1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 111 unsigned long nr_segs, loff_t pos); 112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 113 unsigned long nr_segs, loff_t pos); 114 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116 static int sock_close(struct inode *inode, struct file *file); 117 static unsigned int sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120 #ifdef CONFIG_COMPAT 121 static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123 #endif 124 static int sock_fasync(int fd, struct file *filp, int on); 125 static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131 /* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136 static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .aio_read = sock_aio_read, 140 .aio_write = sock_aio_write, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143 #ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145 #endif 146 .mmap = sock_mmap, 147 .open = sock_no_open, /* special open code to disallow open via /proc */ 148 .release = sock_close, 149 .fasync = sock_fasync, 150 .sendpage = sock_sendpage, 151 .splice_write = generic_splice_sendpage, 152 .splice_read = sock_splice_read, 153 }; 154 155 /* 156 * The protocol list. Each protocol is registered in here. 157 */ 158 159 static DEFINE_SPINLOCK(net_family_lock); 160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 161 162 /* 163 * Statistics counters of the socket lists 164 */ 165 166 static DEFINE_PER_CPU(int, sockets_in_use); 167 168 /* 169 * Support routines. 170 * Move socket addresses back and forth across the kernel/user 171 * divide and look after the messy bits. 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 214 void __user *uaddr, int __user *ulen) 215 { 216 int err; 217 int len; 218 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0 || len > sizeof(struct sockaddr_storage)) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 static struct kmem_cache *sock_inode_cachep __read_mostly; 240 241 static struct inode *sock_alloc_inode(struct super_block *sb) 242 { 243 struct socket_alloc *ei; 244 struct socket_wq *wq; 245 246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 247 if (!ei) 248 return NULL; 249 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 250 if (!wq) { 251 kmem_cache_free(sock_inode_cachep, ei); 252 return NULL; 253 } 254 init_waitqueue_head(&wq->wait); 255 wq->fasync_list = NULL; 256 RCU_INIT_POINTER(ei->socket.wq, wq); 257 258 ei->socket.state = SS_UNCONNECTED; 259 ei->socket.flags = 0; 260 ei->socket.ops = NULL; 261 ei->socket.sk = NULL; 262 ei->socket.file = NULL; 263 264 return &ei->vfs_inode; 265 } 266 267 static void sock_destroy_inode(struct inode *inode) 268 { 269 struct socket_alloc *ei; 270 struct socket_wq *wq; 271 272 ei = container_of(inode, struct socket_alloc, vfs_inode); 273 wq = rcu_dereference_protected(ei->socket.wq, 1); 274 kfree_rcu(wq, rcu); 275 kmem_cache_free(sock_inode_cachep, ei); 276 } 277 278 static void init_once(void *foo) 279 { 280 struct socket_alloc *ei = (struct socket_alloc *)foo; 281 282 inode_init_once(&ei->vfs_inode); 283 } 284 285 static int init_inodecache(void) 286 { 287 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 288 sizeof(struct socket_alloc), 289 0, 290 (SLAB_HWCACHE_ALIGN | 291 SLAB_RECLAIM_ACCOUNT | 292 SLAB_MEM_SPREAD), 293 init_once); 294 if (sock_inode_cachep == NULL) 295 return -ENOMEM; 296 return 0; 297 } 298 299 static const struct super_operations sockfs_ops = { 300 .alloc_inode = sock_alloc_inode, 301 .destroy_inode = sock_destroy_inode, 302 .statfs = simple_statfs, 303 }; 304 305 /* 306 * sockfs_dname() is called from d_path(). 307 */ 308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 309 { 310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 311 dentry->d_inode->i_ino); 312 } 313 314 static const struct dentry_operations sockfs_dentry_operations = { 315 .d_dname = sockfs_dname, 316 }; 317 318 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 319 int flags, const char *dev_name, void *data) 320 { 321 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 322 &sockfs_dentry_operations, SOCKFS_MAGIC); 323 } 324 325 static struct vfsmount *sock_mnt __read_mostly; 326 327 static struct file_system_type sock_fs_type = { 328 .name = "sockfs", 329 .mount = sockfs_mount, 330 .kill_sb = kill_anon_super, 331 }; 332 333 /* 334 * Obtains the first available file descriptor and sets it up for use. 335 * 336 * These functions create file structures and maps them to fd space 337 * of the current process. On success it returns file descriptor 338 * and file struct implicitly stored in sock->file. 339 * Note that another thread may close file descriptor before we return 340 * from this function. We use the fact that now we do not refer 341 * to socket after mapping. If one day we will need it, this 342 * function will increment ref. count on file by 1. 343 * 344 * In any case returned fd MAY BE not valid! 345 * This race condition is unavoidable 346 * with shared fd spaces, we cannot solve it inside kernel, 347 * but we take care of internal coherence yet. 348 */ 349 350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 351 { 352 struct qstr name = { .name = "" }; 353 struct path path; 354 struct file *file; 355 356 if (dname) { 357 name.name = dname; 358 name.len = strlen(name.name); 359 } else if (sock->sk) { 360 name.name = sock->sk->sk_prot_creator->name; 361 name.len = strlen(name.name); 362 } 363 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 364 if (unlikely(!path.dentry)) 365 return ERR_PTR(-ENOMEM); 366 path.mnt = mntget(sock_mnt); 367 368 d_instantiate(path.dentry, SOCK_INODE(sock)); 369 SOCK_INODE(sock)->i_fop = &socket_file_ops; 370 371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 372 &socket_file_ops); 373 if (unlikely(!file)) { 374 /* drop dentry, keep inode */ 375 ihold(path.dentry->d_inode); 376 path_put(&path); 377 return ERR_PTR(-ENFILE); 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 return file; 385 } 386 EXPORT_SYMBOL(sock_alloc_file); 387 388 static int sock_map_fd(struct socket *sock, int flags) 389 { 390 struct file *newfile; 391 int fd = get_unused_fd_flags(flags); 392 if (unlikely(fd < 0)) 393 return fd; 394 395 newfile = sock_alloc_file(sock, flags, NULL); 396 if (likely(!IS_ERR(newfile))) { 397 fd_install(fd, newfile); 398 return fd; 399 } 400 401 put_unused_fd(fd); 402 return PTR_ERR(newfile); 403 } 404 405 struct socket *sock_from_file(struct file *file, int *err) 406 { 407 if (file->f_op == &socket_file_ops) 408 return file->private_data; /* set in sock_map_fd */ 409 410 *err = -ENOTSOCK; 411 return NULL; 412 } 413 EXPORT_SYMBOL(sock_from_file); 414 415 /** 416 * sockfd_lookup - Go from a file number to its socket slot 417 * @fd: file handle 418 * @err: pointer to an error code return 419 * 420 * The file handle passed in is locked and the socket it is bound 421 * too is returned. If an error occurs the err pointer is overwritten 422 * with a negative errno code and NULL is returned. The function checks 423 * for both invalid handles and passing a handle which is not a socket. 424 * 425 * On a success the socket object pointer is returned. 426 */ 427 428 struct socket *sockfd_lookup(int fd, int *err) 429 { 430 struct file *file; 431 struct socket *sock; 432 433 file = fget(fd); 434 if (!file) { 435 *err = -EBADF; 436 return NULL; 437 } 438 439 sock = sock_from_file(file, err); 440 if (!sock) 441 fput(file); 442 return sock; 443 } 444 EXPORT_SYMBOL(sockfd_lookup); 445 446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 447 { 448 struct file *file; 449 struct socket *sock; 450 451 *err = -EBADF; 452 file = fget_light(fd, fput_needed); 453 if (file) { 454 sock = sock_from_file(file, err); 455 if (sock) 456 return sock; 457 fput_light(file, *fput_needed); 458 } 459 return NULL; 460 } 461 462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 465 static ssize_t sockfs_getxattr(struct dentry *dentry, 466 const char *name, void *value, size_t size) 467 { 468 const char *proto_name; 469 size_t proto_size; 470 int error; 471 472 error = -ENODATA; 473 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 474 proto_name = dentry->d_name.name; 475 proto_size = strlen(proto_name); 476 477 if (value) { 478 error = -ERANGE; 479 if (proto_size + 1 > size) 480 goto out; 481 482 strncpy(value, proto_name, proto_size + 1); 483 } 484 error = proto_size + 1; 485 } 486 487 out: 488 return error; 489 } 490 491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 492 size_t size) 493 { 494 ssize_t len; 495 ssize_t used = 0; 496 497 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 498 if (len < 0) 499 return len; 500 used += len; 501 if (buffer) { 502 if (size < used) 503 return -ERANGE; 504 buffer += len; 505 } 506 507 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 513 buffer += len; 514 } 515 516 return used; 517 } 518 519 static const struct inode_operations sockfs_inode_ops = { 520 .getxattr = sockfs_getxattr, 521 .listxattr = sockfs_listxattr, 522 }; 523 524 /** 525 * sock_alloc - allocate a socket 526 * 527 * Allocate a new inode and socket object. The two are bound together 528 * and initialised. The socket is then returned. If we are out of inodes 529 * NULL is returned. 530 */ 531 532 static struct socket *sock_alloc(void) 533 { 534 struct inode *inode; 535 struct socket *sock; 536 537 inode = new_inode_pseudo(sock_mnt->mnt_sb); 538 if (!inode) 539 return NULL; 540 541 sock = SOCKET_I(inode); 542 543 kmemcheck_annotate_bitfield(sock, type); 544 inode->i_ino = get_next_ino(); 545 inode->i_mode = S_IFSOCK | S_IRWXUGO; 546 inode->i_uid = current_fsuid(); 547 inode->i_gid = current_fsgid(); 548 inode->i_op = &sockfs_inode_ops; 549 550 this_cpu_add(sockets_in_use, 1); 551 return sock; 552 } 553 554 /* 555 * In theory you can't get an open on this inode, but /proc provides 556 * a back door. Remember to keep it shut otherwise you'll let the 557 * creepy crawlies in. 558 */ 559 560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 561 { 562 return -ENXIO; 563 } 564 565 const struct file_operations bad_sock_fops = { 566 .owner = THIS_MODULE, 567 .open = sock_no_open, 568 .llseek = noop_llseek, 569 }; 570 571 /** 572 * sock_release - close a socket 573 * @sock: socket to close 574 * 575 * The socket is released from the protocol stack if it has a release 576 * callback, and the inode is then released if the socket is bound to 577 * an inode not a file. 578 */ 579 580 void sock_release(struct socket *sock) 581 { 582 if (sock->ops) { 583 struct module *owner = sock->ops->owner; 584 585 sock->ops->release(sock); 586 sock->ops = NULL; 587 module_put(owner); 588 } 589 590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 591 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 592 593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 594 return; 595 596 this_cpu_sub(sockets_in_use, 1); 597 if (!sock->file) { 598 iput(SOCK_INODE(sock)); 599 return; 600 } 601 sock->file = NULL; 602 } 603 EXPORT_SYMBOL(sock_release); 604 605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 606 { 607 *tx_flags = 0; 608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 609 *tx_flags |= SKBTX_HW_TSTAMP; 610 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 611 *tx_flags |= SKBTX_SW_TSTAMP; 612 if (sock_flag(sk, SOCK_WIFI_STATUS)) 613 *tx_flags |= SKBTX_WIFI_STATUS; 614 return 0; 615 } 616 EXPORT_SYMBOL(sock_tx_timestamp); 617 618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 619 struct msghdr *msg, size_t size) 620 { 621 struct sock_iocb *si = kiocb_to_siocb(iocb); 622 623 si->sock = sock; 624 si->scm = NULL; 625 si->msg = msg; 626 si->size = size; 627 628 return sock->ops->sendmsg(iocb, sock, msg, size); 629 } 630 631 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 632 struct msghdr *msg, size_t size) 633 { 634 int err = security_socket_sendmsg(sock, msg, size); 635 636 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 637 } 638 639 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 640 { 641 struct kiocb iocb; 642 struct sock_iocb siocb; 643 int ret; 644 645 init_sync_kiocb(&iocb, NULL); 646 iocb.private = &siocb; 647 ret = __sock_sendmsg(&iocb, sock, msg, size); 648 if (-EIOCBQUEUED == ret) 649 ret = wait_on_sync_kiocb(&iocb); 650 return ret; 651 } 652 EXPORT_SYMBOL(sock_sendmsg); 653 654 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 655 { 656 struct kiocb iocb; 657 struct sock_iocb siocb; 658 int ret; 659 660 init_sync_kiocb(&iocb, NULL); 661 iocb.private = &siocb; 662 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 663 if (-EIOCBQUEUED == ret) 664 ret = wait_on_sync_kiocb(&iocb); 665 return ret; 666 } 667 668 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 669 struct kvec *vec, size_t num, size_t size) 670 { 671 mm_segment_t oldfs = get_fs(); 672 int result; 673 674 set_fs(KERNEL_DS); 675 /* 676 * the following is safe, since for compiler definitions of kvec and 677 * iovec are identical, yielding the same in-core layout and alignment 678 */ 679 msg->msg_iov = (struct iovec *)vec; 680 msg->msg_iovlen = num; 681 result = sock_sendmsg(sock, msg, size); 682 set_fs(oldfs); 683 return result; 684 } 685 EXPORT_SYMBOL(kernel_sendmsg); 686 687 static int ktime2ts(ktime_t kt, struct timespec *ts) 688 { 689 if (kt.tv64) { 690 *ts = ktime_to_timespec(kt); 691 return 1; 692 } else { 693 return 0; 694 } 695 } 696 697 /* 698 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 699 */ 700 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 701 struct sk_buff *skb) 702 { 703 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 704 struct timespec ts[3]; 705 int empty = 1; 706 struct skb_shared_hwtstamps *shhwtstamps = 707 skb_hwtstamps(skb); 708 709 /* Race occurred between timestamp enabling and packet 710 receiving. Fill in the current time for now. */ 711 if (need_software_tstamp && skb->tstamp.tv64 == 0) 712 __net_timestamp(skb); 713 714 if (need_software_tstamp) { 715 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 716 struct timeval tv; 717 skb_get_timestamp(skb, &tv); 718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 719 sizeof(tv), &tv); 720 } else { 721 skb_get_timestampns(skb, &ts[0]); 722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 723 sizeof(ts[0]), &ts[0]); 724 } 725 } 726 727 728 memset(ts, 0, sizeof(ts)); 729 if (skb->tstamp.tv64 && 730 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 731 skb_get_timestampns(skb, ts + 0); 732 empty = 0; 733 } 734 if (shhwtstamps) { 735 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 736 ktime2ts(shhwtstamps->syststamp, ts + 1)) 737 empty = 0; 738 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 739 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 740 empty = 0; 741 } 742 if (!empty) 743 put_cmsg(msg, SOL_SOCKET, 744 SCM_TIMESTAMPING, sizeof(ts), &ts); 745 } 746 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 747 748 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 749 struct sk_buff *skb) 750 { 751 int ack; 752 753 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 754 return; 755 if (!skb->wifi_acked_valid) 756 return; 757 758 ack = skb->wifi_acked; 759 760 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 761 } 762 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 763 764 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 765 struct sk_buff *skb) 766 { 767 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 768 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 769 sizeof(__u32), &skb->dropcount); 770 } 771 772 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 773 struct sk_buff *skb) 774 { 775 sock_recv_timestamp(msg, sk, skb); 776 sock_recv_drops(msg, sk, skb); 777 } 778 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 779 780 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 781 struct msghdr *msg, size_t size, int flags) 782 { 783 struct sock_iocb *si = kiocb_to_siocb(iocb); 784 785 si->sock = sock; 786 si->scm = NULL; 787 si->msg = msg; 788 si->size = size; 789 si->flags = flags; 790 791 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 792 } 793 794 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 795 struct msghdr *msg, size_t size, int flags) 796 { 797 int err = security_socket_recvmsg(sock, msg, size, flags); 798 799 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 800 } 801 802 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 803 size_t size, int flags) 804 { 805 struct kiocb iocb; 806 struct sock_iocb siocb; 807 int ret; 808 809 init_sync_kiocb(&iocb, NULL); 810 iocb.private = &siocb; 811 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 812 if (-EIOCBQUEUED == ret) 813 ret = wait_on_sync_kiocb(&iocb); 814 return ret; 815 } 816 EXPORT_SYMBOL(sock_recvmsg); 817 818 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 819 size_t size, int flags) 820 { 821 struct kiocb iocb; 822 struct sock_iocb siocb; 823 int ret; 824 825 init_sync_kiocb(&iocb, NULL); 826 iocb.private = &siocb; 827 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 828 if (-EIOCBQUEUED == ret) 829 ret = wait_on_sync_kiocb(&iocb); 830 return ret; 831 } 832 833 /** 834 * kernel_recvmsg - Receive a message from a socket (kernel space) 835 * @sock: The socket to receive the message from 836 * @msg: Received message 837 * @vec: Input s/g array for message data 838 * @num: Size of input s/g array 839 * @size: Number of bytes to read 840 * @flags: Message flags (MSG_DONTWAIT, etc...) 841 * 842 * On return the msg structure contains the scatter/gather array passed in the 843 * vec argument. The array is modified so that it consists of the unfilled 844 * portion of the original array. 845 * 846 * The returned value is the total number of bytes received, or an error. 847 */ 848 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 849 struct kvec *vec, size_t num, size_t size, int flags) 850 { 851 mm_segment_t oldfs = get_fs(); 852 int result; 853 854 set_fs(KERNEL_DS); 855 /* 856 * the following is safe, since for compiler definitions of kvec and 857 * iovec are identical, yielding the same in-core layout and alignment 858 */ 859 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 860 result = sock_recvmsg(sock, msg, size, flags); 861 set_fs(oldfs); 862 return result; 863 } 864 EXPORT_SYMBOL(kernel_recvmsg); 865 866 static void sock_aio_dtor(struct kiocb *iocb) 867 { 868 kfree(iocb->private); 869 } 870 871 static ssize_t sock_sendpage(struct file *file, struct page *page, 872 int offset, size_t size, loff_t *ppos, int more) 873 { 874 struct socket *sock; 875 int flags; 876 877 sock = file->private_data; 878 879 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 880 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 881 flags |= more; 882 883 return kernel_sendpage(sock, page, offset, size, flags); 884 } 885 886 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 887 struct pipe_inode_info *pipe, size_t len, 888 unsigned int flags) 889 { 890 struct socket *sock = file->private_data; 891 892 if (unlikely(!sock->ops->splice_read)) 893 return -EINVAL; 894 895 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 896 } 897 898 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 899 struct sock_iocb *siocb) 900 { 901 if (!is_sync_kiocb(iocb)) { 902 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 903 if (!siocb) 904 return NULL; 905 iocb->ki_dtor = sock_aio_dtor; 906 } 907 908 siocb->kiocb = iocb; 909 iocb->private = siocb; 910 return siocb; 911 } 912 913 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 914 struct file *file, const struct iovec *iov, 915 unsigned long nr_segs) 916 { 917 struct socket *sock = file->private_data; 918 size_t size = 0; 919 int i; 920 921 for (i = 0; i < nr_segs; i++) 922 size += iov[i].iov_len; 923 924 msg->msg_name = NULL; 925 msg->msg_namelen = 0; 926 msg->msg_control = NULL; 927 msg->msg_controllen = 0; 928 msg->msg_iov = (struct iovec *)iov; 929 msg->msg_iovlen = nr_segs; 930 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 931 932 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 933 } 934 935 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 936 unsigned long nr_segs, loff_t pos) 937 { 938 struct sock_iocb siocb, *x; 939 940 if (pos != 0) 941 return -ESPIPE; 942 943 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 944 return 0; 945 946 947 x = alloc_sock_iocb(iocb, &siocb); 948 if (!x) 949 return -ENOMEM; 950 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 951 } 952 953 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 954 struct file *file, const struct iovec *iov, 955 unsigned long nr_segs) 956 { 957 struct socket *sock = file->private_data; 958 size_t size = 0; 959 int i; 960 961 for (i = 0; i < nr_segs; i++) 962 size += iov[i].iov_len; 963 964 msg->msg_name = NULL; 965 msg->msg_namelen = 0; 966 msg->msg_control = NULL; 967 msg->msg_controllen = 0; 968 msg->msg_iov = (struct iovec *)iov; 969 msg->msg_iovlen = nr_segs; 970 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 971 if (sock->type == SOCK_SEQPACKET) 972 msg->msg_flags |= MSG_EOR; 973 974 return __sock_sendmsg(iocb, sock, msg, size); 975 } 976 977 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 978 unsigned long nr_segs, loff_t pos) 979 { 980 struct sock_iocb siocb, *x; 981 982 if (pos != 0) 983 return -ESPIPE; 984 985 x = alloc_sock_iocb(iocb, &siocb); 986 if (!x) 987 return -ENOMEM; 988 989 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 990 } 991 992 /* 993 * Atomic setting of ioctl hooks to avoid race 994 * with module unload. 995 */ 996 997 static DEFINE_MUTEX(br_ioctl_mutex); 998 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 999 1000 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1001 { 1002 mutex_lock(&br_ioctl_mutex); 1003 br_ioctl_hook = hook; 1004 mutex_unlock(&br_ioctl_mutex); 1005 } 1006 EXPORT_SYMBOL(brioctl_set); 1007 1008 static DEFINE_MUTEX(vlan_ioctl_mutex); 1009 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1010 1011 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1012 { 1013 mutex_lock(&vlan_ioctl_mutex); 1014 vlan_ioctl_hook = hook; 1015 mutex_unlock(&vlan_ioctl_mutex); 1016 } 1017 EXPORT_SYMBOL(vlan_ioctl_set); 1018 1019 static DEFINE_MUTEX(dlci_ioctl_mutex); 1020 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1021 1022 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1023 { 1024 mutex_lock(&dlci_ioctl_mutex); 1025 dlci_ioctl_hook = hook; 1026 mutex_unlock(&dlci_ioctl_mutex); 1027 } 1028 EXPORT_SYMBOL(dlci_ioctl_set); 1029 1030 static long sock_do_ioctl(struct net *net, struct socket *sock, 1031 unsigned int cmd, unsigned long arg) 1032 { 1033 int err; 1034 void __user *argp = (void __user *)arg; 1035 1036 err = sock->ops->ioctl(sock, cmd, arg); 1037 1038 /* 1039 * If this ioctl is unknown try to hand it down 1040 * to the NIC driver. 1041 */ 1042 if (err == -ENOIOCTLCMD) 1043 err = dev_ioctl(net, cmd, argp); 1044 1045 return err; 1046 } 1047 1048 /* 1049 * With an ioctl, arg may well be a user mode pointer, but we don't know 1050 * what to do with it - that's up to the protocol still. 1051 */ 1052 1053 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1054 { 1055 struct socket *sock; 1056 struct sock *sk; 1057 void __user *argp = (void __user *)arg; 1058 int pid, err; 1059 struct net *net; 1060 1061 sock = file->private_data; 1062 sk = sock->sk; 1063 net = sock_net(sk); 1064 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1065 err = dev_ioctl(net, cmd, argp); 1066 } else 1067 #ifdef CONFIG_WEXT_CORE 1068 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1069 err = dev_ioctl(net, cmd, argp); 1070 } else 1071 #endif 1072 switch (cmd) { 1073 case FIOSETOWN: 1074 case SIOCSPGRP: 1075 err = -EFAULT; 1076 if (get_user(pid, (int __user *)argp)) 1077 break; 1078 err = f_setown(sock->file, pid, 1); 1079 break; 1080 case FIOGETOWN: 1081 case SIOCGPGRP: 1082 err = put_user(f_getown(sock->file), 1083 (int __user *)argp); 1084 break; 1085 case SIOCGIFBR: 1086 case SIOCSIFBR: 1087 case SIOCBRADDBR: 1088 case SIOCBRDELBR: 1089 err = -ENOPKG; 1090 if (!br_ioctl_hook) 1091 request_module("bridge"); 1092 1093 mutex_lock(&br_ioctl_mutex); 1094 if (br_ioctl_hook) 1095 err = br_ioctl_hook(net, cmd, argp); 1096 mutex_unlock(&br_ioctl_mutex); 1097 break; 1098 case SIOCGIFVLAN: 1099 case SIOCSIFVLAN: 1100 err = -ENOPKG; 1101 if (!vlan_ioctl_hook) 1102 request_module("8021q"); 1103 1104 mutex_lock(&vlan_ioctl_mutex); 1105 if (vlan_ioctl_hook) 1106 err = vlan_ioctl_hook(net, argp); 1107 mutex_unlock(&vlan_ioctl_mutex); 1108 break; 1109 case SIOCADDDLCI: 1110 case SIOCDELDLCI: 1111 err = -ENOPKG; 1112 if (!dlci_ioctl_hook) 1113 request_module("dlci"); 1114 1115 mutex_lock(&dlci_ioctl_mutex); 1116 if (dlci_ioctl_hook) 1117 err = dlci_ioctl_hook(cmd, argp); 1118 mutex_unlock(&dlci_ioctl_mutex); 1119 break; 1120 default: 1121 err = sock_do_ioctl(net, sock, cmd, arg); 1122 break; 1123 } 1124 return err; 1125 } 1126 1127 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1128 { 1129 int err; 1130 struct socket *sock = NULL; 1131 1132 err = security_socket_create(family, type, protocol, 1); 1133 if (err) 1134 goto out; 1135 1136 sock = sock_alloc(); 1137 if (!sock) { 1138 err = -ENOMEM; 1139 goto out; 1140 } 1141 1142 sock->type = type; 1143 err = security_socket_post_create(sock, family, type, protocol, 1); 1144 if (err) 1145 goto out_release; 1146 1147 out: 1148 *res = sock; 1149 return err; 1150 out_release: 1151 sock_release(sock); 1152 sock = NULL; 1153 goto out; 1154 } 1155 EXPORT_SYMBOL(sock_create_lite); 1156 1157 /* No kernel lock held - perfect */ 1158 static unsigned int sock_poll(struct file *file, poll_table *wait) 1159 { 1160 struct socket *sock; 1161 1162 /* 1163 * We can't return errors to poll, so it's either yes or no. 1164 */ 1165 sock = file->private_data; 1166 return sock->ops->poll(file, sock, wait); 1167 } 1168 1169 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1170 { 1171 struct socket *sock = file->private_data; 1172 1173 return sock->ops->mmap(file, sock, vma); 1174 } 1175 1176 static int sock_close(struct inode *inode, struct file *filp) 1177 { 1178 /* 1179 * It was possible the inode is NULL we were 1180 * closing an unfinished socket. 1181 */ 1182 1183 if (!inode) { 1184 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1185 return 0; 1186 } 1187 sock_release(SOCKET_I(inode)); 1188 return 0; 1189 } 1190 1191 /* 1192 * Update the socket async list 1193 * 1194 * Fasync_list locking strategy. 1195 * 1196 * 1. fasync_list is modified only under process context socket lock 1197 * i.e. under semaphore. 1198 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1199 * or under socket lock 1200 */ 1201 1202 static int sock_fasync(int fd, struct file *filp, int on) 1203 { 1204 struct socket *sock = filp->private_data; 1205 struct sock *sk = sock->sk; 1206 struct socket_wq *wq; 1207 1208 if (sk == NULL) 1209 return -EINVAL; 1210 1211 lock_sock(sk); 1212 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1213 fasync_helper(fd, filp, on, &wq->fasync_list); 1214 1215 if (!wq->fasync_list) 1216 sock_reset_flag(sk, SOCK_FASYNC); 1217 else 1218 sock_set_flag(sk, SOCK_FASYNC); 1219 1220 release_sock(sk); 1221 return 0; 1222 } 1223 1224 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1225 1226 int sock_wake_async(struct socket *sock, int how, int band) 1227 { 1228 struct socket_wq *wq; 1229 1230 if (!sock) 1231 return -1; 1232 rcu_read_lock(); 1233 wq = rcu_dereference(sock->wq); 1234 if (!wq || !wq->fasync_list) { 1235 rcu_read_unlock(); 1236 return -1; 1237 } 1238 switch (how) { 1239 case SOCK_WAKE_WAITD: 1240 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1241 break; 1242 goto call_kill; 1243 case SOCK_WAKE_SPACE: 1244 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1245 break; 1246 /* fall through */ 1247 case SOCK_WAKE_IO: 1248 call_kill: 1249 kill_fasync(&wq->fasync_list, SIGIO, band); 1250 break; 1251 case SOCK_WAKE_URG: 1252 kill_fasync(&wq->fasync_list, SIGURG, band); 1253 } 1254 rcu_read_unlock(); 1255 return 0; 1256 } 1257 EXPORT_SYMBOL(sock_wake_async); 1258 1259 int __sock_create(struct net *net, int family, int type, int protocol, 1260 struct socket **res, int kern) 1261 { 1262 int err; 1263 struct socket *sock; 1264 const struct net_proto_family *pf; 1265 1266 /* 1267 * Check protocol is in range 1268 */ 1269 if (family < 0 || family >= NPROTO) 1270 return -EAFNOSUPPORT; 1271 if (type < 0 || type >= SOCK_MAX) 1272 return -EINVAL; 1273 1274 /* Compatibility. 1275 1276 This uglymoron is moved from INET layer to here to avoid 1277 deadlock in module load. 1278 */ 1279 if (family == PF_INET && type == SOCK_PACKET) { 1280 static int warned; 1281 if (!warned) { 1282 warned = 1; 1283 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1284 current->comm); 1285 } 1286 family = PF_PACKET; 1287 } 1288 1289 err = security_socket_create(family, type, protocol, kern); 1290 if (err) 1291 return err; 1292 1293 /* 1294 * Allocate the socket and allow the family to set things up. if 1295 * the protocol is 0, the family is instructed to select an appropriate 1296 * default. 1297 */ 1298 sock = sock_alloc(); 1299 if (!sock) { 1300 net_warn_ratelimited("socket: no more sockets\n"); 1301 return -ENFILE; /* Not exactly a match, but its the 1302 closest posix thing */ 1303 } 1304 1305 sock->type = type; 1306 1307 #ifdef CONFIG_MODULES 1308 /* Attempt to load a protocol module if the find failed. 1309 * 1310 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1311 * requested real, full-featured networking support upon configuration. 1312 * Otherwise module support will break! 1313 */ 1314 if (rcu_access_pointer(net_families[family]) == NULL) 1315 request_module("net-pf-%d", family); 1316 #endif 1317 1318 rcu_read_lock(); 1319 pf = rcu_dereference(net_families[family]); 1320 err = -EAFNOSUPPORT; 1321 if (!pf) 1322 goto out_release; 1323 1324 /* 1325 * We will call the ->create function, that possibly is in a loadable 1326 * module, so we have to bump that loadable module refcnt first. 1327 */ 1328 if (!try_module_get(pf->owner)) 1329 goto out_release; 1330 1331 /* Now protected by module ref count */ 1332 rcu_read_unlock(); 1333 1334 err = pf->create(net, sock, protocol, kern); 1335 if (err < 0) 1336 goto out_module_put; 1337 1338 /* 1339 * Now to bump the refcnt of the [loadable] module that owns this 1340 * socket at sock_release time we decrement its refcnt. 1341 */ 1342 if (!try_module_get(sock->ops->owner)) 1343 goto out_module_busy; 1344 1345 /* 1346 * Now that we're done with the ->create function, the [loadable] 1347 * module can have its refcnt decremented 1348 */ 1349 module_put(pf->owner); 1350 err = security_socket_post_create(sock, family, type, protocol, kern); 1351 if (err) 1352 goto out_sock_release; 1353 *res = sock; 1354 1355 return 0; 1356 1357 out_module_busy: 1358 err = -EAFNOSUPPORT; 1359 out_module_put: 1360 sock->ops = NULL; 1361 module_put(pf->owner); 1362 out_sock_release: 1363 sock_release(sock); 1364 return err; 1365 1366 out_release: 1367 rcu_read_unlock(); 1368 goto out_sock_release; 1369 } 1370 EXPORT_SYMBOL(__sock_create); 1371 1372 int sock_create(int family, int type, int protocol, struct socket **res) 1373 { 1374 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1375 } 1376 EXPORT_SYMBOL(sock_create); 1377 1378 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1379 { 1380 return __sock_create(&init_net, family, type, protocol, res, 1); 1381 } 1382 EXPORT_SYMBOL(sock_create_kern); 1383 1384 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1385 { 1386 int retval; 1387 struct socket *sock; 1388 int flags; 1389 1390 /* Check the SOCK_* constants for consistency. */ 1391 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1392 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1393 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1394 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1395 1396 flags = type & ~SOCK_TYPE_MASK; 1397 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1398 return -EINVAL; 1399 type &= SOCK_TYPE_MASK; 1400 1401 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1402 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1403 1404 retval = sock_create(family, type, protocol, &sock); 1405 if (retval < 0) 1406 goto out; 1407 1408 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1409 if (retval < 0) 1410 goto out_release; 1411 1412 out: 1413 /* It may be already another descriptor 8) Not kernel problem. */ 1414 return retval; 1415 1416 out_release: 1417 sock_release(sock); 1418 return retval; 1419 } 1420 1421 /* 1422 * Create a pair of connected sockets. 1423 */ 1424 1425 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1426 int __user *, usockvec) 1427 { 1428 struct socket *sock1, *sock2; 1429 int fd1, fd2, err; 1430 struct file *newfile1, *newfile2; 1431 int flags; 1432 1433 flags = type & ~SOCK_TYPE_MASK; 1434 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1435 return -EINVAL; 1436 type &= SOCK_TYPE_MASK; 1437 1438 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1439 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1440 1441 /* 1442 * Obtain the first socket and check if the underlying protocol 1443 * supports the socketpair call. 1444 */ 1445 1446 err = sock_create(family, type, protocol, &sock1); 1447 if (err < 0) 1448 goto out; 1449 1450 err = sock_create(family, type, protocol, &sock2); 1451 if (err < 0) 1452 goto out_release_1; 1453 1454 err = sock1->ops->socketpair(sock1, sock2); 1455 if (err < 0) 1456 goto out_release_both; 1457 1458 fd1 = get_unused_fd_flags(flags); 1459 if (unlikely(fd1 < 0)) { 1460 err = fd1; 1461 goto out_release_both; 1462 } 1463 fd2 = get_unused_fd_flags(flags); 1464 if (unlikely(fd2 < 0)) { 1465 err = fd2; 1466 put_unused_fd(fd1); 1467 goto out_release_both; 1468 } 1469 1470 newfile1 = sock_alloc_file(sock1, flags, NULL); 1471 if (unlikely(IS_ERR(newfile1))) { 1472 err = PTR_ERR(newfile1); 1473 put_unused_fd(fd1); 1474 put_unused_fd(fd2); 1475 goto out_release_both; 1476 } 1477 1478 newfile2 = sock_alloc_file(sock2, flags, NULL); 1479 if (IS_ERR(newfile2)) { 1480 err = PTR_ERR(newfile2); 1481 fput(newfile1); 1482 put_unused_fd(fd1); 1483 put_unused_fd(fd2); 1484 sock_release(sock2); 1485 goto out; 1486 } 1487 1488 audit_fd_pair(fd1, fd2); 1489 fd_install(fd1, newfile1); 1490 fd_install(fd2, newfile2); 1491 /* fd1 and fd2 may be already another descriptors. 1492 * Not kernel problem. 1493 */ 1494 1495 err = put_user(fd1, &usockvec[0]); 1496 if (!err) 1497 err = put_user(fd2, &usockvec[1]); 1498 if (!err) 1499 return 0; 1500 1501 sys_close(fd2); 1502 sys_close(fd1); 1503 return err; 1504 1505 out_release_both: 1506 sock_release(sock2); 1507 out_release_1: 1508 sock_release(sock1); 1509 out: 1510 return err; 1511 } 1512 1513 /* 1514 * Bind a name to a socket. Nothing much to do here since it's 1515 * the protocol's responsibility to handle the local address. 1516 * 1517 * We move the socket address to kernel space before we call 1518 * the protocol layer (having also checked the address is ok). 1519 */ 1520 1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1522 { 1523 struct socket *sock; 1524 struct sockaddr_storage address; 1525 int err, fput_needed; 1526 1527 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1528 if (sock) { 1529 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1530 if (err >= 0) { 1531 err = security_socket_bind(sock, 1532 (struct sockaddr *)&address, 1533 addrlen); 1534 if (!err) 1535 err = sock->ops->bind(sock, 1536 (struct sockaddr *) 1537 &address, addrlen); 1538 } 1539 fput_light(sock->file, fput_needed); 1540 } 1541 return err; 1542 } 1543 1544 /* 1545 * Perform a listen. Basically, we allow the protocol to do anything 1546 * necessary for a listen, and if that works, we mark the socket as 1547 * ready for listening. 1548 */ 1549 1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1551 { 1552 struct socket *sock; 1553 int err, fput_needed; 1554 int somaxconn; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (sock) { 1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1559 if ((unsigned int)backlog > somaxconn) 1560 backlog = somaxconn; 1561 1562 err = security_socket_listen(sock, backlog); 1563 if (!err) 1564 err = sock->ops->listen(sock, backlog); 1565 1566 fput_light(sock->file, fput_needed); 1567 } 1568 return err; 1569 } 1570 1571 /* 1572 * For accept, we attempt to create a new socket, set up the link 1573 * with the client, wake up the client, then return the new 1574 * connected fd. We collect the address of the connector in kernel 1575 * space and move it to user at the very end. This is unclean because 1576 * we open the socket then return an error. 1577 * 1578 * 1003.1g adds the ability to recvmsg() to query connection pending 1579 * status to recvmsg. We need to add that support in a way thats 1580 * clean when we restucture accept also. 1581 */ 1582 1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1584 int __user *, upeer_addrlen, int, flags) 1585 { 1586 struct socket *sock, *newsock; 1587 struct file *newfile; 1588 int err, len, newfd, fput_needed; 1589 struct sockaddr_storage address; 1590 1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1592 return -EINVAL; 1593 1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1596 1597 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1598 if (!sock) 1599 goto out; 1600 1601 err = -ENFILE; 1602 newsock = sock_alloc(); 1603 if (!newsock) 1604 goto out_put; 1605 1606 newsock->type = sock->type; 1607 newsock->ops = sock->ops; 1608 1609 /* 1610 * We don't need try_module_get here, as the listening socket (sock) 1611 * has the protocol module (sock->ops->owner) held. 1612 */ 1613 __module_get(newsock->ops->owner); 1614 1615 newfd = get_unused_fd_flags(flags); 1616 if (unlikely(newfd < 0)) { 1617 err = newfd; 1618 sock_release(newsock); 1619 goto out_put; 1620 } 1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1622 if (unlikely(IS_ERR(newfile))) { 1623 err = PTR_ERR(newfile); 1624 put_unused_fd(newfd); 1625 sock_release(newsock); 1626 goto out_put; 1627 } 1628 1629 err = security_socket_accept(sock, newsock); 1630 if (err) 1631 goto out_fd; 1632 1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1634 if (err < 0) 1635 goto out_fd; 1636 1637 if (upeer_sockaddr) { 1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1639 &len, 2) < 0) { 1640 err = -ECONNABORTED; 1641 goto out_fd; 1642 } 1643 err = move_addr_to_user(&address, 1644 len, upeer_sockaddr, upeer_addrlen); 1645 if (err < 0) 1646 goto out_fd; 1647 } 1648 1649 /* File flags are not inherited via accept() unlike another OSes. */ 1650 1651 fd_install(newfd, newfile); 1652 err = newfd; 1653 1654 out_put: 1655 fput_light(sock->file, fput_needed); 1656 out: 1657 return err; 1658 out_fd: 1659 fput(newfile); 1660 put_unused_fd(newfd); 1661 goto out_put; 1662 } 1663 1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1665 int __user *, upeer_addrlen) 1666 { 1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1668 } 1669 1670 /* 1671 * Attempt to connect to a socket with the server address. The address 1672 * is in user space so we verify it is OK and move it to kernel space. 1673 * 1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1675 * break bindings 1676 * 1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1678 * other SEQPACKET protocols that take time to connect() as it doesn't 1679 * include the -EINPROGRESS status for such sockets. 1680 */ 1681 1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1683 int, addrlen) 1684 { 1685 struct socket *sock; 1686 struct sockaddr_storage address; 1687 int err, fput_needed; 1688 1689 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1690 if (!sock) 1691 goto out; 1692 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1693 if (err < 0) 1694 goto out_put; 1695 1696 err = 1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1698 if (err) 1699 goto out_put; 1700 1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1702 sock->file->f_flags); 1703 out_put: 1704 fput_light(sock->file, fput_needed); 1705 out: 1706 return err; 1707 } 1708 1709 /* 1710 * Get the local address ('name') of a socket object. Move the obtained 1711 * name to user space. 1712 */ 1713 1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1715 int __user *, usockaddr_len) 1716 { 1717 struct socket *sock; 1718 struct sockaddr_storage address; 1719 int len, err, fput_needed; 1720 1721 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1722 if (!sock) 1723 goto out; 1724 1725 err = security_socket_getsockname(sock); 1726 if (err) 1727 goto out_put; 1728 1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1730 if (err) 1731 goto out_put; 1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1733 1734 out_put: 1735 fput_light(sock->file, fput_needed); 1736 out: 1737 return err; 1738 } 1739 1740 /* 1741 * Get the remote address ('name') of a socket object. Move the obtained 1742 * name to user space. 1743 */ 1744 1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1746 int __user *, usockaddr_len) 1747 { 1748 struct socket *sock; 1749 struct sockaddr_storage address; 1750 int len, err, fput_needed; 1751 1752 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1753 if (sock != NULL) { 1754 err = security_socket_getpeername(sock); 1755 if (err) { 1756 fput_light(sock->file, fput_needed); 1757 return err; 1758 } 1759 1760 err = 1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1762 1); 1763 if (!err) 1764 err = move_addr_to_user(&address, len, usockaddr, 1765 usockaddr_len); 1766 fput_light(sock->file, fput_needed); 1767 } 1768 return err; 1769 } 1770 1771 /* 1772 * Send a datagram to a given address. We move the address into kernel 1773 * space and check the user space data area is readable before invoking 1774 * the protocol. 1775 */ 1776 1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1778 unsigned int, flags, struct sockaddr __user *, addr, 1779 int, addr_len) 1780 { 1781 struct socket *sock; 1782 struct sockaddr_storage address; 1783 int err; 1784 struct msghdr msg; 1785 struct iovec iov; 1786 int fput_needed; 1787 1788 if (len > INT_MAX) 1789 len = INT_MAX; 1790 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1791 if (!sock) 1792 goto out; 1793 1794 iov.iov_base = buff; 1795 iov.iov_len = len; 1796 msg.msg_name = NULL; 1797 msg.msg_iov = &iov; 1798 msg.msg_iovlen = 1; 1799 msg.msg_control = NULL; 1800 msg.msg_controllen = 0; 1801 msg.msg_namelen = 0; 1802 if (addr) { 1803 err = move_addr_to_kernel(addr, addr_len, &address); 1804 if (err < 0) 1805 goto out_put; 1806 msg.msg_name = (struct sockaddr *)&address; 1807 msg.msg_namelen = addr_len; 1808 } 1809 if (sock->file->f_flags & O_NONBLOCK) 1810 flags |= MSG_DONTWAIT; 1811 msg.msg_flags = flags; 1812 err = sock_sendmsg(sock, &msg, len); 1813 1814 out_put: 1815 fput_light(sock->file, fput_needed); 1816 out: 1817 return err; 1818 } 1819 1820 /* 1821 * Send a datagram down a socket. 1822 */ 1823 1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1825 unsigned int, flags) 1826 { 1827 return sys_sendto(fd, buff, len, flags, NULL, 0); 1828 } 1829 1830 /* 1831 * Receive a frame from the socket and optionally record the address of the 1832 * sender. We verify the buffers are writable and if needed move the 1833 * sender address from kernel to user space. 1834 */ 1835 1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1837 unsigned int, flags, struct sockaddr __user *, addr, 1838 int __user *, addr_len) 1839 { 1840 struct socket *sock; 1841 struct iovec iov; 1842 struct msghdr msg; 1843 struct sockaddr_storage address; 1844 int err, err2; 1845 int fput_needed; 1846 1847 if (size > INT_MAX) 1848 size = INT_MAX; 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (!sock) 1851 goto out; 1852 1853 msg.msg_control = NULL; 1854 msg.msg_controllen = 0; 1855 msg.msg_iovlen = 1; 1856 msg.msg_iov = &iov; 1857 iov.iov_len = size; 1858 iov.iov_base = ubuf; 1859 msg.msg_name = (struct sockaddr *)&address; 1860 msg.msg_namelen = sizeof(address); 1861 if (sock->file->f_flags & O_NONBLOCK) 1862 flags |= MSG_DONTWAIT; 1863 err = sock_recvmsg(sock, &msg, size, flags); 1864 1865 if (err >= 0 && addr != NULL) { 1866 err2 = move_addr_to_user(&address, 1867 msg.msg_namelen, addr, addr_len); 1868 if (err2 < 0) 1869 err = err2; 1870 } 1871 1872 fput_light(sock->file, fput_needed); 1873 out: 1874 return err; 1875 } 1876 1877 /* 1878 * Receive a datagram from a socket. 1879 */ 1880 1881 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1882 unsigned int flags) 1883 { 1884 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1885 } 1886 1887 /* 1888 * Set a socket option. Because we don't know the option lengths we have 1889 * to pass the user mode parameter for the protocols to sort out. 1890 */ 1891 1892 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1893 char __user *, optval, int, optlen) 1894 { 1895 int err, fput_needed; 1896 struct socket *sock; 1897 1898 if (optlen < 0) 1899 return -EINVAL; 1900 1901 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1902 if (sock != NULL) { 1903 err = security_socket_setsockopt(sock, level, optname); 1904 if (err) 1905 goto out_put; 1906 1907 if (level == SOL_SOCKET) 1908 err = 1909 sock_setsockopt(sock, level, optname, optval, 1910 optlen); 1911 else 1912 err = 1913 sock->ops->setsockopt(sock, level, optname, optval, 1914 optlen); 1915 out_put: 1916 fput_light(sock->file, fput_needed); 1917 } 1918 return err; 1919 } 1920 1921 /* 1922 * Get a socket option. Because we don't know the option lengths we have 1923 * to pass a user mode parameter for the protocols to sort out. 1924 */ 1925 1926 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1927 char __user *, optval, int __user *, optlen) 1928 { 1929 int err, fput_needed; 1930 struct socket *sock; 1931 1932 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1933 if (sock != NULL) { 1934 err = security_socket_getsockopt(sock, level, optname); 1935 if (err) 1936 goto out_put; 1937 1938 if (level == SOL_SOCKET) 1939 err = 1940 sock_getsockopt(sock, level, optname, optval, 1941 optlen); 1942 else 1943 err = 1944 sock->ops->getsockopt(sock, level, optname, optval, 1945 optlen); 1946 out_put: 1947 fput_light(sock->file, fput_needed); 1948 } 1949 return err; 1950 } 1951 1952 /* 1953 * Shutdown a socket. 1954 */ 1955 1956 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1957 { 1958 int err, fput_needed; 1959 struct socket *sock; 1960 1961 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1962 if (sock != NULL) { 1963 err = security_socket_shutdown(sock, how); 1964 if (!err) 1965 err = sock->ops->shutdown(sock, how); 1966 fput_light(sock->file, fput_needed); 1967 } 1968 return err; 1969 } 1970 1971 /* A couple of helpful macros for getting the address of the 32/64 bit 1972 * fields which are the same type (int / unsigned) on our platforms. 1973 */ 1974 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1975 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1976 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1977 1978 struct used_address { 1979 struct sockaddr_storage name; 1980 unsigned int name_len; 1981 }; 1982 1983 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1984 struct msghdr *msg_sys, unsigned int flags, 1985 struct used_address *used_address) 1986 { 1987 struct compat_msghdr __user *msg_compat = 1988 (struct compat_msghdr __user *)msg; 1989 struct sockaddr_storage address; 1990 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1991 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1992 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1993 /* 20 is size of ipv6_pktinfo */ 1994 unsigned char *ctl_buf = ctl; 1995 int err, ctl_len, total_len; 1996 1997 err = -EFAULT; 1998 if (MSG_CMSG_COMPAT & flags) { 1999 if (get_compat_msghdr(msg_sys, msg_compat)) 2000 return -EFAULT; 2001 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2002 return -EFAULT; 2003 2004 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2005 err = -EMSGSIZE; 2006 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2007 goto out; 2008 err = -ENOMEM; 2009 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2010 GFP_KERNEL); 2011 if (!iov) 2012 goto out; 2013 } 2014 2015 /* This will also move the address data into kernel space */ 2016 if (MSG_CMSG_COMPAT & flags) { 2017 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2018 } else 2019 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2020 if (err < 0) 2021 goto out_freeiov; 2022 total_len = err; 2023 2024 err = -ENOBUFS; 2025 2026 if (msg_sys->msg_controllen > INT_MAX) 2027 goto out_freeiov; 2028 ctl_len = msg_sys->msg_controllen; 2029 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2030 err = 2031 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2032 sizeof(ctl)); 2033 if (err) 2034 goto out_freeiov; 2035 ctl_buf = msg_sys->msg_control; 2036 ctl_len = msg_sys->msg_controllen; 2037 } else if (ctl_len) { 2038 if (ctl_len > sizeof(ctl)) { 2039 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2040 if (ctl_buf == NULL) 2041 goto out_freeiov; 2042 } 2043 err = -EFAULT; 2044 /* 2045 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2046 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2047 * checking falls down on this. 2048 */ 2049 if (copy_from_user(ctl_buf, 2050 (void __user __force *)msg_sys->msg_control, 2051 ctl_len)) 2052 goto out_freectl; 2053 msg_sys->msg_control = ctl_buf; 2054 } 2055 msg_sys->msg_flags = flags; 2056 2057 if (sock->file->f_flags & O_NONBLOCK) 2058 msg_sys->msg_flags |= MSG_DONTWAIT; 2059 /* 2060 * If this is sendmmsg() and current destination address is same as 2061 * previously succeeded address, omit asking LSM's decision. 2062 * used_address->name_len is initialized to UINT_MAX so that the first 2063 * destination address never matches. 2064 */ 2065 if (used_address && msg_sys->msg_name && 2066 used_address->name_len == msg_sys->msg_namelen && 2067 !memcmp(&used_address->name, msg_sys->msg_name, 2068 used_address->name_len)) { 2069 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2070 goto out_freectl; 2071 } 2072 err = sock_sendmsg(sock, msg_sys, total_len); 2073 /* 2074 * If this is sendmmsg() and sending to current destination address was 2075 * successful, remember it. 2076 */ 2077 if (used_address && err >= 0) { 2078 used_address->name_len = msg_sys->msg_namelen; 2079 if (msg_sys->msg_name) 2080 memcpy(&used_address->name, msg_sys->msg_name, 2081 used_address->name_len); 2082 } 2083 2084 out_freectl: 2085 if (ctl_buf != ctl) 2086 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2087 out_freeiov: 2088 if (iov != iovstack) 2089 kfree(iov); 2090 out: 2091 return err; 2092 } 2093 2094 /* 2095 * BSD sendmsg interface 2096 */ 2097 2098 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2099 { 2100 int fput_needed, err; 2101 struct msghdr msg_sys; 2102 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2103 2104 if (!sock) 2105 goto out; 2106 2107 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2108 2109 fput_light(sock->file, fput_needed); 2110 out: 2111 return err; 2112 } 2113 2114 /* 2115 * Linux sendmmsg interface 2116 */ 2117 2118 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2119 unsigned int flags) 2120 { 2121 int fput_needed, err, datagrams; 2122 struct socket *sock; 2123 struct mmsghdr __user *entry; 2124 struct compat_mmsghdr __user *compat_entry; 2125 struct msghdr msg_sys; 2126 struct used_address used_address; 2127 2128 if (vlen > UIO_MAXIOV) 2129 vlen = UIO_MAXIOV; 2130 2131 datagrams = 0; 2132 2133 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2134 if (!sock) 2135 return err; 2136 2137 used_address.name_len = UINT_MAX; 2138 entry = mmsg; 2139 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2140 err = 0; 2141 2142 while (datagrams < vlen) { 2143 if (MSG_CMSG_COMPAT & flags) { 2144 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2145 &msg_sys, flags, &used_address); 2146 if (err < 0) 2147 break; 2148 err = __put_user(err, &compat_entry->msg_len); 2149 ++compat_entry; 2150 } else { 2151 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2152 &msg_sys, flags, &used_address); 2153 if (err < 0) 2154 break; 2155 err = put_user(err, &entry->msg_len); 2156 ++entry; 2157 } 2158 2159 if (err) 2160 break; 2161 ++datagrams; 2162 } 2163 2164 fput_light(sock->file, fput_needed); 2165 2166 /* We only return an error if no datagrams were able to be sent */ 2167 if (datagrams != 0) 2168 return datagrams; 2169 2170 return err; 2171 } 2172 2173 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2174 unsigned int, vlen, unsigned int, flags) 2175 { 2176 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2177 } 2178 2179 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2180 struct msghdr *msg_sys, unsigned int flags, int nosec) 2181 { 2182 struct compat_msghdr __user *msg_compat = 2183 (struct compat_msghdr __user *)msg; 2184 struct iovec iovstack[UIO_FASTIOV]; 2185 struct iovec *iov = iovstack; 2186 unsigned long cmsg_ptr; 2187 int err, total_len, len; 2188 2189 /* kernel mode address */ 2190 struct sockaddr_storage addr; 2191 2192 /* user mode address pointers */ 2193 struct sockaddr __user *uaddr; 2194 int __user *uaddr_len; 2195 2196 if (MSG_CMSG_COMPAT & flags) { 2197 if (get_compat_msghdr(msg_sys, msg_compat)) 2198 return -EFAULT; 2199 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2200 return -EFAULT; 2201 2202 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2203 err = -EMSGSIZE; 2204 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2205 goto out; 2206 err = -ENOMEM; 2207 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2208 GFP_KERNEL); 2209 if (!iov) 2210 goto out; 2211 } 2212 2213 /* 2214 * Save the user-mode address (verify_iovec will change the 2215 * kernel msghdr to use the kernel address space) 2216 */ 2217 2218 uaddr = (__force void __user *)msg_sys->msg_name; 2219 uaddr_len = COMPAT_NAMELEN(msg); 2220 if (MSG_CMSG_COMPAT & flags) { 2221 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2222 } else 2223 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2224 if (err < 0) 2225 goto out_freeiov; 2226 total_len = err; 2227 2228 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2229 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2230 2231 if (sock->file->f_flags & O_NONBLOCK) 2232 flags |= MSG_DONTWAIT; 2233 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2234 total_len, flags); 2235 if (err < 0) 2236 goto out_freeiov; 2237 len = err; 2238 2239 if (uaddr != NULL) { 2240 err = move_addr_to_user(&addr, 2241 msg_sys->msg_namelen, uaddr, 2242 uaddr_len); 2243 if (err < 0) 2244 goto out_freeiov; 2245 } 2246 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2247 COMPAT_FLAGS(msg)); 2248 if (err) 2249 goto out_freeiov; 2250 if (MSG_CMSG_COMPAT & flags) 2251 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2252 &msg_compat->msg_controllen); 2253 else 2254 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2255 &msg->msg_controllen); 2256 if (err) 2257 goto out_freeiov; 2258 err = len; 2259 2260 out_freeiov: 2261 if (iov != iovstack) 2262 kfree(iov); 2263 out: 2264 return err; 2265 } 2266 2267 /* 2268 * BSD recvmsg interface 2269 */ 2270 2271 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2272 unsigned int, flags) 2273 { 2274 int fput_needed, err; 2275 struct msghdr msg_sys; 2276 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2277 2278 if (!sock) 2279 goto out; 2280 2281 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2282 2283 fput_light(sock->file, fput_needed); 2284 out: 2285 return err; 2286 } 2287 2288 /* 2289 * Linux recvmmsg interface 2290 */ 2291 2292 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2293 unsigned int flags, struct timespec *timeout) 2294 { 2295 int fput_needed, err, datagrams; 2296 struct socket *sock; 2297 struct mmsghdr __user *entry; 2298 struct compat_mmsghdr __user *compat_entry; 2299 struct msghdr msg_sys; 2300 struct timespec end_time; 2301 2302 if (timeout && 2303 poll_select_set_timeout(&end_time, timeout->tv_sec, 2304 timeout->tv_nsec)) 2305 return -EINVAL; 2306 2307 datagrams = 0; 2308 2309 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2310 if (!sock) 2311 return err; 2312 2313 err = sock_error(sock->sk); 2314 if (err) 2315 goto out_put; 2316 2317 entry = mmsg; 2318 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2319 2320 while (datagrams < vlen) { 2321 /* 2322 * No need to ask LSM for more than the first datagram. 2323 */ 2324 if (MSG_CMSG_COMPAT & flags) { 2325 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2326 &msg_sys, flags & ~MSG_WAITFORONE, 2327 datagrams); 2328 if (err < 0) 2329 break; 2330 err = __put_user(err, &compat_entry->msg_len); 2331 ++compat_entry; 2332 } else { 2333 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2334 &msg_sys, flags & ~MSG_WAITFORONE, 2335 datagrams); 2336 if (err < 0) 2337 break; 2338 err = put_user(err, &entry->msg_len); 2339 ++entry; 2340 } 2341 2342 if (err) 2343 break; 2344 ++datagrams; 2345 2346 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2347 if (flags & MSG_WAITFORONE) 2348 flags |= MSG_DONTWAIT; 2349 2350 if (timeout) { 2351 ktime_get_ts(timeout); 2352 *timeout = timespec_sub(end_time, *timeout); 2353 if (timeout->tv_sec < 0) { 2354 timeout->tv_sec = timeout->tv_nsec = 0; 2355 break; 2356 } 2357 2358 /* Timeout, return less than vlen datagrams */ 2359 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2360 break; 2361 } 2362 2363 /* Out of band data, return right away */ 2364 if (msg_sys.msg_flags & MSG_OOB) 2365 break; 2366 } 2367 2368 out_put: 2369 fput_light(sock->file, fput_needed); 2370 2371 if (err == 0) 2372 return datagrams; 2373 2374 if (datagrams != 0) { 2375 /* 2376 * We may return less entries than requested (vlen) if the 2377 * sock is non block and there aren't enough datagrams... 2378 */ 2379 if (err != -EAGAIN) { 2380 /* 2381 * ... or if recvmsg returns an error after we 2382 * received some datagrams, where we record the 2383 * error to return on the next call or if the 2384 * app asks about it using getsockopt(SO_ERROR). 2385 */ 2386 sock->sk->sk_err = -err; 2387 } 2388 2389 return datagrams; 2390 } 2391 2392 return err; 2393 } 2394 2395 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2396 unsigned int, vlen, unsigned int, flags, 2397 struct timespec __user *, timeout) 2398 { 2399 int datagrams; 2400 struct timespec timeout_sys; 2401 2402 if (!timeout) 2403 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2404 2405 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2406 return -EFAULT; 2407 2408 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2409 2410 if (datagrams > 0 && 2411 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2412 datagrams = -EFAULT; 2413 2414 return datagrams; 2415 } 2416 2417 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2418 /* Argument list sizes for sys_socketcall */ 2419 #define AL(x) ((x) * sizeof(unsigned long)) 2420 static const unsigned char nargs[21] = { 2421 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2422 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2423 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2424 AL(4), AL(5), AL(4) 2425 }; 2426 2427 #undef AL 2428 2429 /* 2430 * System call vectors. 2431 * 2432 * Argument checking cleaned up. Saved 20% in size. 2433 * This function doesn't need to set the kernel lock because 2434 * it is set by the callees. 2435 */ 2436 2437 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2438 { 2439 unsigned long a[6]; 2440 unsigned long a0, a1; 2441 int err; 2442 unsigned int len; 2443 2444 if (call < 1 || call > SYS_SENDMMSG) 2445 return -EINVAL; 2446 2447 len = nargs[call]; 2448 if (len > sizeof(a)) 2449 return -EINVAL; 2450 2451 /* copy_from_user should be SMP safe. */ 2452 if (copy_from_user(a, args, len)) 2453 return -EFAULT; 2454 2455 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2456 2457 a0 = a[0]; 2458 a1 = a[1]; 2459 2460 switch (call) { 2461 case SYS_SOCKET: 2462 err = sys_socket(a0, a1, a[2]); 2463 break; 2464 case SYS_BIND: 2465 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2466 break; 2467 case SYS_CONNECT: 2468 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2469 break; 2470 case SYS_LISTEN: 2471 err = sys_listen(a0, a1); 2472 break; 2473 case SYS_ACCEPT: 2474 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2475 (int __user *)a[2], 0); 2476 break; 2477 case SYS_GETSOCKNAME: 2478 err = 2479 sys_getsockname(a0, (struct sockaddr __user *)a1, 2480 (int __user *)a[2]); 2481 break; 2482 case SYS_GETPEERNAME: 2483 err = 2484 sys_getpeername(a0, (struct sockaddr __user *)a1, 2485 (int __user *)a[2]); 2486 break; 2487 case SYS_SOCKETPAIR: 2488 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2489 break; 2490 case SYS_SEND: 2491 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2492 break; 2493 case SYS_SENDTO: 2494 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2495 (struct sockaddr __user *)a[4], a[5]); 2496 break; 2497 case SYS_RECV: 2498 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2499 break; 2500 case SYS_RECVFROM: 2501 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2502 (struct sockaddr __user *)a[4], 2503 (int __user *)a[5]); 2504 break; 2505 case SYS_SHUTDOWN: 2506 err = sys_shutdown(a0, a1); 2507 break; 2508 case SYS_SETSOCKOPT: 2509 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2510 break; 2511 case SYS_GETSOCKOPT: 2512 err = 2513 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2514 (int __user *)a[4]); 2515 break; 2516 case SYS_SENDMSG: 2517 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2518 break; 2519 case SYS_SENDMMSG: 2520 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2521 break; 2522 case SYS_RECVMSG: 2523 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2524 break; 2525 case SYS_RECVMMSG: 2526 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2527 (struct timespec __user *)a[4]); 2528 break; 2529 case SYS_ACCEPT4: 2530 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2531 (int __user *)a[2], a[3]); 2532 break; 2533 default: 2534 err = -EINVAL; 2535 break; 2536 } 2537 return err; 2538 } 2539 2540 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2541 2542 /** 2543 * sock_register - add a socket protocol handler 2544 * @ops: description of protocol 2545 * 2546 * This function is called by a protocol handler that wants to 2547 * advertise its address family, and have it linked into the 2548 * socket interface. The value ops->family coresponds to the 2549 * socket system call protocol family. 2550 */ 2551 int sock_register(const struct net_proto_family *ops) 2552 { 2553 int err; 2554 2555 if (ops->family >= NPROTO) { 2556 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2557 NPROTO); 2558 return -ENOBUFS; 2559 } 2560 2561 spin_lock(&net_family_lock); 2562 if (rcu_dereference_protected(net_families[ops->family], 2563 lockdep_is_held(&net_family_lock))) 2564 err = -EEXIST; 2565 else { 2566 rcu_assign_pointer(net_families[ops->family], ops); 2567 err = 0; 2568 } 2569 spin_unlock(&net_family_lock); 2570 2571 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2572 return err; 2573 } 2574 EXPORT_SYMBOL(sock_register); 2575 2576 /** 2577 * sock_unregister - remove a protocol handler 2578 * @family: protocol family to remove 2579 * 2580 * This function is called by a protocol handler that wants to 2581 * remove its address family, and have it unlinked from the 2582 * new socket creation. 2583 * 2584 * If protocol handler is a module, then it can use module reference 2585 * counts to protect against new references. If protocol handler is not 2586 * a module then it needs to provide its own protection in 2587 * the ops->create routine. 2588 */ 2589 void sock_unregister(int family) 2590 { 2591 BUG_ON(family < 0 || family >= NPROTO); 2592 2593 spin_lock(&net_family_lock); 2594 RCU_INIT_POINTER(net_families[family], NULL); 2595 spin_unlock(&net_family_lock); 2596 2597 synchronize_rcu(); 2598 2599 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2600 } 2601 EXPORT_SYMBOL(sock_unregister); 2602 2603 static int __init sock_init(void) 2604 { 2605 int err; 2606 /* 2607 * Initialize the network sysctl infrastructure. 2608 */ 2609 err = net_sysctl_init(); 2610 if (err) 2611 goto out; 2612 2613 /* 2614 * Initialize skbuff SLAB cache 2615 */ 2616 skb_init(); 2617 2618 /* 2619 * Initialize the protocols module. 2620 */ 2621 2622 init_inodecache(); 2623 2624 err = register_filesystem(&sock_fs_type); 2625 if (err) 2626 goto out_fs; 2627 sock_mnt = kern_mount(&sock_fs_type); 2628 if (IS_ERR(sock_mnt)) { 2629 err = PTR_ERR(sock_mnt); 2630 goto out_mount; 2631 } 2632 2633 /* The real protocol initialization is performed in later initcalls. 2634 */ 2635 2636 #ifdef CONFIG_NETFILTER 2637 netfilter_init(); 2638 #endif 2639 2640 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2641 skb_timestamping_init(); 2642 #endif 2643 2644 out: 2645 return err; 2646 2647 out_mount: 2648 unregister_filesystem(&sock_fs_type); 2649 out_fs: 2650 goto out; 2651 } 2652 2653 core_initcall(sock_init); /* early initcall */ 2654 2655 #ifdef CONFIG_PROC_FS 2656 void socket_seq_show(struct seq_file *seq) 2657 { 2658 int cpu; 2659 int counter = 0; 2660 2661 for_each_possible_cpu(cpu) 2662 counter += per_cpu(sockets_in_use, cpu); 2663 2664 /* It can be negative, by the way. 8) */ 2665 if (counter < 0) 2666 counter = 0; 2667 2668 seq_printf(seq, "sockets: used %d\n", counter); 2669 } 2670 #endif /* CONFIG_PROC_FS */ 2671 2672 #ifdef CONFIG_COMPAT 2673 static int do_siocgstamp(struct net *net, struct socket *sock, 2674 unsigned int cmd, void __user *up) 2675 { 2676 mm_segment_t old_fs = get_fs(); 2677 struct timeval ktv; 2678 int err; 2679 2680 set_fs(KERNEL_DS); 2681 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2682 set_fs(old_fs); 2683 if (!err) 2684 err = compat_put_timeval(&ktv, up); 2685 2686 return err; 2687 } 2688 2689 static int do_siocgstampns(struct net *net, struct socket *sock, 2690 unsigned int cmd, void __user *up) 2691 { 2692 mm_segment_t old_fs = get_fs(); 2693 struct timespec kts; 2694 int err; 2695 2696 set_fs(KERNEL_DS); 2697 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2698 set_fs(old_fs); 2699 if (!err) 2700 err = compat_put_timespec(&kts, up); 2701 2702 return err; 2703 } 2704 2705 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2706 { 2707 struct ifreq __user *uifr; 2708 int err; 2709 2710 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2711 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2712 return -EFAULT; 2713 2714 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2715 if (err) 2716 return err; 2717 2718 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2719 return -EFAULT; 2720 2721 return 0; 2722 } 2723 2724 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2725 { 2726 struct compat_ifconf ifc32; 2727 struct ifconf ifc; 2728 struct ifconf __user *uifc; 2729 struct compat_ifreq __user *ifr32; 2730 struct ifreq __user *ifr; 2731 unsigned int i, j; 2732 int err; 2733 2734 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2735 return -EFAULT; 2736 2737 memset(&ifc, 0, sizeof(ifc)); 2738 if (ifc32.ifcbuf == 0) { 2739 ifc32.ifc_len = 0; 2740 ifc.ifc_len = 0; 2741 ifc.ifc_req = NULL; 2742 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2743 } else { 2744 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2745 sizeof(struct ifreq); 2746 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2747 ifc.ifc_len = len; 2748 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2749 ifr32 = compat_ptr(ifc32.ifcbuf); 2750 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2751 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2752 return -EFAULT; 2753 ifr++; 2754 ifr32++; 2755 } 2756 } 2757 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2758 return -EFAULT; 2759 2760 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2761 if (err) 2762 return err; 2763 2764 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2765 return -EFAULT; 2766 2767 ifr = ifc.ifc_req; 2768 ifr32 = compat_ptr(ifc32.ifcbuf); 2769 for (i = 0, j = 0; 2770 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2771 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2772 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2773 return -EFAULT; 2774 ifr32++; 2775 ifr++; 2776 } 2777 2778 if (ifc32.ifcbuf == 0) { 2779 /* Translate from 64-bit structure multiple to 2780 * a 32-bit one. 2781 */ 2782 i = ifc.ifc_len; 2783 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2784 ifc32.ifc_len = i; 2785 } else { 2786 ifc32.ifc_len = i; 2787 } 2788 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2789 return -EFAULT; 2790 2791 return 0; 2792 } 2793 2794 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2795 { 2796 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2797 bool convert_in = false, convert_out = false; 2798 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2799 struct ethtool_rxnfc __user *rxnfc; 2800 struct ifreq __user *ifr; 2801 u32 rule_cnt = 0, actual_rule_cnt; 2802 u32 ethcmd; 2803 u32 data; 2804 int ret; 2805 2806 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2807 return -EFAULT; 2808 2809 compat_rxnfc = compat_ptr(data); 2810 2811 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2812 return -EFAULT; 2813 2814 /* Most ethtool structures are defined without padding. 2815 * Unfortunately struct ethtool_rxnfc is an exception. 2816 */ 2817 switch (ethcmd) { 2818 default: 2819 break; 2820 case ETHTOOL_GRXCLSRLALL: 2821 /* Buffer size is variable */ 2822 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2823 return -EFAULT; 2824 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2825 return -ENOMEM; 2826 buf_size += rule_cnt * sizeof(u32); 2827 /* fall through */ 2828 case ETHTOOL_GRXRINGS: 2829 case ETHTOOL_GRXCLSRLCNT: 2830 case ETHTOOL_GRXCLSRULE: 2831 case ETHTOOL_SRXCLSRLINS: 2832 convert_out = true; 2833 /* fall through */ 2834 case ETHTOOL_SRXCLSRLDEL: 2835 buf_size += sizeof(struct ethtool_rxnfc); 2836 convert_in = true; 2837 break; 2838 } 2839 2840 ifr = compat_alloc_user_space(buf_size); 2841 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2842 2843 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2844 return -EFAULT; 2845 2846 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2847 &ifr->ifr_ifru.ifru_data)) 2848 return -EFAULT; 2849 2850 if (convert_in) { 2851 /* We expect there to be holes between fs.m_ext and 2852 * fs.ring_cookie and at the end of fs, but nowhere else. 2853 */ 2854 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2855 sizeof(compat_rxnfc->fs.m_ext) != 2856 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2857 sizeof(rxnfc->fs.m_ext)); 2858 BUILD_BUG_ON( 2859 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2860 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2861 offsetof(struct ethtool_rxnfc, fs.location) - 2862 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2863 2864 if (copy_in_user(rxnfc, compat_rxnfc, 2865 (void *)(&rxnfc->fs.m_ext + 1) - 2866 (void *)rxnfc) || 2867 copy_in_user(&rxnfc->fs.ring_cookie, 2868 &compat_rxnfc->fs.ring_cookie, 2869 (void *)(&rxnfc->fs.location + 1) - 2870 (void *)&rxnfc->fs.ring_cookie) || 2871 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2872 sizeof(rxnfc->rule_cnt))) 2873 return -EFAULT; 2874 } 2875 2876 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2877 if (ret) 2878 return ret; 2879 2880 if (convert_out) { 2881 if (copy_in_user(compat_rxnfc, rxnfc, 2882 (const void *)(&rxnfc->fs.m_ext + 1) - 2883 (const void *)rxnfc) || 2884 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2885 &rxnfc->fs.ring_cookie, 2886 (const void *)(&rxnfc->fs.location + 1) - 2887 (const void *)&rxnfc->fs.ring_cookie) || 2888 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2889 sizeof(rxnfc->rule_cnt))) 2890 return -EFAULT; 2891 2892 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2893 /* As an optimisation, we only copy the actual 2894 * number of rules that the underlying 2895 * function returned. Since Mallory might 2896 * change the rule count in user memory, we 2897 * check that it is less than the rule count 2898 * originally given (as the user buffer size), 2899 * which has been range-checked. 2900 */ 2901 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2902 return -EFAULT; 2903 if (actual_rule_cnt < rule_cnt) 2904 rule_cnt = actual_rule_cnt; 2905 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2906 &rxnfc->rule_locs[0], 2907 rule_cnt * sizeof(u32))) 2908 return -EFAULT; 2909 } 2910 } 2911 2912 return 0; 2913 } 2914 2915 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2916 { 2917 void __user *uptr; 2918 compat_uptr_t uptr32; 2919 struct ifreq __user *uifr; 2920 2921 uifr = compat_alloc_user_space(sizeof(*uifr)); 2922 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2923 return -EFAULT; 2924 2925 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2926 return -EFAULT; 2927 2928 uptr = compat_ptr(uptr32); 2929 2930 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2931 return -EFAULT; 2932 2933 return dev_ioctl(net, SIOCWANDEV, uifr); 2934 } 2935 2936 static int bond_ioctl(struct net *net, unsigned int cmd, 2937 struct compat_ifreq __user *ifr32) 2938 { 2939 struct ifreq kifr; 2940 struct ifreq __user *uifr; 2941 mm_segment_t old_fs; 2942 int err; 2943 u32 data; 2944 void __user *datap; 2945 2946 switch (cmd) { 2947 case SIOCBONDENSLAVE: 2948 case SIOCBONDRELEASE: 2949 case SIOCBONDSETHWADDR: 2950 case SIOCBONDCHANGEACTIVE: 2951 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2952 return -EFAULT; 2953 2954 old_fs = get_fs(); 2955 set_fs(KERNEL_DS); 2956 err = dev_ioctl(net, cmd, 2957 (struct ifreq __user __force *) &kifr); 2958 set_fs(old_fs); 2959 2960 return err; 2961 case SIOCBONDSLAVEINFOQUERY: 2962 case SIOCBONDINFOQUERY: 2963 uifr = compat_alloc_user_space(sizeof(*uifr)); 2964 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2965 return -EFAULT; 2966 2967 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2968 return -EFAULT; 2969 2970 datap = compat_ptr(data); 2971 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2972 return -EFAULT; 2973 2974 return dev_ioctl(net, cmd, uifr); 2975 default: 2976 return -ENOIOCTLCMD; 2977 } 2978 } 2979 2980 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2981 struct compat_ifreq __user *u_ifreq32) 2982 { 2983 struct ifreq __user *u_ifreq64; 2984 char tmp_buf[IFNAMSIZ]; 2985 void __user *data64; 2986 u32 data32; 2987 2988 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2989 IFNAMSIZ)) 2990 return -EFAULT; 2991 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2992 return -EFAULT; 2993 data64 = compat_ptr(data32); 2994 2995 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2996 2997 /* Don't check these user accesses, just let that get trapped 2998 * in the ioctl handler instead. 2999 */ 3000 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3001 IFNAMSIZ)) 3002 return -EFAULT; 3003 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3004 return -EFAULT; 3005 3006 return dev_ioctl(net, cmd, u_ifreq64); 3007 } 3008 3009 static int dev_ifsioc(struct net *net, struct socket *sock, 3010 unsigned int cmd, struct compat_ifreq __user *uifr32) 3011 { 3012 struct ifreq __user *uifr; 3013 int err; 3014 3015 uifr = compat_alloc_user_space(sizeof(*uifr)); 3016 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3017 return -EFAULT; 3018 3019 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3020 3021 if (!err) { 3022 switch (cmd) { 3023 case SIOCGIFFLAGS: 3024 case SIOCGIFMETRIC: 3025 case SIOCGIFMTU: 3026 case SIOCGIFMEM: 3027 case SIOCGIFHWADDR: 3028 case SIOCGIFINDEX: 3029 case SIOCGIFADDR: 3030 case SIOCGIFBRDADDR: 3031 case SIOCGIFDSTADDR: 3032 case SIOCGIFNETMASK: 3033 case SIOCGIFPFLAGS: 3034 case SIOCGIFTXQLEN: 3035 case SIOCGMIIPHY: 3036 case SIOCGMIIREG: 3037 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3038 err = -EFAULT; 3039 break; 3040 } 3041 } 3042 return err; 3043 } 3044 3045 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3046 struct compat_ifreq __user *uifr32) 3047 { 3048 struct ifreq ifr; 3049 struct compat_ifmap __user *uifmap32; 3050 mm_segment_t old_fs; 3051 int err; 3052 3053 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3054 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3055 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3056 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3057 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3058 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3059 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3060 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3061 if (err) 3062 return -EFAULT; 3063 3064 old_fs = get_fs(); 3065 set_fs(KERNEL_DS); 3066 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3067 set_fs(old_fs); 3068 3069 if (cmd == SIOCGIFMAP && !err) { 3070 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3071 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3072 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3073 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3074 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3075 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3076 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3077 if (err) 3078 err = -EFAULT; 3079 } 3080 return err; 3081 } 3082 3083 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3084 { 3085 void __user *uptr; 3086 compat_uptr_t uptr32; 3087 struct ifreq __user *uifr; 3088 3089 uifr = compat_alloc_user_space(sizeof(*uifr)); 3090 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3091 return -EFAULT; 3092 3093 if (get_user(uptr32, &uifr32->ifr_data)) 3094 return -EFAULT; 3095 3096 uptr = compat_ptr(uptr32); 3097 3098 if (put_user(uptr, &uifr->ifr_data)) 3099 return -EFAULT; 3100 3101 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3102 } 3103 3104 struct rtentry32 { 3105 u32 rt_pad1; 3106 struct sockaddr rt_dst; /* target address */ 3107 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3108 struct sockaddr rt_genmask; /* target network mask (IP) */ 3109 unsigned short rt_flags; 3110 short rt_pad2; 3111 u32 rt_pad3; 3112 unsigned char rt_tos; 3113 unsigned char rt_class; 3114 short rt_pad4; 3115 short rt_metric; /* +1 for binary compatibility! */ 3116 /* char * */ u32 rt_dev; /* forcing the device at add */ 3117 u32 rt_mtu; /* per route MTU/Window */ 3118 u32 rt_window; /* Window clamping */ 3119 unsigned short rt_irtt; /* Initial RTT */ 3120 }; 3121 3122 struct in6_rtmsg32 { 3123 struct in6_addr rtmsg_dst; 3124 struct in6_addr rtmsg_src; 3125 struct in6_addr rtmsg_gateway; 3126 u32 rtmsg_type; 3127 u16 rtmsg_dst_len; 3128 u16 rtmsg_src_len; 3129 u32 rtmsg_metric; 3130 u32 rtmsg_info; 3131 u32 rtmsg_flags; 3132 s32 rtmsg_ifindex; 3133 }; 3134 3135 static int routing_ioctl(struct net *net, struct socket *sock, 3136 unsigned int cmd, void __user *argp) 3137 { 3138 int ret; 3139 void *r = NULL; 3140 struct in6_rtmsg r6; 3141 struct rtentry r4; 3142 char devname[16]; 3143 u32 rtdev; 3144 mm_segment_t old_fs = get_fs(); 3145 3146 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3147 struct in6_rtmsg32 __user *ur6 = argp; 3148 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3149 3 * sizeof(struct in6_addr)); 3150 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3151 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3152 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3153 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3154 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3155 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3156 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3157 3158 r = (void *) &r6; 3159 } else { /* ipv4 */ 3160 struct rtentry32 __user *ur4 = argp; 3161 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3162 3 * sizeof(struct sockaddr)); 3163 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3164 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3165 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3166 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3167 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3168 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3169 if (rtdev) { 3170 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3171 r4.rt_dev = (char __user __force *)devname; 3172 devname[15] = 0; 3173 } else 3174 r4.rt_dev = NULL; 3175 3176 r = (void *) &r4; 3177 } 3178 3179 if (ret) { 3180 ret = -EFAULT; 3181 goto out; 3182 } 3183 3184 set_fs(KERNEL_DS); 3185 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3186 set_fs(old_fs); 3187 3188 out: 3189 return ret; 3190 } 3191 3192 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3193 * for some operations; this forces use of the newer bridge-utils that 3194 * use compatible ioctls 3195 */ 3196 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3197 { 3198 compat_ulong_t tmp; 3199 3200 if (get_user(tmp, argp)) 3201 return -EFAULT; 3202 if (tmp == BRCTL_GET_VERSION) 3203 return BRCTL_VERSION + 1; 3204 return -EINVAL; 3205 } 3206 3207 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3208 unsigned int cmd, unsigned long arg) 3209 { 3210 void __user *argp = compat_ptr(arg); 3211 struct sock *sk = sock->sk; 3212 struct net *net = sock_net(sk); 3213 3214 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3215 return siocdevprivate_ioctl(net, cmd, argp); 3216 3217 switch (cmd) { 3218 case SIOCSIFBR: 3219 case SIOCGIFBR: 3220 return old_bridge_ioctl(argp); 3221 case SIOCGIFNAME: 3222 return dev_ifname32(net, argp); 3223 case SIOCGIFCONF: 3224 return dev_ifconf(net, argp); 3225 case SIOCETHTOOL: 3226 return ethtool_ioctl(net, argp); 3227 case SIOCWANDEV: 3228 return compat_siocwandev(net, argp); 3229 case SIOCGIFMAP: 3230 case SIOCSIFMAP: 3231 return compat_sioc_ifmap(net, cmd, argp); 3232 case SIOCBONDENSLAVE: 3233 case SIOCBONDRELEASE: 3234 case SIOCBONDSETHWADDR: 3235 case SIOCBONDSLAVEINFOQUERY: 3236 case SIOCBONDINFOQUERY: 3237 case SIOCBONDCHANGEACTIVE: 3238 return bond_ioctl(net, cmd, argp); 3239 case SIOCADDRT: 3240 case SIOCDELRT: 3241 return routing_ioctl(net, sock, cmd, argp); 3242 case SIOCGSTAMP: 3243 return do_siocgstamp(net, sock, cmd, argp); 3244 case SIOCGSTAMPNS: 3245 return do_siocgstampns(net, sock, cmd, argp); 3246 case SIOCSHWTSTAMP: 3247 return compat_siocshwtstamp(net, argp); 3248 3249 case FIOSETOWN: 3250 case SIOCSPGRP: 3251 case FIOGETOWN: 3252 case SIOCGPGRP: 3253 case SIOCBRADDBR: 3254 case SIOCBRDELBR: 3255 case SIOCGIFVLAN: 3256 case SIOCSIFVLAN: 3257 case SIOCADDDLCI: 3258 case SIOCDELDLCI: 3259 return sock_ioctl(file, cmd, arg); 3260 3261 case SIOCGIFFLAGS: 3262 case SIOCSIFFLAGS: 3263 case SIOCGIFMETRIC: 3264 case SIOCSIFMETRIC: 3265 case SIOCGIFMTU: 3266 case SIOCSIFMTU: 3267 case SIOCGIFMEM: 3268 case SIOCSIFMEM: 3269 case SIOCGIFHWADDR: 3270 case SIOCSIFHWADDR: 3271 case SIOCADDMULTI: 3272 case SIOCDELMULTI: 3273 case SIOCGIFINDEX: 3274 case SIOCGIFADDR: 3275 case SIOCSIFADDR: 3276 case SIOCSIFHWBROADCAST: 3277 case SIOCDIFADDR: 3278 case SIOCGIFBRDADDR: 3279 case SIOCSIFBRDADDR: 3280 case SIOCGIFDSTADDR: 3281 case SIOCSIFDSTADDR: 3282 case SIOCGIFNETMASK: 3283 case SIOCSIFNETMASK: 3284 case SIOCSIFPFLAGS: 3285 case SIOCGIFPFLAGS: 3286 case SIOCGIFTXQLEN: 3287 case SIOCSIFTXQLEN: 3288 case SIOCBRADDIF: 3289 case SIOCBRDELIF: 3290 case SIOCSIFNAME: 3291 case SIOCGMIIPHY: 3292 case SIOCGMIIREG: 3293 case SIOCSMIIREG: 3294 return dev_ifsioc(net, sock, cmd, argp); 3295 3296 case SIOCSARP: 3297 case SIOCGARP: 3298 case SIOCDARP: 3299 case SIOCATMARK: 3300 return sock_do_ioctl(net, sock, cmd, arg); 3301 } 3302 3303 return -ENOIOCTLCMD; 3304 } 3305 3306 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3307 unsigned long arg) 3308 { 3309 struct socket *sock = file->private_data; 3310 int ret = -ENOIOCTLCMD; 3311 struct sock *sk; 3312 struct net *net; 3313 3314 sk = sock->sk; 3315 net = sock_net(sk); 3316 3317 if (sock->ops->compat_ioctl) 3318 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3319 3320 if (ret == -ENOIOCTLCMD && 3321 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3322 ret = compat_wext_handle_ioctl(net, cmd, arg); 3323 3324 if (ret == -ENOIOCTLCMD) 3325 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3326 3327 return ret; 3328 } 3329 #endif 3330 3331 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3332 { 3333 return sock->ops->bind(sock, addr, addrlen); 3334 } 3335 EXPORT_SYMBOL(kernel_bind); 3336 3337 int kernel_listen(struct socket *sock, int backlog) 3338 { 3339 return sock->ops->listen(sock, backlog); 3340 } 3341 EXPORT_SYMBOL(kernel_listen); 3342 3343 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3344 { 3345 struct sock *sk = sock->sk; 3346 int err; 3347 3348 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3349 newsock); 3350 if (err < 0) 3351 goto done; 3352 3353 err = sock->ops->accept(sock, *newsock, flags); 3354 if (err < 0) { 3355 sock_release(*newsock); 3356 *newsock = NULL; 3357 goto done; 3358 } 3359 3360 (*newsock)->ops = sock->ops; 3361 __module_get((*newsock)->ops->owner); 3362 3363 done: 3364 return err; 3365 } 3366 EXPORT_SYMBOL(kernel_accept); 3367 3368 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3369 int flags) 3370 { 3371 return sock->ops->connect(sock, addr, addrlen, flags); 3372 } 3373 EXPORT_SYMBOL(kernel_connect); 3374 3375 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3376 int *addrlen) 3377 { 3378 return sock->ops->getname(sock, addr, addrlen, 0); 3379 } 3380 EXPORT_SYMBOL(kernel_getsockname); 3381 3382 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3383 int *addrlen) 3384 { 3385 return sock->ops->getname(sock, addr, addrlen, 1); 3386 } 3387 EXPORT_SYMBOL(kernel_getpeername); 3388 3389 int kernel_getsockopt(struct socket *sock, int level, int optname, 3390 char *optval, int *optlen) 3391 { 3392 mm_segment_t oldfs = get_fs(); 3393 char __user *uoptval; 3394 int __user *uoptlen; 3395 int err; 3396 3397 uoptval = (char __user __force *) optval; 3398 uoptlen = (int __user __force *) optlen; 3399 3400 set_fs(KERNEL_DS); 3401 if (level == SOL_SOCKET) 3402 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3403 else 3404 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3405 uoptlen); 3406 set_fs(oldfs); 3407 return err; 3408 } 3409 EXPORT_SYMBOL(kernel_getsockopt); 3410 3411 int kernel_setsockopt(struct socket *sock, int level, int optname, 3412 char *optval, unsigned int optlen) 3413 { 3414 mm_segment_t oldfs = get_fs(); 3415 char __user *uoptval; 3416 int err; 3417 3418 uoptval = (char __user __force *) optval; 3419 3420 set_fs(KERNEL_DS); 3421 if (level == SOL_SOCKET) 3422 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3423 else 3424 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3425 optlen); 3426 set_fs(oldfs); 3427 return err; 3428 } 3429 EXPORT_SYMBOL(kernel_setsockopt); 3430 3431 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3432 size_t size, int flags) 3433 { 3434 if (sock->ops->sendpage) 3435 return sock->ops->sendpage(sock, page, offset, size, flags); 3436 3437 return sock_no_sendpage(sock, page, offset, size, flags); 3438 } 3439 EXPORT_SYMBOL(kernel_sendpage); 3440 3441 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3442 { 3443 mm_segment_t oldfs = get_fs(); 3444 int err; 3445 3446 set_fs(KERNEL_DS); 3447 err = sock->ops->ioctl(sock, cmd, arg); 3448 set_fs(oldfs); 3449 3450 return err; 3451 } 3452 EXPORT_SYMBOL(kernel_sock_ioctl); 3453 3454 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3455 { 3456 return sock->ops->shutdown(sock, how); 3457 } 3458 EXPORT_SYMBOL(kernel_sock_shutdown); 3459