1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 283 if (can_do_masked_user_access()) 284 ulen = masked_user_access_begin(ulen); 285 else if (!user_access_begin(ulen, 4)) 286 return -EFAULT; 287 288 unsafe_get_user(len, ulen, efault_end); 289 290 if (len > klen) 291 len = klen; 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 if (len >= 0) 297 unsafe_put_user(klen, ulen, efault_end); 298 299 user_access_end(); 300 301 if (len) { 302 if (len < 0) 303 return -EINVAL; 304 if (audit_sockaddr(klen, kaddr)) 305 return -ENOMEM; 306 if (copy_to_user(uaddr, kaddr, len)) 307 return -EFAULT; 308 } 309 return 0; 310 311 efault_end: 312 user_access_end(); 313 return -EFAULT; 314 } 315 316 static struct kmem_cache *sock_inode_cachep __ro_after_init; 317 318 static struct inode *sock_alloc_inode(struct super_block *sb) 319 { 320 struct socket_alloc *ei; 321 322 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 323 if (!ei) 324 return NULL; 325 init_waitqueue_head(&ei->socket.wq.wait); 326 ei->socket.wq.fasync_list = NULL; 327 ei->socket.wq.flags = 0; 328 329 ei->socket.state = SS_UNCONNECTED; 330 ei->socket.flags = 0; 331 ei->socket.ops = NULL; 332 ei->socket.sk = NULL; 333 ei->socket.file = NULL; 334 335 return &ei->vfs_inode; 336 } 337 338 static void sock_free_inode(struct inode *inode) 339 { 340 struct socket_alloc *ei; 341 342 ei = container_of(inode, struct socket_alloc, vfs_inode); 343 kmem_cache_free(sock_inode_cachep, ei); 344 } 345 346 static void init_once(void *foo) 347 { 348 struct socket_alloc *ei = (struct socket_alloc *)foo; 349 350 inode_init_once(&ei->vfs_inode); 351 } 352 353 static void init_inodecache(void) 354 { 355 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 356 sizeof(struct socket_alloc), 357 0, 358 (SLAB_HWCACHE_ALIGN | 359 SLAB_RECLAIM_ACCOUNT | 360 SLAB_ACCOUNT), 361 init_once); 362 BUG_ON(sock_inode_cachep == NULL); 363 } 364 365 static const struct super_operations sockfs_ops = { 366 .alloc_inode = sock_alloc_inode, 367 .free_inode = sock_free_inode, 368 .statfs = simple_statfs, 369 }; 370 371 /* 372 * sockfs_dname() is called from d_path(). 373 */ 374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 375 { 376 return dynamic_dname(buffer, buflen, "socket:[%lu]", 377 d_inode(dentry)->i_ino); 378 } 379 380 static const struct dentry_operations sockfs_dentry_operations = { 381 .d_dname = sockfs_dname, 382 }; 383 384 static int sockfs_xattr_get(const struct xattr_handler *handler, 385 struct dentry *dentry, struct inode *inode, 386 const char *suffix, void *value, size_t size) 387 { 388 if (value) { 389 if (dentry->d_name.len + 1 > size) 390 return -ERANGE; 391 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 392 } 393 return dentry->d_name.len + 1; 394 } 395 396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 399 400 static const struct xattr_handler sockfs_xattr_handler = { 401 .name = XATTR_NAME_SOCKPROTONAME, 402 .get = sockfs_xattr_get, 403 }; 404 405 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 406 struct mnt_idmap *idmap, 407 struct dentry *dentry, struct inode *inode, 408 const char *suffix, const void *value, 409 size_t size, int flags) 410 { 411 /* Handled by LSM. */ 412 return -EAGAIN; 413 } 414 415 static const struct xattr_handler sockfs_security_xattr_handler = { 416 .prefix = XATTR_SECURITY_PREFIX, 417 .set = sockfs_security_xattr_set, 418 }; 419 420 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 421 &sockfs_xattr_handler, 422 &sockfs_security_xattr_handler, 423 NULL 424 }; 425 426 static int sockfs_init_fs_context(struct fs_context *fc) 427 { 428 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 429 if (!ctx) 430 return -ENOMEM; 431 ctx->ops = &sockfs_ops; 432 ctx->dops = &sockfs_dentry_operations; 433 ctx->xattr = sockfs_xattr_handlers; 434 return 0; 435 } 436 437 static struct vfsmount *sock_mnt __read_mostly; 438 439 static struct file_system_type sock_fs_type = { 440 .name = "sockfs", 441 .init_fs_context = sockfs_init_fs_context, 442 .kill_sb = kill_anon_super, 443 }; 444 445 /* 446 * Obtains the first available file descriptor and sets it up for use. 447 * 448 * These functions create file structures and maps them to fd space 449 * of the current process. On success it returns file descriptor 450 * and file struct implicitly stored in sock->file. 451 * Note that another thread may close file descriptor before we return 452 * from this function. We use the fact that now we do not refer 453 * to socket after mapping. If one day we will need it, this 454 * function will increment ref. count on file by 1. 455 * 456 * In any case returned fd MAY BE not valid! 457 * This race condition is unavoidable 458 * with shared fd spaces, we cannot solve it inside kernel, 459 * but we take care of internal coherence yet. 460 */ 461 462 /** 463 * sock_alloc_file - Bind a &socket to a &file 464 * @sock: socket 465 * @flags: file status flags 466 * @dname: protocol name 467 * 468 * Returns the &file bound with @sock, implicitly storing it 469 * in sock->file. If dname is %NULL, sets to "". 470 * 471 * On failure @sock is released, and an ERR pointer is returned. 472 * 473 * This function uses GFP_KERNEL internally. 474 */ 475 476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 477 { 478 struct file *file; 479 480 if (!dname) 481 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 482 483 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 484 O_RDWR | (flags & O_NONBLOCK), 485 &socket_file_ops); 486 if (IS_ERR(file)) { 487 sock_release(sock); 488 return file; 489 } 490 491 file->f_mode |= FMODE_NOWAIT; 492 sock->file = file; 493 file->private_data = sock; 494 stream_open(SOCK_INODE(sock), file); 495 /* 496 * Disable permission and pre-content events, but enable legacy 497 * inotify events for legacy users. 498 */ 499 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 500 return file; 501 } 502 EXPORT_SYMBOL(sock_alloc_file); 503 504 static int sock_map_fd(struct socket *sock, int flags) 505 { 506 struct file *newfile; 507 int fd = get_unused_fd_flags(flags); 508 if (unlikely(fd < 0)) { 509 sock_release(sock); 510 return fd; 511 } 512 513 newfile = sock_alloc_file(sock, flags, NULL); 514 if (!IS_ERR(newfile)) { 515 fd_install(fd, newfile); 516 return fd; 517 } 518 519 put_unused_fd(fd); 520 return PTR_ERR(newfile); 521 } 522 523 /** 524 * sock_from_file - Return the &socket bounded to @file. 525 * @file: file 526 * 527 * On failure returns %NULL. 528 */ 529 530 struct socket *sock_from_file(struct file *file) 531 { 532 if (likely(file->f_op == &socket_file_ops)) 533 return file->private_data; /* set in sock_alloc_file */ 534 535 return NULL; 536 } 537 EXPORT_SYMBOL(sock_from_file); 538 539 /** 540 * sockfd_lookup - Go from a file number to its socket slot 541 * @fd: file handle 542 * @err: pointer to an error code return 543 * 544 * The file handle passed in is locked and the socket it is bound 545 * to is returned. If an error occurs the err pointer is overwritten 546 * with a negative errno code and NULL is returned. The function checks 547 * for both invalid handles and passing a handle which is not a socket. 548 * 549 * On a success the socket object pointer is returned. 550 */ 551 552 struct socket *sockfd_lookup(int fd, int *err) 553 { 554 struct file *file; 555 struct socket *sock; 556 557 file = fget(fd); 558 if (!file) { 559 *err = -EBADF; 560 return NULL; 561 } 562 563 sock = sock_from_file(file); 564 if (!sock) { 565 *err = -ENOTSOCK; 566 fput(file); 567 } 568 return sock; 569 } 570 EXPORT_SYMBOL(sockfd_lookup); 571 572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 573 size_t size) 574 { 575 ssize_t len; 576 ssize_t used = 0; 577 578 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 579 if (len < 0) 580 return len; 581 used += len; 582 if (buffer) { 583 if (size < used) 584 return -ERANGE; 585 buffer += len; 586 } 587 588 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 589 used += len; 590 if (buffer) { 591 if (size < used) 592 return -ERANGE; 593 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 594 buffer += len; 595 } 596 597 return used; 598 } 599 600 static int sockfs_setattr(struct mnt_idmap *idmap, 601 struct dentry *dentry, struct iattr *iattr) 602 { 603 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 604 605 if (!err && (iattr->ia_valid & ATTR_UID)) { 606 struct socket *sock = SOCKET_I(d_inode(dentry)); 607 608 if (sock->sk) { 609 /* Paired with READ_ONCE() in sk_uid() */ 610 WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid); 611 } else { 612 err = -ENOENT; 613 } 614 } 615 616 return err; 617 } 618 619 static const struct inode_operations sockfs_inode_ops = { 620 .listxattr = sockfs_listxattr, 621 .setattr = sockfs_setattr, 622 }; 623 624 /** 625 * sock_alloc - allocate a socket 626 * 627 * Allocate a new inode and socket object. The two are bound together 628 * and initialised. The socket is then returned. If we are out of inodes 629 * NULL is returned. This functions uses GFP_KERNEL internally. 630 */ 631 632 struct socket *sock_alloc(void) 633 { 634 struct inode *inode; 635 struct socket *sock; 636 637 inode = new_inode_pseudo(sock_mnt->mnt_sb); 638 if (!inode) 639 return NULL; 640 641 sock = SOCKET_I(inode); 642 643 inode->i_ino = get_next_ino(); 644 inode->i_mode = S_IFSOCK | S_IRWXUGO; 645 inode->i_uid = current_fsuid(); 646 inode->i_gid = current_fsgid(); 647 inode->i_op = &sockfs_inode_ops; 648 649 return sock; 650 } 651 EXPORT_SYMBOL(sock_alloc); 652 653 static void __sock_release(struct socket *sock, struct inode *inode) 654 { 655 const struct proto_ops *ops = READ_ONCE(sock->ops); 656 657 if (ops) { 658 struct module *owner = ops->owner; 659 660 if (inode) 661 inode_lock(inode); 662 ops->release(sock); 663 sock->sk = NULL; 664 if (inode) 665 inode_unlock(inode); 666 sock->ops = NULL; 667 module_put(owner); 668 } 669 670 if (sock->wq.fasync_list) 671 pr_err("%s: fasync list not empty!\n", __func__); 672 673 if (!sock->file) { 674 iput(SOCK_INODE(sock)); 675 return; 676 } 677 sock->file = NULL; 678 } 679 680 /** 681 * sock_release - close a socket 682 * @sock: socket to close 683 * 684 * The socket is released from the protocol stack if it has a release 685 * callback, and the inode is then released if the socket is bound to 686 * an inode not a file. 687 */ 688 void sock_release(struct socket *sock) 689 { 690 __sock_release(sock, NULL); 691 } 692 EXPORT_SYMBOL(sock_release); 693 694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 695 { 696 u8 flags = *tx_flags; 697 698 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 699 flags |= SKBTX_HW_TSTAMP_NOBPF; 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 702 flags |= SKBTX_SW_TSTAMP; 703 704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 705 flags |= SKBTX_SCHED_TSTAMP; 706 707 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) 708 flags |= SKBTX_COMPLETION_TSTAMP; 709 710 *tx_flags = flags; 711 } 712 EXPORT_SYMBOL(__sock_tx_timestamp); 713 714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 715 size_t)); 716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 717 size_t)); 718 719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 720 int flags) 721 { 722 trace_sock_send_length(sk, ret, 0); 723 } 724 725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 726 { 727 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 728 inet_sendmsg, sock, msg, 729 msg_data_left(msg)); 730 BUG_ON(ret == -EIOCBQUEUED); 731 732 if (trace_sock_send_length_enabled()) 733 call_trace_sock_send_length(sock->sk, ret, 0); 734 return ret; 735 } 736 737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 738 { 739 int err = security_socket_sendmsg(sock, msg, 740 msg_data_left(msg)); 741 742 return err ?: sock_sendmsg_nosec(sock, msg); 743 } 744 745 /** 746 * sock_sendmsg - send a message through @sock 747 * @sock: socket 748 * @msg: message to send 749 * 750 * Sends @msg through @sock, passing through LSM. 751 * Returns the number of bytes sent, or an error code. 752 */ 753 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 754 { 755 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 756 struct sockaddr_storage address; 757 int save_len = msg->msg_namelen; 758 int ret; 759 760 if (msg->msg_name) { 761 memcpy(&address, msg->msg_name, msg->msg_namelen); 762 msg->msg_name = &address; 763 } 764 765 ret = __sock_sendmsg(sock, msg); 766 msg->msg_name = save_addr; 767 msg->msg_namelen = save_len; 768 769 return ret; 770 } 771 EXPORT_SYMBOL(sock_sendmsg); 772 773 /** 774 * kernel_sendmsg - send a message through @sock (kernel-space) 775 * @sock: socket 776 * @msg: message header 777 * @vec: kernel vec 778 * @num: vec array length 779 * @size: total message data size 780 * 781 * Builds the message data with @vec and sends it through @sock. 782 * Returns the number of bytes sent, or an error code. 783 */ 784 785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 786 struct kvec *vec, size_t num, size_t size) 787 { 788 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 789 return sock_sendmsg(sock, msg); 790 } 791 EXPORT_SYMBOL(kernel_sendmsg); 792 793 static bool skb_is_err_queue(const struct sk_buff *skb) 794 { 795 /* pkt_type of skbs enqueued on the error queue are set to 796 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 797 * in recvmsg, since skbs received on a local socket will never 798 * have a pkt_type of PACKET_OUTGOING. 799 */ 800 return skb->pkt_type == PACKET_OUTGOING; 801 } 802 803 /* On transmit, software and hardware timestamps are returned independently. 804 * As the two skb clones share the hardware timestamp, which may be updated 805 * before the software timestamp is received, a hardware TX timestamp may be 806 * returned only if there is no software TX timestamp. Ignore false software 807 * timestamps, which may be made in the __sock_recv_timestamp() call when the 808 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 809 * hardware timestamp. 810 */ 811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 812 { 813 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 814 } 815 816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 817 { 818 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 819 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 820 struct net_device *orig_dev; 821 ktime_t hwtstamp; 822 823 rcu_read_lock(); 824 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 825 if (orig_dev) { 826 *if_index = orig_dev->ifindex; 827 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 828 } else { 829 hwtstamp = shhwtstamps->hwtstamp; 830 } 831 rcu_read_unlock(); 832 833 return hwtstamp; 834 } 835 836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 837 int if_index) 838 { 839 struct scm_ts_pktinfo ts_pktinfo; 840 struct net_device *orig_dev; 841 842 if (!skb_mac_header_was_set(skb)) 843 return; 844 845 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 846 847 if (!if_index) { 848 rcu_read_lock(); 849 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 850 if (orig_dev) 851 if_index = orig_dev->ifindex; 852 rcu_read_unlock(); 853 } 854 ts_pktinfo.if_index = if_index; 855 856 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 857 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 858 sizeof(ts_pktinfo), &ts_pktinfo); 859 } 860 861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk) 862 { 863 const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 864 u32 tsflags = READ_ONCE(sk->sk_tsflags); 865 866 if (serr->ee.ee_errno != ENOMSG || 867 serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING) 868 return false; 869 870 /* software time stamp available and wanted */ 871 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp) 872 return true; 873 /* hardware time stamps available and wanted */ 874 return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 875 skb_hwtstamps(skb)->hwtstamp; 876 } 877 878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 879 struct timespec64 *ts) 880 { 881 u32 tsflags = READ_ONCE(sk->sk_tsflags); 882 ktime_t hwtstamp; 883 int if_index = 0; 884 885 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 886 ktime_to_timespec64_cond(skb->tstamp, ts)) 887 return SOF_TIMESTAMPING_TX_SOFTWARE; 888 889 if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) || 890 skb_is_swtx_tstamp(skb, false)) 891 return -ENOENT; 892 893 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 894 hwtstamp = get_timestamp(sk, skb, &if_index); 895 else 896 hwtstamp = skb_hwtstamps(skb)->hwtstamp; 897 898 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 899 hwtstamp = ptp_convert_timestamp(&hwtstamp, 900 READ_ONCE(sk->sk_bind_phc)); 901 if (!ktime_to_timespec64_cond(hwtstamp, ts)) 902 return -ENOENT; 903 904 return SOF_TIMESTAMPING_TX_HARDWARE; 905 } 906 907 /* 908 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 909 */ 910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 911 struct sk_buff *skb) 912 { 913 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 914 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 915 struct scm_timestamping_internal tss; 916 int empty = 1, false_tstamp = 0; 917 struct skb_shared_hwtstamps *shhwtstamps = 918 skb_hwtstamps(skb); 919 int if_index; 920 ktime_t hwtstamp; 921 u32 tsflags; 922 923 /* Race occurred between timestamp enabling and packet 924 receiving. Fill in the current time for now. */ 925 if (need_software_tstamp && skb->tstamp == 0) { 926 __net_timestamp(skb); 927 false_tstamp = 1; 928 } 929 930 if (need_software_tstamp) { 931 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 932 if (new_tstamp) { 933 struct __kernel_sock_timeval tv; 934 935 skb_get_new_timestamp(skb, &tv); 936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 937 sizeof(tv), &tv); 938 } else { 939 struct __kernel_old_timeval tv; 940 941 skb_get_timestamp(skb, &tv); 942 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 943 sizeof(tv), &tv); 944 } 945 } else { 946 if (new_tstamp) { 947 struct __kernel_timespec ts; 948 949 skb_get_new_timestampns(skb, &ts); 950 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 951 sizeof(ts), &ts); 952 } else { 953 struct __kernel_old_timespec ts; 954 955 skb_get_timestampns(skb, &ts); 956 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 957 sizeof(ts), &ts); 958 } 959 } 960 } 961 962 memset(&tss, 0, sizeof(tss)); 963 tsflags = READ_ONCE(sk->sk_tsflags); 964 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 965 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 966 skb_is_err_queue(skb) || 967 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 968 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 969 empty = 0; 970 if (shhwtstamps && 971 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 972 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 973 skb_is_err_queue(skb) || 974 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 975 !skb_is_swtx_tstamp(skb, false_tstamp)) { 976 if_index = 0; 977 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 978 hwtstamp = get_timestamp(sk, skb, &if_index); 979 else 980 hwtstamp = shhwtstamps->hwtstamp; 981 982 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 983 hwtstamp = ptp_convert_timestamp(&hwtstamp, 984 READ_ONCE(sk->sk_bind_phc)); 985 986 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 987 empty = 0; 988 989 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 990 !skb_is_err_queue(skb)) 991 put_ts_pktinfo(msg, skb, if_index); 992 } 993 } 994 if (!empty) { 995 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 996 put_cmsg_scm_timestamping64(msg, &tss); 997 else 998 put_cmsg_scm_timestamping(msg, &tss); 999 1000 if (skb_is_err_queue(skb) && skb->len && 1001 SKB_EXT_ERR(skb)->opt_stats) 1002 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 1003 skb->len, skb->data); 1004 } 1005 } 1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 1007 1008 #ifdef CONFIG_WIRELESS 1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 1010 struct sk_buff *skb) 1011 { 1012 int ack; 1013 1014 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 1015 return; 1016 if (!skb->wifi_acked_valid) 1017 return; 1018 1019 ack = skb->wifi_acked; 1020 1021 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1022 } 1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1024 #endif 1025 1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1027 struct sk_buff *skb) 1028 { 1029 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1030 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1031 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1032 } 1033 1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1035 struct sk_buff *skb) 1036 { 1037 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1038 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1039 __u32 mark = skb->mark; 1040 1041 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1042 } 1043 } 1044 1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 1046 struct sk_buff *skb) 1047 { 1048 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 1049 __u32 priority = skb->priority; 1050 1051 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 1052 } 1053 } 1054 1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1056 struct sk_buff *skb) 1057 { 1058 sock_recv_timestamp(msg, sk, skb); 1059 sock_recv_drops(msg, sk, skb); 1060 sock_recv_mark(msg, sk, skb); 1061 sock_recv_priority(msg, sk, skb); 1062 } 1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1064 1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1066 size_t, int)); 1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1068 size_t, int)); 1069 1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1071 { 1072 trace_sock_recv_length(sk, ret, flags); 1073 } 1074 1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1076 int flags) 1077 { 1078 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1079 inet6_recvmsg, 1080 inet_recvmsg, sock, msg, 1081 msg_data_left(msg), flags); 1082 if (trace_sock_recv_length_enabled()) 1083 call_trace_sock_recv_length(sock->sk, ret, flags); 1084 return ret; 1085 } 1086 1087 /** 1088 * sock_recvmsg - receive a message from @sock 1089 * @sock: socket 1090 * @msg: message to receive 1091 * @flags: message flags 1092 * 1093 * Receives @msg from @sock, passing through LSM. Returns the total number 1094 * of bytes received, or an error. 1095 */ 1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1097 { 1098 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1099 1100 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1101 } 1102 EXPORT_SYMBOL(sock_recvmsg); 1103 1104 /** 1105 * kernel_recvmsg - Receive a message from a socket (kernel space) 1106 * @sock: The socket to receive the message from 1107 * @msg: Received message 1108 * @vec: Input s/g array for message data 1109 * @num: Size of input s/g array 1110 * @size: Number of bytes to read 1111 * @flags: Message flags (MSG_DONTWAIT, etc...) 1112 * 1113 * On return the msg structure contains the scatter/gather array passed in the 1114 * vec argument. The array is modified so that it consists of the unfilled 1115 * portion of the original array. 1116 * 1117 * The returned value is the total number of bytes received, or an error. 1118 */ 1119 1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1121 struct kvec *vec, size_t num, size_t size, int flags) 1122 { 1123 msg->msg_control_is_user = false; 1124 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1125 return sock_recvmsg(sock, msg, flags); 1126 } 1127 EXPORT_SYMBOL(kernel_recvmsg); 1128 1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1130 struct pipe_inode_info *pipe, size_t len, 1131 unsigned int flags) 1132 { 1133 struct socket *sock = file->private_data; 1134 const struct proto_ops *ops; 1135 1136 ops = READ_ONCE(sock->ops); 1137 if (unlikely(!ops->splice_read)) 1138 return copy_splice_read(file, ppos, pipe, len, flags); 1139 1140 return ops->splice_read(sock, ppos, pipe, len, flags); 1141 } 1142 1143 static void sock_splice_eof(struct file *file) 1144 { 1145 struct socket *sock = file->private_data; 1146 const struct proto_ops *ops; 1147 1148 ops = READ_ONCE(sock->ops); 1149 if (ops->splice_eof) 1150 ops->splice_eof(sock); 1151 } 1152 1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1154 { 1155 struct file *file = iocb->ki_filp; 1156 struct socket *sock = file->private_data; 1157 struct msghdr msg = {.msg_iter = *to, 1158 .msg_iocb = iocb}; 1159 ssize_t res; 1160 1161 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1162 msg.msg_flags = MSG_DONTWAIT; 1163 1164 if (iocb->ki_pos != 0) 1165 return -ESPIPE; 1166 1167 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1168 return 0; 1169 1170 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1171 *to = msg.msg_iter; 1172 return res; 1173 } 1174 1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1176 { 1177 struct file *file = iocb->ki_filp; 1178 struct socket *sock = file->private_data; 1179 struct msghdr msg = {.msg_iter = *from, 1180 .msg_iocb = iocb}; 1181 ssize_t res; 1182 1183 if (iocb->ki_pos != 0) 1184 return -ESPIPE; 1185 1186 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1187 msg.msg_flags = MSG_DONTWAIT; 1188 1189 if (sock->type == SOCK_SEQPACKET) 1190 msg.msg_flags |= MSG_EOR; 1191 1192 res = __sock_sendmsg(sock, &msg); 1193 *from = msg.msg_iter; 1194 return res; 1195 } 1196 1197 /* 1198 * Atomic setting of ioctl hooks to avoid race 1199 * with module unload. 1200 */ 1201 1202 static DEFINE_MUTEX(br_ioctl_mutex); 1203 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, 1204 void __user *uarg); 1205 1206 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, 1207 void __user *uarg)) 1208 { 1209 mutex_lock(&br_ioctl_mutex); 1210 br_ioctl_hook = hook; 1211 mutex_unlock(&br_ioctl_mutex); 1212 } 1213 EXPORT_SYMBOL(brioctl_set); 1214 1215 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) 1216 { 1217 int err = -ENOPKG; 1218 1219 if (!br_ioctl_hook) 1220 request_module("bridge"); 1221 1222 mutex_lock(&br_ioctl_mutex); 1223 if (br_ioctl_hook) 1224 err = br_ioctl_hook(net, cmd, uarg); 1225 mutex_unlock(&br_ioctl_mutex); 1226 1227 return err; 1228 } 1229 1230 static DEFINE_MUTEX(vlan_ioctl_mutex); 1231 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1232 1233 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1234 { 1235 mutex_lock(&vlan_ioctl_mutex); 1236 vlan_ioctl_hook = hook; 1237 mutex_unlock(&vlan_ioctl_mutex); 1238 } 1239 EXPORT_SYMBOL(vlan_ioctl_set); 1240 1241 static long sock_do_ioctl(struct net *net, struct socket *sock, 1242 unsigned int cmd, unsigned long arg) 1243 { 1244 const struct proto_ops *ops = READ_ONCE(sock->ops); 1245 struct ifreq ifr; 1246 bool need_copyout; 1247 int err; 1248 void __user *argp = (void __user *)arg; 1249 void __user *data; 1250 1251 err = ops->ioctl(sock, cmd, arg); 1252 1253 /* 1254 * If this ioctl is unknown try to hand it down 1255 * to the NIC driver. 1256 */ 1257 if (err != -ENOIOCTLCMD) 1258 return err; 1259 1260 if (!is_socket_ioctl_cmd(cmd)) 1261 return -ENOTTY; 1262 1263 if (get_user_ifreq(&ifr, &data, argp)) 1264 return -EFAULT; 1265 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1266 if (!err && need_copyout) 1267 if (put_user_ifreq(&ifr, argp)) 1268 return -EFAULT; 1269 1270 return err; 1271 } 1272 1273 /* 1274 * With an ioctl, arg may well be a user mode pointer, but we don't know 1275 * what to do with it - that's up to the protocol still. 1276 */ 1277 1278 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1279 { 1280 const struct proto_ops *ops; 1281 struct socket *sock; 1282 struct sock *sk; 1283 void __user *argp = (void __user *)arg; 1284 int pid, err; 1285 struct net *net; 1286 1287 sock = file->private_data; 1288 ops = READ_ONCE(sock->ops); 1289 sk = sock->sk; 1290 net = sock_net(sk); 1291 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1292 struct ifreq ifr; 1293 void __user *data; 1294 bool need_copyout; 1295 if (get_user_ifreq(&ifr, &data, argp)) 1296 return -EFAULT; 1297 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1298 if (!err && need_copyout) 1299 if (put_user_ifreq(&ifr, argp)) 1300 return -EFAULT; 1301 } else 1302 #ifdef CONFIG_WEXT_CORE 1303 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1304 err = wext_handle_ioctl(net, cmd, argp); 1305 } else 1306 #endif 1307 switch (cmd) { 1308 case FIOSETOWN: 1309 case SIOCSPGRP: 1310 err = -EFAULT; 1311 if (get_user(pid, (int __user *)argp)) 1312 break; 1313 err = f_setown(sock->file, pid, 1); 1314 break; 1315 case FIOGETOWN: 1316 case SIOCGPGRP: 1317 err = put_user(f_getown(sock->file), 1318 (int __user *)argp); 1319 break; 1320 case SIOCGIFBR: 1321 case SIOCSIFBR: 1322 case SIOCBRADDBR: 1323 case SIOCBRDELBR: 1324 case SIOCBRADDIF: 1325 case SIOCBRDELIF: 1326 err = br_ioctl_call(net, cmd, argp); 1327 break; 1328 case SIOCGIFVLAN: 1329 case SIOCSIFVLAN: 1330 err = -ENOPKG; 1331 if (!vlan_ioctl_hook) 1332 request_module("8021q"); 1333 1334 mutex_lock(&vlan_ioctl_mutex); 1335 if (vlan_ioctl_hook) 1336 err = vlan_ioctl_hook(net, argp); 1337 mutex_unlock(&vlan_ioctl_mutex); 1338 break; 1339 case SIOCGSKNS: 1340 err = -EPERM; 1341 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1342 break; 1343 1344 err = open_related_ns(&net->ns, get_net_ns); 1345 break; 1346 case SIOCGSTAMP_OLD: 1347 case SIOCGSTAMPNS_OLD: 1348 if (!ops->gettstamp) { 1349 err = -ENOIOCTLCMD; 1350 break; 1351 } 1352 err = ops->gettstamp(sock, argp, 1353 cmd == SIOCGSTAMP_OLD, 1354 !IS_ENABLED(CONFIG_64BIT)); 1355 break; 1356 case SIOCGSTAMP_NEW: 1357 case SIOCGSTAMPNS_NEW: 1358 if (!ops->gettstamp) { 1359 err = -ENOIOCTLCMD; 1360 break; 1361 } 1362 err = ops->gettstamp(sock, argp, 1363 cmd == SIOCGSTAMP_NEW, 1364 false); 1365 break; 1366 1367 case SIOCGIFCONF: 1368 err = dev_ifconf(net, argp); 1369 break; 1370 1371 default: 1372 err = sock_do_ioctl(net, sock, cmd, arg); 1373 break; 1374 } 1375 return err; 1376 } 1377 1378 /** 1379 * sock_create_lite - creates a socket 1380 * @family: protocol family (AF_INET, ...) 1381 * @type: communication type (SOCK_STREAM, ...) 1382 * @protocol: protocol (0, ...) 1383 * @res: new socket 1384 * 1385 * Creates a new socket and assigns it to @res, passing through LSM. 1386 * The new socket initialization is not complete, see kernel_accept(). 1387 * Returns 0 or an error. On failure @res is set to %NULL. 1388 * This function internally uses GFP_KERNEL. 1389 */ 1390 1391 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1392 { 1393 int err; 1394 struct socket *sock = NULL; 1395 1396 err = security_socket_create(family, type, protocol, 1); 1397 if (err) 1398 goto out; 1399 1400 sock = sock_alloc(); 1401 if (!sock) { 1402 err = -ENOMEM; 1403 goto out; 1404 } 1405 1406 sock->type = type; 1407 err = security_socket_post_create(sock, family, type, protocol, 1); 1408 if (err) 1409 goto out_release; 1410 1411 out: 1412 *res = sock; 1413 return err; 1414 out_release: 1415 sock_release(sock); 1416 sock = NULL; 1417 goto out; 1418 } 1419 EXPORT_SYMBOL(sock_create_lite); 1420 1421 /* No kernel lock held - perfect */ 1422 static __poll_t sock_poll(struct file *file, poll_table *wait) 1423 { 1424 struct socket *sock = file->private_data; 1425 const struct proto_ops *ops = READ_ONCE(sock->ops); 1426 __poll_t events = poll_requested_events(wait), flag = 0; 1427 1428 if (!ops->poll) 1429 return 0; 1430 1431 if (sk_can_busy_loop(sock->sk)) { 1432 /* poll once if requested by the syscall */ 1433 if (events & POLL_BUSY_LOOP) 1434 sk_busy_loop(sock->sk, 1); 1435 1436 /* if this socket can poll_ll, tell the system call */ 1437 flag = POLL_BUSY_LOOP; 1438 } 1439 1440 return ops->poll(file, sock, wait) | flag; 1441 } 1442 1443 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1444 { 1445 struct socket *sock = file->private_data; 1446 1447 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1448 } 1449 1450 static int sock_close(struct inode *inode, struct file *filp) 1451 { 1452 __sock_release(SOCKET_I(inode), inode); 1453 return 0; 1454 } 1455 1456 /* 1457 * Update the socket async list 1458 * 1459 * Fasync_list locking strategy. 1460 * 1461 * 1. fasync_list is modified only under process context socket lock 1462 * i.e. under semaphore. 1463 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1464 * or under socket lock 1465 */ 1466 1467 static int sock_fasync(int fd, struct file *filp, int on) 1468 { 1469 struct socket *sock = filp->private_data; 1470 struct sock *sk = sock->sk; 1471 struct socket_wq *wq = &sock->wq; 1472 1473 if (sk == NULL) 1474 return -EINVAL; 1475 1476 lock_sock(sk); 1477 fasync_helper(fd, filp, on, &wq->fasync_list); 1478 1479 if (!wq->fasync_list) 1480 sock_reset_flag(sk, SOCK_FASYNC); 1481 else 1482 sock_set_flag(sk, SOCK_FASYNC); 1483 1484 release_sock(sk); 1485 return 0; 1486 } 1487 1488 /* This function may be called only under rcu_lock */ 1489 1490 int sock_wake_async(struct socket_wq *wq, int how, int band) 1491 { 1492 if (!wq || !wq->fasync_list) 1493 return -1; 1494 1495 switch (how) { 1496 case SOCK_WAKE_WAITD: 1497 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1498 break; 1499 goto call_kill; 1500 case SOCK_WAKE_SPACE: 1501 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1502 break; 1503 fallthrough; 1504 case SOCK_WAKE_IO: 1505 call_kill: 1506 kill_fasync(&wq->fasync_list, SIGIO, band); 1507 break; 1508 case SOCK_WAKE_URG: 1509 kill_fasync(&wq->fasync_list, SIGURG, band); 1510 } 1511 1512 return 0; 1513 } 1514 EXPORT_SYMBOL(sock_wake_async); 1515 1516 /** 1517 * __sock_create - creates a socket 1518 * @net: net namespace 1519 * @family: protocol family (AF_INET, ...) 1520 * @type: communication type (SOCK_STREAM, ...) 1521 * @protocol: protocol (0, ...) 1522 * @res: new socket 1523 * @kern: boolean for kernel space sockets 1524 * 1525 * Creates a new socket and assigns it to @res, passing through LSM. 1526 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1527 * be set to true if the socket resides in kernel space. 1528 * This function internally uses GFP_KERNEL. 1529 */ 1530 1531 int __sock_create(struct net *net, int family, int type, int protocol, 1532 struct socket **res, int kern) 1533 { 1534 int err; 1535 struct socket *sock; 1536 const struct net_proto_family *pf; 1537 1538 /* 1539 * Check protocol is in range 1540 */ 1541 if (family < 0 || family >= NPROTO) 1542 return -EAFNOSUPPORT; 1543 if (type < 0 || type >= SOCK_MAX) 1544 return -EINVAL; 1545 1546 /* Compatibility. 1547 1548 This uglymoron is moved from INET layer to here to avoid 1549 deadlock in module load. 1550 */ 1551 if (family == PF_INET && type == SOCK_PACKET) { 1552 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1553 current->comm); 1554 family = PF_PACKET; 1555 } 1556 1557 err = security_socket_create(family, type, protocol, kern); 1558 if (err) 1559 return err; 1560 1561 /* 1562 * Allocate the socket and allow the family to set things up. if 1563 * the protocol is 0, the family is instructed to select an appropriate 1564 * default. 1565 */ 1566 sock = sock_alloc(); 1567 if (!sock) { 1568 net_warn_ratelimited("socket: no more sockets\n"); 1569 return -ENFILE; /* Not exactly a match, but its the 1570 closest posix thing */ 1571 } 1572 1573 sock->type = type; 1574 1575 #ifdef CONFIG_MODULES 1576 /* Attempt to load a protocol module if the find failed. 1577 * 1578 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1579 * requested real, full-featured networking support upon configuration. 1580 * Otherwise module support will break! 1581 */ 1582 if (rcu_access_pointer(net_families[family]) == NULL) 1583 request_module("net-pf-%d", family); 1584 #endif 1585 1586 rcu_read_lock(); 1587 pf = rcu_dereference(net_families[family]); 1588 err = -EAFNOSUPPORT; 1589 if (!pf) 1590 goto out_release; 1591 1592 /* 1593 * We will call the ->create function, that possibly is in a loadable 1594 * module, so we have to bump that loadable module refcnt first. 1595 */ 1596 if (!try_module_get(pf->owner)) 1597 goto out_release; 1598 1599 /* Now protected by module ref count */ 1600 rcu_read_unlock(); 1601 1602 err = pf->create(net, sock, protocol, kern); 1603 if (err < 0) { 1604 /* ->create should release the allocated sock->sk object on error 1605 * and make sure sock->sk is set to NULL to avoid use-after-free 1606 */ 1607 DEBUG_NET_WARN_ONCE(sock->sk, 1608 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1609 pf->create, family, type, protocol); 1610 goto out_module_put; 1611 } 1612 1613 /* 1614 * Now to bump the refcnt of the [loadable] module that owns this 1615 * socket at sock_release time we decrement its refcnt. 1616 */ 1617 if (!try_module_get(sock->ops->owner)) 1618 goto out_module_busy; 1619 1620 /* 1621 * Now that we're done with the ->create function, the [loadable] 1622 * module can have its refcnt decremented 1623 */ 1624 module_put(pf->owner); 1625 err = security_socket_post_create(sock, family, type, protocol, kern); 1626 if (err) 1627 goto out_sock_release; 1628 *res = sock; 1629 1630 return 0; 1631 1632 out_module_busy: 1633 err = -EAFNOSUPPORT; 1634 out_module_put: 1635 sock->ops = NULL; 1636 module_put(pf->owner); 1637 out_sock_release: 1638 sock_release(sock); 1639 return err; 1640 1641 out_release: 1642 rcu_read_unlock(); 1643 goto out_sock_release; 1644 } 1645 EXPORT_SYMBOL(__sock_create); 1646 1647 /** 1648 * sock_create - creates a socket 1649 * @family: protocol family (AF_INET, ...) 1650 * @type: communication type (SOCK_STREAM, ...) 1651 * @protocol: protocol (0, ...) 1652 * @res: new socket 1653 * 1654 * A wrapper around __sock_create(). 1655 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1656 */ 1657 1658 int sock_create(int family, int type, int protocol, struct socket **res) 1659 { 1660 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1661 } 1662 EXPORT_SYMBOL(sock_create); 1663 1664 /** 1665 * sock_create_kern - creates a socket (kernel space) 1666 * @net: net namespace 1667 * @family: protocol family (AF_INET, ...) 1668 * @type: communication type (SOCK_STREAM, ...) 1669 * @protocol: protocol (0, ...) 1670 * @res: new socket 1671 * 1672 * A wrapper around __sock_create(). 1673 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1674 */ 1675 1676 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1677 { 1678 return __sock_create(net, family, type, protocol, res, 1); 1679 } 1680 EXPORT_SYMBOL(sock_create_kern); 1681 1682 static struct socket *__sys_socket_create(int family, int type, int protocol) 1683 { 1684 struct socket *sock; 1685 int retval; 1686 1687 /* Check the SOCK_* constants for consistency. */ 1688 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1689 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1690 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1691 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1692 1693 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1694 return ERR_PTR(-EINVAL); 1695 type &= SOCK_TYPE_MASK; 1696 1697 retval = sock_create(family, type, protocol, &sock); 1698 if (retval < 0) 1699 return ERR_PTR(retval); 1700 1701 return sock; 1702 } 1703 1704 struct file *__sys_socket_file(int family, int type, int protocol) 1705 { 1706 struct socket *sock; 1707 int flags; 1708 1709 sock = __sys_socket_create(family, type, protocol); 1710 if (IS_ERR(sock)) 1711 return ERR_CAST(sock); 1712 1713 flags = type & ~SOCK_TYPE_MASK; 1714 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1715 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1716 1717 return sock_alloc_file(sock, flags, NULL); 1718 } 1719 1720 /* A hook for bpf progs to attach to and update socket protocol. 1721 * 1722 * A static noinline declaration here could cause the compiler to 1723 * optimize away the function. A global noinline declaration will 1724 * keep the definition, but may optimize away the callsite. 1725 * Therefore, __weak is needed to ensure that the call is still 1726 * emitted, by telling the compiler that we don't know what the 1727 * function might eventually be. 1728 */ 1729 1730 __bpf_hook_start(); 1731 1732 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1733 { 1734 return protocol; 1735 } 1736 1737 __bpf_hook_end(); 1738 1739 int __sys_socket(int family, int type, int protocol) 1740 { 1741 struct socket *sock; 1742 int flags; 1743 1744 sock = __sys_socket_create(family, type, 1745 update_socket_protocol(family, type, protocol)); 1746 if (IS_ERR(sock)) 1747 return PTR_ERR(sock); 1748 1749 flags = type & ~SOCK_TYPE_MASK; 1750 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1751 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1752 1753 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1754 } 1755 1756 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1757 { 1758 return __sys_socket(family, type, protocol); 1759 } 1760 1761 /* 1762 * Create a pair of connected sockets. 1763 */ 1764 1765 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1766 { 1767 struct socket *sock1, *sock2; 1768 int fd1, fd2, err; 1769 struct file *newfile1, *newfile2; 1770 int flags; 1771 1772 flags = type & ~SOCK_TYPE_MASK; 1773 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1774 return -EINVAL; 1775 type &= SOCK_TYPE_MASK; 1776 1777 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1778 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1779 1780 /* 1781 * reserve descriptors and make sure we won't fail 1782 * to return them to userland. 1783 */ 1784 fd1 = get_unused_fd_flags(flags); 1785 if (unlikely(fd1 < 0)) 1786 return fd1; 1787 1788 fd2 = get_unused_fd_flags(flags); 1789 if (unlikely(fd2 < 0)) { 1790 put_unused_fd(fd1); 1791 return fd2; 1792 } 1793 1794 err = put_user(fd1, &usockvec[0]); 1795 if (err) 1796 goto out; 1797 1798 err = put_user(fd2, &usockvec[1]); 1799 if (err) 1800 goto out; 1801 1802 /* 1803 * Obtain the first socket and check if the underlying protocol 1804 * supports the socketpair call. 1805 */ 1806 1807 err = sock_create(family, type, protocol, &sock1); 1808 if (unlikely(err < 0)) 1809 goto out; 1810 1811 err = sock_create(family, type, protocol, &sock2); 1812 if (unlikely(err < 0)) { 1813 sock_release(sock1); 1814 goto out; 1815 } 1816 1817 err = security_socket_socketpair(sock1, sock2); 1818 if (unlikely(err)) { 1819 sock_release(sock2); 1820 sock_release(sock1); 1821 goto out; 1822 } 1823 1824 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1825 if (unlikely(err < 0)) { 1826 sock_release(sock2); 1827 sock_release(sock1); 1828 goto out; 1829 } 1830 1831 newfile1 = sock_alloc_file(sock1, flags, NULL); 1832 if (IS_ERR(newfile1)) { 1833 err = PTR_ERR(newfile1); 1834 sock_release(sock2); 1835 goto out; 1836 } 1837 1838 newfile2 = sock_alloc_file(sock2, flags, NULL); 1839 if (IS_ERR(newfile2)) { 1840 err = PTR_ERR(newfile2); 1841 fput(newfile1); 1842 goto out; 1843 } 1844 1845 audit_fd_pair(fd1, fd2); 1846 1847 fd_install(fd1, newfile1); 1848 fd_install(fd2, newfile2); 1849 return 0; 1850 1851 out: 1852 put_unused_fd(fd2); 1853 put_unused_fd(fd1); 1854 return err; 1855 } 1856 1857 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1858 int __user *, usockvec) 1859 { 1860 return __sys_socketpair(family, type, protocol, usockvec); 1861 } 1862 1863 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1864 int addrlen) 1865 { 1866 int err; 1867 1868 err = security_socket_bind(sock, (struct sockaddr *)address, 1869 addrlen); 1870 if (!err) 1871 err = READ_ONCE(sock->ops)->bind(sock, 1872 (struct sockaddr *)address, 1873 addrlen); 1874 return err; 1875 } 1876 1877 /* 1878 * Bind a name to a socket. Nothing much to do here since it's 1879 * the protocol's responsibility to handle the local address. 1880 * 1881 * We move the socket address to kernel space before we call 1882 * the protocol layer (having also checked the address is ok). 1883 */ 1884 1885 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1886 { 1887 struct socket *sock; 1888 struct sockaddr_storage address; 1889 CLASS(fd, f)(fd); 1890 int err; 1891 1892 if (fd_empty(f)) 1893 return -EBADF; 1894 sock = sock_from_file(fd_file(f)); 1895 if (unlikely(!sock)) 1896 return -ENOTSOCK; 1897 1898 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1899 if (unlikely(err)) 1900 return err; 1901 1902 return __sys_bind_socket(sock, &address, addrlen); 1903 } 1904 1905 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1906 { 1907 return __sys_bind(fd, umyaddr, addrlen); 1908 } 1909 1910 /* 1911 * Perform a listen. Basically, we allow the protocol to do anything 1912 * necessary for a listen, and if that works, we mark the socket as 1913 * ready for listening. 1914 */ 1915 int __sys_listen_socket(struct socket *sock, int backlog) 1916 { 1917 int somaxconn, err; 1918 1919 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1920 if ((unsigned int)backlog > somaxconn) 1921 backlog = somaxconn; 1922 1923 err = security_socket_listen(sock, backlog); 1924 if (!err) 1925 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1926 return err; 1927 } 1928 1929 int __sys_listen(int fd, int backlog) 1930 { 1931 CLASS(fd, f)(fd); 1932 struct socket *sock; 1933 1934 if (fd_empty(f)) 1935 return -EBADF; 1936 sock = sock_from_file(fd_file(f)); 1937 if (unlikely(!sock)) 1938 return -ENOTSOCK; 1939 1940 return __sys_listen_socket(sock, backlog); 1941 } 1942 1943 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1944 { 1945 return __sys_listen(fd, backlog); 1946 } 1947 1948 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1949 struct sockaddr __user *upeer_sockaddr, 1950 int __user *upeer_addrlen, int flags) 1951 { 1952 struct socket *sock, *newsock; 1953 struct file *newfile; 1954 int err, len; 1955 struct sockaddr_storage address; 1956 const struct proto_ops *ops; 1957 1958 sock = sock_from_file(file); 1959 if (!sock) 1960 return ERR_PTR(-ENOTSOCK); 1961 1962 newsock = sock_alloc(); 1963 if (!newsock) 1964 return ERR_PTR(-ENFILE); 1965 ops = READ_ONCE(sock->ops); 1966 1967 newsock->type = sock->type; 1968 newsock->ops = ops; 1969 1970 /* 1971 * We don't need try_module_get here, as the listening socket (sock) 1972 * has the protocol module (sock->ops->owner) held. 1973 */ 1974 __module_get(ops->owner); 1975 1976 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1977 if (IS_ERR(newfile)) 1978 return newfile; 1979 1980 err = security_socket_accept(sock, newsock); 1981 if (err) 1982 goto out_fd; 1983 1984 arg->flags |= sock->file->f_flags; 1985 err = ops->accept(sock, newsock, arg); 1986 if (err < 0) 1987 goto out_fd; 1988 1989 if (upeer_sockaddr) { 1990 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1991 if (len < 0) { 1992 err = -ECONNABORTED; 1993 goto out_fd; 1994 } 1995 err = move_addr_to_user(&address, 1996 len, upeer_sockaddr, upeer_addrlen); 1997 if (err < 0) 1998 goto out_fd; 1999 } 2000 2001 /* File flags are not inherited via accept() unlike another OSes. */ 2002 return newfile; 2003 out_fd: 2004 fput(newfile); 2005 return ERR_PTR(err); 2006 } 2007 2008 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 2009 int __user *upeer_addrlen, int flags) 2010 { 2011 struct proto_accept_arg arg = { }; 2012 struct file *newfile; 2013 int newfd; 2014 2015 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 2016 return -EINVAL; 2017 2018 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 2019 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 2020 2021 newfd = get_unused_fd_flags(flags); 2022 if (unlikely(newfd < 0)) 2023 return newfd; 2024 2025 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 2026 flags); 2027 if (IS_ERR(newfile)) { 2028 put_unused_fd(newfd); 2029 return PTR_ERR(newfile); 2030 } 2031 fd_install(newfd, newfile); 2032 return newfd; 2033 } 2034 2035 /* 2036 * For accept, we attempt to create a new socket, set up the link 2037 * with the client, wake up the client, then return the new 2038 * connected fd. We collect the address of the connector in kernel 2039 * space and move it to user at the very end. This is unclean because 2040 * we open the socket then return an error. 2041 * 2042 * 1003.1g adds the ability to recvmsg() to query connection pending 2043 * status to recvmsg. We need to add that support in a way thats 2044 * clean when we restructure accept also. 2045 */ 2046 2047 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2048 int __user *upeer_addrlen, int flags) 2049 { 2050 CLASS(fd, f)(fd); 2051 2052 if (fd_empty(f)) 2053 return -EBADF; 2054 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2055 upeer_addrlen, flags); 2056 } 2057 2058 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2059 int __user *, upeer_addrlen, int, flags) 2060 { 2061 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2062 } 2063 2064 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2065 int __user *, upeer_addrlen) 2066 { 2067 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2068 } 2069 2070 /* 2071 * Attempt to connect to a socket with the server address. The address 2072 * is in user space so we verify it is OK and move it to kernel space. 2073 * 2074 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2075 * break bindings 2076 * 2077 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2078 * other SEQPACKET protocols that take time to connect() as it doesn't 2079 * include the -EINPROGRESS status for such sockets. 2080 */ 2081 2082 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2083 int addrlen, int file_flags) 2084 { 2085 struct socket *sock; 2086 int err; 2087 2088 sock = sock_from_file(file); 2089 if (!sock) { 2090 err = -ENOTSOCK; 2091 goto out; 2092 } 2093 2094 err = 2095 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2096 if (err) 2097 goto out; 2098 2099 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2100 addrlen, sock->file->f_flags | file_flags); 2101 out: 2102 return err; 2103 } 2104 2105 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2106 { 2107 struct sockaddr_storage address; 2108 CLASS(fd, f)(fd); 2109 int ret; 2110 2111 if (fd_empty(f)) 2112 return -EBADF; 2113 2114 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2115 if (ret) 2116 return ret; 2117 2118 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2119 } 2120 2121 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2122 int, addrlen) 2123 { 2124 return __sys_connect(fd, uservaddr, addrlen); 2125 } 2126 2127 /* 2128 * Get the local address ('name') of a socket object. Move the obtained 2129 * name to user space. 2130 */ 2131 2132 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2133 int __user *usockaddr_len) 2134 { 2135 struct socket *sock; 2136 struct sockaddr_storage address; 2137 CLASS(fd, f)(fd); 2138 int err; 2139 2140 if (fd_empty(f)) 2141 return -EBADF; 2142 sock = sock_from_file(fd_file(f)); 2143 if (unlikely(!sock)) 2144 return -ENOTSOCK; 2145 2146 err = security_socket_getsockname(sock); 2147 if (err) 2148 return err; 2149 2150 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2151 if (err < 0) 2152 return err; 2153 2154 /* "err" is actually length in this case */ 2155 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2156 } 2157 2158 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2159 int __user *, usockaddr_len) 2160 { 2161 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2162 } 2163 2164 /* 2165 * Get the remote address ('name') of a socket object. Move the obtained 2166 * name to user space. 2167 */ 2168 2169 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2170 int __user *usockaddr_len) 2171 { 2172 struct socket *sock; 2173 struct sockaddr_storage address; 2174 CLASS(fd, f)(fd); 2175 int err; 2176 2177 if (fd_empty(f)) 2178 return -EBADF; 2179 sock = sock_from_file(fd_file(f)); 2180 if (unlikely(!sock)) 2181 return -ENOTSOCK; 2182 2183 err = security_socket_getpeername(sock); 2184 if (err) 2185 return err; 2186 2187 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2188 if (err < 0) 2189 return err; 2190 2191 /* "err" is actually length in this case */ 2192 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2193 } 2194 2195 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2196 int __user *, usockaddr_len) 2197 { 2198 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2199 } 2200 2201 /* 2202 * Send a datagram to a given address. We move the address into kernel 2203 * space and check the user space data area is readable before invoking 2204 * the protocol. 2205 */ 2206 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2207 struct sockaddr __user *addr, int addr_len) 2208 { 2209 struct socket *sock; 2210 struct sockaddr_storage address; 2211 int err; 2212 struct msghdr msg; 2213 2214 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2215 if (unlikely(err)) 2216 return err; 2217 2218 CLASS(fd, f)(fd); 2219 if (fd_empty(f)) 2220 return -EBADF; 2221 sock = sock_from_file(fd_file(f)); 2222 if (unlikely(!sock)) 2223 return -ENOTSOCK; 2224 2225 msg.msg_name = NULL; 2226 msg.msg_control = NULL; 2227 msg.msg_controllen = 0; 2228 msg.msg_namelen = 0; 2229 msg.msg_ubuf = NULL; 2230 if (addr) { 2231 err = move_addr_to_kernel(addr, addr_len, &address); 2232 if (err < 0) 2233 return err; 2234 msg.msg_name = (struct sockaddr *)&address; 2235 msg.msg_namelen = addr_len; 2236 } 2237 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2238 if (sock->file->f_flags & O_NONBLOCK) 2239 flags |= MSG_DONTWAIT; 2240 msg.msg_flags = flags; 2241 return __sock_sendmsg(sock, &msg); 2242 } 2243 2244 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2245 unsigned int, flags, struct sockaddr __user *, addr, 2246 int, addr_len) 2247 { 2248 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2249 } 2250 2251 /* 2252 * Send a datagram down a socket. 2253 */ 2254 2255 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2256 unsigned int, flags) 2257 { 2258 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2259 } 2260 2261 /* 2262 * Receive a frame from the socket and optionally record the address of the 2263 * sender. We verify the buffers are writable and if needed move the 2264 * sender address from kernel to user space. 2265 */ 2266 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2267 struct sockaddr __user *addr, int __user *addr_len) 2268 { 2269 struct sockaddr_storage address; 2270 struct msghdr msg = { 2271 /* Save some cycles and don't copy the address if not needed */ 2272 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2273 }; 2274 struct socket *sock; 2275 int err, err2; 2276 2277 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2278 if (unlikely(err)) 2279 return err; 2280 2281 CLASS(fd, f)(fd); 2282 2283 if (fd_empty(f)) 2284 return -EBADF; 2285 sock = sock_from_file(fd_file(f)); 2286 if (unlikely(!sock)) 2287 return -ENOTSOCK; 2288 2289 if (sock->file->f_flags & O_NONBLOCK) 2290 flags |= MSG_DONTWAIT; 2291 err = sock_recvmsg(sock, &msg, flags); 2292 2293 if (err >= 0 && addr != NULL) { 2294 err2 = move_addr_to_user(&address, 2295 msg.msg_namelen, addr, addr_len); 2296 if (err2 < 0) 2297 err = err2; 2298 } 2299 return err; 2300 } 2301 2302 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2303 unsigned int, flags, struct sockaddr __user *, addr, 2304 int __user *, addr_len) 2305 { 2306 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2307 } 2308 2309 /* 2310 * Receive a datagram from a socket. 2311 */ 2312 2313 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2314 unsigned int, flags) 2315 { 2316 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2317 } 2318 2319 static bool sock_use_custom_sol_socket(const struct socket *sock) 2320 { 2321 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2322 } 2323 2324 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2325 int optname, sockptr_t optval, int optlen) 2326 { 2327 const struct proto_ops *ops; 2328 char *kernel_optval = NULL; 2329 int err; 2330 2331 if (optlen < 0) 2332 return -EINVAL; 2333 2334 err = security_socket_setsockopt(sock, level, optname); 2335 if (err) 2336 goto out_put; 2337 2338 if (!compat) 2339 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2340 optval, &optlen, 2341 &kernel_optval); 2342 if (err < 0) 2343 goto out_put; 2344 if (err > 0) { 2345 err = 0; 2346 goto out_put; 2347 } 2348 2349 if (kernel_optval) 2350 optval = KERNEL_SOCKPTR(kernel_optval); 2351 ops = READ_ONCE(sock->ops); 2352 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2353 err = sock_setsockopt(sock, level, optname, optval, optlen); 2354 else if (unlikely(!ops->setsockopt)) 2355 err = -EOPNOTSUPP; 2356 else 2357 err = ops->setsockopt(sock, level, optname, optval, 2358 optlen); 2359 kfree(kernel_optval); 2360 out_put: 2361 return err; 2362 } 2363 EXPORT_SYMBOL(do_sock_setsockopt); 2364 2365 /* Set a socket option. Because we don't know the option lengths we have 2366 * to pass the user mode parameter for the protocols to sort out. 2367 */ 2368 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2369 int optlen) 2370 { 2371 sockptr_t optval = USER_SOCKPTR(user_optval); 2372 bool compat = in_compat_syscall(); 2373 struct socket *sock; 2374 CLASS(fd, f)(fd); 2375 2376 if (fd_empty(f)) 2377 return -EBADF; 2378 sock = sock_from_file(fd_file(f)); 2379 if (unlikely(!sock)) 2380 return -ENOTSOCK; 2381 2382 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2383 } 2384 2385 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2386 char __user *, optval, int, optlen) 2387 { 2388 return __sys_setsockopt(fd, level, optname, optval, optlen); 2389 } 2390 2391 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2392 int optname)); 2393 2394 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2395 int optname, sockptr_t optval, sockptr_t optlen) 2396 { 2397 int max_optlen __maybe_unused = 0; 2398 const struct proto_ops *ops; 2399 int err; 2400 2401 err = security_socket_getsockopt(sock, level, optname); 2402 if (err) 2403 return err; 2404 2405 if (!compat) 2406 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2407 2408 ops = READ_ONCE(sock->ops); 2409 if (level == SOL_SOCKET) { 2410 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2411 } else if (unlikely(!ops->getsockopt)) { 2412 err = -EOPNOTSUPP; 2413 } else { 2414 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2415 "Invalid argument type")) 2416 return -EOPNOTSUPP; 2417 2418 err = ops->getsockopt(sock, level, optname, optval.user, 2419 optlen.user); 2420 } 2421 2422 if (!compat) 2423 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2424 optval, optlen, max_optlen, 2425 err); 2426 2427 return err; 2428 } 2429 EXPORT_SYMBOL(do_sock_getsockopt); 2430 2431 /* 2432 * Get a socket option. Because we don't know the option lengths we have 2433 * to pass a user mode parameter for the protocols to sort out. 2434 */ 2435 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2436 int __user *optlen) 2437 { 2438 struct socket *sock; 2439 CLASS(fd, f)(fd); 2440 2441 if (fd_empty(f)) 2442 return -EBADF; 2443 sock = sock_from_file(fd_file(f)); 2444 if (unlikely(!sock)) 2445 return -ENOTSOCK; 2446 2447 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2448 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2449 } 2450 2451 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2452 char __user *, optval, int __user *, optlen) 2453 { 2454 return __sys_getsockopt(fd, level, optname, optval, optlen); 2455 } 2456 2457 /* 2458 * Shutdown a socket. 2459 */ 2460 2461 int __sys_shutdown_sock(struct socket *sock, int how) 2462 { 2463 int err; 2464 2465 err = security_socket_shutdown(sock, how); 2466 if (!err) 2467 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2468 2469 return err; 2470 } 2471 2472 int __sys_shutdown(int fd, int how) 2473 { 2474 struct socket *sock; 2475 CLASS(fd, f)(fd); 2476 2477 if (fd_empty(f)) 2478 return -EBADF; 2479 sock = sock_from_file(fd_file(f)); 2480 if (unlikely(!sock)) 2481 return -ENOTSOCK; 2482 2483 return __sys_shutdown_sock(sock, how); 2484 } 2485 2486 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2487 { 2488 return __sys_shutdown(fd, how); 2489 } 2490 2491 /* A couple of helpful macros for getting the address of the 32/64 bit 2492 * fields which are the same type (int / unsigned) on our platforms. 2493 */ 2494 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2495 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2496 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2497 2498 struct used_address { 2499 struct sockaddr_storage name; 2500 unsigned int name_len; 2501 }; 2502 2503 int __copy_msghdr(struct msghdr *kmsg, 2504 struct user_msghdr *msg, 2505 struct sockaddr __user **save_addr) 2506 { 2507 ssize_t err; 2508 2509 kmsg->msg_control_is_user = true; 2510 kmsg->msg_get_inq = 0; 2511 kmsg->msg_control_user = msg->msg_control; 2512 kmsg->msg_controllen = msg->msg_controllen; 2513 kmsg->msg_flags = msg->msg_flags; 2514 2515 kmsg->msg_namelen = msg->msg_namelen; 2516 if (!msg->msg_name) 2517 kmsg->msg_namelen = 0; 2518 2519 if (kmsg->msg_namelen < 0) 2520 return -EINVAL; 2521 2522 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2523 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2524 2525 if (save_addr) 2526 *save_addr = msg->msg_name; 2527 2528 if (msg->msg_name && kmsg->msg_namelen) { 2529 if (!save_addr) { 2530 err = move_addr_to_kernel(msg->msg_name, 2531 kmsg->msg_namelen, 2532 kmsg->msg_name); 2533 if (err < 0) 2534 return err; 2535 } 2536 } else { 2537 kmsg->msg_name = NULL; 2538 kmsg->msg_namelen = 0; 2539 } 2540 2541 if (msg->msg_iovlen > UIO_MAXIOV) 2542 return -EMSGSIZE; 2543 2544 kmsg->msg_iocb = NULL; 2545 kmsg->msg_ubuf = NULL; 2546 return 0; 2547 } 2548 2549 static int copy_msghdr_from_user(struct msghdr *kmsg, 2550 struct user_msghdr __user *umsg, 2551 struct sockaddr __user **save_addr, 2552 struct iovec **iov) 2553 { 2554 struct user_msghdr msg; 2555 ssize_t err; 2556 2557 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2558 return -EFAULT; 2559 2560 err = __copy_msghdr(kmsg, &msg, save_addr); 2561 if (err) 2562 return err; 2563 2564 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2565 msg.msg_iov, msg.msg_iovlen, 2566 UIO_FASTIOV, iov, &kmsg->msg_iter); 2567 return err < 0 ? err : 0; 2568 } 2569 2570 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2571 unsigned int flags, struct used_address *used_address, 2572 unsigned int allowed_msghdr_flags) 2573 { 2574 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2575 __aligned(sizeof(__kernel_size_t)); 2576 /* 20 is size of ipv6_pktinfo */ 2577 unsigned char *ctl_buf = ctl; 2578 int ctl_len; 2579 ssize_t err; 2580 2581 err = -ENOBUFS; 2582 2583 if (msg_sys->msg_controllen > INT_MAX) 2584 goto out; 2585 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2586 ctl_len = msg_sys->msg_controllen; 2587 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2588 err = 2589 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2590 sizeof(ctl)); 2591 if (err) 2592 goto out; 2593 ctl_buf = msg_sys->msg_control; 2594 ctl_len = msg_sys->msg_controllen; 2595 } else if (ctl_len) { 2596 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2597 CMSG_ALIGN(sizeof(struct cmsghdr))); 2598 if (ctl_len > sizeof(ctl)) { 2599 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2600 if (ctl_buf == NULL) 2601 goto out; 2602 } 2603 err = -EFAULT; 2604 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2605 goto out_freectl; 2606 msg_sys->msg_control = ctl_buf; 2607 msg_sys->msg_control_is_user = false; 2608 } 2609 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2610 msg_sys->msg_flags = flags; 2611 2612 if (sock->file->f_flags & O_NONBLOCK) 2613 msg_sys->msg_flags |= MSG_DONTWAIT; 2614 /* 2615 * If this is sendmmsg() and current destination address is same as 2616 * previously succeeded address, omit asking LSM's decision. 2617 * used_address->name_len is initialized to UINT_MAX so that the first 2618 * destination address never matches. 2619 */ 2620 if (used_address && msg_sys->msg_name && 2621 used_address->name_len == msg_sys->msg_namelen && 2622 !memcmp(&used_address->name, msg_sys->msg_name, 2623 used_address->name_len)) { 2624 err = sock_sendmsg_nosec(sock, msg_sys); 2625 goto out_freectl; 2626 } 2627 err = __sock_sendmsg(sock, msg_sys); 2628 /* 2629 * If this is sendmmsg() and sending to current destination address was 2630 * successful, remember it. 2631 */ 2632 if (used_address && err >= 0) { 2633 used_address->name_len = msg_sys->msg_namelen; 2634 if (msg_sys->msg_name) 2635 memcpy(&used_address->name, msg_sys->msg_name, 2636 used_address->name_len); 2637 } 2638 2639 out_freectl: 2640 if (ctl_buf != ctl) 2641 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2642 out: 2643 return err; 2644 } 2645 2646 static int sendmsg_copy_msghdr(struct msghdr *msg, 2647 struct user_msghdr __user *umsg, unsigned flags, 2648 struct iovec **iov) 2649 { 2650 int err; 2651 2652 if (flags & MSG_CMSG_COMPAT) { 2653 struct compat_msghdr __user *msg_compat; 2654 2655 msg_compat = (struct compat_msghdr __user *) umsg; 2656 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2657 } else { 2658 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2659 } 2660 if (err < 0) 2661 return err; 2662 2663 return 0; 2664 } 2665 2666 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2667 struct msghdr *msg_sys, unsigned int flags, 2668 struct used_address *used_address, 2669 unsigned int allowed_msghdr_flags) 2670 { 2671 struct sockaddr_storage address; 2672 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2673 ssize_t err; 2674 2675 msg_sys->msg_name = &address; 2676 2677 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2678 if (err < 0) 2679 return err; 2680 2681 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2682 allowed_msghdr_flags); 2683 kfree(iov); 2684 return err; 2685 } 2686 2687 /* 2688 * BSD sendmsg interface 2689 */ 2690 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2691 unsigned int flags) 2692 { 2693 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2694 } 2695 2696 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2697 bool forbid_cmsg_compat) 2698 { 2699 struct msghdr msg_sys; 2700 struct socket *sock; 2701 2702 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2703 return -EINVAL; 2704 2705 CLASS(fd, f)(fd); 2706 2707 if (fd_empty(f)) 2708 return -EBADF; 2709 sock = sock_from_file(fd_file(f)); 2710 if (unlikely(!sock)) 2711 return -ENOTSOCK; 2712 2713 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2714 } 2715 2716 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2717 { 2718 return __sys_sendmsg(fd, msg, flags, true); 2719 } 2720 2721 /* 2722 * Linux sendmmsg interface 2723 */ 2724 2725 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2726 unsigned int flags, bool forbid_cmsg_compat) 2727 { 2728 int err, datagrams; 2729 struct socket *sock; 2730 struct mmsghdr __user *entry; 2731 struct compat_mmsghdr __user *compat_entry; 2732 struct msghdr msg_sys; 2733 struct used_address used_address; 2734 unsigned int oflags = flags; 2735 2736 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2737 return -EINVAL; 2738 2739 if (vlen > UIO_MAXIOV) 2740 vlen = UIO_MAXIOV; 2741 2742 datagrams = 0; 2743 2744 CLASS(fd, f)(fd); 2745 2746 if (fd_empty(f)) 2747 return -EBADF; 2748 sock = sock_from_file(fd_file(f)); 2749 if (unlikely(!sock)) 2750 return -ENOTSOCK; 2751 2752 used_address.name_len = UINT_MAX; 2753 entry = mmsg; 2754 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2755 err = 0; 2756 flags |= MSG_BATCH; 2757 2758 while (datagrams < vlen) { 2759 if (datagrams == vlen - 1) 2760 flags = oflags; 2761 2762 if (MSG_CMSG_COMPAT & flags) { 2763 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2764 &msg_sys, flags, &used_address, MSG_EOR); 2765 if (err < 0) 2766 break; 2767 err = __put_user(err, &compat_entry->msg_len); 2768 ++compat_entry; 2769 } else { 2770 err = ___sys_sendmsg(sock, 2771 (struct user_msghdr __user *)entry, 2772 &msg_sys, flags, &used_address, MSG_EOR); 2773 if (err < 0) 2774 break; 2775 err = put_user(err, &entry->msg_len); 2776 ++entry; 2777 } 2778 2779 if (err) 2780 break; 2781 ++datagrams; 2782 if (msg_data_left(&msg_sys)) 2783 break; 2784 cond_resched(); 2785 } 2786 2787 /* We only return an error if no datagrams were able to be sent */ 2788 if (datagrams != 0) 2789 return datagrams; 2790 2791 return err; 2792 } 2793 2794 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2795 unsigned int, vlen, unsigned int, flags) 2796 { 2797 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2798 } 2799 2800 static int recvmsg_copy_msghdr(struct msghdr *msg, 2801 struct user_msghdr __user *umsg, unsigned flags, 2802 struct sockaddr __user **uaddr, 2803 struct iovec **iov) 2804 { 2805 ssize_t err; 2806 2807 if (MSG_CMSG_COMPAT & flags) { 2808 struct compat_msghdr __user *msg_compat; 2809 2810 msg_compat = (struct compat_msghdr __user *) umsg; 2811 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2812 } else { 2813 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2814 } 2815 if (err < 0) 2816 return err; 2817 2818 return 0; 2819 } 2820 2821 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2822 struct user_msghdr __user *msg, 2823 struct sockaddr __user *uaddr, 2824 unsigned int flags, int nosec) 2825 { 2826 struct compat_msghdr __user *msg_compat = 2827 (struct compat_msghdr __user *) msg; 2828 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2829 struct sockaddr_storage addr; 2830 unsigned long cmsg_ptr; 2831 int len; 2832 ssize_t err; 2833 2834 msg_sys->msg_name = &addr; 2835 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2836 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2837 2838 /* We assume all kernel code knows the size of sockaddr_storage */ 2839 msg_sys->msg_namelen = 0; 2840 2841 if (sock->file->f_flags & O_NONBLOCK) 2842 flags |= MSG_DONTWAIT; 2843 2844 if (unlikely(nosec)) 2845 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2846 else 2847 err = sock_recvmsg(sock, msg_sys, flags); 2848 2849 if (err < 0) 2850 goto out; 2851 len = err; 2852 2853 if (uaddr != NULL) { 2854 err = move_addr_to_user(&addr, 2855 msg_sys->msg_namelen, uaddr, 2856 uaddr_len); 2857 if (err < 0) 2858 goto out; 2859 } 2860 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2861 COMPAT_FLAGS(msg)); 2862 if (err) 2863 goto out; 2864 if (MSG_CMSG_COMPAT & flags) 2865 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2866 &msg_compat->msg_controllen); 2867 else 2868 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2869 &msg->msg_controllen); 2870 if (err) 2871 goto out; 2872 err = len; 2873 out: 2874 return err; 2875 } 2876 2877 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2878 struct msghdr *msg_sys, unsigned int flags, int nosec) 2879 { 2880 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2881 /* user mode address pointers */ 2882 struct sockaddr __user *uaddr; 2883 ssize_t err; 2884 2885 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2886 if (err < 0) 2887 return err; 2888 2889 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2890 kfree(iov); 2891 return err; 2892 } 2893 2894 /* 2895 * BSD recvmsg interface 2896 */ 2897 2898 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2899 struct user_msghdr __user *umsg, 2900 struct sockaddr __user *uaddr, unsigned int flags) 2901 { 2902 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2903 } 2904 2905 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2906 bool forbid_cmsg_compat) 2907 { 2908 struct msghdr msg_sys; 2909 struct socket *sock; 2910 2911 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2912 return -EINVAL; 2913 2914 CLASS(fd, f)(fd); 2915 2916 if (fd_empty(f)) 2917 return -EBADF; 2918 sock = sock_from_file(fd_file(f)); 2919 if (unlikely(!sock)) 2920 return -ENOTSOCK; 2921 2922 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2923 } 2924 2925 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2926 unsigned int, flags) 2927 { 2928 return __sys_recvmsg(fd, msg, flags, true); 2929 } 2930 2931 /* 2932 * Linux recvmmsg interface 2933 */ 2934 2935 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2936 unsigned int vlen, unsigned int flags, 2937 struct timespec64 *timeout) 2938 { 2939 int err = 0, datagrams; 2940 struct socket *sock; 2941 struct mmsghdr __user *entry; 2942 struct compat_mmsghdr __user *compat_entry; 2943 struct msghdr msg_sys; 2944 struct timespec64 end_time; 2945 struct timespec64 timeout64; 2946 2947 if (timeout && 2948 poll_select_set_timeout(&end_time, timeout->tv_sec, 2949 timeout->tv_nsec)) 2950 return -EINVAL; 2951 2952 datagrams = 0; 2953 2954 CLASS(fd, f)(fd); 2955 2956 if (fd_empty(f)) 2957 return -EBADF; 2958 sock = sock_from_file(fd_file(f)); 2959 if (unlikely(!sock)) 2960 return -ENOTSOCK; 2961 2962 if (likely(!(flags & MSG_ERRQUEUE))) { 2963 err = sock_error(sock->sk); 2964 if (err) 2965 return err; 2966 } 2967 2968 entry = mmsg; 2969 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2970 2971 while (datagrams < vlen) { 2972 /* 2973 * No need to ask LSM for more than the first datagram. 2974 */ 2975 if (MSG_CMSG_COMPAT & flags) { 2976 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2977 &msg_sys, flags & ~MSG_WAITFORONE, 2978 datagrams); 2979 if (err < 0) 2980 break; 2981 err = __put_user(err, &compat_entry->msg_len); 2982 ++compat_entry; 2983 } else { 2984 err = ___sys_recvmsg(sock, 2985 (struct user_msghdr __user *)entry, 2986 &msg_sys, flags & ~MSG_WAITFORONE, 2987 datagrams); 2988 if (err < 0) 2989 break; 2990 err = put_user(err, &entry->msg_len); 2991 ++entry; 2992 } 2993 2994 if (err) 2995 break; 2996 ++datagrams; 2997 2998 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2999 if (flags & MSG_WAITFORONE) 3000 flags |= MSG_DONTWAIT; 3001 3002 if (timeout) { 3003 ktime_get_ts64(&timeout64); 3004 *timeout = timespec64_sub(end_time, timeout64); 3005 if (timeout->tv_sec < 0) { 3006 timeout->tv_sec = timeout->tv_nsec = 0; 3007 break; 3008 } 3009 3010 /* Timeout, return less than vlen datagrams */ 3011 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 3012 break; 3013 } 3014 3015 /* Out of band data, return right away */ 3016 if (msg_sys.msg_flags & MSG_OOB) 3017 break; 3018 cond_resched(); 3019 } 3020 3021 if (err == 0) 3022 return datagrams; 3023 3024 if (datagrams == 0) 3025 return err; 3026 3027 /* 3028 * We may return less entries than requested (vlen) if the 3029 * sock is non block and there aren't enough datagrams... 3030 */ 3031 if (err != -EAGAIN) { 3032 /* 3033 * ... or if recvmsg returns an error after we 3034 * received some datagrams, where we record the 3035 * error to return on the next call or if the 3036 * app asks about it using getsockopt(SO_ERROR). 3037 */ 3038 WRITE_ONCE(sock->sk->sk_err, -err); 3039 } 3040 return datagrams; 3041 } 3042 3043 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3044 unsigned int vlen, unsigned int flags, 3045 struct __kernel_timespec __user *timeout, 3046 struct old_timespec32 __user *timeout32) 3047 { 3048 int datagrams; 3049 struct timespec64 timeout_sys; 3050 3051 if (timeout && get_timespec64(&timeout_sys, timeout)) 3052 return -EFAULT; 3053 3054 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3055 return -EFAULT; 3056 3057 if (!timeout && !timeout32) 3058 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3059 3060 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3061 3062 if (datagrams <= 0) 3063 return datagrams; 3064 3065 if (timeout && put_timespec64(&timeout_sys, timeout)) 3066 datagrams = -EFAULT; 3067 3068 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3069 datagrams = -EFAULT; 3070 3071 return datagrams; 3072 } 3073 3074 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3075 unsigned int, vlen, unsigned int, flags, 3076 struct __kernel_timespec __user *, timeout) 3077 { 3078 if (flags & MSG_CMSG_COMPAT) 3079 return -EINVAL; 3080 3081 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3082 } 3083 3084 #ifdef CONFIG_COMPAT_32BIT_TIME 3085 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3086 unsigned int, vlen, unsigned int, flags, 3087 struct old_timespec32 __user *, timeout) 3088 { 3089 if (flags & MSG_CMSG_COMPAT) 3090 return -EINVAL; 3091 3092 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3093 } 3094 #endif 3095 3096 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3097 /* Argument list sizes for sys_socketcall */ 3098 #define AL(x) ((x) * sizeof(unsigned long)) 3099 static const unsigned char nargs[21] = { 3100 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3101 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3102 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3103 AL(4), AL(5), AL(4) 3104 }; 3105 3106 #undef AL 3107 3108 /* 3109 * System call vectors. 3110 * 3111 * Argument checking cleaned up. Saved 20% in size. 3112 * This function doesn't need to set the kernel lock because 3113 * it is set by the callees. 3114 */ 3115 3116 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3117 { 3118 unsigned long a[AUDITSC_ARGS]; 3119 unsigned long a0, a1; 3120 int err; 3121 unsigned int len; 3122 3123 if (call < 1 || call > SYS_SENDMMSG) 3124 return -EINVAL; 3125 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3126 3127 len = nargs[call]; 3128 if (len > sizeof(a)) 3129 return -EINVAL; 3130 3131 /* copy_from_user should be SMP safe. */ 3132 if (copy_from_user(a, args, len)) 3133 return -EFAULT; 3134 3135 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3136 if (err) 3137 return err; 3138 3139 a0 = a[0]; 3140 a1 = a[1]; 3141 3142 switch (call) { 3143 case SYS_SOCKET: 3144 err = __sys_socket(a0, a1, a[2]); 3145 break; 3146 case SYS_BIND: 3147 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3148 break; 3149 case SYS_CONNECT: 3150 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3151 break; 3152 case SYS_LISTEN: 3153 err = __sys_listen(a0, a1); 3154 break; 3155 case SYS_ACCEPT: 3156 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3157 (int __user *)a[2], 0); 3158 break; 3159 case SYS_GETSOCKNAME: 3160 err = 3161 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3162 (int __user *)a[2]); 3163 break; 3164 case SYS_GETPEERNAME: 3165 err = 3166 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3167 (int __user *)a[2]); 3168 break; 3169 case SYS_SOCKETPAIR: 3170 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3171 break; 3172 case SYS_SEND: 3173 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3174 NULL, 0); 3175 break; 3176 case SYS_SENDTO: 3177 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3178 (struct sockaddr __user *)a[4], a[5]); 3179 break; 3180 case SYS_RECV: 3181 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3182 NULL, NULL); 3183 break; 3184 case SYS_RECVFROM: 3185 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3186 (struct sockaddr __user *)a[4], 3187 (int __user *)a[5]); 3188 break; 3189 case SYS_SHUTDOWN: 3190 err = __sys_shutdown(a0, a1); 3191 break; 3192 case SYS_SETSOCKOPT: 3193 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3194 a[4]); 3195 break; 3196 case SYS_GETSOCKOPT: 3197 err = 3198 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3199 (int __user *)a[4]); 3200 break; 3201 case SYS_SENDMSG: 3202 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3203 a[2], true); 3204 break; 3205 case SYS_SENDMMSG: 3206 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3207 a[3], true); 3208 break; 3209 case SYS_RECVMSG: 3210 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3211 a[2], true); 3212 break; 3213 case SYS_RECVMMSG: 3214 if (IS_ENABLED(CONFIG_64BIT)) 3215 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3216 a[2], a[3], 3217 (struct __kernel_timespec __user *)a[4], 3218 NULL); 3219 else 3220 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3221 a[2], a[3], NULL, 3222 (struct old_timespec32 __user *)a[4]); 3223 break; 3224 case SYS_ACCEPT4: 3225 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3226 (int __user *)a[2], a[3]); 3227 break; 3228 default: 3229 err = -EINVAL; 3230 break; 3231 } 3232 return err; 3233 } 3234 3235 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3236 3237 /** 3238 * sock_register - add a socket protocol handler 3239 * @ops: description of protocol 3240 * 3241 * This function is called by a protocol handler that wants to 3242 * advertise its address family, and have it linked into the 3243 * socket interface. The value ops->family corresponds to the 3244 * socket system call protocol family. 3245 */ 3246 int sock_register(const struct net_proto_family *ops) 3247 { 3248 int err; 3249 3250 if (ops->family >= NPROTO) { 3251 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3252 return -ENOBUFS; 3253 } 3254 3255 spin_lock(&net_family_lock); 3256 if (rcu_dereference_protected(net_families[ops->family], 3257 lockdep_is_held(&net_family_lock))) 3258 err = -EEXIST; 3259 else { 3260 rcu_assign_pointer(net_families[ops->family], ops); 3261 err = 0; 3262 } 3263 spin_unlock(&net_family_lock); 3264 3265 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3266 return err; 3267 } 3268 EXPORT_SYMBOL(sock_register); 3269 3270 /** 3271 * sock_unregister - remove a protocol handler 3272 * @family: protocol family to remove 3273 * 3274 * This function is called by a protocol handler that wants to 3275 * remove its address family, and have it unlinked from the 3276 * new socket creation. 3277 * 3278 * If protocol handler is a module, then it can use module reference 3279 * counts to protect against new references. If protocol handler is not 3280 * a module then it needs to provide its own protection in 3281 * the ops->create routine. 3282 */ 3283 void sock_unregister(int family) 3284 { 3285 BUG_ON(family < 0 || family >= NPROTO); 3286 3287 spin_lock(&net_family_lock); 3288 RCU_INIT_POINTER(net_families[family], NULL); 3289 spin_unlock(&net_family_lock); 3290 3291 synchronize_rcu(); 3292 3293 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3294 } 3295 EXPORT_SYMBOL(sock_unregister); 3296 3297 bool sock_is_registered(int family) 3298 { 3299 return family < NPROTO && rcu_access_pointer(net_families[family]); 3300 } 3301 3302 static int __init sock_init(void) 3303 { 3304 int err; 3305 /* 3306 * Initialize the network sysctl infrastructure. 3307 */ 3308 err = net_sysctl_init(); 3309 if (err) 3310 goto out; 3311 3312 /* 3313 * Initialize skbuff SLAB cache 3314 */ 3315 skb_init(); 3316 3317 /* 3318 * Initialize the protocols module. 3319 */ 3320 3321 init_inodecache(); 3322 3323 err = register_filesystem(&sock_fs_type); 3324 if (err) 3325 goto out; 3326 sock_mnt = kern_mount(&sock_fs_type); 3327 if (IS_ERR(sock_mnt)) { 3328 err = PTR_ERR(sock_mnt); 3329 goto out_mount; 3330 } 3331 3332 /* The real protocol initialization is performed in later initcalls. 3333 */ 3334 3335 #ifdef CONFIG_NETFILTER 3336 err = netfilter_init(); 3337 if (err) 3338 goto out; 3339 #endif 3340 3341 ptp_classifier_init(); 3342 3343 out: 3344 return err; 3345 3346 out_mount: 3347 unregister_filesystem(&sock_fs_type); 3348 goto out; 3349 } 3350 3351 core_initcall(sock_init); /* early initcall */ 3352 3353 #ifdef CONFIG_PROC_FS 3354 void socket_seq_show(struct seq_file *seq) 3355 { 3356 seq_printf(seq, "sockets: used %d\n", 3357 sock_inuse_get(seq->private)); 3358 } 3359 #endif /* CONFIG_PROC_FS */ 3360 3361 /* Handle the fact that while struct ifreq has the same *layout* on 3362 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3363 * which are handled elsewhere, it still has different *size* due to 3364 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3365 * resulting in struct ifreq being 32 and 40 bytes respectively). 3366 * As a result, if the struct happens to be at the end of a page and 3367 * the next page isn't readable/writable, we get a fault. To prevent 3368 * that, copy back and forth to the full size. 3369 */ 3370 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3371 { 3372 if (in_compat_syscall()) { 3373 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3374 3375 memset(ifr, 0, sizeof(*ifr)); 3376 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3377 return -EFAULT; 3378 3379 if (ifrdata) 3380 *ifrdata = compat_ptr(ifr32->ifr_data); 3381 3382 return 0; 3383 } 3384 3385 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3386 return -EFAULT; 3387 3388 if (ifrdata) 3389 *ifrdata = ifr->ifr_data; 3390 3391 return 0; 3392 } 3393 EXPORT_SYMBOL(get_user_ifreq); 3394 3395 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3396 { 3397 size_t size = sizeof(*ifr); 3398 3399 if (in_compat_syscall()) 3400 size = sizeof(struct compat_ifreq); 3401 3402 if (copy_to_user(arg, ifr, size)) 3403 return -EFAULT; 3404 3405 return 0; 3406 } 3407 EXPORT_SYMBOL(put_user_ifreq); 3408 3409 #ifdef CONFIG_COMPAT 3410 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3411 { 3412 compat_uptr_t uptr32; 3413 struct ifreq ifr; 3414 void __user *saved; 3415 int err; 3416 3417 if (get_user_ifreq(&ifr, NULL, uifr32)) 3418 return -EFAULT; 3419 3420 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3421 return -EFAULT; 3422 3423 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3424 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3425 3426 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3427 if (!err) { 3428 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3429 if (put_user_ifreq(&ifr, uifr32)) 3430 err = -EFAULT; 3431 } 3432 return err; 3433 } 3434 3435 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3436 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3437 struct compat_ifreq __user *u_ifreq32) 3438 { 3439 struct ifreq ifreq; 3440 void __user *data; 3441 3442 if (!is_socket_ioctl_cmd(cmd)) 3443 return -ENOTTY; 3444 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3445 return -EFAULT; 3446 ifreq.ifr_data = data; 3447 3448 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3449 } 3450 3451 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3452 unsigned int cmd, unsigned long arg) 3453 { 3454 void __user *argp = compat_ptr(arg); 3455 struct sock *sk = sock->sk; 3456 struct net *net = sock_net(sk); 3457 const struct proto_ops *ops; 3458 3459 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3460 return sock_ioctl(file, cmd, (unsigned long)argp); 3461 3462 switch (cmd) { 3463 case SIOCWANDEV: 3464 return compat_siocwandev(net, argp); 3465 case SIOCGSTAMP_OLD: 3466 case SIOCGSTAMPNS_OLD: 3467 ops = READ_ONCE(sock->ops); 3468 if (!ops->gettstamp) 3469 return -ENOIOCTLCMD; 3470 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3471 !COMPAT_USE_64BIT_TIME); 3472 3473 case SIOCETHTOOL: 3474 case SIOCBONDSLAVEINFOQUERY: 3475 case SIOCBONDINFOQUERY: 3476 case SIOCSHWTSTAMP: 3477 case SIOCGHWTSTAMP: 3478 return compat_ifr_data_ioctl(net, cmd, argp); 3479 3480 case FIOSETOWN: 3481 case SIOCSPGRP: 3482 case FIOGETOWN: 3483 case SIOCGPGRP: 3484 case SIOCBRADDBR: 3485 case SIOCBRDELBR: 3486 case SIOCBRADDIF: 3487 case SIOCBRDELIF: 3488 case SIOCGIFVLAN: 3489 case SIOCSIFVLAN: 3490 case SIOCGSKNS: 3491 case SIOCGSTAMP_NEW: 3492 case SIOCGSTAMPNS_NEW: 3493 case SIOCGIFCONF: 3494 case SIOCSIFBR: 3495 case SIOCGIFBR: 3496 return sock_ioctl(file, cmd, arg); 3497 3498 case SIOCGIFFLAGS: 3499 case SIOCSIFFLAGS: 3500 case SIOCGIFMAP: 3501 case SIOCSIFMAP: 3502 case SIOCGIFMETRIC: 3503 case SIOCSIFMETRIC: 3504 case SIOCGIFMTU: 3505 case SIOCSIFMTU: 3506 case SIOCGIFMEM: 3507 case SIOCSIFMEM: 3508 case SIOCGIFHWADDR: 3509 case SIOCSIFHWADDR: 3510 case SIOCADDMULTI: 3511 case SIOCDELMULTI: 3512 case SIOCGIFINDEX: 3513 case SIOCGIFADDR: 3514 case SIOCSIFADDR: 3515 case SIOCSIFHWBROADCAST: 3516 case SIOCDIFADDR: 3517 case SIOCGIFBRDADDR: 3518 case SIOCSIFBRDADDR: 3519 case SIOCGIFDSTADDR: 3520 case SIOCSIFDSTADDR: 3521 case SIOCGIFNETMASK: 3522 case SIOCSIFNETMASK: 3523 case SIOCSIFPFLAGS: 3524 case SIOCGIFPFLAGS: 3525 case SIOCGIFTXQLEN: 3526 case SIOCSIFTXQLEN: 3527 case SIOCGIFNAME: 3528 case SIOCSIFNAME: 3529 case SIOCGMIIPHY: 3530 case SIOCGMIIREG: 3531 case SIOCSMIIREG: 3532 case SIOCBONDENSLAVE: 3533 case SIOCBONDRELEASE: 3534 case SIOCBONDSETHWADDR: 3535 case SIOCBONDCHANGEACTIVE: 3536 case SIOCSARP: 3537 case SIOCGARP: 3538 case SIOCDARP: 3539 case SIOCOUTQ: 3540 case SIOCOUTQNSD: 3541 case SIOCATMARK: 3542 return sock_do_ioctl(net, sock, cmd, arg); 3543 } 3544 3545 return -ENOIOCTLCMD; 3546 } 3547 3548 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3549 unsigned long arg) 3550 { 3551 struct socket *sock = file->private_data; 3552 const struct proto_ops *ops = READ_ONCE(sock->ops); 3553 int ret = -ENOIOCTLCMD; 3554 struct sock *sk; 3555 struct net *net; 3556 3557 sk = sock->sk; 3558 net = sock_net(sk); 3559 3560 if (ops->compat_ioctl) 3561 ret = ops->compat_ioctl(sock, cmd, arg); 3562 3563 if (ret == -ENOIOCTLCMD && 3564 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3565 ret = compat_wext_handle_ioctl(net, cmd, arg); 3566 3567 if (ret == -ENOIOCTLCMD) 3568 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3569 3570 return ret; 3571 } 3572 #endif 3573 3574 /** 3575 * kernel_bind - bind an address to a socket (kernel space) 3576 * @sock: socket 3577 * @addr: address 3578 * @addrlen: length of address 3579 * 3580 * Returns 0 or an error. 3581 */ 3582 3583 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3584 { 3585 struct sockaddr_storage address; 3586 3587 memcpy(&address, addr, addrlen); 3588 3589 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3590 addrlen); 3591 } 3592 EXPORT_SYMBOL(kernel_bind); 3593 3594 /** 3595 * kernel_listen - move socket to listening state (kernel space) 3596 * @sock: socket 3597 * @backlog: pending connections queue size 3598 * 3599 * Returns 0 or an error. 3600 */ 3601 3602 int kernel_listen(struct socket *sock, int backlog) 3603 { 3604 return READ_ONCE(sock->ops)->listen(sock, backlog); 3605 } 3606 EXPORT_SYMBOL(kernel_listen); 3607 3608 /** 3609 * kernel_accept - accept a connection (kernel space) 3610 * @sock: listening socket 3611 * @newsock: new connected socket 3612 * @flags: flags 3613 * 3614 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3615 * If it fails, @newsock is guaranteed to be %NULL. 3616 * Returns 0 or an error. 3617 */ 3618 3619 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3620 { 3621 struct sock *sk = sock->sk; 3622 const struct proto_ops *ops = READ_ONCE(sock->ops); 3623 struct proto_accept_arg arg = { 3624 .flags = flags, 3625 .kern = true, 3626 }; 3627 int err; 3628 3629 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3630 newsock); 3631 if (err < 0) 3632 goto done; 3633 3634 err = ops->accept(sock, *newsock, &arg); 3635 if (err < 0) { 3636 sock_release(*newsock); 3637 *newsock = NULL; 3638 goto done; 3639 } 3640 3641 (*newsock)->ops = ops; 3642 __module_get(ops->owner); 3643 3644 done: 3645 return err; 3646 } 3647 EXPORT_SYMBOL(kernel_accept); 3648 3649 /** 3650 * kernel_connect - connect a socket (kernel space) 3651 * @sock: socket 3652 * @addr: address 3653 * @addrlen: address length 3654 * @flags: flags (O_NONBLOCK, ...) 3655 * 3656 * For datagram sockets, @addr is the address to which datagrams are sent 3657 * by default, and the only address from which datagrams are received. 3658 * For stream sockets, attempts to connect to @addr. 3659 * Returns 0 or an error code. 3660 */ 3661 3662 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3663 int flags) 3664 { 3665 struct sockaddr_storage address; 3666 3667 memcpy(&address, addr, addrlen); 3668 3669 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3670 addrlen, flags); 3671 } 3672 EXPORT_SYMBOL(kernel_connect); 3673 3674 /** 3675 * kernel_getsockname - get the address which the socket is bound (kernel space) 3676 * @sock: socket 3677 * @addr: address holder 3678 * 3679 * Fills the @addr pointer with the address which the socket is bound. 3680 * Returns the length of the address in bytes or an error code. 3681 */ 3682 3683 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3684 { 3685 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3686 } 3687 EXPORT_SYMBOL(kernel_getsockname); 3688 3689 /** 3690 * kernel_getpeername - get the address which the socket is connected (kernel space) 3691 * @sock: socket 3692 * @addr: address holder 3693 * 3694 * Fills the @addr pointer with the address which the socket is connected. 3695 * Returns the length of the address in bytes or an error code. 3696 */ 3697 3698 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3699 { 3700 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3701 } 3702 EXPORT_SYMBOL(kernel_getpeername); 3703 3704 /** 3705 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3706 * @sock: socket 3707 * @how: connection part 3708 * 3709 * Returns 0 or an error. 3710 */ 3711 3712 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3713 { 3714 return READ_ONCE(sock->ops)->shutdown(sock, how); 3715 } 3716 EXPORT_SYMBOL(kernel_sock_shutdown); 3717 3718 /** 3719 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3720 * @sk: socket 3721 * 3722 * This routine returns the IP overhead imposed by a socket i.e. 3723 * the length of the underlying IP header, depending on whether 3724 * this is an IPv4 or IPv6 socket and the length from IP options turned 3725 * on at the socket. Assumes that the caller has a lock on the socket. 3726 */ 3727 3728 u32 kernel_sock_ip_overhead(struct sock *sk) 3729 { 3730 struct inet_sock *inet; 3731 struct ip_options_rcu *opt; 3732 u32 overhead = 0; 3733 #if IS_ENABLED(CONFIG_IPV6) 3734 struct ipv6_pinfo *np; 3735 struct ipv6_txoptions *optv6 = NULL; 3736 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3737 3738 if (!sk) 3739 return overhead; 3740 3741 switch (sk->sk_family) { 3742 case AF_INET: 3743 inet = inet_sk(sk); 3744 overhead += sizeof(struct iphdr); 3745 opt = rcu_dereference_protected(inet->inet_opt, 3746 sock_owned_by_user(sk)); 3747 if (opt) 3748 overhead += opt->opt.optlen; 3749 return overhead; 3750 #if IS_ENABLED(CONFIG_IPV6) 3751 case AF_INET6: 3752 np = inet6_sk(sk); 3753 overhead += sizeof(struct ipv6hdr); 3754 if (np) 3755 optv6 = rcu_dereference_protected(np->opt, 3756 sock_owned_by_user(sk)); 3757 if (optv6) 3758 overhead += (optv6->opt_flen + optv6->opt_nflen); 3759 return overhead; 3760 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3761 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3762 return overhead; 3763 } 3764 } 3765 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3766