xref: /linux/net/socket.c (revision 8a5f956a9fb7d74fff681145082acfad5afa6bb8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 
283 	if (can_do_masked_user_access())
284 		ulen = masked_user_access_begin(ulen);
285 	else if (!user_access_begin(ulen, 4))
286 		return -EFAULT;
287 
288 	unsafe_get_user(len, ulen, efault_end);
289 
290 	if (len > klen)
291 		len = klen;
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	if (len >= 0)
297 		unsafe_put_user(klen, ulen, efault_end);
298 
299 	user_access_end();
300 
301 	if (len) {
302 		if (len < 0)
303 			return -EINVAL;
304 		if (audit_sockaddr(klen, kaddr))
305 			return -ENOMEM;
306 		if (copy_to_user(uaddr, kaddr, len))
307 			return -EFAULT;
308 	}
309 	return 0;
310 
311 efault_end:
312 	user_access_end();
313 	return -EFAULT;
314 }
315 
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317 
318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 	if (!ei)
324 		return NULL;
325 	init_waitqueue_head(&ei->socket.wq.wait);
326 	ei->socket.wq.fasync_list = NULL;
327 	ei->socket.wq.flags = 0;
328 
329 	ei->socket.state = SS_UNCONNECTED;
330 	ei->socket.flags = 0;
331 	ei->socket.ops = NULL;
332 	ei->socket.sk = NULL;
333 	ei->socket.file = NULL;
334 
335 	return &ei->vfs_inode;
336 }
337 
338 static void sock_free_inode(struct inode *inode)
339 {
340 	struct socket_alloc *ei;
341 
342 	ei = container_of(inode, struct socket_alloc, vfs_inode);
343 	kmem_cache_free(sock_inode_cachep, ei);
344 }
345 
346 static void init_once(void *foo)
347 {
348 	struct socket_alloc *ei = (struct socket_alloc *)foo;
349 
350 	inode_init_once(&ei->vfs_inode);
351 }
352 
353 static void init_inodecache(void)
354 {
355 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 					      sizeof(struct socket_alloc),
357 					      0,
358 					      (SLAB_HWCACHE_ALIGN |
359 					       SLAB_RECLAIM_ACCOUNT |
360 					       SLAB_ACCOUNT),
361 					      init_once);
362 	BUG_ON(sock_inode_cachep == NULL);
363 }
364 
365 static const struct super_operations sockfs_ops = {
366 	.alloc_inode	= sock_alloc_inode,
367 	.free_inode	= sock_free_inode,
368 	.statfs		= simple_statfs,
369 };
370 
371 /*
372  * sockfs_dname() is called from d_path().
373  */
374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 				d_inode(dentry)->i_ino);
378 }
379 
380 static const struct dentry_operations sockfs_dentry_operations = {
381 	.d_dname  = sockfs_dname,
382 };
383 
384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 			    struct dentry *dentry, struct inode *inode,
386 			    const char *suffix, void *value, size_t size)
387 {
388 	if (value) {
389 		if (dentry->d_name.len + 1 > size)
390 			return -ERANGE;
391 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 	}
393 	return dentry->d_name.len + 1;
394 }
395 
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399 
400 static const struct xattr_handler sockfs_xattr_handler = {
401 	.name = XATTR_NAME_SOCKPROTONAME,
402 	.get = sockfs_xattr_get,
403 };
404 
405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 				     struct mnt_idmap *idmap,
407 				     struct dentry *dentry, struct inode *inode,
408 				     const char *suffix, const void *value,
409 				     size_t size, int flags)
410 {
411 	/* Handled by LSM. */
412 	return -EAGAIN;
413 }
414 
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 	.prefix = XATTR_SECURITY_PREFIX,
417 	.set = sockfs_security_xattr_set,
418 };
419 
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 	&sockfs_xattr_handler,
422 	&sockfs_security_xattr_handler,
423 	NULL
424 };
425 
426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 	if (!ctx)
430 		return -ENOMEM;
431 	ctx->ops = &sockfs_ops;
432 	ctx->dops = &sockfs_dentry_operations;
433 	ctx->xattr = sockfs_xattr_handlers;
434 	return 0;
435 }
436 
437 static struct vfsmount *sock_mnt __read_mostly;
438 
439 static struct file_system_type sock_fs_type = {
440 	.name =		"sockfs",
441 	.init_fs_context = sockfs_init_fs_context,
442 	.kill_sb =	kill_anon_super,
443 };
444 
445 /*
446  *	Obtains the first available file descriptor and sets it up for use.
447  *
448  *	These functions create file structures and maps them to fd space
449  *	of the current process. On success it returns file descriptor
450  *	and file struct implicitly stored in sock->file.
451  *	Note that another thread may close file descriptor before we return
452  *	from this function. We use the fact that now we do not refer
453  *	to socket after mapping. If one day we will need it, this
454  *	function will increment ref. count on file by 1.
455  *
456  *	In any case returned fd MAY BE not valid!
457  *	This race condition is unavoidable
458  *	with shared fd spaces, we cannot solve it inside kernel,
459  *	but we take care of internal coherence yet.
460  */
461 
462 /**
463  *	sock_alloc_file - Bind a &socket to a &file
464  *	@sock: socket
465  *	@flags: file status flags
466  *	@dname: protocol name
467  *
468  *	Returns the &file bound with @sock, implicitly storing it
469  *	in sock->file. If dname is %NULL, sets to "".
470  *
471  *	On failure @sock is released, and an ERR pointer is returned.
472  *
473  *	This function uses GFP_KERNEL internally.
474  */
475 
476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 	struct file *file;
479 
480 	if (!dname)
481 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482 
483 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 				O_RDWR | (flags & O_NONBLOCK),
485 				&socket_file_ops);
486 	if (IS_ERR(file)) {
487 		sock_release(sock);
488 		return file;
489 	}
490 
491 	file->f_mode |= FMODE_NOWAIT;
492 	sock->file = file;
493 	file->private_data = sock;
494 	stream_open(SOCK_INODE(sock), file);
495 	/*
496 	 * Disable permission and pre-content events, but enable legacy
497 	 * inotify events for legacy users.
498 	 */
499 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 	return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503 
504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 	struct file *newfile;
507 	int fd = get_unused_fd_flags(flags);
508 	if (unlikely(fd < 0)) {
509 		sock_release(sock);
510 		return fd;
511 	}
512 
513 	newfile = sock_alloc_file(sock, flags, NULL);
514 	if (!IS_ERR(newfile)) {
515 		fd_install(fd, newfile);
516 		return fd;
517 	}
518 
519 	put_unused_fd(fd);
520 	return PTR_ERR(newfile);
521 }
522 
523 /**
524  *	sock_from_file - Return the &socket bounded to @file.
525  *	@file: file
526  *
527  *	On failure returns %NULL.
528  */
529 
530 struct socket *sock_from_file(struct file *file)
531 {
532 	if (likely(file->f_op == &socket_file_ops))
533 		return file->private_data;	/* set in sock_alloc_file */
534 
535 	return NULL;
536 }
537 EXPORT_SYMBOL(sock_from_file);
538 
539 /**
540  *	sockfd_lookup - Go from a file number to its socket slot
541  *	@fd: file handle
542  *	@err: pointer to an error code return
543  *
544  *	The file handle passed in is locked and the socket it is bound
545  *	to is returned. If an error occurs the err pointer is overwritten
546  *	with a negative errno code and NULL is returned. The function checks
547  *	for both invalid handles and passing a handle which is not a socket.
548  *
549  *	On a success the socket object pointer is returned.
550  */
551 
552 struct socket *sockfd_lookup(int fd, int *err)
553 {
554 	struct file *file;
555 	struct socket *sock;
556 
557 	file = fget(fd);
558 	if (!file) {
559 		*err = -EBADF;
560 		return NULL;
561 	}
562 
563 	sock = sock_from_file(file);
564 	if (!sock) {
565 		*err = -ENOTSOCK;
566 		fput(file);
567 	}
568 	return sock;
569 }
570 EXPORT_SYMBOL(sockfd_lookup);
571 
572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
573 				size_t size)
574 {
575 	ssize_t len;
576 	ssize_t used = 0;
577 
578 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 	if (len < 0)
580 		return len;
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		buffer += len;
586 	}
587 
588 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
589 	used += len;
590 	if (buffer) {
591 		if (size < used)
592 			return -ERANGE;
593 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
594 		buffer += len;
595 	}
596 
597 	return used;
598 }
599 
600 static int sockfs_setattr(struct mnt_idmap *idmap,
601 			  struct dentry *dentry, struct iattr *iattr)
602 {
603 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
604 
605 	if (!err && (iattr->ia_valid & ATTR_UID)) {
606 		struct socket *sock = SOCKET_I(d_inode(dentry));
607 
608 		if (sock->sk) {
609 			/* Paired with READ_ONCE() in sk_uid() */
610 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
611 		} else {
612 			err = -ENOENT;
613 		}
614 	}
615 
616 	return err;
617 }
618 
619 static const struct inode_operations sockfs_inode_ops = {
620 	.listxattr = sockfs_listxattr,
621 	.setattr = sockfs_setattr,
622 };
623 
624 /**
625  *	sock_alloc - allocate a socket
626  *
627  *	Allocate a new inode and socket object. The two are bound together
628  *	and initialised. The socket is then returned. If we are out of inodes
629  *	NULL is returned. This functions uses GFP_KERNEL internally.
630  */
631 
632 struct socket *sock_alloc(void)
633 {
634 	struct inode *inode;
635 	struct socket *sock;
636 
637 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
638 	if (!inode)
639 		return NULL;
640 
641 	sock = SOCKET_I(inode);
642 
643 	inode->i_ino = get_next_ino();
644 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
645 	inode->i_uid = current_fsuid();
646 	inode->i_gid = current_fsgid();
647 	inode->i_op = &sockfs_inode_ops;
648 
649 	return sock;
650 }
651 EXPORT_SYMBOL(sock_alloc);
652 
653 static void __sock_release(struct socket *sock, struct inode *inode)
654 {
655 	const struct proto_ops *ops = READ_ONCE(sock->ops);
656 
657 	if (ops) {
658 		struct module *owner = ops->owner;
659 
660 		if (inode)
661 			inode_lock(inode);
662 		ops->release(sock);
663 		sock->sk = NULL;
664 		if (inode)
665 			inode_unlock(inode);
666 		sock->ops = NULL;
667 		module_put(owner);
668 	}
669 
670 	if (sock->wq.fasync_list)
671 		pr_err("%s: fasync list not empty!\n", __func__);
672 
673 	if (!sock->file) {
674 		iput(SOCK_INODE(sock));
675 		return;
676 	}
677 	sock->file = NULL;
678 }
679 
680 /**
681  *	sock_release - close a socket
682  *	@sock: socket to close
683  *
684  *	The socket is released from the protocol stack if it has a release
685  *	callback, and the inode is then released if the socket is bound to
686  *	an inode not a file.
687  */
688 void sock_release(struct socket *sock)
689 {
690 	__sock_release(sock, NULL);
691 }
692 EXPORT_SYMBOL(sock_release);
693 
694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
695 {
696 	u8 flags = *tx_flags;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
699 		flags |= SKBTX_HW_TSTAMP_NOBPF;
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
708 		flags |= SKBTX_COMPLETION_TSTAMP;
709 
710 	*tx_flags = flags;
711 }
712 EXPORT_SYMBOL(__sock_tx_timestamp);
713 
714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
715 					   size_t));
716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
717 					    size_t));
718 
719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
720 						 int flags)
721 {
722 	trace_sock_send_length(sk, ret, 0);
723 }
724 
725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
726 {
727 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
728 				     inet_sendmsg, sock, msg,
729 				     msg_data_left(msg));
730 	BUG_ON(ret == -EIOCBQUEUED);
731 
732 	if (trace_sock_send_length_enabled())
733 		call_trace_sock_send_length(sock->sk, ret, 0);
734 	return ret;
735 }
736 
737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 	int err = security_socket_sendmsg(sock, msg,
740 					  msg_data_left(msg));
741 
742 	return err ?: sock_sendmsg_nosec(sock, msg);
743 }
744 
745 /**
746  *	sock_sendmsg - send a message through @sock
747  *	@sock: socket
748  *	@msg: message to send
749  *
750  *	Sends @msg through @sock, passing through LSM.
751  *	Returns the number of bytes sent, or an error code.
752  */
753 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
754 {
755 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
756 	struct sockaddr_storage address;
757 	int save_len = msg->msg_namelen;
758 	int ret;
759 
760 	if (msg->msg_name) {
761 		memcpy(&address, msg->msg_name, msg->msg_namelen);
762 		msg->msg_name = &address;
763 	}
764 
765 	ret = __sock_sendmsg(sock, msg);
766 	msg->msg_name = save_addr;
767 	msg->msg_namelen = save_len;
768 
769 	return ret;
770 }
771 EXPORT_SYMBOL(sock_sendmsg);
772 
773 /**
774  *	kernel_sendmsg - send a message through @sock (kernel-space)
775  *	@sock: socket
776  *	@msg: message header
777  *	@vec: kernel vec
778  *	@num: vec array length
779  *	@size: total message data size
780  *
781  *	Builds the message data with @vec and sends it through @sock.
782  *	Returns the number of bytes sent, or an error code.
783  */
784 
785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
786 		   struct kvec *vec, size_t num, size_t size)
787 {
788 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
789 	return sock_sendmsg(sock, msg);
790 }
791 EXPORT_SYMBOL(kernel_sendmsg);
792 
793 static bool skb_is_err_queue(const struct sk_buff *skb)
794 {
795 	/* pkt_type of skbs enqueued on the error queue are set to
796 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
797 	 * in recvmsg, since skbs received on a local socket will never
798 	 * have a pkt_type of PACKET_OUTGOING.
799 	 */
800 	return skb->pkt_type == PACKET_OUTGOING;
801 }
802 
803 /* On transmit, software and hardware timestamps are returned independently.
804  * As the two skb clones share the hardware timestamp, which may be updated
805  * before the software timestamp is received, a hardware TX timestamp may be
806  * returned only if there is no software TX timestamp. Ignore false software
807  * timestamps, which may be made in the __sock_recv_timestamp() call when the
808  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
809  * hardware timestamp.
810  */
811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
812 {
813 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
814 }
815 
816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
817 {
818 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
819 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
820 	struct net_device *orig_dev;
821 	ktime_t hwtstamp;
822 
823 	rcu_read_lock();
824 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
825 	if (orig_dev) {
826 		*if_index = orig_dev->ifindex;
827 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
828 	} else {
829 		hwtstamp = shhwtstamps->hwtstamp;
830 	}
831 	rcu_read_unlock();
832 
833 	return hwtstamp;
834 }
835 
836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
837 			   int if_index)
838 {
839 	struct scm_ts_pktinfo ts_pktinfo;
840 	struct net_device *orig_dev;
841 
842 	if (!skb_mac_header_was_set(skb))
843 		return;
844 
845 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
846 
847 	if (!if_index) {
848 		rcu_read_lock();
849 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
850 		if (orig_dev)
851 			if_index = orig_dev->ifindex;
852 		rcu_read_unlock();
853 	}
854 	ts_pktinfo.if_index = if_index;
855 
856 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
857 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
858 		 sizeof(ts_pktinfo), &ts_pktinfo);
859 }
860 
861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
862 {
863 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
864 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
865 
866 	if (serr->ee.ee_errno != ENOMSG ||
867 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
868 		return false;
869 
870 	/* software time stamp available and wanted */
871 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
872 		return true;
873 	/* hardware time stamps available and wanted */
874 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
875 		skb_hwtstamps(skb)->hwtstamp;
876 }
877 
878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
879 			  struct timespec64 *ts)
880 {
881 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
882 	ktime_t hwtstamp;
883 	int if_index = 0;
884 
885 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
886 	    ktime_to_timespec64_cond(skb->tstamp, ts))
887 		return SOF_TIMESTAMPING_TX_SOFTWARE;
888 
889 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
890 	    skb_is_swtx_tstamp(skb, false))
891 		return -ENOENT;
892 
893 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
894 		hwtstamp = get_timestamp(sk, skb, &if_index);
895 	else
896 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
897 
898 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
899 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
900 						READ_ONCE(sk->sk_bind_phc));
901 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
902 		return -ENOENT;
903 
904 	return SOF_TIMESTAMPING_TX_HARDWARE;
905 }
906 
907 /*
908  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
909  */
910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
911 	struct sk_buff *skb)
912 {
913 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
914 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
915 	struct scm_timestamping_internal tss;
916 	int empty = 1, false_tstamp = 0;
917 	struct skb_shared_hwtstamps *shhwtstamps =
918 		skb_hwtstamps(skb);
919 	int if_index;
920 	ktime_t hwtstamp;
921 	u32 tsflags;
922 
923 	/* Race occurred between timestamp enabling and packet
924 	   receiving.  Fill in the current time for now. */
925 	if (need_software_tstamp && skb->tstamp == 0) {
926 		__net_timestamp(skb);
927 		false_tstamp = 1;
928 	}
929 
930 	if (need_software_tstamp) {
931 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
932 			if (new_tstamp) {
933 				struct __kernel_sock_timeval tv;
934 
935 				skb_get_new_timestamp(skb, &tv);
936 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
937 					 sizeof(tv), &tv);
938 			} else {
939 				struct __kernel_old_timeval tv;
940 
941 				skb_get_timestamp(skb, &tv);
942 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
943 					 sizeof(tv), &tv);
944 			}
945 		} else {
946 			if (new_tstamp) {
947 				struct __kernel_timespec ts;
948 
949 				skb_get_new_timestampns(skb, &ts);
950 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
951 					 sizeof(ts), &ts);
952 			} else {
953 				struct __kernel_old_timespec ts;
954 
955 				skb_get_timestampns(skb, &ts);
956 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
957 					 sizeof(ts), &ts);
958 			}
959 		}
960 	}
961 
962 	memset(&tss, 0, sizeof(tss));
963 	tsflags = READ_ONCE(sk->sk_tsflags);
964 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
965 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
966 	      skb_is_err_queue(skb) ||
967 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
968 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
969 		empty = 0;
970 	if (shhwtstamps &&
971 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
972 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
973 	      skb_is_err_queue(skb) ||
974 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
975 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
976 		if_index = 0;
977 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
978 			hwtstamp = get_timestamp(sk, skb, &if_index);
979 		else
980 			hwtstamp = shhwtstamps->hwtstamp;
981 
982 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
983 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
984 							 READ_ONCE(sk->sk_bind_phc));
985 
986 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
987 			empty = 0;
988 
989 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
990 			    !skb_is_err_queue(skb))
991 				put_ts_pktinfo(msg, skb, if_index);
992 		}
993 	}
994 	if (!empty) {
995 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
996 			put_cmsg_scm_timestamping64(msg, &tss);
997 		else
998 			put_cmsg_scm_timestamping(msg, &tss);
999 
1000 		if (skb_is_err_queue(skb) && skb->len &&
1001 		    SKB_EXT_ERR(skb)->opt_stats)
1002 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
1003 				 skb->len, skb->data);
1004 	}
1005 }
1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
1007 
1008 #ifdef CONFIG_WIRELESS
1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1010 	struct sk_buff *skb)
1011 {
1012 	int ack;
1013 
1014 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1015 		return;
1016 	if (!skb->wifi_acked_valid)
1017 		return;
1018 
1019 	ack = skb->wifi_acked;
1020 
1021 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1022 }
1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1024 #endif
1025 
1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1027 				   struct sk_buff *skb)
1028 {
1029 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1030 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1031 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1032 }
1033 
1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1035 			   struct sk_buff *skb)
1036 {
1037 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1038 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1039 		__u32 mark = skb->mark;
1040 
1041 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1042 	}
1043 }
1044 
1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1046 			       struct sk_buff *skb)
1047 {
1048 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1049 		__u32 priority = skb->priority;
1050 
1051 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1052 	}
1053 }
1054 
1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1056 		       struct sk_buff *skb)
1057 {
1058 	sock_recv_timestamp(msg, sk, skb);
1059 	sock_recv_drops(msg, sk, skb);
1060 	sock_recv_mark(msg, sk, skb);
1061 	sock_recv_priority(msg, sk, skb);
1062 }
1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1064 
1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1066 					   size_t, int));
1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1068 					    size_t, int));
1069 
1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1071 {
1072 	trace_sock_recv_length(sk, ret, flags);
1073 }
1074 
1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1076 				     int flags)
1077 {
1078 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1079 				     inet6_recvmsg,
1080 				     inet_recvmsg, sock, msg,
1081 				     msg_data_left(msg), flags);
1082 	if (trace_sock_recv_length_enabled())
1083 		call_trace_sock_recv_length(sock->sk, ret, flags);
1084 	return ret;
1085 }
1086 
1087 /**
1088  *	sock_recvmsg - receive a message from @sock
1089  *	@sock: socket
1090  *	@msg: message to receive
1091  *	@flags: message flags
1092  *
1093  *	Receives @msg from @sock, passing through LSM. Returns the total number
1094  *	of bytes received, or an error.
1095  */
1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1097 {
1098 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1099 
1100 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1101 }
1102 EXPORT_SYMBOL(sock_recvmsg);
1103 
1104 /**
1105  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1106  *	@sock: The socket to receive the message from
1107  *	@msg: Received message
1108  *	@vec: Input s/g array for message data
1109  *	@num: Size of input s/g array
1110  *	@size: Number of bytes to read
1111  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1112  *
1113  *	On return the msg structure contains the scatter/gather array passed in the
1114  *	vec argument. The array is modified so that it consists of the unfilled
1115  *	portion of the original array.
1116  *
1117  *	The returned value is the total number of bytes received, or an error.
1118  */
1119 
1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1121 		   struct kvec *vec, size_t num, size_t size, int flags)
1122 {
1123 	msg->msg_control_is_user = false;
1124 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1125 	return sock_recvmsg(sock, msg, flags);
1126 }
1127 EXPORT_SYMBOL(kernel_recvmsg);
1128 
1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1130 				struct pipe_inode_info *pipe, size_t len,
1131 				unsigned int flags)
1132 {
1133 	struct socket *sock = file->private_data;
1134 	const struct proto_ops *ops;
1135 
1136 	ops = READ_ONCE(sock->ops);
1137 	if (unlikely(!ops->splice_read))
1138 		return copy_splice_read(file, ppos, pipe, len, flags);
1139 
1140 	return ops->splice_read(sock, ppos, pipe, len, flags);
1141 }
1142 
1143 static void sock_splice_eof(struct file *file)
1144 {
1145 	struct socket *sock = file->private_data;
1146 	const struct proto_ops *ops;
1147 
1148 	ops = READ_ONCE(sock->ops);
1149 	if (ops->splice_eof)
1150 		ops->splice_eof(sock);
1151 }
1152 
1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1154 {
1155 	struct file *file = iocb->ki_filp;
1156 	struct socket *sock = file->private_data;
1157 	struct msghdr msg = {.msg_iter = *to,
1158 			     .msg_iocb = iocb};
1159 	ssize_t res;
1160 
1161 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1162 		msg.msg_flags = MSG_DONTWAIT;
1163 
1164 	if (iocb->ki_pos != 0)
1165 		return -ESPIPE;
1166 
1167 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1168 		return 0;
1169 
1170 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1171 	*to = msg.msg_iter;
1172 	return res;
1173 }
1174 
1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177 	struct file *file = iocb->ki_filp;
1178 	struct socket *sock = file->private_data;
1179 	struct msghdr msg = {.msg_iter = *from,
1180 			     .msg_iocb = iocb};
1181 	ssize_t res;
1182 
1183 	if (iocb->ki_pos != 0)
1184 		return -ESPIPE;
1185 
1186 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1187 		msg.msg_flags = MSG_DONTWAIT;
1188 
1189 	if (sock->type == SOCK_SEQPACKET)
1190 		msg.msg_flags |= MSG_EOR;
1191 
1192 	res = __sock_sendmsg(sock, &msg);
1193 	*from = msg.msg_iter;
1194 	return res;
1195 }
1196 
1197 /*
1198  * Atomic setting of ioctl hooks to avoid race
1199  * with module unload.
1200  */
1201 
1202 static DEFINE_MUTEX(br_ioctl_mutex);
1203 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1204 			    void __user *uarg);
1205 
1206 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1207 			     void __user *uarg))
1208 {
1209 	mutex_lock(&br_ioctl_mutex);
1210 	br_ioctl_hook = hook;
1211 	mutex_unlock(&br_ioctl_mutex);
1212 }
1213 EXPORT_SYMBOL(brioctl_set);
1214 
1215 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1216 {
1217 	int err = -ENOPKG;
1218 
1219 	if (!br_ioctl_hook)
1220 		request_module("bridge");
1221 
1222 	mutex_lock(&br_ioctl_mutex);
1223 	if (br_ioctl_hook)
1224 		err = br_ioctl_hook(net, cmd, uarg);
1225 	mutex_unlock(&br_ioctl_mutex);
1226 
1227 	return err;
1228 }
1229 
1230 static DEFINE_MUTEX(vlan_ioctl_mutex);
1231 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1232 
1233 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1234 {
1235 	mutex_lock(&vlan_ioctl_mutex);
1236 	vlan_ioctl_hook = hook;
1237 	mutex_unlock(&vlan_ioctl_mutex);
1238 }
1239 EXPORT_SYMBOL(vlan_ioctl_set);
1240 
1241 static long sock_do_ioctl(struct net *net, struct socket *sock,
1242 			  unsigned int cmd, unsigned long arg)
1243 {
1244 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1245 	struct ifreq ifr;
1246 	bool need_copyout;
1247 	int err;
1248 	void __user *argp = (void __user *)arg;
1249 	void __user *data;
1250 
1251 	err = ops->ioctl(sock, cmd, arg);
1252 
1253 	/*
1254 	 * If this ioctl is unknown try to hand it down
1255 	 * to the NIC driver.
1256 	 */
1257 	if (err != -ENOIOCTLCMD)
1258 		return err;
1259 
1260 	if (!is_socket_ioctl_cmd(cmd))
1261 		return -ENOTTY;
1262 
1263 	if (get_user_ifreq(&ifr, &data, argp))
1264 		return -EFAULT;
1265 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1266 	if (!err && need_copyout)
1267 		if (put_user_ifreq(&ifr, argp))
1268 			return -EFAULT;
1269 
1270 	return err;
1271 }
1272 
1273 /*
1274  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1275  *	what to do with it - that's up to the protocol still.
1276  */
1277 
1278 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1279 {
1280 	const struct proto_ops  *ops;
1281 	struct socket *sock;
1282 	struct sock *sk;
1283 	void __user *argp = (void __user *)arg;
1284 	int pid, err;
1285 	struct net *net;
1286 
1287 	sock = file->private_data;
1288 	ops = READ_ONCE(sock->ops);
1289 	sk = sock->sk;
1290 	net = sock_net(sk);
1291 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1292 		struct ifreq ifr;
1293 		void __user *data;
1294 		bool need_copyout;
1295 		if (get_user_ifreq(&ifr, &data, argp))
1296 			return -EFAULT;
1297 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1298 		if (!err && need_copyout)
1299 			if (put_user_ifreq(&ifr, argp))
1300 				return -EFAULT;
1301 	} else
1302 #ifdef CONFIG_WEXT_CORE
1303 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1304 		err = wext_handle_ioctl(net, cmd, argp);
1305 	} else
1306 #endif
1307 		switch (cmd) {
1308 		case FIOSETOWN:
1309 		case SIOCSPGRP:
1310 			err = -EFAULT;
1311 			if (get_user(pid, (int __user *)argp))
1312 				break;
1313 			err = f_setown(sock->file, pid, 1);
1314 			break;
1315 		case FIOGETOWN:
1316 		case SIOCGPGRP:
1317 			err = put_user(f_getown(sock->file),
1318 				       (int __user *)argp);
1319 			break;
1320 		case SIOCGIFBR:
1321 		case SIOCSIFBR:
1322 		case SIOCBRADDBR:
1323 		case SIOCBRDELBR:
1324 		case SIOCBRADDIF:
1325 		case SIOCBRDELIF:
1326 			err = br_ioctl_call(net, cmd, argp);
1327 			break;
1328 		case SIOCGIFVLAN:
1329 		case SIOCSIFVLAN:
1330 			err = -ENOPKG;
1331 			if (!vlan_ioctl_hook)
1332 				request_module("8021q");
1333 
1334 			mutex_lock(&vlan_ioctl_mutex);
1335 			if (vlan_ioctl_hook)
1336 				err = vlan_ioctl_hook(net, argp);
1337 			mutex_unlock(&vlan_ioctl_mutex);
1338 			break;
1339 		case SIOCGSKNS:
1340 			err = -EPERM;
1341 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1342 				break;
1343 
1344 			err = open_related_ns(&net->ns, get_net_ns);
1345 			break;
1346 		case SIOCGSTAMP_OLD:
1347 		case SIOCGSTAMPNS_OLD:
1348 			if (!ops->gettstamp) {
1349 				err = -ENOIOCTLCMD;
1350 				break;
1351 			}
1352 			err = ops->gettstamp(sock, argp,
1353 					     cmd == SIOCGSTAMP_OLD,
1354 					     !IS_ENABLED(CONFIG_64BIT));
1355 			break;
1356 		case SIOCGSTAMP_NEW:
1357 		case SIOCGSTAMPNS_NEW:
1358 			if (!ops->gettstamp) {
1359 				err = -ENOIOCTLCMD;
1360 				break;
1361 			}
1362 			err = ops->gettstamp(sock, argp,
1363 					     cmd == SIOCGSTAMP_NEW,
1364 					     false);
1365 			break;
1366 
1367 		case SIOCGIFCONF:
1368 			err = dev_ifconf(net, argp);
1369 			break;
1370 
1371 		default:
1372 			err = sock_do_ioctl(net, sock, cmd, arg);
1373 			break;
1374 		}
1375 	return err;
1376 }
1377 
1378 /**
1379  *	sock_create_lite - creates a socket
1380  *	@family: protocol family (AF_INET, ...)
1381  *	@type: communication type (SOCK_STREAM, ...)
1382  *	@protocol: protocol (0, ...)
1383  *	@res: new socket
1384  *
1385  *	Creates a new socket and assigns it to @res, passing through LSM.
1386  *	The new socket initialization is not complete, see kernel_accept().
1387  *	Returns 0 or an error. On failure @res is set to %NULL.
1388  *	This function internally uses GFP_KERNEL.
1389  */
1390 
1391 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1392 {
1393 	int err;
1394 	struct socket *sock = NULL;
1395 
1396 	err = security_socket_create(family, type, protocol, 1);
1397 	if (err)
1398 		goto out;
1399 
1400 	sock = sock_alloc();
1401 	if (!sock) {
1402 		err = -ENOMEM;
1403 		goto out;
1404 	}
1405 
1406 	sock->type = type;
1407 	err = security_socket_post_create(sock, family, type, protocol, 1);
1408 	if (err)
1409 		goto out_release;
1410 
1411 out:
1412 	*res = sock;
1413 	return err;
1414 out_release:
1415 	sock_release(sock);
1416 	sock = NULL;
1417 	goto out;
1418 }
1419 EXPORT_SYMBOL(sock_create_lite);
1420 
1421 /* No kernel lock held - perfect */
1422 static __poll_t sock_poll(struct file *file, poll_table *wait)
1423 {
1424 	struct socket *sock = file->private_data;
1425 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1426 	__poll_t events = poll_requested_events(wait), flag = 0;
1427 
1428 	if (!ops->poll)
1429 		return 0;
1430 
1431 	if (sk_can_busy_loop(sock->sk)) {
1432 		/* poll once if requested by the syscall */
1433 		if (events & POLL_BUSY_LOOP)
1434 			sk_busy_loop(sock->sk, 1);
1435 
1436 		/* if this socket can poll_ll, tell the system call */
1437 		flag = POLL_BUSY_LOOP;
1438 	}
1439 
1440 	return ops->poll(file, sock, wait) | flag;
1441 }
1442 
1443 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1444 {
1445 	struct socket *sock = file->private_data;
1446 
1447 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1448 }
1449 
1450 static int sock_close(struct inode *inode, struct file *filp)
1451 {
1452 	__sock_release(SOCKET_I(inode), inode);
1453 	return 0;
1454 }
1455 
1456 /*
1457  *	Update the socket async list
1458  *
1459  *	Fasync_list locking strategy.
1460  *
1461  *	1. fasync_list is modified only under process context socket lock
1462  *	   i.e. under semaphore.
1463  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1464  *	   or under socket lock
1465  */
1466 
1467 static int sock_fasync(int fd, struct file *filp, int on)
1468 {
1469 	struct socket *sock = filp->private_data;
1470 	struct sock *sk = sock->sk;
1471 	struct socket_wq *wq = &sock->wq;
1472 
1473 	if (sk == NULL)
1474 		return -EINVAL;
1475 
1476 	lock_sock(sk);
1477 	fasync_helper(fd, filp, on, &wq->fasync_list);
1478 
1479 	if (!wq->fasync_list)
1480 		sock_reset_flag(sk, SOCK_FASYNC);
1481 	else
1482 		sock_set_flag(sk, SOCK_FASYNC);
1483 
1484 	release_sock(sk);
1485 	return 0;
1486 }
1487 
1488 /* This function may be called only under rcu_lock */
1489 
1490 int sock_wake_async(struct socket_wq *wq, int how, int band)
1491 {
1492 	if (!wq || !wq->fasync_list)
1493 		return -1;
1494 
1495 	switch (how) {
1496 	case SOCK_WAKE_WAITD:
1497 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1498 			break;
1499 		goto call_kill;
1500 	case SOCK_WAKE_SPACE:
1501 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1502 			break;
1503 		fallthrough;
1504 	case SOCK_WAKE_IO:
1505 call_kill:
1506 		kill_fasync(&wq->fasync_list, SIGIO, band);
1507 		break;
1508 	case SOCK_WAKE_URG:
1509 		kill_fasync(&wq->fasync_list, SIGURG, band);
1510 	}
1511 
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL(sock_wake_async);
1515 
1516 /**
1517  *	__sock_create - creates a socket
1518  *	@net: net namespace
1519  *	@family: protocol family (AF_INET, ...)
1520  *	@type: communication type (SOCK_STREAM, ...)
1521  *	@protocol: protocol (0, ...)
1522  *	@res: new socket
1523  *	@kern: boolean for kernel space sockets
1524  *
1525  *	Creates a new socket and assigns it to @res, passing through LSM.
1526  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1527  *	be set to true if the socket resides in kernel space.
1528  *	This function internally uses GFP_KERNEL.
1529  */
1530 
1531 int __sock_create(struct net *net, int family, int type, int protocol,
1532 			 struct socket **res, int kern)
1533 {
1534 	int err;
1535 	struct socket *sock;
1536 	const struct net_proto_family *pf;
1537 
1538 	/*
1539 	 *      Check protocol is in range
1540 	 */
1541 	if (family < 0 || family >= NPROTO)
1542 		return -EAFNOSUPPORT;
1543 	if (type < 0 || type >= SOCK_MAX)
1544 		return -EINVAL;
1545 
1546 	/* Compatibility.
1547 
1548 	   This uglymoron is moved from INET layer to here to avoid
1549 	   deadlock in module load.
1550 	 */
1551 	if (family == PF_INET && type == SOCK_PACKET) {
1552 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1553 			     current->comm);
1554 		family = PF_PACKET;
1555 	}
1556 
1557 	err = security_socket_create(family, type, protocol, kern);
1558 	if (err)
1559 		return err;
1560 
1561 	/*
1562 	 *	Allocate the socket and allow the family to set things up. if
1563 	 *	the protocol is 0, the family is instructed to select an appropriate
1564 	 *	default.
1565 	 */
1566 	sock = sock_alloc();
1567 	if (!sock) {
1568 		net_warn_ratelimited("socket: no more sockets\n");
1569 		return -ENFILE;	/* Not exactly a match, but its the
1570 				   closest posix thing */
1571 	}
1572 
1573 	sock->type = type;
1574 
1575 #ifdef CONFIG_MODULES
1576 	/* Attempt to load a protocol module if the find failed.
1577 	 *
1578 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1579 	 * requested real, full-featured networking support upon configuration.
1580 	 * Otherwise module support will break!
1581 	 */
1582 	if (rcu_access_pointer(net_families[family]) == NULL)
1583 		request_module("net-pf-%d", family);
1584 #endif
1585 
1586 	rcu_read_lock();
1587 	pf = rcu_dereference(net_families[family]);
1588 	err = -EAFNOSUPPORT;
1589 	if (!pf)
1590 		goto out_release;
1591 
1592 	/*
1593 	 * We will call the ->create function, that possibly is in a loadable
1594 	 * module, so we have to bump that loadable module refcnt first.
1595 	 */
1596 	if (!try_module_get(pf->owner))
1597 		goto out_release;
1598 
1599 	/* Now protected by module ref count */
1600 	rcu_read_unlock();
1601 
1602 	err = pf->create(net, sock, protocol, kern);
1603 	if (err < 0) {
1604 		/* ->create should release the allocated sock->sk object on error
1605 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1606 		 */
1607 		DEBUG_NET_WARN_ONCE(sock->sk,
1608 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1609 				    pf->create, family, type, protocol);
1610 		goto out_module_put;
1611 	}
1612 
1613 	/*
1614 	 * Now to bump the refcnt of the [loadable] module that owns this
1615 	 * socket at sock_release time we decrement its refcnt.
1616 	 */
1617 	if (!try_module_get(sock->ops->owner))
1618 		goto out_module_busy;
1619 
1620 	/*
1621 	 * Now that we're done with the ->create function, the [loadable]
1622 	 * module can have its refcnt decremented
1623 	 */
1624 	module_put(pf->owner);
1625 	err = security_socket_post_create(sock, family, type, protocol, kern);
1626 	if (err)
1627 		goto out_sock_release;
1628 	*res = sock;
1629 
1630 	return 0;
1631 
1632 out_module_busy:
1633 	err = -EAFNOSUPPORT;
1634 out_module_put:
1635 	sock->ops = NULL;
1636 	module_put(pf->owner);
1637 out_sock_release:
1638 	sock_release(sock);
1639 	return err;
1640 
1641 out_release:
1642 	rcu_read_unlock();
1643 	goto out_sock_release;
1644 }
1645 EXPORT_SYMBOL(__sock_create);
1646 
1647 /**
1648  *	sock_create - creates a socket
1649  *	@family: protocol family (AF_INET, ...)
1650  *	@type: communication type (SOCK_STREAM, ...)
1651  *	@protocol: protocol (0, ...)
1652  *	@res: new socket
1653  *
1654  *	A wrapper around __sock_create().
1655  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1656  */
1657 
1658 int sock_create(int family, int type, int protocol, struct socket **res)
1659 {
1660 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1661 }
1662 EXPORT_SYMBOL(sock_create);
1663 
1664 /**
1665  *	sock_create_kern - creates a socket (kernel space)
1666  *	@net: net namespace
1667  *	@family: protocol family (AF_INET, ...)
1668  *	@type: communication type (SOCK_STREAM, ...)
1669  *	@protocol: protocol (0, ...)
1670  *	@res: new socket
1671  *
1672  *	A wrapper around __sock_create().
1673  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1674  */
1675 
1676 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1677 {
1678 	return __sock_create(net, family, type, protocol, res, 1);
1679 }
1680 EXPORT_SYMBOL(sock_create_kern);
1681 
1682 static struct socket *__sys_socket_create(int family, int type, int protocol)
1683 {
1684 	struct socket *sock;
1685 	int retval;
1686 
1687 	/* Check the SOCK_* constants for consistency.  */
1688 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1689 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1690 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1691 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1692 
1693 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 		return ERR_PTR(-EINVAL);
1695 	type &= SOCK_TYPE_MASK;
1696 
1697 	retval = sock_create(family, type, protocol, &sock);
1698 	if (retval < 0)
1699 		return ERR_PTR(retval);
1700 
1701 	return sock;
1702 }
1703 
1704 struct file *__sys_socket_file(int family, int type, int protocol)
1705 {
1706 	struct socket *sock;
1707 	int flags;
1708 
1709 	sock = __sys_socket_create(family, type, protocol);
1710 	if (IS_ERR(sock))
1711 		return ERR_CAST(sock);
1712 
1713 	flags = type & ~SOCK_TYPE_MASK;
1714 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1715 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1716 
1717 	return sock_alloc_file(sock, flags, NULL);
1718 }
1719 
1720 /*	A hook for bpf progs to attach to and update socket protocol.
1721  *
1722  *	A static noinline declaration here could cause the compiler to
1723  *	optimize away the function. A global noinline declaration will
1724  *	keep the definition, but may optimize away the callsite.
1725  *	Therefore, __weak is needed to ensure that the call is still
1726  *	emitted, by telling the compiler that we don't know what the
1727  *	function might eventually be.
1728  */
1729 
1730 __bpf_hook_start();
1731 
1732 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1733 {
1734 	return protocol;
1735 }
1736 
1737 __bpf_hook_end();
1738 
1739 int __sys_socket(int family, int type, int protocol)
1740 {
1741 	struct socket *sock;
1742 	int flags;
1743 
1744 	sock = __sys_socket_create(family, type,
1745 				   update_socket_protocol(family, type, protocol));
1746 	if (IS_ERR(sock))
1747 		return PTR_ERR(sock);
1748 
1749 	flags = type & ~SOCK_TYPE_MASK;
1750 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1751 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1752 
1753 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1754 }
1755 
1756 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1757 {
1758 	return __sys_socket(family, type, protocol);
1759 }
1760 
1761 /*
1762  *	Create a pair of connected sockets.
1763  */
1764 
1765 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1766 {
1767 	struct socket *sock1, *sock2;
1768 	int fd1, fd2, err;
1769 	struct file *newfile1, *newfile2;
1770 	int flags;
1771 
1772 	flags = type & ~SOCK_TYPE_MASK;
1773 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1774 		return -EINVAL;
1775 	type &= SOCK_TYPE_MASK;
1776 
1777 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1778 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1779 
1780 	/*
1781 	 * reserve descriptors and make sure we won't fail
1782 	 * to return them to userland.
1783 	 */
1784 	fd1 = get_unused_fd_flags(flags);
1785 	if (unlikely(fd1 < 0))
1786 		return fd1;
1787 
1788 	fd2 = get_unused_fd_flags(flags);
1789 	if (unlikely(fd2 < 0)) {
1790 		put_unused_fd(fd1);
1791 		return fd2;
1792 	}
1793 
1794 	err = put_user(fd1, &usockvec[0]);
1795 	if (err)
1796 		goto out;
1797 
1798 	err = put_user(fd2, &usockvec[1]);
1799 	if (err)
1800 		goto out;
1801 
1802 	/*
1803 	 * Obtain the first socket and check if the underlying protocol
1804 	 * supports the socketpair call.
1805 	 */
1806 
1807 	err = sock_create(family, type, protocol, &sock1);
1808 	if (unlikely(err < 0))
1809 		goto out;
1810 
1811 	err = sock_create(family, type, protocol, &sock2);
1812 	if (unlikely(err < 0)) {
1813 		sock_release(sock1);
1814 		goto out;
1815 	}
1816 
1817 	err = security_socket_socketpair(sock1, sock2);
1818 	if (unlikely(err)) {
1819 		sock_release(sock2);
1820 		sock_release(sock1);
1821 		goto out;
1822 	}
1823 
1824 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1825 	if (unlikely(err < 0)) {
1826 		sock_release(sock2);
1827 		sock_release(sock1);
1828 		goto out;
1829 	}
1830 
1831 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1832 	if (IS_ERR(newfile1)) {
1833 		err = PTR_ERR(newfile1);
1834 		sock_release(sock2);
1835 		goto out;
1836 	}
1837 
1838 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1839 	if (IS_ERR(newfile2)) {
1840 		err = PTR_ERR(newfile2);
1841 		fput(newfile1);
1842 		goto out;
1843 	}
1844 
1845 	audit_fd_pair(fd1, fd2);
1846 
1847 	fd_install(fd1, newfile1);
1848 	fd_install(fd2, newfile2);
1849 	return 0;
1850 
1851 out:
1852 	put_unused_fd(fd2);
1853 	put_unused_fd(fd1);
1854 	return err;
1855 }
1856 
1857 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1858 		int __user *, usockvec)
1859 {
1860 	return __sys_socketpair(family, type, protocol, usockvec);
1861 }
1862 
1863 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1864 		      int addrlen)
1865 {
1866 	int err;
1867 
1868 	err = security_socket_bind(sock, (struct sockaddr *)address,
1869 				   addrlen);
1870 	if (!err)
1871 		err = READ_ONCE(sock->ops)->bind(sock,
1872 						 (struct sockaddr *)address,
1873 						 addrlen);
1874 	return err;
1875 }
1876 
1877 /*
1878  *	Bind a name to a socket. Nothing much to do here since it's
1879  *	the protocol's responsibility to handle the local address.
1880  *
1881  *	We move the socket address to kernel space before we call
1882  *	the protocol layer (having also checked the address is ok).
1883  */
1884 
1885 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1886 {
1887 	struct socket *sock;
1888 	struct sockaddr_storage address;
1889 	CLASS(fd, f)(fd);
1890 	int err;
1891 
1892 	if (fd_empty(f))
1893 		return -EBADF;
1894 	sock = sock_from_file(fd_file(f));
1895 	if (unlikely(!sock))
1896 		return -ENOTSOCK;
1897 
1898 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1899 	if (unlikely(err))
1900 		return err;
1901 
1902 	return __sys_bind_socket(sock, &address, addrlen);
1903 }
1904 
1905 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1906 {
1907 	return __sys_bind(fd, umyaddr, addrlen);
1908 }
1909 
1910 /*
1911  *	Perform a listen. Basically, we allow the protocol to do anything
1912  *	necessary for a listen, and if that works, we mark the socket as
1913  *	ready for listening.
1914  */
1915 int __sys_listen_socket(struct socket *sock, int backlog)
1916 {
1917 	int somaxconn, err;
1918 
1919 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1920 	if ((unsigned int)backlog > somaxconn)
1921 		backlog = somaxconn;
1922 
1923 	err = security_socket_listen(sock, backlog);
1924 	if (!err)
1925 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1926 	return err;
1927 }
1928 
1929 int __sys_listen(int fd, int backlog)
1930 {
1931 	CLASS(fd, f)(fd);
1932 	struct socket *sock;
1933 
1934 	if (fd_empty(f))
1935 		return -EBADF;
1936 	sock = sock_from_file(fd_file(f));
1937 	if (unlikely(!sock))
1938 		return -ENOTSOCK;
1939 
1940 	return __sys_listen_socket(sock, backlog);
1941 }
1942 
1943 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1944 {
1945 	return __sys_listen(fd, backlog);
1946 }
1947 
1948 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1949 		       struct sockaddr __user *upeer_sockaddr,
1950 		       int __user *upeer_addrlen, int flags)
1951 {
1952 	struct socket *sock, *newsock;
1953 	struct file *newfile;
1954 	int err, len;
1955 	struct sockaddr_storage address;
1956 	const struct proto_ops *ops;
1957 
1958 	sock = sock_from_file(file);
1959 	if (!sock)
1960 		return ERR_PTR(-ENOTSOCK);
1961 
1962 	newsock = sock_alloc();
1963 	if (!newsock)
1964 		return ERR_PTR(-ENFILE);
1965 	ops = READ_ONCE(sock->ops);
1966 
1967 	newsock->type = sock->type;
1968 	newsock->ops = ops;
1969 
1970 	/*
1971 	 * We don't need try_module_get here, as the listening socket (sock)
1972 	 * has the protocol module (sock->ops->owner) held.
1973 	 */
1974 	__module_get(ops->owner);
1975 
1976 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1977 	if (IS_ERR(newfile))
1978 		return newfile;
1979 
1980 	err = security_socket_accept(sock, newsock);
1981 	if (err)
1982 		goto out_fd;
1983 
1984 	arg->flags |= sock->file->f_flags;
1985 	err = ops->accept(sock, newsock, arg);
1986 	if (err < 0)
1987 		goto out_fd;
1988 
1989 	if (upeer_sockaddr) {
1990 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1991 		if (len < 0) {
1992 			err = -ECONNABORTED;
1993 			goto out_fd;
1994 		}
1995 		err = move_addr_to_user(&address,
1996 					len, upeer_sockaddr, upeer_addrlen);
1997 		if (err < 0)
1998 			goto out_fd;
1999 	}
2000 
2001 	/* File flags are not inherited via accept() unlike another OSes. */
2002 	return newfile;
2003 out_fd:
2004 	fput(newfile);
2005 	return ERR_PTR(err);
2006 }
2007 
2008 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2009 			      int __user *upeer_addrlen, int flags)
2010 {
2011 	struct proto_accept_arg arg = { };
2012 	struct file *newfile;
2013 	int newfd;
2014 
2015 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2016 		return -EINVAL;
2017 
2018 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2019 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2020 
2021 	newfd = get_unused_fd_flags(flags);
2022 	if (unlikely(newfd < 0))
2023 		return newfd;
2024 
2025 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
2026 			    flags);
2027 	if (IS_ERR(newfile)) {
2028 		put_unused_fd(newfd);
2029 		return PTR_ERR(newfile);
2030 	}
2031 	fd_install(newfd, newfile);
2032 	return newfd;
2033 }
2034 
2035 /*
2036  *	For accept, we attempt to create a new socket, set up the link
2037  *	with the client, wake up the client, then return the new
2038  *	connected fd. We collect the address of the connector in kernel
2039  *	space and move it to user at the very end. This is unclean because
2040  *	we open the socket then return an error.
2041  *
2042  *	1003.1g adds the ability to recvmsg() to query connection pending
2043  *	status to recvmsg. We need to add that support in a way thats
2044  *	clean when we restructure accept also.
2045  */
2046 
2047 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2048 		  int __user *upeer_addrlen, int flags)
2049 {
2050 	CLASS(fd, f)(fd);
2051 
2052 	if (fd_empty(f))
2053 		return -EBADF;
2054 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2055 					 upeer_addrlen, flags);
2056 }
2057 
2058 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2059 		int __user *, upeer_addrlen, int, flags)
2060 {
2061 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2062 }
2063 
2064 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2065 		int __user *, upeer_addrlen)
2066 {
2067 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2068 }
2069 
2070 /*
2071  *	Attempt to connect to a socket with the server address.  The address
2072  *	is in user space so we verify it is OK and move it to kernel space.
2073  *
2074  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2075  *	break bindings
2076  *
2077  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2078  *	other SEQPACKET protocols that take time to connect() as it doesn't
2079  *	include the -EINPROGRESS status for such sockets.
2080  */
2081 
2082 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2083 		       int addrlen, int file_flags)
2084 {
2085 	struct socket *sock;
2086 	int err;
2087 
2088 	sock = sock_from_file(file);
2089 	if (!sock) {
2090 		err = -ENOTSOCK;
2091 		goto out;
2092 	}
2093 
2094 	err =
2095 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2096 	if (err)
2097 		goto out;
2098 
2099 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2100 				addrlen, sock->file->f_flags | file_flags);
2101 out:
2102 	return err;
2103 }
2104 
2105 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2106 {
2107 	struct sockaddr_storage address;
2108 	CLASS(fd, f)(fd);
2109 	int ret;
2110 
2111 	if (fd_empty(f))
2112 		return -EBADF;
2113 
2114 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2115 	if (ret)
2116 		return ret;
2117 
2118 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2119 }
2120 
2121 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2122 		int, addrlen)
2123 {
2124 	return __sys_connect(fd, uservaddr, addrlen);
2125 }
2126 
2127 /*
2128  *	Get the local address ('name') of a socket object. Move the obtained
2129  *	name to user space.
2130  */
2131 
2132 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2133 		      int __user *usockaddr_len)
2134 {
2135 	struct socket *sock;
2136 	struct sockaddr_storage address;
2137 	CLASS(fd, f)(fd);
2138 	int err;
2139 
2140 	if (fd_empty(f))
2141 		return -EBADF;
2142 	sock = sock_from_file(fd_file(f));
2143 	if (unlikely(!sock))
2144 		return -ENOTSOCK;
2145 
2146 	err = security_socket_getsockname(sock);
2147 	if (err)
2148 		return err;
2149 
2150 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2151 	if (err < 0)
2152 		return err;
2153 
2154 	/* "err" is actually length in this case */
2155 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2156 }
2157 
2158 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2159 		int __user *, usockaddr_len)
2160 {
2161 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2162 }
2163 
2164 /*
2165  *	Get the remote address ('name') of a socket object. Move the obtained
2166  *	name to user space.
2167  */
2168 
2169 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2170 		      int __user *usockaddr_len)
2171 {
2172 	struct socket *sock;
2173 	struct sockaddr_storage address;
2174 	CLASS(fd, f)(fd);
2175 	int err;
2176 
2177 	if (fd_empty(f))
2178 		return -EBADF;
2179 	sock = sock_from_file(fd_file(f));
2180 	if (unlikely(!sock))
2181 		return -ENOTSOCK;
2182 
2183 	err = security_socket_getpeername(sock);
2184 	if (err)
2185 		return err;
2186 
2187 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2188 	if (err < 0)
2189 		return err;
2190 
2191 	/* "err" is actually length in this case */
2192 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2193 }
2194 
2195 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2196 		int __user *, usockaddr_len)
2197 {
2198 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2199 }
2200 
2201 /*
2202  *	Send a datagram to a given address. We move the address into kernel
2203  *	space and check the user space data area is readable before invoking
2204  *	the protocol.
2205  */
2206 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2207 		 struct sockaddr __user *addr,  int addr_len)
2208 {
2209 	struct socket *sock;
2210 	struct sockaddr_storage address;
2211 	int err;
2212 	struct msghdr msg;
2213 
2214 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2215 	if (unlikely(err))
2216 		return err;
2217 
2218 	CLASS(fd, f)(fd);
2219 	if (fd_empty(f))
2220 		return -EBADF;
2221 	sock = sock_from_file(fd_file(f));
2222 	if (unlikely(!sock))
2223 		return -ENOTSOCK;
2224 
2225 	msg.msg_name = NULL;
2226 	msg.msg_control = NULL;
2227 	msg.msg_controllen = 0;
2228 	msg.msg_namelen = 0;
2229 	msg.msg_ubuf = NULL;
2230 	if (addr) {
2231 		err = move_addr_to_kernel(addr, addr_len, &address);
2232 		if (err < 0)
2233 			return err;
2234 		msg.msg_name = (struct sockaddr *)&address;
2235 		msg.msg_namelen = addr_len;
2236 	}
2237 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2238 	if (sock->file->f_flags & O_NONBLOCK)
2239 		flags |= MSG_DONTWAIT;
2240 	msg.msg_flags = flags;
2241 	return __sock_sendmsg(sock, &msg);
2242 }
2243 
2244 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2245 		unsigned int, flags, struct sockaddr __user *, addr,
2246 		int, addr_len)
2247 {
2248 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2249 }
2250 
2251 /*
2252  *	Send a datagram down a socket.
2253  */
2254 
2255 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2256 		unsigned int, flags)
2257 {
2258 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2259 }
2260 
2261 /*
2262  *	Receive a frame from the socket and optionally record the address of the
2263  *	sender. We verify the buffers are writable and if needed move the
2264  *	sender address from kernel to user space.
2265  */
2266 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2267 		   struct sockaddr __user *addr, int __user *addr_len)
2268 {
2269 	struct sockaddr_storage address;
2270 	struct msghdr msg = {
2271 		/* Save some cycles and don't copy the address if not needed */
2272 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2273 	};
2274 	struct socket *sock;
2275 	int err, err2;
2276 
2277 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2278 	if (unlikely(err))
2279 		return err;
2280 
2281 	CLASS(fd, f)(fd);
2282 
2283 	if (fd_empty(f))
2284 		return -EBADF;
2285 	sock = sock_from_file(fd_file(f));
2286 	if (unlikely(!sock))
2287 		return -ENOTSOCK;
2288 
2289 	if (sock->file->f_flags & O_NONBLOCK)
2290 		flags |= MSG_DONTWAIT;
2291 	err = sock_recvmsg(sock, &msg, flags);
2292 
2293 	if (err >= 0 && addr != NULL) {
2294 		err2 = move_addr_to_user(&address,
2295 					 msg.msg_namelen, addr, addr_len);
2296 		if (err2 < 0)
2297 			err = err2;
2298 	}
2299 	return err;
2300 }
2301 
2302 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2303 		unsigned int, flags, struct sockaddr __user *, addr,
2304 		int __user *, addr_len)
2305 {
2306 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2307 }
2308 
2309 /*
2310  *	Receive a datagram from a socket.
2311  */
2312 
2313 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2314 		unsigned int, flags)
2315 {
2316 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2317 }
2318 
2319 static bool sock_use_custom_sol_socket(const struct socket *sock)
2320 {
2321 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2322 }
2323 
2324 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2325 		       int optname, sockptr_t optval, int optlen)
2326 {
2327 	const struct proto_ops *ops;
2328 	char *kernel_optval = NULL;
2329 	int err;
2330 
2331 	if (optlen < 0)
2332 		return -EINVAL;
2333 
2334 	err = security_socket_setsockopt(sock, level, optname);
2335 	if (err)
2336 		goto out_put;
2337 
2338 	if (!compat)
2339 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2340 						     optval, &optlen,
2341 						     &kernel_optval);
2342 	if (err < 0)
2343 		goto out_put;
2344 	if (err > 0) {
2345 		err = 0;
2346 		goto out_put;
2347 	}
2348 
2349 	if (kernel_optval)
2350 		optval = KERNEL_SOCKPTR(kernel_optval);
2351 	ops = READ_ONCE(sock->ops);
2352 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2353 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2354 	else if (unlikely(!ops->setsockopt))
2355 		err = -EOPNOTSUPP;
2356 	else
2357 		err = ops->setsockopt(sock, level, optname, optval,
2358 					    optlen);
2359 	kfree(kernel_optval);
2360 out_put:
2361 	return err;
2362 }
2363 EXPORT_SYMBOL(do_sock_setsockopt);
2364 
2365 /* Set a socket option. Because we don't know the option lengths we have
2366  * to pass the user mode parameter for the protocols to sort out.
2367  */
2368 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2369 		     int optlen)
2370 {
2371 	sockptr_t optval = USER_SOCKPTR(user_optval);
2372 	bool compat = in_compat_syscall();
2373 	struct socket *sock;
2374 	CLASS(fd, f)(fd);
2375 
2376 	if (fd_empty(f))
2377 		return -EBADF;
2378 	sock = sock_from_file(fd_file(f));
2379 	if (unlikely(!sock))
2380 		return -ENOTSOCK;
2381 
2382 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2383 }
2384 
2385 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2386 		char __user *, optval, int, optlen)
2387 {
2388 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2389 }
2390 
2391 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2392 							 int optname));
2393 
2394 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2395 		       int optname, sockptr_t optval, sockptr_t optlen)
2396 {
2397 	int max_optlen __maybe_unused = 0;
2398 	const struct proto_ops *ops;
2399 	int err;
2400 
2401 	err = security_socket_getsockopt(sock, level, optname);
2402 	if (err)
2403 		return err;
2404 
2405 	if (!compat)
2406 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2407 
2408 	ops = READ_ONCE(sock->ops);
2409 	if (level == SOL_SOCKET) {
2410 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2411 	} else if (unlikely(!ops->getsockopt)) {
2412 		err = -EOPNOTSUPP;
2413 	} else {
2414 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2415 			      "Invalid argument type"))
2416 			return -EOPNOTSUPP;
2417 
2418 		err = ops->getsockopt(sock, level, optname, optval.user,
2419 				      optlen.user);
2420 	}
2421 
2422 	if (!compat)
2423 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2424 						     optval, optlen, max_optlen,
2425 						     err);
2426 
2427 	return err;
2428 }
2429 EXPORT_SYMBOL(do_sock_getsockopt);
2430 
2431 /*
2432  *	Get a socket option. Because we don't know the option lengths we have
2433  *	to pass a user mode parameter for the protocols to sort out.
2434  */
2435 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2436 		int __user *optlen)
2437 {
2438 	struct socket *sock;
2439 	CLASS(fd, f)(fd);
2440 
2441 	if (fd_empty(f))
2442 		return -EBADF;
2443 	sock = sock_from_file(fd_file(f));
2444 	if (unlikely(!sock))
2445 		return -ENOTSOCK;
2446 
2447 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2448 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2449 }
2450 
2451 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2452 		char __user *, optval, int __user *, optlen)
2453 {
2454 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2455 }
2456 
2457 /*
2458  *	Shutdown a socket.
2459  */
2460 
2461 int __sys_shutdown_sock(struct socket *sock, int how)
2462 {
2463 	int err;
2464 
2465 	err = security_socket_shutdown(sock, how);
2466 	if (!err)
2467 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2468 
2469 	return err;
2470 }
2471 
2472 int __sys_shutdown(int fd, int how)
2473 {
2474 	struct socket *sock;
2475 	CLASS(fd, f)(fd);
2476 
2477 	if (fd_empty(f))
2478 		return -EBADF;
2479 	sock = sock_from_file(fd_file(f));
2480 	if (unlikely(!sock))
2481 		return -ENOTSOCK;
2482 
2483 	return __sys_shutdown_sock(sock, how);
2484 }
2485 
2486 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2487 {
2488 	return __sys_shutdown(fd, how);
2489 }
2490 
2491 /* A couple of helpful macros for getting the address of the 32/64 bit
2492  * fields which are the same type (int / unsigned) on our platforms.
2493  */
2494 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2495 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2496 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2497 
2498 struct used_address {
2499 	struct sockaddr_storage name;
2500 	unsigned int name_len;
2501 };
2502 
2503 int __copy_msghdr(struct msghdr *kmsg,
2504 		  struct user_msghdr *msg,
2505 		  struct sockaddr __user **save_addr)
2506 {
2507 	ssize_t err;
2508 
2509 	kmsg->msg_control_is_user = true;
2510 	kmsg->msg_get_inq = 0;
2511 	kmsg->msg_control_user = msg->msg_control;
2512 	kmsg->msg_controllen = msg->msg_controllen;
2513 	kmsg->msg_flags = msg->msg_flags;
2514 
2515 	kmsg->msg_namelen = msg->msg_namelen;
2516 	if (!msg->msg_name)
2517 		kmsg->msg_namelen = 0;
2518 
2519 	if (kmsg->msg_namelen < 0)
2520 		return -EINVAL;
2521 
2522 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2523 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2524 
2525 	if (save_addr)
2526 		*save_addr = msg->msg_name;
2527 
2528 	if (msg->msg_name && kmsg->msg_namelen) {
2529 		if (!save_addr) {
2530 			err = move_addr_to_kernel(msg->msg_name,
2531 						  kmsg->msg_namelen,
2532 						  kmsg->msg_name);
2533 			if (err < 0)
2534 				return err;
2535 		}
2536 	} else {
2537 		kmsg->msg_name = NULL;
2538 		kmsg->msg_namelen = 0;
2539 	}
2540 
2541 	if (msg->msg_iovlen > UIO_MAXIOV)
2542 		return -EMSGSIZE;
2543 
2544 	kmsg->msg_iocb = NULL;
2545 	kmsg->msg_ubuf = NULL;
2546 	return 0;
2547 }
2548 
2549 static int copy_msghdr_from_user(struct msghdr *kmsg,
2550 				 struct user_msghdr __user *umsg,
2551 				 struct sockaddr __user **save_addr,
2552 				 struct iovec **iov)
2553 {
2554 	struct user_msghdr msg;
2555 	ssize_t err;
2556 
2557 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2558 		return -EFAULT;
2559 
2560 	err = __copy_msghdr(kmsg, &msg, save_addr);
2561 	if (err)
2562 		return err;
2563 
2564 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2565 			    msg.msg_iov, msg.msg_iovlen,
2566 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2567 	return err < 0 ? err : 0;
2568 }
2569 
2570 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2571 			   unsigned int flags, struct used_address *used_address,
2572 			   unsigned int allowed_msghdr_flags)
2573 {
2574 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2575 				__aligned(sizeof(__kernel_size_t));
2576 	/* 20 is size of ipv6_pktinfo */
2577 	unsigned char *ctl_buf = ctl;
2578 	int ctl_len;
2579 	ssize_t err;
2580 
2581 	err = -ENOBUFS;
2582 
2583 	if (msg_sys->msg_controllen > INT_MAX)
2584 		goto out;
2585 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2586 	ctl_len = msg_sys->msg_controllen;
2587 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2588 		err =
2589 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2590 						     sizeof(ctl));
2591 		if (err)
2592 			goto out;
2593 		ctl_buf = msg_sys->msg_control;
2594 		ctl_len = msg_sys->msg_controllen;
2595 	} else if (ctl_len) {
2596 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2597 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2598 		if (ctl_len > sizeof(ctl)) {
2599 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2600 			if (ctl_buf == NULL)
2601 				goto out;
2602 		}
2603 		err = -EFAULT;
2604 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2605 			goto out_freectl;
2606 		msg_sys->msg_control = ctl_buf;
2607 		msg_sys->msg_control_is_user = false;
2608 	}
2609 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2610 	msg_sys->msg_flags = flags;
2611 
2612 	if (sock->file->f_flags & O_NONBLOCK)
2613 		msg_sys->msg_flags |= MSG_DONTWAIT;
2614 	/*
2615 	 * If this is sendmmsg() and current destination address is same as
2616 	 * previously succeeded address, omit asking LSM's decision.
2617 	 * used_address->name_len is initialized to UINT_MAX so that the first
2618 	 * destination address never matches.
2619 	 */
2620 	if (used_address && msg_sys->msg_name &&
2621 	    used_address->name_len == msg_sys->msg_namelen &&
2622 	    !memcmp(&used_address->name, msg_sys->msg_name,
2623 		    used_address->name_len)) {
2624 		err = sock_sendmsg_nosec(sock, msg_sys);
2625 		goto out_freectl;
2626 	}
2627 	err = __sock_sendmsg(sock, msg_sys);
2628 	/*
2629 	 * If this is sendmmsg() and sending to current destination address was
2630 	 * successful, remember it.
2631 	 */
2632 	if (used_address && err >= 0) {
2633 		used_address->name_len = msg_sys->msg_namelen;
2634 		if (msg_sys->msg_name)
2635 			memcpy(&used_address->name, msg_sys->msg_name,
2636 			       used_address->name_len);
2637 	}
2638 
2639 out_freectl:
2640 	if (ctl_buf != ctl)
2641 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2642 out:
2643 	return err;
2644 }
2645 
2646 static int sendmsg_copy_msghdr(struct msghdr *msg,
2647 			       struct user_msghdr __user *umsg, unsigned flags,
2648 			       struct iovec **iov)
2649 {
2650 	int err;
2651 
2652 	if (flags & MSG_CMSG_COMPAT) {
2653 		struct compat_msghdr __user *msg_compat;
2654 
2655 		msg_compat = (struct compat_msghdr __user *) umsg;
2656 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2657 	} else {
2658 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2659 	}
2660 	if (err < 0)
2661 		return err;
2662 
2663 	return 0;
2664 }
2665 
2666 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2667 			 struct msghdr *msg_sys, unsigned int flags,
2668 			 struct used_address *used_address,
2669 			 unsigned int allowed_msghdr_flags)
2670 {
2671 	struct sockaddr_storage address;
2672 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2673 	ssize_t err;
2674 
2675 	msg_sys->msg_name = &address;
2676 
2677 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2678 	if (err < 0)
2679 		return err;
2680 
2681 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2682 				allowed_msghdr_flags);
2683 	kfree(iov);
2684 	return err;
2685 }
2686 
2687 /*
2688  *	BSD sendmsg interface
2689  */
2690 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2691 			unsigned int flags)
2692 {
2693 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2694 }
2695 
2696 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2697 		   bool forbid_cmsg_compat)
2698 {
2699 	struct msghdr msg_sys;
2700 	struct socket *sock;
2701 
2702 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2703 		return -EINVAL;
2704 
2705 	CLASS(fd, f)(fd);
2706 
2707 	if (fd_empty(f))
2708 		return -EBADF;
2709 	sock = sock_from_file(fd_file(f));
2710 	if (unlikely(!sock))
2711 		return -ENOTSOCK;
2712 
2713 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2714 }
2715 
2716 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2717 {
2718 	return __sys_sendmsg(fd, msg, flags, true);
2719 }
2720 
2721 /*
2722  *	Linux sendmmsg interface
2723  */
2724 
2725 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2726 		   unsigned int flags, bool forbid_cmsg_compat)
2727 {
2728 	int err, datagrams;
2729 	struct socket *sock;
2730 	struct mmsghdr __user *entry;
2731 	struct compat_mmsghdr __user *compat_entry;
2732 	struct msghdr msg_sys;
2733 	struct used_address used_address;
2734 	unsigned int oflags = flags;
2735 
2736 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2737 		return -EINVAL;
2738 
2739 	if (vlen > UIO_MAXIOV)
2740 		vlen = UIO_MAXIOV;
2741 
2742 	datagrams = 0;
2743 
2744 	CLASS(fd, f)(fd);
2745 
2746 	if (fd_empty(f))
2747 		return -EBADF;
2748 	sock = sock_from_file(fd_file(f));
2749 	if (unlikely(!sock))
2750 		return -ENOTSOCK;
2751 
2752 	used_address.name_len = UINT_MAX;
2753 	entry = mmsg;
2754 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2755 	err = 0;
2756 	flags |= MSG_BATCH;
2757 
2758 	while (datagrams < vlen) {
2759 		if (datagrams == vlen - 1)
2760 			flags = oflags;
2761 
2762 		if (MSG_CMSG_COMPAT & flags) {
2763 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2764 					     &msg_sys, flags, &used_address, MSG_EOR);
2765 			if (err < 0)
2766 				break;
2767 			err = __put_user(err, &compat_entry->msg_len);
2768 			++compat_entry;
2769 		} else {
2770 			err = ___sys_sendmsg(sock,
2771 					     (struct user_msghdr __user *)entry,
2772 					     &msg_sys, flags, &used_address, MSG_EOR);
2773 			if (err < 0)
2774 				break;
2775 			err = put_user(err, &entry->msg_len);
2776 			++entry;
2777 		}
2778 
2779 		if (err)
2780 			break;
2781 		++datagrams;
2782 		if (msg_data_left(&msg_sys))
2783 			break;
2784 		cond_resched();
2785 	}
2786 
2787 	/* We only return an error if no datagrams were able to be sent */
2788 	if (datagrams != 0)
2789 		return datagrams;
2790 
2791 	return err;
2792 }
2793 
2794 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2795 		unsigned int, vlen, unsigned int, flags)
2796 {
2797 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2798 }
2799 
2800 static int recvmsg_copy_msghdr(struct msghdr *msg,
2801 			       struct user_msghdr __user *umsg, unsigned flags,
2802 			       struct sockaddr __user **uaddr,
2803 			       struct iovec **iov)
2804 {
2805 	ssize_t err;
2806 
2807 	if (MSG_CMSG_COMPAT & flags) {
2808 		struct compat_msghdr __user *msg_compat;
2809 
2810 		msg_compat = (struct compat_msghdr __user *) umsg;
2811 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2812 	} else {
2813 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2814 	}
2815 	if (err < 0)
2816 		return err;
2817 
2818 	return 0;
2819 }
2820 
2821 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2822 			   struct user_msghdr __user *msg,
2823 			   struct sockaddr __user *uaddr,
2824 			   unsigned int flags, int nosec)
2825 {
2826 	struct compat_msghdr __user *msg_compat =
2827 					(struct compat_msghdr __user *) msg;
2828 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2829 	struct sockaddr_storage addr;
2830 	unsigned long cmsg_ptr;
2831 	int len;
2832 	ssize_t err;
2833 
2834 	msg_sys->msg_name = &addr;
2835 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2836 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2837 
2838 	/* We assume all kernel code knows the size of sockaddr_storage */
2839 	msg_sys->msg_namelen = 0;
2840 
2841 	if (sock->file->f_flags & O_NONBLOCK)
2842 		flags |= MSG_DONTWAIT;
2843 
2844 	if (unlikely(nosec))
2845 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2846 	else
2847 		err = sock_recvmsg(sock, msg_sys, flags);
2848 
2849 	if (err < 0)
2850 		goto out;
2851 	len = err;
2852 
2853 	if (uaddr != NULL) {
2854 		err = move_addr_to_user(&addr,
2855 					msg_sys->msg_namelen, uaddr,
2856 					uaddr_len);
2857 		if (err < 0)
2858 			goto out;
2859 	}
2860 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2861 			 COMPAT_FLAGS(msg));
2862 	if (err)
2863 		goto out;
2864 	if (MSG_CMSG_COMPAT & flags)
2865 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2866 				 &msg_compat->msg_controllen);
2867 	else
2868 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2869 				 &msg->msg_controllen);
2870 	if (err)
2871 		goto out;
2872 	err = len;
2873 out:
2874 	return err;
2875 }
2876 
2877 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2878 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2879 {
2880 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2881 	/* user mode address pointers */
2882 	struct sockaddr __user *uaddr;
2883 	ssize_t err;
2884 
2885 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2886 	if (err < 0)
2887 		return err;
2888 
2889 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2890 	kfree(iov);
2891 	return err;
2892 }
2893 
2894 /*
2895  *	BSD recvmsg interface
2896  */
2897 
2898 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2899 			struct user_msghdr __user *umsg,
2900 			struct sockaddr __user *uaddr, unsigned int flags)
2901 {
2902 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2903 }
2904 
2905 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2906 		   bool forbid_cmsg_compat)
2907 {
2908 	struct msghdr msg_sys;
2909 	struct socket *sock;
2910 
2911 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2912 		return -EINVAL;
2913 
2914 	CLASS(fd, f)(fd);
2915 
2916 	if (fd_empty(f))
2917 		return -EBADF;
2918 	sock = sock_from_file(fd_file(f));
2919 	if (unlikely(!sock))
2920 		return -ENOTSOCK;
2921 
2922 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2923 }
2924 
2925 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2926 		unsigned int, flags)
2927 {
2928 	return __sys_recvmsg(fd, msg, flags, true);
2929 }
2930 
2931 /*
2932  *     Linux recvmmsg interface
2933  */
2934 
2935 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2936 			  unsigned int vlen, unsigned int flags,
2937 			  struct timespec64 *timeout)
2938 {
2939 	int err = 0, datagrams;
2940 	struct socket *sock;
2941 	struct mmsghdr __user *entry;
2942 	struct compat_mmsghdr __user *compat_entry;
2943 	struct msghdr msg_sys;
2944 	struct timespec64 end_time;
2945 	struct timespec64 timeout64;
2946 
2947 	if (timeout &&
2948 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2949 				    timeout->tv_nsec))
2950 		return -EINVAL;
2951 
2952 	datagrams = 0;
2953 
2954 	CLASS(fd, f)(fd);
2955 
2956 	if (fd_empty(f))
2957 		return -EBADF;
2958 	sock = sock_from_file(fd_file(f));
2959 	if (unlikely(!sock))
2960 		return -ENOTSOCK;
2961 
2962 	if (likely(!(flags & MSG_ERRQUEUE))) {
2963 		err = sock_error(sock->sk);
2964 		if (err)
2965 			return err;
2966 	}
2967 
2968 	entry = mmsg;
2969 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2970 
2971 	while (datagrams < vlen) {
2972 		/*
2973 		 * No need to ask LSM for more than the first datagram.
2974 		 */
2975 		if (MSG_CMSG_COMPAT & flags) {
2976 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2977 					     &msg_sys, flags & ~MSG_WAITFORONE,
2978 					     datagrams);
2979 			if (err < 0)
2980 				break;
2981 			err = __put_user(err, &compat_entry->msg_len);
2982 			++compat_entry;
2983 		} else {
2984 			err = ___sys_recvmsg(sock,
2985 					     (struct user_msghdr __user *)entry,
2986 					     &msg_sys, flags & ~MSG_WAITFORONE,
2987 					     datagrams);
2988 			if (err < 0)
2989 				break;
2990 			err = put_user(err, &entry->msg_len);
2991 			++entry;
2992 		}
2993 
2994 		if (err)
2995 			break;
2996 		++datagrams;
2997 
2998 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2999 		if (flags & MSG_WAITFORONE)
3000 			flags |= MSG_DONTWAIT;
3001 
3002 		if (timeout) {
3003 			ktime_get_ts64(&timeout64);
3004 			*timeout = timespec64_sub(end_time, timeout64);
3005 			if (timeout->tv_sec < 0) {
3006 				timeout->tv_sec = timeout->tv_nsec = 0;
3007 				break;
3008 			}
3009 
3010 			/* Timeout, return less than vlen datagrams */
3011 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
3012 				break;
3013 		}
3014 
3015 		/* Out of band data, return right away */
3016 		if (msg_sys.msg_flags & MSG_OOB)
3017 			break;
3018 		cond_resched();
3019 	}
3020 
3021 	if (err == 0)
3022 		return datagrams;
3023 
3024 	if (datagrams == 0)
3025 		return err;
3026 
3027 	/*
3028 	 * We may return less entries than requested (vlen) if the
3029 	 * sock is non block and there aren't enough datagrams...
3030 	 */
3031 	if (err != -EAGAIN) {
3032 		/*
3033 		 * ... or  if recvmsg returns an error after we
3034 		 * received some datagrams, where we record the
3035 		 * error to return on the next call or if the
3036 		 * app asks about it using getsockopt(SO_ERROR).
3037 		 */
3038 		WRITE_ONCE(sock->sk->sk_err, -err);
3039 	}
3040 	return datagrams;
3041 }
3042 
3043 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3044 		   unsigned int vlen, unsigned int flags,
3045 		   struct __kernel_timespec __user *timeout,
3046 		   struct old_timespec32 __user *timeout32)
3047 {
3048 	int datagrams;
3049 	struct timespec64 timeout_sys;
3050 
3051 	if (timeout && get_timespec64(&timeout_sys, timeout))
3052 		return -EFAULT;
3053 
3054 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3055 		return -EFAULT;
3056 
3057 	if (!timeout && !timeout32)
3058 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3059 
3060 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3061 
3062 	if (datagrams <= 0)
3063 		return datagrams;
3064 
3065 	if (timeout && put_timespec64(&timeout_sys, timeout))
3066 		datagrams = -EFAULT;
3067 
3068 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3069 		datagrams = -EFAULT;
3070 
3071 	return datagrams;
3072 }
3073 
3074 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3075 		unsigned int, vlen, unsigned int, flags,
3076 		struct __kernel_timespec __user *, timeout)
3077 {
3078 	if (flags & MSG_CMSG_COMPAT)
3079 		return -EINVAL;
3080 
3081 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3082 }
3083 
3084 #ifdef CONFIG_COMPAT_32BIT_TIME
3085 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3086 		unsigned int, vlen, unsigned int, flags,
3087 		struct old_timespec32 __user *, timeout)
3088 {
3089 	if (flags & MSG_CMSG_COMPAT)
3090 		return -EINVAL;
3091 
3092 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3093 }
3094 #endif
3095 
3096 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3097 /* Argument list sizes for sys_socketcall */
3098 #define AL(x) ((x) * sizeof(unsigned long))
3099 static const unsigned char nargs[21] = {
3100 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3101 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3102 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3103 	AL(4), AL(5), AL(4)
3104 };
3105 
3106 #undef AL
3107 
3108 /*
3109  *	System call vectors.
3110  *
3111  *	Argument checking cleaned up. Saved 20% in size.
3112  *  This function doesn't need to set the kernel lock because
3113  *  it is set by the callees.
3114  */
3115 
3116 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3117 {
3118 	unsigned long a[AUDITSC_ARGS];
3119 	unsigned long a0, a1;
3120 	int err;
3121 	unsigned int len;
3122 
3123 	if (call < 1 || call > SYS_SENDMMSG)
3124 		return -EINVAL;
3125 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3126 
3127 	len = nargs[call];
3128 	if (len > sizeof(a))
3129 		return -EINVAL;
3130 
3131 	/* copy_from_user should be SMP safe. */
3132 	if (copy_from_user(a, args, len))
3133 		return -EFAULT;
3134 
3135 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3136 	if (err)
3137 		return err;
3138 
3139 	a0 = a[0];
3140 	a1 = a[1];
3141 
3142 	switch (call) {
3143 	case SYS_SOCKET:
3144 		err = __sys_socket(a0, a1, a[2]);
3145 		break;
3146 	case SYS_BIND:
3147 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3148 		break;
3149 	case SYS_CONNECT:
3150 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3151 		break;
3152 	case SYS_LISTEN:
3153 		err = __sys_listen(a0, a1);
3154 		break;
3155 	case SYS_ACCEPT:
3156 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3157 				    (int __user *)a[2], 0);
3158 		break;
3159 	case SYS_GETSOCKNAME:
3160 		err =
3161 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3162 				      (int __user *)a[2]);
3163 		break;
3164 	case SYS_GETPEERNAME:
3165 		err =
3166 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3167 				      (int __user *)a[2]);
3168 		break;
3169 	case SYS_SOCKETPAIR:
3170 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3171 		break;
3172 	case SYS_SEND:
3173 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3174 				   NULL, 0);
3175 		break;
3176 	case SYS_SENDTO:
3177 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3178 				   (struct sockaddr __user *)a[4], a[5]);
3179 		break;
3180 	case SYS_RECV:
3181 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3182 				     NULL, NULL);
3183 		break;
3184 	case SYS_RECVFROM:
3185 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3186 				     (struct sockaddr __user *)a[4],
3187 				     (int __user *)a[5]);
3188 		break;
3189 	case SYS_SHUTDOWN:
3190 		err = __sys_shutdown(a0, a1);
3191 		break;
3192 	case SYS_SETSOCKOPT:
3193 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3194 				       a[4]);
3195 		break;
3196 	case SYS_GETSOCKOPT:
3197 		err =
3198 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3199 				     (int __user *)a[4]);
3200 		break;
3201 	case SYS_SENDMSG:
3202 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3203 				    a[2], true);
3204 		break;
3205 	case SYS_SENDMMSG:
3206 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3207 				     a[3], true);
3208 		break;
3209 	case SYS_RECVMSG:
3210 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3211 				    a[2], true);
3212 		break;
3213 	case SYS_RECVMMSG:
3214 		if (IS_ENABLED(CONFIG_64BIT))
3215 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3216 					     a[2], a[3],
3217 					     (struct __kernel_timespec __user *)a[4],
3218 					     NULL);
3219 		else
3220 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3221 					     a[2], a[3], NULL,
3222 					     (struct old_timespec32 __user *)a[4]);
3223 		break;
3224 	case SYS_ACCEPT4:
3225 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3226 				    (int __user *)a[2], a[3]);
3227 		break;
3228 	default:
3229 		err = -EINVAL;
3230 		break;
3231 	}
3232 	return err;
3233 }
3234 
3235 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3236 
3237 /**
3238  *	sock_register - add a socket protocol handler
3239  *	@ops: description of protocol
3240  *
3241  *	This function is called by a protocol handler that wants to
3242  *	advertise its address family, and have it linked into the
3243  *	socket interface. The value ops->family corresponds to the
3244  *	socket system call protocol family.
3245  */
3246 int sock_register(const struct net_proto_family *ops)
3247 {
3248 	int err;
3249 
3250 	if (ops->family >= NPROTO) {
3251 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3252 		return -ENOBUFS;
3253 	}
3254 
3255 	spin_lock(&net_family_lock);
3256 	if (rcu_dereference_protected(net_families[ops->family],
3257 				      lockdep_is_held(&net_family_lock)))
3258 		err = -EEXIST;
3259 	else {
3260 		rcu_assign_pointer(net_families[ops->family], ops);
3261 		err = 0;
3262 	}
3263 	spin_unlock(&net_family_lock);
3264 
3265 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3266 	return err;
3267 }
3268 EXPORT_SYMBOL(sock_register);
3269 
3270 /**
3271  *	sock_unregister - remove a protocol handler
3272  *	@family: protocol family to remove
3273  *
3274  *	This function is called by a protocol handler that wants to
3275  *	remove its address family, and have it unlinked from the
3276  *	new socket creation.
3277  *
3278  *	If protocol handler is a module, then it can use module reference
3279  *	counts to protect against new references. If protocol handler is not
3280  *	a module then it needs to provide its own protection in
3281  *	the ops->create routine.
3282  */
3283 void sock_unregister(int family)
3284 {
3285 	BUG_ON(family < 0 || family >= NPROTO);
3286 
3287 	spin_lock(&net_family_lock);
3288 	RCU_INIT_POINTER(net_families[family], NULL);
3289 	spin_unlock(&net_family_lock);
3290 
3291 	synchronize_rcu();
3292 
3293 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3294 }
3295 EXPORT_SYMBOL(sock_unregister);
3296 
3297 bool sock_is_registered(int family)
3298 {
3299 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3300 }
3301 
3302 static int __init sock_init(void)
3303 {
3304 	int err;
3305 	/*
3306 	 *      Initialize the network sysctl infrastructure.
3307 	 */
3308 	err = net_sysctl_init();
3309 	if (err)
3310 		goto out;
3311 
3312 	/*
3313 	 *      Initialize skbuff SLAB cache
3314 	 */
3315 	skb_init();
3316 
3317 	/*
3318 	 *      Initialize the protocols module.
3319 	 */
3320 
3321 	init_inodecache();
3322 
3323 	err = register_filesystem(&sock_fs_type);
3324 	if (err)
3325 		goto out;
3326 	sock_mnt = kern_mount(&sock_fs_type);
3327 	if (IS_ERR(sock_mnt)) {
3328 		err = PTR_ERR(sock_mnt);
3329 		goto out_mount;
3330 	}
3331 
3332 	/* The real protocol initialization is performed in later initcalls.
3333 	 */
3334 
3335 #ifdef CONFIG_NETFILTER
3336 	err = netfilter_init();
3337 	if (err)
3338 		goto out;
3339 #endif
3340 
3341 	ptp_classifier_init();
3342 
3343 out:
3344 	return err;
3345 
3346 out_mount:
3347 	unregister_filesystem(&sock_fs_type);
3348 	goto out;
3349 }
3350 
3351 core_initcall(sock_init);	/* early initcall */
3352 
3353 #ifdef CONFIG_PROC_FS
3354 void socket_seq_show(struct seq_file *seq)
3355 {
3356 	seq_printf(seq, "sockets: used %d\n",
3357 		   sock_inuse_get(seq->private));
3358 }
3359 #endif				/* CONFIG_PROC_FS */
3360 
3361 /* Handle the fact that while struct ifreq has the same *layout* on
3362  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3363  * which are handled elsewhere, it still has different *size* due to
3364  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3365  * resulting in struct ifreq being 32 and 40 bytes respectively).
3366  * As a result, if the struct happens to be at the end of a page and
3367  * the next page isn't readable/writable, we get a fault. To prevent
3368  * that, copy back and forth to the full size.
3369  */
3370 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3371 {
3372 	if (in_compat_syscall()) {
3373 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3374 
3375 		memset(ifr, 0, sizeof(*ifr));
3376 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3377 			return -EFAULT;
3378 
3379 		if (ifrdata)
3380 			*ifrdata = compat_ptr(ifr32->ifr_data);
3381 
3382 		return 0;
3383 	}
3384 
3385 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3386 		return -EFAULT;
3387 
3388 	if (ifrdata)
3389 		*ifrdata = ifr->ifr_data;
3390 
3391 	return 0;
3392 }
3393 EXPORT_SYMBOL(get_user_ifreq);
3394 
3395 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3396 {
3397 	size_t size = sizeof(*ifr);
3398 
3399 	if (in_compat_syscall())
3400 		size = sizeof(struct compat_ifreq);
3401 
3402 	if (copy_to_user(arg, ifr, size))
3403 		return -EFAULT;
3404 
3405 	return 0;
3406 }
3407 EXPORT_SYMBOL(put_user_ifreq);
3408 
3409 #ifdef CONFIG_COMPAT
3410 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3411 {
3412 	compat_uptr_t uptr32;
3413 	struct ifreq ifr;
3414 	void __user *saved;
3415 	int err;
3416 
3417 	if (get_user_ifreq(&ifr, NULL, uifr32))
3418 		return -EFAULT;
3419 
3420 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3421 		return -EFAULT;
3422 
3423 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3424 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3425 
3426 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3427 	if (!err) {
3428 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3429 		if (put_user_ifreq(&ifr, uifr32))
3430 			err = -EFAULT;
3431 	}
3432 	return err;
3433 }
3434 
3435 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3436 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3437 				 struct compat_ifreq __user *u_ifreq32)
3438 {
3439 	struct ifreq ifreq;
3440 	void __user *data;
3441 
3442 	if (!is_socket_ioctl_cmd(cmd))
3443 		return -ENOTTY;
3444 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3445 		return -EFAULT;
3446 	ifreq.ifr_data = data;
3447 
3448 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3449 }
3450 
3451 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3452 			 unsigned int cmd, unsigned long arg)
3453 {
3454 	void __user *argp = compat_ptr(arg);
3455 	struct sock *sk = sock->sk;
3456 	struct net *net = sock_net(sk);
3457 	const struct proto_ops *ops;
3458 
3459 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3460 		return sock_ioctl(file, cmd, (unsigned long)argp);
3461 
3462 	switch (cmd) {
3463 	case SIOCWANDEV:
3464 		return compat_siocwandev(net, argp);
3465 	case SIOCGSTAMP_OLD:
3466 	case SIOCGSTAMPNS_OLD:
3467 		ops = READ_ONCE(sock->ops);
3468 		if (!ops->gettstamp)
3469 			return -ENOIOCTLCMD;
3470 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3471 				      !COMPAT_USE_64BIT_TIME);
3472 
3473 	case SIOCETHTOOL:
3474 	case SIOCBONDSLAVEINFOQUERY:
3475 	case SIOCBONDINFOQUERY:
3476 	case SIOCSHWTSTAMP:
3477 	case SIOCGHWTSTAMP:
3478 		return compat_ifr_data_ioctl(net, cmd, argp);
3479 
3480 	case FIOSETOWN:
3481 	case SIOCSPGRP:
3482 	case FIOGETOWN:
3483 	case SIOCGPGRP:
3484 	case SIOCBRADDBR:
3485 	case SIOCBRDELBR:
3486 	case SIOCBRADDIF:
3487 	case SIOCBRDELIF:
3488 	case SIOCGIFVLAN:
3489 	case SIOCSIFVLAN:
3490 	case SIOCGSKNS:
3491 	case SIOCGSTAMP_NEW:
3492 	case SIOCGSTAMPNS_NEW:
3493 	case SIOCGIFCONF:
3494 	case SIOCSIFBR:
3495 	case SIOCGIFBR:
3496 		return sock_ioctl(file, cmd, arg);
3497 
3498 	case SIOCGIFFLAGS:
3499 	case SIOCSIFFLAGS:
3500 	case SIOCGIFMAP:
3501 	case SIOCSIFMAP:
3502 	case SIOCGIFMETRIC:
3503 	case SIOCSIFMETRIC:
3504 	case SIOCGIFMTU:
3505 	case SIOCSIFMTU:
3506 	case SIOCGIFMEM:
3507 	case SIOCSIFMEM:
3508 	case SIOCGIFHWADDR:
3509 	case SIOCSIFHWADDR:
3510 	case SIOCADDMULTI:
3511 	case SIOCDELMULTI:
3512 	case SIOCGIFINDEX:
3513 	case SIOCGIFADDR:
3514 	case SIOCSIFADDR:
3515 	case SIOCSIFHWBROADCAST:
3516 	case SIOCDIFADDR:
3517 	case SIOCGIFBRDADDR:
3518 	case SIOCSIFBRDADDR:
3519 	case SIOCGIFDSTADDR:
3520 	case SIOCSIFDSTADDR:
3521 	case SIOCGIFNETMASK:
3522 	case SIOCSIFNETMASK:
3523 	case SIOCSIFPFLAGS:
3524 	case SIOCGIFPFLAGS:
3525 	case SIOCGIFTXQLEN:
3526 	case SIOCSIFTXQLEN:
3527 	case SIOCGIFNAME:
3528 	case SIOCSIFNAME:
3529 	case SIOCGMIIPHY:
3530 	case SIOCGMIIREG:
3531 	case SIOCSMIIREG:
3532 	case SIOCBONDENSLAVE:
3533 	case SIOCBONDRELEASE:
3534 	case SIOCBONDSETHWADDR:
3535 	case SIOCBONDCHANGEACTIVE:
3536 	case SIOCSARP:
3537 	case SIOCGARP:
3538 	case SIOCDARP:
3539 	case SIOCOUTQ:
3540 	case SIOCOUTQNSD:
3541 	case SIOCATMARK:
3542 		return sock_do_ioctl(net, sock, cmd, arg);
3543 	}
3544 
3545 	return -ENOIOCTLCMD;
3546 }
3547 
3548 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3549 			      unsigned long arg)
3550 {
3551 	struct socket *sock = file->private_data;
3552 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3553 	int ret = -ENOIOCTLCMD;
3554 	struct sock *sk;
3555 	struct net *net;
3556 
3557 	sk = sock->sk;
3558 	net = sock_net(sk);
3559 
3560 	if (ops->compat_ioctl)
3561 		ret = ops->compat_ioctl(sock, cmd, arg);
3562 
3563 	if (ret == -ENOIOCTLCMD &&
3564 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3565 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3566 
3567 	if (ret == -ENOIOCTLCMD)
3568 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3569 
3570 	return ret;
3571 }
3572 #endif
3573 
3574 /**
3575  *	kernel_bind - bind an address to a socket (kernel space)
3576  *	@sock: socket
3577  *	@addr: address
3578  *	@addrlen: length of address
3579  *
3580  *	Returns 0 or an error.
3581  */
3582 
3583 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3584 {
3585 	struct sockaddr_storage address;
3586 
3587 	memcpy(&address, addr, addrlen);
3588 
3589 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3590 					  addrlen);
3591 }
3592 EXPORT_SYMBOL(kernel_bind);
3593 
3594 /**
3595  *	kernel_listen - move socket to listening state (kernel space)
3596  *	@sock: socket
3597  *	@backlog: pending connections queue size
3598  *
3599  *	Returns 0 or an error.
3600  */
3601 
3602 int kernel_listen(struct socket *sock, int backlog)
3603 {
3604 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3605 }
3606 EXPORT_SYMBOL(kernel_listen);
3607 
3608 /**
3609  *	kernel_accept - accept a connection (kernel space)
3610  *	@sock: listening socket
3611  *	@newsock: new connected socket
3612  *	@flags: flags
3613  *
3614  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3615  *	If it fails, @newsock is guaranteed to be %NULL.
3616  *	Returns 0 or an error.
3617  */
3618 
3619 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3620 {
3621 	struct sock *sk = sock->sk;
3622 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3623 	struct proto_accept_arg arg = {
3624 		.flags = flags,
3625 		.kern = true,
3626 	};
3627 	int err;
3628 
3629 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3630 			       newsock);
3631 	if (err < 0)
3632 		goto done;
3633 
3634 	err = ops->accept(sock, *newsock, &arg);
3635 	if (err < 0) {
3636 		sock_release(*newsock);
3637 		*newsock = NULL;
3638 		goto done;
3639 	}
3640 
3641 	(*newsock)->ops = ops;
3642 	__module_get(ops->owner);
3643 
3644 done:
3645 	return err;
3646 }
3647 EXPORT_SYMBOL(kernel_accept);
3648 
3649 /**
3650  *	kernel_connect - connect a socket (kernel space)
3651  *	@sock: socket
3652  *	@addr: address
3653  *	@addrlen: address length
3654  *	@flags: flags (O_NONBLOCK, ...)
3655  *
3656  *	For datagram sockets, @addr is the address to which datagrams are sent
3657  *	by default, and the only address from which datagrams are received.
3658  *	For stream sockets, attempts to connect to @addr.
3659  *	Returns 0 or an error code.
3660  */
3661 
3662 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3663 		   int flags)
3664 {
3665 	struct sockaddr_storage address;
3666 
3667 	memcpy(&address, addr, addrlen);
3668 
3669 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3670 					     addrlen, flags);
3671 }
3672 EXPORT_SYMBOL(kernel_connect);
3673 
3674 /**
3675  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3676  *	@sock: socket
3677  *	@addr: address holder
3678  *
3679  * 	Fills the @addr pointer with the address which the socket is bound.
3680  *	Returns the length of the address in bytes or an error code.
3681  */
3682 
3683 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3684 {
3685 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3686 }
3687 EXPORT_SYMBOL(kernel_getsockname);
3688 
3689 /**
3690  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3691  *	@sock: socket
3692  *	@addr: address holder
3693  *
3694  * 	Fills the @addr pointer with the address which the socket is connected.
3695  *	Returns the length of the address in bytes or an error code.
3696  */
3697 
3698 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3699 {
3700 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3701 }
3702 EXPORT_SYMBOL(kernel_getpeername);
3703 
3704 /**
3705  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3706  *	@sock: socket
3707  *	@how: connection part
3708  *
3709  *	Returns 0 or an error.
3710  */
3711 
3712 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3713 {
3714 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3715 }
3716 EXPORT_SYMBOL(kernel_sock_shutdown);
3717 
3718 /**
3719  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3720  *	@sk: socket
3721  *
3722  *	This routine returns the IP overhead imposed by a socket i.e.
3723  *	the length of the underlying IP header, depending on whether
3724  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3725  *	on at the socket. Assumes that the caller has a lock on the socket.
3726  */
3727 
3728 u32 kernel_sock_ip_overhead(struct sock *sk)
3729 {
3730 	struct inet_sock *inet;
3731 	struct ip_options_rcu *opt;
3732 	u32 overhead = 0;
3733 #if IS_ENABLED(CONFIG_IPV6)
3734 	struct ipv6_pinfo *np;
3735 	struct ipv6_txoptions *optv6 = NULL;
3736 #endif /* IS_ENABLED(CONFIG_IPV6) */
3737 
3738 	if (!sk)
3739 		return overhead;
3740 
3741 	switch (sk->sk_family) {
3742 	case AF_INET:
3743 		inet = inet_sk(sk);
3744 		overhead += sizeof(struct iphdr);
3745 		opt = rcu_dereference_protected(inet->inet_opt,
3746 						sock_owned_by_user(sk));
3747 		if (opt)
3748 			overhead += opt->opt.optlen;
3749 		return overhead;
3750 #if IS_ENABLED(CONFIG_IPV6)
3751 	case AF_INET6:
3752 		np = inet6_sk(sk);
3753 		overhead += sizeof(struct ipv6hdr);
3754 		if (np)
3755 			optv6 = rcu_dereference_protected(np->opt,
3756 							  sock_owned_by_user(sk));
3757 		if (optv6)
3758 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3759 		return overhead;
3760 #endif /* IS_ENABLED(CONFIG_IPV6) */
3761 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3762 		return overhead;
3763 	}
3764 }
3765 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3766