xref: /linux/net/socket.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90 
91 #include <net/compat.h>
92 
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95 
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 			 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 			  unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102 
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 			      struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 			      unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 			     int offset, size_t size, loff_t *ppos, int more);
114 
115 /*
116  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117  *	in the operation structures but are done directly via the socketcall() multiplexor.
118  */
119 
120 static const struct file_operations socket_file_ops = {
121 	.owner =	THIS_MODULE,
122 	.llseek =	no_llseek,
123 	.aio_read =	sock_aio_read,
124 	.aio_write =	sock_aio_write,
125 	.poll =		sock_poll,
126 	.unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 	.compat_ioctl = compat_sock_ioctl,
129 #endif
130 	.mmap =		sock_mmap,
131 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
132 	.release =	sock_close,
133 	.fasync =	sock_fasync,
134 	.sendpage =	sock_sendpage,
135 	.splice_write = generic_splice_sendpage,
136 };
137 
138 /*
139  *	The protocol list. Each protocol is registered in here.
140  */
141 
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144 
145 /*
146  *	Statistics counters of the socket lists
147  */
148 
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150 
151 /*
152  * Support routines.
153  * Move socket addresses back and forth across the kernel/user
154  * divide and look after the messy bits.
155  */
156 
157 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
158 					   16 for IP, 16 for IPX,
159 					   24 for IPv6,
160 					   about 80 for AX.25
161 					   must be at least one bigger than
162 					   the AF_UNIX size (see net/unix/af_unix.c
163 					   :unix_mkname()).
164 					 */
165 
166 /**
167  *	move_addr_to_kernel	-	copy a socket address into kernel space
168  *	@uaddr: Address in user space
169  *	@kaddr: Address in kernel space
170  *	@ulen: Length in user space
171  *
172  *	The address is copied into kernel space. If the provided address is
173  *	too long an error code of -EINVAL is returned. If the copy gives
174  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
175  */
176 
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 		return -EINVAL;
181 	if (ulen == 0)
182 		return 0;
183 	if (copy_from_user(kaddr, uaddr, ulen))
184 		return -EFAULT;
185 	return audit_sockaddr(ulen, kaddr);
186 }
187 
188 /**
189  *	move_addr_to_user	-	copy an address to user space
190  *	@kaddr: kernel space address
191  *	@klen: length of address in kernel
192  *	@uaddr: user space address
193  *	@ulen: pointer to user length field
194  *
195  *	The value pointed to by ulen on entry is the buffer length available.
196  *	This is overwritten with the buffer space used. -EINVAL is returned
197  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
198  *	is returned if either the buffer or the length field are not
199  *	accessible.
200  *	After copying the data up to the limit the user specifies, the true
201  *	length of the data is written over the length limit the user
202  *	specified. Zero is returned for a success.
203  */
204 
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 		      int __user *ulen)
207 {
208 	int err;
209 	int len;
210 
211 	err = get_user(len, ulen);
212 	if (err)
213 		return err;
214 	if (len > klen)
215 		len = klen;
216 	if (len < 0 || len > MAX_SOCK_ADDR)
217 		return -EINVAL;
218 	if (len) {
219 		if (audit_sockaddr(klen, kaddr))
220 			return -ENOMEM;
221 		if (copy_to_user(uaddr, kaddr, len))
222 			return -EFAULT;
223 	}
224 	/*
225 	 *      "fromlen shall refer to the value before truncation.."
226 	 *                      1003.1g
227 	 */
228 	return __put_user(klen, ulen);
229 }
230 
231 #define SOCKFS_MAGIC 0x534F434B
232 
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wait);
243 
244 	ei->socket.fasync_list = NULL;
245 	ei->socket.state = SS_UNCONNECTED;
246 	ei->socket.flags = 0;
247 	ei->socket.ops = NULL;
248 	ei->socket.sk = NULL;
249 	ei->socket.file = NULL;
250 
251 	return &ei->vfs_inode;
252 }
253 
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 	kmem_cache_free(sock_inode_cachep,
257 			container_of(inode, struct socket_alloc, vfs_inode));
258 }
259 
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 	struct socket_alloc *ei = (struct socket_alloc *)foo;
263 
264 	inode_init_once(&ei->vfs_inode);
265 }
266 
267 static int init_inodecache(void)
268 {
269 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
270 					      sizeof(struct socket_alloc),
271 					      0,
272 					      (SLAB_HWCACHE_ALIGN |
273 					       SLAB_RECLAIM_ACCOUNT |
274 					       SLAB_MEM_SPREAD),
275 					      init_once,
276 					      NULL);
277 	if (sock_inode_cachep == NULL)
278 		return -ENOMEM;
279 	return 0;
280 }
281 
282 static struct super_operations sockfs_ops = {
283 	.alloc_inode =	sock_alloc_inode,
284 	.destroy_inode =sock_destroy_inode,
285 	.statfs =	simple_statfs,
286 };
287 
288 static int sockfs_get_sb(struct file_system_type *fs_type,
289 			 int flags, const char *dev_name, void *data,
290 			 struct vfsmount *mnt)
291 {
292 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
293 			     mnt);
294 }
295 
296 static struct vfsmount *sock_mnt __read_mostly;
297 
298 static struct file_system_type sock_fs_type = {
299 	.name =		"sockfs",
300 	.get_sb =	sockfs_get_sb,
301 	.kill_sb =	kill_anon_super,
302 };
303 
304 static int sockfs_delete_dentry(struct dentry *dentry)
305 {
306 	/*
307 	 * At creation time, we pretended this dentry was hashed
308 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
309 	 * At delete time, we restore the truth : not hashed.
310 	 * (so that dput() can proceed correctly)
311 	 */
312 	dentry->d_flags |= DCACHE_UNHASHED;
313 	return 0;
314 }
315 
316 /*
317  * sockfs_dname() is called from d_path().
318  */
319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320 {
321 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 				dentry->d_inode->i_ino);
323 }
324 
325 static struct dentry_operations sockfs_dentry_operations = {
326 	.d_delete = sockfs_delete_dentry,
327 	.d_dname  = sockfs_dname,
328 };
329 
330 /*
331  *	Obtains the first available file descriptor and sets it up for use.
332  *
333  *	These functions create file structures and maps them to fd space
334  *	of the current process. On success it returns file descriptor
335  *	and file struct implicitly stored in sock->file.
336  *	Note that another thread may close file descriptor before we return
337  *	from this function. We use the fact that now we do not refer
338  *	to socket after mapping. If one day we will need it, this
339  *	function will increment ref. count on file by 1.
340  *
341  *	In any case returned fd MAY BE not valid!
342  *	This race condition is unavoidable
343  *	with shared fd spaces, we cannot solve it inside kernel,
344  *	but we take care of internal coherence yet.
345  */
346 
347 static int sock_alloc_fd(struct file **filep)
348 {
349 	int fd;
350 
351 	fd = get_unused_fd();
352 	if (likely(fd >= 0)) {
353 		struct file *file = get_empty_filp();
354 
355 		*filep = file;
356 		if (unlikely(!file)) {
357 			put_unused_fd(fd);
358 			return -ENFILE;
359 		}
360 	} else
361 		*filep = NULL;
362 	return fd;
363 }
364 
365 static int sock_attach_fd(struct socket *sock, struct file *file)
366 {
367 	struct qstr name = { .name = "" };
368 
369 	file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
370 	if (unlikely(!file->f_path.dentry))
371 		return -ENOMEM;
372 
373 	file->f_path.dentry->d_op = &sockfs_dentry_operations;
374 	/*
375 	 * We dont want to push this dentry into global dentry hash table.
376 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
377 	 * This permits a working /proc/$pid/fd/XXX on sockets
378 	 */
379 	file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
380 	d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
381 	file->f_path.mnt = mntget(sock_mnt);
382 	file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
383 
384 	sock->file = file;
385 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
386 	file->f_mode = FMODE_READ | FMODE_WRITE;
387 	file->f_flags = O_RDWR;
388 	file->f_pos = 0;
389 	file->private_data = sock;
390 
391 	return 0;
392 }
393 
394 int sock_map_fd(struct socket *sock)
395 {
396 	struct file *newfile;
397 	int fd = sock_alloc_fd(&newfile);
398 
399 	if (likely(fd >= 0)) {
400 		int err = sock_attach_fd(sock, newfile);
401 
402 		if (unlikely(err < 0)) {
403 			put_filp(newfile);
404 			put_unused_fd(fd);
405 			return err;
406 		}
407 		fd_install(fd, newfile);
408 	}
409 	return fd;
410 }
411 
412 static struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 
421 /**
422  *	sockfd_lookup	- 	Go from a file number to its socket slot
423  *	@fd: file handle
424  *	@err: pointer to an error code return
425  *
426  *	The file handle passed in is locked and the socket it is bound
427  *	too is returned. If an error occurs the err pointer is overwritten
428  *	with a negative errno code and NULL is returned. The function checks
429  *	for both invalid handles and passing a handle which is not a socket.
430  *
431  *	On a success the socket object pointer is returned.
432  */
433 
434 struct socket *sockfd_lookup(int fd, int *err)
435 {
436 	struct file *file;
437 	struct socket *sock;
438 
439 	file = fget(fd);
440 	if (!file) {
441 		*err = -EBADF;
442 		return NULL;
443 	}
444 
445 	sock = sock_from_file(file, err);
446 	if (!sock)
447 		fput(file);
448 	return sock;
449 }
450 
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 	struct file *file;
454 	struct socket *sock;
455 
456 	*err = -EBADF;
457 	file = fget_light(fd, fput_needed);
458 	if (file) {
459 		sock = sock_from_file(file, err);
460 		if (sock)
461 			return sock;
462 		fput_light(file, *fput_needed);
463 	}
464 	return NULL;
465 }
466 
467 /**
468  *	sock_alloc	-	allocate a socket
469  *
470  *	Allocate a new inode and socket object. The two are bound together
471  *	and initialised. The socket is then returned. If we are out of inodes
472  *	NULL is returned.
473  */
474 
475 static struct socket *sock_alloc(void)
476 {
477 	struct inode *inode;
478 	struct socket *sock;
479 
480 	inode = new_inode(sock_mnt->mnt_sb);
481 	if (!inode)
482 		return NULL;
483 
484 	sock = SOCKET_I(inode);
485 
486 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
487 	inode->i_uid = current->fsuid;
488 	inode->i_gid = current->fsgid;
489 
490 	get_cpu_var(sockets_in_use)++;
491 	put_cpu_var(sockets_in_use);
492 	return sock;
493 }
494 
495 /*
496  *	In theory you can't get an open on this inode, but /proc provides
497  *	a back door. Remember to keep it shut otherwise you'll let the
498  *	creepy crawlies in.
499  */
500 
501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 {
503 	return -ENXIO;
504 }
505 
506 const struct file_operations bad_sock_fops = {
507 	.owner = THIS_MODULE,
508 	.open = sock_no_open,
509 };
510 
511 /**
512  *	sock_release	-	close a socket
513  *	@sock: socket to close
514  *
515  *	The socket is released from the protocol stack if it has a release
516  *	callback, and the inode is then released if the socket is bound to
517  *	an inode not a file.
518  */
519 
520 void sock_release(struct socket *sock)
521 {
522 	if (sock->ops) {
523 		struct module *owner = sock->ops->owner;
524 
525 		sock->ops->release(sock);
526 		sock->ops = NULL;
527 		module_put(owner);
528 	}
529 
530 	if (sock->fasync_list)
531 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
532 
533 	get_cpu_var(sockets_in_use)--;
534 	put_cpu_var(sockets_in_use);
535 	if (!sock->file) {
536 		iput(SOCK_INODE(sock));
537 		return;
538 	}
539 	sock->file = NULL;
540 }
541 
542 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
543 				 struct msghdr *msg, size_t size)
544 {
545 	struct sock_iocb *si = kiocb_to_siocb(iocb);
546 	int err;
547 
548 	si->sock = sock;
549 	si->scm = NULL;
550 	si->msg = msg;
551 	si->size = size;
552 
553 	err = security_socket_sendmsg(sock, msg, size);
554 	if (err)
555 		return err;
556 
557 	return sock->ops->sendmsg(iocb, sock, msg, size);
558 }
559 
560 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
561 {
562 	struct kiocb iocb;
563 	struct sock_iocb siocb;
564 	int ret;
565 
566 	init_sync_kiocb(&iocb, NULL);
567 	iocb.private = &siocb;
568 	ret = __sock_sendmsg(&iocb, sock, msg, size);
569 	if (-EIOCBQUEUED == ret)
570 		ret = wait_on_sync_kiocb(&iocb);
571 	return ret;
572 }
573 
574 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
575 		   struct kvec *vec, size_t num, size_t size)
576 {
577 	mm_segment_t oldfs = get_fs();
578 	int result;
579 
580 	set_fs(KERNEL_DS);
581 	/*
582 	 * the following is safe, since for compiler definitions of kvec and
583 	 * iovec are identical, yielding the same in-core layout and alignment
584 	 */
585 	msg->msg_iov = (struct iovec *)vec;
586 	msg->msg_iovlen = num;
587 	result = sock_sendmsg(sock, msg, size);
588 	set_fs(oldfs);
589 	return result;
590 }
591 
592 /*
593  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
594  */
595 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
596 	struct sk_buff *skb)
597 {
598 	ktime_t kt = skb->tstamp;
599 
600 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
601 		struct timeval tv;
602 		/* Race occurred between timestamp enabling and packet
603 		   receiving.  Fill in the current time for now. */
604 		if (kt.tv64 == 0)
605 			kt = ktime_get_real();
606 		skb->tstamp = kt;
607 		tv = ktime_to_timeval(kt);
608 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
609 	} else {
610 		struct timespec ts;
611 		/* Race occurred between timestamp enabling and packet
612 		   receiving.  Fill in the current time for now. */
613 		if (kt.tv64 == 0)
614 			kt = ktime_get_real();
615 		skb->tstamp = kt;
616 		ts = ktime_to_timespec(kt);
617 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
618 	}
619 }
620 
621 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
622 
623 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
624 				 struct msghdr *msg, size_t size, int flags)
625 {
626 	int err;
627 	struct sock_iocb *si = kiocb_to_siocb(iocb);
628 
629 	si->sock = sock;
630 	si->scm = NULL;
631 	si->msg = msg;
632 	si->size = size;
633 	si->flags = flags;
634 
635 	err = security_socket_recvmsg(sock, msg, size, flags);
636 	if (err)
637 		return err;
638 
639 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
640 }
641 
642 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
643 		 size_t size, int flags)
644 {
645 	struct kiocb iocb;
646 	struct sock_iocb siocb;
647 	int ret;
648 
649 	init_sync_kiocb(&iocb, NULL);
650 	iocb.private = &siocb;
651 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
652 	if (-EIOCBQUEUED == ret)
653 		ret = wait_on_sync_kiocb(&iocb);
654 	return ret;
655 }
656 
657 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
658 		   struct kvec *vec, size_t num, size_t size, int flags)
659 {
660 	mm_segment_t oldfs = get_fs();
661 	int result;
662 
663 	set_fs(KERNEL_DS);
664 	/*
665 	 * the following is safe, since for compiler definitions of kvec and
666 	 * iovec are identical, yielding the same in-core layout and alignment
667 	 */
668 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
669 	result = sock_recvmsg(sock, msg, size, flags);
670 	set_fs(oldfs);
671 	return result;
672 }
673 
674 static void sock_aio_dtor(struct kiocb *iocb)
675 {
676 	kfree(iocb->private);
677 }
678 
679 static ssize_t sock_sendpage(struct file *file, struct page *page,
680 			     int offset, size_t size, loff_t *ppos, int more)
681 {
682 	struct socket *sock;
683 	int flags;
684 
685 	sock = file->private_data;
686 
687 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
688 	if (more)
689 		flags |= MSG_MORE;
690 
691 	return sock->ops->sendpage(sock, page, offset, size, flags);
692 }
693 
694 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
695 					 struct sock_iocb *siocb)
696 {
697 	if (!is_sync_kiocb(iocb)) {
698 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
699 		if (!siocb)
700 			return NULL;
701 		iocb->ki_dtor = sock_aio_dtor;
702 	}
703 
704 	siocb->kiocb = iocb;
705 	iocb->private = siocb;
706 	return siocb;
707 }
708 
709 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
710 		struct file *file, const struct iovec *iov,
711 		unsigned long nr_segs)
712 {
713 	struct socket *sock = file->private_data;
714 	size_t size = 0;
715 	int i;
716 
717 	for (i = 0; i < nr_segs; i++)
718 		size += iov[i].iov_len;
719 
720 	msg->msg_name = NULL;
721 	msg->msg_namelen = 0;
722 	msg->msg_control = NULL;
723 	msg->msg_controllen = 0;
724 	msg->msg_iov = (struct iovec *)iov;
725 	msg->msg_iovlen = nr_segs;
726 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
727 
728 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
729 }
730 
731 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
732 				unsigned long nr_segs, loff_t pos)
733 {
734 	struct sock_iocb siocb, *x;
735 
736 	if (pos != 0)
737 		return -ESPIPE;
738 
739 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
740 		return 0;
741 
742 
743 	x = alloc_sock_iocb(iocb, &siocb);
744 	if (!x)
745 		return -ENOMEM;
746 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
747 }
748 
749 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
750 			struct file *file, const struct iovec *iov,
751 			unsigned long nr_segs)
752 {
753 	struct socket *sock = file->private_data;
754 	size_t size = 0;
755 	int i;
756 
757 	for (i = 0; i < nr_segs; i++)
758 		size += iov[i].iov_len;
759 
760 	msg->msg_name = NULL;
761 	msg->msg_namelen = 0;
762 	msg->msg_control = NULL;
763 	msg->msg_controllen = 0;
764 	msg->msg_iov = (struct iovec *)iov;
765 	msg->msg_iovlen = nr_segs;
766 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 	if (sock->type == SOCK_SEQPACKET)
768 		msg->msg_flags |= MSG_EOR;
769 
770 	return __sock_sendmsg(iocb, sock, msg, size);
771 }
772 
773 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
774 			  unsigned long nr_segs, loff_t pos)
775 {
776 	struct sock_iocb siocb, *x;
777 
778 	if (pos != 0)
779 		return -ESPIPE;
780 
781 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
782 		return 0;
783 
784 	x = alloc_sock_iocb(iocb, &siocb);
785 	if (!x)
786 		return -ENOMEM;
787 
788 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
789 }
790 
791 /*
792  * Atomic setting of ioctl hooks to avoid race
793  * with module unload.
794  */
795 
796 static DEFINE_MUTEX(br_ioctl_mutex);
797 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
798 
799 void brioctl_set(int (*hook) (unsigned int, void __user *))
800 {
801 	mutex_lock(&br_ioctl_mutex);
802 	br_ioctl_hook = hook;
803 	mutex_unlock(&br_ioctl_mutex);
804 }
805 
806 EXPORT_SYMBOL(brioctl_set);
807 
808 static DEFINE_MUTEX(vlan_ioctl_mutex);
809 static int (*vlan_ioctl_hook) (void __user *arg);
810 
811 void vlan_ioctl_set(int (*hook) (void __user *))
812 {
813 	mutex_lock(&vlan_ioctl_mutex);
814 	vlan_ioctl_hook = hook;
815 	mutex_unlock(&vlan_ioctl_mutex);
816 }
817 
818 EXPORT_SYMBOL(vlan_ioctl_set);
819 
820 static DEFINE_MUTEX(dlci_ioctl_mutex);
821 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
822 
823 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
824 {
825 	mutex_lock(&dlci_ioctl_mutex);
826 	dlci_ioctl_hook = hook;
827 	mutex_unlock(&dlci_ioctl_mutex);
828 }
829 
830 EXPORT_SYMBOL(dlci_ioctl_set);
831 
832 /*
833  *	With an ioctl, arg may well be a user mode pointer, but we don't know
834  *	what to do with it - that's up to the protocol still.
835  */
836 
837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
838 {
839 	struct socket *sock;
840 	void __user *argp = (void __user *)arg;
841 	int pid, err;
842 
843 	sock = file->private_data;
844 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
845 		err = dev_ioctl(cmd, argp);
846 	} else
847 #ifdef CONFIG_WIRELESS_EXT
848 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
849 		err = dev_ioctl(cmd, argp);
850 	} else
851 #endif				/* CONFIG_WIRELESS_EXT */
852 		switch (cmd) {
853 		case FIOSETOWN:
854 		case SIOCSPGRP:
855 			err = -EFAULT;
856 			if (get_user(pid, (int __user *)argp))
857 				break;
858 			err = f_setown(sock->file, pid, 1);
859 			break;
860 		case FIOGETOWN:
861 		case SIOCGPGRP:
862 			err = put_user(f_getown(sock->file),
863 				       (int __user *)argp);
864 			break;
865 		case SIOCGIFBR:
866 		case SIOCSIFBR:
867 		case SIOCBRADDBR:
868 		case SIOCBRDELBR:
869 			err = -ENOPKG;
870 			if (!br_ioctl_hook)
871 				request_module("bridge");
872 
873 			mutex_lock(&br_ioctl_mutex);
874 			if (br_ioctl_hook)
875 				err = br_ioctl_hook(cmd, argp);
876 			mutex_unlock(&br_ioctl_mutex);
877 			break;
878 		case SIOCGIFVLAN:
879 		case SIOCSIFVLAN:
880 			err = -ENOPKG;
881 			if (!vlan_ioctl_hook)
882 				request_module("8021q");
883 
884 			mutex_lock(&vlan_ioctl_mutex);
885 			if (vlan_ioctl_hook)
886 				err = vlan_ioctl_hook(argp);
887 			mutex_unlock(&vlan_ioctl_mutex);
888 			break;
889 		case SIOCADDDLCI:
890 		case SIOCDELDLCI:
891 			err = -ENOPKG;
892 			if (!dlci_ioctl_hook)
893 				request_module("dlci");
894 
895 			if (dlci_ioctl_hook) {
896 				mutex_lock(&dlci_ioctl_mutex);
897 				err = dlci_ioctl_hook(cmd, argp);
898 				mutex_unlock(&dlci_ioctl_mutex);
899 			}
900 			break;
901 		default:
902 			err = sock->ops->ioctl(sock, cmd, arg);
903 
904 			/*
905 			 * If this ioctl is unknown try to hand it down
906 			 * to the NIC driver.
907 			 */
908 			if (err == -ENOIOCTLCMD)
909 				err = dev_ioctl(cmd, argp);
910 			break;
911 		}
912 	return err;
913 }
914 
915 int sock_create_lite(int family, int type, int protocol, struct socket **res)
916 {
917 	int err;
918 	struct socket *sock = NULL;
919 
920 	err = security_socket_create(family, type, protocol, 1);
921 	if (err)
922 		goto out;
923 
924 	sock = sock_alloc();
925 	if (!sock) {
926 		err = -ENOMEM;
927 		goto out;
928 	}
929 
930 	sock->type = type;
931 	err = security_socket_post_create(sock, family, type, protocol, 1);
932 	if (err)
933 		goto out_release;
934 
935 out:
936 	*res = sock;
937 	return err;
938 out_release:
939 	sock_release(sock);
940 	sock = NULL;
941 	goto out;
942 }
943 
944 /* No kernel lock held - perfect */
945 static unsigned int sock_poll(struct file *file, poll_table *wait)
946 {
947 	struct socket *sock;
948 
949 	/*
950 	 *      We can't return errors to poll, so it's either yes or no.
951 	 */
952 	sock = file->private_data;
953 	return sock->ops->poll(file, sock, wait);
954 }
955 
956 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
957 {
958 	struct socket *sock = file->private_data;
959 
960 	return sock->ops->mmap(file, sock, vma);
961 }
962 
963 static int sock_close(struct inode *inode, struct file *filp)
964 {
965 	/*
966 	 *      It was possible the inode is NULL we were
967 	 *      closing an unfinished socket.
968 	 */
969 
970 	if (!inode) {
971 		printk(KERN_DEBUG "sock_close: NULL inode\n");
972 		return 0;
973 	}
974 	sock_fasync(-1, filp, 0);
975 	sock_release(SOCKET_I(inode));
976 	return 0;
977 }
978 
979 /*
980  *	Update the socket async list
981  *
982  *	Fasync_list locking strategy.
983  *
984  *	1. fasync_list is modified only under process context socket lock
985  *	   i.e. under semaphore.
986  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
987  *	   or under socket lock.
988  *	3. fasync_list can be used from softirq context, so that
989  *	   modification under socket lock have to be enhanced with
990  *	   write_lock_bh(&sk->sk_callback_lock).
991  *							--ANK (990710)
992  */
993 
994 static int sock_fasync(int fd, struct file *filp, int on)
995 {
996 	struct fasync_struct *fa, *fna = NULL, **prev;
997 	struct socket *sock;
998 	struct sock *sk;
999 
1000 	if (on) {
1001 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1002 		if (fna == NULL)
1003 			return -ENOMEM;
1004 	}
1005 
1006 	sock = filp->private_data;
1007 
1008 	sk = sock->sk;
1009 	if (sk == NULL) {
1010 		kfree(fna);
1011 		return -EINVAL;
1012 	}
1013 
1014 	lock_sock(sk);
1015 
1016 	prev = &(sock->fasync_list);
1017 
1018 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1019 		if (fa->fa_file == filp)
1020 			break;
1021 
1022 	if (on) {
1023 		if (fa != NULL) {
1024 			write_lock_bh(&sk->sk_callback_lock);
1025 			fa->fa_fd = fd;
1026 			write_unlock_bh(&sk->sk_callback_lock);
1027 
1028 			kfree(fna);
1029 			goto out;
1030 		}
1031 		fna->fa_file = filp;
1032 		fna->fa_fd = fd;
1033 		fna->magic = FASYNC_MAGIC;
1034 		fna->fa_next = sock->fasync_list;
1035 		write_lock_bh(&sk->sk_callback_lock);
1036 		sock->fasync_list = fna;
1037 		write_unlock_bh(&sk->sk_callback_lock);
1038 	} else {
1039 		if (fa != NULL) {
1040 			write_lock_bh(&sk->sk_callback_lock);
1041 			*prev = fa->fa_next;
1042 			write_unlock_bh(&sk->sk_callback_lock);
1043 			kfree(fa);
1044 		}
1045 	}
1046 
1047 out:
1048 	release_sock(sock->sk);
1049 	return 0;
1050 }
1051 
1052 /* This function may be called only under socket lock or callback_lock */
1053 
1054 int sock_wake_async(struct socket *sock, int how, int band)
1055 {
1056 	if (!sock || !sock->fasync_list)
1057 		return -1;
1058 	switch (how) {
1059 	case 1:
1060 
1061 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1062 			break;
1063 		goto call_kill;
1064 	case 2:
1065 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1066 			break;
1067 		/* fall through */
1068 	case 0:
1069 call_kill:
1070 		__kill_fasync(sock->fasync_list, SIGIO, band);
1071 		break;
1072 	case 3:
1073 		__kill_fasync(sock->fasync_list, SIGURG, band);
1074 	}
1075 	return 0;
1076 }
1077 
1078 static int __sock_create(int family, int type, int protocol,
1079 			 struct socket **res, int kern)
1080 {
1081 	int err;
1082 	struct socket *sock;
1083 	const struct net_proto_family *pf;
1084 
1085 	/*
1086 	 *      Check protocol is in range
1087 	 */
1088 	if (family < 0 || family >= NPROTO)
1089 		return -EAFNOSUPPORT;
1090 	if (type < 0 || type >= SOCK_MAX)
1091 		return -EINVAL;
1092 
1093 	/* Compatibility.
1094 
1095 	   This uglymoron is moved from INET layer to here to avoid
1096 	   deadlock in module load.
1097 	 */
1098 	if (family == PF_INET && type == SOCK_PACKET) {
1099 		static int warned;
1100 		if (!warned) {
1101 			warned = 1;
1102 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1103 			       current->comm);
1104 		}
1105 		family = PF_PACKET;
1106 	}
1107 
1108 	err = security_socket_create(family, type, protocol, kern);
1109 	if (err)
1110 		return err;
1111 
1112 	/*
1113 	 *	Allocate the socket and allow the family to set things up. if
1114 	 *	the protocol is 0, the family is instructed to select an appropriate
1115 	 *	default.
1116 	 */
1117 	sock = sock_alloc();
1118 	if (!sock) {
1119 		if (net_ratelimit())
1120 			printk(KERN_WARNING "socket: no more sockets\n");
1121 		return -ENFILE;	/* Not exactly a match, but its the
1122 				   closest posix thing */
1123 	}
1124 
1125 	sock->type = type;
1126 
1127 #if defined(CONFIG_KMOD)
1128 	/* Attempt to load a protocol module if the find failed.
1129 	 *
1130 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1131 	 * requested real, full-featured networking support upon configuration.
1132 	 * Otherwise module support will break!
1133 	 */
1134 	if (net_families[family] == NULL)
1135 		request_module("net-pf-%d", family);
1136 #endif
1137 
1138 	rcu_read_lock();
1139 	pf = rcu_dereference(net_families[family]);
1140 	err = -EAFNOSUPPORT;
1141 	if (!pf)
1142 		goto out_release;
1143 
1144 	/*
1145 	 * We will call the ->create function, that possibly is in a loadable
1146 	 * module, so we have to bump that loadable module refcnt first.
1147 	 */
1148 	if (!try_module_get(pf->owner))
1149 		goto out_release;
1150 
1151 	/* Now protected by module ref count */
1152 	rcu_read_unlock();
1153 
1154 	err = pf->create(sock, protocol);
1155 	if (err < 0)
1156 		goto out_module_put;
1157 
1158 	/*
1159 	 * Now to bump the refcnt of the [loadable] module that owns this
1160 	 * socket at sock_release time we decrement its refcnt.
1161 	 */
1162 	if (!try_module_get(sock->ops->owner))
1163 		goto out_module_busy;
1164 
1165 	/*
1166 	 * Now that we're done with the ->create function, the [loadable]
1167 	 * module can have its refcnt decremented
1168 	 */
1169 	module_put(pf->owner);
1170 	err = security_socket_post_create(sock, family, type, protocol, kern);
1171 	if (err)
1172 		goto out_release;
1173 	*res = sock;
1174 
1175 	return 0;
1176 
1177 out_module_busy:
1178 	err = -EAFNOSUPPORT;
1179 out_module_put:
1180 	sock->ops = NULL;
1181 	module_put(pf->owner);
1182 out_sock_release:
1183 	sock_release(sock);
1184 	return err;
1185 
1186 out_release:
1187 	rcu_read_unlock();
1188 	goto out_sock_release;
1189 }
1190 
1191 int sock_create(int family, int type, int protocol, struct socket **res)
1192 {
1193 	return __sock_create(family, type, protocol, res, 0);
1194 }
1195 
1196 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1197 {
1198 	return __sock_create(family, type, protocol, res, 1);
1199 }
1200 
1201 asmlinkage long sys_socket(int family, int type, int protocol)
1202 {
1203 	int retval;
1204 	struct socket *sock;
1205 
1206 	retval = sock_create(family, type, protocol, &sock);
1207 	if (retval < 0)
1208 		goto out;
1209 
1210 	retval = sock_map_fd(sock);
1211 	if (retval < 0)
1212 		goto out_release;
1213 
1214 out:
1215 	/* It may be already another descriptor 8) Not kernel problem. */
1216 	return retval;
1217 
1218 out_release:
1219 	sock_release(sock);
1220 	return retval;
1221 }
1222 
1223 /*
1224  *	Create a pair of connected sockets.
1225  */
1226 
1227 asmlinkage long sys_socketpair(int family, int type, int protocol,
1228 			       int __user *usockvec)
1229 {
1230 	struct socket *sock1, *sock2;
1231 	int fd1, fd2, err;
1232 	struct file *newfile1, *newfile2;
1233 
1234 	/*
1235 	 * Obtain the first socket and check if the underlying protocol
1236 	 * supports the socketpair call.
1237 	 */
1238 
1239 	err = sock_create(family, type, protocol, &sock1);
1240 	if (err < 0)
1241 		goto out;
1242 
1243 	err = sock_create(family, type, protocol, &sock2);
1244 	if (err < 0)
1245 		goto out_release_1;
1246 
1247 	err = sock1->ops->socketpair(sock1, sock2);
1248 	if (err < 0)
1249 		goto out_release_both;
1250 
1251 	fd1 = sock_alloc_fd(&newfile1);
1252 	if (unlikely(fd1 < 0))
1253 		goto out_release_both;
1254 
1255 	fd2 = sock_alloc_fd(&newfile2);
1256 	if (unlikely(fd2 < 0)) {
1257 		put_filp(newfile1);
1258 		put_unused_fd(fd1);
1259 		goto out_release_both;
1260 	}
1261 
1262 	err = sock_attach_fd(sock1, newfile1);
1263 	if (unlikely(err < 0)) {
1264 		goto out_fd2;
1265 	}
1266 
1267 	err = sock_attach_fd(sock2, newfile2);
1268 	if (unlikely(err < 0)) {
1269 		fput(newfile1);
1270 		goto out_fd1;
1271 	}
1272 
1273 	err = audit_fd_pair(fd1, fd2);
1274 	if (err < 0) {
1275 		fput(newfile1);
1276 		fput(newfile2);
1277 		goto out_fd;
1278 	}
1279 
1280 	fd_install(fd1, newfile1);
1281 	fd_install(fd2, newfile2);
1282 	/* fd1 and fd2 may be already another descriptors.
1283 	 * Not kernel problem.
1284 	 */
1285 
1286 	err = put_user(fd1, &usockvec[0]);
1287 	if (!err)
1288 		err = put_user(fd2, &usockvec[1]);
1289 	if (!err)
1290 		return 0;
1291 
1292 	sys_close(fd2);
1293 	sys_close(fd1);
1294 	return err;
1295 
1296 out_release_both:
1297 	sock_release(sock2);
1298 out_release_1:
1299 	sock_release(sock1);
1300 out:
1301 	return err;
1302 
1303 out_fd2:
1304 	put_filp(newfile1);
1305 	sock_release(sock1);
1306 out_fd1:
1307 	put_filp(newfile2);
1308 	sock_release(sock2);
1309 out_fd:
1310 	put_unused_fd(fd1);
1311 	put_unused_fd(fd2);
1312 	goto out;
1313 }
1314 
1315 /*
1316  *	Bind a name to a socket. Nothing much to do here since it's
1317  *	the protocol's responsibility to handle the local address.
1318  *
1319  *	We move the socket address to kernel space before we call
1320  *	the protocol layer (having also checked the address is ok).
1321  */
1322 
1323 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1324 {
1325 	struct socket *sock;
1326 	char address[MAX_SOCK_ADDR];
1327 	int err, fput_needed;
1328 
1329 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1330 	if (sock) {
1331 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1332 		if (err >= 0) {
1333 			err = security_socket_bind(sock,
1334 						   (struct sockaddr *)address,
1335 						   addrlen);
1336 			if (!err)
1337 				err = sock->ops->bind(sock,
1338 						      (struct sockaddr *)
1339 						      address, addrlen);
1340 		}
1341 		fput_light(sock->file, fput_needed);
1342 	}
1343 	return err;
1344 }
1345 
1346 /*
1347  *	Perform a listen. Basically, we allow the protocol to do anything
1348  *	necessary for a listen, and if that works, we mark the socket as
1349  *	ready for listening.
1350  */
1351 
1352 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1353 
1354 asmlinkage long sys_listen(int fd, int backlog)
1355 {
1356 	struct socket *sock;
1357 	int err, fput_needed;
1358 
1359 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1360 	if (sock) {
1361 		if ((unsigned)backlog > sysctl_somaxconn)
1362 			backlog = sysctl_somaxconn;
1363 
1364 		err = security_socket_listen(sock, backlog);
1365 		if (!err)
1366 			err = sock->ops->listen(sock, backlog);
1367 
1368 		fput_light(sock->file, fput_needed);
1369 	}
1370 	return err;
1371 }
1372 
1373 /*
1374  *	For accept, we attempt to create a new socket, set up the link
1375  *	with the client, wake up the client, then return the new
1376  *	connected fd. We collect the address of the connector in kernel
1377  *	space and move it to user at the very end. This is unclean because
1378  *	we open the socket then return an error.
1379  *
1380  *	1003.1g adds the ability to recvmsg() to query connection pending
1381  *	status to recvmsg. We need to add that support in a way thats
1382  *	clean when we restucture accept also.
1383  */
1384 
1385 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1386 			   int __user *upeer_addrlen)
1387 {
1388 	struct socket *sock, *newsock;
1389 	struct file *newfile;
1390 	int err, len, newfd, fput_needed;
1391 	char address[MAX_SOCK_ADDR];
1392 
1393 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1394 	if (!sock)
1395 		goto out;
1396 
1397 	err = -ENFILE;
1398 	if (!(newsock = sock_alloc()))
1399 		goto out_put;
1400 
1401 	newsock->type = sock->type;
1402 	newsock->ops = sock->ops;
1403 
1404 	/*
1405 	 * We don't need try_module_get here, as the listening socket (sock)
1406 	 * has the protocol module (sock->ops->owner) held.
1407 	 */
1408 	__module_get(newsock->ops->owner);
1409 
1410 	newfd = sock_alloc_fd(&newfile);
1411 	if (unlikely(newfd < 0)) {
1412 		err = newfd;
1413 		sock_release(newsock);
1414 		goto out_put;
1415 	}
1416 
1417 	err = sock_attach_fd(newsock, newfile);
1418 	if (err < 0)
1419 		goto out_fd_simple;
1420 
1421 	err = security_socket_accept(sock, newsock);
1422 	if (err)
1423 		goto out_fd;
1424 
1425 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1426 	if (err < 0)
1427 		goto out_fd;
1428 
1429 	if (upeer_sockaddr) {
1430 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1431 					  &len, 2) < 0) {
1432 			err = -ECONNABORTED;
1433 			goto out_fd;
1434 		}
1435 		err = move_addr_to_user(address, len, upeer_sockaddr,
1436 					upeer_addrlen);
1437 		if (err < 0)
1438 			goto out_fd;
1439 	}
1440 
1441 	/* File flags are not inherited via accept() unlike another OSes. */
1442 
1443 	fd_install(newfd, newfile);
1444 	err = newfd;
1445 
1446 	security_socket_post_accept(sock, newsock);
1447 
1448 out_put:
1449 	fput_light(sock->file, fput_needed);
1450 out:
1451 	return err;
1452 out_fd_simple:
1453 	sock_release(newsock);
1454 	put_filp(newfile);
1455 	put_unused_fd(newfd);
1456 	goto out_put;
1457 out_fd:
1458 	fput(newfile);
1459 	put_unused_fd(newfd);
1460 	goto out_put;
1461 }
1462 
1463 /*
1464  *	Attempt to connect to a socket with the server address.  The address
1465  *	is in user space so we verify it is OK and move it to kernel space.
1466  *
1467  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1468  *	break bindings
1469  *
1470  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1471  *	other SEQPACKET protocols that take time to connect() as it doesn't
1472  *	include the -EINPROGRESS status for such sockets.
1473  */
1474 
1475 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1476 			    int addrlen)
1477 {
1478 	struct socket *sock;
1479 	char address[MAX_SOCK_ADDR];
1480 	int err, fput_needed;
1481 
1482 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1483 	if (!sock)
1484 		goto out;
1485 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1486 	if (err < 0)
1487 		goto out_put;
1488 
1489 	err =
1490 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1491 	if (err)
1492 		goto out_put;
1493 
1494 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1495 				 sock->file->f_flags);
1496 out_put:
1497 	fput_light(sock->file, fput_needed);
1498 out:
1499 	return err;
1500 }
1501 
1502 /*
1503  *	Get the local address ('name') of a socket object. Move the obtained
1504  *	name to user space.
1505  */
1506 
1507 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1508 				int __user *usockaddr_len)
1509 {
1510 	struct socket *sock;
1511 	char address[MAX_SOCK_ADDR];
1512 	int len, err, fput_needed;
1513 
1514 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1515 	if (!sock)
1516 		goto out;
1517 
1518 	err = security_socket_getsockname(sock);
1519 	if (err)
1520 		goto out_put;
1521 
1522 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1523 	if (err)
1524 		goto out_put;
1525 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1526 
1527 out_put:
1528 	fput_light(sock->file, fput_needed);
1529 out:
1530 	return err;
1531 }
1532 
1533 /*
1534  *	Get the remote address ('name') of a socket object. Move the obtained
1535  *	name to user space.
1536  */
1537 
1538 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1539 				int __user *usockaddr_len)
1540 {
1541 	struct socket *sock;
1542 	char address[MAX_SOCK_ADDR];
1543 	int len, err, fput_needed;
1544 
1545 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1546 	if (sock != NULL) {
1547 		err = security_socket_getpeername(sock);
1548 		if (err) {
1549 			fput_light(sock->file, fput_needed);
1550 			return err;
1551 		}
1552 
1553 		err =
1554 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1555 				       1);
1556 		if (!err)
1557 			err = move_addr_to_user(address, len, usockaddr,
1558 						usockaddr_len);
1559 		fput_light(sock->file, fput_needed);
1560 	}
1561 	return err;
1562 }
1563 
1564 /*
1565  *	Send a datagram to a given address. We move the address into kernel
1566  *	space and check the user space data area is readable before invoking
1567  *	the protocol.
1568  */
1569 
1570 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1571 			   unsigned flags, struct sockaddr __user *addr,
1572 			   int addr_len)
1573 {
1574 	struct socket *sock;
1575 	char address[MAX_SOCK_ADDR];
1576 	int err;
1577 	struct msghdr msg;
1578 	struct iovec iov;
1579 	int fput_needed;
1580 	struct file *sock_file;
1581 
1582 	sock_file = fget_light(fd, &fput_needed);
1583 	err = -EBADF;
1584 	if (!sock_file)
1585 		goto out;
1586 
1587 	sock = sock_from_file(sock_file, &err);
1588 	if (!sock)
1589 		goto out_put;
1590 	iov.iov_base = buff;
1591 	iov.iov_len = len;
1592 	msg.msg_name = NULL;
1593 	msg.msg_iov = &iov;
1594 	msg.msg_iovlen = 1;
1595 	msg.msg_control = NULL;
1596 	msg.msg_controllen = 0;
1597 	msg.msg_namelen = 0;
1598 	if (addr) {
1599 		err = move_addr_to_kernel(addr, addr_len, address);
1600 		if (err < 0)
1601 			goto out_put;
1602 		msg.msg_name = address;
1603 		msg.msg_namelen = addr_len;
1604 	}
1605 	if (sock->file->f_flags & O_NONBLOCK)
1606 		flags |= MSG_DONTWAIT;
1607 	msg.msg_flags = flags;
1608 	err = sock_sendmsg(sock, &msg, len);
1609 
1610 out_put:
1611 	fput_light(sock_file, fput_needed);
1612 out:
1613 	return err;
1614 }
1615 
1616 /*
1617  *	Send a datagram down a socket.
1618  */
1619 
1620 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1621 {
1622 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1623 }
1624 
1625 /*
1626  *	Receive a frame from the socket and optionally record the address of the
1627  *	sender. We verify the buffers are writable and if needed move the
1628  *	sender address from kernel to user space.
1629  */
1630 
1631 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1632 			     unsigned flags, struct sockaddr __user *addr,
1633 			     int __user *addr_len)
1634 {
1635 	struct socket *sock;
1636 	struct iovec iov;
1637 	struct msghdr msg;
1638 	char address[MAX_SOCK_ADDR];
1639 	int err, err2;
1640 	struct file *sock_file;
1641 	int fput_needed;
1642 
1643 	sock_file = fget_light(fd, &fput_needed);
1644 	err = -EBADF;
1645 	if (!sock_file)
1646 		goto out;
1647 
1648 	sock = sock_from_file(sock_file, &err);
1649 	if (!sock)
1650 		goto out_put;
1651 
1652 	msg.msg_control = NULL;
1653 	msg.msg_controllen = 0;
1654 	msg.msg_iovlen = 1;
1655 	msg.msg_iov = &iov;
1656 	iov.iov_len = size;
1657 	iov.iov_base = ubuf;
1658 	msg.msg_name = address;
1659 	msg.msg_namelen = MAX_SOCK_ADDR;
1660 	if (sock->file->f_flags & O_NONBLOCK)
1661 		flags |= MSG_DONTWAIT;
1662 	err = sock_recvmsg(sock, &msg, size, flags);
1663 
1664 	if (err >= 0 && addr != NULL) {
1665 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1666 		if (err2 < 0)
1667 			err = err2;
1668 	}
1669 out_put:
1670 	fput_light(sock_file, fput_needed);
1671 out:
1672 	return err;
1673 }
1674 
1675 /*
1676  *	Receive a datagram from a socket.
1677  */
1678 
1679 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1680 			 unsigned flags)
1681 {
1682 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1683 }
1684 
1685 /*
1686  *	Set a socket option. Because we don't know the option lengths we have
1687  *	to pass the user mode parameter for the protocols to sort out.
1688  */
1689 
1690 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1691 			       char __user *optval, int optlen)
1692 {
1693 	int err, fput_needed;
1694 	struct socket *sock;
1695 
1696 	if (optlen < 0)
1697 		return -EINVAL;
1698 
1699 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 	if (sock != NULL) {
1701 		err = security_socket_setsockopt(sock, level, optname);
1702 		if (err)
1703 			goto out_put;
1704 
1705 		if (level == SOL_SOCKET)
1706 			err =
1707 			    sock_setsockopt(sock, level, optname, optval,
1708 					    optlen);
1709 		else
1710 			err =
1711 			    sock->ops->setsockopt(sock, level, optname, optval,
1712 						  optlen);
1713 out_put:
1714 		fput_light(sock->file, fput_needed);
1715 	}
1716 	return err;
1717 }
1718 
1719 /*
1720  *	Get a socket option. Because we don't know the option lengths we have
1721  *	to pass a user mode parameter for the protocols to sort out.
1722  */
1723 
1724 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1725 			       char __user *optval, int __user *optlen)
1726 {
1727 	int err, fput_needed;
1728 	struct socket *sock;
1729 
1730 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 	if (sock != NULL) {
1732 		err = security_socket_getsockopt(sock, level, optname);
1733 		if (err)
1734 			goto out_put;
1735 
1736 		if (level == SOL_SOCKET)
1737 			err =
1738 			    sock_getsockopt(sock, level, optname, optval,
1739 					    optlen);
1740 		else
1741 			err =
1742 			    sock->ops->getsockopt(sock, level, optname, optval,
1743 						  optlen);
1744 out_put:
1745 		fput_light(sock->file, fput_needed);
1746 	}
1747 	return err;
1748 }
1749 
1750 /*
1751  *	Shutdown a socket.
1752  */
1753 
1754 asmlinkage long sys_shutdown(int fd, int how)
1755 {
1756 	int err, fput_needed;
1757 	struct socket *sock;
1758 
1759 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1760 	if (sock != NULL) {
1761 		err = security_socket_shutdown(sock, how);
1762 		if (!err)
1763 			err = sock->ops->shutdown(sock, how);
1764 		fput_light(sock->file, fput_needed);
1765 	}
1766 	return err;
1767 }
1768 
1769 /* A couple of helpful macros for getting the address of the 32/64 bit
1770  * fields which are the same type (int / unsigned) on our platforms.
1771  */
1772 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1773 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1774 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1775 
1776 /*
1777  *	BSD sendmsg interface
1778  */
1779 
1780 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1781 {
1782 	struct compat_msghdr __user *msg_compat =
1783 	    (struct compat_msghdr __user *)msg;
1784 	struct socket *sock;
1785 	char address[MAX_SOCK_ADDR];
1786 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1787 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1788 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1789 	/* 20 is size of ipv6_pktinfo */
1790 	unsigned char *ctl_buf = ctl;
1791 	struct msghdr msg_sys;
1792 	int err, ctl_len, iov_size, total_len;
1793 	int fput_needed;
1794 
1795 	err = -EFAULT;
1796 	if (MSG_CMSG_COMPAT & flags) {
1797 		if (get_compat_msghdr(&msg_sys, msg_compat))
1798 			return -EFAULT;
1799 	}
1800 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1801 		return -EFAULT;
1802 
1803 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 	if (!sock)
1805 		goto out;
1806 
1807 	/* do not move before msg_sys is valid */
1808 	err = -EMSGSIZE;
1809 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1810 		goto out_put;
1811 
1812 	/* Check whether to allocate the iovec area */
1813 	err = -ENOMEM;
1814 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1815 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1816 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1817 		if (!iov)
1818 			goto out_put;
1819 	}
1820 
1821 	/* This will also move the address data into kernel space */
1822 	if (MSG_CMSG_COMPAT & flags) {
1823 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1824 	} else
1825 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1826 	if (err < 0)
1827 		goto out_freeiov;
1828 	total_len = err;
1829 
1830 	err = -ENOBUFS;
1831 
1832 	if (msg_sys.msg_controllen > INT_MAX)
1833 		goto out_freeiov;
1834 	ctl_len = msg_sys.msg_controllen;
1835 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1836 		err =
1837 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1838 						     sizeof(ctl));
1839 		if (err)
1840 			goto out_freeiov;
1841 		ctl_buf = msg_sys.msg_control;
1842 		ctl_len = msg_sys.msg_controllen;
1843 	} else if (ctl_len) {
1844 		if (ctl_len > sizeof(ctl)) {
1845 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1846 			if (ctl_buf == NULL)
1847 				goto out_freeiov;
1848 		}
1849 		err = -EFAULT;
1850 		/*
1851 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1852 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1853 		 * checking falls down on this.
1854 		 */
1855 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1856 				   ctl_len))
1857 			goto out_freectl;
1858 		msg_sys.msg_control = ctl_buf;
1859 	}
1860 	msg_sys.msg_flags = flags;
1861 
1862 	if (sock->file->f_flags & O_NONBLOCK)
1863 		msg_sys.msg_flags |= MSG_DONTWAIT;
1864 	err = sock_sendmsg(sock, &msg_sys, total_len);
1865 
1866 out_freectl:
1867 	if (ctl_buf != ctl)
1868 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1869 out_freeiov:
1870 	if (iov != iovstack)
1871 		sock_kfree_s(sock->sk, iov, iov_size);
1872 out_put:
1873 	fput_light(sock->file, fput_needed);
1874 out:
1875 	return err;
1876 }
1877 
1878 /*
1879  *	BSD recvmsg interface
1880  */
1881 
1882 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1883 			    unsigned int flags)
1884 {
1885 	struct compat_msghdr __user *msg_compat =
1886 	    (struct compat_msghdr __user *)msg;
1887 	struct socket *sock;
1888 	struct iovec iovstack[UIO_FASTIOV];
1889 	struct iovec *iov = iovstack;
1890 	struct msghdr msg_sys;
1891 	unsigned long cmsg_ptr;
1892 	int err, iov_size, total_len, len;
1893 	int fput_needed;
1894 
1895 	/* kernel mode address */
1896 	char addr[MAX_SOCK_ADDR];
1897 
1898 	/* user mode address pointers */
1899 	struct sockaddr __user *uaddr;
1900 	int __user *uaddr_len;
1901 
1902 	if (MSG_CMSG_COMPAT & flags) {
1903 		if (get_compat_msghdr(&msg_sys, msg_compat))
1904 			return -EFAULT;
1905 	}
1906 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1907 		return -EFAULT;
1908 
1909 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 	if (!sock)
1911 		goto out;
1912 
1913 	err = -EMSGSIZE;
1914 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1915 		goto out_put;
1916 
1917 	/* Check whether to allocate the iovec area */
1918 	err = -ENOMEM;
1919 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1920 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1921 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1922 		if (!iov)
1923 			goto out_put;
1924 	}
1925 
1926 	/*
1927 	 *      Save the user-mode address (verify_iovec will change the
1928 	 *      kernel msghdr to use the kernel address space)
1929 	 */
1930 
1931 	uaddr = (void __user *)msg_sys.msg_name;
1932 	uaddr_len = COMPAT_NAMELEN(msg);
1933 	if (MSG_CMSG_COMPAT & flags) {
1934 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1935 	} else
1936 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1937 	if (err < 0)
1938 		goto out_freeiov;
1939 	total_len = err;
1940 
1941 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1942 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1943 
1944 	if (sock->file->f_flags & O_NONBLOCK)
1945 		flags |= MSG_DONTWAIT;
1946 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1947 	if (err < 0)
1948 		goto out_freeiov;
1949 	len = err;
1950 
1951 	if (uaddr != NULL) {
1952 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1953 					uaddr_len);
1954 		if (err < 0)
1955 			goto out_freeiov;
1956 	}
1957 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1958 			 COMPAT_FLAGS(msg));
1959 	if (err)
1960 		goto out_freeiov;
1961 	if (MSG_CMSG_COMPAT & flags)
1962 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1963 				 &msg_compat->msg_controllen);
1964 	else
1965 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1966 				 &msg->msg_controllen);
1967 	if (err)
1968 		goto out_freeiov;
1969 	err = len;
1970 
1971 out_freeiov:
1972 	if (iov != iovstack)
1973 		sock_kfree_s(sock->sk, iov, iov_size);
1974 out_put:
1975 	fput_light(sock->file, fput_needed);
1976 out:
1977 	return err;
1978 }
1979 
1980 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1981 
1982 /* Argument list sizes for sys_socketcall */
1983 #define AL(x) ((x) * sizeof(unsigned long))
1984 static const unsigned char nargs[18]={
1985 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1986 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1987 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1988 };
1989 
1990 #undef AL
1991 
1992 /*
1993  *	System call vectors.
1994  *
1995  *	Argument checking cleaned up. Saved 20% in size.
1996  *  This function doesn't need to set the kernel lock because
1997  *  it is set by the callees.
1998  */
1999 
2000 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2001 {
2002 	unsigned long a[6];
2003 	unsigned long a0, a1;
2004 	int err;
2005 
2006 	if (call < 1 || call > SYS_RECVMSG)
2007 		return -EINVAL;
2008 
2009 	/* copy_from_user should be SMP safe. */
2010 	if (copy_from_user(a, args, nargs[call]))
2011 		return -EFAULT;
2012 
2013 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2014 	if (err)
2015 		return err;
2016 
2017 	a0 = a[0];
2018 	a1 = a[1];
2019 
2020 	switch (call) {
2021 	case SYS_SOCKET:
2022 		err = sys_socket(a0, a1, a[2]);
2023 		break;
2024 	case SYS_BIND:
2025 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2026 		break;
2027 	case SYS_CONNECT:
2028 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2029 		break;
2030 	case SYS_LISTEN:
2031 		err = sys_listen(a0, a1);
2032 		break;
2033 	case SYS_ACCEPT:
2034 		err =
2035 		    sys_accept(a0, (struct sockaddr __user *)a1,
2036 			       (int __user *)a[2]);
2037 		break;
2038 	case SYS_GETSOCKNAME:
2039 		err =
2040 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2041 				    (int __user *)a[2]);
2042 		break;
2043 	case SYS_GETPEERNAME:
2044 		err =
2045 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2046 				    (int __user *)a[2]);
2047 		break;
2048 	case SYS_SOCKETPAIR:
2049 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2050 		break;
2051 	case SYS_SEND:
2052 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2053 		break;
2054 	case SYS_SENDTO:
2055 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2056 				 (struct sockaddr __user *)a[4], a[5]);
2057 		break;
2058 	case SYS_RECV:
2059 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2060 		break;
2061 	case SYS_RECVFROM:
2062 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2063 				   (struct sockaddr __user *)a[4],
2064 				   (int __user *)a[5]);
2065 		break;
2066 	case SYS_SHUTDOWN:
2067 		err = sys_shutdown(a0, a1);
2068 		break;
2069 	case SYS_SETSOCKOPT:
2070 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2071 		break;
2072 	case SYS_GETSOCKOPT:
2073 		err =
2074 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2075 				   (int __user *)a[4]);
2076 		break;
2077 	case SYS_SENDMSG:
2078 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2079 		break;
2080 	case SYS_RECVMSG:
2081 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2082 		break;
2083 	default:
2084 		err = -EINVAL;
2085 		break;
2086 	}
2087 	return err;
2088 }
2089 
2090 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2091 
2092 /**
2093  *	sock_register - add a socket protocol handler
2094  *	@ops: description of protocol
2095  *
2096  *	This function is called by a protocol handler that wants to
2097  *	advertise its address family, and have it linked into the
2098  *	socket interface. The value ops->family coresponds to the
2099  *	socket system call protocol family.
2100  */
2101 int sock_register(const struct net_proto_family *ops)
2102 {
2103 	int err;
2104 
2105 	if (ops->family >= NPROTO) {
2106 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2107 		       NPROTO);
2108 		return -ENOBUFS;
2109 	}
2110 
2111 	spin_lock(&net_family_lock);
2112 	if (net_families[ops->family])
2113 		err = -EEXIST;
2114 	else {
2115 		net_families[ops->family] = ops;
2116 		err = 0;
2117 	}
2118 	spin_unlock(&net_family_lock);
2119 
2120 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2121 	return err;
2122 }
2123 
2124 /**
2125  *	sock_unregister - remove a protocol handler
2126  *	@family: protocol family to remove
2127  *
2128  *	This function is called by a protocol handler that wants to
2129  *	remove its address family, and have it unlinked from the
2130  *	new socket creation.
2131  *
2132  *	If protocol handler is a module, then it can use module reference
2133  *	counts to protect against new references. If protocol handler is not
2134  *	a module then it needs to provide its own protection in
2135  *	the ops->create routine.
2136  */
2137 void sock_unregister(int family)
2138 {
2139 	BUG_ON(family < 0 || family >= NPROTO);
2140 
2141 	spin_lock(&net_family_lock);
2142 	net_families[family] = NULL;
2143 	spin_unlock(&net_family_lock);
2144 
2145 	synchronize_rcu();
2146 
2147 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2148 }
2149 
2150 static int __init sock_init(void)
2151 {
2152 	/*
2153 	 *      Initialize sock SLAB cache.
2154 	 */
2155 
2156 	sk_init();
2157 
2158 	/*
2159 	 *      Initialize skbuff SLAB cache
2160 	 */
2161 	skb_init();
2162 
2163 	/*
2164 	 *      Initialize the protocols module.
2165 	 */
2166 
2167 	init_inodecache();
2168 	register_filesystem(&sock_fs_type);
2169 	sock_mnt = kern_mount(&sock_fs_type);
2170 
2171 	/* The real protocol initialization is performed in later initcalls.
2172 	 */
2173 
2174 #ifdef CONFIG_NETFILTER
2175 	netfilter_init();
2176 #endif
2177 
2178 	return 0;
2179 }
2180 
2181 core_initcall(sock_init);	/* early initcall */
2182 
2183 #ifdef CONFIG_PROC_FS
2184 void socket_seq_show(struct seq_file *seq)
2185 {
2186 	int cpu;
2187 	int counter = 0;
2188 
2189 	for_each_possible_cpu(cpu)
2190 	    counter += per_cpu(sockets_in_use, cpu);
2191 
2192 	/* It can be negative, by the way. 8) */
2193 	if (counter < 0)
2194 		counter = 0;
2195 
2196 	seq_printf(seq, "sockets: used %d\n", counter);
2197 }
2198 #endif				/* CONFIG_PROC_FS */
2199 
2200 #ifdef CONFIG_COMPAT
2201 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2202 			      unsigned long arg)
2203 {
2204 	struct socket *sock = file->private_data;
2205 	int ret = -ENOIOCTLCMD;
2206 
2207 	if (sock->ops->compat_ioctl)
2208 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2209 
2210 	return ret;
2211 }
2212 #endif
2213 
2214 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2215 {
2216 	return sock->ops->bind(sock, addr, addrlen);
2217 }
2218 
2219 int kernel_listen(struct socket *sock, int backlog)
2220 {
2221 	return sock->ops->listen(sock, backlog);
2222 }
2223 
2224 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2225 {
2226 	struct sock *sk = sock->sk;
2227 	int err;
2228 
2229 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2230 			       newsock);
2231 	if (err < 0)
2232 		goto done;
2233 
2234 	err = sock->ops->accept(sock, *newsock, flags);
2235 	if (err < 0) {
2236 		sock_release(*newsock);
2237 		goto done;
2238 	}
2239 
2240 	(*newsock)->ops = sock->ops;
2241 
2242 done:
2243 	return err;
2244 }
2245 
2246 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2247 		   int flags)
2248 {
2249 	return sock->ops->connect(sock, addr, addrlen, flags);
2250 }
2251 
2252 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2253 			 int *addrlen)
2254 {
2255 	return sock->ops->getname(sock, addr, addrlen, 0);
2256 }
2257 
2258 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2259 			 int *addrlen)
2260 {
2261 	return sock->ops->getname(sock, addr, addrlen, 1);
2262 }
2263 
2264 int kernel_getsockopt(struct socket *sock, int level, int optname,
2265 			char *optval, int *optlen)
2266 {
2267 	mm_segment_t oldfs = get_fs();
2268 	int err;
2269 
2270 	set_fs(KERNEL_DS);
2271 	if (level == SOL_SOCKET)
2272 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2273 	else
2274 		err = sock->ops->getsockopt(sock, level, optname, optval,
2275 					    optlen);
2276 	set_fs(oldfs);
2277 	return err;
2278 }
2279 
2280 int kernel_setsockopt(struct socket *sock, int level, int optname,
2281 			char *optval, int optlen)
2282 {
2283 	mm_segment_t oldfs = get_fs();
2284 	int err;
2285 
2286 	set_fs(KERNEL_DS);
2287 	if (level == SOL_SOCKET)
2288 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2289 	else
2290 		err = sock->ops->setsockopt(sock, level, optname, optval,
2291 					    optlen);
2292 	set_fs(oldfs);
2293 	return err;
2294 }
2295 
2296 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2297 		    size_t size, int flags)
2298 {
2299 	if (sock->ops->sendpage)
2300 		return sock->ops->sendpage(sock, page, offset, size, flags);
2301 
2302 	return sock_no_sendpage(sock, page, offset, size, flags);
2303 }
2304 
2305 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2306 {
2307 	mm_segment_t oldfs = get_fs();
2308 	int err;
2309 
2310 	set_fs(KERNEL_DS);
2311 	err = sock->ops->ioctl(sock, cmd, arg);
2312 	set_fs(oldfs);
2313 
2314 	return err;
2315 }
2316 
2317 /* ABI emulation layers need these two */
2318 EXPORT_SYMBOL(move_addr_to_kernel);
2319 EXPORT_SYMBOL(move_addr_to_user);
2320 EXPORT_SYMBOL(sock_create);
2321 EXPORT_SYMBOL(sock_create_kern);
2322 EXPORT_SYMBOL(sock_create_lite);
2323 EXPORT_SYMBOL(sock_map_fd);
2324 EXPORT_SYMBOL(sock_recvmsg);
2325 EXPORT_SYMBOL(sock_register);
2326 EXPORT_SYMBOL(sock_release);
2327 EXPORT_SYMBOL(sock_sendmsg);
2328 EXPORT_SYMBOL(sock_unregister);
2329 EXPORT_SYMBOL(sock_wake_async);
2330 EXPORT_SYMBOL(sockfd_lookup);
2331 EXPORT_SYMBOL(kernel_sendmsg);
2332 EXPORT_SYMBOL(kernel_recvmsg);
2333 EXPORT_SYMBOL(kernel_bind);
2334 EXPORT_SYMBOL(kernel_listen);
2335 EXPORT_SYMBOL(kernel_accept);
2336 EXPORT_SYMBOL(kernel_connect);
2337 EXPORT_SYMBOL(kernel_getsockname);
2338 EXPORT_SYMBOL(kernel_getpeername);
2339 EXPORT_SYMBOL(kernel_getsockopt);
2340 EXPORT_SYMBOL(kernel_setsockopt);
2341 EXPORT_SYMBOL(kernel_sendpage);
2342 EXPORT_SYMBOL(kernel_sock_ioctl);
2343