xref: /linux/net/socket.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 
748 /**
749  *	sock_sendmsg - send a message through @sock
750  *	@sock: socket
751  *	@msg: message to send
752  *
753  *	Sends @msg through @sock, passing through LSM.
754  *	Returns the number of bytes sent, or an error code.
755  */
756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 	struct sockaddr_storage address;
760 	int save_len = msg->msg_namelen;
761 	int ret;
762 
763 	if (msg->msg_name) {
764 		memcpy(&address, msg->msg_name, msg->msg_namelen);
765 		msg->msg_name = &address;
766 	}
767 
768 	ret = __sock_sendmsg(sock, msg);
769 	msg->msg_name = save_addr;
770 	msg->msg_namelen = save_len;
771 
772 	return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775 
776 /**
777  *	kernel_sendmsg - send a message through @sock (kernel-space)
778  *	@sock: socket
779  *	@msg: message header
780  *	@vec: kernel vec
781  *	@num: vec array length
782  *	@size: total message data size
783  *
784  *	Builds the message data with @vec and sends it through @sock.
785  *	Returns the number of bytes sent, or an error code.
786  */
787 
788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 		   struct kvec *vec, size_t num, size_t size)
790 {
791 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 	return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795 
796 /**
797  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
798  *	@sk: sock
799  *	@msg: message header
800  *	@vec: output s/g array
801  *	@num: output s/g array length
802  *	@size: total message data size
803  *
804  *	Builds the message data with @vec and sends it through @sock.
805  *	Returns the number of bytes sent, or an error code.
806  *	Caller must hold @sk.
807  */
808 
809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 			  struct kvec *vec, size_t num, size_t size)
811 {
812 	struct socket *sock = sk->sk_socket;
813 	const struct proto_ops *ops = READ_ONCE(sock->ops);
814 
815 	if (!ops->sendmsg_locked)
816 		return sock_no_sendmsg_locked(sk, msg, size);
817 
818 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819 
820 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823 
824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 	/* pkt_type of skbs enqueued on the error queue are set to
827 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 	 * in recvmsg, since skbs received on a local socket will never
829 	 * have a pkt_type of PACKET_OUTGOING.
830 	 */
831 	return skb->pkt_type == PACKET_OUTGOING;
832 }
833 
834 /* On transmit, software and hardware timestamps are returned independently.
835  * As the two skb clones share the hardware timestamp, which may be updated
836  * before the software timestamp is received, a hardware TX timestamp may be
837  * returned only if there is no software TX timestamp. Ignore false software
838  * timestamps, which may be made in the __sock_recv_timestamp() call when the
839  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840  * hardware timestamp.
841  */
842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846 
847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 	struct net_device *orig_dev;
852 	ktime_t hwtstamp;
853 
854 	rcu_read_lock();
855 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 	if (orig_dev) {
857 		*if_index = orig_dev->ifindex;
858 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 	} else {
860 		hwtstamp = shhwtstamps->hwtstamp;
861 	}
862 	rcu_read_unlock();
863 
864 	return hwtstamp;
865 }
866 
867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 			   int if_index)
869 {
870 	struct scm_ts_pktinfo ts_pktinfo;
871 	struct net_device *orig_dev;
872 
873 	if (!skb_mac_header_was_set(skb))
874 		return;
875 
876 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877 
878 	if (!if_index) {
879 		rcu_read_lock();
880 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 		if (orig_dev)
882 			if_index = orig_dev->ifindex;
883 		rcu_read_unlock();
884 	}
885 	ts_pktinfo.if_index = if_index;
886 
887 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 		 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891 
892 /*
893  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894  */
895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 	struct sk_buff *skb)
897 {
898 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 	struct scm_timestamping_internal tss;
901 	int empty = 1, false_tstamp = 0;
902 	struct skb_shared_hwtstamps *shhwtstamps =
903 		skb_hwtstamps(skb);
904 	int if_index;
905 	ktime_t hwtstamp;
906 	u32 tsflags;
907 
908 	/* Race occurred between timestamp enabling and packet
909 	   receiving.  Fill in the current time for now. */
910 	if (need_software_tstamp && skb->tstamp == 0) {
911 		__net_timestamp(skb);
912 		false_tstamp = 1;
913 	}
914 
915 	if (need_software_tstamp) {
916 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 			if (new_tstamp) {
918 				struct __kernel_sock_timeval tv;
919 
920 				skb_get_new_timestamp(skb, &tv);
921 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 					 sizeof(tv), &tv);
923 			} else {
924 				struct __kernel_old_timeval tv;
925 
926 				skb_get_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 					 sizeof(tv), &tv);
929 			}
930 		} else {
931 			if (new_tstamp) {
932 				struct __kernel_timespec ts;
933 
934 				skb_get_new_timestampns(skb, &ts);
935 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 					 sizeof(ts), &ts);
937 			} else {
938 				struct __kernel_old_timespec ts;
939 
940 				skb_get_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 					 sizeof(ts), &ts);
943 			}
944 		}
945 	}
946 
947 	memset(&tss, 0, sizeof(tss));
948 	tsflags = READ_ONCE(sk->sk_tsflags);
949 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
950 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
951 		empty = 0;
952 	if (shhwtstamps &&
953 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
954 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
955 		if_index = 0;
956 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
957 			hwtstamp = get_timestamp(sk, skb, &if_index);
958 		else
959 			hwtstamp = shhwtstamps->hwtstamp;
960 
961 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
962 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
963 							 READ_ONCE(sk->sk_bind_phc));
964 
965 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
966 			empty = 0;
967 
968 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
969 			    !skb_is_err_queue(skb))
970 				put_ts_pktinfo(msg, skb, if_index);
971 		}
972 	}
973 	if (!empty) {
974 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
975 			put_cmsg_scm_timestamping64(msg, &tss);
976 		else
977 			put_cmsg_scm_timestamping(msg, &tss);
978 
979 		if (skb_is_err_queue(skb) && skb->len &&
980 		    SKB_EXT_ERR(skb)->opt_stats)
981 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
982 				 skb->len, skb->data);
983 	}
984 }
985 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
986 
987 #ifdef CONFIG_WIRELESS
988 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
989 	struct sk_buff *skb)
990 {
991 	int ack;
992 
993 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
994 		return;
995 	if (!skb->wifi_acked_valid)
996 		return;
997 
998 	ack = skb->wifi_acked;
999 
1000 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1003 #endif
1004 
1005 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1006 				   struct sk_buff *skb)
1007 {
1008 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1009 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1010 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1011 }
1012 
1013 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1014 			   struct sk_buff *skb)
1015 {
1016 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1017 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1018 		__u32 mark = skb->mark;
1019 
1020 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1021 	}
1022 }
1023 
1024 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1025 		       struct sk_buff *skb)
1026 {
1027 	sock_recv_timestamp(msg, sk, skb);
1028 	sock_recv_drops(msg, sk, skb);
1029 	sock_recv_mark(msg, sk, skb);
1030 }
1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1032 
1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1034 					   size_t, int));
1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1036 					    size_t, int));
1037 
1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1039 {
1040 	trace_sock_recv_length(sk, ret, flags);
1041 }
1042 
1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1044 				     int flags)
1045 {
1046 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1047 				     inet6_recvmsg,
1048 				     inet_recvmsg, sock, msg,
1049 				     msg_data_left(msg), flags);
1050 	if (trace_sock_recv_length_enabled())
1051 		call_trace_sock_recv_length(sock->sk, ret, flags);
1052 	return ret;
1053 }
1054 
1055 /**
1056  *	sock_recvmsg - receive a message from @sock
1057  *	@sock: socket
1058  *	@msg: message to receive
1059  *	@flags: message flags
1060  *
1061  *	Receives @msg from @sock, passing through LSM. Returns the total number
1062  *	of bytes received, or an error.
1063  */
1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1065 {
1066 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1067 
1068 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1069 }
1070 EXPORT_SYMBOL(sock_recvmsg);
1071 
1072 /**
1073  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1074  *	@sock: The socket to receive the message from
1075  *	@msg: Received message
1076  *	@vec: Input s/g array for message data
1077  *	@num: Size of input s/g array
1078  *	@size: Number of bytes to read
1079  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1080  *
1081  *	On return the msg structure contains the scatter/gather array passed in the
1082  *	vec argument. The array is modified so that it consists of the unfilled
1083  *	portion of the original array.
1084  *
1085  *	The returned value is the total number of bytes received, or an error.
1086  */
1087 
1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1089 		   struct kvec *vec, size_t num, size_t size, int flags)
1090 {
1091 	msg->msg_control_is_user = false;
1092 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1093 	return sock_recvmsg(sock, msg, flags);
1094 }
1095 EXPORT_SYMBOL(kernel_recvmsg);
1096 
1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1098 				struct pipe_inode_info *pipe, size_t len,
1099 				unsigned int flags)
1100 {
1101 	struct socket *sock = file->private_data;
1102 	const struct proto_ops *ops;
1103 
1104 	ops = READ_ONCE(sock->ops);
1105 	if (unlikely(!ops->splice_read))
1106 		return copy_splice_read(file, ppos, pipe, len, flags);
1107 
1108 	return ops->splice_read(sock, ppos, pipe, len, flags);
1109 }
1110 
1111 static void sock_splice_eof(struct file *file)
1112 {
1113 	struct socket *sock = file->private_data;
1114 	const struct proto_ops *ops;
1115 
1116 	ops = READ_ONCE(sock->ops);
1117 	if (ops->splice_eof)
1118 		ops->splice_eof(sock);
1119 }
1120 
1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1122 {
1123 	struct file *file = iocb->ki_filp;
1124 	struct socket *sock = file->private_data;
1125 	struct msghdr msg = {.msg_iter = *to,
1126 			     .msg_iocb = iocb};
1127 	ssize_t res;
1128 
1129 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1130 		msg.msg_flags = MSG_DONTWAIT;
1131 
1132 	if (iocb->ki_pos != 0)
1133 		return -ESPIPE;
1134 
1135 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1136 		return 0;
1137 
1138 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1139 	*to = msg.msg_iter;
1140 	return res;
1141 }
1142 
1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1144 {
1145 	struct file *file = iocb->ki_filp;
1146 	struct socket *sock = file->private_data;
1147 	struct msghdr msg = {.msg_iter = *from,
1148 			     .msg_iocb = iocb};
1149 	ssize_t res;
1150 
1151 	if (iocb->ki_pos != 0)
1152 		return -ESPIPE;
1153 
1154 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1155 		msg.msg_flags = MSG_DONTWAIT;
1156 
1157 	if (sock->type == SOCK_SEQPACKET)
1158 		msg.msg_flags |= MSG_EOR;
1159 
1160 	res = __sock_sendmsg(sock, &msg);
1161 	*from = msg.msg_iter;
1162 	return res;
1163 }
1164 
1165 /*
1166  * Atomic setting of ioctl hooks to avoid race
1167  * with module unload.
1168  */
1169 
1170 static DEFINE_MUTEX(br_ioctl_mutex);
1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1172 			    unsigned int cmd, struct ifreq *ifr,
1173 			    void __user *uarg);
1174 
1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1176 			     unsigned int cmd, struct ifreq *ifr,
1177 			     void __user *uarg))
1178 {
1179 	mutex_lock(&br_ioctl_mutex);
1180 	br_ioctl_hook = hook;
1181 	mutex_unlock(&br_ioctl_mutex);
1182 }
1183 EXPORT_SYMBOL(brioctl_set);
1184 
1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1186 		  struct ifreq *ifr, void __user *uarg)
1187 {
1188 	int err = -ENOPKG;
1189 
1190 	if (!br_ioctl_hook)
1191 		request_module("bridge");
1192 
1193 	mutex_lock(&br_ioctl_mutex);
1194 	if (br_ioctl_hook)
1195 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1196 	mutex_unlock(&br_ioctl_mutex);
1197 
1198 	return err;
1199 }
1200 
1201 static DEFINE_MUTEX(vlan_ioctl_mutex);
1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1203 
1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1205 {
1206 	mutex_lock(&vlan_ioctl_mutex);
1207 	vlan_ioctl_hook = hook;
1208 	mutex_unlock(&vlan_ioctl_mutex);
1209 }
1210 EXPORT_SYMBOL(vlan_ioctl_set);
1211 
1212 static long sock_do_ioctl(struct net *net, struct socket *sock,
1213 			  unsigned int cmd, unsigned long arg)
1214 {
1215 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1216 	struct ifreq ifr;
1217 	bool need_copyout;
1218 	int err;
1219 	void __user *argp = (void __user *)arg;
1220 	void __user *data;
1221 
1222 	err = ops->ioctl(sock, cmd, arg);
1223 
1224 	/*
1225 	 * If this ioctl is unknown try to hand it down
1226 	 * to the NIC driver.
1227 	 */
1228 	if (err != -ENOIOCTLCMD)
1229 		return err;
1230 
1231 	if (!is_socket_ioctl_cmd(cmd))
1232 		return -ENOTTY;
1233 
1234 	if (get_user_ifreq(&ifr, &data, argp))
1235 		return -EFAULT;
1236 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237 	if (!err && need_copyout)
1238 		if (put_user_ifreq(&ifr, argp))
1239 			return -EFAULT;
1240 
1241 	return err;
1242 }
1243 
1244 /*
1245  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1246  *	what to do with it - that's up to the protocol still.
1247  */
1248 
1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1250 {
1251 	const struct proto_ops  *ops;
1252 	struct socket *sock;
1253 	struct sock *sk;
1254 	void __user *argp = (void __user *)arg;
1255 	int pid, err;
1256 	struct net *net;
1257 
1258 	sock = file->private_data;
1259 	ops = READ_ONCE(sock->ops);
1260 	sk = sock->sk;
1261 	net = sock_net(sk);
1262 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1263 		struct ifreq ifr;
1264 		void __user *data;
1265 		bool need_copyout;
1266 		if (get_user_ifreq(&ifr, &data, argp))
1267 			return -EFAULT;
1268 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 		if (!err && need_copyout)
1270 			if (put_user_ifreq(&ifr, argp))
1271 				return -EFAULT;
1272 	} else
1273 #ifdef CONFIG_WEXT_CORE
1274 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1275 		err = wext_handle_ioctl(net, cmd, argp);
1276 	} else
1277 #endif
1278 		switch (cmd) {
1279 		case FIOSETOWN:
1280 		case SIOCSPGRP:
1281 			err = -EFAULT;
1282 			if (get_user(pid, (int __user *)argp))
1283 				break;
1284 			err = f_setown(sock->file, pid, 1);
1285 			break;
1286 		case FIOGETOWN:
1287 		case SIOCGPGRP:
1288 			err = put_user(f_getown(sock->file),
1289 				       (int __user *)argp);
1290 			break;
1291 		case SIOCGIFBR:
1292 		case SIOCSIFBR:
1293 		case SIOCBRADDBR:
1294 		case SIOCBRDELBR:
1295 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1296 			break;
1297 		case SIOCGIFVLAN:
1298 		case SIOCSIFVLAN:
1299 			err = -ENOPKG;
1300 			if (!vlan_ioctl_hook)
1301 				request_module("8021q");
1302 
1303 			mutex_lock(&vlan_ioctl_mutex);
1304 			if (vlan_ioctl_hook)
1305 				err = vlan_ioctl_hook(net, argp);
1306 			mutex_unlock(&vlan_ioctl_mutex);
1307 			break;
1308 		case SIOCGSKNS:
1309 			err = -EPERM;
1310 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1311 				break;
1312 
1313 			err = open_related_ns(&net->ns, get_net_ns);
1314 			break;
1315 		case SIOCGSTAMP_OLD:
1316 		case SIOCGSTAMPNS_OLD:
1317 			if (!ops->gettstamp) {
1318 				err = -ENOIOCTLCMD;
1319 				break;
1320 			}
1321 			err = ops->gettstamp(sock, argp,
1322 					     cmd == SIOCGSTAMP_OLD,
1323 					     !IS_ENABLED(CONFIG_64BIT));
1324 			break;
1325 		case SIOCGSTAMP_NEW:
1326 		case SIOCGSTAMPNS_NEW:
1327 			if (!ops->gettstamp) {
1328 				err = -ENOIOCTLCMD;
1329 				break;
1330 			}
1331 			err = ops->gettstamp(sock, argp,
1332 					     cmd == SIOCGSTAMP_NEW,
1333 					     false);
1334 			break;
1335 
1336 		case SIOCGIFCONF:
1337 			err = dev_ifconf(net, argp);
1338 			break;
1339 
1340 		default:
1341 			err = sock_do_ioctl(net, sock, cmd, arg);
1342 			break;
1343 		}
1344 	return err;
1345 }
1346 
1347 /**
1348  *	sock_create_lite - creates a socket
1349  *	@family: protocol family (AF_INET, ...)
1350  *	@type: communication type (SOCK_STREAM, ...)
1351  *	@protocol: protocol (0, ...)
1352  *	@res: new socket
1353  *
1354  *	Creates a new socket and assigns it to @res, passing through LSM.
1355  *	The new socket initialization is not complete, see kernel_accept().
1356  *	Returns 0 or an error. On failure @res is set to %NULL.
1357  *	This function internally uses GFP_KERNEL.
1358  */
1359 
1360 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1361 {
1362 	int err;
1363 	struct socket *sock = NULL;
1364 
1365 	err = security_socket_create(family, type, protocol, 1);
1366 	if (err)
1367 		goto out;
1368 
1369 	sock = sock_alloc();
1370 	if (!sock) {
1371 		err = -ENOMEM;
1372 		goto out;
1373 	}
1374 
1375 	sock->type = type;
1376 	err = security_socket_post_create(sock, family, type, protocol, 1);
1377 	if (err)
1378 		goto out_release;
1379 
1380 out:
1381 	*res = sock;
1382 	return err;
1383 out_release:
1384 	sock_release(sock);
1385 	sock = NULL;
1386 	goto out;
1387 }
1388 EXPORT_SYMBOL(sock_create_lite);
1389 
1390 /* No kernel lock held - perfect */
1391 static __poll_t sock_poll(struct file *file, poll_table *wait)
1392 {
1393 	struct socket *sock = file->private_data;
1394 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1395 	__poll_t events = poll_requested_events(wait), flag = 0;
1396 
1397 	if (!ops->poll)
1398 		return 0;
1399 
1400 	if (sk_can_busy_loop(sock->sk)) {
1401 		/* poll once if requested by the syscall */
1402 		if (events & POLL_BUSY_LOOP)
1403 			sk_busy_loop(sock->sk, 1);
1404 
1405 		/* if this socket can poll_ll, tell the system call */
1406 		flag = POLL_BUSY_LOOP;
1407 	}
1408 
1409 	return ops->poll(file, sock, wait) | flag;
1410 }
1411 
1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414 	struct socket *sock = file->private_data;
1415 
1416 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1417 }
1418 
1419 static int sock_close(struct inode *inode, struct file *filp)
1420 {
1421 	__sock_release(SOCKET_I(inode), inode);
1422 	return 0;
1423 }
1424 
1425 /*
1426  *	Update the socket async list
1427  *
1428  *	Fasync_list locking strategy.
1429  *
1430  *	1. fasync_list is modified only under process context socket lock
1431  *	   i.e. under semaphore.
1432  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1433  *	   or under socket lock
1434  */
1435 
1436 static int sock_fasync(int fd, struct file *filp, int on)
1437 {
1438 	struct socket *sock = filp->private_data;
1439 	struct sock *sk = sock->sk;
1440 	struct socket_wq *wq = &sock->wq;
1441 
1442 	if (sk == NULL)
1443 		return -EINVAL;
1444 
1445 	lock_sock(sk);
1446 	fasync_helper(fd, filp, on, &wq->fasync_list);
1447 
1448 	if (!wq->fasync_list)
1449 		sock_reset_flag(sk, SOCK_FASYNC);
1450 	else
1451 		sock_set_flag(sk, SOCK_FASYNC);
1452 
1453 	release_sock(sk);
1454 	return 0;
1455 }
1456 
1457 /* This function may be called only under rcu_lock */
1458 
1459 int sock_wake_async(struct socket_wq *wq, int how, int band)
1460 {
1461 	if (!wq || !wq->fasync_list)
1462 		return -1;
1463 
1464 	switch (how) {
1465 	case SOCK_WAKE_WAITD:
1466 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1467 			break;
1468 		goto call_kill;
1469 	case SOCK_WAKE_SPACE:
1470 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1471 			break;
1472 		fallthrough;
1473 	case SOCK_WAKE_IO:
1474 call_kill:
1475 		kill_fasync(&wq->fasync_list, SIGIO, band);
1476 		break;
1477 	case SOCK_WAKE_URG:
1478 		kill_fasync(&wq->fasync_list, SIGURG, band);
1479 	}
1480 
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(sock_wake_async);
1484 
1485 /**
1486  *	__sock_create - creates a socket
1487  *	@net: net namespace
1488  *	@family: protocol family (AF_INET, ...)
1489  *	@type: communication type (SOCK_STREAM, ...)
1490  *	@protocol: protocol (0, ...)
1491  *	@res: new socket
1492  *	@kern: boolean for kernel space sockets
1493  *
1494  *	Creates a new socket and assigns it to @res, passing through LSM.
1495  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1496  *	be set to true if the socket resides in kernel space.
1497  *	This function internally uses GFP_KERNEL.
1498  */
1499 
1500 int __sock_create(struct net *net, int family, int type, int protocol,
1501 			 struct socket **res, int kern)
1502 {
1503 	int err;
1504 	struct socket *sock;
1505 	const struct net_proto_family *pf;
1506 
1507 	/*
1508 	 *      Check protocol is in range
1509 	 */
1510 	if (family < 0 || family >= NPROTO)
1511 		return -EAFNOSUPPORT;
1512 	if (type < 0 || type >= SOCK_MAX)
1513 		return -EINVAL;
1514 
1515 	/* Compatibility.
1516 
1517 	   This uglymoron is moved from INET layer to here to avoid
1518 	   deadlock in module load.
1519 	 */
1520 	if (family == PF_INET && type == SOCK_PACKET) {
1521 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1522 			     current->comm);
1523 		family = PF_PACKET;
1524 	}
1525 
1526 	err = security_socket_create(family, type, protocol, kern);
1527 	if (err)
1528 		return err;
1529 
1530 	/*
1531 	 *	Allocate the socket and allow the family to set things up. if
1532 	 *	the protocol is 0, the family is instructed to select an appropriate
1533 	 *	default.
1534 	 */
1535 	sock = sock_alloc();
1536 	if (!sock) {
1537 		net_warn_ratelimited("socket: no more sockets\n");
1538 		return -ENFILE;	/* Not exactly a match, but its the
1539 				   closest posix thing */
1540 	}
1541 
1542 	sock->type = type;
1543 
1544 #ifdef CONFIG_MODULES
1545 	/* Attempt to load a protocol module if the find failed.
1546 	 *
1547 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1548 	 * requested real, full-featured networking support upon configuration.
1549 	 * Otherwise module support will break!
1550 	 */
1551 	if (rcu_access_pointer(net_families[family]) == NULL)
1552 		request_module("net-pf-%d", family);
1553 #endif
1554 
1555 	rcu_read_lock();
1556 	pf = rcu_dereference(net_families[family]);
1557 	err = -EAFNOSUPPORT;
1558 	if (!pf)
1559 		goto out_release;
1560 
1561 	/*
1562 	 * We will call the ->create function, that possibly is in a loadable
1563 	 * module, so we have to bump that loadable module refcnt first.
1564 	 */
1565 	if (!try_module_get(pf->owner))
1566 		goto out_release;
1567 
1568 	/* Now protected by module ref count */
1569 	rcu_read_unlock();
1570 
1571 	err = pf->create(net, sock, protocol, kern);
1572 	if (err < 0)
1573 		goto out_module_put;
1574 
1575 	/*
1576 	 * Now to bump the refcnt of the [loadable] module that owns this
1577 	 * socket at sock_release time we decrement its refcnt.
1578 	 */
1579 	if (!try_module_get(sock->ops->owner))
1580 		goto out_module_busy;
1581 
1582 	/*
1583 	 * Now that we're done with the ->create function, the [loadable]
1584 	 * module can have its refcnt decremented
1585 	 */
1586 	module_put(pf->owner);
1587 	err = security_socket_post_create(sock, family, type, protocol, kern);
1588 	if (err)
1589 		goto out_sock_release;
1590 	*res = sock;
1591 
1592 	return 0;
1593 
1594 out_module_busy:
1595 	err = -EAFNOSUPPORT;
1596 out_module_put:
1597 	sock->ops = NULL;
1598 	module_put(pf->owner);
1599 out_sock_release:
1600 	sock_release(sock);
1601 	return err;
1602 
1603 out_release:
1604 	rcu_read_unlock();
1605 	goto out_sock_release;
1606 }
1607 EXPORT_SYMBOL(__sock_create);
1608 
1609 /**
1610  *	sock_create - creates a socket
1611  *	@family: protocol family (AF_INET, ...)
1612  *	@type: communication type (SOCK_STREAM, ...)
1613  *	@protocol: protocol (0, ...)
1614  *	@res: new socket
1615  *
1616  *	A wrapper around __sock_create().
1617  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1618  */
1619 
1620 int sock_create(int family, int type, int protocol, struct socket **res)
1621 {
1622 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1623 }
1624 EXPORT_SYMBOL(sock_create);
1625 
1626 /**
1627  *	sock_create_kern - creates a socket (kernel space)
1628  *	@net: net namespace
1629  *	@family: protocol family (AF_INET, ...)
1630  *	@type: communication type (SOCK_STREAM, ...)
1631  *	@protocol: protocol (0, ...)
1632  *	@res: new socket
1633  *
1634  *	A wrapper around __sock_create().
1635  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1636  */
1637 
1638 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1639 {
1640 	return __sock_create(net, family, type, protocol, res, 1);
1641 }
1642 EXPORT_SYMBOL(sock_create_kern);
1643 
1644 static struct socket *__sys_socket_create(int family, int type, int protocol)
1645 {
1646 	struct socket *sock;
1647 	int retval;
1648 
1649 	/* Check the SOCK_* constants for consistency.  */
1650 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1651 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1652 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1653 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1654 
1655 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1656 		return ERR_PTR(-EINVAL);
1657 	type &= SOCK_TYPE_MASK;
1658 
1659 	retval = sock_create(family, type, protocol, &sock);
1660 	if (retval < 0)
1661 		return ERR_PTR(retval);
1662 
1663 	return sock;
1664 }
1665 
1666 struct file *__sys_socket_file(int family, int type, int protocol)
1667 {
1668 	struct socket *sock;
1669 	int flags;
1670 
1671 	sock = __sys_socket_create(family, type, protocol);
1672 	if (IS_ERR(sock))
1673 		return ERR_CAST(sock);
1674 
1675 	flags = type & ~SOCK_TYPE_MASK;
1676 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1677 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1678 
1679 	return sock_alloc_file(sock, flags, NULL);
1680 }
1681 
1682 /*	A hook for bpf progs to attach to and update socket protocol.
1683  *
1684  *	A static noinline declaration here could cause the compiler to
1685  *	optimize away the function. A global noinline declaration will
1686  *	keep the definition, but may optimize away the callsite.
1687  *	Therefore, __weak is needed to ensure that the call is still
1688  *	emitted, by telling the compiler that we don't know what the
1689  *	function might eventually be.
1690  */
1691 
1692 __bpf_hook_start();
1693 
1694 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1695 {
1696 	return protocol;
1697 }
1698 
1699 __bpf_hook_end();
1700 
1701 int __sys_socket(int family, int type, int protocol)
1702 {
1703 	struct socket *sock;
1704 	int flags;
1705 
1706 	sock = __sys_socket_create(family, type,
1707 				   update_socket_protocol(family, type, protocol));
1708 	if (IS_ERR(sock))
1709 		return PTR_ERR(sock);
1710 
1711 	flags = type & ~SOCK_TYPE_MASK;
1712 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1713 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1714 
1715 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1716 }
1717 
1718 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1719 {
1720 	return __sys_socket(family, type, protocol);
1721 }
1722 
1723 /*
1724  *	Create a pair of connected sockets.
1725  */
1726 
1727 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1728 {
1729 	struct socket *sock1, *sock2;
1730 	int fd1, fd2, err;
1731 	struct file *newfile1, *newfile2;
1732 	int flags;
1733 
1734 	flags = type & ~SOCK_TYPE_MASK;
1735 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1736 		return -EINVAL;
1737 	type &= SOCK_TYPE_MASK;
1738 
1739 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1740 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1741 
1742 	/*
1743 	 * reserve descriptors and make sure we won't fail
1744 	 * to return them to userland.
1745 	 */
1746 	fd1 = get_unused_fd_flags(flags);
1747 	if (unlikely(fd1 < 0))
1748 		return fd1;
1749 
1750 	fd2 = get_unused_fd_flags(flags);
1751 	if (unlikely(fd2 < 0)) {
1752 		put_unused_fd(fd1);
1753 		return fd2;
1754 	}
1755 
1756 	err = put_user(fd1, &usockvec[0]);
1757 	if (err)
1758 		goto out;
1759 
1760 	err = put_user(fd2, &usockvec[1]);
1761 	if (err)
1762 		goto out;
1763 
1764 	/*
1765 	 * Obtain the first socket and check if the underlying protocol
1766 	 * supports the socketpair call.
1767 	 */
1768 
1769 	err = sock_create(family, type, protocol, &sock1);
1770 	if (unlikely(err < 0))
1771 		goto out;
1772 
1773 	err = sock_create(family, type, protocol, &sock2);
1774 	if (unlikely(err < 0)) {
1775 		sock_release(sock1);
1776 		goto out;
1777 	}
1778 
1779 	err = security_socket_socketpair(sock1, sock2);
1780 	if (unlikely(err)) {
1781 		sock_release(sock2);
1782 		sock_release(sock1);
1783 		goto out;
1784 	}
1785 
1786 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1787 	if (unlikely(err < 0)) {
1788 		sock_release(sock2);
1789 		sock_release(sock1);
1790 		goto out;
1791 	}
1792 
1793 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1794 	if (IS_ERR(newfile1)) {
1795 		err = PTR_ERR(newfile1);
1796 		sock_release(sock2);
1797 		goto out;
1798 	}
1799 
1800 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1801 	if (IS_ERR(newfile2)) {
1802 		err = PTR_ERR(newfile2);
1803 		fput(newfile1);
1804 		goto out;
1805 	}
1806 
1807 	audit_fd_pair(fd1, fd2);
1808 
1809 	fd_install(fd1, newfile1);
1810 	fd_install(fd2, newfile2);
1811 	return 0;
1812 
1813 out:
1814 	put_unused_fd(fd2);
1815 	put_unused_fd(fd1);
1816 	return err;
1817 }
1818 
1819 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1820 		int __user *, usockvec)
1821 {
1822 	return __sys_socketpair(family, type, protocol, usockvec);
1823 }
1824 
1825 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1826 		      int addrlen)
1827 {
1828 	int err;
1829 
1830 	err = security_socket_bind(sock, (struct sockaddr *)address,
1831 				   addrlen);
1832 	if (!err)
1833 		err = READ_ONCE(sock->ops)->bind(sock,
1834 						 (struct sockaddr *)address,
1835 						 addrlen);
1836 	return err;
1837 }
1838 
1839 /*
1840  *	Bind a name to a socket. Nothing much to do here since it's
1841  *	the protocol's responsibility to handle the local address.
1842  *
1843  *	We move the socket address to kernel space before we call
1844  *	the protocol layer (having also checked the address is ok).
1845  */
1846 
1847 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1848 {
1849 	struct socket *sock;
1850 	struct sockaddr_storage address;
1851 	int err, fput_needed;
1852 
1853 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1854 	if (sock) {
1855 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1856 		if (!err)
1857 			err = __sys_bind_socket(sock, &address, addrlen);
1858 		fput_light(sock->file, fput_needed);
1859 	}
1860 	return err;
1861 }
1862 
1863 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1864 {
1865 	return __sys_bind(fd, umyaddr, addrlen);
1866 }
1867 
1868 /*
1869  *	Perform a listen. Basically, we allow the protocol to do anything
1870  *	necessary for a listen, and if that works, we mark the socket as
1871  *	ready for listening.
1872  */
1873 int __sys_listen_socket(struct socket *sock, int backlog)
1874 {
1875 	int somaxconn, err;
1876 
1877 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1878 	if ((unsigned int)backlog > somaxconn)
1879 		backlog = somaxconn;
1880 
1881 	err = security_socket_listen(sock, backlog);
1882 	if (!err)
1883 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1884 	return err;
1885 }
1886 
1887 int __sys_listen(int fd, int backlog)
1888 {
1889 	struct socket *sock;
1890 	int err, fput_needed;
1891 
1892 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 	if (sock) {
1894 		err = __sys_listen_socket(sock, backlog);
1895 		fput_light(sock->file, fput_needed);
1896 	}
1897 	return err;
1898 }
1899 
1900 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1901 {
1902 	return __sys_listen(fd, backlog);
1903 }
1904 
1905 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1906 		       struct sockaddr __user *upeer_sockaddr,
1907 		       int __user *upeer_addrlen, int flags)
1908 {
1909 	struct socket *sock, *newsock;
1910 	struct file *newfile;
1911 	int err, len;
1912 	struct sockaddr_storage address;
1913 	const struct proto_ops *ops;
1914 
1915 	sock = sock_from_file(file);
1916 	if (!sock)
1917 		return ERR_PTR(-ENOTSOCK);
1918 
1919 	newsock = sock_alloc();
1920 	if (!newsock)
1921 		return ERR_PTR(-ENFILE);
1922 	ops = READ_ONCE(sock->ops);
1923 
1924 	newsock->type = sock->type;
1925 	newsock->ops = ops;
1926 
1927 	/*
1928 	 * We don't need try_module_get here, as the listening socket (sock)
1929 	 * has the protocol module (sock->ops->owner) held.
1930 	 */
1931 	__module_get(ops->owner);
1932 
1933 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1934 	if (IS_ERR(newfile))
1935 		return newfile;
1936 
1937 	err = security_socket_accept(sock, newsock);
1938 	if (err)
1939 		goto out_fd;
1940 
1941 	arg->flags |= sock->file->f_flags;
1942 	err = ops->accept(sock, newsock, arg);
1943 	if (err < 0)
1944 		goto out_fd;
1945 
1946 	if (upeer_sockaddr) {
1947 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1948 		if (len < 0) {
1949 			err = -ECONNABORTED;
1950 			goto out_fd;
1951 		}
1952 		err = move_addr_to_user(&address,
1953 					len, upeer_sockaddr, upeer_addrlen);
1954 		if (err < 0)
1955 			goto out_fd;
1956 	}
1957 
1958 	/* File flags are not inherited via accept() unlike another OSes. */
1959 	return newfile;
1960 out_fd:
1961 	fput(newfile);
1962 	return ERR_PTR(err);
1963 }
1964 
1965 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1966 			      int __user *upeer_addrlen, int flags)
1967 {
1968 	struct proto_accept_arg arg = { };
1969 	struct file *newfile;
1970 	int newfd;
1971 
1972 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1973 		return -EINVAL;
1974 
1975 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1976 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1977 
1978 	newfd = get_unused_fd_flags(flags);
1979 	if (unlikely(newfd < 0))
1980 		return newfd;
1981 
1982 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1983 			    flags);
1984 	if (IS_ERR(newfile)) {
1985 		put_unused_fd(newfd);
1986 		return PTR_ERR(newfile);
1987 	}
1988 	fd_install(newfd, newfile);
1989 	return newfd;
1990 }
1991 
1992 /*
1993  *	For accept, we attempt to create a new socket, set up the link
1994  *	with the client, wake up the client, then return the new
1995  *	connected fd. We collect the address of the connector in kernel
1996  *	space and move it to user at the very end. This is unclean because
1997  *	we open the socket then return an error.
1998  *
1999  *	1003.1g adds the ability to recvmsg() to query connection pending
2000  *	status to recvmsg. We need to add that support in a way thats
2001  *	clean when we restructure accept also.
2002  */
2003 
2004 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2005 		  int __user *upeer_addrlen, int flags)
2006 {
2007 	int ret = -EBADF;
2008 	struct fd f;
2009 
2010 	f = fdget(fd);
2011 	if (f.file) {
2012 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
2013 					 upeer_addrlen, flags);
2014 		fdput(f);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 		int __user *, upeer_addrlen, int, flags)
2022 {
2023 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2024 }
2025 
2026 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2027 		int __user *, upeer_addrlen)
2028 {
2029 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2030 }
2031 
2032 /*
2033  *	Attempt to connect to a socket with the server address.  The address
2034  *	is in user space so we verify it is OK and move it to kernel space.
2035  *
2036  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2037  *	break bindings
2038  *
2039  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2040  *	other SEQPACKET protocols that take time to connect() as it doesn't
2041  *	include the -EINPROGRESS status for such sockets.
2042  */
2043 
2044 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2045 		       int addrlen, int file_flags)
2046 {
2047 	struct socket *sock;
2048 	int err;
2049 
2050 	sock = sock_from_file(file);
2051 	if (!sock) {
2052 		err = -ENOTSOCK;
2053 		goto out;
2054 	}
2055 
2056 	err =
2057 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2058 	if (err)
2059 		goto out;
2060 
2061 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2062 				addrlen, sock->file->f_flags | file_flags);
2063 out:
2064 	return err;
2065 }
2066 
2067 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2068 {
2069 	int ret = -EBADF;
2070 	struct fd f;
2071 
2072 	f = fdget(fd);
2073 	if (f.file) {
2074 		struct sockaddr_storage address;
2075 
2076 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2077 		if (!ret)
2078 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2079 		fdput(f);
2080 	}
2081 
2082 	return ret;
2083 }
2084 
2085 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2086 		int, addrlen)
2087 {
2088 	return __sys_connect(fd, uservaddr, addrlen);
2089 }
2090 
2091 /*
2092  *	Get the local address ('name') of a socket object. Move the obtained
2093  *	name to user space.
2094  */
2095 
2096 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2097 		      int __user *usockaddr_len)
2098 {
2099 	struct socket *sock;
2100 	struct sockaddr_storage address;
2101 	int err, fput_needed;
2102 
2103 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 	if (!sock)
2105 		goto out;
2106 
2107 	err = security_socket_getsockname(sock);
2108 	if (err)
2109 		goto out_put;
2110 
2111 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2112 	if (err < 0)
2113 		goto out_put;
2114 	/* "err" is actually length in this case */
2115 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2116 
2117 out_put:
2118 	fput_light(sock->file, fput_needed);
2119 out:
2120 	return err;
2121 }
2122 
2123 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2124 		int __user *, usockaddr_len)
2125 {
2126 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2127 }
2128 
2129 /*
2130  *	Get the remote address ('name') of a socket object. Move the obtained
2131  *	name to user space.
2132  */
2133 
2134 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2135 		      int __user *usockaddr_len)
2136 {
2137 	struct socket *sock;
2138 	struct sockaddr_storage address;
2139 	int err, fput_needed;
2140 
2141 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2142 	if (sock != NULL) {
2143 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2144 
2145 		err = security_socket_getpeername(sock);
2146 		if (err) {
2147 			fput_light(sock->file, fput_needed);
2148 			return err;
2149 		}
2150 
2151 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2152 		if (err >= 0)
2153 			/* "err" is actually length in this case */
2154 			err = move_addr_to_user(&address, err, usockaddr,
2155 						usockaddr_len);
2156 		fput_light(sock->file, fput_needed);
2157 	}
2158 	return err;
2159 }
2160 
2161 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2162 		int __user *, usockaddr_len)
2163 {
2164 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2165 }
2166 
2167 /*
2168  *	Send a datagram to a given address. We move the address into kernel
2169  *	space and check the user space data area is readable before invoking
2170  *	the protocol.
2171  */
2172 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2173 		 struct sockaddr __user *addr,  int addr_len)
2174 {
2175 	struct socket *sock;
2176 	struct sockaddr_storage address;
2177 	int err;
2178 	struct msghdr msg;
2179 	int fput_needed;
2180 
2181 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2182 	if (unlikely(err))
2183 		return err;
2184 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 	if (!sock)
2186 		goto out;
2187 
2188 	msg.msg_name = NULL;
2189 	msg.msg_control = NULL;
2190 	msg.msg_controllen = 0;
2191 	msg.msg_namelen = 0;
2192 	msg.msg_ubuf = NULL;
2193 	if (addr) {
2194 		err = move_addr_to_kernel(addr, addr_len, &address);
2195 		if (err < 0)
2196 			goto out_put;
2197 		msg.msg_name = (struct sockaddr *)&address;
2198 		msg.msg_namelen = addr_len;
2199 	}
2200 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2201 	if (sock->file->f_flags & O_NONBLOCK)
2202 		flags |= MSG_DONTWAIT;
2203 	msg.msg_flags = flags;
2204 	err = __sock_sendmsg(sock, &msg);
2205 
2206 out_put:
2207 	fput_light(sock->file, fput_needed);
2208 out:
2209 	return err;
2210 }
2211 
2212 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2213 		unsigned int, flags, struct sockaddr __user *, addr,
2214 		int, addr_len)
2215 {
2216 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2217 }
2218 
2219 /*
2220  *	Send a datagram down a socket.
2221  */
2222 
2223 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2224 		unsigned int, flags)
2225 {
2226 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2227 }
2228 
2229 /*
2230  *	Receive a frame from the socket and optionally record the address of the
2231  *	sender. We verify the buffers are writable and if needed move the
2232  *	sender address from kernel to user space.
2233  */
2234 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2235 		   struct sockaddr __user *addr, int __user *addr_len)
2236 {
2237 	struct sockaddr_storage address;
2238 	struct msghdr msg = {
2239 		/* Save some cycles and don't copy the address if not needed */
2240 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2241 	};
2242 	struct socket *sock;
2243 	int err, err2;
2244 	int fput_needed;
2245 
2246 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2247 	if (unlikely(err))
2248 		return err;
2249 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2250 	if (!sock)
2251 		goto out;
2252 
2253 	if (sock->file->f_flags & O_NONBLOCK)
2254 		flags |= MSG_DONTWAIT;
2255 	err = sock_recvmsg(sock, &msg, flags);
2256 
2257 	if (err >= 0 && addr != NULL) {
2258 		err2 = move_addr_to_user(&address,
2259 					 msg.msg_namelen, addr, addr_len);
2260 		if (err2 < 0)
2261 			err = err2;
2262 	}
2263 
2264 	fput_light(sock->file, fput_needed);
2265 out:
2266 	return err;
2267 }
2268 
2269 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2270 		unsigned int, flags, struct sockaddr __user *, addr,
2271 		int __user *, addr_len)
2272 {
2273 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2274 }
2275 
2276 /*
2277  *	Receive a datagram from a socket.
2278  */
2279 
2280 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2281 		unsigned int, flags)
2282 {
2283 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2284 }
2285 
2286 static bool sock_use_custom_sol_socket(const struct socket *sock)
2287 {
2288 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2289 }
2290 
2291 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2292 		       int optname, sockptr_t optval, int optlen)
2293 {
2294 	const struct proto_ops *ops;
2295 	char *kernel_optval = NULL;
2296 	int err;
2297 
2298 	if (optlen < 0)
2299 		return -EINVAL;
2300 
2301 	err = security_socket_setsockopt(sock, level, optname);
2302 	if (err)
2303 		goto out_put;
2304 
2305 	if (!compat)
2306 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2307 						     optval, &optlen,
2308 						     &kernel_optval);
2309 	if (err < 0)
2310 		goto out_put;
2311 	if (err > 0) {
2312 		err = 0;
2313 		goto out_put;
2314 	}
2315 
2316 	if (kernel_optval)
2317 		optval = KERNEL_SOCKPTR(kernel_optval);
2318 	ops = READ_ONCE(sock->ops);
2319 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2320 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2321 	else if (unlikely(!ops->setsockopt))
2322 		err = -EOPNOTSUPP;
2323 	else
2324 		err = ops->setsockopt(sock, level, optname, optval,
2325 					    optlen);
2326 	kfree(kernel_optval);
2327 out_put:
2328 	return err;
2329 }
2330 EXPORT_SYMBOL(do_sock_setsockopt);
2331 
2332 /* Set a socket option. Because we don't know the option lengths we have
2333  * to pass the user mode parameter for the protocols to sort out.
2334  */
2335 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2336 		     int optlen)
2337 {
2338 	sockptr_t optval = USER_SOCKPTR(user_optval);
2339 	bool compat = in_compat_syscall();
2340 	int err, fput_needed;
2341 	struct socket *sock;
2342 
2343 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2344 	if (!sock)
2345 		return err;
2346 
2347 	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2348 
2349 	fput_light(sock->file, fput_needed);
2350 	return err;
2351 }
2352 
2353 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2354 		char __user *, optval, int, optlen)
2355 {
2356 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2357 }
2358 
2359 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2360 							 int optname));
2361 
2362 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2363 		       int optname, sockptr_t optval, sockptr_t optlen)
2364 {
2365 	int max_optlen __maybe_unused = 0;
2366 	const struct proto_ops *ops;
2367 	int err;
2368 
2369 	err = security_socket_getsockopt(sock, level, optname);
2370 	if (err)
2371 		return err;
2372 
2373 	if (!compat)
2374 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2375 
2376 	ops = READ_ONCE(sock->ops);
2377 	if (level == SOL_SOCKET) {
2378 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2379 	} else if (unlikely(!ops->getsockopt)) {
2380 		err = -EOPNOTSUPP;
2381 	} else {
2382 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2383 			      "Invalid argument type"))
2384 			return -EOPNOTSUPP;
2385 
2386 		err = ops->getsockopt(sock, level, optname, optval.user,
2387 				      optlen.user);
2388 	}
2389 
2390 	if (!compat)
2391 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2392 						     optval, optlen, max_optlen,
2393 						     err);
2394 
2395 	return err;
2396 }
2397 EXPORT_SYMBOL(do_sock_getsockopt);
2398 
2399 /*
2400  *	Get a socket option. Because we don't know the option lengths we have
2401  *	to pass a user mode parameter for the protocols to sort out.
2402  */
2403 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2404 		int __user *optlen)
2405 {
2406 	int err, fput_needed;
2407 	struct socket *sock;
2408 	bool compat;
2409 
2410 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2411 	if (!sock)
2412 		return err;
2413 
2414 	compat = in_compat_syscall();
2415 	err = do_sock_getsockopt(sock, compat, level, optname,
2416 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2417 
2418 	fput_light(sock->file, fput_needed);
2419 	return err;
2420 }
2421 
2422 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2423 		char __user *, optval, int __user *, optlen)
2424 {
2425 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2426 }
2427 
2428 /*
2429  *	Shutdown a socket.
2430  */
2431 
2432 int __sys_shutdown_sock(struct socket *sock, int how)
2433 {
2434 	int err;
2435 
2436 	err = security_socket_shutdown(sock, how);
2437 	if (!err)
2438 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2439 
2440 	return err;
2441 }
2442 
2443 int __sys_shutdown(int fd, int how)
2444 {
2445 	int err, fput_needed;
2446 	struct socket *sock;
2447 
2448 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2449 	if (sock != NULL) {
2450 		err = __sys_shutdown_sock(sock, how);
2451 		fput_light(sock->file, fput_needed);
2452 	}
2453 	return err;
2454 }
2455 
2456 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2457 {
2458 	return __sys_shutdown(fd, how);
2459 }
2460 
2461 /* A couple of helpful macros for getting the address of the 32/64 bit
2462  * fields which are the same type (int / unsigned) on our platforms.
2463  */
2464 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2465 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2466 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2467 
2468 struct used_address {
2469 	struct sockaddr_storage name;
2470 	unsigned int name_len;
2471 };
2472 
2473 int __copy_msghdr(struct msghdr *kmsg,
2474 		  struct user_msghdr *msg,
2475 		  struct sockaddr __user **save_addr)
2476 {
2477 	ssize_t err;
2478 
2479 	kmsg->msg_control_is_user = true;
2480 	kmsg->msg_get_inq = 0;
2481 	kmsg->msg_control_user = msg->msg_control;
2482 	kmsg->msg_controllen = msg->msg_controllen;
2483 	kmsg->msg_flags = msg->msg_flags;
2484 
2485 	kmsg->msg_namelen = msg->msg_namelen;
2486 	if (!msg->msg_name)
2487 		kmsg->msg_namelen = 0;
2488 
2489 	if (kmsg->msg_namelen < 0)
2490 		return -EINVAL;
2491 
2492 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2493 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2494 
2495 	if (save_addr)
2496 		*save_addr = msg->msg_name;
2497 
2498 	if (msg->msg_name && kmsg->msg_namelen) {
2499 		if (!save_addr) {
2500 			err = move_addr_to_kernel(msg->msg_name,
2501 						  kmsg->msg_namelen,
2502 						  kmsg->msg_name);
2503 			if (err < 0)
2504 				return err;
2505 		}
2506 	} else {
2507 		kmsg->msg_name = NULL;
2508 		kmsg->msg_namelen = 0;
2509 	}
2510 
2511 	if (msg->msg_iovlen > UIO_MAXIOV)
2512 		return -EMSGSIZE;
2513 
2514 	kmsg->msg_iocb = NULL;
2515 	kmsg->msg_ubuf = NULL;
2516 	return 0;
2517 }
2518 
2519 static int copy_msghdr_from_user(struct msghdr *kmsg,
2520 				 struct user_msghdr __user *umsg,
2521 				 struct sockaddr __user **save_addr,
2522 				 struct iovec **iov)
2523 {
2524 	struct user_msghdr msg;
2525 	ssize_t err;
2526 
2527 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2528 		return -EFAULT;
2529 
2530 	err = __copy_msghdr(kmsg, &msg, save_addr);
2531 	if (err)
2532 		return err;
2533 
2534 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2535 			    msg.msg_iov, msg.msg_iovlen,
2536 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2537 	return err < 0 ? err : 0;
2538 }
2539 
2540 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2541 			   unsigned int flags, struct used_address *used_address,
2542 			   unsigned int allowed_msghdr_flags)
2543 {
2544 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2545 				__aligned(sizeof(__kernel_size_t));
2546 	/* 20 is size of ipv6_pktinfo */
2547 	unsigned char *ctl_buf = ctl;
2548 	int ctl_len;
2549 	ssize_t err;
2550 
2551 	err = -ENOBUFS;
2552 
2553 	if (msg_sys->msg_controllen > INT_MAX)
2554 		goto out;
2555 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2556 	ctl_len = msg_sys->msg_controllen;
2557 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2558 		err =
2559 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2560 						     sizeof(ctl));
2561 		if (err)
2562 			goto out;
2563 		ctl_buf = msg_sys->msg_control;
2564 		ctl_len = msg_sys->msg_controllen;
2565 	} else if (ctl_len) {
2566 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2567 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2568 		if (ctl_len > sizeof(ctl)) {
2569 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2570 			if (ctl_buf == NULL)
2571 				goto out;
2572 		}
2573 		err = -EFAULT;
2574 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2575 			goto out_freectl;
2576 		msg_sys->msg_control = ctl_buf;
2577 		msg_sys->msg_control_is_user = false;
2578 	}
2579 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2580 	msg_sys->msg_flags = flags;
2581 
2582 	if (sock->file->f_flags & O_NONBLOCK)
2583 		msg_sys->msg_flags |= MSG_DONTWAIT;
2584 	/*
2585 	 * If this is sendmmsg() and current destination address is same as
2586 	 * previously succeeded address, omit asking LSM's decision.
2587 	 * used_address->name_len is initialized to UINT_MAX so that the first
2588 	 * destination address never matches.
2589 	 */
2590 	if (used_address && msg_sys->msg_name &&
2591 	    used_address->name_len == msg_sys->msg_namelen &&
2592 	    !memcmp(&used_address->name, msg_sys->msg_name,
2593 		    used_address->name_len)) {
2594 		err = sock_sendmsg_nosec(sock, msg_sys);
2595 		goto out_freectl;
2596 	}
2597 	err = __sock_sendmsg(sock, msg_sys);
2598 	/*
2599 	 * If this is sendmmsg() and sending to current destination address was
2600 	 * successful, remember it.
2601 	 */
2602 	if (used_address && err >= 0) {
2603 		used_address->name_len = msg_sys->msg_namelen;
2604 		if (msg_sys->msg_name)
2605 			memcpy(&used_address->name, msg_sys->msg_name,
2606 			       used_address->name_len);
2607 	}
2608 
2609 out_freectl:
2610 	if (ctl_buf != ctl)
2611 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2612 out:
2613 	return err;
2614 }
2615 
2616 static int sendmsg_copy_msghdr(struct msghdr *msg,
2617 			       struct user_msghdr __user *umsg, unsigned flags,
2618 			       struct iovec **iov)
2619 {
2620 	int err;
2621 
2622 	if (flags & MSG_CMSG_COMPAT) {
2623 		struct compat_msghdr __user *msg_compat;
2624 
2625 		msg_compat = (struct compat_msghdr __user *) umsg;
2626 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2627 	} else {
2628 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2629 	}
2630 	if (err < 0)
2631 		return err;
2632 
2633 	return 0;
2634 }
2635 
2636 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2637 			 struct msghdr *msg_sys, unsigned int flags,
2638 			 struct used_address *used_address,
2639 			 unsigned int allowed_msghdr_flags)
2640 {
2641 	struct sockaddr_storage address;
2642 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2643 	ssize_t err;
2644 
2645 	msg_sys->msg_name = &address;
2646 
2647 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2648 	if (err < 0)
2649 		return err;
2650 
2651 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2652 				allowed_msghdr_flags);
2653 	kfree(iov);
2654 	return err;
2655 }
2656 
2657 /*
2658  *	BSD sendmsg interface
2659  */
2660 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2661 			unsigned int flags)
2662 {
2663 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2664 }
2665 
2666 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2667 		   bool forbid_cmsg_compat)
2668 {
2669 	int fput_needed, err;
2670 	struct msghdr msg_sys;
2671 	struct socket *sock;
2672 
2673 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2674 		return -EINVAL;
2675 
2676 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2677 	if (!sock)
2678 		goto out;
2679 
2680 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2681 
2682 	fput_light(sock->file, fput_needed);
2683 out:
2684 	return err;
2685 }
2686 
2687 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2688 {
2689 	return __sys_sendmsg(fd, msg, flags, true);
2690 }
2691 
2692 /*
2693  *	Linux sendmmsg interface
2694  */
2695 
2696 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2697 		   unsigned int flags, bool forbid_cmsg_compat)
2698 {
2699 	int fput_needed, err, datagrams;
2700 	struct socket *sock;
2701 	struct mmsghdr __user *entry;
2702 	struct compat_mmsghdr __user *compat_entry;
2703 	struct msghdr msg_sys;
2704 	struct used_address used_address;
2705 	unsigned int oflags = flags;
2706 
2707 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2708 		return -EINVAL;
2709 
2710 	if (vlen > UIO_MAXIOV)
2711 		vlen = UIO_MAXIOV;
2712 
2713 	datagrams = 0;
2714 
2715 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2716 	if (!sock)
2717 		return err;
2718 
2719 	used_address.name_len = UINT_MAX;
2720 	entry = mmsg;
2721 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2722 	err = 0;
2723 	flags |= MSG_BATCH;
2724 
2725 	while (datagrams < vlen) {
2726 		if (datagrams == vlen - 1)
2727 			flags = oflags;
2728 
2729 		if (MSG_CMSG_COMPAT & flags) {
2730 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2731 					     &msg_sys, flags, &used_address, MSG_EOR);
2732 			if (err < 0)
2733 				break;
2734 			err = __put_user(err, &compat_entry->msg_len);
2735 			++compat_entry;
2736 		} else {
2737 			err = ___sys_sendmsg(sock,
2738 					     (struct user_msghdr __user *)entry,
2739 					     &msg_sys, flags, &used_address, MSG_EOR);
2740 			if (err < 0)
2741 				break;
2742 			err = put_user(err, &entry->msg_len);
2743 			++entry;
2744 		}
2745 
2746 		if (err)
2747 			break;
2748 		++datagrams;
2749 		if (msg_data_left(&msg_sys))
2750 			break;
2751 		cond_resched();
2752 	}
2753 
2754 	fput_light(sock->file, fput_needed);
2755 
2756 	/* We only return an error if no datagrams were able to be sent */
2757 	if (datagrams != 0)
2758 		return datagrams;
2759 
2760 	return err;
2761 }
2762 
2763 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2764 		unsigned int, vlen, unsigned int, flags)
2765 {
2766 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2767 }
2768 
2769 static int recvmsg_copy_msghdr(struct msghdr *msg,
2770 			       struct user_msghdr __user *umsg, unsigned flags,
2771 			       struct sockaddr __user **uaddr,
2772 			       struct iovec **iov)
2773 {
2774 	ssize_t err;
2775 
2776 	if (MSG_CMSG_COMPAT & flags) {
2777 		struct compat_msghdr __user *msg_compat;
2778 
2779 		msg_compat = (struct compat_msghdr __user *) umsg;
2780 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2781 	} else {
2782 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2783 	}
2784 	if (err < 0)
2785 		return err;
2786 
2787 	return 0;
2788 }
2789 
2790 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2791 			   struct user_msghdr __user *msg,
2792 			   struct sockaddr __user *uaddr,
2793 			   unsigned int flags, int nosec)
2794 {
2795 	struct compat_msghdr __user *msg_compat =
2796 					(struct compat_msghdr __user *) msg;
2797 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2798 	struct sockaddr_storage addr;
2799 	unsigned long cmsg_ptr;
2800 	int len;
2801 	ssize_t err;
2802 
2803 	msg_sys->msg_name = &addr;
2804 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2805 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2806 
2807 	/* We assume all kernel code knows the size of sockaddr_storage */
2808 	msg_sys->msg_namelen = 0;
2809 
2810 	if (sock->file->f_flags & O_NONBLOCK)
2811 		flags |= MSG_DONTWAIT;
2812 
2813 	if (unlikely(nosec))
2814 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2815 	else
2816 		err = sock_recvmsg(sock, msg_sys, flags);
2817 
2818 	if (err < 0)
2819 		goto out;
2820 	len = err;
2821 
2822 	if (uaddr != NULL) {
2823 		err = move_addr_to_user(&addr,
2824 					msg_sys->msg_namelen, uaddr,
2825 					uaddr_len);
2826 		if (err < 0)
2827 			goto out;
2828 	}
2829 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2830 			 COMPAT_FLAGS(msg));
2831 	if (err)
2832 		goto out;
2833 	if (MSG_CMSG_COMPAT & flags)
2834 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2835 				 &msg_compat->msg_controllen);
2836 	else
2837 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2838 				 &msg->msg_controllen);
2839 	if (err)
2840 		goto out;
2841 	err = len;
2842 out:
2843 	return err;
2844 }
2845 
2846 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2847 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2848 {
2849 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2850 	/* user mode address pointers */
2851 	struct sockaddr __user *uaddr;
2852 	ssize_t err;
2853 
2854 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2855 	if (err < 0)
2856 		return err;
2857 
2858 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2859 	kfree(iov);
2860 	return err;
2861 }
2862 
2863 /*
2864  *	BSD recvmsg interface
2865  */
2866 
2867 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2868 			struct user_msghdr __user *umsg,
2869 			struct sockaddr __user *uaddr, unsigned int flags)
2870 {
2871 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2872 }
2873 
2874 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2875 		   bool forbid_cmsg_compat)
2876 {
2877 	int fput_needed, err;
2878 	struct msghdr msg_sys;
2879 	struct socket *sock;
2880 
2881 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2882 		return -EINVAL;
2883 
2884 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2885 	if (!sock)
2886 		goto out;
2887 
2888 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2889 
2890 	fput_light(sock->file, fput_needed);
2891 out:
2892 	return err;
2893 }
2894 
2895 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2896 		unsigned int, flags)
2897 {
2898 	return __sys_recvmsg(fd, msg, flags, true);
2899 }
2900 
2901 /*
2902  *     Linux recvmmsg interface
2903  */
2904 
2905 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2906 			  unsigned int vlen, unsigned int flags,
2907 			  struct timespec64 *timeout)
2908 {
2909 	int fput_needed, err, datagrams;
2910 	struct socket *sock;
2911 	struct mmsghdr __user *entry;
2912 	struct compat_mmsghdr __user *compat_entry;
2913 	struct msghdr msg_sys;
2914 	struct timespec64 end_time;
2915 	struct timespec64 timeout64;
2916 
2917 	if (timeout &&
2918 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2919 				    timeout->tv_nsec))
2920 		return -EINVAL;
2921 
2922 	datagrams = 0;
2923 
2924 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2925 	if (!sock)
2926 		return err;
2927 
2928 	if (likely(!(flags & MSG_ERRQUEUE))) {
2929 		err = sock_error(sock->sk);
2930 		if (err) {
2931 			datagrams = err;
2932 			goto out_put;
2933 		}
2934 	}
2935 
2936 	entry = mmsg;
2937 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2938 
2939 	while (datagrams < vlen) {
2940 		/*
2941 		 * No need to ask LSM for more than the first datagram.
2942 		 */
2943 		if (MSG_CMSG_COMPAT & flags) {
2944 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2945 					     &msg_sys, flags & ~MSG_WAITFORONE,
2946 					     datagrams);
2947 			if (err < 0)
2948 				break;
2949 			err = __put_user(err, &compat_entry->msg_len);
2950 			++compat_entry;
2951 		} else {
2952 			err = ___sys_recvmsg(sock,
2953 					     (struct user_msghdr __user *)entry,
2954 					     &msg_sys, flags & ~MSG_WAITFORONE,
2955 					     datagrams);
2956 			if (err < 0)
2957 				break;
2958 			err = put_user(err, &entry->msg_len);
2959 			++entry;
2960 		}
2961 
2962 		if (err)
2963 			break;
2964 		++datagrams;
2965 
2966 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2967 		if (flags & MSG_WAITFORONE)
2968 			flags |= MSG_DONTWAIT;
2969 
2970 		if (timeout) {
2971 			ktime_get_ts64(&timeout64);
2972 			*timeout = timespec64_sub(end_time, timeout64);
2973 			if (timeout->tv_sec < 0) {
2974 				timeout->tv_sec = timeout->tv_nsec = 0;
2975 				break;
2976 			}
2977 
2978 			/* Timeout, return less than vlen datagrams */
2979 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2980 				break;
2981 		}
2982 
2983 		/* Out of band data, return right away */
2984 		if (msg_sys.msg_flags & MSG_OOB)
2985 			break;
2986 		cond_resched();
2987 	}
2988 
2989 	if (err == 0)
2990 		goto out_put;
2991 
2992 	if (datagrams == 0) {
2993 		datagrams = err;
2994 		goto out_put;
2995 	}
2996 
2997 	/*
2998 	 * We may return less entries than requested (vlen) if the
2999 	 * sock is non block and there aren't enough datagrams...
3000 	 */
3001 	if (err != -EAGAIN) {
3002 		/*
3003 		 * ... or  if recvmsg returns an error after we
3004 		 * received some datagrams, where we record the
3005 		 * error to return on the next call or if the
3006 		 * app asks about it using getsockopt(SO_ERROR).
3007 		 */
3008 		WRITE_ONCE(sock->sk->sk_err, -err);
3009 	}
3010 out_put:
3011 	fput_light(sock->file, fput_needed);
3012 
3013 	return datagrams;
3014 }
3015 
3016 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3017 		   unsigned int vlen, unsigned int flags,
3018 		   struct __kernel_timespec __user *timeout,
3019 		   struct old_timespec32 __user *timeout32)
3020 {
3021 	int datagrams;
3022 	struct timespec64 timeout_sys;
3023 
3024 	if (timeout && get_timespec64(&timeout_sys, timeout))
3025 		return -EFAULT;
3026 
3027 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3028 		return -EFAULT;
3029 
3030 	if (!timeout && !timeout32)
3031 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3032 
3033 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3034 
3035 	if (datagrams <= 0)
3036 		return datagrams;
3037 
3038 	if (timeout && put_timespec64(&timeout_sys, timeout))
3039 		datagrams = -EFAULT;
3040 
3041 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3042 		datagrams = -EFAULT;
3043 
3044 	return datagrams;
3045 }
3046 
3047 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3048 		unsigned int, vlen, unsigned int, flags,
3049 		struct __kernel_timespec __user *, timeout)
3050 {
3051 	if (flags & MSG_CMSG_COMPAT)
3052 		return -EINVAL;
3053 
3054 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3055 }
3056 
3057 #ifdef CONFIG_COMPAT_32BIT_TIME
3058 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3059 		unsigned int, vlen, unsigned int, flags,
3060 		struct old_timespec32 __user *, timeout)
3061 {
3062 	if (flags & MSG_CMSG_COMPAT)
3063 		return -EINVAL;
3064 
3065 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3066 }
3067 #endif
3068 
3069 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3070 /* Argument list sizes for sys_socketcall */
3071 #define AL(x) ((x) * sizeof(unsigned long))
3072 static const unsigned char nargs[21] = {
3073 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3074 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3075 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3076 	AL(4), AL(5), AL(4)
3077 };
3078 
3079 #undef AL
3080 
3081 /*
3082  *	System call vectors.
3083  *
3084  *	Argument checking cleaned up. Saved 20% in size.
3085  *  This function doesn't need to set the kernel lock because
3086  *  it is set by the callees.
3087  */
3088 
3089 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3090 {
3091 	unsigned long a[AUDITSC_ARGS];
3092 	unsigned long a0, a1;
3093 	int err;
3094 	unsigned int len;
3095 
3096 	if (call < 1 || call > SYS_SENDMMSG)
3097 		return -EINVAL;
3098 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3099 
3100 	len = nargs[call];
3101 	if (len > sizeof(a))
3102 		return -EINVAL;
3103 
3104 	/* copy_from_user should be SMP safe. */
3105 	if (copy_from_user(a, args, len))
3106 		return -EFAULT;
3107 
3108 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3109 	if (err)
3110 		return err;
3111 
3112 	a0 = a[0];
3113 	a1 = a[1];
3114 
3115 	switch (call) {
3116 	case SYS_SOCKET:
3117 		err = __sys_socket(a0, a1, a[2]);
3118 		break;
3119 	case SYS_BIND:
3120 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3121 		break;
3122 	case SYS_CONNECT:
3123 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3124 		break;
3125 	case SYS_LISTEN:
3126 		err = __sys_listen(a0, a1);
3127 		break;
3128 	case SYS_ACCEPT:
3129 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3130 				    (int __user *)a[2], 0);
3131 		break;
3132 	case SYS_GETSOCKNAME:
3133 		err =
3134 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3135 				      (int __user *)a[2]);
3136 		break;
3137 	case SYS_GETPEERNAME:
3138 		err =
3139 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3140 				      (int __user *)a[2]);
3141 		break;
3142 	case SYS_SOCKETPAIR:
3143 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3144 		break;
3145 	case SYS_SEND:
3146 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3147 				   NULL, 0);
3148 		break;
3149 	case SYS_SENDTO:
3150 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3151 				   (struct sockaddr __user *)a[4], a[5]);
3152 		break;
3153 	case SYS_RECV:
3154 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3155 				     NULL, NULL);
3156 		break;
3157 	case SYS_RECVFROM:
3158 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3159 				     (struct sockaddr __user *)a[4],
3160 				     (int __user *)a[5]);
3161 		break;
3162 	case SYS_SHUTDOWN:
3163 		err = __sys_shutdown(a0, a1);
3164 		break;
3165 	case SYS_SETSOCKOPT:
3166 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3167 				       a[4]);
3168 		break;
3169 	case SYS_GETSOCKOPT:
3170 		err =
3171 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3172 				     (int __user *)a[4]);
3173 		break;
3174 	case SYS_SENDMSG:
3175 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3176 				    a[2], true);
3177 		break;
3178 	case SYS_SENDMMSG:
3179 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3180 				     a[3], true);
3181 		break;
3182 	case SYS_RECVMSG:
3183 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3184 				    a[2], true);
3185 		break;
3186 	case SYS_RECVMMSG:
3187 		if (IS_ENABLED(CONFIG_64BIT))
3188 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3189 					     a[2], a[3],
3190 					     (struct __kernel_timespec __user *)a[4],
3191 					     NULL);
3192 		else
3193 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3194 					     a[2], a[3], NULL,
3195 					     (struct old_timespec32 __user *)a[4]);
3196 		break;
3197 	case SYS_ACCEPT4:
3198 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3199 				    (int __user *)a[2], a[3]);
3200 		break;
3201 	default:
3202 		err = -EINVAL;
3203 		break;
3204 	}
3205 	return err;
3206 }
3207 
3208 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3209 
3210 /**
3211  *	sock_register - add a socket protocol handler
3212  *	@ops: description of protocol
3213  *
3214  *	This function is called by a protocol handler that wants to
3215  *	advertise its address family, and have it linked into the
3216  *	socket interface. The value ops->family corresponds to the
3217  *	socket system call protocol family.
3218  */
3219 int sock_register(const struct net_proto_family *ops)
3220 {
3221 	int err;
3222 
3223 	if (ops->family >= NPROTO) {
3224 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3225 		return -ENOBUFS;
3226 	}
3227 
3228 	spin_lock(&net_family_lock);
3229 	if (rcu_dereference_protected(net_families[ops->family],
3230 				      lockdep_is_held(&net_family_lock)))
3231 		err = -EEXIST;
3232 	else {
3233 		rcu_assign_pointer(net_families[ops->family], ops);
3234 		err = 0;
3235 	}
3236 	spin_unlock(&net_family_lock);
3237 
3238 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3239 	return err;
3240 }
3241 EXPORT_SYMBOL(sock_register);
3242 
3243 /**
3244  *	sock_unregister - remove a protocol handler
3245  *	@family: protocol family to remove
3246  *
3247  *	This function is called by a protocol handler that wants to
3248  *	remove its address family, and have it unlinked from the
3249  *	new socket creation.
3250  *
3251  *	If protocol handler is a module, then it can use module reference
3252  *	counts to protect against new references. If protocol handler is not
3253  *	a module then it needs to provide its own protection in
3254  *	the ops->create routine.
3255  */
3256 void sock_unregister(int family)
3257 {
3258 	BUG_ON(family < 0 || family >= NPROTO);
3259 
3260 	spin_lock(&net_family_lock);
3261 	RCU_INIT_POINTER(net_families[family], NULL);
3262 	spin_unlock(&net_family_lock);
3263 
3264 	synchronize_rcu();
3265 
3266 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3267 }
3268 EXPORT_SYMBOL(sock_unregister);
3269 
3270 bool sock_is_registered(int family)
3271 {
3272 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3273 }
3274 
3275 static int __init sock_init(void)
3276 {
3277 	int err;
3278 	/*
3279 	 *      Initialize the network sysctl infrastructure.
3280 	 */
3281 	err = net_sysctl_init();
3282 	if (err)
3283 		goto out;
3284 
3285 	/*
3286 	 *      Initialize skbuff SLAB cache
3287 	 */
3288 	skb_init();
3289 
3290 	/*
3291 	 *      Initialize the protocols module.
3292 	 */
3293 
3294 	init_inodecache();
3295 
3296 	err = register_filesystem(&sock_fs_type);
3297 	if (err)
3298 		goto out;
3299 	sock_mnt = kern_mount(&sock_fs_type);
3300 	if (IS_ERR(sock_mnt)) {
3301 		err = PTR_ERR(sock_mnt);
3302 		goto out_mount;
3303 	}
3304 
3305 	/* The real protocol initialization is performed in later initcalls.
3306 	 */
3307 
3308 #ifdef CONFIG_NETFILTER
3309 	err = netfilter_init();
3310 	if (err)
3311 		goto out;
3312 #endif
3313 
3314 	ptp_classifier_init();
3315 
3316 out:
3317 	return err;
3318 
3319 out_mount:
3320 	unregister_filesystem(&sock_fs_type);
3321 	goto out;
3322 }
3323 
3324 core_initcall(sock_init);	/* early initcall */
3325 
3326 #ifdef CONFIG_PROC_FS
3327 void socket_seq_show(struct seq_file *seq)
3328 {
3329 	seq_printf(seq, "sockets: used %d\n",
3330 		   sock_inuse_get(seq->private));
3331 }
3332 #endif				/* CONFIG_PROC_FS */
3333 
3334 /* Handle the fact that while struct ifreq has the same *layout* on
3335  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3336  * which are handled elsewhere, it still has different *size* due to
3337  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3338  * resulting in struct ifreq being 32 and 40 bytes respectively).
3339  * As a result, if the struct happens to be at the end of a page and
3340  * the next page isn't readable/writable, we get a fault. To prevent
3341  * that, copy back and forth to the full size.
3342  */
3343 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3344 {
3345 	if (in_compat_syscall()) {
3346 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3347 
3348 		memset(ifr, 0, sizeof(*ifr));
3349 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3350 			return -EFAULT;
3351 
3352 		if (ifrdata)
3353 			*ifrdata = compat_ptr(ifr32->ifr_data);
3354 
3355 		return 0;
3356 	}
3357 
3358 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3359 		return -EFAULT;
3360 
3361 	if (ifrdata)
3362 		*ifrdata = ifr->ifr_data;
3363 
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL(get_user_ifreq);
3367 
3368 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3369 {
3370 	size_t size = sizeof(*ifr);
3371 
3372 	if (in_compat_syscall())
3373 		size = sizeof(struct compat_ifreq);
3374 
3375 	if (copy_to_user(arg, ifr, size))
3376 		return -EFAULT;
3377 
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL(put_user_ifreq);
3381 
3382 #ifdef CONFIG_COMPAT
3383 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3384 {
3385 	compat_uptr_t uptr32;
3386 	struct ifreq ifr;
3387 	void __user *saved;
3388 	int err;
3389 
3390 	if (get_user_ifreq(&ifr, NULL, uifr32))
3391 		return -EFAULT;
3392 
3393 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3394 		return -EFAULT;
3395 
3396 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3397 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3398 
3399 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3400 	if (!err) {
3401 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3402 		if (put_user_ifreq(&ifr, uifr32))
3403 			err = -EFAULT;
3404 	}
3405 	return err;
3406 }
3407 
3408 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3409 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3410 				 struct compat_ifreq __user *u_ifreq32)
3411 {
3412 	struct ifreq ifreq;
3413 	void __user *data;
3414 
3415 	if (!is_socket_ioctl_cmd(cmd))
3416 		return -ENOTTY;
3417 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3418 		return -EFAULT;
3419 	ifreq.ifr_data = data;
3420 
3421 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3422 }
3423 
3424 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3425 			 unsigned int cmd, unsigned long arg)
3426 {
3427 	void __user *argp = compat_ptr(arg);
3428 	struct sock *sk = sock->sk;
3429 	struct net *net = sock_net(sk);
3430 	const struct proto_ops *ops;
3431 
3432 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3433 		return sock_ioctl(file, cmd, (unsigned long)argp);
3434 
3435 	switch (cmd) {
3436 	case SIOCWANDEV:
3437 		return compat_siocwandev(net, argp);
3438 	case SIOCGSTAMP_OLD:
3439 	case SIOCGSTAMPNS_OLD:
3440 		ops = READ_ONCE(sock->ops);
3441 		if (!ops->gettstamp)
3442 			return -ENOIOCTLCMD;
3443 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3444 				      !COMPAT_USE_64BIT_TIME);
3445 
3446 	case SIOCETHTOOL:
3447 	case SIOCBONDSLAVEINFOQUERY:
3448 	case SIOCBONDINFOQUERY:
3449 	case SIOCSHWTSTAMP:
3450 	case SIOCGHWTSTAMP:
3451 		return compat_ifr_data_ioctl(net, cmd, argp);
3452 
3453 	case FIOSETOWN:
3454 	case SIOCSPGRP:
3455 	case FIOGETOWN:
3456 	case SIOCGPGRP:
3457 	case SIOCBRADDBR:
3458 	case SIOCBRDELBR:
3459 	case SIOCGIFVLAN:
3460 	case SIOCSIFVLAN:
3461 	case SIOCGSKNS:
3462 	case SIOCGSTAMP_NEW:
3463 	case SIOCGSTAMPNS_NEW:
3464 	case SIOCGIFCONF:
3465 	case SIOCSIFBR:
3466 	case SIOCGIFBR:
3467 		return sock_ioctl(file, cmd, arg);
3468 
3469 	case SIOCGIFFLAGS:
3470 	case SIOCSIFFLAGS:
3471 	case SIOCGIFMAP:
3472 	case SIOCSIFMAP:
3473 	case SIOCGIFMETRIC:
3474 	case SIOCSIFMETRIC:
3475 	case SIOCGIFMTU:
3476 	case SIOCSIFMTU:
3477 	case SIOCGIFMEM:
3478 	case SIOCSIFMEM:
3479 	case SIOCGIFHWADDR:
3480 	case SIOCSIFHWADDR:
3481 	case SIOCADDMULTI:
3482 	case SIOCDELMULTI:
3483 	case SIOCGIFINDEX:
3484 	case SIOCGIFADDR:
3485 	case SIOCSIFADDR:
3486 	case SIOCSIFHWBROADCAST:
3487 	case SIOCDIFADDR:
3488 	case SIOCGIFBRDADDR:
3489 	case SIOCSIFBRDADDR:
3490 	case SIOCGIFDSTADDR:
3491 	case SIOCSIFDSTADDR:
3492 	case SIOCGIFNETMASK:
3493 	case SIOCSIFNETMASK:
3494 	case SIOCSIFPFLAGS:
3495 	case SIOCGIFPFLAGS:
3496 	case SIOCGIFTXQLEN:
3497 	case SIOCSIFTXQLEN:
3498 	case SIOCBRADDIF:
3499 	case SIOCBRDELIF:
3500 	case SIOCGIFNAME:
3501 	case SIOCSIFNAME:
3502 	case SIOCGMIIPHY:
3503 	case SIOCGMIIREG:
3504 	case SIOCSMIIREG:
3505 	case SIOCBONDENSLAVE:
3506 	case SIOCBONDRELEASE:
3507 	case SIOCBONDSETHWADDR:
3508 	case SIOCBONDCHANGEACTIVE:
3509 	case SIOCSARP:
3510 	case SIOCGARP:
3511 	case SIOCDARP:
3512 	case SIOCOUTQ:
3513 	case SIOCOUTQNSD:
3514 	case SIOCATMARK:
3515 		return sock_do_ioctl(net, sock, cmd, arg);
3516 	}
3517 
3518 	return -ENOIOCTLCMD;
3519 }
3520 
3521 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3522 			      unsigned long arg)
3523 {
3524 	struct socket *sock = file->private_data;
3525 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3526 	int ret = -ENOIOCTLCMD;
3527 	struct sock *sk;
3528 	struct net *net;
3529 
3530 	sk = sock->sk;
3531 	net = sock_net(sk);
3532 
3533 	if (ops->compat_ioctl)
3534 		ret = ops->compat_ioctl(sock, cmd, arg);
3535 
3536 	if (ret == -ENOIOCTLCMD &&
3537 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3538 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3539 
3540 	if (ret == -ENOIOCTLCMD)
3541 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3542 
3543 	return ret;
3544 }
3545 #endif
3546 
3547 /**
3548  *	kernel_bind - bind an address to a socket (kernel space)
3549  *	@sock: socket
3550  *	@addr: address
3551  *	@addrlen: length of address
3552  *
3553  *	Returns 0 or an error.
3554  */
3555 
3556 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3557 {
3558 	struct sockaddr_storage address;
3559 
3560 	memcpy(&address, addr, addrlen);
3561 
3562 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3563 					  addrlen);
3564 }
3565 EXPORT_SYMBOL(kernel_bind);
3566 
3567 /**
3568  *	kernel_listen - move socket to listening state (kernel space)
3569  *	@sock: socket
3570  *	@backlog: pending connections queue size
3571  *
3572  *	Returns 0 or an error.
3573  */
3574 
3575 int kernel_listen(struct socket *sock, int backlog)
3576 {
3577 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3578 }
3579 EXPORT_SYMBOL(kernel_listen);
3580 
3581 /**
3582  *	kernel_accept - accept a connection (kernel space)
3583  *	@sock: listening socket
3584  *	@newsock: new connected socket
3585  *	@flags: flags
3586  *
3587  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3588  *	If it fails, @newsock is guaranteed to be %NULL.
3589  *	Returns 0 or an error.
3590  */
3591 
3592 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3593 {
3594 	struct sock *sk = sock->sk;
3595 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3596 	struct proto_accept_arg arg = {
3597 		.flags = flags,
3598 		.kern = true,
3599 	};
3600 	int err;
3601 
3602 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3603 			       newsock);
3604 	if (err < 0)
3605 		goto done;
3606 
3607 	err = ops->accept(sock, *newsock, &arg);
3608 	if (err < 0) {
3609 		sock_release(*newsock);
3610 		*newsock = NULL;
3611 		goto done;
3612 	}
3613 
3614 	(*newsock)->ops = ops;
3615 	__module_get(ops->owner);
3616 
3617 done:
3618 	return err;
3619 }
3620 EXPORT_SYMBOL(kernel_accept);
3621 
3622 /**
3623  *	kernel_connect - connect a socket (kernel space)
3624  *	@sock: socket
3625  *	@addr: address
3626  *	@addrlen: address length
3627  *	@flags: flags (O_NONBLOCK, ...)
3628  *
3629  *	For datagram sockets, @addr is the address to which datagrams are sent
3630  *	by default, and the only address from which datagrams are received.
3631  *	For stream sockets, attempts to connect to @addr.
3632  *	Returns 0 or an error code.
3633  */
3634 
3635 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3636 		   int flags)
3637 {
3638 	struct sockaddr_storage address;
3639 
3640 	memcpy(&address, addr, addrlen);
3641 
3642 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3643 					     addrlen, flags);
3644 }
3645 EXPORT_SYMBOL(kernel_connect);
3646 
3647 /**
3648  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3649  *	@sock: socket
3650  *	@addr: address holder
3651  *
3652  * 	Fills the @addr pointer with the address which the socket is bound.
3653  *	Returns the length of the address in bytes or an error code.
3654  */
3655 
3656 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3657 {
3658 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3659 }
3660 EXPORT_SYMBOL(kernel_getsockname);
3661 
3662 /**
3663  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3664  *	@sock: socket
3665  *	@addr: address holder
3666  *
3667  * 	Fills the @addr pointer with the address which the socket is connected.
3668  *	Returns the length of the address in bytes or an error code.
3669  */
3670 
3671 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3672 {
3673 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3674 }
3675 EXPORT_SYMBOL(kernel_getpeername);
3676 
3677 /**
3678  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3679  *	@sock: socket
3680  *	@how: connection part
3681  *
3682  *	Returns 0 or an error.
3683  */
3684 
3685 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3686 {
3687 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3688 }
3689 EXPORT_SYMBOL(kernel_sock_shutdown);
3690 
3691 /**
3692  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3693  *	@sk: socket
3694  *
3695  *	This routine returns the IP overhead imposed by a socket i.e.
3696  *	the length of the underlying IP header, depending on whether
3697  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3698  *	on at the socket. Assumes that the caller has a lock on the socket.
3699  */
3700 
3701 u32 kernel_sock_ip_overhead(struct sock *sk)
3702 {
3703 	struct inet_sock *inet;
3704 	struct ip_options_rcu *opt;
3705 	u32 overhead = 0;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 	struct ipv6_pinfo *np;
3708 	struct ipv6_txoptions *optv6 = NULL;
3709 #endif /* IS_ENABLED(CONFIG_IPV6) */
3710 
3711 	if (!sk)
3712 		return overhead;
3713 
3714 	switch (sk->sk_family) {
3715 	case AF_INET:
3716 		inet = inet_sk(sk);
3717 		overhead += sizeof(struct iphdr);
3718 		opt = rcu_dereference_protected(inet->inet_opt,
3719 						sock_owned_by_user(sk));
3720 		if (opt)
3721 			overhead += opt->opt.optlen;
3722 		return overhead;
3723 #if IS_ENABLED(CONFIG_IPV6)
3724 	case AF_INET6:
3725 		np = inet6_sk(sk);
3726 		overhead += sizeof(struct ipv6hdr);
3727 		if (np)
3728 			optv6 = rcu_dereference_protected(np->opt,
3729 							  sock_owned_by_user(sk));
3730 		if (optv6)
3731 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3732 		return overhead;
3733 #endif /* IS_ENABLED(CONFIG_IPV6) */
3734 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3735 		return overhead;
3736 	}
3737 }
3738 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3739