1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int err; 280 int len; 281 282 BUG_ON(klen > sizeof(struct sockaddr_storage)); 283 err = get_user(len, ulen); 284 if (err) 285 return err; 286 if (len > klen) 287 len = klen; 288 if (len < 0) 289 return -EINVAL; 290 if (len) { 291 if (audit_sockaddr(klen, kaddr)) 292 return -ENOMEM; 293 if (copy_to_user(uaddr, kaddr, len)) 294 return -EFAULT; 295 } 296 /* 297 * "fromlen shall refer to the value before truncation.." 298 * 1003.1g 299 */ 300 return __put_user(klen, ulen); 301 } 302 303 static struct kmem_cache *sock_inode_cachep __ro_after_init; 304 305 static struct inode *sock_alloc_inode(struct super_block *sb) 306 { 307 struct socket_alloc *ei; 308 309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 310 if (!ei) 311 return NULL; 312 init_waitqueue_head(&ei->socket.wq.wait); 313 ei->socket.wq.fasync_list = NULL; 314 ei->socket.wq.flags = 0; 315 316 ei->socket.state = SS_UNCONNECTED; 317 ei->socket.flags = 0; 318 ei->socket.ops = NULL; 319 ei->socket.sk = NULL; 320 ei->socket.file = NULL; 321 322 return &ei->vfs_inode; 323 } 324 325 static void sock_free_inode(struct inode *inode) 326 { 327 struct socket_alloc *ei; 328 329 ei = container_of(inode, struct socket_alloc, vfs_inode); 330 kmem_cache_free(sock_inode_cachep, ei); 331 } 332 333 static void init_once(void *foo) 334 { 335 struct socket_alloc *ei = (struct socket_alloc *)foo; 336 337 inode_init_once(&ei->vfs_inode); 338 } 339 340 static void init_inodecache(void) 341 { 342 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 343 sizeof(struct socket_alloc), 344 0, 345 (SLAB_HWCACHE_ALIGN | 346 SLAB_RECLAIM_ACCOUNT | 347 SLAB_ACCOUNT), 348 init_once); 349 BUG_ON(sock_inode_cachep == NULL); 350 } 351 352 static const struct super_operations sockfs_ops = { 353 .alloc_inode = sock_alloc_inode, 354 .free_inode = sock_free_inode, 355 .statfs = simple_statfs, 356 }; 357 358 /* 359 * sockfs_dname() is called from d_path(). 360 */ 361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 362 { 363 return dynamic_dname(buffer, buflen, "socket:[%lu]", 364 d_inode(dentry)->i_ino); 365 } 366 367 static const struct dentry_operations sockfs_dentry_operations = { 368 .d_dname = sockfs_dname, 369 }; 370 371 static int sockfs_xattr_get(const struct xattr_handler *handler, 372 struct dentry *dentry, struct inode *inode, 373 const char *suffix, void *value, size_t size) 374 { 375 if (value) { 376 if (dentry->d_name.len + 1 > size) 377 return -ERANGE; 378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 379 } 380 return dentry->d_name.len + 1; 381 } 382 383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 386 387 static const struct xattr_handler sockfs_xattr_handler = { 388 .name = XATTR_NAME_SOCKPROTONAME, 389 .get = sockfs_xattr_get, 390 }; 391 392 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 393 struct mnt_idmap *idmap, 394 struct dentry *dentry, struct inode *inode, 395 const char *suffix, const void *value, 396 size_t size, int flags) 397 { 398 /* Handled by LSM. */ 399 return -EAGAIN; 400 } 401 402 static const struct xattr_handler sockfs_security_xattr_handler = { 403 .prefix = XATTR_SECURITY_PREFIX, 404 .set = sockfs_security_xattr_set, 405 }; 406 407 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 408 &sockfs_xattr_handler, 409 &sockfs_security_xattr_handler, 410 NULL 411 }; 412 413 static int sockfs_init_fs_context(struct fs_context *fc) 414 { 415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 416 if (!ctx) 417 return -ENOMEM; 418 ctx->ops = &sockfs_ops; 419 ctx->dops = &sockfs_dentry_operations; 420 ctx->xattr = sockfs_xattr_handlers; 421 return 0; 422 } 423 424 static struct vfsmount *sock_mnt __read_mostly; 425 426 static struct file_system_type sock_fs_type = { 427 .name = "sockfs", 428 .init_fs_context = sockfs_init_fs_context, 429 .kill_sb = kill_anon_super, 430 }; 431 432 /* 433 * Obtains the first available file descriptor and sets it up for use. 434 * 435 * These functions create file structures and maps them to fd space 436 * of the current process. On success it returns file descriptor 437 * and file struct implicitly stored in sock->file. 438 * Note that another thread may close file descriptor before we return 439 * from this function. We use the fact that now we do not refer 440 * to socket after mapping. If one day we will need it, this 441 * function will increment ref. count on file by 1. 442 * 443 * In any case returned fd MAY BE not valid! 444 * This race condition is unavoidable 445 * with shared fd spaces, we cannot solve it inside kernel, 446 * but we take care of internal coherence yet. 447 */ 448 449 /** 450 * sock_alloc_file - Bind a &socket to a &file 451 * @sock: socket 452 * @flags: file status flags 453 * @dname: protocol name 454 * 455 * Returns the &file bound with @sock, implicitly storing it 456 * in sock->file. If dname is %NULL, sets to "". 457 * 458 * On failure @sock is released, and an ERR pointer is returned. 459 * 460 * This function uses GFP_KERNEL internally. 461 */ 462 463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 464 { 465 struct file *file; 466 467 if (!dname) 468 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 469 470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 471 O_RDWR | (flags & O_NONBLOCK), 472 &socket_file_ops); 473 if (IS_ERR(file)) { 474 sock_release(sock); 475 return file; 476 } 477 478 file->f_mode |= FMODE_NOWAIT; 479 sock->file = file; 480 file->private_data = sock; 481 stream_open(SOCK_INODE(sock), file); 482 return file; 483 } 484 EXPORT_SYMBOL(sock_alloc_file); 485 486 static int sock_map_fd(struct socket *sock, int flags) 487 { 488 struct file *newfile; 489 int fd = get_unused_fd_flags(flags); 490 if (unlikely(fd < 0)) { 491 sock_release(sock); 492 return fd; 493 } 494 495 newfile = sock_alloc_file(sock, flags, NULL); 496 if (!IS_ERR(newfile)) { 497 fd_install(fd, newfile); 498 return fd; 499 } 500 501 put_unused_fd(fd); 502 return PTR_ERR(newfile); 503 } 504 505 /** 506 * sock_from_file - Return the &socket bounded to @file. 507 * @file: file 508 * 509 * On failure returns %NULL. 510 */ 511 512 struct socket *sock_from_file(struct file *file) 513 { 514 if (likely(file->f_op == &socket_file_ops)) 515 return file->private_data; /* set in sock_alloc_file */ 516 517 return NULL; 518 } 519 EXPORT_SYMBOL(sock_from_file); 520 521 /** 522 * sockfd_lookup - Go from a file number to its socket slot 523 * @fd: file handle 524 * @err: pointer to an error code return 525 * 526 * The file handle passed in is locked and the socket it is bound 527 * to is returned. If an error occurs the err pointer is overwritten 528 * with a negative errno code and NULL is returned. The function checks 529 * for both invalid handles and passing a handle which is not a socket. 530 * 531 * On a success the socket object pointer is returned. 532 */ 533 534 struct socket *sockfd_lookup(int fd, int *err) 535 { 536 struct file *file; 537 struct socket *sock; 538 539 file = fget(fd); 540 if (!file) { 541 *err = -EBADF; 542 return NULL; 543 } 544 545 sock = sock_from_file(file); 546 if (!sock) { 547 *err = -ENOTSOCK; 548 fput(file); 549 } 550 return sock; 551 } 552 EXPORT_SYMBOL(sockfd_lookup); 553 554 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 555 size_t size) 556 { 557 ssize_t len; 558 ssize_t used = 0; 559 560 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 561 if (len < 0) 562 return len; 563 used += len; 564 if (buffer) { 565 if (size < used) 566 return -ERANGE; 567 buffer += len; 568 } 569 570 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 571 used += len; 572 if (buffer) { 573 if (size < used) 574 return -ERANGE; 575 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 576 buffer += len; 577 } 578 579 return used; 580 } 581 582 static int sockfs_setattr(struct mnt_idmap *idmap, 583 struct dentry *dentry, struct iattr *iattr) 584 { 585 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 586 587 if (!err && (iattr->ia_valid & ATTR_UID)) { 588 struct socket *sock = SOCKET_I(d_inode(dentry)); 589 590 if (sock->sk) 591 sock->sk->sk_uid = iattr->ia_uid; 592 else 593 err = -ENOENT; 594 } 595 596 return err; 597 } 598 599 static const struct inode_operations sockfs_inode_ops = { 600 .listxattr = sockfs_listxattr, 601 .setattr = sockfs_setattr, 602 }; 603 604 /** 605 * sock_alloc - allocate a socket 606 * 607 * Allocate a new inode and socket object. The two are bound together 608 * and initialised. The socket is then returned. If we are out of inodes 609 * NULL is returned. This functions uses GFP_KERNEL internally. 610 */ 611 612 struct socket *sock_alloc(void) 613 { 614 struct inode *inode; 615 struct socket *sock; 616 617 inode = new_inode_pseudo(sock_mnt->mnt_sb); 618 if (!inode) 619 return NULL; 620 621 sock = SOCKET_I(inode); 622 623 inode->i_ino = get_next_ino(); 624 inode->i_mode = S_IFSOCK | S_IRWXUGO; 625 inode->i_uid = current_fsuid(); 626 inode->i_gid = current_fsgid(); 627 inode->i_op = &sockfs_inode_ops; 628 629 return sock; 630 } 631 EXPORT_SYMBOL(sock_alloc); 632 633 static void __sock_release(struct socket *sock, struct inode *inode) 634 { 635 const struct proto_ops *ops = READ_ONCE(sock->ops); 636 637 if (ops) { 638 struct module *owner = ops->owner; 639 640 if (inode) 641 inode_lock(inode); 642 ops->release(sock); 643 sock->sk = NULL; 644 if (inode) 645 inode_unlock(inode); 646 sock->ops = NULL; 647 module_put(owner); 648 } 649 650 if (sock->wq.fasync_list) 651 pr_err("%s: fasync list not empty!\n", __func__); 652 653 if (!sock->file) { 654 iput(SOCK_INODE(sock)); 655 return; 656 } 657 sock->file = NULL; 658 } 659 660 /** 661 * sock_release - close a socket 662 * @sock: socket to close 663 * 664 * The socket is released from the protocol stack if it has a release 665 * callback, and the inode is then released if the socket is bound to 666 * an inode not a file. 667 */ 668 void sock_release(struct socket *sock) 669 { 670 __sock_release(sock, NULL); 671 } 672 EXPORT_SYMBOL(sock_release); 673 674 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 675 { 676 u8 flags = *tx_flags; 677 678 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 679 flags |= SKBTX_HW_TSTAMP; 680 681 /* PTP hardware clocks can provide a free running cycle counter 682 * as a time base for virtual clocks. Tell driver to use the 683 * free running cycle counter for timestamp if socket is bound 684 * to virtual clock. 685 */ 686 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 687 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 688 } 689 690 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 691 flags |= SKBTX_SW_TSTAMP; 692 693 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 694 flags |= SKBTX_SCHED_TSTAMP; 695 696 *tx_flags = flags; 697 } 698 EXPORT_SYMBOL(__sock_tx_timestamp); 699 700 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 701 size_t)); 702 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 703 size_t)); 704 705 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 706 int flags) 707 { 708 trace_sock_send_length(sk, ret, 0); 709 } 710 711 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 712 { 713 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 714 inet_sendmsg, sock, msg, 715 msg_data_left(msg)); 716 BUG_ON(ret == -EIOCBQUEUED); 717 718 if (trace_sock_send_length_enabled()) 719 call_trace_sock_send_length(sock->sk, ret, 0); 720 return ret; 721 } 722 723 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 724 { 725 int err = security_socket_sendmsg(sock, msg, 726 msg_data_left(msg)); 727 728 return err ?: sock_sendmsg_nosec(sock, msg); 729 } 730 731 /** 732 * sock_sendmsg - send a message through @sock 733 * @sock: socket 734 * @msg: message to send 735 * 736 * Sends @msg through @sock, passing through LSM. 737 * Returns the number of bytes sent, or an error code. 738 */ 739 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 740 { 741 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 742 struct sockaddr_storage address; 743 int save_len = msg->msg_namelen; 744 int ret; 745 746 if (msg->msg_name) { 747 memcpy(&address, msg->msg_name, msg->msg_namelen); 748 msg->msg_name = &address; 749 } 750 751 ret = __sock_sendmsg(sock, msg); 752 msg->msg_name = save_addr; 753 msg->msg_namelen = save_len; 754 755 return ret; 756 } 757 EXPORT_SYMBOL(sock_sendmsg); 758 759 /** 760 * kernel_sendmsg - send a message through @sock (kernel-space) 761 * @sock: socket 762 * @msg: message header 763 * @vec: kernel vec 764 * @num: vec array length 765 * @size: total message data size 766 * 767 * Builds the message data with @vec and sends it through @sock. 768 * Returns the number of bytes sent, or an error code. 769 */ 770 771 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 772 struct kvec *vec, size_t num, size_t size) 773 { 774 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 775 return sock_sendmsg(sock, msg); 776 } 777 EXPORT_SYMBOL(kernel_sendmsg); 778 779 /** 780 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 781 * @sk: sock 782 * @msg: message header 783 * @vec: output s/g array 784 * @num: output s/g array length 785 * @size: total message data size 786 * 787 * Builds the message data with @vec and sends it through @sock. 788 * Returns the number of bytes sent, or an error code. 789 * Caller must hold @sk. 790 */ 791 792 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 793 struct kvec *vec, size_t num, size_t size) 794 { 795 struct socket *sock = sk->sk_socket; 796 const struct proto_ops *ops = READ_ONCE(sock->ops); 797 798 if (!ops->sendmsg_locked) 799 return sock_no_sendmsg_locked(sk, msg, size); 800 801 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 802 803 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 804 } 805 EXPORT_SYMBOL(kernel_sendmsg_locked); 806 807 static bool skb_is_err_queue(const struct sk_buff *skb) 808 { 809 /* pkt_type of skbs enqueued on the error queue are set to 810 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 811 * in recvmsg, since skbs received on a local socket will never 812 * have a pkt_type of PACKET_OUTGOING. 813 */ 814 return skb->pkt_type == PACKET_OUTGOING; 815 } 816 817 /* On transmit, software and hardware timestamps are returned independently. 818 * As the two skb clones share the hardware timestamp, which may be updated 819 * before the software timestamp is received, a hardware TX timestamp may be 820 * returned only if there is no software TX timestamp. Ignore false software 821 * timestamps, which may be made in the __sock_recv_timestamp() call when the 822 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 823 * hardware timestamp. 824 */ 825 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 826 { 827 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 828 } 829 830 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 831 { 832 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 833 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 834 struct net_device *orig_dev; 835 ktime_t hwtstamp; 836 837 rcu_read_lock(); 838 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 839 if (orig_dev) { 840 *if_index = orig_dev->ifindex; 841 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 842 } else { 843 hwtstamp = shhwtstamps->hwtstamp; 844 } 845 rcu_read_unlock(); 846 847 return hwtstamp; 848 } 849 850 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 851 int if_index) 852 { 853 struct scm_ts_pktinfo ts_pktinfo; 854 struct net_device *orig_dev; 855 856 if (!skb_mac_header_was_set(skb)) 857 return; 858 859 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 860 861 if (!if_index) { 862 rcu_read_lock(); 863 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 864 if (orig_dev) 865 if_index = orig_dev->ifindex; 866 rcu_read_unlock(); 867 } 868 ts_pktinfo.if_index = if_index; 869 870 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 871 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 872 sizeof(ts_pktinfo), &ts_pktinfo); 873 } 874 875 /* 876 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 877 */ 878 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 879 struct sk_buff *skb) 880 { 881 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 882 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 883 struct scm_timestamping_internal tss; 884 int empty = 1, false_tstamp = 0; 885 struct skb_shared_hwtstamps *shhwtstamps = 886 skb_hwtstamps(skb); 887 int if_index; 888 ktime_t hwtstamp; 889 u32 tsflags; 890 891 /* Race occurred between timestamp enabling and packet 892 receiving. Fill in the current time for now. */ 893 if (need_software_tstamp && skb->tstamp == 0) { 894 __net_timestamp(skb); 895 false_tstamp = 1; 896 } 897 898 if (need_software_tstamp) { 899 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 900 if (new_tstamp) { 901 struct __kernel_sock_timeval tv; 902 903 skb_get_new_timestamp(skb, &tv); 904 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 905 sizeof(tv), &tv); 906 } else { 907 struct __kernel_old_timeval tv; 908 909 skb_get_timestamp(skb, &tv); 910 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 911 sizeof(tv), &tv); 912 } 913 } else { 914 if (new_tstamp) { 915 struct __kernel_timespec ts; 916 917 skb_get_new_timestampns(skb, &ts); 918 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 919 sizeof(ts), &ts); 920 } else { 921 struct __kernel_old_timespec ts; 922 923 skb_get_timestampns(skb, &ts); 924 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 925 sizeof(ts), &ts); 926 } 927 } 928 } 929 930 memset(&tss, 0, sizeof(tss)); 931 tsflags = READ_ONCE(sk->sk_tsflags); 932 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 933 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 934 skb_is_err_queue(skb) || 935 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 936 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 937 empty = 0; 938 if (shhwtstamps && 939 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 940 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 941 skb_is_err_queue(skb) || 942 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 943 !skb_is_swtx_tstamp(skb, false_tstamp)) { 944 if_index = 0; 945 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 946 hwtstamp = get_timestamp(sk, skb, &if_index); 947 else 948 hwtstamp = shhwtstamps->hwtstamp; 949 950 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 951 hwtstamp = ptp_convert_timestamp(&hwtstamp, 952 READ_ONCE(sk->sk_bind_phc)); 953 954 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 955 empty = 0; 956 957 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 958 !skb_is_err_queue(skb)) 959 put_ts_pktinfo(msg, skb, if_index); 960 } 961 } 962 if (!empty) { 963 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 964 put_cmsg_scm_timestamping64(msg, &tss); 965 else 966 put_cmsg_scm_timestamping(msg, &tss); 967 968 if (skb_is_err_queue(skb) && skb->len && 969 SKB_EXT_ERR(skb)->opt_stats) 970 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 971 skb->len, skb->data); 972 } 973 } 974 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 975 976 #ifdef CONFIG_WIRELESS 977 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 978 struct sk_buff *skb) 979 { 980 int ack; 981 982 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 983 return; 984 if (!skb->wifi_acked_valid) 985 return; 986 987 ack = skb->wifi_acked; 988 989 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 990 } 991 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 992 #endif 993 994 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 995 struct sk_buff *skb) 996 { 997 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 998 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 999 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1000 } 1001 1002 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1003 struct sk_buff *skb) 1004 { 1005 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1006 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1007 __u32 mark = skb->mark; 1008 1009 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1010 } 1011 } 1012 1013 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 1014 struct sk_buff *skb) 1015 { 1016 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 1017 __u32 priority = skb->priority; 1018 1019 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 1020 } 1021 } 1022 1023 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1024 struct sk_buff *skb) 1025 { 1026 sock_recv_timestamp(msg, sk, skb); 1027 sock_recv_drops(msg, sk, skb); 1028 sock_recv_mark(msg, sk, skb); 1029 sock_recv_priority(msg, sk, skb); 1030 } 1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1032 1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1034 size_t, int)); 1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1036 size_t, int)); 1037 1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1039 { 1040 trace_sock_recv_length(sk, ret, flags); 1041 } 1042 1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1044 int flags) 1045 { 1046 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1047 inet6_recvmsg, 1048 inet_recvmsg, sock, msg, 1049 msg_data_left(msg), flags); 1050 if (trace_sock_recv_length_enabled()) 1051 call_trace_sock_recv_length(sock->sk, ret, flags); 1052 return ret; 1053 } 1054 1055 /** 1056 * sock_recvmsg - receive a message from @sock 1057 * @sock: socket 1058 * @msg: message to receive 1059 * @flags: message flags 1060 * 1061 * Receives @msg from @sock, passing through LSM. Returns the total number 1062 * of bytes received, or an error. 1063 */ 1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1065 { 1066 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1067 1068 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1069 } 1070 EXPORT_SYMBOL(sock_recvmsg); 1071 1072 /** 1073 * kernel_recvmsg - Receive a message from a socket (kernel space) 1074 * @sock: The socket to receive the message from 1075 * @msg: Received message 1076 * @vec: Input s/g array for message data 1077 * @num: Size of input s/g array 1078 * @size: Number of bytes to read 1079 * @flags: Message flags (MSG_DONTWAIT, etc...) 1080 * 1081 * On return the msg structure contains the scatter/gather array passed in the 1082 * vec argument. The array is modified so that it consists of the unfilled 1083 * portion of the original array. 1084 * 1085 * The returned value is the total number of bytes received, or an error. 1086 */ 1087 1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1089 struct kvec *vec, size_t num, size_t size, int flags) 1090 { 1091 msg->msg_control_is_user = false; 1092 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1093 return sock_recvmsg(sock, msg, flags); 1094 } 1095 EXPORT_SYMBOL(kernel_recvmsg); 1096 1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1098 struct pipe_inode_info *pipe, size_t len, 1099 unsigned int flags) 1100 { 1101 struct socket *sock = file->private_data; 1102 const struct proto_ops *ops; 1103 1104 ops = READ_ONCE(sock->ops); 1105 if (unlikely(!ops->splice_read)) 1106 return copy_splice_read(file, ppos, pipe, len, flags); 1107 1108 return ops->splice_read(sock, ppos, pipe, len, flags); 1109 } 1110 1111 static void sock_splice_eof(struct file *file) 1112 { 1113 struct socket *sock = file->private_data; 1114 const struct proto_ops *ops; 1115 1116 ops = READ_ONCE(sock->ops); 1117 if (ops->splice_eof) 1118 ops->splice_eof(sock); 1119 } 1120 1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1122 { 1123 struct file *file = iocb->ki_filp; 1124 struct socket *sock = file->private_data; 1125 struct msghdr msg = {.msg_iter = *to, 1126 .msg_iocb = iocb}; 1127 ssize_t res; 1128 1129 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1130 msg.msg_flags = MSG_DONTWAIT; 1131 1132 if (iocb->ki_pos != 0) 1133 return -ESPIPE; 1134 1135 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1136 return 0; 1137 1138 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1139 *to = msg.msg_iter; 1140 return res; 1141 } 1142 1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1144 { 1145 struct file *file = iocb->ki_filp; 1146 struct socket *sock = file->private_data; 1147 struct msghdr msg = {.msg_iter = *from, 1148 .msg_iocb = iocb}; 1149 ssize_t res; 1150 1151 if (iocb->ki_pos != 0) 1152 return -ESPIPE; 1153 1154 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1155 msg.msg_flags = MSG_DONTWAIT; 1156 1157 if (sock->type == SOCK_SEQPACKET) 1158 msg.msg_flags |= MSG_EOR; 1159 1160 res = __sock_sendmsg(sock, &msg); 1161 *from = msg.msg_iter; 1162 return res; 1163 } 1164 1165 /* 1166 * Atomic setting of ioctl hooks to avoid race 1167 * with module unload. 1168 */ 1169 1170 static DEFINE_MUTEX(br_ioctl_mutex); 1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1172 unsigned int cmd, struct ifreq *ifr, 1173 void __user *uarg); 1174 1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1176 unsigned int cmd, struct ifreq *ifr, 1177 void __user *uarg)) 1178 { 1179 mutex_lock(&br_ioctl_mutex); 1180 br_ioctl_hook = hook; 1181 mutex_unlock(&br_ioctl_mutex); 1182 } 1183 EXPORT_SYMBOL(brioctl_set); 1184 1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1186 struct ifreq *ifr, void __user *uarg) 1187 { 1188 int err = -ENOPKG; 1189 1190 if (!br_ioctl_hook) 1191 request_module("bridge"); 1192 1193 mutex_lock(&br_ioctl_mutex); 1194 if (br_ioctl_hook) 1195 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1196 mutex_unlock(&br_ioctl_mutex); 1197 1198 return err; 1199 } 1200 1201 static DEFINE_MUTEX(vlan_ioctl_mutex); 1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1203 1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1205 { 1206 mutex_lock(&vlan_ioctl_mutex); 1207 vlan_ioctl_hook = hook; 1208 mutex_unlock(&vlan_ioctl_mutex); 1209 } 1210 EXPORT_SYMBOL(vlan_ioctl_set); 1211 1212 static long sock_do_ioctl(struct net *net, struct socket *sock, 1213 unsigned int cmd, unsigned long arg) 1214 { 1215 const struct proto_ops *ops = READ_ONCE(sock->ops); 1216 struct ifreq ifr; 1217 bool need_copyout; 1218 int err; 1219 void __user *argp = (void __user *)arg; 1220 void __user *data; 1221 1222 err = ops->ioctl(sock, cmd, arg); 1223 1224 /* 1225 * If this ioctl is unknown try to hand it down 1226 * to the NIC driver. 1227 */ 1228 if (err != -ENOIOCTLCMD) 1229 return err; 1230 1231 if (!is_socket_ioctl_cmd(cmd)) 1232 return -ENOTTY; 1233 1234 if (get_user_ifreq(&ifr, &data, argp)) 1235 return -EFAULT; 1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1237 if (!err && need_copyout) 1238 if (put_user_ifreq(&ifr, argp)) 1239 return -EFAULT; 1240 1241 return err; 1242 } 1243 1244 /* 1245 * With an ioctl, arg may well be a user mode pointer, but we don't know 1246 * what to do with it - that's up to the protocol still. 1247 */ 1248 1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1250 { 1251 const struct proto_ops *ops; 1252 struct socket *sock; 1253 struct sock *sk; 1254 void __user *argp = (void __user *)arg; 1255 int pid, err; 1256 struct net *net; 1257 1258 sock = file->private_data; 1259 ops = READ_ONCE(sock->ops); 1260 sk = sock->sk; 1261 net = sock_net(sk); 1262 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1263 struct ifreq ifr; 1264 void __user *data; 1265 bool need_copyout; 1266 if (get_user_ifreq(&ifr, &data, argp)) 1267 return -EFAULT; 1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1269 if (!err && need_copyout) 1270 if (put_user_ifreq(&ifr, argp)) 1271 return -EFAULT; 1272 } else 1273 #ifdef CONFIG_WEXT_CORE 1274 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1275 err = wext_handle_ioctl(net, cmd, argp); 1276 } else 1277 #endif 1278 switch (cmd) { 1279 case FIOSETOWN: 1280 case SIOCSPGRP: 1281 err = -EFAULT; 1282 if (get_user(pid, (int __user *)argp)) 1283 break; 1284 err = f_setown(sock->file, pid, 1); 1285 break; 1286 case FIOGETOWN: 1287 case SIOCGPGRP: 1288 err = put_user(f_getown(sock->file), 1289 (int __user *)argp); 1290 break; 1291 case SIOCGIFBR: 1292 case SIOCSIFBR: 1293 case SIOCBRADDBR: 1294 case SIOCBRDELBR: 1295 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1296 break; 1297 case SIOCGIFVLAN: 1298 case SIOCSIFVLAN: 1299 err = -ENOPKG; 1300 if (!vlan_ioctl_hook) 1301 request_module("8021q"); 1302 1303 mutex_lock(&vlan_ioctl_mutex); 1304 if (vlan_ioctl_hook) 1305 err = vlan_ioctl_hook(net, argp); 1306 mutex_unlock(&vlan_ioctl_mutex); 1307 break; 1308 case SIOCGSKNS: 1309 err = -EPERM; 1310 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1311 break; 1312 1313 err = open_related_ns(&net->ns, get_net_ns); 1314 break; 1315 case SIOCGSTAMP_OLD: 1316 case SIOCGSTAMPNS_OLD: 1317 if (!ops->gettstamp) { 1318 err = -ENOIOCTLCMD; 1319 break; 1320 } 1321 err = ops->gettstamp(sock, argp, 1322 cmd == SIOCGSTAMP_OLD, 1323 !IS_ENABLED(CONFIG_64BIT)); 1324 break; 1325 case SIOCGSTAMP_NEW: 1326 case SIOCGSTAMPNS_NEW: 1327 if (!ops->gettstamp) { 1328 err = -ENOIOCTLCMD; 1329 break; 1330 } 1331 err = ops->gettstamp(sock, argp, 1332 cmd == SIOCGSTAMP_NEW, 1333 false); 1334 break; 1335 1336 case SIOCGIFCONF: 1337 err = dev_ifconf(net, argp); 1338 break; 1339 1340 default: 1341 err = sock_do_ioctl(net, sock, cmd, arg); 1342 break; 1343 } 1344 return err; 1345 } 1346 1347 /** 1348 * sock_create_lite - creates a socket 1349 * @family: protocol family (AF_INET, ...) 1350 * @type: communication type (SOCK_STREAM, ...) 1351 * @protocol: protocol (0, ...) 1352 * @res: new socket 1353 * 1354 * Creates a new socket and assigns it to @res, passing through LSM. 1355 * The new socket initialization is not complete, see kernel_accept(). 1356 * Returns 0 or an error. On failure @res is set to %NULL. 1357 * This function internally uses GFP_KERNEL. 1358 */ 1359 1360 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1361 { 1362 int err; 1363 struct socket *sock = NULL; 1364 1365 err = security_socket_create(family, type, protocol, 1); 1366 if (err) 1367 goto out; 1368 1369 sock = sock_alloc(); 1370 if (!sock) { 1371 err = -ENOMEM; 1372 goto out; 1373 } 1374 1375 sock->type = type; 1376 err = security_socket_post_create(sock, family, type, protocol, 1); 1377 if (err) 1378 goto out_release; 1379 1380 out: 1381 *res = sock; 1382 return err; 1383 out_release: 1384 sock_release(sock); 1385 sock = NULL; 1386 goto out; 1387 } 1388 EXPORT_SYMBOL(sock_create_lite); 1389 1390 /* No kernel lock held - perfect */ 1391 static __poll_t sock_poll(struct file *file, poll_table *wait) 1392 { 1393 struct socket *sock = file->private_data; 1394 const struct proto_ops *ops = READ_ONCE(sock->ops); 1395 __poll_t events = poll_requested_events(wait), flag = 0; 1396 1397 if (!ops->poll) 1398 return 0; 1399 1400 if (sk_can_busy_loop(sock->sk)) { 1401 /* poll once if requested by the syscall */ 1402 if (events & POLL_BUSY_LOOP) 1403 sk_busy_loop(sock->sk, 1); 1404 1405 /* if this socket can poll_ll, tell the system call */ 1406 flag = POLL_BUSY_LOOP; 1407 } 1408 1409 return ops->poll(file, sock, wait) | flag; 1410 } 1411 1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1413 { 1414 struct socket *sock = file->private_data; 1415 1416 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1417 } 1418 1419 static int sock_close(struct inode *inode, struct file *filp) 1420 { 1421 __sock_release(SOCKET_I(inode), inode); 1422 return 0; 1423 } 1424 1425 /* 1426 * Update the socket async list 1427 * 1428 * Fasync_list locking strategy. 1429 * 1430 * 1. fasync_list is modified only under process context socket lock 1431 * i.e. under semaphore. 1432 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1433 * or under socket lock 1434 */ 1435 1436 static int sock_fasync(int fd, struct file *filp, int on) 1437 { 1438 struct socket *sock = filp->private_data; 1439 struct sock *sk = sock->sk; 1440 struct socket_wq *wq = &sock->wq; 1441 1442 if (sk == NULL) 1443 return -EINVAL; 1444 1445 lock_sock(sk); 1446 fasync_helper(fd, filp, on, &wq->fasync_list); 1447 1448 if (!wq->fasync_list) 1449 sock_reset_flag(sk, SOCK_FASYNC); 1450 else 1451 sock_set_flag(sk, SOCK_FASYNC); 1452 1453 release_sock(sk); 1454 return 0; 1455 } 1456 1457 /* This function may be called only under rcu_lock */ 1458 1459 int sock_wake_async(struct socket_wq *wq, int how, int band) 1460 { 1461 if (!wq || !wq->fasync_list) 1462 return -1; 1463 1464 switch (how) { 1465 case SOCK_WAKE_WAITD: 1466 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1467 break; 1468 goto call_kill; 1469 case SOCK_WAKE_SPACE: 1470 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1471 break; 1472 fallthrough; 1473 case SOCK_WAKE_IO: 1474 call_kill: 1475 kill_fasync(&wq->fasync_list, SIGIO, band); 1476 break; 1477 case SOCK_WAKE_URG: 1478 kill_fasync(&wq->fasync_list, SIGURG, band); 1479 } 1480 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(sock_wake_async); 1484 1485 /** 1486 * __sock_create - creates a socket 1487 * @net: net namespace 1488 * @family: protocol family (AF_INET, ...) 1489 * @type: communication type (SOCK_STREAM, ...) 1490 * @protocol: protocol (0, ...) 1491 * @res: new socket 1492 * @kern: boolean for kernel space sockets 1493 * 1494 * Creates a new socket and assigns it to @res, passing through LSM. 1495 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1496 * be set to true if the socket resides in kernel space. 1497 * This function internally uses GFP_KERNEL. 1498 */ 1499 1500 int __sock_create(struct net *net, int family, int type, int protocol, 1501 struct socket **res, int kern) 1502 { 1503 int err; 1504 struct socket *sock; 1505 const struct net_proto_family *pf; 1506 1507 /* 1508 * Check protocol is in range 1509 */ 1510 if (family < 0 || family >= NPROTO) 1511 return -EAFNOSUPPORT; 1512 if (type < 0 || type >= SOCK_MAX) 1513 return -EINVAL; 1514 1515 /* Compatibility. 1516 1517 This uglymoron is moved from INET layer to here to avoid 1518 deadlock in module load. 1519 */ 1520 if (family == PF_INET && type == SOCK_PACKET) { 1521 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1522 current->comm); 1523 family = PF_PACKET; 1524 } 1525 1526 err = security_socket_create(family, type, protocol, kern); 1527 if (err) 1528 return err; 1529 1530 /* 1531 * Allocate the socket and allow the family to set things up. if 1532 * the protocol is 0, the family is instructed to select an appropriate 1533 * default. 1534 */ 1535 sock = sock_alloc(); 1536 if (!sock) { 1537 net_warn_ratelimited("socket: no more sockets\n"); 1538 return -ENFILE; /* Not exactly a match, but its the 1539 closest posix thing */ 1540 } 1541 1542 sock->type = type; 1543 1544 #ifdef CONFIG_MODULES 1545 /* Attempt to load a protocol module if the find failed. 1546 * 1547 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1548 * requested real, full-featured networking support upon configuration. 1549 * Otherwise module support will break! 1550 */ 1551 if (rcu_access_pointer(net_families[family]) == NULL) 1552 request_module("net-pf-%d", family); 1553 #endif 1554 1555 rcu_read_lock(); 1556 pf = rcu_dereference(net_families[family]); 1557 err = -EAFNOSUPPORT; 1558 if (!pf) 1559 goto out_release; 1560 1561 /* 1562 * We will call the ->create function, that possibly is in a loadable 1563 * module, so we have to bump that loadable module refcnt first. 1564 */ 1565 if (!try_module_get(pf->owner)) 1566 goto out_release; 1567 1568 /* Now protected by module ref count */ 1569 rcu_read_unlock(); 1570 1571 err = pf->create(net, sock, protocol, kern); 1572 if (err < 0) { 1573 /* ->create should release the allocated sock->sk object on error 1574 * and make sure sock->sk is set to NULL to avoid use-after-free 1575 */ 1576 DEBUG_NET_WARN_ONCE(sock->sk, 1577 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1578 pf->create, family, type, protocol); 1579 goto out_module_put; 1580 } 1581 1582 /* 1583 * Now to bump the refcnt of the [loadable] module that owns this 1584 * socket at sock_release time we decrement its refcnt. 1585 */ 1586 if (!try_module_get(sock->ops->owner)) 1587 goto out_module_busy; 1588 1589 /* 1590 * Now that we're done with the ->create function, the [loadable] 1591 * module can have its refcnt decremented 1592 */ 1593 module_put(pf->owner); 1594 err = security_socket_post_create(sock, family, type, protocol, kern); 1595 if (err) 1596 goto out_sock_release; 1597 *res = sock; 1598 1599 return 0; 1600 1601 out_module_busy: 1602 err = -EAFNOSUPPORT; 1603 out_module_put: 1604 sock->ops = NULL; 1605 module_put(pf->owner); 1606 out_sock_release: 1607 sock_release(sock); 1608 return err; 1609 1610 out_release: 1611 rcu_read_unlock(); 1612 goto out_sock_release; 1613 } 1614 EXPORT_SYMBOL(__sock_create); 1615 1616 /** 1617 * sock_create - creates a socket 1618 * @family: protocol family (AF_INET, ...) 1619 * @type: communication type (SOCK_STREAM, ...) 1620 * @protocol: protocol (0, ...) 1621 * @res: new socket 1622 * 1623 * A wrapper around __sock_create(). 1624 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1625 */ 1626 1627 int sock_create(int family, int type, int protocol, struct socket **res) 1628 { 1629 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1630 } 1631 EXPORT_SYMBOL(sock_create); 1632 1633 /** 1634 * sock_create_kern - creates a socket (kernel space) 1635 * @net: net namespace 1636 * @family: protocol family (AF_INET, ...) 1637 * @type: communication type (SOCK_STREAM, ...) 1638 * @protocol: protocol (0, ...) 1639 * @res: new socket 1640 * 1641 * A wrapper around __sock_create(). 1642 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1643 */ 1644 1645 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1646 { 1647 return __sock_create(net, family, type, protocol, res, 1); 1648 } 1649 EXPORT_SYMBOL(sock_create_kern); 1650 1651 static struct socket *__sys_socket_create(int family, int type, int protocol) 1652 { 1653 struct socket *sock; 1654 int retval; 1655 1656 /* Check the SOCK_* constants for consistency. */ 1657 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1658 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1659 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1660 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1661 1662 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1663 return ERR_PTR(-EINVAL); 1664 type &= SOCK_TYPE_MASK; 1665 1666 retval = sock_create(family, type, protocol, &sock); 1667 if (retval < 0) 1668 return ERR_PTR(retval); 1669 1670 return sock; 1671 } 1672 1673 struct file *__sys_socket_file(int family, int type, int protocol) 1674 { 1675 struct socket *sock; 1676 int flags; 1677 1678 sock = __sys_socket_create(family, type, protocol); 1679 if (IS_ERR(sock)) 1680 return ERR_CAST(sock); 1681 1682 flags = type & ~SOCK_TYPE_MASK; 1683 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1684 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1685 1686 return sock_alloc_file(sock, flags, NULL); 1687 } 1688 1689 /* A hook for bpf progs to attach to and update socket protocol. 1690 * 1691 * A static noinline declaration here could cause the compiler to 1692 * optimize away the function. A global noinline declaration will 1693 * keep the definition, but may optimize away the callsite. 1694 * Therefore, __weak is needed to ensure that the call is still 1695 * emitted, by telling the compiler that we don't know what the 1696 * function might eventually be. 1697 */ 1698 1699 __bpf_hook_start(); 1700 1701 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1702 { 1703 return protocol; 1704 } 1705 1706 __bpf_hook_end(); 1707 1708 int __sys_socket(int family, int type, int protocol) 1709 { 1710 struct socket *sock; 1711 int flags; 1712 1713 sock = __sys_socket_create(family, type, 1714 update_socket_protocol(family, type, protocol)); 1715 if (IS_ERR(sock)) 1716 return PTR_ERR(sock); 1717 1718 flags = type & ~SOCK_TYPE_MASK; 1719 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1720 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1721 1722 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1723 } 1724 1725 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1726 { 1727 return __sys_socket(family, type, protocol); 1728 } 1729 1730 /* 1731 * Create a pair of connected sockets. 1732 */ 1733 1734 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1735 { 1736 struct socket *sock1, *sock2; 1737 int fd1, fd2, err; 1738 struct file *newfile1, *newfile2; 1739 int flags; 1740 1741 flags = type & ~SOCK_TYPE_MASK; 1742 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1743 return -EINVAL; 1744 type &= SOCK_TYPE_MASK; 1745 1746 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1747 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1748 1749 /* 1750 * reserve descriptors and make sure we won't fail 1751 * to return them to userland. 1752 */ 1753 fd1 = get_unused_fd_flags(flags); 1754 if (unlikely(fd1 < 0)) 1755 return fd1; 1756 1757 fd2 = get_unused_fd_flags(flags); 1758 if (unlikely(fd2 < 0)) { 1759 put_unused_fd(fd1); 1760 return fd2; 1761 } 1762 1763 err = put_user(fd1, &usockvec[0]); 1764 if (err) 1765 goto out; 1766 1767 err = put_user(fd2, &usockvec[1]); 1768 if (err) 1769 goto out; 1770 1771 /* 1772 * Obtain the first socket and check if the underlying protocol 1773 * supports the socketpair call. 1774 */ 1775 1776 err = sock_create(family, type, protocol, &sock1); 1777 if (unlikely(err < 0)) 1778 goto out; 1779 1780 err = sock_create(family, type, protocol, &sock2); 1781 if (unlikely(err < 0)) { 1782 sock_release(sock1); 1783 goto out; 1784 } 1785 1786 err = security_socket_socketpair(sock1, sock2); 1787 if (unlikely(err)) { 1788 sock_release(sock2); 1789 sock_release(sock1); 1790 goto out; 1791 } 1792 1793 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1794 if (unlikely(err < 0)) { 1795 sock_release(sock2); 1796 sock_release(sock1); 1797 goto out; 1798 } 1799 1800 newfile1 = sock_alloc_file(sock1, flags, NULL); 1801 if (IS_ERR(newfile1)) { 1802 err = PTR_ERR(newfile1); 1803 sock_release(sock2); 1804 goto out; 1805 } 1806 1807 newfile2 = sock_alloc_file(sock2, flags, NULL); 1808 if (IS_ERR(newfile2)) { 1809 err = PTR_ERR(newfile2); 1810 fput(newfile1); 1811 goto out; 1812 } 1813 1814 audit_fd_pair(fd1, fd2); 1815 1816 fd_install(fd1, newfile1); 1817 fd_install(fd2, newfile2); 1818 return 0; 1819 1820 out: 1821 put_unused_fd(fd2); 1822 put_unused_fd(fd1); 1823 return err; 1824 } 1825 1826 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1827 int __user *, usockvec) 1828 { 1829 return __sys_socketpair(family, type, protocol, usockvec); 1830 } 1831 1832 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1833 int addrlen) 1834 { 1835 int err; 1836 1837 err = security_socket_bind(sock, (struct sockaddr *)address, 1838 addrlen); 1839 if (!err) 1840 err = READ_ONCE(sock->ops)->bind(sock, 1841 (struct sockaddr *)address, 1842 addrlen); 1843 return err; 1844 } 1845 1846 /* 1847 * Bind a name to a socket. Nothing much to do here since it's 1848 * the protocol's responsibility to handle the local address. 1849 * 1850 * We move the socket address to kernel space before we call 1851 * the protocol layer (having also checked the address is ok). 1852 */ 1853 1854 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1855 { 1856 struct socket *sock; 1857 struct sockaddr_storage address; 1858 CLASS(fd, f)(fd); 1859 int err; 1860 1861 if (fd_empty(f)) 1862 return -EBADF; 1863 sock = sock_from_file(fd_file(f)); 1864 if (unlikely(!sock)) 1865 return -ENOTSOCK; 1866 1867 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1868 if (unlikely(err)) 1869 return err; 1870 1871 return __sys_bind_socket(sock, &address, addrlen); 1872 } 1873 1874 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1875 { 1876 return __sys_bind(fd, umyaddr, addrlen); 1877 } 1878 1879 /* 1880 * Perform a listen. Basically, we allow the protocol to do anything 1881 * necessary for a listen, and if that works, we mark the socket as 1882 * ready for listening. 1883 */ 1884 int __sys_listen_socket(struct socket *sock, int backlog) 1885 { 1886 int somaxconn, err; 1887 1888 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1889 if ((unsigned int)backlog > somaxconn) 1890 backlog = somaxconn; 1891 1892 err = security_socket_listen(sock, backlog); 1893 if (!err) 1894 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1895 return err; 1896 } 1897 1898 int __sys_listen(int fd, int backlog) 1899 { 1900 CLASS(fd, f)(fd); 1901 struct socket *sock; 1902 1903 if (fd_empty(f)) 1904 return -EBADF; 1905 sock = sock_from_file(fd_file(f)); 1906 if (unlikely(!sock)) 1907 return -ENOTSOCK; 1908 1909 return __sys_listen_socket(sock, backlog); 1910 } 1911 1912 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1913 { 1914 return __sys_listen(fd, backlog); 1915 } 1916 1917 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1918 struct sockaddr __user *upeer_sockaddr, 1919 int __user *upeer_addrlen, int flags) 1920 { 1921 struct socket *sock, *newsock; 1922 struct file *newfile; 1923 int err, len; 1924 struct sockaddr_storage address; 1925 const struct proto_ops *ops; 1926 1927 sock = sock_from_file(file); 1928 if (!sock) 1929 return ERR_PTR(-ENOTSOCK); 1930 1931 newsock = sock_alloc(); 1932 if (!newsock) 1933 return ERR_PTR(-ENFILE); 1934 ops = READ_ONCE(sock->ops); 1935 1936 newsock->type = sock->type; 1937 newsock->ops = ops; 1938 1939 /* 1940 * We don't need try_module_get here, as the listening socket (sock) 1941 * has the protocol module (sock->ops->owner) held. 1942 */ 1943 __module_get(ops->owner); 1944 1945 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1946 if (IS_ERR(newfile)) 1947 return newfile; 1948 1949 err = security_socket_accept(sock, newsock); 1950 if (err) 1951 goto out_fd; 1952 1953 arg->flags |= sock->file->f_flags; 1954 err = ops->accept(sock, newsock, arg); 1955 if (err < 0) 1956 goto out_fd; 1957 1958 if (upeer_sockaddr) { 1959 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1960 if (len < 0) { 1961 err = -ECONNABORTED; 1962 goto out_fd; 1963 } 1964 err = move_addr_to_user(&address, 1965 len, upeer_sockaddr, upeer_addrlen); 1966 if (err < 0) 1967 goto out_fd; 1968 } 1969 1970 /* File flags are not inherited via accept() unlike another OSes. */ 1971 return newfile; 1972 out_fd: 1973 fput(newfile); 1974 return ERR_PTR(err); 1975 } 1976 1977 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1978 int __user *upeer_addrlen, int flags) 1979 { 1980 struct proto_accept_arg arg = { }; 1981 struct file *newfile; 1982 int newfd; 1983 1984 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1985 return -EINVAL; 1986 1987 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1988 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1989 1990 newfd = get_unused_fd_flags(flags); 1991 if (unlikely(newfd < 0)) 1992 return newfd; 1993 1994 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1995 flags); 1996 if (IS_ERR(newfile)) { 1997 put_unused_fd(newfd); 1998 return PTR_ERR(newfile); 1999 } 2000 fd_install(newfd, newfile); 2001 return newfd; 2002 } 2003 2004 /* 2005 * For accept, we attempt to create a new socket, set up the link 2006 * with the client, wake up the client, then return the new 2007 * connected fd. We collect the address of the connector in kernel 2008 * space and move it to user at the very end. This is unclean because 2009 * we open the socket then return an error. 2010 * 2011 * 1003.1g adds the ability to recvmsg() to query connection pending 2012 * status to recvmsg. We need to add that support in a way thats 2013 * clean when we restructure accept also. 2014 */ 2015 2016 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2017 int __user *upeer_addrlen, int flags) 2018 { 2019 CLASS(fd, f)(fd); 2020 2021 if (fd_empty(f)) 2022 return -EBADF; 2023 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2024 upeer_addrlen, flags); 2025 } 2026 2027 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2028 int __user *, upeer_addrlen, int, flags) 2029 { 2030 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2031 } 2032 2033 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2034 int __user *, upeer_addrlen) 2035 { 2036 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2037 } 2038 2039 /* 2040 * Attempt to connect to a socket with the server address. The address 2041 * is in user space so we verify it is OK and move it to kernel space. 2042 * 2043 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2044 * break bindings 2045 * 2046 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2047 * other SEQPACKET protocols that take time to connect() as it doesn't 2048 * include the -EINPROGRESS status for such sockets. 2049 */ 2050 2051 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2052 int addrlen, int file_flags) 2053 { 2054 struct socket *sock; 2055 int err; 2056 2057 sock = sock_from_file(file); 2058 if (!sock) { 2059 err = -ENOTSOCK; 2060 goto out; 2061 } 2062 2063 err = 2064 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2065 if (err) 2066 goto out; 2067 2068 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2069 addrlen, sock->file->f_flags | file_flags); 2070 out: 2071 return err; 2072 } 2073 2074 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2075 { 2076 struct sockaddr_storage address; 2077 CLASS(fd, f)(fd); 2078 int ret; 2079 2080 if (fd_empty(f)) 2081 return -EBADF; 2082 2083 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2084 if (ret) 2085 return ret; 2086 2087 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2088 } 2089 2090 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2091 int, addrlen) 2092 { 2093 return __sys_connect(fd, uservaddr, addrlen); 2094 } 2095 2096 /* 2097 * Get the local address ('name') of a socket object. Move the obtained 2098 * name to user space. 2099 */ 2100 2101 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2102 int __user *usockaddr_len) 2103 { 2104 struct socket *sock; 2105 struct sockaddr_storage address; 2106 CLASS(fd, f)(fd); 2107 int err; 2108 2109 if (fd_empty(f)) 2110 return -EBADF; 2111 sock = sock_from_file(fd_file(f)); 2112 if (unlikely(!sock)) 2113 return -ENOTSOCK; 2114 2115 err = security_socket_getsockname(sock); 2116 if (err) 2117 return err; 2118 2119 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2120 if (err < 0) 2121 return err; 2122 2123 /* "err" is actually length in this case */ 2124 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2125 } 2126 2127 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2128 int __user *, usockaddr_len) 2129 { 2130 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2131 } 2132 2133 /* 2134 * Get the remote address ('name') of a socket object. Move the obtained 2135 * name to user space. 2136 */ 2137 2138 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2139 int __user *usockaddr_len) 2140 { 2141 struct socket *sock; 2142 struct sockaddr_storage address; 2143 CLASS(fd, f)(fd); 2144 int err; 2145 2146 if (fd_empty(f)) 2147 return -EBADF; 2148 sock = sock_from_file(fd_file(f)); 2149 if (unlikely(!sock)) 2150 return -ENOTSOCK; 2151 2152 err = security_socket_getpeername(sock); 2153 if (err) 2154 return err; 2155 2156 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2157 if (err < 0) 2158 return err; 2159 2160 /* "err" is actually length in this case */ 2161 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2162 } 2163 2164 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2165 int __user *, usockaddr_len) 2166 { 2167 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2168 } 2169 2170 /* 2171 * Send a datagram to a given address. We move the address into kernel 2172 * space and check the user space data area is readable before invoking 2173 * the protocol. 2174 */ 2175 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2176 struct sockaddr __user *addr, int addr_len) 2177 { 2178 struct socket *sock; 2179 struct sockaddr_storage address; 2180 int err; 2181 struct msghdr msg; 2182 2183 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2184 if (unlikely(err)) 2185 return err; 2186 2187 CLASS(fd, f)(fd); 2188 if (fd_empty(f)) 2189 return -EBADF; 2190 sock = sock_from_file(fd_file(f)); 2191 if (unlikely(!sock)) 2192 return -ENOTSOCK; 2193 2194 msg.msg_name = NULL; 2195 msg.msg_control = NULL; 2196 msg.msg_controllen = 0; 2197 msg.msg_namelen = 0; 2198 msg.msg_ubuf = NULL; 2199 if (addr) { 2200 err = move_addr_to_kernel(addr, addr_len, &address); 2201 if (err < 0) 2202 return err; 2203 msg.msg_name = (struct sockaddr *)&address; 2204 msg.msg_namelen = addr_len; 2205 } 2206 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2207 if (sock->file->f_flags & O_NONBLOCK) 2208 flags |= MSG_DONTWAIT; 2209 msg.msg_flags = flags; 2210 return __sock_sendmsg(sock, &msg); 2211 } 2212 2213 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2214 unsigned int, flags, struct sockaddr __user *, addr, 2215 int, addr_len) 2216 { 2217 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2218 } 2219 2220 /* 2221 * Send a datagram down a socket. 2222 */ 2223 2224 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2225 unsigned int, flags) 2226 { 2227 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2228 } 2229 2230 /* 2231 * Receive a frame from the socket and optionally record the address of the 2232 * sender. We verify the buffers are writable and if needed move the 2233 * sender address from kernel to user space. 2234 */ 2235 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2236 struct sockaddr __user *addr, int __user *addr_len) 2237 { 2238 struct sockaddr_storage address; 2239 struct msghdr msg = { 2240 /* Save some cycles and don't copy the address if not needed */ 2241 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2242 }; 2243 struct socket *sock; 2244 int err, err2; 2245 2246 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2247 if (unlikely(err)) 2248 return err; 2249 2250 CLASS(fd, f)(fd); 2251 2252 if (fd_empty(f)) 2253 return -EBADF; 2254 sock = sock_from_file(fd_file(f)); 2255 if (unlikely(!sock)) 2256 return -ENOTSOCK; 2257 2258 if (sock->file->f_flags & O_NONBLOCK) 2259 flags |= MSG_DONTWAIT; 2260 err = sock_recvmsg(sock, &msg, flags); 2261 2262 if (err >= 0 && addr != NULL) { 2263 err2 = move_addr_to_user(&address, 2264 msg.msg_namelen, addr, addr_len); 2265 if (err2 < 0) 2266 err = err2; 2267 } 2268 return err; 2269 } 2270 2271 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2272 unsigned int, flags, struct sockaddr __user *, addr, 2273 int __user *, addr_len) 2274 { 2275 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2276 } 2277 2278 /* 2279 * Receive a datagram from a socket. 2280 */ 2281 2282 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2283 unsigned int, flags) 2284 { 2285 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2286 } 2287 2288 static bool sock_use_custom_sol_socket(const struct socket *sock) 2289 { 2290 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2291 } 2292 2293 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2294 int optname, sockptr_t optval, int optlen) 2295 { 2296 const struct proto_ops *ops; 2297 char *kernel_optval = NULL; 2298 int err; 2299 2300 if (optlen < 0) 2301 return -EINVAL; 2302 2303 err = security_socket_setsockopt(sock, level, optname); 2304 if (err) 2305 goto out_put; 2306 2307 if (!compat) 2308 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2309 optval, &optlen, 2310 &kernel_optval); 2311 if (err < 0) 2312 goto out_put; 2313 if (err > 0) { 2314 err = 0; 2315 goto out_put; 2316 } 2317 2318 if (kernel_optval) 2319 optval = KERNEL_SOCKPTR(kernel_optval); 2320 ops = READ_ONCE(sock->ops); 2321 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2322 err = sock_setsockopt(sock, level, optname, optval, optlen); 2323 else if (unlikely(!ops->setsockopt)) 2324 err = -EOPNOTSUPP; 2325 else 2326 err = ops->setsockopt(sock, level, optname, optval, 2327 optlen); 2328 kfree(kernel_optval); 2329 out_put: 2330 return err; 2331 } 2332 EXPORT_SYMBOL(do_sock_setsockopt); 2333 2334 /* Set a socket option. Because we don't know the option lengths we have 2335 * to pass the user mode parameter for the protocols to sort out. 2336 */ 2337 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2338 int optlen) 2339 { 2340 sockptr_t optval = USER_SOCKPTR(user_optval); 2341 bool compat = in_compat_syscall(); 2342 struct socket *sock; 2343 CLASS(fd, f)(fd); 2344 2345 if (fd_empty(f)) 2346 return -EBADF; 2347 sock = sock_from_file(fd_file(f)); 2348 if (unlikely(!sock)) 2349 return -ENOTSOCK; 2350 2351 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2352 } 2353 2354 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2355 char __user *, optval, int, optlen) 2356 { 2357 return __sys_setsockopt(fd, level, optname, optval, optlen); 2358 } 2359 2360 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2361 int optname)); 2362 2363 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2364 int optname, sockptr_t optval, sockptr_t optlen) 2365 { 2366 int max_optlen __maybe_unused = 0; 2367 const struct proto_ops *ops; 2368 int err; 2369 2370 err = security_socket_getsockopt(sock, level, optname); 2371 if (err) 2372 return err; 2373 2374 if (!compat) 2375 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2376 2377 ops = READ_ONCE(sock->ops); 2378 if (level == SOL_SOCKET) { 2379 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2380 } else if (unlikely(!ops->getsockopt)) { 2381 err = -EOPNOTSUPP; 2382 } else { 2383 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2384 "Invalid argument type")) 2385 return -EOPNOTSUPP; 2386 2387 err = ops->getsockopt(sock, level, optname, optval.user, 2388 optlen.user); 2389 } 2390 2391 if (!compat) 2392 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2393 optval, optlen, max_optlen, 2394 err); 2395 2396 return err; 2397 } 2398 EXPORT_SYMBOL(do_sock_getsockopt); 2399 2400 /* 2401 * Get a socket option. Because we don't know the option lengths we have 2402 * to pass a user mode parameter for the protocols to sort out. 2403 */ 2404 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2405 int __user *optlen) 2406 { 2407 struct socket *sock; 2408 CLASS(fd, f)(fd); 2409 2410 if (fd_empty(f)) 2411 return -EBADF; 2412 sock = sock_from_file(fd_file(f)); 2413 if (unlikely(!sock)) 2414 return -ENOTSOCK; 2415 2416 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2417 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2418 } 2419 2420 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2421 char __user *, optval, int __user *, optlen) 2422 { 2423 return __sys_getsockopt(fd, level, optname, optval, optlen); 2424 } 2425 2426 /* 2427 * Shutdown a socket. 2428 */ 2429 2430 int __sys_shutdown_sock(struct socket *sock, int how) 2431 { 2432 int err; 2433 2434 err = security_socket_shutdown(sock, how); 2435 if (!err) 2436 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2437 2438 return err; 2439 } 2440 2441 int __sys_shutdown(int fd, int how) 2442 { 2443 struct socket *sock; 2444 CLASS(fd, f)(fd); 2445 2446 if (fd_empty(f)) 2447 return -EBADF; 2448 sock = sock_from_file(fd_file(f)); 2449 if (unlikely(!sock)) 2450 return -ENOTSOCK; 2451 2452 return __sys_shutdown_sock(sock, how); 2453 } 2454 2455 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2456 { 2457 return __sys_shutdown(fd, how); 2458 } 2459 2460 /* A couple of helpful macros for getting the address of the 32/64 bit 2461 * fields which are the same type (int / unsigned) on our platforms. 2462 */ 2463 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2464 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2465 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2466 2467 struct used_address { 2468 struct sockaddr_storage name; 2469 unsigned int name_len; 2470 }; 2471 2472 int __copy_msghdr(struct msghdr *kmsg, 2473 struct user_msghdr *msg, 2474 struct sockaddr __user **save_addr) 2475 { 2476 ssize_t err; 2477 2478 kmsg->msg_control_is_user = true; 2479 kmsg->msg_get_inq = 0; 2480 kmsg->msg_control_user = msg->msg_control; 2481 kmsg->msg_controllen = msg->msg_controllen; 2482 kmsg->msg_flags = msg->msg_flags; 2483 2484 kmsg->msg_namelen = msg->msg_namelen; 2485 if (!msg->msg_name) 2486 kmsg->msg_namelen = 0; 2487 2488 if (kmsg->msg_namelen < 0) 2489 return -EINVAL; 2490 2491 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2492 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2493 2494 if (save_addr) 2495 *save_addr = msg->msg_name; 2496 2497 if (msg->msg_name && kmsg->msg_namelen) { 2498 if (!save_addr) { 2499 err = move_addr_to_kernel(msg->msg_name, 2500 kmsg->msg_namelen, 2501 kmsg->msg_name); 2502 if (err < 0) 2503 return err; 2504 } 2505 } else { 2506 kmsg->msg_name = NULL; 2507 kmsg->msg_namelen = 0; 2508 } 2509 2510 if (msg->msg_iovlen > UIO_MAXIOV) 2511 return -EMSGSIZE; 2512 2513 kmsg->msg_iocb = NULL; 2514 kmsg->msg_ubuf = NULL; 2515 return 0; 2516 } 2517 2518 static int copy_msghdr_from_user(struct msghdr *kmsg, 2519 struct user_msghdr __user *umsg, 2520 struct sockaddr __user **save_addr, 2521 struct iovec **iov) 2522 { 2523 struct user_msghdr msg; 2524 ssize_t err; 2525 2526 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2527 return -EFAULT; 2528 2529 err = __copy_msghdr(kmsg, &msg, save_addr); 2530 if (err) 2531 return err; 2532 2533 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2534 msg.msg_iov, msg.msg_iovlen, 2535 UIO_FASTIOV, iov, &kmsg->msg_iter); 2536 return err < 0 ? err : 0; 2537 } 2538 2539 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2540 unsigned int flags, struct used_address *used_address, 2541 unsigned int allowed_msghdr_flags) 2542 { 2543 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2544 __aligned(sizeof(__kernel_size_t)); 2545 /* 20 is size of ipv6_pktinfo */ 2546 unsigned char *ctl_buf = ctl; 2547 int ctl_len; 2548 ssize_t err; 2549 2550 err = -ENOBUFS; 2551 2552 if (msg_sys->msg_controllen > INT_MAX) 2553 goto out; 2554 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2555 ctl_len = msg_sys->msg_controllen; 2556 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2557 err = 2558 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2559 sizeof(ctl)); 2560 if (err) 2561 goto out; 2562 ctl_buf = msg_sys->msg_control; 2563 ctl_len = msg_sys->msg_controllen; 2564 } else if (ctl_len) { 2565 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2566 CMSG_ALIGN(sizeof(struct cmsghdr))); 2567 if (ctl_len > sizeof(ctl)) { 2568 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2569 if (ctl_buf == NULL) 2570 goto out; 2571 } 2572 err = -EFAULT; 2573 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2574 goto out_freectl; 2575 msg_sys->msg_control = ctl_buf; 2576 msg_sys->msg_control_is_user = false; 2577 } 2578 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2579 msg_sys->msg_flags = flags; 2580 2581 if (sock->file->f_flags & O_NONBLOCK) 2582 msg_sys->msg_flags |= MSG_DONTWAIT; 2583 /* 2584 * If this is sendmmsg() and current destination address is same as 2585 * previously succeeded address, omit asking LSM's decision. 2586 * used_address->name_len is initialized to UINT_MAX so that the first 2587 * destination address never matches. 2588 */ 2589 if (used_address && msg_sys->msg_name && 2590 used_address->name_len == msg_sys->msg_namelen && 2591 !memcmp(&used_address->name, msg_sys->msg_name, 2592 used_address->name_len)) { 2593 err = sock_sendmsg_nosec(sock, msg_sys); 2594 goto out_freectl; 2595 } 2596 err = __sock_sendmsg(sock, msg_sys); 2597 /* 2598 * If this is sendmmsg() and sending to current destination address was 2599 * successful, remember it. 2600 */ 2601 if (used_address && err >= 0) { 2602 used_address->name_len = msg_sys->msg_namelen; 2603 if (msg_sys->msg_name) 2604 memcpy(&used_address->name, msg_sys->msg_name, 2605 used_address->name_len); 2606 } 2607 2608 out_freectl: 2609 if (ctl_buf != ctl) 2610 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2611 out: 2612 return err; 2613 } 2614 2615 static int sendmsg_copy_msghdr(struct msghdr *msg, 2616 struct user_msghdr __user *umsg, unsigned flags, 2617 struct iovec **iov) 2618 { 2619 int err; 2620 2621 if (flags & MSG_CMSG_COMPAT) { 2622 struct compat_msghdr __user *msg_compat; 2623 2624 msg_compat = (struct compat_msghdr __user *) umsg; 2625 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2626 } else { 2627 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2628 } 2629 if (err < 0) 2630 return err; 2631 2632 return 0; 2633 } 2634 2635 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2636 struct msghdr *msg_sys, unsigned int flags, 2637 struct used_address *used_address, 2638 unsigned int allowed_msghdr_flags) 2639 { 2640 struct sockaddr_storage address; 2641 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2642 ssize_t err; 2643 2644 msg_sys->msg_name = &address; 2645 2646 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2647 if (err < 0) 2648 return err; 2649 2650 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2651 allowed_msghdr_flags); 2652 kfree(iov); 2653 return err; 2654 } 2655 2656 /* 2657 * BSD sendmsg interface 2658 */ 2659 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2660 unsigned int flags) 2661 { 2662 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2663 } 2664 2665 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2666 bool forbid_cmsg_compat) 2667 { 2668 struct msghdr msg_sys; 2669 struct socket *sock; 2670 2671 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2672 return -EINVAL; 2673 2674 CLASS(fd, f)(fd); 2675 2676 if (fd_empty(f)) 2677 return -EBADF; 2678 sock = sock_from_file(fd_file(f)); 2679 if (unlikely(!sock)) 2680 return -ENOTSOCK; 2681 2682 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2683 } 2684 2685 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2686 { 2687 return __sys_sendmsg(fd, msg, flags, true); 2688 } 2689 2690 /* 2691 * Linux sendmmsg interface 2692 */ 2693 2694 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2695 unsigned int flags, bool forbid_cmsg_compat) 2696 { 2697 int err, datagrams; 2698 struct socket *sock; 2699 struct mmsghdr __user *entry; 2700 struct compat_mmsghdr __user *compat_entry; 2701 struct msghdr msg_sys; 2702 struct used_address used_address; 2703 unsigned int oflags = flags; 2704 2705 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2706 return -EINVAL; 2707 2708 if (vlen > UIO_MAXIOV) 2709 vlen = UIO_MAXIOV; 2710 2711 datagrams = 0; 2712 2713 CLASS(fd, f)(fd); 2714 2715 if (fd_empty(f)) 2716 return -EBADF; 2717 sock = sock_from_file(fd_file(f)); 2718 if (unlikely(!sock)) 2719 return -ENOTSOCK; 2720 2721 used_address.name_len = UINT_MAX; 2722 entry = mmsg; 2723 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2724 err = 0; 2725 flags |= MSG_BATCH; 2726 2727 while (datagrams < vlen) { 2728 if (datagrams == vlen - 1) 2729 flags = oflags; 2730 2731 if (MSG_CMSG_COMPAT & flags) { 2732 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2733 &msg_sys, flags, &used_address, MSG_EOR); 2734 if (err < 0) 2735 break; 2736 err = __put_user(err, &compat_entry->msg_len); 2737 ++compat_entry; 2738 } else { 2739 err = ___sys_sendmsg(sock, 2740 (struct user_msghdr __user *)entry, 2741 &msg_sys, flags, &used_address, MSG_EOR); 2742 if (err < 0) 2743 break; 2744 err = put_user(err, &entry->msg_len); 2745 ++entry; 2746 } 2747 2748 if (err) 2749 break; 2750 ++datagrams; 2751 if (msg_data_left(&msg_sys)) 2752 break; 2753 cond_resched(); 2754 } 2755 2756 /* We only return an error if no datagrams were able to be sent */ 2757 if (datagrams != 0) 2758 return datagrams; 2759 2760 return err; 2761 } 2762 2763 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2764 unsigned int, vlen, unsigned int, flags) 2765 { 2766 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2767 } 2768 2769 static int recvmsg_copy_msghdr(struct msghdr *msg, 2770 struct user_msghdr __user *umsg, unsigned flags, 2771 struct sockaddr __user **uaddr, 2772 struct iovec **iov) 2773 { 2774 ssize_t err; 2775 2776 if (MSG_CMSG_COMPAT & flags) { 2777 struct compat_msghdr __user *msg_compat; 2778 2779 msg_compat = (struct compat_msghdr __user *) umsg; 2780 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2781 } else { 2782 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2783 } 2784 if (err < 0) 2785 return err; 2786 2787 return 0; 2788 } 2789 2790 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2791 struct user_msghdr __user *msg, 2792 struct sockaddr __user *uaddr, 2793 unsigned int flags, int nosec) 2794 { 2795 struct compat_msghdr __user *msg_compat = 2796 (struct compat_msghdr __user *) msg; 2797 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2798 struct sockaddr_storage addr; 2799 unsigned long cmsg_ptr; 2800 int len; 2801 ssize_t err; 2802 2803 msg_sys->msg_name = &addr; 2804 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2805 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2806 2807 /* We assume all kernel code knows the size of sockaddr_storage */ 2808 msg_sys->msg_namelen = 0; 2809 2810 if (sock->file->f_flags & O_NONBLOCK) 2811 flags |= MSG_DONTWAIT; 2812 2813 if (unlikely(nosec)) 2814 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2815 else 2816 err = sock_recvmsg(sock, msg_sys, flags); 2817 2818 if (err < 0) 2819 goto out; 2820 len = err; 2821 2822 if (uaddr != NULL) { 2823 err = move_addr_to_user(&addr, 2824 msg_sys->msg_namelen, uaddr, 2825 uaddr_len); 2826 if (err < 0) 2827 goto out; 2828 } 2829 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2830 COMPAT_FLAGS(msg)); 2831 if (err) 2832 goto out; 2833 if (MSG_CMSG_COMPAT & flags) 2834 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2835 &msg_compat->msg_controllen); 2836 else 2837 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2838 &msg->msg_controllen); 2839 if (err) 2840 goto out; 2841 err = len; 2842 out: 2843 return err; 2844 } 2845 2846 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2847 struct msghdr *msg_sys, unsigned int flags, int nosec) 2848 { 2849 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2850 /* user mode address pointers */ 2851 struct sockaddr __user *uaddr; 2852 ssize_t err; 2853 2854 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2855 if (err < 0) 2856 return err; 2857 2858 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2859 kfree(iov); 2860 return err; 2861 } 2862 2863 /* 2864 * BSD recvmsg interface 2865 */ 2866 2867 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2868 struct user_msghdr __user *umsg, 2869 struct sockaddr __user *uaddr, unsigned int flags) 2870 { 2871 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2872 } 2873 2874 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2875 bool forbid_cmsg_compat) 2876 { 2877 struct msghdr msg_sys; 2878 struct socket *sock; 2879 2880 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2881 return -EINVAL; 2882 2883 CLASS(fd, f)(fd); 2884 2885 if (fd_empty(f)) 2886 return -EBADF; 2887 sock = sock_from_file(fd_file(f)); 2888 if (unlikely(!sock)) 2889 return -ENOTSOCK; 2890 2891 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2892 } 2893 2894 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2895 unsigned int, flags) 2896 { 2897 return __sys_recvmsg(fd, msg, flags, true); 2898 } 2899 2900 /* 2901 * Linux recvmmsg interface 2902 */ 2903 2904 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2905 unsigned int vlen, unsigned int flags, 2906 struct timespec64 *timeout) 2907 { 2908 int err = 0, datagrams; 2909 struct socket *sock; 2910 struct mmsghdr __user *entry; 2911 struct compat_mmsghdr __user *compat_entry; 2912 struct msghdr msg_sys; 2913 struct timespec64 end_time; 2914 struct timespec64 timeout64; 2915 2916 if (timeout && 2917 poll_select_set_timeout(&end_time, timeout->tv_sec, 2918 timeout->tv_nsec)) 2919 return -EINVAL; 2920 2921 datagrams = 0; 2922 2923 CLASS(fd, f)(fd); 2924 2925 if (fd_empty(f)) 2926 return -EBADF; 2927 sock = sock_from_file(fd_file(f)); 2928 if (unlikely(!sock)) 2929 return -ENOTSOCK; 2930 2931 if (likely(!(flags & MSG_ERRQUEUE))) { 2932 err = sock_error(sock->sk); 2933 if (err) 2934 return err; 2935 } 2936 2937 entry = mmsg; 2938 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2939 2940 while (datagrams < vlen) { 2941 /* 2942 * No need to ask LSM for more than the first datagram. 2943 */ 2944 if (MSG_CMSG_COMPAT & flags) { 2945 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2946 &msg_sys, flags & ~MSG_WAITFORONE, 2947 datagrams); 2948 if (err < 0) 2949 break; 2950 err = __put_user(err, &compat_entry->msg_len); 2951 ++compat_entry; 2952 } else { 2953 err = ___sys_recvmsg(sock, 2954 (struct user_msghdr __user *)entry, 2955 &msg_sys, flags & ~MSG_WAITFORONE, 2956 datagrams); 2957 if (err < 0) 2958 break; 2959 err = put_user(err, &entry->msg_len); 2960 ++entry; 2961 } 2962 2963 if (err) 2964 break; 2965 ++datagrams; 2966 2967 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2968 if (flags & MSG_WAITFORONE) 2969 flags |= MSG_DONTWAIT; 2970 2971 if (timeout) { 2972 ktime_get_ts64(&timeout64); 2973 *timeout = timespec64_sub(end_time, timeout64); 2974 if (timeout->tv_sec < 0) { 2975 timeout->tv_sec = timeout->tv_nsec = 0; 2976 break; 2977 } 2978 2979 /* Timeout, return less than vlen datagrams */ 2980 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2981 break; 2982 } 2983 2984 /* Out of band data, return right away */ 2985 if (msg_sys.msg_flags & MSG_OOB) 2986 break; 2987 cond_resched(); 2988 } 2989 2990 if (err == 0) 2991 return datagrams; 2992 2993 if (datagrams == 0) 2994 return err; 2995 2996 /* 2997 * We may return less entries than requested (vlen) if the 2998 * sock is non block and there aren't enough datagrams... 2999 */ 3000 if (err != -EAGAIN) { 3001 /* 3002 * ... or if recvmsg returns an error after we 3003 * received some datagrams, where we record the 3004 * error to return on the next call or if the 3005 * app asks about it using getsockopt(SO_ERROR). 3006 */ 3007 WRITE_ONCE(sock->sk->sk_err, -err); 3008 } 3009 return datagrams; 3010 } 3011 3012 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3013 unsigned int vlen, unsigned int flags, 3014 struct __kernel_timespec __user *timeout, 3015 struct old_timespec32 __user *timeout32) 3016 { 3017 int datagrams; 3018 struct timespec64 timeout_sys; 3019 3020 if (timeout && get_timespec64(&timeout_sys, timeout)) 3021 return -EFAULT; 3022 3023 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3024 return -EFAULT; 3025 3026 if (!timeout && !timeout32) 3027 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3028 3029 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3030 3031 if (datagrams <= 0) 3032 return datagrams; 3033 3034 if (timeout && put_timespec64(&timeout_sys, timeout)) 3035 datagrams = -EFAULT; 3036 3037 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3038 datagrams = -EFAULT; 3039 3040 return datagrams; 3041 } 3042 3043 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3044 unsigned int, vlen, unsigned int, flags, 3045 struct __kernel_timespec __user *, timeout) 3046 { 3047 if (flags & MSG_CMSG_COMPAT) 3048 return -EINVAL; 3049 3050 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3051 } 3052 3053 #ifdef CONFIG_COMPAT_32BIT_TIME 3054 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3055 unsigned int, vlen, unsigned int, flags, 3056 struct old_timespec32 __user *, timeout) 3057 { 3058 if (flags & MSG_CMSG_COMPAT) 3059 return -EINVAL; 3060 3061 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3062 } 3063 #endif 3064 3065 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3066 /* Argument list sizes for sys_socketcall */ 3067 #define AL(x) ((x) * sizeof(unsigned long)) 3068 static const unsigned char nargs[21] = { 3069 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3070 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3071 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3072 AL(4), AL(5), AL(4) 3073 }; 3074 3075 #undef AL 3076 3077 /* 3078 * System call vectors. 3079 * 3080 * Argument checking cleaned up. Saved 20% in size. 3081 * This function doesn't need to set the kernel lock because 3082 * it is set by the callees. 3083 */ 3084 3085 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3086 { 3087 unsigned long a[AUDITSC_ARGS]; 3088 unsigned long a0, a1; 3089 int err; 3090 unsigned int len; 3091 3092 if (call < 1 || call > SYS_SENDMMSG) 3093 return -EINVAL; 3094 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3095 3096 len = nargs[call]; 3097 if (len > sizeof(a)) 3098 return -EINVAL; 3099 3100 /* copy_from_user should be SMP safe. */ 3101 if (copy_from_user(a, args, len)) 3102 return -EFAULT; 3103 3104 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3105 if (err) 3106 return err; 3107 3108 a0 = a[0]; 3109 a1 = a[1]; 3110 3111 switch (call) { 3112 case SYS_SOCKET: 3113 err = __sys_socket(a0, a1, a[2]); 3114 break; 3115 case SYS_BIND: 3116 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3117 break; 3118 case SYS_CONNECT: 3119 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3120 break; 3121 case SYS_LISTEN: 3122 err = __sys_listen(a0, a1); 3123 break; 3124 case SYS_ACCEPT: 3125 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3126 (int __user *)a[2], 0); 3127 break; 3128 case SYS_GETSOCKNAME: 3129 err = 3130 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3131 (int __user *)a[2]); 3132 break; 3133 case SYS_GETPEERNAME: 3134 err = 3135 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3136 (int __user *)a[2]); 3137 break; 3138 case SYS_SOCKETPAIR: 3139 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3140 break; 3141 case SYS_SEND: 3142 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3143 NULL, 0); 3144 break; 3145 case SYS_SENDTO: 3146 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3147 (struct sockaddr __user *)a[4], a[5]); 3148 break; 3149 case SYS_RECV: 3150 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3151 NULL, NULL); 3152 break; 3153 case SYS_RECVFROM: 3154 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3155 (struct sockaddr __user *)a[4], 3156 (int __user *)a[5]); 3157 break; 3158 case SYS_SHUTDOWN: 3159 err = __sys_shutdown(a0, a1); 3160 break; 3161 case SYS_SETSOCKOPT: 3162 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3163 a[4]); 3164 break; 3165 case SYS_GETSOCKOPT: 3166 err = 3167 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3168 (int __user *)a[4]); 3169 break; 3170 case SYS_SENDMSG: 3171 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3172 a[2], true); 3173 break; 3174 case SYS_SENDMMSG: 3175 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3176 a[3], true); 3177 break; 3178 case SYS_RECVMSG: 3179 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3180 a[2], true); 3181 break; 3182 case SYS_RECVMMSG: 3183 if (IS_ENABLED(CONFIG_64BIT)) 3184 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3185 a[2], a[3], 3186 (struct __kernel_timespec __user *)a[4], 3187 NULL); 3188 else 3189 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3190 a[2], a[3], NULL, 3191 (struct old_timespec32 __user *)a[4]); 3192 break; 3193 case SYS_ACCEPT4: 3194 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3195 (int __user *)a[2], a[3]); 3196 break; 3197 default: 3198 err = -EINVAL; 3199 break; 3200 } 3201 return err; 3202 } 3203 3204 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3205 3206 /** 3207 * sock_register - add a socket protocol handler 3208 * @ops: description of protocol 3209 * 3210 * This function is called by a protocol handler that wants to 3211 * advertise its address family, and have it linked into the 3212 * socket interface. The value ops->family corresponds to the 3213 * socket system call protocol family. 3214 */ 3215 int sock_register(const struct net_proto_family *ops) 3216 { 3217 int err; 3218 3219 if (ops->family >= NPROTO) { 3220 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3221 return -ENOBUFS; 3222 } 3223 3224 spin_lock(&net_family_lock); 3225 if (rcu_dereference_protected(net_families[ops->family], 3226 lockdep_is_held(&net_family_lock))) 3227 err = -EEXIST; 3228 else { 3229 rcu_assign_pointer(net_families[ops->family], ops); 3230 err = 0; 3231 } 3232 spin_unlock(&net_family_lock); 3233 3234 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3235 return err; 3236 } 3237 EXPORT_SYMBOL(sock_register); 3238 3239 /** 3240 * sock_unregister - remove a protocol handler 3241 * @family: protocol family to remove 3242 * 3243 * This function is called by a protocol handler that wants to 3244 * remove its address family, and have it unlinked from the 3245 * new socket creation. 3246 * 3247 * If protocol handler is a module, then it can use module reference 3248 * counts to protect against new references. If protocol handler is not 3249 * a module then it needs to provide its own protection in 3250 * the ops->create routine. 3251 */ 3252 void sock_unregister(int family) 3253 { 3254 BUG_ON(family < 0 || family >= NPROTO); 3255 3256 spin_lock(&net_family_lock); 3257 RCU_INIT_POINTER(net_families[family], NULL); 3258 spin_unlock(&net_family_lock); 3259 3260 synchronize_rcu(); 3261 3262 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3263 } 3264 EXPORT_SYMBOL(sock_unregister); 3265 3266 bool sock_is_registered(int family) 3267 { 3268 return family < NPROTO && rcu_access_pointer(net_families[family]); 3269 } 3270 3271 static int __init sock_init(void) 3272 { 3273 int err; 3274 /* 3275 * Initialize the network sysctl infrastructure. 3276 */ 3277 err = net_sysctl_init(); 3278 if (err) 3279 goto out; 3280 3281 /* 3282 * Initialize skbuff SLAB cache 3283 */ 3284 skb_init(); 3285 3286 /* 3287 * Initialize the protocols module. 3288 */ 3289 3290 init_inodecache(); 3291 3292 err = register_filesystem(&sock_fs_type); 3293 if (err) 3294 goto out; 3295 sock_mnt = kern_mount(&sock_fs_type); 3296 if (IS_ERR(sock_mnt)) { 3297 err = PTR_ERR(sock_mnt); 3298 goto out_mount; 3299 } 3300 3301 /* The real protocol initialization is performed in later initcalls. 3302 */ 3303 3304 #ifdef CONFIG_NETFILTER 3305 err = netfilter_init(); 3306 if (err) 3307 goto out; 3308 #endif 3309 3310 ptp_classifier_init(); 3311 3312 out: 3313 return err; 3314 3315 out_mount: 3316 unregister_filesystem(&sock_fs_type); 3317 goto out; 3318 } 3319 3320 core_initcall(sock_init); /* early initcall */ 3321 3322 #ifdef CONFIG_PROC_FS 3323 void socket_seq_show(struct seq_file *seq) 3324 { 3325 seq_printf(seq, "sockets: used %d\n", 3326 sock_inuse_get(seq->private)); 3327 } 3328 #endif /* CONFIG_PROC_FS */ 3329 3330 /* Handle the fact that while struct ifreq has the same *layout* on 3331 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3332 * which are handled elsewhere, it still has different *size* due to 3333 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3334 * resulting in struct ifreq being 32 and 40 bytes respectively). 3335 * As a result, if the struct happens to be at the end of a page and 3336 * the next page isn't readable/writable, we get a fault. To prevent 3337 * that, copy back and forth to the full size. 3338 */ 3339 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3340 { 3341 if (in_compat_syscall()) { 3342 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3343 3344 memset(ifr, 0, sizeof(*ifr)); 3345 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3346 return -EFAULT; 3347 3348 if (ifrdata) 3349 *ifrdata = compat_ptr(ifr32->ifr_data); 3350 3351 return 0; 3352 } 3353 3354 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3355 return -EFAULT; 3356 3357 if (ifrdata) 3358 *ifrdata = ifr->ifr_data; 3359 3360 return 0; 3361 } 3362 EXPORT_SYMBOL(get_user_ifreq); 3363 3364 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3365 { 3366 size_t size = sizeof(*ifr); 3367 3368 if (in_compat_syscall()) 3369 size = sizeof(struct compat_ifreq); 3370 3371 if (copy_to_user(arg, ifr, size)) 3372 return -EFAULT; 3373 3374 return 0; 3375 } 3376 EXPORT_SYMBOL(put_user_ifreq); 3377 3378 #ifdef CONFIG_COMPAT 3379 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3380 { 3381 compat_uptr_t uptr32; 3382 struct ifreq ifr; 3383 void __user *saved; 3384 int err; 3385 3386 if (get_user_ifreq(&ifr, NULL, uifr32)) 3387 return -EFAULT; 3388 3389 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3390 return -EFAULT; 3391 3392 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3393 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3394 3395 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3396 if (!err) { 3397 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3398 if (put_user_ifreq(&ifr, uifr32)) 3399 err = -EFAULT; 3400 } 3401 return err; 3402 } 3403 3404 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3405 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3406 struct compat_ifreq __user *u_ifreq32) 3407 { 3408 struct ifreq ifreq; 3409 void __user *data; 3410 3411 if (!is_socket_ioctl_cmd(cmd)) 3412 return -ENOTTY; 3413 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3414 return -EFAULT; 3415 ifreq.ifr_data = data; 3416 3417 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3418 } 3419 3420 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3421 unsigned int cmd, unsigned long arg) 3422 { 3423 void __user *argp = compat_ptr(arg); 3424 struct sock *sk = sock->sk; 3425 struct net *net = sock_net(sk); 3426 const struct proto_ops *ops; 3427 3428 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3429 return sock_ioctl(file, cmd, (unsigned long)argp); 3430 3431 switch (cmd) { 3432 case SIOCWANDEV: 3433 return compat_siocwandev(net, argp); 3434 case SIOCGSTAMP_OLD: 3435 case SIOCGSTAMPNS_OLD: 3436 ops = READ_ONCE(sock->ops); 3437 if (!ops->gettstamp) 3438 return -ENOIOCTLCMD; 3439 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3440 !COMPAT_USE_64BIT_TIME); 3441 3442 case SIOCETHTOOL: 3443 case SIOCBONDSLAVEINFOQUERY: 3444 case SIOCBONDINFOQUERY: 3445 case SIOCSHWTSTAMP: 3446 case SIOCGHWTSTAMP: 3447 return compat_ifr_data_ioctl(net, cmd, argp); 3448 3449 case FIOSETOWN: 3450 case SIOCSPGRP: 3451 case FIOGETOWN: 3452 case SIOCGPGRP: 3453 case SIOCBRADDBR: 3454 case SIOCBRDELBR: 3455 case SIOCGIFVLAN: 3456 case SIOCSIFVLAN: 3457 case SIOCGSKNS: 3458 case SIOCGSTAMP_NEW: 3459 case SIOCGSTAMPNS_NEW: 3460 case SIOCGIFCONF: 3461 case SIOCSIFBR: 3462 case SIOCGIFBR: 3463 return sock_ioctl(file, cmd, arg); 3464 3465 case SIOCGIFFLAGS: 3466 case SIOCSIFFLAGS: 3467 case SIOCGIFMAP: 3468 case SIOCSIFMAP: 3469 case SIOCGIFMETRIC: 3470 case SIOCSIFMETRIC: 3471 case SIOCGIFMTU: 3472 case SIOCSIFMTU: 3473 case SIOCGIFMEM: 3474 case SIOCSIFMEM: 3475 case SIOCGIFHWADDR: 3476 case SIOCSIFHWADDR: 3477 case SIOCADDMULTI: 3478 case SIOCDELMULTI: 3479 case SIOCGIFINDEX: 3480 case SIOCGIFADDR: 3481 case SIOCSIFADDR: 3482 case SIOCSIFHWBROADCAST: 3483 case SIOCDIFADDR: 3484 case SIOCGIFBRDADDR: 3485 case SIOCSIFBRDADDR: 3486 case SIOCGIFDSTADDR: 3487 case SIOCSIFDSTADDR: 3488 case SIOCGIFNETMASK: 3489 case SIOCSIFNETMASK: 3490 case SIOCSIFPFLAGS: 3491 case SIOCGIFPFLAGS: 3492 case SIOCGIFTXQLEN: 3493 case SIOCSIFTXQLEN: 3494 case SIOCBRADDIF: 3495 case SIOCBRDELIF: 3496 case SIOCGIFNAME: 3497 case SIOCSIFNAME: 3498 case SIOCGMIIPHY: 3499 case SIOCGMIIREG: 3500 case SIOCSMIIREG: 3501 case SIOCBONDENSLAVE: 3502 case SIOCBONDRELEASE: 3503 case SIOCBONDSETHWADDR: 3504 case SIOCBONDCHANGEACTIVE: 3505 case SIOCSARP: 3506 case SIOCGARP: 3507 case SIOCDARP: 3508 case SIOCOUTQ: 3509 case SIOCOUTQNSD: 3510 case SIOCATMARK: 3511 return sock_do_ioctl(net, sock, cmd, arg); 3512 } 3513 3514 return -ENOIOCTLCMD; 3515 } 3516 3517 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3518 unsigned long arg) 3519 { 3520 struct socket *sock = file->private_data; 3521 const struct proto_ops *ops = READ_ONCE(sock->ops); 3522 int ret = -ENOIOCTLCMD; 3523 struct sock *sk; 3524 struct net *net; 3525 3526 sk = sock->sk; 3527 net = sock_net(sk); 3528 3529 if (ops->compat_ioctl) 3530 ret = ops->compat_ioctl(sock, cmd, arg); 3531 3532 if (ret == -ENOIOCTLCMD && 3533 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3534 ret = compat_wext_handle_ioctl(net, cmd, arg); 3535 3536 if (ret == -ENOIOCTLCMD) 3537 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3538 3539 return ret; 3540 } 3541 #endif 3542 3543 /** 3544 * kernel_bind - bind an address to a socket (kernel space) 3545 * @sock: socket 3546 * @addr: address 3547 * @addrlen: length of address 3548 * 3549 * Returns 0 or an error. 3550 */ 3551 3552 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3553 { 3554 struct sockaddr_storage address; 3555 3556 memcpy(&address, addr, addrlen); 3557 3558 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3559 addrlen); 3560 } 3561 EXPORT_SYMBOL(kernel_bind); 3562 3563 /** 3564 * kernel_listen - move socket to listening state (kernel space) 3565 * @sock: socket 3566 * @backlog: pending connections queue size 3567 * 3568 * Returns 0 or an error. 3569 */ 3570 3571 int kernel_listen(struct socket *sock, int backlog) 3572 { 3573 return READ_ONCE(sock->ops)->listen(sock, backlog); 3574 } 3575 EXPORT_SYMBOL(kernel_listen); 3576 3577 /** 3578 * kernel_accept - accept a connection (kernel space) 3579 * @sock: listening socket 3580 * @newsock: new connected socket 3581 * @flags: flags 3582 * 3583 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3584 * If it fails, @newsock is guaranteed to be %NULL. 3585 * Returns 0 or an error. 3586 */ 3587 3588 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3589 { 3590 struct sock *sk = sock->sk; 3591 const struct proto_ops *ops = READ_ONCE(sock->ops); 3592 struct proto_accept_arg arg = { 3593 .flags = flags, 3594 .kern = true, 3595 }; 3596 int err; 3597 3598 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3599 newsock); 3600 if (err < 0) 3601 goto done; 3602 3603 err = ops->accept(sock, *newsock, &arg); 3604 if (err < 0) { 3605 sock_release(*newsock); 3606 *newsock = NULL; 3607 goto done; 3608 } 3609 3610 (*newsock)->ops = ops; 3611 __module_get(ops->owner); 3612 3613 done: 3614 return err; 3615 } 3616 EXPORT_SYMBOL(kernel_accept); 3617 3618 /** 3619 * kernel_connect - connect a socket (kernel space) 3620 * @sock: socket 3621 * @addr: address 3622 * @addrlen: address length 3623 * @flags: flags (O_NONBLOCK, ...) 3624 * 3625 * For datagram sockets, @addr is the address to which datagrams are sent 3626 * by default, and the only address from which datagrams are received. 3627 * For stream sockets, attempts to connect to @addr. 3628 * Returns 0 or an error code. 3629 */ 3630 3631 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3632 int flags) 3633 { 3634 struct sockaddr_storage address; 3635 3636 memcpy(&address, addr, addrlen); 3637 3638 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3639 addrlen, flags); 3640 } 3641 EXPORT_SYMBOL(kernel_connect); 3642 3643 /** 3644 * kernel_getsockname - get the address which the socket is bound (kernel space) 3645 * @sock: socket 3646 * @addr: address holder 3647 * 3648 * Fills the @addr pointer with the address which the socket is bound. 3649 * Returns the length of the address in bytes or an error code. 3650 */ 3651 3652 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3653 { 3654 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3655 } 3656 EXPORT_SYMBOL(kernel_getsockname); 3657 3658 /** 3659 * kernel_getpeername - get the address which the socket is connected (kernel space) 3660 * @sock: socket 3661 * @addr: address holder 3662 * 3663 * Fills the @addr pointer with the address which the socket is connected. 3664 * Returns the length of the address in bytes or an error code. 3665 */ 3666 3667 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3668 { 3669 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3670 } 3671 EXPORT_SYMBOL(kernel_getpeername); 3672 3673 /** 3674 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3675 * @sock: socket 3676 * @how: connection part 3677 * 3678 * Returns 0 or an error. 3679 */ 3680 3681 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3682 { 3683 return READ_ONCE(sock->ops)->shutdown(sock, how); 3684 } 3685 EXPORT_SYMBOL(kernel_sock_shutdown); 3686 3687 /** 3688 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3689 * @sk: socket 3690 * 3691 * This routine returns the IP overhead imposed by a socket i.e. 3692 * the length of the underlying IP header, depending on whether 3693 * this is an IPv4 or IPv6 socket and the length from IP options turned 3694 * on at the socket. Assumes that the caller has a lock on the socket. 3695 */ 3696 3697 u32 kernel_sock_ip_overhead(struct sock *sk) 3698 { 3699 struct inet_sock *inet; 3700 struct ip_options_rcu *opt; 3701 u32 overhead = 0; 3702 #if IS_ENABLED(CONFIG_IPV6) 3703 struct ipv6_pinfo *np; 3704 struct ipv6_txoptions *optv6 = NULL; 3705 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3706 3707 if (!sk) 3708 return overhead; 3709 3710 switch (sk->sk_family) { 3711 case AF_INET: 3712 inet = inet_sk(sk); 3713 overhead += sizeof(struct iphdr); 3714 opt = rcu_dereference_protected(inet->inet_opt, 3715 sock_owned_by_user(sk)); 3716 if (opt) 3717 overhead += opt->opt.optlen; 3718 return overhead; 3719 #if IS_ENABLED(CONFIG_IPV6) 3720 case AF_INET6: 3721 np = inet6_sk(sk); 3722 overhead += sizeof(struct ipv6hdr); 3723 if (np) 3724 optv6 = rcu_dereference_protected(np->opt, 3725 sock_owned_by_user(sk)); 3726 if (optv6) 3727 overhead += (optv6->opt_flen + optv6->opt_nflen); 3728 return overhead; 3729 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3730 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3731 return overhead; 3732 } 3733 } 3734 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3735