1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 88 #include <asm/uaccess.h> 89 #include <asm/unistd.h> 90 91 #include <net/compat.h> 92 93 #include <net/sock.h> 94 #include <linux/netfilter.h> 95 96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103 static int sock_close(struct inode *inode, struct file *file); 104 static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107 #ifdef CONFIG_COMPAT 108 static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #endif 111 static int sock_fasync(int fd, struct file *filp, int on); 112 static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115 /* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120 static const struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127 #ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129 #endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136 }; 137 138 /* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142 static DEFINE_SPINLOCK(net_family_lock); 143 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145 /* 146 * Statistics counters of the socket lists 147 */ 148 149 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151 /* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178 { 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207 { 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229 } 230 231 #define SOCKFS_MAGIC 0x534F434B 232 233 static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_destroy_inode(struct inode *inode) 255 { 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258 } 259 260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261 { 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 inode_init_once(&ei->vfs_inode); 265 } 266 267 static int init_inodecache(void) 268 { 269 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 270 sizeof(struct socket_alloc), 271 0, 272 (SLAB_HWCACHE_ALIGN | 273 SLAB_RECLAIM_ACCOUNT | 274 SLAB_MEM_SPREAD), 275 init_once, 276 NULL); 277 if (sock_inode_cachep == NULL) 278 return -ENOMEM; 279 return 0; 280 } 281 282 static struct super_operations sockfs_ops = { 283 .alloc_inode = sock_alloc_inode, 284 .destroy_inode =sock_destroy_inode, 285 .statfs = simple_statfs, 286 }; 287 288 static int sockfs_get_sb(struct file_system_type *fs_type, 289 int flags, const char *dev_name, void *data, 290 struct vfsmount *mnt) 291 { 292 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 293 mnt); 294 } 295 296 static struct vfsmount *sock_mnt __read_mostly; 297 298 static struct file_system_type sock_fs_type = { 299 .name = "sockfs", 300 .get_sb = sockfs_get_sb, 301 .kill_sb = kill_anon_super, 302 }; 303 304 static int sockfs_delete_dentry(struct dentry *dentry) 305 { 306 /* 307 * At creation time, we pretended this dentry was hashed 308 * (by clearing DCACHE_UNHASHED bit in d_flags) 309 * At delete time, we restore the truth : not hashed. 310 * (so that dput() can proceed correctly) 311 */ 312 dentry->d_flags |= DCACHE_UNHASHED; 313 return 0; 314 } 315 316 /* 317 * sockfs_dname() is called from d_path(). 318 */ 319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 320 { 321 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 322 dentry->d_inode->i_ino); 323 } 324 325 static struct dentry_operations sockfs_dentry_operations = { 326 .d_delete = sockfs_delete_dentry, 327 .d_dname = sockfs_dname, 328 }; 329 330 /* 331 * Obtains the first available file descriptor and sets it up for use. 332 * 333 * These functions create file structures and maps them to fd space 334 * of the current process. On success it returns file descriptor 335 * and file struct implicitly stored in sock->file. 336 * Note that another thread may close file descriptor before we return 337 * from this function. We use the fact that now we do not refer 338 * to socket after mapping. If one day we will need it, this 339 * function will increment ref. count on file by 1. 340 * 341 * In any case returned fd MAY BE not valid! 342 * This race condition is unavoidable 343 * with shared fd spaces, we cannot solve it inside kernel, 344 * but we take care of internal coherence yet. 345 */ 346 347 static int sock_alloc_fd(struct file **filep) 348 { 349 int fd; 350 351 fd = get_unused_fd(); 352 if (likely(fd >= 0)) { 353 struct file *file = get_empty_filp(); 354 355 *filep = file; 356 if (unlikely(!file)) { 357 put_unused_fd(fd); 358 return -ENFILE; 359 } 360 } else 361 *filep = NULL; 362 return fd; 363 } 364 365 static int sock_attach_fd(struct socket *sock, struct file *file) 366 { 367 struct qstr name = { .name = "" }; 368 369 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 370 if (unlikely(!file->f_path.dentry)) 371 return -ENOMEM; 372 373 file->f_path.dentry->d_op = &sockfs_dentry_operations; 374 /* 375 * We dont want to push this dentry into global dentry hash table. 376 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 377 * This permits a working /proc/$pid/fd/XXX on sockets 378 */ 379 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 380 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 381 file->f_path.mnt = mntget(sock_mnt); 382 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 383 384 sock->file = file; 385 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 386 file->f_mode = FMODE_READ | FMODE_WRITE; 387 file->f_flags = O_RDWR; 388 file->f_pos = 0; 389 file->private_data = sock; 390 391 return 0; 392 } 393 394 int sock_map_fd(struct socket *sock) 395 { 396 struct file *newfile; 397 int fd = sock_alloc_fd(&newfile); 398 399 if (likely(fd >= 0)) { 400 int err = sock_attach_fd(sock, newfile); 401 402 if (unlikely(err < 0)) { 403 put_filp(newfile); 404 put_unused_fd(fd); 405 return err; 406 } 407 fd_install(fd, newfile); 408 } 409 return fd; 410 } 411 412 static struct socket *sock_from_file(struct file *file, int *err) 413 { 414 if (file->f_op == &socket_file_ops) 415 return file->private_data; /* set in sock_map_fd */ 416 417 *err = -ENOTSOCK; 418 return NULL; 419 } 420 421 /** 422 * sockfd_lookup - Go from a file number to its socket slot 423 * @fd: file handle 424 * @err: pointer to an error code return 425 * 426 * The file handle passed in is locked and the socket it is bound 427 * too is returned. If an error occurs the err pointer is overwritten 428 * with a negative errno code and NULL is returned. The function checks 429 * for both invalid handles and passing a handle which is not a socket. 430 * 431 * On a success the socket object pointer is returned. 432 */ 433 434 struct socket *sockfd_lookup(int fd, int *err) 435 { 436 struct file *file; 437 struct socket *sock; 438 439 file = fget(fd); 440 if (!file) { 441 *err = -EBADF; 442 return NULL; 443 } 444 445 sock = sock_from_file(file, err); 446 if (!sock) 447 fput(file); 448 return sock; 449 } 450 451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 452 { 453 struct file *file; 454 struct socket *sock; 455 456 *err = -EBADF; 457 file = fget_light(fd, fput_needed); 458 if (file) { 459 sock = sock_from_file(file, err); 460 if (sock) 461 return sock; 462 fput_light(file, *fput_needed); 463 } 464 return NULL; 465 } 466 467 /** 468 * sock_alloc - allocate a socket 469 * 470 * Allocate a new inode and socket object. The two are bound together 471 * and initialised. The socket is then returned. If we are out of inodes 472 * NULL is returned. 473 */ 474 475 static struct socket *sock_alloc(void) 476 { 477 struct inode *inode; 478 struct socket *sock; 479 480 inode = new_inode(sock_mnt->mnt_sb); 481 if (!inode) 482 return NULL; 483 484 sock = SOCKET_I(inode); 485 486 inode->i_mode = S_IFSOCK | S_IRWXUGO; 487 inode->i_uid = current->fsuid; 488 inode->i_gid = current->fsgid; 489 490 get_cpu_var(sockets_in_use)++; 491 put_cpu_var(sockets_in_use); 492 return sock; 493 } 494 495 /* 496 * In theory you can't get an open on this inode, but /proc provides 497 * a back door. Remember to keep it shut otherwise you'll let the 498 * creepy crawlies in. 499 */ 500 501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 502 { 503 return -ENXIO; 504 } 505 506 const struct file_operations bad_sock_fops = { 507 .owner = THIS_MODULE, 508 .open = sock_no_open, 509 }; 510 511 /** 512 * sock_release - close a socket 513 * @sock: socket to close 514 * 515 * The socket is released from the protocol stack if it has a release 516 * callback, and the inode is then released if the socket is bound to 517 * an inode not a file. 518 */ 519 520 void sock_release(struct socket *sock) 521 { 522 if (sock->ops) { 523 struct module *owner = sock->ops->owner; 524 525 sock->ops->release(sock); 526 sock->ops = NULL; 527 module_put(owner); 528 } 529 530 if (sock->fasync_list) 531 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 532 533 get_cpu_var(sockets_in_use)--; 534 put_cpu_var(sockets_in_use); 535 if (!sock->file) { 536 iput(SOCK_INODE(sock)); 537 return; 538 } 539 sock->file = NULL; 540 } 541 542 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 543 struct msghdr *msg, size_t size) 544 { 545 struct sock_iocb *si = kiocb_to_siocb(iocb); 546 int err; 547 548 si->sock = sock; 549 si->scm = NULL; 550 si->msg = msg; 551 si->size = size; 552 553 err = security_socket_sendmsg(sock, msg, size); 554 if (err) 555 return err; 556 557 return sock->ops->sendmsg(iocb, sock, msg, size); 558 } 559 560 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 561 { 562 struct kiocb iocb; 563 struct sock_iocb siocb; 564 int ret; 565 566 init_sync_kiocb(&iocb, NULL); 567 iocb.private = &siocb; 568 ret = __sock_sendmsg(&iocb, sock, msg, size); 569 if (-EIOCBQUEUED == ret) 570 ret = wait_on_sync_kiocb(&iocb); 571 return ret; 572 } 573 574 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 575 struct kvec *vec, size_t num, size_t size) 576 { 577 mm_segment_t oldfs = get_fs(); 578 int result; 579 580 set_fs(KERNEL_DS); 581 /* 582 * the following is safe, since for compiler definitions of kvec and 583 * iovec are identical, yielding the same in-core layout and alignment 584 */ 585 msg->msg_iov = (struct iovec *)vec; 586 msg->msg_iovlen = num; 587 result = sock_sendmsg(sock, msg, size); 588 set_fs(oldfs); 589 return result; 590 } 591 592 /* 593 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 594 */ 595 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 596 struct sk_buff *skb) 597 { 598 ktime_t kt = skb->tstamp; 599 600 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 601 struct timeval tv; 602 /* Race occurred between timestamp enabling and packet 603 receiving. Fill in the current time for now. */ 604 if (kt.tv64 == 0) 605 kt = ktime_get_real(); 606 skb->tstamp = kt; 607 tv = ktime_to_timeval(kt); 608 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 609 } else { 610 struct timespec ts; 611 /* Race occurred between timestamp enabling and packet 612 receiving. Fill in the current time for now. */ 613 if (kt.tv64 == 0) 614 kt = ktime_get_real(); 615 skb->tstamp = kt; 616 ts = ktime_to_timespec(kt); 617 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 618 } 619 } 620 621 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 622 623 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 624 struct msghdr *msg, size_t size, int flags) 625 { 626 int err; 627 struct sock_iocb *si = kiocb_to_siocb(iocb); 628 629 si->sock = sock; 630 si->scm = NULL; 631 si->msg = msg; 632 si->size = size; 633 si->flags = flags; 634 635 err = security_socket_recvmsg(sock, msg, size, flags); 636 if (err) 637 return err; 638 639 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 640 } 641 642 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 643 size_t size, int flags) 644 { 645 struct kiocb iocb; 646 struct sock_iocb siocb; 647 int ret; 648 649 init_sync_kiocb(&iocb, NULL); 650 iocb.private = &siocb; 651 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 652 if (-EIOCBQUEUED == ret) 653 ret = wait_on_sync_kiocb(&iocb); 654 return ret; 655 } 656 657 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 658 struct kvec *vec, size_t num, size_t size, int flags) 659 { 660 mm_segment_t oldfs = get_fs(); 661 int result; 662 663 set_fs(KERNEL_DS); 664 /* 665 * the following is safe, since for compiler definitions of kvec and 666 * iovec are identical, yielding the same in-core layout and alignment 667 */ 668 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 669 result = sock_recvmsg(sock, msg, size, flags); 670 set_fs(oldfs); 671 return result; 672 } 673 674 static void sock_aio_dtor(struct kiocb *iocb) 675 { 676 kfree(iocb->private); 677 } 678 679 static ssize_t sock_sendpage(struct file *file, struct page *page, 680 int offset, size_t size, loff_t *ppos, int more) 681 { 682 struct socket *sock; 683 int flags; 684 685 sock = file->private_data; 686 687 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 688 if (more) 689 flags |= MSG_MORE; 690 691 return sock->ops->sendpage(sock, page, offset, size, flags); 692 } 693 694 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 695 struct sock_iocb *siocb) 696 { 697 if (!is_sync_kiocb(iocb)) { 698 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 699 if (!siocb) 700 return NULL; 701 iocb->ki_dtor = sock_aio_dtor; 702 } 703 704 siocb->kiocb = iocb; 705 iocb->private = siocb; 706 return siocb; 707 } 708 709 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 710 struct file *file, const struct iovec *iov, 711 unsigned long nr_segs) 712 { 713 struct socket *sock = file->private_data; 714 size_t size = 0; 715 int i; 716 717 for (i = 0; i < nr_segs; i++) 718 size += iov[i].iov_len; 719 720 msg->msg_name = NULL; 721 msg->msg_namelen = 0; 722 msg->msg_control = NULL; 723 msg->msg_controllen = 0; 724 msg->msg_iov = (struct iovec *)iov; 725 msg->msg_iovlen = nr_segs; 726 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 727 728 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 729 } 730 731 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 732 unsigned long nr_segs, loff_t pos) 733 { 734 struct sock_iocb siocb, *x; 735 736 if (pos != 0) 737 return -ESPIPE; 738 739 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 740 return 0; 741 742 743 x = alloc_sock_iocb(iocb, &siocb); 744 if (!x) 745 return -ENOMEM; 746 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 747 } 748 749 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 750 struct file *file, const struct iovec *iov, 751 unsigned long nr_segs) 752 { 753 struct socket *sock = file->private_data; 754 size_t size = 0; 755 int i; 756 757 for (i = 0; i < nr_segs; i++) 758 size += iov[i].iov_len; 759 760 msg->msg_name = NULL; 761 msg->msg_namelen = 0; 762 msg->msg_control = NULL; 763 msg->msg_controllen = 0; 764 msg->msg_iov = (struct iovec *)iov; 765 msg->msg_iovlen = nr_segs; 766 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 767 if (sock->type == SOCK_SEQPACKET) 768 msg->msg_flags |= MSG_EOR; 769 770 return __sock_sendmsg(iocb, sock, msg, size); 771 } 772 773 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 774 unsigned long nr_segs, loff_t pos) 775 { 776 struct sock_iocb siocb, *x; 777 778 if (pos != 0) 779 return -ESPIPE; 780 781 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 782 return 0; 783 784 x = alloc_sock_iocb(iocb, &siocb); 785 if (!x) 786 return -ENOMEM; 787 788 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 789 } 790 791 /* 792 * Atomic setting of ioctl hooks to avoid race 793 * with module unload. 794 */ 795 796 static DEFINE_MUTEX(br_ioctl_mutex); 797 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 798 799 void brioctl_set(int (*hook) (unsigned int, void __user *)) 800 { 801 mutex_lock(&br_ioctl_mutex); 802 br_ioctl_hook = hook; 803 mutex_unlock(&br_ioctl_mutex); 804 } 805 806 EXPORT_SYMBOL(brioctl_set); 807 808 static DEFINE_MUTEX(vlan_ioctl_mutex); 809 static int (*vlan_ioctl_hook) (void __user *arg); 810 811 void vlan_ioctl_set(int (*hook) (void __user *)) 812 { 813 mutex_lock(&vlan_ioctl_mutex); 814 vlan_ioctl_hook = hook; 815 mutex_unlock(&vlan_ioctl_mutex); 816 } 817 818 EXPORT_SYMBOL(vlan_ioctl_set); 819 820 static DEFINE_MUTEX(dlci_ioctl_mutex); 821 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 822 823 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 824 { 825 mutex_lock(&dlci_ioctl_mutex); 826 dlci_ioctl_hook = hook; 827 mutex_unlock(&dlci_ioctl_mutex); 828 } 829 830 EXPORT_SYMBOL(dlci_ioctl_set); 831 832 /* 833 * With an ioctl, arg may well be a user mode pointer, but we don't know 834 * what to do with it - that's up to the protocol still. 835 */ 836 837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 838 { 839 struct socket *sock; 840 void __user *argp = (void __user *)arg; 841 int pid, err; 842 843 sock = file->private_data; 844 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 845 err = dev_ioctl(cmd, argp); 846 } else 847 #ifdef CONFIG_WIRELESS_EXT 848 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 849 err = dev_ioctl(cmd, argp); 850 } else 851 #endif /* CONFIG_WIRELESS_EXT */ 852 switch (cmd) { 853 case FIOSETOWN: 854 case SIOCSPGRP: 855 err = -EFAULT; 856 if (get_user(pid, (int __user *)argp)) 857 break; 858 err = f_setown(sock->file, pid, 1); 859 break; 860 case FIOGETOWN: 861 case SIOCGPGRP: 862 err = put_user(f_getown(sock->file), 863 (int __user *)argp); 864 break; 865 case SIOCGIFBR: 866 case SIOCSIFBR: 867 case SIOCBRADDBR: 868 case SIOCBRDELBR: 869 err = -ENOPKG; 870 if (!br_ioctl_hook) 871 request_module("bridge"); 872 873 mutex_lock(&br_ioctl_mutex); 874 if (br_ioctl_hook) 875 err = br_ioctl_hook(cmd, argp); 876 mutex_unlock(&br_ioctl_mutex); 877 break; 878 case SIOCGIFVLAN: 879 case SIOCSIFVLAN: 880 err = -ENOPKG; 881 if (!vlan_ioctl_hook) 882 request_module("8021q"); 883 884 mutex_lock(&vlan_ioctl_mutex); 885 if (vlan_ioctl_hook) 886 err = vlan_ioctl_hook(argp); 887 mutex_unlock(&vlan_ioctl_mutex); 888 break; 889 case SIOCADDDLCI: 890 case SIOCDELDLCI: 891 err = -ENOPKG; 892 if (!dlci_ioctl_hook) 893 request_module("dlci"); 894 895 if (dlci_ioctl_hook) { 896 mutex_lock(&dlci_ioctl_mutex); 897 err = dlci_ioctl_hook(cmd, argp); 898 mutex_unlock(&dlci_ioctl_mutex); 899 } 900 break; 901 default: 902 err = sock->ops->ioctl(sock, cmd, arg); 903 904 /* 905 * If this ioctl is unknown try to hand it down 906 * to the NIC driver. 907 */ 908 if (err == -ENOIOCTLCMD) 909 err = dev_ioctl(cmd, argp); 910 break; 911 } 912 return err; 913 } 914 915 int sock_create_lite(int family, int type, int protocol, struct socket **res) 916 { 917 int err; 918 struct socket *sock = NULL; 919 920 err = security_socket_create(family, type, protocol, 1); 921 if (err) 922 goto out; 923 924 sock = sock_alloc(); 925 if (!sock) { 926 err = -ENOMEM; 927 goto out; 928 } 929 930 sock->type = type; 931 err = security_socket_post_create(sock, family, type, protocol, 1); 932 if (err) 933 goto out_release; 934 935 out: 936 *res = sock; 937 return err; 938 out_release: 939 sock_release(sock); 940 sock = NULL; 941 goto out; 942 } 943 944 /* No kernel lock held - perfect */ 945 static unsigned int sock_poll(struct file *file, poll_table *wait) 946 { 947 struct socket *sock; 948 949 /* 950 * We can't return errors to poll, so it's either yes or no. 951 */ 952 sock = file->private_data; 953 return sock->ops->poll(file, sock, wait); 954 } 955 956 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 957 { 958 struct socket *sock = file->private_data; 959 960 return sock->ops->mmap(file, sock, vma); 961 } 962 963 static int sock_close(struct inode *inode, struct file *filp) 964 { 965 /* 966 * It was possible the inode is NULL we were 967 * closing an unfinished socket. 968 */ 969 970 if (!inode) { 971 printk(KERN_DEBUG "sock_close: NULL inode\n"); 972 return 0; 973 } 974 sock_fasync(-1, filp, 0); 975 sock_release(SOCKET_I(inode)); 976 return 0; 977 } 978 979 /* 980 * Update the socket async list 981 * 982 * Fasync_list locking strategy. 983 * 984 * 1. fasync_list is modified only under process context socket lock 985 * i.e. under semaphore. 986 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 987 * or under socket lock. 988 * 3. fasync_list can be used from softirq context, so that 989 * modification under socket lock have to be enhanced with 990 * write_lock_bh(&sk->sk_callback_lock). 991 * --ANK (990710) 992 */ 993 994 static int sock_fasync(int fd, struct file *filp, int on) 995 { 996 struct fasync_struct *fa, *fna = NULL, **prev; 997 struct socket *sock; 998 struct sock *sk; 999 1000 if (on) { 1001 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1002 if (fna == NULL) 1003 return -ENOMEM; 1004 } 1005 1006 sock = filp->private_data; 1007 1008 sk = sock->sk; 1009 if (sk == NULL) { 1010 kfree(fna); 1011 return -EINVAL; 1012 } 1013 1014 lock_sock(sk); 1015 1016 prev = &(sock->fasync_list); 1017 1018 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1019 if (fa->fa_file == filp) 1020 break; 1021 1022 if (on) { 1023 if (fa != NULL) { 1024 write_lock_bh(&sk->sk_callback_lock); 1025 fa->fa_fd = fd; 1026 write_unlock_bh(&sk->sk_callback_lock); 1027 1028 kfree(fna); 1029 goto out; 1030 } 1031 fna->fa_file = filp; 1032 fna->fa_fd = fd; 1033 fna->magic = FASYNC_MAGIC; 1034 fna->fa_next = sock->fasync_list; 1035 write_lock_bh(&sk->sk_callback_lock); 1036 sock->fasync_list = fna; 1037 write_unlock_bh(&sk->sk_callback_lock); 1038 } else { 1039 if (fa != NULL) { 1040 write_lock_bh(&sk->sk_callback_lock); 1041 *prev = fa->fa_next; 1042 write_unlock_bh(&sk->sk_callback_lock); 1043 kfree(fa); 1044 } 1045 } 1046 1047 out: 1048 release_sock(sock->sk); 1049 return 0; 1050 } 1051 1052 /* This function may be called only under socket lock or callback_lock */ 1053 1054 int sock_wake_async(struct socket *sock, int how, int band) 1055 { 1056 if (!sock || !sock->fasync_list) 1057 return -1; 1058 switch (how) { 1059 case 1: 1060 1061 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1062 break; 1063 goto call_kill; 1064 case 2: 1065 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1066 break; 1067 /* fall through */ 1068 case 0: 1069 call_kill: 1070 __kill_fasync(sock->fasync_list, SIGIO, band); 1071 break; 1072 case 3: 1073 __kill_fasync(sock->fasync_list, SIGURG, band); 1074 } 1075 return 0; 1076 } 1077 1078 static int __sock_create(int family, int type, int protocol, 1079 struct socket **res, int kern) 1080 { 1081 int err; 1082 struct socket *sock; 1083 const struct net_proto_family *pf; 1084 1085 /* 1086 * Check protocol is in range 1087 */ 1088 if (family < 0 || family >= NPROTO) 1089 return -EAFNOSUPPORT; 1090 if (type < 0 || type >= SOCK_MAX) 1091 return -EINVAL; 1092 1093 /* Compatibility. 1094 1095 This uglymoron is moved from INET layer to here to avoid 1096 deadlock in module load. 1097 */ 1098 if (family == PF_INET && type == SOCK_PACKET) { 1099 static int warned; 1100 if (!warned) { 1101 warned = 1; 1102 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1103 current->comm); 1104 } 1105 family = PF_PACKET; 1106 } 1107 1108 err = security_socket_create(family, type, protocol, kern); 1109 if (err) 1110 return err; 1111 1112 /* 1113 * Allocate the socket and allow the family to set things up. if 1114 * the protocol is 0, the family is instructed to select an appropriate 1115 * default. 1116 */ 1117 sock = sock_alloc(); 1118 if (!sock) { 1119 if (net_ratelimit()) 1120 printk(KERN_WARNING "socket: no more sockets\n"); 1121 return -ENFILE; /* Not exactly a match, but its the 1122 closest posix thing */ 1123 } 1124 1125 sock->type = type; 1126 1127 #if defined(CONFIG_KMOD) 1128 /* Attempt to load a protocol module if the find failed. 1129 * 1130 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1131 * requested real, full-featured networking support upon configuration. 1132 * Otherwise module support will break! 1133 */ 1134 if (net_families[family] == NULL) 1135 request_module("net-pf-%d", family); 1136 #endif 1137 1138 rcu_read_lock(); 1139 pf = rcu_dereference(net_families[family]); 1140 err = -EAFNOSUPPORT; 1141 if (!pf) 1142 goto out_release; 1143 1144 /* 1145 * We will call the ->create function, that possibly is in a loadable 1146 * module, so we have to bump that loadable module refcnt first. 1147 */ 1148 if (!try_module_get(pf->owner)) 1149 goto out_release; 1150 1151 /* Now protected by module ref count */ 1152 rcu_read_unlock(); 1153 1154 err = pf->create(sock, protocol); 1155 if (err < 0) 1156 goto out_module_put; 1157 1158 /* 1159 * Now to bump the refcnt of the [loadable] module that owns this 1160 * socket at sock_release time we decrement its refcnt. 1161 */ 1162 if (!try_module_get(sock->ops->owner)) 1163 goto out_module_busy; 1164 1165 /* 1166 * Now that we're done with the ->create function, the [loadable] 1167 * module can have its refcnt decremented 1168 */ 1169 module_put(pf->owner); 1170 err = security_socket_post_create(sock, family, type, protocol, kern); 1171 if (err) 1172 goto out_release; 1173 *res = sock; 1174 1175 return 0; 1176 1177 out_module_busy: 1178 err = -EAFNOSUPPORT; 1179 out_module_put: 1180 sock->ops = NULL; 1181 module_put(pf->owner); 1182 out_sock_release: 1183 sock_release(sock); 1184 return err; 1185 1186 out_release: 1187 rcu_read_unlock(); 1188 goto out_sock_release; 1189 } 1190 1191 int sock_create(int family, int type, int protocol, struct socket **res) 1192 { 1193 return __sock_create(family, type, protocol, res, 0); 1194 } 1195 1196 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1197 { 1198 return __sock_create(family, type, protocol, res, 1); 1199 } 1200 1201 asmlinkage long sys_socket(int family, int type, int protocol) 1202 { 1203 int retval; 1204 struct socket *sock; 1205 1206 retval = sock_create(family, type, protocol, &sock); 1207 if (retval < 0) 1208 goto out; 1209 1210 retval = sock_map_fd(sock); 1211 if (retval < 0) 1212 goto out_release; 1213 1214 out: 1215 /* It may be already another descriptor 8) Not kernel problem. */ 1216 return retval; 1217 1218 out_release: 1219 sock_release(sock); 1220 return retval; 1221 } 1222 1223 /* 1224 * Create a pair of connected sockets. 1225 */ 1226 1227 asmlinkage long sys_socketpair(int family, int type, int protocol, 1228 int __user *usockvec) 1229 { 1230 struct socket *sock1, *sock2; 1231 int fd1, fd2, err; 1232 struct file *newfile1, *newfile2; 1233 1234 /* 1235 * Obtain the first socket and check if the underlying protocol 1236 * supports the socketpair call. 1237 */ 1238 1239 err = sock_create(family, type, protocol, &sock1); 1240 if (err < 0) 1241 goto out; 1242 1243 err = sock_create(family, type, protocol, &sock2); 1244 if (err < 0) 1245 goto out_release_1; 1246 1247 err = sock1->ops->socketpair(sock1, sock2); 1248 if (err < 0) 1249 goto out_release_both; 1250 1251 fd1 = sock_alloc_fd(&newfile1); 1252 if (unlikely(fd1 < 0)) 1253 goto out_release_both; 1254 1255 fd2 = sock_alloc_fd(&newfile2); 1256 if (unlikely(fd2 < 0)) { 1257 put_filp(newfile1); 1258 put_unused_fd(fd1); 1259 goto out_release_both; 1260 } 1261 1262 err = sock_attach_fd(sock1, newfile1); 1263 if (unlikely(err < 0)) { 1264 goto out_fd2; 1265 } 1266 1267 err = sock_attach_fd(sock2, newfile2); 1268 if (unlikely(err < 0)) { 1269 fput(newfile1); 1270 goto out_fd1; 1271 } 1272 1273 err = audit_fd_pair(fd1, fd2); 1274 if (err < 0) { 1275 fput(newfile1); 1276 fput(newfile2); 1277 goto out_fd; 1278 } 1279 1280 fd_install(fd1, newfile1); 1281 fd_install(fd2, newfile2); 1282 /* fd1 and fd2 may be already another descriptors. 1283 * Not kernel problem. 1284 */ 1285 1286 err = put_user(fd1, &usockvec[0]); 1287 if (!err) 1288 err = put_user(fd2, &usockvec[1]); 1289 if (!err) 1290 return 0; 1291 1292 sys_close(fd2); 1293 sys_close(fd1); 1294 return err; 1295 1296 out_release_both: 1297 sock_release(sock2); 1298 out_release_1: 1299 sock_release(sock1); 1300 out: 1301 return err; 1302 1303 out_fd2: 1304 put_filp(newfile1); 1305 sock_release(sock1); 1306 out_fd1: 1307 put_filp(newfile2); 1308 sock_release(sock2); 1309 out_fd: 1310 put_unused_fd(fd1); 1311 put_unused_fd(fd2); 1312 goto out; 1313 } 1314 1315 /* 1316 * Bind a name to a socket. Nothing much to do here since it's 1317 * the protocol's responsibility to handle the local address. 1318 * 1319 * We move the socket address to kernel space before we call 1320 * the protocol layer (having also checked the address is ok). 1321 */ 1322 1323 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1324 { 1325 struct socket *sock; 1326 char address[MAX_SOCK_ADDR]; 1327 int err, fput_needed; 1328 1329 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1330 if (sock) { 1331 err = move_addr_to_kernel(umyaddr, addrlen, address); 1332 if (err >= 0) { 1333 err = security_socket_bind(sock, 1334 (struct sockaddr *)address, 1335 addrlen); 1336 if (!err) 1337 err = sock->ops->bind(sock, 1338 (struct sockaddr *) 1339 address, addrlen); 1340 } 1341 fput_light(sock->file, fput_needed); 1342 } 1343 return err; 1344 } 1345 1346 /* 1347 * Perform a listen. Basically, we allow the protocol to do anything 1348 * necessary for a listen, and if that works, we mark the socket as 1349 * ready for listening. 1350 */ 1351 1352 int sysctl_somaxconn __read_mostly = SOMAXCONN; 1353 1354 asmlinkage long sys_listen(int fd, int backlog) 1355 { 1356 struct socket *sock; 1357 int err, fput_needed; 1358 1359 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1360 if (sock) { 1361 if ((unsigned)backlog > sysctl_somaxconn) 1362 backlog = sysctl_somaxconn; 1363 1364 err = security_socket_listen(sock, backlog); 1365 if (!err) 1366 err = sock->ops->listen(sock, backlog); 1367 1368 fput_light(sock->file, fput_needed); 1369 } 1370 return err; 1371 } 1372 1373 /* 1374 * For accept, we attempt to create a new socket, set up the link 1375 * with the client, wake up the client, then return the new 1376 * connected fd. We collect the address of the connector in kernel 1377 * space and move it to user at the very end. This is unclean because 1378 * we open the socket then return an error. 1379 * 1380 * 1003.1g adds the ability to recvmsg() to query connection pending 1381 * status to recvmsg. We need to add that support in a way thats 1382 * clean when we restucture accept also. 1383 */ 1384 1385 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1386 int __user *upeer_addrlen) 1387 { 1388 struct socket *sock, *newsock; 1389 struct file *newfile; 1390 int err, len, newfd, fput_needed; 1391 char address[MAX_SOCK_ADDR]; 1392 1393 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1394 if (!sock) 1395 goto out; 1396 1397 err = -ENFILE; 1398 if (!(newsock = sock_alloc())) 1399 goto out_put; 1400 1401 newsock->type = sock->type; 1402 newsock->ops = sock->ops; 1403 1404 /* 1405 * We don't need try_module_get here, as the listening socket (sock) 1406 * has the protocol module (sock->ops->owner) held. 1407 */ 1408 __module_get(newsock->ops->owner); 1409 1410 newfd = sock_alloc_fd(&newfile); 1411 if (unlikely(newfd < 0)) { 1412 err = newfd; 1413 sock_release(newsock); 1414 goto out_put; 1415 } 1416 1417 err = sock_attach_fd(newsock, newfile); 1418 if (err < 0) 1419 goto out_fd_simple; 1420 1421 err = security_socket_accept(sock, newsock); 1422 if (err) 1423 goto out_fd; 1424 1425 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1426 if (err < 0) 1427 goto out_fd; 1428 1429 if (upeer_sockaddr) { 1430 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1431 &len, 2) < 0) { 1432 err = -ECONNABORTED; 1433 goto out_fd; 1434 } 1435 err = move_addr_to_user(address, len, upeer_sockaddr, 1436 upeer_addrlen); 1437 if (err < 0) 1438 goto out_fd; 1439 } 1440 1441 /* File flags are not inherited via accept() unlike another OSes. */ 1442 1443 fd_install(newfd, newfile); 1444 err = newfd; 1445 1446 security_socket_post_accept(sock, newsock); 1447 1448 out_put: 1449 fput_light(sock->file, fput_needed); 1450 out: 1451 return err; 1452 out_fd_simple: 1453 sock_release(newsock); 1454 put_filp(newfile); 1455 put_unused_fd(newfd); 1456 goto out_put; 1457 out_fd: 1458 fput(newfile); 1459 put_unused_fd(newfd); 1460 goto out_put; 1461 } 1462 1463 /* 1464 * Attempt to connect to a socket with the server address. The address 1465 * is in user space so we verify it is OK and move it to kernel space. 1466 * 1467 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1468 * break bindings 1469 * 1470 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1471 * other SEQPACKET protocols that take time to connect() as it doesn't 1472 * include the -EINPROGRESS status for such sockets. 1473 */ 1474 1475 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1476 int addrlen) 1477 { 1478 struct socket *sock; 1479 char address[MAX_SOCK_ADDR]; 1480 int err, fput_needed; 1481 1482 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1483 if (!sock) 1484 goto out; 1485 err = move_addr_to_kernel(uservaddr, addrlen, address); 1486 if (err < 0) 1487 goto out_put; 1488 1489 err = 1490 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1491 if (err) 1492 goto out_put; 1493 1494 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1495 sock->file->f_flags); 1496 out_put: 1497 fput_light(sock->file, fput_needed); 1498 out: 1499 return err; 1500 } 1501 1502 /* 1503 * Get the local address ('name') of a socket object. Move the obtained 1504 * name to user space. 1505 */ 1506 1507 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1508 int __user *usockaddr_len) 1509 { 1510 struct socket *sock; 1511 char address[MAX_SOCK_ADDR]; 1512 int len, err, fput_needed; 1513 1514 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1515 if (!sock) 1516 goto out; 1517 1518 err = security_socket_getsockname(sock); 1519 if (err) 1520 goto out_put; 1521 1522 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1523 if (err) 1524 goto out_put; 1525 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1526 1527 out_put: 1528 fput_light(sock->file, fput_needed); 1529 out: 1530 return err; 1531 } 1532 1533 /* 1534 * Get the remote address ('name') of a socket object. Move the obtained 1535 * name to user space. 1536 */ 1537 1538 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1539 int __user *usockaddr_len) 1540 { 1541 struct socket *sock; 1542 char address[MAX_SOCK_ADDR]; 1543 int len, err, fput_needed; 1544 1545 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1546 if (sock != NULL) { 1547 err = security_socket_getpeername(sock); 1548 if (err) { 1549 fput_light(sock->file, fput_needed); 1550 return err; 1551 } 1552 1553 err = 1554 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1555 1); 1556 if (!err) 1557 err = move_addr_to_user(address, len, usockaddr, 1558 usockaddr_len); 1559 fput_light(sock->file, fput_needed); 1560 } 1561 return err; 1562 } 1563 1564 /* 1565 * Send a datagram to a given address. We move the address into kernel 1566 * space and check the user space data area is readable before invoking 1567 * the protocol. 1568 */ 1569 1570 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1571 unsigned flags, struct sockaddr __user *addr, 1572 int addr_len) 1573 { 1574 struct socket *sock; 1575 char address[MAX_SOCK_ADDR]; 1576 int err; 1577 struct msghdr msg; 1578 struct iovec iov; 1579 int fput_needed; 1580 struct file *sock_file; 1581 1582 sock_file = fget_light(fd, &fput_needed); 1583 err = -EBADF; 1584 if (!sock_file) 1585 goto out; 1586 1587 sock = sock_from_file(sock_file, &err); 1588 if (!sock) 1589 goto out_put; 1590 iov.iov_base = buff; 1591 iov.iov_len = len; 1592 msg.msg_name = NULL; 1593 msg.msg_iov = &iov; 1594 msg.msg_iovlen = 1; 1595 msg.msg_control = NULL; 1596 msg.msg_controllen = 0; 1597 msg.msg_namelen = 0; 1598 if (addr) { 1599 err = move_addr_to_kernel(addr, addr_len, address); 1600 if (err < 0) 1601 goto out_put; 1602 msg.msg_name = address; 1603 msg.msg_namelen = addr_len; 1604 } 1605 if (sock->file->f_flags & O_NONBLOCK) 1606 flags |= MSG_DONTWAIT; 1607 msg.msg_flags = flags; 1608 err = sock_sendmsg(sock, &msg, len); 1609 1610 out_put: 1611 fput_light(sock_file, fput_needed); 1612 out: 1613 return err; 1614 } 1615 1616 /* 1617 * Send a datagram down a socket. 1618 */ 1619 1620 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1621 { 1622 return sys_sendto(fd, buff, len, flags, NULL, 0); 1623 } 1624 1625 /* 1626 * Receive a frame from the socket and optionally record the address of the 1627 * sender. We verify the buffers are writable and if needed move the 1628 * sender address from kernel to user space. 1629 */ 1630 1631 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1632 unsigned flags, struct sockaddr __user *addr, 1633 int __user *addr_len) 1634 { 1635 struct socket *sock; 1636 struct iovec iov; 1637 struct msghdr msg; 1638 char address[MAX_SOCK_ADDR]; 1639 int err, err2; 1640 struct file *sock_file; 1641 int fput_needed; 1642 1643 sock_file = fget_light(fd, &fput_needed); 1644 err = -EBADF; 1645 if (!sock_file) 1646 goto out; 1647 1648 sock = sock_from_file(sock_file, &err); 1649 if (!sock) 1650 goto out_put; 1651 1652 msg.msg_control = NULL; 1653 msg.msg_controllen = 0; 1654 msg.msg_iovlen = 1; 1655 msg.msg_iov = &iov; 1656 iov.iov_len = size; 1657 iov.iov_base = ubuf; 1658 msg.msg_name = address; 1659 msg.msg_namelen = MAX_SOCK_ADDR; 1660 if (sock->file->f_flags & O_NONBLOCK) 1661 flags |= MSG_DONTWAIT; 1662 err = sock_recvmsg(sock, &msg, size, flags); 1663 1664 if (err >= 0 && addr != NULL) { 1665 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1666 if (err2 < 0) 1667 err = err2; 1668 } 1669 out_put: 1670 fput_light(sock_file, fput_needed); 1671 out: 1672 return err; 1673 } 1674 1675 /* 1676 * Receive a datagram from a socket. 1677 */ 1678 1679 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1680 unsigned flags) 1681 { 1682 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1683 } 1684 1685 /* 1686 * Set a socket option. Because we don't know the option lengths we have 1687 * to pass the user mode parameter for the protocols to sort out. 1688 */ 1689 1690 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1691 char __user *optval, int optlen) 1692 { 1693 int err, fput_needed; 1694 struct socket *sock; 1695 1696 if (optlen < 0) 1697 return -EINVAL; 1698 1699 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1700 if (sock != NULL) { 1701 err = security_socket_setsockopt(sock, level, optname); 1702 if (err) 1703 goto out_put; 1704 1705 if (level == SOL_SOCKET) 1706 err = 1707 sock_setsockopt(sock, level, optname, optval, 1708 optlen); 1709 else 1710 err = 1711 sock->ops->setsockopt(sock, level, optname, optval, 1712 optlen); 1713 out_put: 1714 fput_light(sock->file, fput_needed); 1715 } 1716 return err; 1717 } 1718 1719 /* 1720 * Get a socket option. Because we don't know the option lengths we have 1721 * to pass a user mode parameter for the protocols to sort out. 1722 */ 1723 1724 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1725 char __user *optval, int __user *optlen) 1726 { 1727 int err, fput_needed; 1728 struct socket *sock; 1729 1730 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1731 if (sock != NULL) { 1732 err = security_socket_getsockopt(sock, level, optname); 1733 if (err) 1734 goto out_put; 1735 1736 if (level == SOL_SOCKET) 1737 err = 1738 sock_getsockopt(sock, level, optname, optval, 1739 optlen); 1740 else 1741 err = 1742 sock->ops->getsockopt(sock, level, optname, optval, 1743 optlen); 1744 out_put: 1745 fput_light(sock->file, fput_needed); 1746 } 1747 return err; 1748 } 1749 1750 /* 1751 * Shutdown a socket. 1752 */ 1753 1754 asmlinkage long sys_shutdown(int fd, int how) 1755 { 1756 int err, fput_needed; 1757 struct socket *sock; 1758 1759 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1760 if (sock != NULL) { 1761 err = security_socket_shutdown(sock, how); 1762 if (!err) 1763 err = sock->ops->shutdown(sock, how); 1764 fput_light(sock->file, fput_needed); 1765 } 1766 return err; 1767 } 1768 1769 /* A couple of helpful macros for getting the address of the 32/64 bit 1770 * fields which are the same type (int / unsigned) on our platforms. 1771 */ 1772 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1773 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1774 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1775 1776 /* 1777 * BSD sendmsg interface 1778 */ 1779 1780 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1781 { 1782 struct compat_msghdr __user *msg_compat = 1783 (struct compat_msghdr __user *)msg; 1784 struct socket *sock; 1785 char address[MAX_SOCK_ADDR]; 1786 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1787 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1788 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1789 /* 20 is size of ipv6_pktinfo */ 1790 unsigned char *ctl_buf = ctl; 1791 struct msghdr msg_sys; 1792 int err, ctl_len, iov_size, total_len; 1793 int fput_needed; 1794 1795 err = -EFAULT; 1796 if (MSG_CMSG_COMPAT & flags) { 1797 if (get_compat_msghdr(&msg_sys, msg_compat)) 1798 return -EFAULT; 1799 } 1800 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1801 return -EFAULT; 1802 1803 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1804 if (!sock) 1805 goto out; 1806 1807 /* do not move before msg_sys is valid */ 1808 err = -EMSGSIZE; 1809 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1810 goto out_put; 1811 1812 /* Check whether to allocate the iovec area */ 1813 err = -ENOMEM; 1814 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1815 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1816 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1817 if (!iov) 1818 goto out_put; 1819 } 1820 1821 /* This will also move the address data into kernel space */ 1822 if (MSG_CMSG_COMPAT & flags) { 1823 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1824 } else 1825 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1826 if (err < 0) 1827 goto out_freeiov; 1828 total_len = err; 1829 1830 err = -ENOBUFS; 1831 1832 if (msg_sys.msg_controllen > INT_MAX) 1833 goto out_freeiov; 1834 ctl_len = msg_sys.msg_controllen; 1835 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1836 err = 1837 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1838 sizeof(ctl)); 1839 if (err) 1840 goto out_freeiov; 1841 ctl_buf = msg_sys.msg_control; 1842 ctl_len = msg_sys.msg_controllen; 1843 } else if (ctl_len) { 1844 if (ctl_len > sizeof(ctl)) { 1845 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1846 if (ctl_buf == NULL) 1847 goto out_freeiov; 1848 } 1849 err = -EFAULT; 1850 /* 1851 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1852 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1853 * checking falls down on this. 1854 */ 1855 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1856 ctl_len)) 1857 goto out_freectl; 1858 msg_sys.msg_control = ctl_buf; 1859 } 1860 msg_sys.msg_flags = flags; 1861 1862 if (sock->file->f_flags & O_NONBLOCK) 1863 msg_sys.msg_flags |= MSG_DONTWAIT; 1864 err = sock_sendmsg(sock, &msg_sys, total_len); 1865 1866 out_freectl: 1867 if (ctl_buf != ctl) 1868 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1869 out_freeiov: 1870 if (iov != iovstack) 1871 sock_kfree_s(sock->sk, iov, iov_size); 1872 out_put: 1873 fput_light(sock->file, fput_needed); 1874 out: 1875 return err; 1876 } 1877 1878 /* 1879 * BSD recvmsg interface 1880 */ 1881 1882 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1883 unsigned int flags) 1884 { 1885 struct compat_msghdr __user *msg_compat = 1886 (struct compat_msghdr __user *)msg; 1887 struct socket *sock; 1888 struct iovec iovstack[UIO_FASTIOV]; 1889 struct iovec *iov = iovstack; 1890 struct msghdr msg_sys; 1891 unsigned long cmsg_ptr; 1892 int err, iov_size, total_len, len; 1893 int fput_needed; 1894 1895 /* kernel mode address */ 1896 char addr[MAX_SOCK_ADDR]; 1897 1898 /* user mode address pointers */ 1899 struct sockaddr __user *uaddr; 1900 int __user *uaddr_len; 1901 1902 if (MSG_CMSG_COMPAT & flags) { 1903 if (get_compat_msghdr(&msg_sys, msg_compat)) 1904 return -EFAULT; 1905 } 1906 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1907 return -EFAULT; 1908 1909 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1910 if (!sock) 1911 goto out; 1912 1913 err = -EMSGSIZE; 1914 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1915 goto out_put; 1916 1917 /* Check whether to allocate the iovec area */ 1918 err = -ENOMEM; 1919 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1920 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1921 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1922 if (!iov) 1923 goto out_put; 1924 } 1925 1926 /* 1927 * Save the user-mode address (verify_iovec will change the 1928 * kernel msghdr to use the kernel address space) 1929 */ 1930 1931 uaddr = (void __user *)msg_sys.msg_name; 1932 uaddr_len = COMPAT_NAMELEN(msg); 1933 if (MSG_CMSG_COMPAT & flags) { 1934 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1935 } else 1936 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1937 if (err < 0) 1938 goto out_freeiov; 1939 total_len = err; 1940 1941 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1942 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1943 1944 if (sock->file->f_flags & O_NONBLOCK) 1945 flags |= MSG_DONTWAIT; 1946 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1947 if (err < 0) 1948 goto out_freeiov; 1949 len = err; 1950 1951 if (uaddr != NULL) { 1952 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1953 uaddr_len); 1954 if (err < 0) 1955 goto out_freeiov; 1956 } 1957 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1958 COMPAT_FLAGS(msg)); 1959 if (err) 1960 goto out_freeiov; 1961 if (MSG_CMSG_COMPAT & flags) 1962 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1963 &msg_compat->msg_controllen); 1964 else 1965 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1966 &msg->msg_controllen); 1967 if (err) 1968 goto out_freeiov; 1969 err = len; 1970 1971 out_freeiov: 1972 if (iov != iovstack) 1973 sock_kfree_s(sock->sk, iov, iov_size); 1974 out_put: 1975 fput_light(sock->file, fput_needed); 1976 out: 1977 return err; 1978 } 1979 1980 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1981 1982 /* Argument list sizes for sys_socketcall */ 1983 #define AL(x) ((x) * sizeof(unsigned long)) 1984 static const unsigned char nargs[18]={ 1985 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1986 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1987 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1988 }; 1989 1990 #undef AL 1991 1992 /* 1993 * System call vectors. 1994 * 1995 * Argument checking cleaned up. Saved 20% in size. 1996 * This function doesn't need to set the kernel lock because 1997 * it is set by the callees. 1998 */ 1999 2000 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2001 { 2002 unsigned long a[6]; 2003 unsigned long a0, a1; 2004 int err; 2005 2006 if (call < 1 || call > SYS_RECVMSG) 2007 return -EINVAL; 2008 2009 /* copy_from_user should be SMP safe. */ 2010 if (copy_from_user(a, args, nargs[call])) 2011 return -EFAULT; 2012 2013 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2014 if (err) 2015 return err; 2016 2017 a0 = a[0]; 2018 a1 = a[1]; 2019 2020 switch (call) { 2021 case SYS_SOCKET: 2022 err = sys_socket(a0, a1, a[2]); 2023 break; 2024 case SYS_BIND: 2025 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2026 break; 2027 case SYS_CONNECT: 2028 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2029 break; 2030 case SYS_LISTEN: 2031 err = sys_listen(a0, a1); 2032 break; 2033 case SYS_ACCEPT: 2034 err = 2035 sys_accept(a0, (struct sockaddr __user *)a1, 2036 (int __user *)a[2]); 2037 break; 2038 case SYS_GETSOCKNAME: 2039 err = 2040 sys_getsockname(a0, (struct sockaddr __user *)a1, 2041 (int __user *)a[2]); 2042 break; 2043 case SYS_GETPEERNAME: 2044 err = 2045 sys_getpeername(a0, (struct sockaddr __user *)a1, 2046 (int __user *)a[2]); 2047 break; 2048 case SYS_SOCKETPAIR: 2049 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2050 break; 2051 case SYS_SEND: 2052 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2053 break; 2054 case SYS_SENDTO: 2055 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2056 (struct sockaddr __user *)a[4], a[5]); 2057 break; 2058 case SYS_RECV: 2059 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2060 break; 2061 case SYS_RECVFROM: 2062 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2063 (struct sockaddr __user *)a[4], 2064 (int __user *)a[5]); 2065 break; 2066 case SYS_SHUTDOWN: 2067 err = sys_shutdown(a0, a1); 2068 break; 2069 case SYS_SETSOCKOPT: 2070 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2071 break; 2072 case SYS_GETSOCKOPT: 2073 err = 2074 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2075 (int __user *)a[4]); 2076 break; 2077 case SYS_SENDMSG: 2078 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2079 break; 2080 case SYS_RECVMSG: 2081 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2082 break; 2083 default: 2084 err = -EINVAL; 2085 break; 2086 } 2087 return err; 2088 } 2089 2090 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2091 2092 /** 2093 * sock_register - add a socket protocol handler 2094 * @ops: description of protocol 2095 * 2096 * This function is called by a protocol handler that wants to 2097 * advertise its address family, and have it linked into the 2098 * socket interface. The value ops->family coresponds to the 2099 * socket system call protocol family. 2100 */ 2101 int sock_register(const struct net_proto_family *ops) 2102 { 2103 int err; 2104 2105 if (ops->family >= NPROTO) { 2106 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2107 NPROTO); 2108 return -ENOBUFS; 2109 } 2110 2111 spin_lock(&net_family_lock); 2112 if (net_families[ops->family]) 2113 err = -EEXIST; 2114 else { 2115 net_families[ops->family] = ops; 2116 err = 0; 2117 } 2118 spin_unlock(&net_family_lock); 2119 2120 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2121 return err; 2122 } 2123 2124 /** 2125 * sock_unregister - remove a protocol handler 2126 * @family: protocol family to remove 2127 * 2128 * This function is called by a protocol handler that wants to 2129 * remove its address family, and have it unlinked from the 2130 * new socket creation. 2131 * 2132 * If protocol handler is a module, then it can use module reference 2133 * counts to protect against new references. If protocol handler is not 2134 * a module then it needs to provide its own protection in 2135 * the ops->create routine. 2136 */ 2137 void sock_unregister(int family) 2138 { 2139 BUG_ON(family < 0 || family >= NPROTO); 2140 2141 spin_lock(&net_family_lock); 2142 net_families[family] = NULL; 2143 spin_unlock(&net_family_lock); 2144 2145 synchronize_rcu(); 2146 2147 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2148 } 2149 2150 static int __init sock_init(void) 2151 { 2152 /* 2153 * Initialize sock SLAB cache. 2154 */ 2155 2156 sk_init(); 2157 2158 /* 2159 * Initialize skbuff SLAB cache 2160 */ 2161 skb_init(); 2162 2163 /* 2164 * Initialize the protocols module. 2165 */ 2166 2167 init_inodecache(); 2168 register_filesystem(&sock_fs_type); 2169 sock_mnt = kern_mount(&sock_fs_type); 2170 2171 /* The real protocol initialization is performed in later initcalls. 2172 */ 2173 2174 #ifdef CONFIG_NETFILTER 2175 netfilter_init(); 2176 #endif 2177 2178 return 0; 2179 } 2180 2181 core_initcall(sock_init); /* early initcall */ 2182 2183 #ifdef CONFIG_PROC_FS 2184 void socket_seq_show(struct seq_file *seq) 2185 { 2186 int cpu; 2187 int counter = 0; 2188 2189 for_each_possible_cpu(cpu) 2190 counter += per_cpu(sockets_in_use, cpu); 2191 2192 /* It can be negative, by the way. 8) */ 2193 if (counter < 0) 2194 counter = 0; 2195 2196 seq_printf(seq, "sockets: used %d\n", counter); 2197 } 2198 #endif /* CONFIG_PROC_FS */ 2199 2200 #ifdef CONFIG_COMPAT 2201 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2202 unsigned long arg) 2203 { 2204 struct socket *sock = file->private_data; 2205 int ret = -ENOIOCTLCMD; 2206 2207 if (sock->ops->compat_ioctl) 2208 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2209 2210 return ret; 2211 } 2212 #endif 2213 2214 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2215 { 2216 return sock->ops->bind(sock, addr, addrlen); 2217 } 2218 2219 int kernel_listen(struct socket *sock, int backlog) 2220 { 2221 return sock->ops->listen(sock, backlog); 2222 } 2223 2224 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2225 { 2226 struct sock *sk = sock->sk; 2227 int err; 2228 2229 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2230 newsock); 2231 if (err < 0) 2232 goto done; 2233 2234 err = sock->ops->accept(sock, *newsock, flags); 2235 if (err < 0) { 2236 sock_release(*newsock); 2237 goto done; 2238 } 2239 2240 (*newsock)->ops = sock->ops; 2241 2242 done: 2243 return err; 2244 } 2245 2246 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2247 int flags) 2248 { 2249 return sock->ops->connect(sock, addr, addrlen, flags); 2250 } 2251 2252 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2253 int *addrlen) 2254 { 2255 return sock->ops->getname(sock, addr, addrlen, 0); 2256 } 2257 2258 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2259 int *addrlen) 2260 { 2261 return sock->ops->getname(sock, addr, addrlen, 1); 2262 } 2263 2264 int kernel_getsockopt(struct socket *sock, int level, int optname, 2265 char *optval, int *optlen) 2266 { 2267 mm_segment_t oldfs = get_fs(); 2268 int err; 2269 2270 set_fs(KERNEL_DS); 2271 if (level == SOL_SOCKET) 2272 err = sock_getsockopt(sock, level, optname, optval, optlen); 2273 else 2274 err = sock->ops->getsockopt(sock, level, optname, optval, 2275 optlen); 2276 set_fs(oldfs); 2277 return err; 2278 } 2279 2280 int kernel_setsockopt(struct socket *sock, int level, int optname, 2281 char *optval, int optlen) 2282 { 2283 mm_segment_t oldfs = get_fs(); 2284 int err; 2285 2286 set_fs(KERNEL_DS); 2287 if (level == SOL_SOCKET) 2288 err = sock_setsockopt(sock, level, optname, optval, optlen); 2289 else 2290 err = sock->ops->setsockopt(sock, level, optname, optval, 2291 optlen); 2292 set_fs(oldfs); 2293 return err; 2294 } 2295 2296 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2297 size_t size, int flags) 2298 { 2299 if (sock->ops->sendpage) 2300 return sock->ops->sendpage(sock, page, offset, size, flags); 2301 2302 return sock_no_sendpage(sock, page, offset, size, flags); 2303 } 2304 2305 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2306 { 2307 mm_segment_t oldfs = get_fs(); 2308 int err; 2309 2310 set_fs(KERNEL_DS); 2311 err = sock->ops->ioctl(sock, cmd, arg); 2312 set_fs(oldfs); 2313 2314 return err; 2315 } 2316 2317 /* ABI emulation layers need these two */ 2318 EXPORT_SYMBOL(move_addr_to_kernel); 2319 EXPORT_SYMBOL(move_addr_to_user); 2320 EXPORT_SYMBOL(sock_create); 2321 EXPORT_SYMBOL(sock_create_kern); 2322 EXPORT_SYMBOL(sock_create_lite); 2323 EXPORT_SYMBOL(sock_map_fd); 2324 EXPORT_SYMBOL(sock_recvmsg); 2325 EXPORT_SYMBOL(sock_register); 2326 EXPORT_SYMBOL(sock_release); 2327 EXPORT_SYMBOL(sock_sendmsg); 2328 EXPORT_SYMBOL(sock_unregister); 2329 EXPORT_SYMBOL(sock_wake_async); 2330 EXPORT_SYMBOL(sockfd_lookup); 2331 EXPORT_SYMBOL(kernel_sendmsg); 2332 EXPORT_SYMBOL(kernel_recvmsg); 2333 EXPORT_SYMBOL(kernel_bind); 2334 EXPORT_SYMBOL(kernel_listen); 2335 EXPORT_SYMBOL(kernel_accept); 2336 EXPORT_SYMBOL(kernel_connect); 2337 EXPORT_SYMBOL(kernel_getsockname); 2338 EXPORT_SYMBOL(kernel_getpeername); 2339 EXPORT_SYMBOL(kernel_getsockopt); 2340 EXPORT_SYMBOL(kernel_setsockopt); 2341 EXPORT_SYMBOL(kernel_sendpage); 2342 EXPORT_SYMBOL(kernel_sock_ioctl); 2343