xref: /linux/net/socket.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 
283 	if (can_do_masked_user_access())
284 		ulen = masked_user_access_begin(ulen);
285 	else if (!user_access_begin(ulen, 4))
286 		return -EFAULT;
287 
288 	unsafe_get_user(len, ulen, efault_end);
289 
290 	if (len > klen)
291 		len = klen;
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	if (len >= 0)
297 		unsafe_put_user(klen, ulen, efault_end);
298 
299 	user_access_end();
300 
301 	if (len) {
302 		if (len < 0)
303 			return -EINVAL;
304 		if (audit_sockaddr(klen, kaddr))
305 			return -ENOMEM;
306 		if (copy_to_user(uaddr, kaddr, len))
307 			return -EFAULT;
308 	}
309 	return 0;
310 
311 efault_end:
312 	user_access_end();
313 	return -EFAULT;
314 }
315 
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317 
318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 	if (!ei)
324 		return NULL;
325 	init_waitqueue_head(&ei->socket.wq.wait);
326 	ei->socket.wq.fasync_list = NULL;
327 	ei->socket.wq.flags = 0;
328 
329 	ei->socket.state = SS_UNCONNECTED;
330 	ei->socket.flags = 0;
331 	ei->socket.ops = NULL;
332 	ei->socket.sk = NULL;
333 	ei->socket.file = NULL;
334 
335 	return &ei->vfs_inode;
336 }
337 
338 static void sock_free_inode(struct inode *inode)
339 {
340 	struct socket_alloc *ei;
341 
342 	ei = container_of(inode, struct socket_alloc, vfs_inode);
343 	kmem_cache_free(sock_inode_cachep, ei);
344 }
345 
346 static void init_once(void *foo)
347 {
348 	struct socket_alloc *ei = (struct socket_alloc *)foo;
349 
350 	inode_init_once(&ei->vfs_inode);
351 }
352 
353 static void init_inodecache(void)
354 {
355 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 					      sizeof(struct socket_alloc),
357 					      0,
358 					      (SLAB_HWCACHE_ALIGN |
359 					       SLAB_RECLAIM_ACCOUNT |
360 					       SLAB_ACCOUNT),
361 					      init_once);
362 	BUG_ON(sock_inode_cachep == NULL);
363 }
364 
365 static const struct super_operations sockfs_ops = {
366 	.alloc_inode	= sock_alloc_inode,
367 	.free_inode	= sock_free_inode,
368 	.statfs		= simple_statfs,
369 };
370 
371 /*
372  * sockfs_dname() is called from d_path().
373  */
374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 				d_inode(dentry)->i_ino);
378 }
379 
380 static const struct dentry_operations sockfs_dentry_operations = {
381 	.d_dname  = sockfs_dname,
382 };
383 
384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 			    struct dentry *dentry, struct inode *inode,
386 			    const char *suffix, void *value, size_t size)
387 {
388 	if (value) {
389 		if (dentry->d_name.len + 1 > size)
390 			return -ERANGE;
391 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 	}
393 	return dentry->d_name.len + 1;
394 }
395 
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399 
400 static const struct xattr_handler sockfs_xattr_handler = {
401 	.name = XATTR_NAME_SOCKPROTONAME,
402 	.get = sockfs_xattr_get,
403 };
404 
405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 				     struct mnt_idmap *idmap,
407 				     struct dentry *dentry, struct inode *inode,
408 				     const char *suffix, const void *value,
409 				     size_t size, int flags)
410 {
411 	/* Handled by LSM. */
412 	return -EAGAIN;
413 }
414 
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 	.prefix = XATTR_SECURITY_PREFIX,
417 	.set = sockfs_security_xattr_set,
418 };
419 
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 	&sockfs_xattr_handler,
422 	&sockfs_security_xattr_handler,
423 	NULL
424 };
425 
426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 	if (!ctx)
430 		return -ENOMEM;
431 	ctx->ops = &sockfs_ops;
432 	ctx->dops = &sockfs_dentry_operations;
433 	ctx->xattr = sockfs_xattr_handlers;
434 	return 0;
435 }
436 
437 static struct vfsmount *sock_mnt __read_mostly;
438 
439 static struct file_system_type sock_fs_type = {
440 	.name =		"sockfs",
441 	.init_fs_context = sockfs_init_fs_context,
442 	.kill_sb =	kill_anon_super,
443 };
444 
445 /*
446  *	Obtains the first available file descriptor and sets it up for use.
447  *
448  *	These functions create file structures and maps them to fd space
449  *	of the current process. On success it returns file descriptor
450  *	and file struct implicitly stored in sock->file.
451  *	Note that another thread may close file descriptor before we return
452  *	from this function. We use the fact that now we do not refer
453  *	to socket after mapping. If one day we will need it, this
454  *	function will increment ref. count on file by 1.
455  *
456  *	In any case returned fd MAY BE not valid!
457  *	This race condition is unavoidable
458  *	with shared fd spaces, we cannot solve it inside kernel,
459  *	but we take care of internal coherence yet.
460  */
461 
462 /**
463  *	sock_alloc_file - Bind a &socket to a &file
464  *	@sock: socket
465  *	@flags: file status flags
466  *	@dname: protocol name
467  *
468  *	Returns the &file bound with @sock, implicitly storing it
469  *	in sock->file. If dname is %NULL, sets to "".
470  *
471  *	On failure @sock is released, and an ERR pointer is returned.
472  *
473  *	This function uses GFP_KERNEL internally.
474  */
475 
476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 	struct file *file;
479 
480 	if (!dname)
481 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482 
483 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 				O_RDWR | (flags & O_NONBLOCK),
485 				&socket_file_ops);
486 	if (IS_ERR(file)) {
487 		sock_release(sock);
488 		return file;
489 	}
490 
491 	file->f_mode |= FMODE_NOWAIT;
492 	sock->file = file;
493 	file->private_data = sock;
494 	stream_open(SOCK_INODE(sock), file);
495 	/*
496 	 * Disable permission and pre-content events, but enable legacy
497 	 * inotify events for legacy users.
498 	 */
499 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 	return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503 
504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 	int fd;
507 
508 	fd = FD_ADD(flags, sock_alloc_file(sock, flags, NULL));
509 	if (fd < 0)
510 		sock_release(sock);
511 	return fd;
512 }
513 
514 /**
515  *	sock_from_file - Return the &socket bounded to @file.
516  *	@file: file
517  *
518  *	On failure returns %NULL.
519  */
520 
521 struct socket *sock_from_file(struct file *file)
522 {
523 	if (likely(file->f_op == &socket_file_ops))
524 		return file->private_data;	/* set in sock_alloc_file */
525 
526 	return NULL;
527 }
528 EXPORT_SYMBOL(sock_from_file);
529 
530 /**
531  *	sockfd_lookup - Go from a file number to its socket slot
532  *	@fd: file handle
533  *	@err: pointer to an error code return
534  *
535  *	The file handle passed in is locked and the socket it is bound
536  *	to is returned. If an error occurs the err pointer is overwritten
537  *	with a negative errno code and NULL is returned. The function checks
538  *	for both invalid handles and passing a handle which is not a socket.
539  *
540  *	On a success the socket object pointer is returned.
541  */
542 
543 struct socket *sockfd_lookup(int fd, int *err)
544 {
545 	struct file *file;
546 	struct socket *sock;
547 
548 	file = fget(fd);
549 	if (!file) {
550 		*err = -EBADF;
551 		return NULL;
552 	}
553 
554 	sock = sock_from_file(file);
555 	if (!sock) {
556 		*err = -ENOTSOCK;
557 		fput(file);
558 	}
559 	return sock;
560 }
561 EXPORT_SYMBOL(sockfd_lookup);
562 
563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 				size_t size)
565 {
566 	ssize_t len;
567 	ssize_t used = 0;
568 
569 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 	if (len < 0)
571 		return len;
572 	used += len;
573 	if (buffer) {
574 		if (size < used)
575 			return -ERANGE;
576 		buffer += len;
577 	}
578 
579 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 		buffer += len;
586 	}
587 
588 	return used;
589 }
590 
591 static int sockfs_setattr(struct mnt_idmap *idmap,
592 			  struct dentry *dentry, struct iattr *iattr)
593 {
594 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
595 
596 	if (!err && (iattr->ia_valid & ATTR_UID)) {
597 		struct socket *sock = SOCKET_I(d_inode(dentry));
598 
599 		if (sock->sk) {
600 			/* Paired with READ_ONCE() in sk_uid() */
601 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
602 		} else {
603 			err = -ENOENT;
604 		}
605 	}
606 
607 	return err;
608 }
609 
610 static const struct inode_operations sockfs_inode_ops = {
611 	.listxattr = sockfs_listxattr,
612 	.setattr = sockfs_setattr,
613 };
614 
615 /**
616  *	sock_alloc - allocate a socket
617  *
618  *	Allocate a new inode and socket object. The two are bound together
619  *	and initialised. The socket is then returned. If we are out of inodes
620  *	NULL is returned. This functions uses GFP_KERNEL internally.
621  */
622 
623 struct socket *sock_alloc(void)
624 {
625 	struct inode *inode;
626 	struct socket *sock;
627 
628 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
629 	if (!inode)
630 		return NULL;
631 
632 	sock = SOCKET_I(inode);
633 
634 	inode->i_ino = get_next_ino();
635 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
636 	inode->i_uid = current_fsuid();
637 	inode->i_gid = current_fsgid();
638 	inode->i_op = &sockfs_inode_ops;
639 
640 	return sock;
641 }
642 EXPORT_SYMBOL(sock_alloc);
643 
644 static void __sock_release(struct socket *sock, struct inode *inode)
645 {
646 	const struct proto_ops *ops = READ_ONCE(sock->ops);
647 
648 	if (ops) {
649 		struct module *owner = ops->owner;
650 
651 		if (inode)
652 			inode_lock(inode);
653 		ops->release(sock);
654 		sock->sk = NULL;
655 		if (inode)
656 			inode_unlock(inode);
657 		sock->ops = NULL;
658 		module_put(owner);
659 	}
660 
661 	if (sock->wq.fasync_list)
662 		pr_err("%s: fasync list not empty!\n", __func__);
663 
664 	if (!sock->file) {
665 		iput(SOCK_INODE(sock));
666 		return;
667 	}
668 	sock->file = NULL;
669 }
670 
671 /**
672  *	sock_release - close a socket
673  *	@sock: socket to close
674  *
675  *	The socket is released from the protocol stack if it has a release
676  *	callback, and the inode is then released if the socket is bound to
677  *	an inode not a file.
678  */
679 void sock_release(struct socket *sock)
680 {
681 	__sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684 
685 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
686 {
687 	u8 flags = *tx_flags;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
690 		flags |= SKBTX_HW_TSTAMP_NOBPF;
691 
692 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
693 		flags |= SKBTX_SW_TSTAMP;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
696 		flags |= SKBTX_SCHED_TSTAMP;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
699 		flags |= SKBTX_COMPLETION_TSTAMP;
700 
701 	*tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704 
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 					   size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 					    size_t));
709 
710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 						 int flags)
712 {
713 	trace_sock_send_length(sk, ret, 0);
714 }
715 
716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 				     inet_sendmsg, sock, msg,
720 				     msg_data_left(msg));
721 	BUG_ON(ret == -EIOCBQUEUED);
722 
723 	if (trace_sock_send_length_enabled())
724 		call_trace_sock_send_length(sock->sk, ret, 0);
725 	return ret;
726 }
727 
728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 	int err = security_socket_sendmsg(sock, msg,
731 					  msg_data_left(msg));
732 
733 	return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735 
736 /**
737  *	sock_sendmsg - send a message through @sock
738  *	@sock: socket
739  *	@msg: message to send
740  *
741  *	Sends @msg through @sock, passing through LSM.
742  *	Returns the number of bytes sent, or an error code.
743  */
744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 	struct sockaddr_storage address;
748 	int save_len = msg->msg_namelen;
749 	int ret;
750 
751 	if (msg->msg_name) {
752 		memcpy(&address, msg->msg_name, msg->msg_namelen);
753 		msg->msg_name = &address;
754 	}
755 
756 	ret = __sock_sendmsg(sock, msg);
757 	msg->msg_name = save_addr;
758 	msg->msg_namelen = save_len;
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763 
764 /**
765  *	kernel_sendmsg - send a message through @sock (kernel-space)
766  *	@sock: socket
767  *	@msg: message header
768  *	@vec: kernel vec
769  *	@num: vec array length
770  *	@size: total message data size
771  *
772  *	Builds the message data with @vec and sends it through @sock.
773  *	Returns the number of bytes sent, or an error code.
774  */
775 
776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 		   struct kvec *vec, size_t num, size_t size)
778 {
779 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 	return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783 
784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 	/* pkt_type of skbs enqueued on the error queue are set to
787 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 	 * in recvmsg, since skbs received on a local socket will never
789 	 * have a pkt_type of PACKET_OUTGOING.
790 	 */
791 	return skb->pkt_type == PACKET_OUTGOING;
792 }
793 
794 /* On transmit, software and hardware timestamps are returned independently.
795  * As the two skb clones share the hardware timestamp, which may be updated
796  * before the software timestamp is received, a hardware TX timestamp may be
797  * returned only if there is no software TX timestamp. Ignore false software
798  * timestamps, which may be made in the __sock_recv_timestamp() call when the
799  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800  * hardware timestamp.
801  */
802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806 
807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 	struct net_device *orig_dev;
812 	ktime_t hwtstamp;
813 
814 	rcu_read_lock();
815 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 	if (orig_dev) {
817 		*if_index = orig_dev->ifindex;
818 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 	} else {
820 		hwtstamp = shhwtstamps->hwtstamp;
821 	}
822 	rcu_read_unlock();
823 
824 	return hwtstamp;
825 }
826 
827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 			   int if_index)
829 {
830 	struct scm_ts_pktinfo ts_pktinfo;
831 	struct net_device *orig_dev;
832 
833 	if (!skb_mac_header_was_set(skb))
834 		return;
835 
836 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837 
838 	if (!if_index) {
839 		rcu_read_lock();
840 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 		if (orig_dev)
842 			if_index = orig_dev->ifindex;
843 		rcu_read_unlock();
844 	}
845 	ts_pktinfo.if_index = if_index;
846 
847 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 		 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851 
852 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
853 {
854 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
855 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
856 
857 	if (serr->ee.ee_errno != ENOMSG ||
858 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
859 		return false;
860 
861 	/* software time stamp available and wanted */
862 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
863 		return true;
864 	/* hardware time stamps available and wanted */
865 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
866 		skb_hwtstamps(skb)->hwtstamp;
867 }
868 
869 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
870 			  struct timespec64 *ts)
871 {
872 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
873 	ktime_t hwtstamp;
874 	int if_index = 0;
875 
876 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
877 	    ktime_to_timespec64_cond(skb->tstamp, ts))
878 		return SOF_TIMESTAMPING_TX_SOFTWARE;
879 
880 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
881 	    skb_is_swtx_tstamp(skb, false))
882 		return -ENOENT;
883 
884 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
885 		hwtstamp = get_timestamp(sk, skb, &if_index);
886 	else
887 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
888 
889 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
890 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
891 						READ_ONCE(sk->sk_bind_phc));
892 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
893 		return -ENOENT;
894 
895 	return SOF_TIMESTAMPING_TX_HARDWARE;
896 }
897 
898 /*
899  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
900  */
901 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
902 	struct sk_buff *skb)
903 {
904 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
905 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
906 	struct scm_timestamping_internal tss;
907 	int empty = 1, false_tstamp = 0;
908 	struct skb_shared_hwtstamps *shhwtstamps =
909 		skb_hwtstamps(skb);
910 	int if_index;
911 	ktime_t hwtstamp;
912 	u32 tsflags;
913 
914 	/* Race occurred between timestamp enabling and packet
915 	   receiving.  Fill in the current time for now. */
916 	if (need_software_tstamp && skb->tstamp == 0) {
917 		__net_timestamp(skb);
918 		false_tstamp = 1;
919 	}
920 
921 	if (need_software_tstamp) {
922 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
923 			if (new_tstamp) {
924 				struct __kernel_sock_timeval tv;
925 
926 				skb_get_new_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
928 					 sizeof(tv), &tv);
929 			} else {
930 				struct __kernel_old_timeval tv;
931 
932 				skb_get_timestamp(skb, &tv);
933 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
934 					 sizeof(tv), &tv);
935 			}
936 		} else {
937 			if (new_tstamp) {
938 				struct __kernel_timespec ts;
939 
940 				skb_get_new_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
942 					 sizeof(ts), &ts);
943 			} else {
944 				struct __kernel_old_timespec ts;
945 
946 				skb_get_timestampns(skb, &ts);
947 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
948 					 sizeof(ts), &ts);
949 			}
950 		}
951 	}
952 
953 	memset(&tss, 0, sizeof(tss));
954 	tsflags = READ_ONCE(sk->sk_tsflags);
955 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
956 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
957 	      skb_is_err_queue(skb) ||
958 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
959 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
960 		empty = 0;
961 	if (shhwtstamps &&
962 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
963 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
964 	      skb_is_err_queue(skb) ||
965 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
966 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
967 		if_index = 0;
968 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
969 			hwtstamp = get_timestamp(sk, skb, &if_index);
970 		else
971 			hwtstamp = shhwtstamps->hwtstamp;
972 
973 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
974 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
975 							 READ_ONCE(sk->sk_bind_phc));
976 
977 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
978 			empty = 0;
979 
980 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
981 			    !skb_is_err_queue(skb))
982 				put_ts_pktinfo(msg, skb, if_index);
983 		}
984 	}
985 	if (!empty) {
986 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
987 			put_cmsg_scm_timestamping64(msg, &tss);
988 		else
989 			put_cmsg_scm_timestamping(msg, &tss);
990 
991 		if (skb_is_err_queue(skb) && skb->len &&
992 		    SKB_EXT_ERR(skb)->opt_stats)
993 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
994 				 skb->len, skb->data);
995 	}
996 }
997 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
998 
999 #ifdef CONFIG_WIRELESS
1000 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1001 	struct sk_buff *skb)
1002 {
1003 	int ack;
1004 
1005 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1006 		return;
1007 	if (!skb->wifi_acked_valid)
1008 		return;
1009 
1010 	ack = skb->wifi_acked;
1011 
1012 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1013 }
1014 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1015 #endif
1016 
1017 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1018 				   struct sk_buff *skb)
1019 {
1020 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1021 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1022 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1023 }
1024 
1025 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1026 			   struct sk_buff *skb)
1027 {
1028 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1029 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1030 		__u32 mark = skb->mark;
1031 
1032 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1033 	}
1034 }
1035 
1036 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1037 			       struct sk_buff *skb)
1038 {
1039 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1040 		__u32 priority = skb->priority;
1041 
1042 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1043 	}
1044 }
1045 
1046 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1047 		       struct sk_buff *skb)
1048 {
1049 	sock_recv_timestamp(msg, sk, skb);
1050 	sock_recv_drops(msg, sk, skb);
1051 	sock_recv_mark(msg, sk, skb);
1052 	sock_recv_priority(msg, sk, skb);
1053 }
1054 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1055 
1056 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1057 					   size_t, int));
1058 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1059 					    size_t, int));
1060 
1061 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1062 {
1063 	trace_sock_recv_length(sk, ret, flags);
1064 }
1065 
1066 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1067 				     int flags)
1068 {
1069 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1070 				     inet6_recvmsg,
1071 				     inet_recvmsg, sock, msg,
1072 				     msg_data_left(msg), flags);
1073 	if (trace_sock_recv_length_enabled())
1074 		call_trace_sock_recv_length(sock->sk, ret, flags);
1075 	return ret;
1076 }
1077 
1078 /**
1079  *	sock_recvmsg - receive a message from @sock
1080  *	@sock: socket
1081  *	@msg: message to receive
1082  *	@flags: message flags
1083  *
1084  *	Receives @msg from @sock, passing through LSM. Returns the total number
1085  *	of bytes received, or an error.
1086  */
1087 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1088 {
1089 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1090 
1091 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1092 }
1093 EXPORT_SYMBOL(sock_recvmsg);
1094 
1095 /**
1096  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1097  *	@sock: The socket to receive the message from
1098  *	@msg: Received message
1099  *	@vec: Input s/g array for message data
1100  *	@num: Size of input s/g array
1101  *	@size: Number of bytes to read
1102  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1103  *
1104  *	On return the msg structure contains the scatter/gather array passed in the
1105  *	vec argument. The array is modified so that it consists of the unfilled
1106  *	portion of the original array.
1107  *
1108  *	The returned value is the total number of bytes received, or an error.
1109  */
1110 
1111 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1112 		   struct kvec *vec, size_t num, size_t size, int flags)
1113 {
1114 	msg->msg_control_is_user = false;
1115 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1116 	return sock_recvmsg(sock, msg, flags);
1117 }
1118 EXPORT_SYMBOL(kernel_recvmsg);
1119 
1120 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1121 				struct pipe_inode_info *pipe, size_t len,
1122 				unsigned int flags)
1123 {
1124 	struct socket *sock = file->private_data;
1125 	const struct proto_ops *ops;
1126 
1127 	ops = READ_ONCE(sock->ops);
1128 	if (unlikely(!ops->splice_read))
1129 		return copy_splice_read(file, ppos, pipe, len, flags);
1130 
1131 	return ops->splice_read(sock, ppos, pipe, len, flags);
1132 }
1133 
1134 static void sock_splice_eof(struct file *file)
1135 {
1136 	struct socket *sock = file->private_data;
1137 	const struct proto_ops *ops;
1138 
1139 	ops = READ_ONCE(sock->ops);
1140 	if (ops->splice_eof)
1141 		ops->splice_eof(sock);
1142 }
1143 
1144 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1145 {
1146 	struct file *file = iocb->ki_filp;
1147 	struct socket *sock = file->private_data;
1148 	struct msghdr msg = {.msg_iter = *to,
1149 			     .msg_iocb = iocb};
1150 	ssize_t res;
1151 
1152 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1153 		msg.msg_flags = MSG_DONTWAIT;
1154 
1155 	if (iocb->ki_pos != 0)
1156 		return -ESPIPE;
1157 
1158 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1159 		return 0;
1160 
1161 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1162 	*to = msg.msg_iter;
1163 	return res;
1164 }
1165 
1166 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1167 {
1168 	struct file *file = iocb->ki_filp;
1169 	struct socket *sock = file->private_data;
1170 	struct msghdr msg = {.msg_iter = *from,
1171 			     .msg_iocb = iocb};
1172 	ssize_t res;
1173 
1174 	if (iocb->ki_pos != 0)
1175 		return -ESPIPE;
1176 
1177 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1178 		msg.msg_flags = MSG_DONTWAIT;
1179 
1180 	if (sock->type == SOCK_SEQPACKET)
1181 		msg.msg_flags |= MSG_EOR;
1182 
1183 	if (iocb->ki_flags & IOCB_NOSIGNAL)
1184 		msg.msg_flags |= MSG_NOSIGNAL;
1185 
1186 	res = __sock_sendmsg(sock, &msg);
1187 	*from = msg.msg_iter;
1188 	return res;
1189 }
1190 
1191 /*
1192  * Atomic setting of ioctl hooks to avoid race
1193  * with module unload.
1194  */
1195 
1196 static DEFINE_MUTEX(br_ioctl_mutex);
1197 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1198 			    void __user *uarg);
1199 
1200 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1201 			     void __user *uarg))
1202 {
1203 	mutex_lock(&br_ioctl_mutex);
1204 	br_ioctl_hook = hook;
1205 	mutex_unlock(&br_ioctl_mutex);
1206 }
1207 EXPORT_SYMBOL(brioctl_set);
1208 
1209 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1210 {
1211 	int err = -ENOPKG;
1212 
1213 	if (!br_ioctl_hook)
1214 		request_module("bridge");
1215 
1216 	mutex_lock(&br_ioctl_mutex);
1217 	if (br_ioctl_hook)
1218 		err = br_ioctl_hook(net, cmd, uarg);
1219 	mutex_unlock(&br_ioctl_mutex);
1220 
1221 	return err;
1222 }
1223 
1224 static DEFINE_MUTEX(vlan_ioctl_mutex);
1225 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1226 
1227 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1228 {
1229 	mutex_lock(&vlan_ioctl_mutex);
1230 	vlan_ioctl_hook = hook;
1231 	mutex_unlock(&vlan_ioctl_mutex);
1232 }
1233 EXPORT_SYMBOL(vlan_ioctl_set);
1234 
1235 static long sock_do_ioctl(struct net *net, struct socket *sock,
1236 			  unsigned int cmd, unsigned long arg)
1237 {
1238 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1239 	struct ifreq ifr;
1240 	bool need_copyout;
1241 	int err;
1242 	void __user *argp = (void __user *)arg;
1243 	void __user *data;
1244 
1245 	err = ops->ioctl(sock, cmd, arg);
1246 
1247 	/*
1248 	 * If this ioctl is unknown try to hand it down
1249 	 * to the NIC driver.
1250 	 */
1251 	if (err != -ENOIOCTLCMD)
1252 		return err;
1253 
1254 	if (!is_socket_ioctl_cmd(cmd))
1255 		return -ENOTTY;
1256 
1257 	if (get_user_ifreq(&ifr, &data, argp))
1258 		return -EFAULT;
1259 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1260 	if (!err && need_copyout)
1261 		if (put_user_ifreq(&ifr, argp))
1262 			return -EFAULT;
1263 
1264 	return err;
1265 }
1266 
1267 /*
1268  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1269  *	what to do with it - that's up to the protocol still.
1270  */
1271 
1272 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1273 {
1274 	const struct proto_ops  *ops;
1275 	struct socket *sock;
1276 	struct sock *sk;
1277 	void __user *argp = (void __user *)arg;
1278 	int pid, err;
1279 	struct net *net;
1280 
1281 	sock = file->private_data;
1282 	ops = READ_ONCE(sock->ops);
1283 	sk = sock->sk;
1284 	net = sock_net(sk);
1285 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1286 		struct ifreq ifr;
1287 		void __user *data;
1288 		bool need_copyout;
1289 		if (get_user_ifreq(&ifr, &data, argp))
1290 			return -EFAULT;
1291 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1292 		if (!err && need_copyout)
1293 			if (put_user_ifreq(&ifr, argp))
1294 				return -EFAULT;
1295 	} else
1296 #ifdef CONFIG_WEXT_CORE
1297 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1298 		err = wext_handle_ioctl(net, cmd, argp);
1299 	} else
1300 #endif
1301 		switch (cmd) {
1302 		case FIOSETOWN:
1303 		case SIOCSPGRP:
1304 			err = -EFAULT;
1305 			if (get_user(pid, (int __user *)argp))
1306 				break;
1307 			err = f_setown(sock->file, pid, 1);
1308 			break;
1309 		case FIOGETOWN:
1310 		case SIOCGPGRP:
1311 			err = put_user(f_getown(sock->file),
1312 				       (int __user *)argp);
1313 			break;
1314 		case SIOCGIFBR:
1315 		case SIOCSIFBR:
1316 		case SIOCBRADDBR:
1317 		case SIOCBRDELBR:
1318 		case SIOCBRADDIF:
1319 		case SIOCBRDELIF:
1320 			err = br_ioctl_call(net, cmd, argp);
1321 			break;
1322 		case SIOCGIFVLAN:
1323 		case SIOCSIFVLAN:
1324 			err = -ENOPKG;
1325 			if (!vlan_ioctl_hook)
1326 				request_module("8021q");
1327 
1328 			mutex_lock(&vlan_ioctl_mutex);
1329 			if (vlan_ioctl_hook)
1330 				err = vlan_ioctl_hook(net, argp);
1331 			mutex_unlock(&vlan_ioctl_mutex);
1332 			break;
1333 		case SIOCGSKNS:
1334 			err = -EPERM;
1335 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1336 				break;
1337 
1338 			err = open_related_ns(&net->ns, get_net_ns);
1339 			break;
1340 		case SIOCGSTAMP_OLD:
1341 		case SIOCGSTAMPNS_OLD:
1342 			if (!ops->gettstamp) {
1343 				err = -ENOIOCTLCMD;
1344 				break;
1345 			}
1346 			err = ops->gettstamp(sock, argp,
1347 					     cmd == SIOCGSTAMP_OLD,
1348 					     !IS_ENABLED(CONFIG_64BIT));
1349 			break;
1350 		case SIOCGSTAMP_NEW:
1351 		case SIOCGSTAMPNS_NEW:
1352 			if (!ops->gettstamp) {
1353 				err = -ENOIOCTLCMD;
1354 				break;
1355 			}
1356 			err = ops->gettstamp(sock, argp,
1357 					     cmd == SIOCGSTAMP_NEW,
1358 					     false);
1359 			break;
1360 
1361 		case SIOCGIFCONF:
1362 			err = dev_ifconf(net, argp);
1363 			break;
1364 
1365 		default:
1366 			err = sock_do_ioctl(net, sock, cmd, arg);
1367 			break;
1368 		}
1369 	return err;
1370 }
1371 
1372 /**
1373  *	sock_create_lite - creates a socket
1374  *	@family: protocol family (AF_INET, ...)
1375  *	@type: communication type (SOCK_STREAM, ...)
1376  *	@protocol: protocol (0, ...)
1377  *	@res: new socket
1378  *
1379  *	Creates a new socket and assigns it to @res, passing through LSM.
1380  *	The new socket initialization is not complete, see kernel_accept().
1381  *	Returns 0 or an error. On failure @res is set to %NULL.
1382  *	This function internally uses GFP_KERNEL.
1383  */
1384 
1385 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1386 {
1387 	int err;
1388 	struct socket *sock = NULL;
1389 
1390 	err = security_socket_create(family, type, protocol, 1);
1391 	if (err)
1392 		goto out;
1393 
1394 	sock = sock_alloc();
1395 	if (!sock) {
1396 		err = -ENOMEM;
1397 		goto out;
1398 	}
1399 
1400 	sock->type = type;
1401 	err = security_socket_post_create(sock, family, type, protocol, 1);
1402 	if (err)
1403 		goto out_release;
1404 
1405 out:
1406 	*res = sock;
1407 	return err;
1408 out_release:
1409 	sock_release(sock);
1410 	sock = NULL;
1411 	goto out;
1412 }
1413 EXPORT_SYMBOL(sock_create_lite);
1414 
1415 /* No kernel lock held - perfect */
1416 static __poll_t sock_poll(struct file *file, poll_table *wait)
1417 {
1418 	struct socket *sock = file->private_data;
1419 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1420 	__poll_t events = poll_requested_events(wait), flag = 0;
1421 
1422 	if (!ops->poll)
1423 		return 0;
1424 
1425 	if (sk_can_busy_loop(sock->sk)) {
1426 		/* poll once if requested by the syscall */
1427 		if (events & POLL_BUSY_LOOP)
1428 			sk_busy_loop(sock->sk, 1);
1429 
1430 		/* if this socket can poll_ll, tell the system call */
1431 		flag = POLL_BUSY_LOOP;
1432 	}
1433 
1434 	return ops->poll(file, sock, wait) | flag;
1435 }
1436 
1437 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1438 {
1439 	struct socket *sock = file->private_data;
1440 
1441 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1442 }
1443 
1444 static int sock_close(struct inode *inode, struct file *filp)
1445 {
1446 	__sock_release(SOCKET_I(inode), inode);
1447 	return 0;
1448 }
1449 
1450 /*
1451  *	Update the socket async list
1452  *
1453  *	Fasync_list locking strategy.
1454  *
1455  *	1. fasync_list is modified only under process context socket lock
1456  *	   i.e. under semaphore.
1457  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1458  *	   or under socket lock
1459  */
1460 
1461 static int sock_fasync(int fd, struct file *filp, int on)
1462 {
1463 	struct socket *sock = filp->private_data;
1464 	struct sock *sk = sock->sk;
1465 	struct socket_wq *wq = &sock->wq;
1466 
1467 	if (sk == NULL)
1468 		return -EINVAL;
1469 
1470 	lock_sock(sk);
1471 	fasync_helper(fd, filp, on, &wq->fasync_list);
1472 
1473 	if (!wq->fasync_list)
1474 		sock_reset_flag(sk, SOCK_FASYNC);
1475 	else
1476 		sock_set_flag(sk, SOCK_FASYNC);
1477 
1478 	release_sock(sk);
1479 	return 0;
1480 }
1481 
1482 /* This function may be called only under rcu_lock */
1483 
1484 int sock_wake_async(struct socket_wq *wq, int how, int band)
1485 {
1486 	if (!wq || !wq->fasync_list)
1487 		return -1;
1488 
1489 	switch (how) {
1490 	case SOCK_WAKE_WAITD:
1491 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1492 			break;
1493 		goto call_kill;
1494 	case SOCK_WAKE_SPACE:
1495 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1496 			break;
1497 		fallthrough;
1498 	case SOCK_WAKE_IO:
1499 call_kill:
1500 		kill_fasync(&wq->fasync_list, SIGIO, band);
1501 		break;
1502 	case SOCK_WAKE_URG:
1503 		kill_fasync(&wq->fasync_list, SIGURG, band);
1504 	}
1505 
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(sock_wake_async);
1509 
1510 /**
1511  *	__sock_create - creates a socket
1512  *	@net: net namespace
1513  *	@family: protocol family (AF_INET, ...)
1514  *	@type: communication type (SOCK_STREAM, ...)
1515  *	@protocol: protocol (0, ...)
1516  *	@res: new socket
1517  *	@kern: boolean for kernel space sockets
1518  *
1519  *	Creates a new socket and assigns it to @res, passing through LSM.
1520  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1521  *	be set to true if the socket resides in kernel space.
1522  *	This function internally uses GFP_KERNEL.
1523  */
1524 
1525 int __sock_create(struct net *net, int family, int type, int protocol,
1526 			 struct socket **res, int kern)
1527 {
1528 	int err;
1529 	struct socket *sock;
1530 	const struct net_proto_family *pf;
1531 
1532 	/*
1533 	 *      Check protocol is in range
1534 	 */
1535 	if (family < 0 || family >= NPROTO)
1536 		return -EAFNOSUPPORT;
1537 	if (type < 0 || type >= SOCK_MAX)
1538 		return -EINVAL;
1539 
1540 	/* Compatibility.
1541 
1542 	   This uglymoron is moved from INET layer to here to avoid
1543 	   deadlock in module load.
1544 	 */
1545 	if (family == PF_INET && type == SOCK_PACKET) {
1546 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1547 			     current->comm);
1548 		family = PF_PACKET;
1549 	}
1550 
1551 	err = security_socket_create(family, type, protocol, kern);
1552 	if (err)
1553 		return err;
1554 
1555 	/*
1556 	 *	Allocate the socket and allow the family to set things up. if
1557 	 *	the protocol is 0, the family is instructed to select an appropriate
1558 	 *	default.
1559 	 */
1560 	sock = sock_alloc();
1561 	if (!sock) {
1562 		net_warn_ratelimited("socket: no more sockets\n");
1563 		return -ENFILE;	/* Not exactly a match, but its the
1564 				   closest posix thing */
1565 	}
1566 
1567 	sock->type = type;
1568 
1569 #ifdef CONFIG_MODULES
1570 	/* Attempt to load a protocol module if the find failed.
1571 	 *
1572 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1573 	 * requested real, full-featured networking support upon configuration.
1574 	 * Otherwise module support will break!
1575 	 */
1576 	if (rcu_access_pointer(net_families[family]) == NULL)
1577 		request_module("net-pf-%d", family);
1578 #endif
1579 
1580 	rcu_read_lock();
1581 	pf = rcu_dereference(net_families[family]);
1582 	err = -EAFNOSUPPORT;
1583 	if (!pf)
1584 		goto out_release;
1585 
1586 	/*
1587 	 * We will call the ->create function, that possibly is in a loadable
1588 	 * module, so we have to bump that loadable module refcnt first.
1589 	 */
1590 	if (!try_module_get(pf->owner))
1591 		goto out_release;
1592 
1593 	/* Now protected by module ref count */
1594 	rcu_read_unlock();
1595 
1596 	err = pf->create(net, sock, protocol, kern);
1597 	if (err < 0) {
1598 		/* ->create should release the allocated sock->sk object on error
1599 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1600 		 */
1601 		DEBUG_NET_WARN_ONCE(sock->sk,
1602 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1603 				    pf->create, family, type, protocol);
1604 		goto out_module_put;
1605 	}
1606 
1607 	/*
1608 	 * Now to bump the refcnt of the [loadable] module that owns this
1609 	 * socket at sock_release time we decrement its refcnt.
1610 	 */
1611 	if (!try_module_get(sock->ops->owner))
1612 		goto out_module_busy;
1613 
1614 	/*
1615 	 * Now that we're done with the ->create function, the [loadable]
1616 	 * module can have its refcnt decremented
1617 	 */
1618 	module_put(pf->owner);
1619 	err = security_socket_post_create(sock, family, type, protocol, kern);
1620 	if (err)
1621 		goto out_sock_release;
1622 	*res = sock;
1623 
1624 	return 0;
1625 
1626 out_module_busy:
1627 	err = -EAFNOSUPPORT;
1628 out_module_put:
1629 	sock->ops = NULL;
1630 	module_put(pf->owner);
1631 out_sock_release:
1632 	sock_release(sock);
1633 	return err;
1634 
1635 out_release:
1636 	rcu_read_unlock();
1637 	goto out_sock_release;
1638 }
1639 EXPORT_SYMBOL(__sock_create);
1640 
1641 /**
1642  *	sock_create - creates a socket
1643  *	@family: protocol family (AF_INET, ...)
1644  *	@type: communication type (SOCK_STREAM, ...)
1645  *	@protocol: protocol (0, ...)
1646  *	@res: new socket
1647  *
1648  *	A wrapper around __sock_create().
1649  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1650  */
1651 
1652 int sock_create(int family, int type, int protocol, struct socket **res)
1653 {
1654 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1655 }
1656 EXPORT_SYMBOL(sock_create);
1657 
1658 /**
1659  *	sock_create_kern - creates a socket (kernel space)
1660  *	@net: net namespace
1661  *	@family: protocol family (AF_INET, ...)
1662  *	@type: communication type (SOCK_STREAM, ...)
1663  *	@protocol: protocol (0, ...)
1664  *	@res: new socket
1665  *
1666  *	A wrapper around __sock_create().
1667  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1668  */
1669 
1670 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1671 {
1672 	return __sock_create(net, family, type, protocol, res, 1);
1673 }
1674 EXPORT_SYMBOL(sock_create_kern);
1675 
1676 static struct socket *__sys_socket_create(int family, int type, int protocol)
1677 {
1678 	struct socket *sock;
1679 	int retval;
1680 
1681 	/* Check the SOCK_* constants for consistency.  */
1682 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1683 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1684 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1685 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1686 
1687 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1688 		return ERR_PTR(-EINVAL);
1689 	type &= SOCK_TYPE_MASK;
1690 
1691 	retval = sock_create(family, type, protocol, &sock);
1692 	if (retval < 0)
1693 		return ERR_PTR(retval);
1694 
1695 	return sock;
1696 }
1697 
1698 struct file *__sys_socket_file(int family, int type, int protocol)
1699 {
1700 	struct socket *sock;
1701 	int flags;
1702 
1703 	sock = __sys_socket_create(family, type, protocol);
1704 	if (IS_ERR(sock))
1705 		return ERR_CAST(sock);
1706 
1707 	flags = type & ~SOCK_TYPE_MASK;
1708 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1709 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1710 
1711 	return sock_alloc_file(sock, flags, NULL);
1712 }
1713 
1714 /*	A hook for bpf progs to attach to and update socket protocol.
1715  *
1716  *	A static noinline declaration here could cause the compiler to
1717  *	optimize away the function. A global noinline declaration will
1718  *	keep the definition, but may optimize away the callsite.
1719  *	Therefore, __weak is needed to ensure that the call is still
1720  *	emitted, by telling the compiler that we don't know what the
1721  *	function might eventually be.
1722  */
1723 
1724 __bpf_hook_start();
1725 
1726 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1727 {
1728 	return protocol;
1729 }
1730 
1731 __bpf_hook_end();
1732 
1733 int __sys_socket(int family, int type, int protocol)
1734 {
1735 	struct socket *sock;
1736 	int flags;
1737 
1738 	sock = __sys_socket_create(family, type,
1739 				   update_socket_protocol(family, type, protocol));
1740 	if (IS_ERR(sock))
1741 		return PTR_ERR(sock);
1742 
1743 	flags = type & ~SOCK_TYPE_MASK;
1744 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1745 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1746 
1747 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1748 }
1749 
1750 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1751 {
1752 	return __sys_socket(family, type, protocol);
1753 }
1754 
1755 /*
1756  *	Create a pair of connected sockets.
1757  */
1758 
1759 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1760 {
1761 	struct socket *sock1, *sock2;
1762 	int fd1, fd2, err;
1763 	struct file *newfile1, *newfile2;
1764 	int flags;
1765 
1766 	flags = type & ~SOCK_TYPE_MASK;
1767 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1768 		return -EINVAL;
1769 	type &= SOCK_TYPE_MASK;
1770 
1771 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1772 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1773 
1774 	/*
1775 	 * reserve descriptors and make sure we won't fail
1776 	 * to return them to userland.
1777 	 */
1778 	fd1 = get_unused_fd_flags(flags);
1779 	if (unlikely(fd1 < 0))
1780 		return fd1;
1781 
1782 	fd2 = get_unused_fd_flags(flags);
1783 	if (unlikely(fd2 < 0)) {
1784 		put_unused_fd(fd1);
1785 		return fd2;
1786 	}
1787 
1788 	err = put_user(fd1, &usockvec[0]);
1789 	if (err)
1790 		goto out;
1791 
1792 	err = put_user(fd2, &usockvec[1]);
1793 	if (err)
1794 		goto out;
1795 
1796 	/*
1797 	 * Obtain the first socket and check if the underlying protocol
1798 	 * supports the socketpair call.
1799 	 */
1800 
1801 	err = sock_create(family, type, protocol, &sock1);
1802 	if (unlikely(err < 0))
1803 		goto out;
1804 
1805 	err = sock_create(family, type, protocol, &sock2);
1806 	if (unlikely(err < 0)) {
1807 		sock_release(sock1);
1808 		goto out;
1809 	}
1810 
1811 	err = security_socket_socketpair(sock1, sock2);
1812 	if (unlikely(err)) {
1813 		sock_release(sock2);
1814 		sock_release(sock1);
1815 		goto out;
1816 	}
1817 
1818 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1819 	if (unlikely(err < 0)) {
1820 		sock_release(sock2);
1821 		sock_release(sock1);
1822 		goto out;
1823 	}
1824 
1825 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1826 	if (IS_ERR(newfile1)) {
1827 		err = PTR_ERR(newfile1);
1828 		sock_release(sock2);
1829 		goto out;
1830 	}
1831 
1832 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1833 	if (IS_ERR(newfile2)) {
1834 		err = PTR_ERR(newfile2);
1835 		fput(newfile1);
1836 		goto out;
1837 	}
1838 
1839 	audit_fd_pair(fd1, fd2);
1840 
1841 	fd_install(fd1, newfile1);
1842 	fd_install(fd2, newfile2);
1843 	return 0;
1844 
1845 out:
1846 	put_unused_fd(fd2);
1847 	put_unused_fd(fd1);
1848 	return err;
1849 }
1850 
1851 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1852 		int __user *, usockvec)
1853 {
1854 	return __sys_socketpair(family, type, protocol, usockvec);
1855 }
1856 
1857 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1858 		      int addrlen)
1859 {
1860 	int err;
1861 
1862 	err = security_socket_bind(sock, (struct sockaddr *)address,
1863 				   addrlen);
1864 	if (!err)
1865 		err = READ_ONCE(sock->ops)->bind(sock,
1866 						 (struct sockaddr *)address,
1867 						 addrlen);
1868 	return err;
1869 }
1870 
1871 /*
1872  *	Bind a name to a socket. Nothing much to do here since it's
1873  *	the protocol's responsibility to handle the local address.
1874  *
1875  *	We move the socket address to kernel space before we call
1876  *	the protocol layer (having also checked the address is ok).
1877  */
1878 
1879 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1880 {
1881 	struct socket *sock;
1882 	struct sockaddr_storage address;
1883 	CLASS(fd, f)(fd);
1884 	int err;
1885 
1886 	if (fd_empty(f))
1887 		return -EBADF;
1888 	sock = sock_from_file(fd_file(f));
1889 	if (unlikely(!sock))
1890 		return -ENOTSOCK;
1891 
1892 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1893 	if (unlikely(err))
1894 		return err;
1895 
1896 	return __sys_bind_socket(sock, &address, addrlen);
1897 }
1898 
1899 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1900 {
1901 	return __sys_bind(fd, umyaddr, addrlen);
1902 }
1903 
1904 /*
1905  *	Perform a listen. Basically, we allow the protocol to do anything
1906  *	necessary for a listen, and if that works, we mark the socket as
1907  *	ready for listening.
1908  */
1909 int __sys_listen_socket(struct socket *sock, int backlog)
1910 {
1911 	int somaxconn, err;
1912 
1913 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1914 	if ((unsigned int)backlog > somaxconn)
1915 		backlog = somaxconn;
1916 
1917 	err = security_socket_listen(sock, backlog);
1918 	if (!err)
1919 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1920 	return err;
1921 }
1922 
1923 int __sys_listen(int fd, int backlog)
1924 {
1925 	CLASS(fd, f)(fd);
1926 	struct socket *sock;
1927 
1928 	if (fd_empty(f))
1929 		return -EBADF;
1930 	sock = sock_from_file(fd_file(f));
1931 	if (unlikely(!sock))
1932 		return -ENOTSOCK;
1933 
1934 	return __sys_listen_socket(sock, backlog);
1935 }
1936 
1937 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1938 {
1939 	return __sys_listen(fd, backlog);
1940 }
1941 
1942 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1943 		       struct sockaddr __user *upeer_sockaddr,
1944 		       int __user *upeer_addrlen, int flags)
1945 {
1946 	struct socket *sock, *newsock;
1947 	struct file *newfile;
1948 	int err, len;
1949 	struct sockaddr_storage address;
1950 	const struct proto_ops *ops;
1951 
1952 	sock = sock_from_file(file);
1953 	if (!sock)
1954 		return ERR_PTR(-ENOTSOCK);
1955 
1956 	newsock = sock_alloc();
1957 	if (!newsock)
1958 		return ERR_PTR(-ENFILE);
1959 	ops = READ_ONCE(sock->ops);
1960 
1961 	newsock->type = sock->type;
1962 	newsock->ops = ops;
1963 
1964 	/*
1965 	 * We don't need try_module_get here, as the listening socket (sock)
1966 	 * has the protocol module (sock->ops->owner) held.
1967 	 */
1968 	__module_get(ops->owner);
1969 
1970 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1971 	if (IS_ERR(newfile))
1972 		return newfile;
1973 
1974 	err = security_socket_accept(sock, newsock);
1975 	if (err)
1976 		goto out_fd;
1977 
1978 	arg->flags |= sock->file->f_flags;
1979 	err = ops->accept(sock, newsock, arg);
1980 	if (err < 0)
1981 		goto out_fd;
1982 
1983 	if (upeer_sockaddr) {
1984 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1985 		if (len < 0) {
1986 			err = -ECONNABORTED;
1987 			goto out_fd;
1988 		}
1989 		err = move_addr_to_user(&address,
1990 					len, upeer_sockaddr, upeer_addrlen);
1991 		if (err < 0)
1992 			goto out_fd;
1993 	}
1994 
1995 	/* File flags are not inherited via accept() unlike another OSes. */
1996 	return newfile;
1997 out_fd:
1998 	fput(newfile);
1999 	return ERR_PTR(err);
2000 }
2001 
2002 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2003 			      int __user *upeer_addrlen, int flags)
2004 {
2005 	struct proto_accept_arg arg = { };
2006 
2007 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2008 		return -EINVAL;
2009 
2010 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2011 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2012 
2013 	return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags));
2014 }
2015 
2016 /*
2017  *	For accept, we attempt to create a new socket, set up the link
2018  *	with the client, wake up the client, then return the new
2019  *	connected fd. We collect the address of the connector in kernel
2020  *	space and move it to user at the very end. This is unclean because
2021  *	we open the socket then return an error.
2022  *
2023  *	1003.1g adds the ability to recvmsg() to query connection pending
2024  *	status to recvmsg. We need to add that support in a way thats
2025  *	clean when we restructure accept also.
2026  */
2027 
2028 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2029 		  int __user *upeer_addrlen, int flags)
2030 {
2031 	CLASS(fd, f)(fd);
2032 
2033 	if (fd_empty(f))
2034 		return -EBADF;
2035 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2036 					 upeer_addrlen, flags);
2037 }
2038 
2039 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2040 		int __user *, upeer_addrlen, int, flags)
2041 {
2042 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2043 }
2044 
2045 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2046 		int __user *, upeer_addrlen)
2047 {
2048 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2049 }
2050 
2051 /*
2052  *	Attempt to connect to a socket with the server address.  The address
2053  *	is in user space so we verify it is OK and move it to kernel space.
2054  *
2055  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2056  *	break bindings
2057  *
2058  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2059  *	other SEQPACKET protocols that take time to connect() as it doesn't
2060  *	include the -EINPROGRESS status for such sockets.
2061  */
2062 
2063 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2064 		       int addrlen, int file_flags)
2065 {
2066 	struct socket *sock;
2067 	int err;
2068 
2069 	sock = sock_from_file(file);
2070 	if (!sock) {
2071 		err = -ENOTSOCK;
2072 		goto out;
2073 	}
2074 
2075 	err =
2076 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2077 	if (err)
2078 		goto out;
2079 
2080 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2081 				addrlen, sock->file->f_flags | file_flags);
2082 out:
2083 	return err;
2084 }
2085 
2086 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2087 {
2088 	struct sockaddr_storage address;
2089 	CLASS(fd, f)(fd);
2090 	int ret;
2091 
2092 	if (fd_empty(f))
2093 		return -EBADF;
2094 
2095 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2096 	if (ret)
2097 		return ret;
2098 
2099 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2100 }
2101 
2102 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2103 		int, addrlen)
2104 {
2105 	return __sys_connect(fd, uservaddr, addrlen);
2106 }
2107 
2108 /*
2109  *	Get the local address ('name') of a socket object. Move the obtained
2110  *	name to user space.
2111  */
2112 
2113 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2114 		      int __user *usockaddr_len)
2115 {
2116 	struct socket *sock;
2117 	struct sockaddr_storage address;
2118 	CLASS(fd, f)(fd);
2119 	int err;
2120 
2121 	if (fd_empty(f))
2122 		return -EBADF;
2123 	sock = sock_from_file(fd_file(f));
2124 	if (unlikely(!sock))
2125 		return -ENOTSOCK;
2126 
2127 	err = security_socket_getsockname(sock);
2128 	if (err)
2129 		return err;
2130 
2131 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2132 	if (err < 0)
2133 		return err;
2134 
2135 	/* "err" is actually length in this case */
2136 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2137 }
2138 
2139 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2140 		int __user *, usockaddr_len)
2141 {
2142 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2143 }
2144 
2145 /*
2146  *	Get the remote address ('name') of a socket object. Move the obtained
2147  *	name to user space.
2148  */
2149 
2150 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2151 		      int __user *usockaddr_len)
2152 {
2153 	struct socket *sock;
2154 	struct sockaddr_storage address;
2155 	CLASS(fd, f)(fd);
2156 	int err;
2157 
2158 	if (fd_empty(f))
2159 		return -EBADF;
2160 	sock = sock_from_file(fd_file(f));
2161 	if (unlikely(!sock))
2162 		return -ENOTSOCK;
2163 
2164 	err = security_socket_getpeername(sock);
2165 	if (err)
2166 		return err;
2167 
2168 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2169 	if (err < 0)
2170 		return err;
2171 
2172 	/* "err" is actually length in this case */
2173 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2174 }
2175 
2176 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2177 		int __user *, usockaddr_len)
2178 {
2179 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2180 }
2181 
2182 /*
2183  *	Send a datagram to a given address. We move the address into kernel
2184  *	space and check the user space data area is readable before invoking
2185  *	the protocol.
2186  */
2187 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2188 		 struct sockaddr __user *addr,  int addr_len)
2189 {
2190 	struct socket *sock;
2191 	struct sockaddr_storage address;
2192 	int err;
2193 	struct msghdr msg;
2194 
2195 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2196 	if (unlikely(err))
2197 		return err;
2198 
2199 	CLASS(fd, f)(fd);
2200 	if (fd_empty(f))
2201 		return -EBADF;
2202 	sock = sock_from_file(fd_file(f));
2203 	if (unlikely(!sock))
2204 		return -ENOTSOCK;
2205 
2206 	msg.msg_name = NULL;
2207 	msg.msg_control = NULL;
2208 	msg.msg_controllen = 0;
2209 	msg.msg_namelen = 0;
2210 	msg.msg_ubuf = NULL;
2211 	if (addr) {
2212 		err = move_addr_to_kernel(addr, addr_len, &address);
2213 		if (err < 0)
2214 			return err;
2215 		msg.msg_name = (struct sockaddr *)&address;
2216 		msg.msg_namelen = addr_len;
2217 	}
2218 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2219 	if (sock->file->f_flags & O_NONBLOCK)
2220 		flags |= MSG_DONTWAIT;
2221 	msg.msg_flags = flags;
2222 	return __sock_sendmsg(sock, &msg);
2223 }
2224 
2225 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2226 		unsigned int, flags, struct sockaddr __user *, addr,
2227 		int, addr_len)
2228 {
2229 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2230 }
2231 
2232 /*
2233  *	Send a datagram down a socket.
2234  */
2235 
2236 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2237 		unsigned int, flags)
2238 {
2239 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2240 }
2241 
2242 /*
2243  *	Receive a frame from the socket and optionally record the address of the
2244  *	sender. We verify the buffers are writable and if needed move the
2245  *	sender address from kernel to user space.
2246  */
2247 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2248 		   struct sockaddr __user *addr, int __user *addr_len)
2249 {
2250 	struct sockaddr_storage address;
2251 	struct msghdr msg = {
2252 		/* Save some cycles and don't copy the address if not needed */
2253 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2254 	};
2255 	struct socket *sock;
2256 	int err, err2;
2257 
2258 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2259 	if (unlikely(err))
2260 		return err;
2261 
2262 	CLASS(fd, f)(fd);
2263 
2264 	if (fd_empty(f))
2265 		return -EBADF;
2266 	sock = sock_from_file(fd_file(f));
2267 	if (unlikely(!sock))
2268 		return -ENOTSOCK;
2269 
2270 	if (sock->file->f_flags & O_NONBLOCK)
2271 		flags |= MSG_DONTWAIT;
2272 	err = sock_recvmsg(sock, &msg, flags);
2273 
2274 	if (err >= 0 && addr != NULL) {
2275 		err2 = move_addr_to_user(&address,
2276 					 msg.msg_namelen, addr, addr_len);
2277 		if (err2 < 0)
2278 			err = err2;
2279 	}
2280 	return err;
2281 }
2282 
2283 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2284 		unsigned int, flags, struct sockaddr __user *, addr,
2285 		int __user *, addr_len)
2286 {
2287 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2288 }
2289 
2290 /*
2291  *	Receive a datagram from a socket.
2292  */
2293 
2294 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2295 		unsigned int, flags)
2296 {
2297 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2298 }
2299 
2300 static bool sock_use_custom_sol_socket(const struct socket *sock)
2301 {
2302 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2303 }
2304 
2305 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2306 		       int optname, sockptr_t optval, int optlen)
2307 {
2308 	const struct proto_ops *ops;
2309 	char *kernel_optval = NULL;
2310 	int err;
2311 
2312 	if (optlen < 0)
2313 		return -EINVAL;
2314 
2315 	err = security_socket_setsockopt(sock, level, optname);
2316 	if (err)
2317 		goto out_put;
2318 
2319 	if (!compat)
2320 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2321 						     optval, &optlen,
2322 						     &kernel_optval);
2323 	if (err < 0)
2324 		goto out_put;
2325 	if (err > 0) {
2326 		err = 0;
2327 		goto out_put;
2328 	}
2329 
2330 	if (kernel_optval)
2331 		optval = KERNEL_SOCKPTR(kernel_optval);
2332 	ops = READ_ONCE(sock->ops);
2333 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2334 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2335 	else if (unlikely(!ops->setsockopt))
2336 		err = -EOPNOTSUPP;
2337 	else
2338 		err = ops->setsockopt(sock, level, optname, optval,
2339 					    optlen);
2340 	kfree(kernel_optval);
2341 out_put:
2342 	return err;
2343 }
2344 EXPORT_SYMBOL(do_sock_setsockopt);
2345 
2346 /* Set a socket option. Because we don't know the option lengths we have
2347  * to pass the user mode parameter for the protocols to sort out.
2348  */
2349 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2350 		     int optlen)
2351 {
2352 	sockptr_t optval = USER_SOCKPTR(user_optval);
2353 	bool compat = in_compat_syscall();
2354 	struct socket *sock;
2355 	CLASS(fd, f)(fd);
2356 
2357 	if (fd_empty(f))
2358 		return -EBADF;
2359 	sock = sock_from_file(fd_file(f));
2360 	if (unlikely(!sock))
2361 		return -ENOTSOCK;
2362 
2363 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2364 }
2365 
2366 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2367 		char __user *, optval, int, optlen)
2368 {
2369 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2370 }
2371 
2372 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2373 							 int optname));
2374 
2375 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2376 		       int optname, sockptr_t optval, sockptr_t optlen)
2377 {
2378 	int max_optlen __maybe_unused = 0;
2379 	const struct proto_ops *ops;
2380 	int err;
2381 
2382 	err = security_socket_getsockopt(sock, level, optname);
2383 	if (err)
2384 		return err;
2385 
2386 	if (!compat)
2387 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2388 
2389 	ops = READ_ONCE(sock->ops);
2390 	if (level == SOL_SOCKET) {
2391 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2392 	} else if (unlikely(!ops->getsockopt)) {
2393 		err = -EOPNOTSUPP;
2394 	} else {
2395 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2396 			      "Invalid argument type"))
2397 			return -EOPNOTSUPP;
2398 
2399 		err = ops->getsockopt(sock, level, optname, optval.user,
2400 				      optlen.user);
2401 	}
2402 
2403 	if (!compat)
2404 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2405 						     optval, optlen, max_optlen,
2406 						     err);
2407 
2408 	return err;
2409 }
2410 EXPORT_SYMBOL(do_sock_getsockopt);
2411 
2412 /*
2413  *	Get a socket option. Because we don't know the option lengths we have
2414  *	to pass a user mode parameter for the protocols to sort out.
2415  */
2416 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2417 		int __user *optlen)
2418 {
2419 	struct socket *sock;
2420 	CLASS(fd, f)(fd);
2421 
2422 	if (fd_empty(f))
2423 		return -EBADF;
2424 	sock = sock_from_file(fd_file(f));
2425 	if (unlikely(!sock))
2426 		return -ENOTSOCK;
2427 
2428 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2429 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2430 }
2431 
2432 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2433 		char __user *, optval, int __user *, optlen)
2434 {
2435 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2436 }
2437 
2438 /*
2439  *	Shutdown a socket.
2440  */
2441 
2442 int __sys_shutdown_sock(struct socket *sock, int how)
2443 {
2444 	int err;
2445 
2446 	err = security_socket_shutdown(sock, how);
2447 	if (!err)
2448 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2449 
2450 	return err;
2451 }
2452 
2453 int __sys_shutdown(int fd, int how)
2454 {
2455 	struct socket *sock;
2456 	CLASS(fd, f)(fd);
2457 
2458 	if (fd_empty(f))
2459 		return -EBADF;
2460 	sock = sock_from_file(fd_file(f));
2461 	if (unlikely(!sock))
2462 		return -ENOTSOCK;
2463 
2464 	return __sys_shutdown_sock(sock, how);
2465 }
2466 
2467 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2468 {
2469 	return __sys_shutdown(fd, how);
2470 }
2471 
2472 /* A couple of helpful macros for getting the address of the 32/64 bit
2473  * fields which are the same type (int / unsigned) on our platforms.
2474  */
2475 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2476 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2477 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2478 
2479 struct used_address {
2480 	struct sockaddr_storage name;
2481 	unsigned int name_len;
2482 };
2483 
2484 int __copy_msghdr(struct msghdr *kmsg,
2485 		  struct user_msghdr *msg,
2486 		  struct sockaddr __user **save_addr)
2487 {
2488 	ssize_t err;
2489 
2490 	kmsg->msg_control_is_user = true;
2491 	kmsg->msg_get_inq = 0;
2492 	kmsg->msg_control_user = msg->msg_control;
2493 	kmsg->msg_controllen = msg->msg_controllen;
2494 	kmsg->msg_flags = msg->msg_flags;
2495 
2496 	kmsg->msg_namelen = msg->msg_namelen;
2497 	if (!msg->msg_name)
2498 		kmsg->msg_namelen = 0;
2499 
2500 	if (kmsg->msg_namelen < 0)
2501 		return -EINVAL;
2502 
2503 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2504 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2505 
2506 	if (save_addr)
2507 		*save_addr = msg->msg_name;
2508 
2509 	if (msg->msg_name && kmsg->msg_namelen) {
2510 		if (!save_addr) {
2511 			err = move_addr_to_kernel(msg->msg_name,
2512 						  kmsg->msg_namelen,
2513 						  kmsg->msg_name);
2514 			if (err < 0)
2515 				return err;
2516 		}
2517 	} else {
2518 		kmsg->msg_name = NULL;
2519 		kmsg->msg_namelen = 0;
2520 	}
2521 
2522 	if (msg->msg_iovlen > UIO_MAXIOV)
2523 		return -EMSGSIZE;
2524 
2525 	kmsg->msg_iocb = NULL;
2526 	kmsg->msg_ubuf = NULL;
2527 	return 0;
2528 }
2529 
2530 static int copy_msghdr_from_user(struct msghdr *kmsg,
2531 				 struct user_msghdr __user *umsg,
2532 				 struct sockaddr __user **save_addr,
2533 				 struct iovec **iov)
2534 {
2535 	struct user_msghdr msg;
2536 	ssize_t err;
2537 
2538 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2539 		return -EFAULT;
2540 
2541 	err = __copy_msghdr(kmsg, &msg, save_addr);
2542 	if (err)
2543 		return err;
2544 
2545 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2546 			    msg.msg_iov, msg.msg_iovlen,
2547 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2548 	return err < 0 ? err : 0;
2549 }
2550 
2551 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2552 			   unsigned int flags, struct used_address *used_address,
2553 			   unsigned int allowed_msghdr_flags)
2554 {
2555 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2556 				__aligned(sizeof(__kernel_size_t));
2557 	/* 20 is size of ipv6_pktinfo */
2558 	unsigned char *ctl_buf = ctl;
2559 	int ctl_len;
2560 	ssize_t err;
2561 
2562 	err = -ENOBUFS;
2563 
2564 	if (msg_sys->msg_controllen > INT_MAX)
2565 		goto out;
2566 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2567 	ctl_len = msg_sys->msg_controllen;
2568 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2569 		err =
2570 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2571 						     sizeof(ctl));
2572 		if (err)
2573 			goto out;
2574 		ctl_buf = msg_sys->msg_control;
2575 		ctl_len = msg_sys->msg_controllen;
2576 	} else if (ctl_len) {
2577 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2578 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2579 		if (ctl_len > sizeof(ctl)) {
2580 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2581 			if (ctl_buf == NULL)
2582 				goto out;
2583 		}
2584 		err = -EFAULT;
2585 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2586 			goto out_freectl;
2587 		msg_sys->msg_control = ctl_buf;
2588 		msg_sys->msg_control_is_user = false;
2589 	}
2590 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2591 	msg_sys->msg_flags = flags;
2592 
2593 	if (sock->file->f_flags & O_NONBLOCK)
2594 		msg_sys->msg_flags |= MSG_DONTWAIT;
2595 	/*
2596 	 * If this is sendmmsg() and current destination address is same as
2597 	 * previously succeeded address, omit asking LSM's decision.
2598 	 * used_address->name_len is initialized to UINT_MAX so that the first
2599 	 * destination address never matches.
2600 	 */
2601 	if (used_address && msg_sys->msg_name &&
2602 	    used_address->name_len == msg_sys->msg_namelen &&
2603 	    !memcmp(&used_address->name, msg_sys->msg_name,
2604 		    used_address->name_len)) {
2605 		err = sock_sendmsg_nosec(sock, msg_sys);
2606 		goto out_freectl;
2607 	}
2608 	err = __sock_sendmsg(sock, msg_sys);
2609 	/*
2610 	 * If this is sendmmsg() and sending to current destination address was
2611 	 * successful, remember it.
2612 	 */
2613 	if (used_address && err >= 0) {
2614 		used_address->name_len = msg_sys->msg_namelen;
2615 		if (msg_sys->msg_name)
2616 			memcpy(&used_address->name, msg_sys->msg_name,
2617 			       used_address->name_len);
2618 	}
2619 
2620 out_freectl:
2621 	if (ctl_buf != ctl)
2622 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2623 out:
2624 	return err;
2625 }
2626 
2627 static int sendmsg_copy_msghdr(struct msghdr *msg,
2628 			       struct user_msghdr __user *umsg, unsigned flags,
2629 			       struct iovec **iov)
2630 {
2631 	int err;
2632 
2633 	if (flags & MSG_CMSG_COMPAT) {
2634 		struct compat_msghdr __user *msg_compat;
2635 
2636 		msg_compat = (struct compat_msghdr __user *) umsg;
2637 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2638 	} else {
2639 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2640 	}
2641 	if (err < 0)
2642 		return err;
2643 
2644 	return 0;
2645 }
2646 
2647 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2648 			 struct msghdr *msg_sys, unsigned int flags,
2649 			 struct used_address *used_address,
2650 			 unsigned int allowed_msghdr_flags)
2651 {
2652 	struct sockaddr_storage address;
2653 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2654 	ssize_t err;
2655 
2656 	msg_sys->msg_name = &address;
2657 
2658 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2659 	if (err < 0)
2660 		return err;
2661 
2662 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2663 				allowed_msghdr_flags);
2664 	kfree(iov);
2665 	return err;
2666 }
2667 
2668 /*
2669  *	BSD sendmsg interface
2670  */
2671 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2672 			unsigned int flags)
2673 {
2674 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2675 }
2676 
2677 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2678 		   bool forbid_cmsg_compat)
2679 {
2680 	struct msghdr msg_sys;
2681 	struct socket *sock;
2682 
2683 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2684 		return -EINVAL;
2685 
2686 	CLASS(fd, f)(fd);
2687 
2688 	if (fd_empty(f))
2689 		return -EBADF;
2690 	sock = sock_from_file(fd_file(f));
2691 	if (unlikely(!sock))
2692 		return -ENOTSOCK;
2693 
2694 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2695 }
2696 
2697 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2698 {
2699 	return __sys_sendmsg(fd, msg, flags, true);
2700 }
2701 
2702 /*
2703  *	Linux sendmmsg interface
2704  */
2705 
2706 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2707 		   unsigned int flags, bool forbid_cmsg_compat)
2708 {
2709 	int err, datagrams;
2710 	struct socket *sock;
2711 	struct mmsghdr __user *entry;
2712 	struct compat_mmsghdr __user *compat_entry;
2713 	struct msghdr msg_sys;
2714 	struct used_address used_address;
2715 	unsigned int oflags = flags;
2716 
2717 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2718 		return -EINVAL;
2719 
2720 	if (vlen > UIO_MAXIOV)
2721 		vlen = UIO_MAXIOV;
2722 
2723 	datagrams = 0;
2724 
2725 	CLASS(fd, f)(fd);
2726 
2727 	if (fd_empty(f))
2728 		return -EBADF;
2729 	sock = sock_from_file(fd_file(f));
2730 	if (unlikely(!sock))
2731 		return -ENOTSOCK;
2732 
2733 	used_address.name_len = UINT_MAX;
2734 	entry = mmsg;
2735 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2736 	err = 0;
2737 	flags |= MSG_BATCH;
2738 
2739 	while (datagrams < vlen) {
2740 		if (datagrams == vlen - 1)
2741 			flags = oflags;
2742 
2743 		if (MSG_CMSG_COMPAT & flags) {
2744 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2745 					     &msg_sys, flags, &used_address, MSG_EOR);
2746 			if (err < 0)
2747 				break;
2748 			err = __put_user(err, &compat_entry->msg_len);
2749 			++compat_entry;
2750 		} else {
2751 			err = ___sys_sendmsg(sock,
2752 					     (struct user_msghdr __user *)entry,
2753 					     &msg_sys, flags, &used_address, MSG_EOR);
2754 			if (err < 0)
2755 				break;
2756 			err = put_user(err, &entry->msg_len);
2757 			++entry;
2758 		}
2759 
2760 		if (err)
2761 			break;
2762 		++datagrams;
2763 		if (msg_data_left(&msg_sys))
2764 			break;
2765 		cond_resched();
2766 	}
2767 
2768 	/* We only return an error if no datagrams were able to be sent */
2769 	if (datagrams != 0)
2770 		return datagrams;
2771 
2772 	return err;
2773 }
2774 
2775 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2776 		unsigned int, vlen, unsigned int, flags)
2777 {
2778 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2779 }
2780 
2781 static int recvmsg_copy_msghdr(struct msghdr *msg,
2782 			       struct user_msghdr __user *umsg, unsigned flags,
2783 			       struct sockaddr __user **uaddr,
2784 			       struct iovec **iov)
2785 {
2786 	ssize_t err;
2787 
2788 	if (MSG_CMSG_COMPAT & flags) {
2789 		struct compat_msghdr __user *msg_compat;
2790 
2791 		msg_compat = (struct compat_msghdr __user *) umsg;
2792 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2793 	} else {
2794 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2795 	}
2796 	if (err < 0)
2797 		return err;
2798 
2799 	return 0;
2800 }
2801 
2802 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2803 			   struct user_msghdr __user *msg,
2804 			   struct sockaddr __user *uaddr,
2805 			   unsigned int flags, int nosec)
2806 {
2807 	struct compat_msghdr __user *msg_compat =
2808 					(struct compat_msghdr __user *) msg;
2809 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2810 	struct sockaddr_storage addr;
2811 	unsigned long cmsg_ptr;
2812 	int len;
2813 	ssize_t err;
2814 
2815 	msg_sys->msg_name = &addr;
2816 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2817 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2818 
2819 	/* We assume all kernel code knows the size of sockaddr_storage */
2820 	msg_sys->msg_namelen = 0;
2821 
2822 	if (sock->file->f_flags & O_NONBLOCK)
2823 		flags |= MSG_DONTWAIT;
2824 
2825 	if (unlikely(nosec))
2826 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2827 	else
2828 		err = sock_recvmsg(sock, msg_sys, flags);
2829 
2830 	if (err < 0)
2831 		goto out;
2832 	len = err;
2833 
2834 	if (uaddr != NULL) {
2835 		err = move_addr_to_user(&addr,
2836 					msg_sys->msg_namelen, uaddr,
2837 					uaddr_len);
2838 		if (err < 0)
2839 			goto out;
2840 	}
2841 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2842 			 COMPAT_FLAGS(msg));
2843 	if (err)
2844 		goto out;
2845 	if (MSG_CMSG_COMPAT & flags)
2846 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2847 				 &msg_compat->msg_controllen);
2848 	else
2849 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2850 				 &msg->msg_controllen);
2851 	if (err)
2852 		goto out;
2853 	err = len;
2854 out:
2855 	return err;
2856 }
2857 
2858 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2859 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2860 {
2861 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2862 	/* user mode address pointers */
2863 	struct sockaddr __user *uaddr;
2864 	ssize_t err;
2865 
2866 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2867 	if (err < 0)
2868 		return err;
2869 
2870 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2871 	kfree(iov);
2872 	return err;
2873 }
2874 
2875 /*
2876  *	BSD recvmsg interface
2877  */
2878 
2879 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2880 			struct user_msghdr __user *umsg,
2881 			struct sockaddr __user *uaddr, unsigned int flags)
2882 {
2883 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2884 }
2885 
2886 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2887 		   bool forbid_cmsg_compat)
2888 {
2889 	struct msghdr msg_sys;
2890 	struct socket *sock;
2891 
2892 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2893 		return -EINVAL;
2894 
2895 	CLASS(fd, f)(fd);
2896 
2897 	if (fd_empty(f))
2898 		return -EBADF;
2899 	sock = sock_from_file(fd_file(f));
2900 	if (unlikely(!sock))
2901 		return -ENOTSOCK;
2902 
2903 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2904 }
2905 
2906 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2907 		unsigned int, flags)
2908 {
2909 	return __sys_recvmsg(fd, msg, flags, true);
2910 }
2911 
2912 /*
2913  *     Linux recvmmsg interface
2914  */
2915 
2916 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2917 			  unsigned int vlen, unsigned int flags,
2918 			  struct timespec64 *timeout)
2919 {
2920 	int err = 0, datagrams;
2921 	struct socket *sock;
2922 	struct mmsghdr __user *entry;
2923 	struct compat_mmsghdr __user *compat_entry;
2924 	struct msghdr msg_sys;
2925 	struct timespec64 end_time;
2926 	struct timespec64 timeout64;
2927 
2928 	if (timeout &&
2929 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2930 				    timeout->tv_nsec))
2931 		return -EINVAL;
2932 
2933 	datagrams = 0;
2934 
2935 	CLASS(fd, f)(fd);
2936 
2937 	if (fd_empty(f))
2938 		return -EBADF;
2939 	sock = sock_from_file(fd_file(f));
2940 	if (unlikely(!sock))
2941 		return -ENOTSOCK;
2942 
2943 	if (likely(!(flags & MSG_ERRQUEUE))) {
2944 		err = sock_error(sock->sk);
2945 		if (err)
2946 			return err;
2947 	}
2948 
2949 	entry = mmsg;
2950 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2951 
2952 	while (datagrams < vlen) {
2953 		/*
2954 		 * No need to ask LSM for more than the first datagram.
2955 		 */
2956 		if (MSG_CMSG_COMPAT & flags) {
2957 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2958 					     &msg_sys, flags & ~MSG_WAITFORONE,
2959 					     datagrams);
2960 			if (err < 0)
2961 				break;
2962 			err = __put_user(err, &compat_entry->msg_len);
2963 			++compat_entry;
2964 		} else {
2965 			err = ___sys_recvmsg(sock,
2966 					     (struct user_msghdr __user *)entry,
2967 					     &msg_sys, flags & ~MSG_WAITFORONE,
2968 					     datagrams);
2969 			if (err < 0)
2970 				break;
2971 			err = put_user(err, &entry->msg_len);
2972 			++entry;
2973 		}
2974 
2975 		if (err)
2976 			break;
2977 		++datagrams;
2978 
2979 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2980 		if (flags & MSG_WAITFORONE)
2981 			flags |= MSG_DONTWAIT;
2982 
2983 		if (timeout) {
2984 			ktime_get_ts64(&timeout64);
2985 			*timeout = timespec64_sub(end_time, timeout64);
2986 			if (timeout->tv_sec < 0) {
2987 				timeout->tv_sec = timeout->tv_nsec = 0;
2988 				break;
2989 			}
2990 
2991 			/* Timeout, return less than vlen datagrams */
2992 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2993 				break;
2994 		}
2995 
2996 		/* Out of band data, return right away */
2997 		if (msg_sys.msg_flags & MSG_OOB)
2998 			break;
2999 		cond_resched();
3000 	}
3001 
3002 	if (err == 0)
3003 		return datagrams;
3004 
3005 	if (datagrams == 0)
3006 		return err;
3007 
3008 	/*
3009 	 * We may return less entries than requested (vlen) if the
3010 	 * sock is non block and there aren't enough datagrams...
3011 	 */
3012 	if (err != -EAGAIN) {
3013 		/*
3014 		 * ... or  if recvmsg returns an error after we
3015 		 * received some datagrams, where we record the
3016 		 * error to return on the next call or if the
3017 		 * app asks about it using getsockopt(SO_ERROR).
3018 		 */
3019 		WRITE_ONCE(sock->sk->sk_err, -err);
3020 	}
3021 	return datagrams;
3022 }
3023 
3024 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3025 		   unsigned int vlen, unsigned int flags,
3026 		   struct __kernel_timespec __user *timeout,
3027 		   struct old_timespec32 __user *timeout32)
3028 {
3029 	int datagrams;
3030 	struct timespec64 timeout_sys;
3031 
3032 	if (timeout && get_timespec64(&timeout_sys, timeout))
3033 		return -EFAULT;
3034 
3035 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3036 		return -EFAULT;
3037 
3038 	if (!timeout && !timeout32)
3039 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3040 
3041 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3042 
3043 	if (datagrams <= 0)
3044 		return datagrams;
3045 
3046 	if (timeout && put_timespec64(&timeout_sys, timeout))
3047 		datagrams = -EFAULT;
3048 
3049 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3050 		datagrams = -EFAULT;
3051 
3052 	return datagrams;
3053 }
3054 
3055 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3056 		unsigned int, vlen, unsigned int, flags,
3057 		struct __kernel_timespec __user *, timeout)
3058 {
3059 	if (flags & MSG_CMSG_COMPAT)
3060 		return -EINVAL;
3061 
3062 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3063 }
3064 
3065 #ifdef CONFIG_COMPAT_32BIT_TIME
3066 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3067 		unsigned int, vlen, unsigned int, flags,
3068 		struct old_timespec32 __user *, timeout)
3069 {
3070 	if (flags & MSG_CMSG_COMPAT)
3071 		return -EINVAL;
3072 
3073 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3074 }
3075 #endif
3076 
3077 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3078 /* Argument list sizes for sys_socketcall */
3079 #define AL(x) ((x) * sizeof(unsigned long))
3080 static const unsigned char nargs[21] = {
3081 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3082 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3083 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3084 	AL(4), AL(5), AL(4)
3085 };
3086 
3087 #undef AL
3088 
3089 /*
3090  *	System call vectors.
3091  *
3092  *	Argument checking cleaned up. Saved 20% in size.
3093  *  This function doesn't need to set the kernel lock because
3094  *  it is set by the callees.
3095  */
3096 
3097 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3098 {
3099 	unsigned long a[AUDITSC_ARGS];
3100 	unsigned long a0, a1;
3101 	int err;
3102 	unsigned int len;
3103 
3104 	if (call < 1 || call > SYS_SENDMMSG)
3105 		return -EINVAL;
3106 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3107 
3108 	len = nargs[call];
3109 	if (len > sizeof(a))
3110 		return -EINVAL;
3111 
3112 	/* copy_from_user should be SMP safe. */
3113 	if (copy_from_user(a, args, len))
3114 		return -EFAULT;
3115 
3116 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3117 	if (err)
3118 		return err;
3119 
3120 	a0 = a[0];
3121 	a1 = a[1];
3122 
3123 	switch (call) {
3124 	case SYS_SOCKET:
3125 		err = __sys_socket(a0, a1, a[2]);
3126 		break;
3127 	case SYS_BIND:
3128 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3129 		break;
3130 	case SYS_CONNECT:
3131 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3132 		break;
3133 	case SYS_LISTEN:
3134 		err = __sys_listen(a0, a1);
3135 		break;
3136 	case SYS_ACCEPT:
3137 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3138 				    (int __user *)a[2], 0);
3139 		break;
3140 	case SYS_GETSOCKNAME:
3141 		err =
3142 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3143 				      (int __user *)a[2]);
3144 		break;
3145 	case SYS_GETPEERNAME:
3146 		err =
3147 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3148 				      (int __user *)a[2]);
3149 		break;
3150 	case SYS_SOCKETPAIR:
3151 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3152 		break;
3153 	case SYS_SEND:
3154 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3155 				   NULL, 0);
3156 		break;
3157 	case SYS_SENDTO:
3158 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3159 				   (struct sockaddr __user *)a[4], a[5]);
3160 		break;
3161 	case SYS_RECV:
3162 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3163 				     NULL, NULL);
3164 		break;
3165 	case SYS_RECVFROM:
3166 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3167 				     (struct sockaddr __user *)a[4],
3168 				     (int __user *)a[5]);
3169 		break;
3170 	case SYS_SHUTDOWN:
3171 		err = __sys_shutdown(a0, a1);
3172 		break;
3173 	case SYS_SETSOCKOPT:
3174 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3175 				       a[4]);
3176 		break;
3177 	case SYS_GETSOCKOPT:
3178 		err =
3179 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3180 				     (int __user *)a[4]);
3181 		break;
3182 	case SYS_SENDMSG:
3183 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3184 				    a[2], true);
3185 		break;
3186 	case SYS_SENDMMSG:
3187 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3188 				     a[3], true);
3189 		break;
3190 	case SYS_RECVMSG:
3191 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3192 				    a[2], true);
3193 		break;
3194 	case SYS_RECVMMSG:
3195 		if (IS_ENABLED(CONFIG_64BIT))
3196 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3197 					     a[2], a[3],
3198 					     (struct __kernel_timespec __user *)a[4],
3199 					     NULL);
3200 		else
3201 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3202 					     a[2], a[3], NULL,
3203 					     (struct old_timespec32 __user *)a[4]);
3204 		break;
3205 	case SYS_ACCEPT4:
3206 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3207 				    (int __user *)a[2], a[3]);
3208 		break;
3209 	default:
3210 		err = -EINVAL;
3211 		break;
3212 	}
3213 	return err;
3214 }
3215 
3216 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3217 
3218 /**
3219  *	sock_register - add a socket protocol handler
3220  *	@ops: description of protocol
3221  *
3222  *	This function is called by a protocol handler that wants to
3223  *	advertise its address family, and have it linked into the
3224  *	socket interface. The value ops->family corresponds to the
3225  *	socket system call protocol family.
3226  */
3227 int sock_register(const struct net_proto_family *ops)
3228 {
3229 	int err;
3230 
3231 	if (ops->family >= NPROTO) {
3232 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3233 		return -ENOBUFS;
3234 	}
3235 
3236 	spin_lock(&net_family_lock);
3237 	if (rcu_dereference_protected(net_families[ops->family],
3238 				      lockdep_is_held(&net_family_lock)))
3239 		err = -EEXIST;
3240 	else {
3241 		rcu_assign_pointer(net_families[ops->family], ops);
3242 		err = 0;
3243 	}
3244 	spin_unlock(&net_family_lock);
3245 
3246 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3247 	return err;
3248 }
3249 EXPORT_SYMBOL(sock_register);
3250 
3251 /**
3252  *	sock_unregister - remove a protocol handler
3253  *	@family: protocol family to remove
3254  *
3255  *	This function is called by a protocol handler that wants to
3256  *	remove its address family, and have it unlinked from the
3257  *	new socket creation.
3258  *
3259  *	If protocol handler is a module, then it can use module reference
3260  *	counts to protect against new references. If protocol handler is not
3261  *	a module then it needs to provide its own protection in
3262  *	the ops->create routine.
3263  */
3264 void sock_unregister(int family)
3265 {
3266 	BUG_ON(family < 0 || family >= NPROTO);
3267 
3268 	spin_lock(&net_family_lock);
3269 	RCU_INIT_POINTER(net_families[family], NULL);
3270 	spin_unlock(&net_family_lock);
3271 
3272 	synchronize_rcu();
3273 
3274 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3275 }
3276 EXPORT_SYMBOL(sock_unregister);
3277 
3278 bool sock_is_registered(int family)
3279 {
3280 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3281 }
3282 
3283 static int __init sock_init(void)
3284 {
3285 	int err;
3286 	/*
3287 	 *      Initialize the network sysctl infrastructure.
3288 	 */
3289 	err = net_sysctl_init();
3290 	if (err)
3291 		goto out;
3292 
3293 	/*
3294 	 *      Initialize skbuff SLAB cache
3295 	 */
3296 	skb_init();
3297 
3298 	/*
3299 	 *      Initialize the protocols module.
3300 	 */
3301 
3302 	init_inodecache();
3303 
3304 	err = register_filesystem(&sock_fs_type);
3305 	if (err)
3306 		goto out;
3307 	sock_mnt = kern_mount(&sock_fs_type);
3308 	if (IS_ERR(sock_mnt)) {
3309 		err = PTR_ERR(sock_mnt);
3310 		goto out_mount;
3311 	}
3312 
3313 	/* The real protocol initialization is performed in later initcalls.
3314 	 */
3315 
3316 #ifdef CONFIG_NETFILTER
3317 	err = netfilter_init();
3318 	if (err)
3319 		goto out;
3320 #endif
3321 
3322 	ptp_classifier_init();
3323 
3324 out:
3325 	return err;
3326 
3327 out_mount:
3328 	unregister_filesystem(&sock_fs_type);
3329 	goto out;
3330 }
3331 
3332 core_initcall(sock_init);	/* early initcall */
3333 
3334 #ifdef CONFIG_PROC_FS
3335 void socket_seq_show(struct seq_file *seq)
3336 {
3337 	seq_printf(seq, "sockets: used %d\n",
3338 		   sock_inuse_get(seq->private));
3339 }
3340 #endif				/* CONFIG_PROC_FS */
3341 
3342 /* Handle the fact that while struct ifreq has the same *layout* on
3343  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3344  * which are handled elsewhere, it still has different *size* due to
3345  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3346  * resulting in struct ifreq being 32 and 40 bytes respectively).
3347  * As a result, if the struct happens to be at the end of a page and
3348  * the next page isn't readable/writable, we get a fault. To prevent
3349  * that, copy back and forth to the full size.
3350  */
3351 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3352 {
3353 	if (in_compat_syscall()) {
3354 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3355 
3356 		memset(ifr, 0, sizeof(*ifr));
3357 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3358 			return -EFAULT;
3359 
3360 		if (ifrdata)
3361 			*ifrdata = compat_ptr(ifr32->ifr_data);
3362 
3363 		return 0;
3364 	}
3365 
3366 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3367 		return -EFAULT;
3368 
3369 	if (ifrdata)
3370 		*ifrdata = ifr->ifr_data;
3371 
3372 	return 0;
3373 }
3374 EXPORT_SYMBOL(get_user_ifreq);
3375 
3376 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3377 {
3378 	size_t size = sizeof(*ifr);
3379 
3380 	if (in_compat_syscall())
3381 		size = sizeof(struct compat_ifreq);
3382 
3383 	if (copy_to_user(arg, ifr, size))
3384 		return -EFAULT;
3385 
3386 	return 0;
3387 }
3388 EXPORT_SYMBOL(put_user_ifreq);
3389 
3390 #ifdef CONFIG_COMPAT
3391 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3392 {
3393 	compat_uptr_t uptr32;
3394 	struct ifreq ifr;
3395 	void __user *saved;
3396 	int err;
3397 
3398 	if (get_user_ifreq(&ifr, NULL, uifr32))
3399 		return -EFAULT;
3400 
3401 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3402 		return -EFAULT;
3403 
3404 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3405 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3406 
3407 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3408 	if (!err) {
3409 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3410 		if (put_user_ifreq(&ifr, uifr32))
3411 			err = -EFAULT;
3412 	}
3413 	return err;
3414 }
3415 
3416 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3417 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3418 				 struct compat_ifreq __user *u_ifreq32)
3419 {
3420 	struct ifreq ifreq;
3421 	void __user *data;
3422 
3423 	if (!is_socket_ioctl_cmd(cmd))
3424 		return -ENOTTY;
3425 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3426 		return -EFAULT;
3427 	ifreq.ifr_data = data;
3428 
3429 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3430 }
3431 
3432 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3433 			 unsigned int cmd, unsigned long arg)
3434 {
3435 	void __user *argp = compat_ptr(arg);
3436 	struct sock *sk = sock->sk;
3437 	struct net *net = sock_net(sk);
3438 	const struct proto_ops *ops;
3439 
3440 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3441 		return sock_ioctl(file, cmd, (unsigned long)argp);
3442 
3443 	switch (cmd) {
3444 	case SIOCWANDEV:
3445 		return compat_siocwandev(net, argp);
3446 	case SIOCGSTAMP_OLD:
3447 	case SIOCGSTAMPNS_OLD:
3448 		ops = READ_ONCE(sock->ops);
3449 		if (!ops->gettstamp)
3450 			return -ENOIOCTLCMD;
3451 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3452 				      !COMPAT_USE_64BIT_TIME);
3453 
3454 	case SIOCETHTOOL:
3455 	case SIOCBONDSLAVEINFOQUERY:
3456 	case SIOCBONDINFOQUERY:
3457 	case SIOCSHWTSTAMP:
3458 	case SIOCGHWTSTAMP:
3459 		return compat_ifr_data_ioctl(net, cmd, argp);
3460 
3461 	case FIOSETOWN:
3462 	case SIOCSPGRP:
3463 	case FIOGETOWN:
3464 	case SIOCGPGRP:
3465 	case SIOCBRADDBR:
3466 	case SIOCBRDELBR:
3467 	case SIOCBRADDIF:
3468 	case SIOCBRDELIF:
3469 	case SIOCGIFVLAN:
3470 	case SIOCSIFVLAN:
3471 	case SIOCGSKNS:
3472 	case SIOCGSTAMP_NEW:
3473 	case SIOCGSTAMPNS_NEW:
3474 	case SIOCGIFCONF:
3475 	case SIOCSIFBR:
3476 	case SIOCGIFBR:
3477 		return sock_ioctl(file, cmd, arg);
3478 
3479 	case SIOCGIFFLAGS:
3480 	case SIOCSIFFLAGS:
3481 	case SIOCGIFMAP:
3482 	case SIOCSIFMAP:
3483 	case SIOCGIFMETRIC:
3484 	case SIOCSIFMETRIC:
3485 	case SIOCGIFMTU:
3486 	case SIOCSIFMTU:
3487 	case SIOCGIFMEM:
3488 	case SIOCSIFMEM:
3489 	case SIOCGIFHWADDR:
3490 	case SIOCSIFHWADDR:
3491 	case SIOCADDMULTI:
3492 	case SIOCDELMULTI:
3493 	case SIOCGIFINDEX:
3494 	case SIOCGIFADDR:
3495 	case SIOCSIFADDR:
3496 	case SIOCSIFHWBROADCAST:
3497 	case SIOCDIFADDR:
3498 	case SIOCGIFBRDADDR:
3499 	case SIOCSIFBRDADDR:
3500 	case SIOCGIFDSTADDR:
3501 	case SIOCSIFDSTADDR:
3502 	case SIOCGIFNETMASK:
3503 	case SIOCSIFNETMASK:
3504 	case SIOCSIFPFLAGS:
3505 	case SIOCGIFPFLAGS:
3506 	case SIOCGIFTXQLEN:
3507 	case SIOCSIFTXQLEN:
3508 	case SIOCGIFNAME:
3509 	case SIOCSIFNAME:
3510 	case SIOCGMIIPHY:
3511 	case SIOCGMIIREG:
3512 	case SIOCSMIIREG:
3513 	case SIOCBONDENSLAVE:
3514 	case SIOCBONDRELEASE:
3515 	case SIOCBONDSETHWADDR:
3516 	case SIOCBONDCHANGEACTIVE:
3517 	case SIOCSARP:
3518 	case SIOCGARP:
3519 	case SIOCDARP:
3520 	case SIOCOUTQ:
3521 	case SIOCOUTQNSD:
3522 	case SIOCATMARK:
3523 		return sock_do_ioctl(net, sock, cmd, arg);
3524 	}
3525 
3526 	return -ENOIOCTLCMD;
3527 }
3528 
3529 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3530 			      unsigned long arg)
3531 {
3532 	struct socket *sock = file->private_data;
3533 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3534 	int ret = -ENOIOCTLCMD;
3535 	struct sock *sk;
3536 	struct net *net;
3537 
3538 	sk = sock->sk;
3539 	net = sock_net(sk);
3540 
3541 	if (ops->compat_ioctl)
3542 		ret = ops->compat_ioctl(sock, cmd, arg);
3543 
3544 	if (ret == -ENOIOCTLCMD &&
3545 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3546 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3547 
3548 	if (ret == -ENOIOCTLCMD)
3549 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3550 
3551 	return ret;
3552 }
3553 #endif
3554 
3555 /**
3556  *	kernel_bind - bind an address to a socket (kernel space)
3557  *	@sock: socket
3558  *	@addr: address
3559  *	@addrlen: length of address
3560  *
3561  *	Returns 0 or an error.
3562  */
3563 
3564 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3565 {
3566 	struct sockaddr_storage address;
3567 
3568 	memcpy(&address, addr, addrlen);
3569 
3570 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3571 					  addrlen);
3572 }
3573 EXPORT_SYMBOL(kernel_bind);
3574 
3575 /**
3576  *	kernel_listen - move socket to listening state (kernel space)
3577  *	@sock: socket
3578  *	@backlog: pending connections queue size
3579  *
3580  *	Returns 0 or an error.
3581  */
3582 
3583 int kernel_listen(struct socket *sock, int backlog)
3584 {
3585 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3586 }
3587 EXPORT_SYMBOL(kernel_listen);
3588 
3589 /**
3590  *	kernel_accept - accept a connection (kernel space)
3591  *	@sock: listening socket
3592  *	@newsock: new connected socket
3593  *	@flags: flags
3594  *
3595  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3596  *	If it fails, @newsock is guaranteed to be %NULL.
3597  *	Returns 0 or an error.
3598  */
3599 
3600 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3601 {
3602 	struct sock *sk = sock->sk;
3603 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3604 	struct proto_accept_arg arg = {
3605 		.flags = flags,
3606 		.kern = true,
3607 	};
3608 	int err;
3609 
3610 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3611 			       newsock);
3612 	if (err < 0)
3613 		goto done;
3614 
3615 	err = ops->accept(sock, *newsock, &arg);
3616 	if (err < 0) {
3617 		sock_release(*newsock);
3618 		*newsock = NULL;
3619 		goto done;
3620 	}
3621 
3622 	(*newsock)->ops = ops;
3623 	__module_get(ops->owner);
3624 
3625 done:
3626 	return err;
3627 }
3628 EXPORT_SYMBOL(kernel_accept);
3629 
3630 /**
3631  *	kernel_connect - connect a socket (kernel space)
3632  *	@sock: socket
3633  *	@addr: address
3634  *	@addrlen: address length
3635  *	@flags: flags (O_NONBLOCK, ...)
3636  *
3637  *	For datagram sockets, @addr is the address to which datagrams are sent
3638  *	by default, and the only address from which datagrams are received.
3639  *	For stream sockets, attempts to connect to @addr.
3640  *	Returns 0 or an error code.
3641  */
3642 
3643 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3644 		   int flags)
3645 {
3646 	struct sockaddr_storage address;
3647 
3648 	memcpy(&address, addr, addrlen);
3649 
3650 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3651 					     addrlen, flags);
3652 }
3653 EXPORT_SYMBOL(kernel_connect);
3654 
3655 /**
3656  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3657  *	@sock: socket
3658  *	@addr: address holder
3659  *
3660  * 	Fills the @addr pointer with the address which the socket is bound.
3661  *	Returns the length of the address in bytes or an error code.
3662  */
3663 
3664 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3665 {
3666 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3667 }
3668 EXPORT_SYMBOL(kernel_getsockname);
3669 
3670 /**
3671  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3672  *	@sock: socket
3673  *	@addr: address holder
3674  *
3675  * 	Fills the @addr pointer with the address which the socket is connected.
3676  *	Returns the length of the address in bytes or an error code.
3677  */
3678 
3679 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3680 {
3681 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3682 }
3683 EXPORT_SYMBOL(kernel_getpeername);
3684 
3685 /**
3686  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3687  *	@sock: socket
3688  *	@how: connection part
3689  *
3690  *	Returns 0 or an error.
3691  */
3692 
3693 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3694 {
3695 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3696 }
3697 EXPORT_SYMBOL(kernel_sock_shutdown);
3698 
3699 /**
3700  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3701  *	@sk: socket
3702  *
3703  *	This routine returns the IP overhead imposed by a socket i.e.
3704  *	the length of the underlying IP header, depending on whether
3705  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3706  *	on at the socket. Assumes that the caller has a lock on the socket.
3707  */
3708 
3709 u32 kernel_sock_ip_overhead(struct sock *sk)
3710 {
3711 	struct inet_sock *inet;
3712 	struct ip_options_rcu *opt;
3713 	u32 overhead = 0;
3714 #if IS_ENABLED(CONFIG_IPV6)
3715 	struct ipv6_pinfo *np;
3716 	struct ipv6_txoptions *optv6 = NULL;
3717 #endif /* IS_ENABLED(CONFIG_IPV6) */
3718 
3719 	if (!sk)
3720 		return overhead;
3721 
3722 	switch (sk->sk_family) {
3723 	case AF_INET:
3724 		inet = inet_sk(sk);
3725 		overhead += sizeof(struct iphdr);
3726 		opt = rcu_dereference_protected(inet->inet_opt,
3727 						sock_owned_by_user(sk));
3728 		if (opt)
3729 			overhead += opt->opt.optlen;
3730 		return overhead;
3731 #if IS_ENABLED(CONFIG_IPV6)
3732 	case AF_INET6:
3733 		np = inet6_sk(sk);
3734 		overhead += sizeof(struct ipv6hdr);
3735 		if (np)
3736 			optv6 = rcu_dereference_protected(np->opt,
3737 							  sock_owned_by_user(sk));
3738 		if (optv6)
3739 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3740 		return overhead;
3741 #endif /* IS_ENABLED(CONFIG_IPV6) */
3742 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3743 		return overhead;
3744 	}
3745 }
3746 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3747