 	return err;
2207 }
2208 
2209 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2210 
2211 /**
2212  *	sock_register - add a socket protocol handler
2213  *	@ops: description of protocol
2214  *
2215  *	This function is called by a protocol handler that wants to
2216  *	advertise its address family, and have it linked into the
2217  *	socket interface. The value ops->family coresponds to the
2218  *	socket system call protocol family.
2219  */
2220 int sock_register(const struct net_proto_family *ops)
2221 {
2222 	int err;
2223 
2224 	if (ops->family >= NPROTO) {
2225 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2226 		       NPROTO);
2227 		return -ENOBUFS;
2228 	}
2229 
2230 	spin_lock(&net_family_lock);
2231 	if (net_families[ops->family])
2232 		err = -EEXIST;
2233 	else {
2234 		net_families[ops->family] = ops;
2235 		err = 0;
2236 	}
2237 	spin_unlock(&net_family_lock);
2238 
2239 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2240 	return err;
2241 }
2242 
2243 /**
2244  *	sock_unregister - remove a protocol handler
2245  *	@family: protocol family to remove
2246  *
2247  *	This function is called by a protocol handler that wants to
2248  *	remove its address family, and have it unlinked from the
2249  *	new socket creation.
2250  *
2251  *	If protocol handler is a module, then it can use module reference
2252  *	counts to protect against new references. If protocol handler is not
2253  *	a module then it needs to provide its own protection in
2254  *	the ops->create routine.
2255  */
2256 void sock_unregister(int family)
2257 {
2258 	BUG_ON(family < 0 || family >= NPROTO);
2259 
2260 	spin_lock(&net_family_lock);
2261 	net_families[family] = NULL;
2262 	spin_unlock(&net_family_lock);
2263 
2264 	synchronize_rcu();
2265 
2266 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2267 }
2268 
2269 static int __init sock_init(void)
2270 {
2271 	/*
2272 	 *      Initialize sock SLAB cache.
2273 	 */
2274 
2275 	sk_init();
2276 
2277 	/*
2278 	 *      Initialize skbuff SLAB cache
2279 	 */
2280 	skb_init();
2281 
2282 	/*
2283 	 *      Initialize the protocols module.
2284 	 */
2285 
2286 	init_inodecache();
2287 	register_filesystem(&sock_fs_type);
2288 	sock_mnt = kern_mount(&sock_fs_type);
2289 
2290 	/* The real protocol initialization is performed in later initcalls.
2291 	 */
2292 
2293 #ifdef CONFIG_NETFILTER
2294 	netfilter_init();
2295 #endif
2296 
2297 	return 0;
2298 }
2299 
2300 core_initcall(sock_init);	/* early initcall */
2301 
2302 #ifdef CONFIG_PROC_FS
2303 void socket_seq_show(struct seq_file *seq)
2304 {
2305 	int cpu;
2306 	int counter = 0;
2307 
2308 	for_each_possible_cpu(cpu)
2309 	    counter += per_cpu(sockets_in_use, cpu);
2310 
2311 	/* It can be negative, by the way. 8) */
2312 	if (counter < 0)
2313 		counter = 0;
2314 
2315 	seq_printf(seq, "sockets: used %d\n", counter);
2316 }
2317 #endif				/* CONFIG_PROC_FS */
2318 
2319 #ifdef CONFIG_COMPAT
2320 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2321 			      unsigned long arg)
2322 {
2323 	struct socket *sock = file->private_data;
2324 	int ret = -ENOIOCTLCMD;
2325 	struct sock *sk;
2326 	struct net *net;
2327 
2328 	sk = sock->sk;
2329 	net = sock_net(sk);
2330 
2331 	if (sock->ops->compat_ioctl)
2332 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2333 
2334 	if (ret == -ENOIOCTLCMD &&
2335 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2336 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2337 
2338 	return ret;
2339 }
2340 #endif
2341 
2342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2343 {
2344 	return sock->ops->bind(sock, addr, addrlen);
2345 }
2346 
2347 int kernel_listen(struct socket *sock, int backlog)
2348 {
2349 	return sock->ops->listen(sock, backlog);
2350 }
2351 
2352 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2353 {
2354 	struct sock *sk = sock->sk;
2355 	int err;
2356 
2357 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2358 			       newsock);
2359 	if (err < 0)
2360 		goto done;
2361 
2362 	err = sock->ops->accept(sock, *newsock, flags);
2363 	if (err < 0) {
2364 		sock_release(*newsock);
2365 		*newsock = NULL;
2366 		goto done;
2367 	}
2368 
2369 	(*newsock)->ops = sock->ops;
2370 
2371 done:
2372 	return err;
2373 }
2374 
2375 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2376 		   int flags)
2377 {
2378 	return sock->ops->connect(sock, addr, addrlen, flags);
2379 }
2380 
2381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2382 			 int *addrlen)
2383 {
2384 	return sock->ops->getname(sock, addr, addrlen, 0);
2385 }
2386 
2387 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2388 			 int *addrlen)
2389 {
2390 	return sock->ops->getname(sock, addr, addrlen, 1);
2391 }
2392 
2393 int kernel_getsockopt(struct socket *sock, int level, int optname,
2394 			char *optval, int *optlen)
2395 {
2396 	mm_segment_t oldfs = get_fs();
2397 	int err;
2398 
2399 	set_fs(KERNEL_DS);
2400 	if (level == SOL_SOCKET)
2401 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2402 	else
2403 		err = sock->ops->getsockopt(sock, level, optname, optval,
2404 					    optlen);
2405 	set_fs(oldfs);
2406 	return err;
2407 }
2408 
2409 int kernel_setsockopt(struct socket *sock, int level, int optname,
2410 			char *optval, int optlen)
2411 {
2412 	mm_segment_t oldfs = get_fs();
2413 	int err;
2414 
2415 	set_fs(KERNEL_DS);
2416 	if (level == SOL_SOCKET)
2417 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2418 	else
2419 		err = sock->ops->setsockopt(sock, level, optname, optval,
2420 					    optlen);
2421 	set_fs(oldfs);
2422 	return err;
2423 }
2424 
2425 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2426 		    size_t size, int flags)
2427 {
2428 	if (sock->ops->sendpage)
2429 		return sock->ops->sendpage(sock, page, offset, size, flags);
2430 
2431 	return sock_no_sendpage(sock, page, offset, size, flags);
2432 }
2433 
2434 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2435 {
2436 	mm_segment_t oldfs = get_fs();
2437 	int err;
2438 
2439 	set_fs(KERNEL_DS);
2440 	err = sock->ops->ioctl(sock, cmd, arg);
2441 	set_fs(oldfs);
2442 
2443 	return err;
2444 }
2445 
2446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2447 {
2448 	return sock->ops->shutdown(sock, how);
2449 }
2450 
2451 EXPORT_SYMBOL(sock_create);
2452 EXPORT_SYMBOL(sock_create_kern);
2453 EXPORT_SYMBOL(sock_create_lite);
2454 EXPORT_SYMBOL(sock_map_fd);
2455 EXPORT_SYMBOL(sock_recvmsg);
2456 EXPORT_SYMBOL(sock_register);
2457 EXPORT_SYMBOL(sock_release);
2458 EXPORT_SYMBOL(sock_sendmsg);
2459 EXPORT_SYMBOL(sock_unregister);
2460 EXPORT_SYMBOL(sock_wake_async);
2461 EXPORT_SYMBOL(sockfd_lookup);
2462 EXPORT_SYMBOL(kernel_sendmsg);
2463 EXPORT_SYMBOL(kernel_recvmsg);
2464 EXPORT_SYMBOL(kernel_bind);
2465 EXPORT_SYMBOL(kernel_listen);
2466 EXPORT_SYMBOL(kernel_accept);
2467 EXPORT_SYMBOL(kernel_connect);
2468 EXPORT_SYMBOL(kernel_getsockname);
2469 EXPORT_SYMBOL(kernel_getpeername);
2470 EXPORT_SYMBOL(kernel_getsockopt);
2471 EXPORT_SYMBOL(kernel_setsockopt);
2472 EXPORT_SYMBOL(kernel_sendpage);
2473 EXPORT_SYMBOL(kernel_sock_ioctl);
2474 EXPORT_SYMBOL(kernel_sock_shutdown);
2475