1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 283 if (can_do_masked_user_access()) 284 ulen = masked_user_access_begin(ulen); 285 else if (!user_access_begin(ulen, 4)) 286 return -EFAULT; 287 288 unsafe_get_user(len, ulen, efault_end); 289 290 if (len > klen) 291 len = klen; 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 if (len >= 0) 297 unsafe_put_user(klen, ulen, efault_end); 298 299 user_access_end(); 300 301 if (len) { 302 if (len < 0) 303 return -EINVAL; 304 if (audit_sockaddr(klen, kaddr)) 305 return -ENOMEM; 306 if (copy_to_user(uaddr, kaddr, len)) 307 return -EFAULT; 308 } 309 return 0; 310 311 efault_end: 312 user_access_end(); 313 return -EFAULT; 314 } 315 316 static struct kmem_cache *sock_inode_cachep __ro_after_init; 317 318 static struct inode *sock_alloc_inode(struct super_block *sb) 319 { 320 struct socket_alloc *ei; 321 322 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 323 if (!ei) 324 return NULL; 325 init_waitqueue_head(&ei->socket.wq.wait); 326 ei->socket.wq.fasync_list = NULL; 327 ei->socket.wq.flags = 0; 328 329 ei->socket.state = SS_UNCONNECTED; 330 ei->socket.flags = 0; 331 ei->socket.ops = NULL; 332 ei->socket.sk = NULL; 333 ei->socket.file = NULL; 334 335 return &ei->vfs_inode; 336 } 337 338 static void sock_free_inode(struct inode *inode) 339 { 340 struct socket_alloc *ei; 341 342 ei = container_of(inode, struct socket_alloc, vfs_inode); 343 kmem_cache_free(sock_inode_cachep, ei); 344 } 345 346 static void init_once(void *foo) 347 { 348 struct socket_alloc *ei = (struct socket_alloc *)foo; 349 350 inode_init_once(&ei->vfs_inode); 351 } 352 353 static void init_inodecache(void) 354 { 355 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 356 sizeof(struct socket_alloc), 357 0, 358 (SLAB_HWCACHE_ALIGN | 359 SLAB_RECLAIM_ACCOUNT | 360 SLAB_ACCOUNT), 361 init_once); 362 BUG_ON(sock_inode_cachep == NULL); 363 } 364 365 static const struct super_operations sockfs_ops = { 366 .alloc_inode = sock_alloc_inode, 367 .free_inode = sock_free_inode, 368 .statfs = simple_statfs, 369 }; 370 371 /* 372 * sockfs_dname() is called from d_path(). 373 */ 374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 375 { 376 return dynamic_dname(buffer, buflen, "socket:[%lu]", 377 d_inode(dentry)->i_ino); 378 } 379 380 static const struct dentry_operations sockfs_dentry_operations = { 381 .d_dname = sockfs_dname, 382 }; 383 384 static int sockfs_xattr_get(const struct xattr_handler *handler, 385 struct dentry *dentry, struct inode *inode, 386 const char *suffix, void *value, size_t size) 387 { 388 if (value) { 389 if (dentry->d_name.len + 1 > size) 390 return -ERANGE; 391 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 392 } 393 return dentry->d_name.len + 1; 394 } 395 396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 399 400 static const struct xattr_handler sockfs_xattr_handler = { 401 .name = XATTR_NAME_SOCKPROTONAME, 402 .get = sockfs_xattr_get, 403 }; 404 405 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 406 struct mnt_idmap *idmap, 407 struct dentry *dentry, struct inode *inode, 408 const char *suffix, const void *value, 409 size_t size, int flags) 410 { 411 /* Handled by LSM. */ 412 return -EAGAIN; 413 } 414 415 static const struct xattr_handler sockfs_security_xattr_handler = { 416 .prefix = XATTR_SECURITY_PREFIX, 417 .set = sockfs_security_xattr_set, 418 }; 419 420 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 421 &sockfs_xattr_handler, 422 &sockfs_security_xattr_handler, 423 NULL 424 }; 425 426 static int sockfs_init_fs_context(struct fs_context *fc) 427 { 428 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 429 if (!ctx) 430 return -ENOMEM; 431 ctx->ops = &sockfs_ops; 432 ctx->dops = &sockfs_dentry_operations; 433 ctx->xattr = sockfs_xattr_handlers; 434 return 0; 435 } 436 437 static struct vfsmount *sock_mnt __read_mostly; 438 439 static struct file_system_type sock_fs_type = { 440 .name = "sockfs", 441 .init_fs_context = sockfs_init_fs_context, 442 .kill_sb = kill_anon_super, 443 }; 444 445 /* 446 * Obtains the first available file descriptor and sets it up for use. 447 * 448 * These functions create file structures and maps them to fd space 449 * of the current process. On success it returns file descriptor 450 * and file struct implicitly stored in sock->file. 451 * Note that another thread may close file descriptor before we return 452 * from this function. We use the fact that now we do not refer 453 * to socket after mapping. If one day we will need it, this 454 * function will increment ref. count on file by 1. 455 * 456 * In any case returned fd MAY BE not valid! 457 * This race condition is unavoidable 458 * with shared fd spaces, we cannot solve it inside kernel, 459 * but we take care of internal coherence yet. 460 */ 461 462 /** 463 * sock_alloc_file - Bind a &socket to a &file 464 * @sock: socket 465 * @flags: file status flags 466 * @dname: protocol name 467 * 468 * Returns the &file bound with @sock, implicitly storing it 469 * in sock->file. If dname is %NULL, sets to "". 470 * 471 * On failure @sock is released, and an ERR pointer is returned. 472 * 473 * This function uses GFP_KERNEL internally. 474 */ 475 476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 477 { 478 struct file *file; 479 480 if (!dname) 481 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 482 483 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 484 O_RDWR | (flags & O_NONBLOCK), 485 &socket_file_ops); 486 if (IS_ERR(file)) { 487 sock_release(sock); 488 return file; 489 } 490 491 file->f_mode |= FMODE_NOWAIT; 492 sock->file = file; 493 file->private_data = sock; 494 stream_open(SOCK_INODE(sock), file); 495 /* 496 * Disable permission and pre-content events, but enable legacy 497 * inotify events for legacy users. 498 */ 499 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 500 return file; 501 } 502 EXPORT_SYMBOL(sock_alloc_file); 503 504 static int sock_map_fd(struct socket *sock, int flags) 505 { 506 int fd; 507 508 fd = FD_ADD(flags, sock_alloc_file(sock, flags, NULL)); 509 if (fd < 0) 510 sock_release(sock); 511 return fd; 512 } 513 514 /** 515 * sock_from_file - Return the &socket bounded to @file. 516 * @file: file 517 * 518 * On failure returns %NULL. 519 */ 520 521 struct socket *sock_from_file(struct file *file) 522 { 523 if (likely(file->f_op == &socket_file_ops)) 524 return file->private_data; /* set in sock_alloc_file */ 525 526 return NULL; 527 } 528 EXPORT_SYMBOL(sock_from_file); 529 530 /** 531 * sockfd_lookup - Go from a file number to its socket slot 532 * @fd: file handle 533 * @err: pointer to an error code return 534 * 535 * The file handle passed in is locked and the socket it is bound 536 * to is returned. If an error occurs the err pointer is overwritten 537 * with a negative errno code and NULL is returned. The function checks 538 * for both invalid handles and passing a handle which is not a socket. 539 * 540 * On a success the socket object pointer is returned. 541 */ 542 543 struct socket *sockfd_lookup(int fd, int *err) 544 { 545 struct file *file; 546 struct socket *sock; 547 548 file = fget(fd); 549 if (!file) { 550 *err = -EBADF; 551 return NULL; 552 } 553 554 sock = sock_from_file(file); 555 if (!sock) { 556 *err = -ENOTSOCK; 557 fput(file); 558 } 559 return sock; 560 } 561 EXPORT_SYMBOL(sockfd_lookup); 562 563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 564 size_t size) 565 { 566 ssize_t len; 567 ssize_t used = 0; 568 569 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 570 if (len < 0) 571 return len; 572 used += len; 573 if (buffer) { 574 if (size < used) 575 return -ERANGE; 576 buffer += len; 577 } 578 579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 585 buffer += len; 586 } 587 588 return used; 589 } 590 591 static int sockfs_setattr(struct mnt_idmap *idmap, 592 struct dentry *dentry, struct iattr *iattr) 593 { 594 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 595 596 if (!err && (iattr->ia_valid & ATTR_UID)) { 597 struct socket *sock = SOCKET_I(d_inode(dentry)); 598 599 if (sock->sk) { 600 /* Paired with READ_ONCE() in sk_uid() */ 601 WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid); 602 } else { 603 err = -ENOENT; 604 } 605 } 606 607 return err; 608 } 609 610 static const struct inode_operations sockfs_inode_ops = { 611 .listxattr = sockfs_listxattr, 612 .setattr = sockfs_setattr, 613 }; 614 615 /** 616 * sock_alloc - allocate a socket 617 * 618 * Allocate a new inode and socket object. The two are bound together 619 * and initialised. The socket is then returned. If we are out of inodes 620 * NULL is returned. This functions uses GFP_KERNEL internally. 621 */ 622 623 struct socket *sock_alloc(void) 624 { 625 struct inode *inode; 626 struct socket *sock; 627 628 inode = new_inode_pseudo(sock_mnt->mnt_sb); 629 if (!inode) 630 return NULL; 631 632 sock = SOCKET_I(inode); 633 634 inode->i_ino = get_next_ino(); 635 inode->i_mode = S_IFSOCK | S_IRWXUGO; 636 inode->i_uid = current_fsuid(); 637 inode->i_gid = current_fsgid(); 638 inode->i_op = &sockfs_inode_ops; 639 640 return sock; 641 } 642 EXPORT_SYMBOL(sock_alloc); 643 644 static void __sock_release(struct socket *sock, struct inode *inode) 645 { 646 const struct proto_ops *ops = READ_ONCE(sock->ops); 647 648 if (ops) { 649 struct module *owner = ops->owner; 650 651 if (inode) 652 inode_lock(inode); 653 ops->release(sock); 654 sock->sk = NULL; 655 if (inode) 656 inode_unlock(inode); 657 sock->ops = NULL; 658 module_put(owner); 659 } 660 661 if (sock->wq.fasync_list) 662 pr_err("%s: fasync list not empty!\n", __func__); 663 664 if (!sock->file) { 665 iput(SOCK_INODE(sock)); 666 return; 667 } 668 sock->file = NULL; 669 } 670 671 /** 672 * sock_release - close a socket 673 * @sock: socket to close 674 * 675 * The socket is released from the protocol stack if it has a release 676 * callback, and the inode is then released if the socket is bound to 677 * an inode not a file. 678 */ 679 void sock_release(struct socket *sock) 680 { 681 __sock_release(sock, NULL); 682 } 683 EXPORT_SYMBOL(sock_release); 684 685 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 686 { 687 u8 flags = *tx_flags; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 690 flags |= SKBTX_HW_TSTAMP_NOBPF; 691 692 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 693 flags |= SKBTX_SW_TSTAMP; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 696 flags |= SKBTX_SCHED_TSTAMP; 697 698 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) 699 flags |= SKBTX_COMPLETION_TSTAMP; 700 701 *tx_flags = flags; 702 } 703 EXPORT_SYMBOL(__sock_tx_timestamp); 704 705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 706 size_t)); 707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 708 size_t)); 709 710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 711 int flags) 712 { 713 trace_sock_send_length(sk, ret, 0); 714 } 715 716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 717 { 718 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 719 inet_sendmsg, sock, msg, 720 msg_data_left(msg)); 721 BUG_ON(ret == -EIOCBQUEUED); 722 723 if (trace_sock_send_length_enabled()) 724 call_trace_sock_send_length(sock->sk, ret, 0); 725 return ret; 726 } 727 728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 729 { 730 int err = security_socket_sendmsg(sock, msg, 731 msg_data_left(msg)); 732 733 return err ?: sock_sendmsg_nosec(sock, msg); 734 } 735 736 /** 737 * sock_sendmsg - send a message through @sock 738 * @sock: socket 739 * @msg: message to send 740 * 741 * Sends @msg through @sock, passing through LSM. 742 * Returns the number of bytes sent, or an error code. 743 */ 744 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 745 { 746 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 747 struct sockaddr_storage address; 748 int save_len = msg->msg_namelen; 749 int ret; 750 751 if (msg->msg_name) { 752 memcpy(&address, msg->msg_name, msg->msg_namelen); 753 msg->msg_name = &address; 754 } 755 756 ret = __sock_sendmsg(sock, msg); 757 msg->msg_name = save_addr; 758 msg->msg_namelen = save_len; 759 760 return ret; 761 } 762 EXPORT_SYMBOL(sock_sendmsg); 763 764 /** 765 * kernel_sendmsg - send a message through @sock (kernel-space) 766 * @sock: socket 767 * @msg: message header 768 * @vec: kernel vec 769 * @num: vec array length 770 * @size: total message data size 771 * 772 * Builds the message data with @vec and sends it through @sock. 773 * Returns the number of bytes sent, or an error code. 774 */ 775 776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 777 struct kvec *vec, size_t num, size_t size) 778 { 779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 780 return sock_sendmsg(sock, msg); 781 } 782 EXPORT_SYMBOL(kernel_sendmsg); 783 784 static bool skb_is_err_queue(const struct sk_buff *skb) 785 { 786 /* pkt_type of skbs enqueued on the error queue are set to 787 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 788 * in recvmsg, since skbs received on a local socket will never 789 * have a pkt_type of PACKET_OUTGOING. 790 */ 791 return skb->pkt_type == PACKET_OUTGOING; 792 } 793 794 /* On transmit, software and hardware timestamps are returned independently. 795 * As the two skb clones share the hardware timestamp, which may be updated 796 * before the software timestamp is received, a hardware TX timestamp may be 797 * returned only if there is no software TX timestamp. Ignore false software 798 * timestamps, which may be made in the __sock_recv_timestamp() call when the 799 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 800 * hardware timestamp. 801 */ 802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 803 { 804 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 805 } 806 807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 808 { 809 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 810 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 811 struct net_device *orig_dev; 812 ktime_t hwtstamp; 813 814 rcu_read_lock(); 815 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 816 if (orig_dev) { 817 *if_index = orig_dev->ifindex; 818 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 819 } else { 820 hwtstamp = shhwtstamps->hwtstamp; 821 } 822 rcu_read_unlock(); 823 824 return hwtstamp; 825 } 826 827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 828 int if_index) 829 { 830 struct scm_ts_pktinfo ts_pktinfo; 831 struct net_device *orig_dev; 832 833 if (!skb_mac_header_was_set(skb)) 834 return; 835 836 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 837 838 if (!if_index) { 839 rcu_read_lock(); 840 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 841 if (orig_dev) 842 if_index = orig_dev->ifindex; 843 rcu_read_unlock(); 844 } 845 ts_pktinfo.if_index = if_index; 846 847 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 848 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 849 sizeof(ts_pktinfo), &ts_pktinfo); 850 } 851 852 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk) 853 { 854 const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 855 u32 tsflags = READ_ONCE(sk->sk_tsflags); 856 857 if (serr->ee.ee_errno != ENOMSG || 858 serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING) 859 return false; 860 861 /* software time stamp available and wanted */ 862 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp) 863 return true; 864 /* hardware time stamps available and wanted */ 865 return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 866 skb_hwtstamps(skb)->hwtstamp; 867 } 868 869 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 870 struct timespec64 *ts) 871 { 872 u32 tsflags = READ_ONCE(sk->sk_tsflags); 873 ktime_t hwtstamp; 874 int if_index = 0; 875 876 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 877 ktime_to_timespec64_cond(skb->tstamp, ts)) 878 return SOF_TIMESTAMPING_TX_SOFTWARE; 879 880 if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) || 881 skb_is_swtx_tstamp(skb, false)) 882 return -ENOENT; 883 884 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 885 hwtstamp = get_timestamp(sk, skb, &if_index); 886 else 887 hwtstamp = skb_hwtstamps(skb)->hwtstamp; 888 889 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 890 hwtstamp = ptp_convert_timestamp(&hwtstamp, 891 READ_ONCE(sk->sk_bind_phc)); 892 if (!ktime_to_timespec64_cond(hwtstamp, ts)) 893 return -ENOENT; 894 895 return SOF_TIMESTAMPING_TX_HARDWARE; 896 } 897 898 /* 899 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 900 */ 901 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 902 struct sk_buff *skb) 903 { 904 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 905 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 906 struct scm_timestamping_internal tss; 907 int empty = 1, false_tstamp = 0; 908 struct skb_shared_hwtstamps *shhwtstamps = 909 skb_hwtstamps(skb); 910 int if_index; 911 ktime_t hwtstamp; 912 u32 tsflags; 913 914 /* Race occurred between timestamp enabling and packet 915 receiving. Fill in the current time for now. */ 916 if (need_software_tstamp && skb->tstamp == 0) { 917 __net_timestamp(skb); 918 false_tstamp = 1; 919 } 920 921 if (need_software_tstamp) { 922 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 923 if (new_tstamp) { 924 struct __kernel_sock_timeval tv; 925 926 skb_get_new_timestamp(skb, &tv); 927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 928 sizeof(tv), &tv); 929 } else { 930 struct __kernel_old_timeval tv; 931 932 skb_get_timestamp(skb, &tv); 933 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 934 sizeof(tv), &tv); 935 } 936 } else { 937 if (new_tstamp) { 938 struct __kernel_timespec ts; 939 940 skb_get_new_timestampns(skb, &ts); 941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 942 sizeof(ts), &ts); 943 } else { 944 struct __kernel_old_timespec ts; 945 946 skb_get_timestampns(skb, &ts); 947 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 948 sizeof(ts), &ts); 949 } 950 } 951 } 952 953 memset(&tss, 0, sizeof(tss)); 954 tsflags = READ_ONCE(sk->sk_tsflags); 955 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 956 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 957 skb_is_err_queue(skb) || 958 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 959 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 960 empty = 0; 961 if (shhwtstamps && 962 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 963 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 964 skb_is_err_queue(skb) || 965 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 966 !skb_is_swtx_tstamp(skb, false_tstamp)) { 967 if_index = 0; 968 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 969 hwtstamp = get_timestamp(sk, skb, &if_index); 970 else 971 hwtstamp = shhwtstamps->hwtstamp; 972 973 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 974 hwtstamp = ptp_convert_timestamp(&hwtstamp, 975 READ_ONCE(sk->sk_bind_phc)); 976 977 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 978 empty = 0; 979 980 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 981 !skb_is_err_queue(skb)) 982 put_ts_pktinfo(msg, skb, if_index); 983 } 984 } 985 if (!empty) { 986 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 987 put_cmsg_scm_timestamping64(msg, &tss); 988 else 989 put_cmsg_scm_timestamping(msg, &tss); 990 991 if (skb_is_err_queue(skb) && skb->len && 992 SKB_EXT_ERR(skb)->opt_stats) 993 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 994 skb->len, skb->data); 995 } 996 } 997 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 998 999 #ifdef CONFIG_WIRELESS 1000 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 1001 struct sk_buff *skb) 1002 { 1003 int ack; 1004 1005 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 1006 return; 1007 if (!skb->wifi_acked_valid) 1008 return; 1009 1010 ack = skb->wifi_acked; 1011 1012 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1013 } 1014 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1015 #endif 1016 1017 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1018 struct sk_buff *skb) 1019 { 1020 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1021 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1022 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1023 } 1024 1025 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1026 struct sk_buff *skb) 1027 { 1028 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1029 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1030 __u32 mark = skb->mark; 1031 1032 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1033 } 1034 } 1035 1036 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 1037 struct sk_buff *skb) 1038 { 1039 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 1040 __u32 priority = skb->priority; 1041 1042 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 1043 } 1044 } 1045 1046 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1047 struct sk_buff *skb) 1048 { 1049 sock_recv_timestamp(msg, sk, skb); 1050 sock_recv_drops(msg, sk, skb); 1051 sock_recv_mark(msg, sk, skb); 1052 sock_recv_priority(msg, sk, skb); 1053 } 1054 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1055 1056 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1057 size_t, int)); 1058 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1059 size_t, int)); 1060 1061 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1062 { 1063 trace_sock_recv_length(sk, ret, flags); 1064 } 1065 1066 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1067 int flags) 1068 { 1069 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1070 inet6_recvmsg, 1071 inet_recvmsg, sock, msg, 1072 msg_data_left(msg), flags); 1073 if (trace_sock_recv_length_enabled()) 1074 call_trace_sock_recv_length(sock->sk, ret, flags); 1075 return ret; 1076 } 1077 1078 /** 1079 * sock_recvmsg - receive a message from @sock 1080 * @sock: socket 1081 * @msg: message to receive 1082 * @flags: message flags 1083 * 1084 * Receives @msg from @sock, passing through LSM. Returns the total number 1085 * of bytes received, or an error. 1086 */ 1087 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1088 { 1089 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1090 1091 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1092 } 1093 EXPORT_SYMBOL(sock_recvmsg); 1094 1095 /** 1096 * kernel_recvmsg - Receive a message from a socket (kernel space) 1097 * @sock: The socket to receive the message from 1098 * @msg: Received message 1099 * @vec: Input s/g array for message data 1100 * @num: Size of input s/g array 1101 * @size: Number of bytes to read 1102 * @flags: Message flags (MSG_DONTWAIT, etc...) 1103 * 1104 * On return the msg structure contains the scatter/gather array passed in the 1105 * vec argument. The array is modified so that it consists of the unfilled 1106 * portion of the original array. 1107 * 1108 * The returned value is the total number of bytes received, or an error. 1109 */ 1110 1111 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1112 struct kvec *vec, size_t num, size_t size, int flags) 1113 { 1114 msg->msg_control_is_user = false; 1115 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1116 return sock_recvmsg(sock, msg, flags); 1117 } 1118 EXPORT_SYMBOL(kernel_recvmsg); 1119 1120 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1121 struct pipe_inode_info *pipe, size_t len, 1122 unsigned int flags) 1123 { 1124 struct socket *sock = file->private_data; 1125 const struct proto_ops *ops; 1126 1127 ops = READ_ONCE(sock->ops); 1128 if (unlikely(!ops->splice_read)) 1129 return copy_splice_read(file, ppos, pipe, len, flags); 1130 1131 return ops->splice_read(sock, ppos, pipe, len, flags); 1132 } 1133 1134 static void sock_splice_eof(struct file *file) 1135 { 1136 struct socket *sock = file->private_data; 1137 const struct proto_ops *ops; 1138 1139 ops = READ_ONCE(sock->ops); 1140 if (ops->splice_eof) 1141 ops->splice_eof(sock); 1142 } 1143 1144 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1145 { 1146 struct file *file = iocb->ki_filp; 1147 struct socket *sock = file->private_data; 1148 struct msghdr msg = {.msg_iter = *to, 1149 .msg_iocb = iocb}; 1150 ssize_t res; 1151 1152 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1153 msg.msg_flags = MSG_DONTWAIT; 1154 1155 if (iocb->ki_pos != 0) 1156 return -ESPIPE; 1157 1158 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1159 return 0; 1160 1161 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1162 *to = msg.msg_iter; 1163 return res; 1164 } 1165 1166 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1167 { 1168 struct file *file = iocb->ki_filp; 1169 struct socket *sock = file->private_data; 1170 struct msghdr msg = {.msg_iter = *from, 1171 .msg_iocb = iocb}; 1172 ssize_t res; 1173 1174 if (iocb->ki_pos != 0) 1175 return -ESPIPE; 1176 1177 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1178 msg.msg_flags = MSG_DONTWAIT; 1179 1180 if (sock->type == SOCK_SEQPACKET) 1181 msg.msg_flags |= MSG_EOR; 1182 1183 if (iocb->ki_flags & IOCB_NOSIGNAL) 1184 msg.msg_flags |= MSG_NOSIGNAL; 1185 1186 res = __sock_sendmsg(sock, &msg); 1187 *from = msg.msg_iter; 1188 return res; 1189 } 1190 1191 /* 1192 * Atomic setting of ioctl hooks to avoid race 1193 * with module unload. 1194 */ 1195 1196 static DEFINE_MUTEX(br_ioctl_mutex); 1197 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, 1198 void __user *uarg); 1199 1200 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, 1201 void __user *uarg)) 1202 { 1203 mutex_lock(&br_ioctl_mutex); 1204 br_ioctl_hook = hook; 1205 mutex_unlock(&br_ioctl_mutex); 1206 } 1207 EXPORT_SYMBOL(brioctl_set); 1208 1209 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) 1210 { 1211 int err = -ENOPKG; 1212 1213 if (!br_ioctl_hook) 1214 request_module("bridge"); 1215 1216 mutex_lock(&br_ioctl_mutex); 1217 if (br_ioctl_hook) 1218 err = br_ioctl_hook(net, cmd, uarg); 1219 mutex_unlock(&br_ioctl_mutex); 1220 1221 return err; 1222 } 1223 1224 static DEFINE_MUTEX(vlan_ioctl_mutex); 1225 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1226 1227 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1228 { 1229 mutex_lock(&vlan_ioctl_mutex); 1230 vlan_ioctl_hook = hook; 1231 mutex_unlock(&vlan_ioctl_mutex); 1232 } 1233 EXPORT_SYMBOL(vlan_ioctl_set); 1234 1235 static long sock_do_ioctl(struct net *net, struct socket *sock, 1236 unsigned int cmd, unsigned long arg) 1237 { 1238 const struct proto_ops *ops = READ_ONCE(sock->ops); 1239 struct ifreq ifr; 1240 bool need_copyout; 1241 int err; 1242 void __user *argp = (void __user *)arg; 1243 void __user *data; 1244 1245 err = ops->ioctl(sock, cmd, arg); 1246 1247 /* 1248 * If this ioctl is unknown try to hand it down 1249 * to the NIC driver. 1250 */ 1251 if (err != -ENOIOCTLCMD) 1252 return err; 1253 1254 if (!is_socket_ioctl_cmd(cmd)) 1255 return -ENOTTY; 1256 1257 if (get_user_ifreq(&ifr, &data, argp)) 1258 return -EFAULT; 1259 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1260 if (!err && need_copyout) 1261 if (put_user_ifreq(&ifr, argp)) 1262 return -EFAULT; 1263 1264 return err; 1265 } 1266 1267 /* 1268 * With an ioctl, arg may well be a user mode pointer, but we don't know 1269 * what to do with it - that's up to the protocol still. 1270 */ 1271 1272 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1273 { 1274 const struct proto_ops *ops; 1275 struct socket *sock; 1276 struct sock *sk; 1277 void __user *argp = (void __user *)arg; 1278 int pid, err; 1279 struct net *net; 1280 1281 sock = file->private_data; 1282 ops = READ_ONCE(sock->ops); 1283 sk = sock->sk; 1284 net = sock_net(sk); 1285 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1286 struct ifreq ifr; 1287 void __user *data; 1288 bool need_copyout; 1289 if (get_user_ifreq(&ifr, &data, argp)) 1290 return -EFAULT; 1291 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1292 if (!err && need_copyout) 1293 if (put_user_ifreq(&ifr, argp)) 1294 return -EFAULT; 1295 } else 1296 #ifdef CONFIG_WEXT_CORE 1297 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1298 err = wext_handle_ioctl(net, cmd, argp); 1299 } else 1300 #endif 1301 switch (cmd) { 1302 case FIOSETOWN: 1303 case SIOCSPGRP: 1304 err = -EFAULT; 1305 if (get_user(pid, (int __user *)argp)) 1306 break; 1307 err = f_setown(sock->file, pid, 1); 1308 break; 1309 case FIOGETOWN: 1310 case SIOCGPGRP: 1311 err = put_user(f_getown(sock->file), 1312 (int __user *)argp); 1313 break; 1314 case SIOCGIFBR: 1315 case SIOCSIFBR: 1316 case SIOCBRADDBR: 1317 case SIOCBRDELBR: 1318 case SIOCBRADDIF: 1319 case SIOCBRDELIF: 1320 err = br_ioctl_call(net, cmd, argp); 1321 break; 1322 case SIOCGIFVLAN: 1323 case SIOCSIFVLAN: 1324 err = -ENOPKG; 1325 if (!vlan_ioctl_hook) 1326 request_module("8021q"); 1327 1328 mutex_lock(&vlan_ioctl_mutex); 1329 if (vlan_ioctl_hook) 1330 err = vlan_ioctl_hook(net, argp); 1331 mutex_unlock(&vlan_ioctl_mutex); 1332 break; 1333 case SIOCGSKNS: 1334 err = -EPERM; 1335 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1336 break; 1337 1338 err = open_related_ns(&net->ns, get_net_ns); 1339 break; 1340 case SIOCGSTAMP_OLD: 1341 case SIOCGSTAMPNS_OLD: 1342 if (!ops->gettstamp) { 1343 err = -ENOIOCTLCMD; 1344 break; 1345 } 1346 err = ops->gettstamp(sock, argp, 1347 cmd == SIOCGSTAMP_OLD, 1348 !IS_ENABLED(CONFIG_64BIT)); 1349 break; 1350 case SIOCGSTAMP_NEW: 1351 case SIOCGSTAMPNS_NEW: 1352 if (!ops->gettstamp) { 1353 err = -ENOIOCTLCMD; 1354 break; 1355 } 1356 err = ops->gettstamp(sock, argp, 1357 cmd == SIOCGSTAMP_NEW, 1358 false); 1359 break; 1360 1361 case SIOCGIFCONF: 1362 err = dev_ifconf(net, argp); 1363 break; 1364 1365 default: 1366 err = sock_do_ioctl(net, sock, cmd, arg); 1367 break; 1368 } 1369 return err; 1370 } 1371 1372 /** 1373 * sock_create_lite - creates a socket 1374 * @family: protocol family (AF_INET, ...) 1375 * @type: communication type (SOCK_STREAM, ...) 1376 * @protocol: protocol (0, ...) 1377 * @res: new socket 1378 * 1379 * Creates a new socket and assigns it to @res, passing through LSM. 1380 * The new socket initialization is not complete, see kernel_accept(). 1381 * Returns 0 or an error. On failure @res is set to %NULL. 1382 * This function internally uses GFP_KERNEL. 1383 */ 1384 1385 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1386 { 1387 int err; 1388 struct socket *sock = NULL; 1389 1390 err = security_socket_create(family, type, protocol, 1); 1391 if (err) 1392 goto out; 1393 1394 sock = sock_alloc(); 1395 if (!sock) { 1396 err = -ENOMEM; 1397 goto out; 1398 } 1399 1400 sock->type = type; 1401 err = security_socket_post_create(sock, family, type, protocol, 1); 1402 if (err) 1403 goto out_release; 1404 1405 out: 1406 *res = sock; 1407 return err; 1408 out_release: 1409 sock_release(sock); 1410 sock = NULL; 1411 goto out; 1412 } 1413 EXPORT_SYMBOL(sock_create_lite); 1414 1415 /* No kernel lock held - perfect */ 1416 static __poll_t sock_poll(struct file *file, poll_table *wait) 1417 { 1418 struct socket *sock = file->private_data; 1419 const struct proto_ops *ops = READ_ONCE(sock->ops); 1420 __poll_t events = poll_requested_events(wait), flag = 0; 1421 1422 if (!ops->poll) 1423 return 0; 1424 1425 if (sk_can_busy_loop(sock->sk)) { 1426 /* poll once if requested by the syscall */ 1427 if (events & POLL_BUSY_LOOP) 1428 sk_busy_loop(sock->sk, 1); 1429 1430 /* if this socket can poll_ll, tell the system call */ 1431 flag = POLL_BUSY_LOOP; 1432 } 1433 1434 return ops->poll(file, sock, wait) | flag; 1435 } 1436 1437 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1438 { 1439 struct socket *sock = file->private_data; 1440 1441 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1442 } 1443 1444 static int sock_close(struct inode *inode, struct file *filp) 1445 { 1446 __sock_release(SOCKET_I(inode), inode); 1447 return 0; 1448 } 1449 1450 /* 1451 * Update the socket async list 1452 * 1453 * Fasync_list locking strategy. 1454 * 1455 * 1. fasync_list is modified only under process context socket lock 1456 * i.e. under semaphore. 1457 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1458 * or under socket lock 1459 */ 1460 1461 static int sock_fasync(int fd, struct file *filp, int on) 1462 { 1463 struct socket *sock = filp->private_data; 1464 struct sock *sk = sock->sk; 1465 struct socket_wq *wq = &sock->wq; 1466 1467 if (sk == NULL) 1468 return -EINVAL; 1469 1470 lock_sock(sk); 1471 fasync_helper(fd, filp, on, &wq->fasync_list); 1472 1473 if (!wq->fasync_list) 1474 sock_reset_flag(sk, SOCK_FASYNC); 1475 else 1476 sock_set_flag(sk, SOCK_FASYNC); 1477 1478 release_sock(sk); 1479 return 0; 1480 } 1481 1482 /* This function may be called only under rcu_lock */ 1483 1484 int sock_wake_async(struct socket_wq *wq, int how, int band) 1485 { 1486 if (!wq || !wq->fasync_list) 1487 return -1; 1488 1489 switch (how) { 1490 case SOCK_WAKE_WAITD: 1491 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1492 break; 1493 goto call_kill; 1494 case SOCK_WAKE_SPACE: 1495 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1496 break; 1497 fallthrough; 1498 case SOCK_WAKE_IO: 1499 call_kill: 1500 kill_fasync(&wq->fasync_list, SIGIO, band); 1501 break; 1502 case SOCK_WAKE_URG: 1503 kill_fasync(&wq->fasync_list, SIGURG, band); 1504 } 1505 1506 return 0; 1507 } 1508 EXPORT_SYMBOL(sock_wake_async); 1509 1510 /** 1511 * __sock_create - creates a socket 1512 * @net: net namespace 1513 * @family: protocol family (AF_INET, ...) 1514 * @type: communication type (SOCK_STREAM, ...) 1515 * @protocol: protocol (0, ...) 1516 * @res: new socket 1517 * @kern: boolean for kernel space sockets 1518 * 1519 * Creates a new socket and assigns it to @res, passing through LSM. 1520 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1521 * be set to true if the socket resides in kernel space. 1522 * This function internally uses GFP_KERNEL. 1523 */ 1524 1525 int __sock_create(struct net *net, int family, int type, int protocol, 1526 struct socket **res, int kern) 1527 { 1528 int err; 1529 struct socket *sock; 1530 const struct net_proto_family *pf; 1531 1532 /* 1533 * Check protocol is in range 1534 */ 1535 if (family < 0 || family >= NPROTO) 1536 return -EAFNOSUPPORT; 1537 if (type < 0 || type >= SOCK_MAX) 1538 return -EINVAL; 1539 1540 /* Compatibility. 1541 1542 This uglymoron is moved from INET layer to here to avoid 1543 deadlock in module load. 1544 */ 1545 if (family == PF_INET && type == SOCK_PACKET) { 1546 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1547 current->comm); 1548 family = PF_PACKET; 1549 } 1550 1551 err = security_socket_create(family, type, protocol, kern); 1552 if (err) 1553 return err; 1554 1555 /* 1556 * Allocate the socket and allow the family to set things up. if 1557 * the protocol is 0, the family is instructed to select an appropriate 1558 * default. 1559 */ 1560 sock = sock_alloc(); 1561 if (!sock) { 1562 net_warn_ratelimited("socket: no more sockets\n"); 1563 return -ENFILE; /* Not exactly a match, but its the 1564 closest posix thing */ 1565 } 1566 1567 sock->type = type; 1568 1569 #ifdef CONFIG_MODULES 1570 /* Attempt to load a protocol module if the find failed. 1571 * 1572 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1573 * requested real, full-featured networking support upon configuration. 1574 * Otherwise module support will break! 1575 */ 1576 if (rcu_access_pointer(net_families[family]) == NULL) 1577 request_module("net-pf-%d", family); 1578 #endif 1579 1580 rcu_read_lock(); 1581 pf = rcu_dereference(net_families[family]); 1582 err = -EAFNOSUPPORT; 1583 if (!pf) 1584 goto out_release; 1585 1586 /* 1587 * We will call the ->create function, that possibly is in a loadable 1588 * module, so we have to bump that loadable module refcnt first. 1589 */ 1590 if (!try_module_get(pf->owner)) 1591 goto out_release; 1592 1593 /* Now protected by module ref count */ 1594 rcu_read_unlock(); 1595 1596 err = pf->create(net, sock, protocol, kern); 1597 if (err < 0) { 1598 /* ->create should release the allocated sock->sk object on error 1599 * and make sure sock->sk is set to NULL to avoid use-after-free 1600 */ 1601 DEBUG_NET_WARN_ONCE(sock->sk, 1602 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1603 pf->create, family, type, protocol); 1604 goto out_module_put; 1605 } 1606 1607 /* 1608 * Now to bump the refcnt of the [loadable] module that owns this 1609 * socket at sock_release time we decrement its refcnt. 1610 */ 1611 if (!try_module_get(sock->ops->owner)) 1612 goto out_module_busy; 1613 1614 /* 1615 * Now that we're done with the ->create function, the [loadable] 1616 * module can have its refcnt decremented 1617 */ 1618 module_put(pf->owner); 1619 err = security_socket_post_create(sock, family, type, protocol, kern); 1620 if (err) 1621 goto out_sock_release; 1622 *res = sock; 1623 1624 return 0; 1625 1626 out_module_busy: 1627 err = -EAFNOSUPPORT; 1628 out_module_put: 1629 sock->ops = NULL; 1630 module_put(pf->owner); 1631 out_sock_release: 1632 sock_release(sock); 1633 return err; 1634 1635 out_release: 1636 rcu_read_unlock(); 1637 goto out_sock_release; 1638 } 1639 EXPORT_SYMBOL(__sock_create); 1640 1641 /** 1642 * sock_create - creates a socket 1643 * @family: protocol family (AF_INET, ...) 1644 * @type: communication type (SOCK_STREAM, ...) 1645 * @protocol: protocol (0, ...) 1646 * @res: new socket 1647 * 1648 * A wrapper around __sock_create(). 1649 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1650 */ 1651 1652 int sock_create(int family, int type, int protocol, struct socket **res) 1653 { 1654 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1655 } 1656 EXPORT_SYMBOL(sock_create); 1657 1658 /** 1659 * sock_create_kern - creates a socket (kernel space) 1660 * @net: net namespace 1661 * @family: protocol family (AF_INET, ...) 1662 * @type: communication type (SOCK_STREAM, ...) 1663 * @protocol: protocol (0, ...) 1664 * @res: new socket 1665 * 1666 * A wrapper around __sock_create(). 1667 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1668 */ 1669 1670 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1671 { 1672 return __sock_create(net, family, type, protocol, res, 1); 1673 } 1674 EXPORT_SYMBOL(sock_create_kern); 1675 1676 static struct socket *__sys_socket_create(int family, int type, int protocol) 1677 { 1678 struct socket *sock; 1679 int retval; 1680 1681 /* Check the SOCK_* constants for consistency. */ 1682 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1683 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1684 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1685 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1686 1687 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1688 return ERR_PTR(-EINVAL); 1689 type &= SOCK_TYPE_MASK; 1690 1691 retval = sock_create(family, type, protocol, &sock); 1692 if (retval < 0) 1693 return ERR_PTR(retval); 1694 1695 return sock; 1696 } 1697 1698 struct file *__sys_socket_file(int family, int type, int protocol) 1699 { 1700 struct socket *sock; 1701 int flags; 1702 1703 sock = __sys_socket_create(family, type, protocol); 1704 if (IS_ERR(sock)) 1705 return ERR_CAST(sock); 1706 1707 flags = type & ~SOCK_TYPE_MASK; 1708 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1709 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1710 1711 return sock_alloc_file(sock, flags, NULL); 1712 } 1713 1714 /* A hook for bpf progs to attach to and update socket protocol. 1715 * 1716 * A static noinline declaration here could cause the compiler to 1717 * optimize away the function. A global noinline declaration will 1718 * keep the definition, but may optimize away the callsite. 1719 * Therefore, __weak is needed to ensure that the call is still 1720 * emitted, by telling the compiler that we don't know what the 1721 * function might eventually be. 1722 */ 1723 1724 __bpf_hook_start(); 1725 1726 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1727 { 1728 return protocol; 1729 } 1730 1731 __bpf_hook_end(); 1732 1733 int __sys_socket(int family, int type, int protocol) 1734 { 1735 struct socket *sock; 1736 int flags; 1737 1738 sock = __sys_socket_create(family, type, 1739 update_socket_protocol(family, type, protocol)); 1740 if (IS_ERR(sock)) 1741 return PTR_ERR(sock); 1742 1743 flags = type & ~SOCK_TYPE_MASK; 1744 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1745 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1746 1747 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1748 } 1749 1750 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1751 { 1752 return __sys_socket(family, type, protocol); 1753 } 1754 1755 /* 1756 * Create a pair of connected sockets. 1757 */ 1758 1759 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1760 { 1761 struct socket *sock1, *sock2; 1762 int fd1, fd2, err; 1763 struct file *newfile1, *newfile2; 1764 int flags; 1765 1766 flags = type & ~SOCK_TYPE_MASK; 1767 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1768 return -EINVAL; 1769 type &= SOCK_TYPE_MASK; 1770 1771 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1772 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1773 1774 /* 1775 * reserve descriptors and make sure we won't fail 1776 * to return them to userland. 1777 */ 1778 fd1 = get_unused_fd_flags(flags); 1779 if (unlikely(fd1 < 0)) 1780 return fd1; 1781 1782 fd2 = get_unused_fd_flags(flags); 1783 if (unlikely(fd2 < 0)) { 1784 put_unused_fd(fd1); 1785 return fd2; 1786 } 1787 1788 err = put_user(fd1, &usockvec[0]); 1789 if (err) 1790 goto out; 1791 1792 err = put_user(fd2, &usockvec[1]); 1793 if (err) 1794 goto out; 1795 1796 /* 1797 * Obtain the first socket and check if the underlying protocol 1798 * supports the socketpair call. 1799 */ 1800 1801 err = sock_create(family, type, protocol, &sock1); 1802 if (unlikely(err < 0)) 1803 goto out; 1804 1805 err = sock_create(family, type, protocol, &sock2); 1806 if (unlikely(err < 0)) { 1807 sock_release(sock1); 1808 goto out; 1809 } 1810 1811 err = security_socket_socketpair(sock1, sock2); 1812 if (unlikely(err)) { 1813 sock_release(sock2); 1814 sock_release(sock1); 1815 goto out; 1816 } 1817 1818 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1819 if (unlikely(err < 0)) { 1820 sock_release(sock2); 1821 sock_release(sock1); 1822 goto out; 1823 } 1824 1825 newfile1 = sock_alloc_file(sock1, flags, NULL); 1826 if (IS_ERR(newfile1)) { 1827 err = PTR_ERR(newfile1); 1828 sock_release(sock2); 1829 goto out; 1830 } 1831 1832 newfile2 = sock_alloc_file(sock2, flags, NULL); 1833 if (IS_ERR(newfile2)) { 1834 err = PTR_ERR(newfile2); 1835 fput(newfile1); 1836 goto out; 1837 } 1838 1839 audit_fd_pair(fd1, fd2); 1840 1841 fd_install(fd1, newfile1); 1842 fd_install(fd2, newfile2); 1843 return 0; 1844 1845 out: 1846 put_unused_fd(fd2); 1847 put_unused_fd(fd1); 1848 return err; 1849 } 1850 1851 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1852 int __user *, usockvec) 1853 { 1854 return __sys_socketpair(family, type, protocol, usockvec); 1855 } 1856 1857 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1858 int addrlen) 1859 { 1860 int err; 1861 1862 err = security_socket_bind(sock, (struct sockaddr *)address, 1863 addrlen); 1864 if (!err) 1865 err = READ_ONCE(sock->ops)->bind(sock, 1866 (struct sockaddr *)address, 1867 addrlen); 1868 return err; 1869 } 1870 1871 /* 1872 * Bind a name to a socket. Nothing much to do here since it's 1873 * the protocol's responsibility to handle the local address. 1874 * 1875 * We move the socket address to kernel space before we call 1876 * the protocol layer (having also checked the address is ok). 1877 */ 1878 1879 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1880 { 1881 struct socket *sock; 1882 struct sockaddr_storage address; 1883 CLASS(fd, f)(fd); 1884 int err; 1885 1886 if (fd_empty(f)) 1887 return -EBADF; 1888 sock = sock_from_file(fd_file(f)); 1889 if (unlikely(!sock)) 1890 return -ENOTSOCK; 1891 1892 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1893 if (unlikely(err)) 1894 return err; 1895 1896 return __sys_bind_socket(sock, &address, addrlen); 1897 } 1898 1899 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1900 { 1901 return __sys_bind(fd, umyaddr, addrlen); 1902 } 1903 1904 /* 1905 * Perform a listen. Basically, we allow the protocol to do anything 1906 * necessary for a listen, and if that works, we mark the socket as 1907 * ready for listening. 1908 */ 1909 int __sys_listen_socket(struct socket *sock, int backlog) 1910 { 1911 int somaxconn, err; 1912 1913 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1914 if ((unsigned int)backlog > somaxconn) 1915 backlog = somaxconn; 1916 1917 err = security_socket_listen(sock, backlog); 1918 if (!err) 1919 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1920 return err; 1921 } 1922 1923 int __sys_listen(int fd, int backlog) 1924 { 1925 CLASS(fd, f)(fd); 1926 struct socket *sock; 1927 1928 if (fd_empty(f)) 1929 return -EBADF; 1930 sock = sock_from_file(fd_file(f)); 1931 if (unlikely(!sock)) 1932 return -ENOTSOCK; 1933 1934 return __sys_listen_socket(sock, backlog); 1935 } 1936 1937 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1938 { 1939 return __sys_listen(fd, backlog); 1940 } 1941 1942 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1943 struct sockaddr __user *upeer_sockaddr, 1944 int __user *upeer_addrlen, int flags) 1945 { 1946 struct socket *sock, *newsock; 1947 struct file *newfile; 1948 int err, len; 1949 struct sockaddr_storage address; 1950 const struct proto_ops *ops; 1951 1952 sock = sock_from_file(file); 1953 if (!sock) 1954 return ERR_PTR(-ENOTSOCK); 1955 1956 newsock = sock_alloc(); 1957 if (!newsock) 1958 return ERR_PTR(-ENFILE); 1959 ops = READ_ONCE(sock->ops); 1960 1961 newsock->type = sock->type; 1962 newsock->ops = ops; 1963 1964 /* 1965 * We don't need try_module_get here, as the listening socket (sock) 1966 * has the protocol module (sock->ops->owner) held. 1967 */ 1968 __module_get(ops->owner); 1969 1970 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1971 if (IS_ERR(newfile)) 1972 return newfile; 1973 1974 err = security_socket_accept(sock, newsock); 1975 if (err) 1976 goto out_fd; 1977 1978 arg->flags |= sock->file->f_flags; 1979 err = ops->accept(sock, newsock, arg); 1980 if (err < 0) 1981 goto out_fd; 1982 1983 if (upeer_sockaddr) { 1984 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1985 if (len < 0) { 1986 err = -ECONNABORTED; 1987 goto out_fd; 1988 } 1989 err = move_addr_to_user(&address, 1990 len, upeer_sockaddr, upeer_addrlen); 1991 if (err < 0) 1992 goto out_fd; 1993 } 1994 1995 /* File flags are not inherited via accept() unlike another OSes. */ 1996 return newfile; 1997 out_fd: 1998 fput(newfile); 1999 return ERR_PTR(err); 2000 } 2001 2002 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 2003 int __user *upeer_addrlen, int flags) 2004 { 2005 struct proto_accept_arg arg = { }; 2006 2007 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 2008 return -EINVAL; 2009 2010 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 2011 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 2012 2013 return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags)); 2014 } 2015 2016 /* 2017 * For accept, we attempt to create a new socket, set up the link 2018 * with the client, wake up the client, then return the new 2019 * connected fd. We collect the address of the connector in kernel 2020 * space and move it to user at the very end. This is unclean because 2021 * we open the socket then return an error. 2022 * 2023 * 1003.1g adds the ability to recvmsg() to query connection pending 2024 * status to recvmsg. We need to add that support in a way thats 2025 * clean when we restructure accept also. 2026 */ 2027 2028 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2029 int __user *upeer_addrlen, int flags) 2030 { 2031 CLASS(fd, f)(fd); 2032 2033 if (fd_empty(f)) 2034 return -EBADF; 2035 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2036 upeer_addrlen, flags); 2037 } 2038 2039 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2040 int __user *, upeer_addrlen, int, flags) 2041 { 2042 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2043 } 2044 2045 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2046 int __user *, upeer_addrlen) 2047 { 2048 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2049 } 2050 2051 /* 2052 * Attempt to connect to a socket with the server address. The address 2053 * is in user space so we verify it is OK and move it to kernel space. 2054 * 2055 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2056 * break bindings 2057 * 2058 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2059 * other SEQPACKET protocols that take time to connect() as it doesn't 2060 * include the -EINPROGRESS status for such sockets. 2061 */ 2062 2063 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2064 int addrlen, int file_flags) 2065 { 2066 struct socket *sock; 2067 int err; 2068 2069 sock = sock_from_file(file); 2070 if (!sock) { 2071 err = -ENOTSOCK; 2072 goto out; 2073 } 2074 2075 err = 2076 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2077 if (err) 2078 goto out; 2079 2080 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2081 addrlen, sock->file->f_flags | file_flags); 2082 out: 2083 return err; 2084 } 2085 2086 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2087 { 2088 struct sockaddr_storage address; 2089 CLASS(fd, f)(fd); 2090 int ret; 2091 2092 if (fd_empty(f)) 2093 return -EBADF; 2094 2095 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2096 if (ret) 2097 return ret; 2098 2099 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2100 } 2101 2102 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2103 int, addrlen) 2104 { 2105 return __sys_connect(fd, uservaddr, addrlen); 2106 } 2107 2108 /* 2109 * Get the local address ('name') of a socket object. Move the obtained 2110 * name to user space. 2111 */ 2112 2113 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2114 int __user *usockaddr_len) 2115 { 2116 struct socket *sock; 2117 struct sockaddr_storage address; 2118 CLASS(fd, f)(fd); 2119 int err; 2120 2121 if (fd_empty(f)) 2122 return -EBADF; 2123 sock = sock_from_file(fd_file(f)); 2124 if (unlikely(!sock)) 2125 return -ENOTSOCK; 2126 2127 err = security_socket_getsockname(sock); 2128 if (err) 2129 return err; 2130 2131 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2132 if (err < 0) 2133 return err; 2134 2135 /* "err" is actually length in this case */ 2136 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2137 } 2138 2139 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2140 int __user *, usockaddr_len) 2141 { 2142 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2143 } 2144 2145 /* 2146 * Get the remote address ('name') of a socket object. Move the obtained 2147 * name to user space. 2148 */ 2149 2150 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2151 int __user *usockaddr_len) 2152 { 2153 struct socket *sock; 2154 struct sockaddr_storage address; 2155 CLASS(fd, f)(fd); 2156 int err; 2157 2158 if (fd_empty(f)) 2159 return -EBADF; 2160 sock = sock_from_file(fd_file(f)); 2161 if (unlikely(!sock)) 2162 return -ENOTSOCK; 2163 2164 err = security_socket_getpeername(sock); 2165 if (err) 2166 return err; 2167 2168 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2169 if (err < 0) 2170 return err; 2171 2172 /* "err" is actually length in this case */ 2173 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2174 } 2175 2176 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2177 int __user *, usockaddr_len) 2178 { 2179 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2180 } 2181 2182 /* 2183 * Send a datagram to a given address. We move the address into kernel 2184 * space and check the user space data area is readable before invoking 2185 * the protocol. 2186 */ 2187 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2188 struct sockaddr __user *addr, int addr_len) 2189 { 2190 struct socket *sock; 2191 struct sockaddr_storage address; 2192 int err; 2193 struct msghdr msg; 2194 2195 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2196 if (unlikely(err)) 2197 return err; 2198 2199 CLASS(fd, f)(fd); 2200 if (fd_empty(f)) 2201 return -EBADF; 2202 sock = sock_from_file(fd_file(f)); 2203 if (unlikely(!sock)) 2204 return -ENOTSOCK; 2205 2206 msg.msg_name = NULL; 2207 msg.msg_control = NULL; 2208 msg.msg_controllen = 0; 2209 msg.msg_namelen = 0; 2210 msg.msg_ubuf = NULL; 2211 if (addr) { 2212 err = move_addr_to_kernel(addr, addr_len, &address); 2213 if (err < 0) 2214 return err; 2215 msg.msg_name = (struct sockaddr *)&address; 2216 msg.msg_namelen = addr_len; 2217 } 2218 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2219 if (sock->file->f_flags & O_NONBLOCK) 2220 flags |= MSG_DONTWAIT; 2221 msg.msg_flags = flags; 2222 return __sock_sendmsg(sock, &msg); 2223 } 2224 2225 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2226 unsigned int, flags, struct sockaddr __user *, addr, 2227 int, addr_len) 2228 { 2229 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2230 } 2231 2232 /* 2233 * Send a datagram down a socket. 2234 */ 2235 2236 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2237 unsigned int, flags) 2238 { 2239 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2240 } 2241 2242 /* 2243 * Receive a frame from the socket and optionally record the address of the 2244 * sender. We verify the buffers are writable and if needed move the 2245 * sender address from kernel to user space. 2246 */ 2247 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2248 struct sockaddr __user *addr, int __user *addr_len) 2249 { 2250 struct sockaddr_storage address; 2251 struct msghdr msg = { 2252 /* Save some cycles and don't copy the address if not needed */ 2253 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2254 }; 2255 struct socket *sock; 2256 int err, err2; 2257 2258 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2259 if (unlikely(err)) 2260 return err; 2261 2262 CLASS(fd, f)(fd); 2263 2264 if (fd_empty(f)) 2265 return -EBADF; 2266 sock = sock_from_file(fd_file(f)); 2267 if (unlikely(!sock)) 2268 return -ENOTSOCK; 2269 2270 if (sock->file->f_flags & O_NONBLOCK) 2271 flags |= MSG_DONTWAIT; 2272 err = sock_recvmsg(sock, &msg, flags); 2273 2274 if (err >= 0 && addr != NULL) { 2275 err2 = move_addr_to_user(&address, 2276 msg.msg_namelen, addr, addr_len); 2277 if (err2 < 0) 2278 err = err2; 2279 } 2280 return err; 2281 } 2282 2283 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2284 unsigned int, flags, struct sockaddr __user *, addr, 2285 int __user *, addr_len) 2286 { 2287 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2288 } 2289 2290 /* 2291 * Receive a datagram from a socket. 2292 */ 2293 2294 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2295 unsigned int, flags) 2296 { 2297 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2298 } 2299 2300 static bool sock_use_custom_sol_socket(const struct socket *sock) 2301 { 2302 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2303 } 2304 2305 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2306 int optname, sockptr_t optval, int optlen) 2307 { 2308 const struct proto_ops *ops; 2309 char *kernel_optval = NULL; 2310 int err; 2311 2312 if (optlen < 0) 2313 return -EINVAL; 2314 2315 err = security_socket_setsockopt(sock, level, optname); 2316 if (err) 2317 goto out_put; 2318 2319 if (!compat) 2320 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2321 optval, &optlen, 2322 &kernel_optval); 2323 if (err < 0) 2324 goto out_put; 2325 if (err > 0) { 2326 err = 0; 2327 goto out_put; 2328 } 2329 2330 if (kernel_optval) 2331 optval = KERNEL_SOCKPTR(kernel_optval); 2332 ops = READ_ONCE(sock->ops); 2333 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2334 err = sock_setsockopt(sock, level, optname, optval, optlen); 2335 else if (unlikely(!ops->setsockopt)) 2336 err = -EOPNOTSUPP; 2337 else 2338 err = ops->setsockopt(sock, level, optname, optval, 2339 optlen); 2340 kfree(kernel_optval); 2341 out_put: 2342 return err; 2343 } 2344 EXPORT_SYMBOL(do_sock_setsockopt); 2345 2346 /* Set a socket option. Because we don't know the option lengths we have 2347 * to pass the user mode parameter for the protocols to sort out. 2348 */ 2349 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2350 int optlen) 2351 { 2352 sockptr_t optval = USER_SOCKPTR(user_optval); 2353 bool compat = in_compat_syscall(); 2354 struct socket *sock; 2355 CLASS(fd, f)(fd); 2356 2357 if (fd_empty(f)) 2358 return -EBADF; 2359 sock = sock_from_file(fd_file(f)); 2360 if (unlikely(!sock)) 2361 return -ENOTSOCK; 2362 2363 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2364 } 2365 2366 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2367 char __user *, optval, int, optlen) 2368 { 2369 return __sys_setsockopt(fd, level, optname, optval, optlen); 2370 } 2371 2372 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2373 int optname)); 2374 2375 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2376 int optname, sockptr_t optval, sockptr_t optlen) 2377 { 2378 int max_optlen __maybe_unused = 0; 2379 const struct proto_ops *ops; 2380 int err; 2381 2382 err = security_socket_getsockopt(sock, level, optname); 2383 if (err) 2384 return err; 2385 2386 if (!compat) 2387 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2388 2389 ops = READ_ONCE(sock->ops); 2390 if (level == SOL_SOCKET) { 2391 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2392 } else if (unlikely(!ops->getsockopt)) { 2393 err = -EOPNOTSUPP; 2394 } else { 2395 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2396 "Invalid argument type")) 2397 return -EOPNOTSUPP; 2398 2399 err = ops->getsockopt(sock, level, optname, optval.user, 2400 optlen.user); 2401 } 2402 2403 if (!compat) 2404 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2405 optval, optlen, max_optlen, 2406 err); 2407 2408 return err; 2409 } 2410 EXPORT_SYMBOL(do_sock_getsockopt); 2411 2412 /* 2413 * Get a socket option. Because we don't know the option lengths we have 2414 * to pass a user mode parameter for the protocols to sort out. 2415 */ 2416 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2417 int __user *optlen) 2418 { 2419 struct socket *sock; 2420 CLASS(fd, f)(fd); 2421 2422 if (fd_empty(f)) 2423 return -EBADF; 2424 sock = sock_from_file(fd_file(f)); 2425 if (unlikely(!sock)) 2426 return -ENOTSOCK; 2427 2428 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2429 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2430 } 2431 2432 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2433 char __user *, optval, int __user *, optlen) 2434 { 2435 return __sys_getsockopt(fd, level, optname, optval, optlen); 2436 } 2437 2438 /* 2439 * Shutdown a socket. 2440 */ 2441 2442 int __sys_shutdown_sock(struct socket *sock, int how) 2443 { 2444 int err; 2445 2446 err = security_socket_shutdown(sock, how); 2447 if (!err) 2448 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2449 2450 return err; 2451 } 2452 2453 int __sys_shutdown(int fd, int how) 2454 { 2455 struct socket *sock; 2456 CLASS(fd, f)(fd); 2457 2458 if (fd_empty(f)) 2459 return -EBADF; 2460 sock = sock_from_file(fd_file(f)); 2461 if (unlikely(!sock)) 2462 return -ENOTSOCK; 2463 2464 return __sys_shutdown_sock(sock, how); 2465 } 2466 2467 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2468 { 2469 return __sys_shutdown(fd, how); 2470 } 2471 2472 /* A couple of helpful macros for getting the address of the 32/64 bit 2473 * fields which are the same type (int / unsigned) on our platforms. 2474 */ 2475 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2476 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2477 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2478 2479 struct used_address { 2480 struct sockaddr_storage name; 2481 unsigned int name_len; 2482 }; 2483 2484 int __copy_msghdr(struct msghdr *kmsg, 2485 struct user_msghdr *msg, 2486 struct sockaddr __user **save_addr) 2487 { 2488 ssize_t err; 2489 2490 kmsg->msg_control_is_user = true; 2491 kmsg->msg_get_inq = 0; 2492 kmsg->msg_control_user = msg->msg_control; 2493 kmsg->msg_controllen = msg->msg_controllen; 2494 kmsg->msg_flags = msg->msg_flags; 2495 2496 kmsg->msg_namelen = msg->msg_namelen; 2497 if (!msg->msg_name) 2498 kmsg->msg_namelen = 0; 2499 2500 if (kmsg->msg_namelen < 0) 2501 return -EINVAL; 2502 2503 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2504 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2505 2506 if (save_addr) 2507 *save_addr = msg->msg_name; 2508 2509 if (msg->msg_name && kmsg->msg_namelen) { 2510 if (!save_addr) { 2511 err = move_addr_to_kernel(msg->msg_name, 2512 kmsg->msg_namelen, 2513 kmsg->msg_name); 2514 if (err < 0) 2515 return err; 2516 } 2517 } else { 2518 kmsg->msg_name = NULL; 2519 kmsg->msg_namelen = 0; 2520 } 2521 2522 if (msg->msg_iovlen > UIO_MAXIOV) 2523 return -EMSGSIZE; 2524 2525 kmsg->msg_iocb = NULL; 2526 kmsg->msg_ubuf = NULL; 2527 return 0; 2528 } 2529 2530 static int copy_msghdr_from_user(struct msghdr *kmsg, 2531 struct user_msghdr __user *umsg, 2532 struct sockaddr __user **save_addr, 2533 struct iovec **iov) 2534 { 2535 struct user_msghdr msg; 2536 ssize_t err; 2537 2538 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2539 return -EFAULT; 2540 2541 err = __copy_msghdr(kmsg, &msg, save_addr); 2542 if (err) 2543 return err; 2544 2545 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2546 msg.msg_iov, msg.msg_iovlen, 2547 UIO_FASTIOV, iov, &kmsg->msg_iter); 2548 return err < 0 ? err : 0; 2549 } 2550 2551 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2552 unsigned int flags, struct used_address *used_address, 2553 unsigned int allowed_msghdr_flags) 2554 { 2555 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2556 __aligned(sizeof(__kernel_size_t)); 2557 /* 20 is size of ipv6_pktinfo */ 2558 unsigned char *ctl_buf = ctl; 2559 int ctl_len; 2560 ssize_t err; 2561 2562 err = -ENOBUFS; 2563 2564 if (msg_sys->msg_controllen > INT_MAX) 2565 goto out; 2566 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2567 ctl_len = msg_sys->msg_controllen; 2568 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2569 err = 2570 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2571 sizeof(ctl)); 2572 if (err) 2573 goto out; 2574 ctl_buf = msg_sys->msg_control; 2575 ctl_len = msg_sys->msg_controllen; 2576 } else if (ctl_len) { 2577 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2578 CMSG_ALIGN(sizeof(struct cmsghdr))); 2579 if (ctl_len > sizeof(ctl)) { 2580 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2581 if (ctl_buf == NULL) 2582 goto out; 2583 } 2584 err = -EFAULT; 2585 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2586 goto out_freectl; 2587 msg_sys->msg_control = ctl_buf; 2588 msg_sys->msg_control_is_user = false; 2589 } 2590 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2591 msg_sys->msg_flags = flags; 2592 2593 if (sock->file->f_flags & O_NONBLOCK) 2594 msg_sys->msg_flags |= MSG_DONTWAIT; 2595 /* 2596 * If this is sendmmsg() and current destination address is same as 2597 * previously succeeded address, omit asking LSM's decision. 2598 * used_address->name_len is initialized to UINT_MAX so that the first 2599 * destination address never matches. 2600 */ 2601 if (used_address && msg_sys->msg_name && 2602 used_address->name_len == msg_sys->msg_namelen && 2603 !memcmp(&used_address->name, msg_sys->msg_name, 2604 used_address->name_len)) { 2605 err = sock_sendmsg_nosec(sock, msg_sys); 2606 goto out_freectl; 2607 } 2608 err = __sock_sendmsg(sock, msg_sys); 2609 /* 2610 * If this is sendmmsg() and sending to current destination address was 2611 * successful, remember it. 2612 */ 2613 if (used_address && err >= 0) { 2614 used_address->name_len = msg_sys->msg_namelen; 2615 if (msg_sys->msg_name) 2616 memcpy(&used_address->name, msg_sys->msg_name, 2617 used_address->name_len); 2618 } 2619 2620 out_freectl: 2621 if (ctl_buf != ctl) 2622 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2623 out: 2624 return err; 2625 } 2626 2627 static int sendmsg_copy_msghdr(struct msghdr *msg, 2628 struct user_msghdr __user *umsg, unsigned flags, 2629 struct iovec **iov) 2630 { 2631 int err; 2632 2633 if (flags & MSG_CMSG_COMPAT) { 2634 struct compat_msghdr __user *msg_compat; 2635 2636 msg_compat = (struct compat_msghdr __user *) umsg; 2637 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2638 } else { 2639 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2640 } 2641 if (err < 0) 2642 return err; 2643 2644 return 0; 2645 } 2646 2647 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2648 struct msghdr *msg_sys, unsigned int flags, 2649 struct used_address *used_address, 2650 unsigned int allowed_msghdr_flags) 2651 { 2652 struct sockaddr_storage address; 2653 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2654 ssize_t err; 2655 2656 msg_sys->msg_name = &address; 2657 2658 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2659 if (err < 0) 2660 return err; 2661 2662 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2663 allowed_msghdr_flags); 2664 kfree(iov); 2665 return err; 2666 } 2667 2668 /* 2669 * BSD sendmsg interface 2670 */ 2671 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2672 unsigned int flags) 2673 { 2674 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2675 } 2676 2677 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2678 bool forbid_cmsg_compat) 2679 { 2680 struct msghdr msg_sys; 2681 struct socket *sock; 2682 2683 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2684 return -EINVAL; 2685 2686 CLASS(fd, f)(fd); 2687 2688 if (fd_empty(f)) 2689 return -EBADF; 2690 sock = sock_from_file(fd_file(f)); 2691 if (unlikely(!sock)) 2692 return -ENOTSOCK; 2693 2694 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2695 } 2696 2697 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2698 { 2699 return __sys_sendmsg(fd, msg, flags, true); 2700 } 2701 2702 /* 2703 * Linux sendmmsg interface 2704 */ 2705 2706 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2707 unsigned int flags, bool forbid_cmsg_compat) 2708 { 2709 int err, datagrams; 2710 struct socket *sock; 2711 struct mmsghdr __user *entry; 2712 struct compat_mmsghdr __user *compat_entry; 2713 struct msghdr msg_sys; 2714 struct used_address used_address; 2715 unsigned int oflags = flags; 2716 2717 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2718 return -EINVAL; 2719 2720 if (vlen > UIO_MAXIOV) 2721 vlen = UIO_MAXIOV; 2722 2723 datagrams = 0; 2724 2725 CLASS(fd, f)(fd); 2726 2727 if (fd_empty(f)) 2728 return -EBADF; 2729 sock = sock_from_file(fd_file(f)); 2730 if (unlikely(!sock)) 2731 return -ENOTSOCK; 2732 2733 used_address.name_len = UINT_MAX; 2734 entry = mmsg; 2735 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2736 err = 0; 2737 flags |= MSG_BATCH; 2738 2739 while (datagrams < vlen) { 2740 if (datagrams == vlen - 1) 2741 flags = oflags; 2742 2743 if (MSG_CMSG_COMPAT & flags) { 2744 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2745 &msg_sys, flags, &used_address, MSG_EOR); 2746 if (err < 0) 2747 break; 2748 err = __put_user(err, &compat_entry->msg_len); 2749 ++compat_entry; 2750 } else { 2751 err = ___sys_sendmsg(sock, 2752 (struct user_msghdr __user *)entry, 2753 &msg_sys, flags, &used_address, MSG_EOR); 2754 if (err < 0) 2755 break; 2756 err = put_user(err, &entry->msg_len); 2757 ++entry; 2758 } 2759 2760 if (err) 2761 break; 2762 ++datagrams; 2763 if (msg_data_left(&msg_sys)) 2764 break; 2765 cond_resched(); 2766 } 2767 2768 /* We only return an error if no datagrams were able to be sent */ 2769 if (datagrams != 0) 2770 return datagrams; 2771 2772 return err; 2773 } 2774 2775 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2776 unsigned int, vlen, unsigned int, flags) 2777 { 2778 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2779 } 2780 2781 static int recvmsg_copy_msghdr(struct msghdr *msg, 2782 struct user_msghdr __user *umsg, unsigned flags, 2783 struct sockaddr __user **uaddr, 2784 struct iovec **iov) 2785 { 2786 ssize_t err; 2787 2788 if (MSG_CMSG_COMPAT & flags) { 2789 struct compat_msghdr __user *msg_compat; 2790 2791 msg_compat = (struct compat_msghdr __user *) umsg; 2792 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2793 } else { 2794 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2795 } 2796 if (err < 0) 2797 return err; 2798 2799 return 0; 2800 } 2801 2802 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2803 struct user_msghdr __user *msg, 2804 struct sockaddr __user *uaddr, 2805 unsigned int flags, int nosec) 2806 { 2807 struct compat_msghdr __user *msg_compat = 2808 (struct compat_msghdr __user *) msg; 2809 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2810 struct sockaddr_storage addr; 2811 unsigned long cmsg_ptr; 2812 int len; 2813 ssize_t err; 2814 2815 msg_sys->msg_name = &addr; 2816 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2817 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2818 2819 /* We assume all kernel code knows the size of sockaddr_storage */ 2820 msg_sys->msg_namelen = 0; 2821 2822 if (sock->file->f_flags & O_NONBLOCK) 2823 flags |= MSG_DONTWAIT; 2824 2825 if (unlikely(nosec)) 2826 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2827 else 2828 err = sock_recvmsg(sock, msg_sys, flags); 2829 2830 if (err < 0) 2831 goto out; 2832 len = err; 2833 2834 if (uaddr != NULL) { 2835 err = move_addr_to_user(&addr, 2836 msg_sys->msg_namelen, uaddr, 2837 uaddr_len); 2838 if (err < 0) 2839 goto out; 2840 } 2841 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2842 COMPAT_FLAGS(msg)); 2843 if (err) 2844 goto out; 2845 if (MSG_CMSG_COMPAT & flags) 2846 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2847 &msg_compat->msg_controllen); 2848 else 2849 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2850 &msg->msg_controllen); 2851 if (err) 2852 goto out; 2853 err = len; 2854 out: 2855 return err; 2856 } 2857 2858 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2859 struct msghdr *msg_sys, unsigned int flags, int nosec) 2860 { 2861 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2862 /* user mode address pointers */ 2863 struct sockaddr __user *uaddr; 2864 ssize_t err; 2865 2866 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2867 if (err < 0) 2868 return err; 2869 2870 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2871 kfree(iov); 2872 return err; 2873 } 2874 2875 /* 2876 * BSD recvmsg interface 2877 */ 2878 2879 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2880 struct user_msghdr __user *umsg, 2881 struct sockaddr __user *uaddr, unsigned int flags) 2882 { 2883 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2884 } 2885 2886 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2887 bool forbid_cmsg_compat) 2888 { 2889 struct msghdr msg_sys; 2890 struct socket *sock; 2891 2892 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2893 return -EINVAL; 2894 2895 CLASS(fd, f)(fd); 2896 2897 if (fd_empty(f)) 2898 return -EBADF; 2899 sock = sock_from_file(fd_file(f)); 2900 if (unlikely(!sock)) 2901 return -ENOTSOCK; 2902 2903 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2904 } 2905 2906 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2907 unsigned int, flags) 2908 { 2909 return __sys_recvmsg(fd, msg, flags, true); 2910 } 2911 2912 /* 2913 * Linux recvmmsg interface 2914 */ 2915 2916 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2917 unsigned int vlen, unsigned int flags, 2918 struct timespec64 *timeout) 2919 { 2920 int err = 0, datagrams; 2921 struct socket *sock; 2922 struct mmsghdr __user *entry; 2923 struct compat_mmsghdr __user *compat_entry; 2924 struct msghdr msg_sys; 2925 struct timespec64 end_time; 2926 struct timespec64 timeout64; 2927 2928 if (timeout && 2929 poll_select_set_timeout(&end_time, timeout->tv_sec, 2930 timeout->tv_nsec)) 2931 return -EINVAL; 2932 2933 datagrams = 0; 2934 2935 CLASS(fd, f)(fd); 2936 2937 if (fd_empty(f)) 2938 return -EBADF; 2939 sock = sock_from_file(fd_file(f)); 2940 if (unlikely(!sock)) 2941 return -ENOTSOCK; 2942 2943 if (likely(!(flags & MSG_ERRQUEUE))) { 2944 err = sock_error(sock->sk); 2945 if (err) 2946 return err; 2947 } 2948 2949 entry = mmsg; 2950 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2951 2952 while (datagrams < vlen) { 2953 /* 2954 * No need to ask LSM for more than the first datagram. 2955 */ 2956 if (MSG_CMSG_COMPAT & flags) { 2957 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2958 &msg_sys, flags & ~MSG_WAITFORONE, 2959 datagrams); 2960 if (err < 0) 2961 break; 2962 err = __put_user(err, &compat_entry->msg_len); 2963 ++compat_entry; 2964 } else { 2965 err = ___sys_recvmsg(sock, 2966 (struct user_msghdr __user *)entry, 2967 &msg_sys, flags & ~MSG_WAITFORONE, 2968 datagrams); 2969 if (err < 0) 2970 break; 2971 err = put_user(err, &entry->msg_len); 2972 ++entry; 2973 } 2974 2975 if (err) 2976 break; 2977 ++datagrams; 2978 2979 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2980 if (flags & MSG_WAITFORONE) 2981 flags |= MSG_DONTWAIT; 2982 2983 if (timeout) { 2984 ktime_get_ts64(&timeout64); 2985 *timeout = timespec64_sub(end_time, timeout64); 2986 if (timeout->tv_sec < 0) { 2987 timeout->tv_sec = timeout->tv_nsec = 0; 2988 break; 2989 } 2990 2991 /* Timeout, return less than vlen datagrams */ 2992 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2993 break; 2994 } 2995 2996 /* Out of band data, return right away */ 2997 if (msg_sys.msg_flags & MSG_OOB) 2998 break; 2999 cond_resched(); 3000 } 3001 3002 if (err == 0) 3003 return datagrams; 3004 3005 if (datagrams == 0) 3006 return err; 3007 3008 /* 3009 * We may return less entries than requested (vlen) if the 3010 * sock is non block and there aren't enough datagrams... 3011 */ 3012 if (err != -EAGAIN) { 3013 /* 3014 * ... or if recvmsg returns an error after we 3015 * received some datagrams, where we record the 3016 * error to return on the next call or if the 3017 * app asks about it using getsockopt(SO_ERROR). 3018 */ 3019 WRITE_ONCE(sock->sk->sk_err, -err); 3020 } 3021 return datagrams; 3022 } 3023 3024 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3025 unsigned int vlen, unsigned int flags, 3026 struct __kernel_timespec __user *timeout, 3027 struct old_timespec32 __user *timeout32) 3028 { 3029 int datagrams; 3030 struct timespec64 timeout_sys; 3031 3032 if (timeout && get_timespec64(&timeout_sys, timeout)) 3033 return -EFAULT; 3034 3035 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3036 return -EFAULT; 3037 3038 if (!timeout && !timeout32) 3039 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3040 3041 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3042 3043 if (datagrams <= 0) 3044 return datagrams; 3045 3046 if (timeout && put_timespec64(&timeout_sys, timeout)) 3047 datagrams = -EFAULT; 3048 3049 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3050 datagrams = -EFAULT; 3051 3052 return datagrams; 3053 } 3054 3055 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3056 unsigned int, vlen, unsigned int, flags, 3057 struct __kernel_timespec __user *, timeout) 3058 { 3059 if (flags & MSG_CMSG_COMPAT) 3060 return -EINVAL; 3061 3062 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3063 } 3064 3065 #ifdef CONFIG_COMPAT_32BIT_TIME 3066 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3067 unsigned int, vlen, unsigned int, flags, 3068 struct old_timespec32 __user *, timeout) 3069 { 3070 if (flags & MSG_CMSG_COMPAT) 3071 return -EINVAL; 3072 3073 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3074 } 3075 #endif 3076 3077 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3078 /* Argument list sizes for sys_socketcall */ 3079 #define AL(x) ((x) * sizeof(unsigned long)) 3080 static const unsigned char nargs[21] = { 3081 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3082 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3083 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3084 AL(4), AL(5), AL(4) 3085 }; 3086 3087 #undef AL 3088 3089 /* 3090 * System call vectors. 3091 * 3092 * Argument checking cleaned up. Saved 20% in size. 3093 * This function doesn't need to set the kernel lock because 3094 * it is set by the callees. 3095 */ 3096 3097 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3098 { 3099 unsigned long a[AUDITSC_ARGS]; 3100 unsigned long a0, a1; 3101 int err; 3102 unsigned int len; 3103 3104 if (call < 1 || call > SYS_SENDMMSG) 3105 return -EINVAL; 3106 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3107 3108 len = nargs[call]; 3109 if (len > sizeof(a)) 3110 return -EINVAL; 3111 3112 /* copy_from_user should be SMP safe. */ 3113 if (copy_from_user(a, args, len)) 3114 return -EFAULT; 3115 3116 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3117 if (err) 3118 return err; 3119 3120 a0 = a[0]; 3121 a1 = a[1]; 3122 3123 switch (call) { 3124 case SYS_SOCKET: 3125 err = __sys_socket(a0, a1, a[2]); 3126 break; 3127 case SYS_BIND: 3128 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3129 break; 3130 case SYS_CONNECT: 3131 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3132 break; 3133 case SYS_LISTEN: 3134 err = __sys_listen(a0, a1); 3135 break; 3136 case SYS_ACCEPT: 3137 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3138 (int __user *)a[2], 0); 3139 break; 3140 case SYS_GETSOCKNAME: 3141 err = 3142 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3143 (int __user *)a[2]); 3144 break; 3145 case SYS_GETPEERNAME: 3146 err = 3147 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3148 (int __user *)a[2]); 3149 break; 3150 case SYS_SOCKETPAIR: 3151 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3152 break; 3153 case SYS_SEND: 3154 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3155 NULL, 0); 3156 break; 3157 case SYS_SENDTO: 3158 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3159 (struct sockaddr __user *)a[4], a[5]); 3160 break; 3161 case SYS_RECV: 3162 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3163 NULL, NULL); 3164 break; 3165 case SYS_RECVFROM: 3166 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3167 (struct sockaddr __user *)a[4], 3168 (int __user *)a[5]); 3169 break; 3170 case SYS_SHUTDOWN: 3171 err = __sys_shutdown(a0, a1); 3172 break; 3173 case SYS_SETSOCKOPT: 3174 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3175 a[4]); 3176 break; 3177 case SYS_GETSOCKOPT: 3178 err = 3179 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3180 (int __user *)a[4]); 3181 break; 3182 case SYS_SENDMSG: 3183 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3184 a[2], true); 3185 break; 3186 case SYS_SENDMMSG: 3187 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3188 a[3], true); 3189 break; 3190 case SYS_RECVMSG: 3191 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3192 a[2], true); 3193 break; 3194 case SYS_RECVMMSG: 3195 if (IS_ENABLED(CONFIG_64BIT)) 3196 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3197 a[2], a[3], 3198 (struct __kernel_timespec __user *)a[4], 3199 NULL); 3200 else 3201 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3202 a[2], a[3], NULL, 3203 (struct old_timespec32 __user *)a[4]); 3204 break; 3205 case SYS_ACCEPT4: 3206 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3207 (int __user *)a[2], a[3]); 3208 break; 3209 default: 3210 err = -EINVAL; 3211 break; 3212 } 3213 return err; 3214 } 3215 3216 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3217 3218 /** 3219 * sock_register - add a socket protocol handler 3220 * @ops: description of protocol 3221 * 3222 * This function is called by a protocol handler that wants to 3223 * advertise its address family, and have it linked into the 3224 * socket interface. The value ops->family corresponds to the 3225 * socket system call protocol family. 3226 */ 3227 int sock_register(const struct net_proto_family *ops) 3228 { 3229 int err; 3230 3231 if (ops->family >= NPROTO) { 3232 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3233 return -ENOBUFS; 3234 } 3235 3236 spin_lock(&net_family_lock); 3237 if (rcu_dereference_protected(net_families[ops->family], 3238 lockdep_is_held(&net_family_lock))) 3239 err = -EEXIST; 3240 else { 3241 rcu_assign_pointer(net_families[ops->family], ops); 3242 err = 0; 3243 } 3244 spin_unlock(&net_family_lock); 3245 3246 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3247 return err; 3248 } 3249 EXPORT_SYMBOL(sock_register); 3250 3251 /** 3252 * sock_unregister - remove a protocol handler 3253 * @family: protocol family to remove 3254 * 3255 * This function is called by a protocol handler that wants to 3256 * remove its address family, and have it unlinked from the 3257 * new socket creation. 3258 * 3259 * If protocol handler is a module, then it can use module reference 3260 * counts to protect against new references. If protocol handler is not 3261 * a module then it needs to provide its own protection in 3262 * the ops->create routine. 3263 */ 3264 void sock_unregister(int family) 3265 { 3266 BUG_ON(family < 0 || family >= NPROTO); 3267 3268 spin_lock(&net_family_lock); 3269 RCU_INIT_POINTER(net_families[family], NULL); 3270 spin_unlock(&net_family_lock); 3271 3272 synchronize_rcu(); 3273 3274 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3275 } 3276 EXPORT_SYMBOL(sock_unregister); 3277 3278 bool sock_is_registered(int family) 3279 { 3280 return family < NPROTO && rcu_access_pointer(net_families[family]); 3281 } 3282 3283 static int __init sock_init(void) 3284 { 3285 int err; 3286 /* 3287 * Initialize the network sysctl infrastructure. 3288 */ 3289 err = net_sysctl_init(); 3290 if (err) 3291 goto out; 3292 3293 /* 3294 * Initialize skbuff SLAB cache 3295 */ 3296 skb_init(); 3297 3298 /* 3299 * Initialize the protocols module. 3300 */ 3301 3302 init_inodecache(); 3303 3304 err = register_filesystem(&sock_fs_type); 3305 if (err) 3306 goto out; 3307 sock_mnt = kern_mount(&sock_fs_type); 3308 if (IS_ERR(sock_mnt)) { 3309 err = PTR_ERR(sock_mnt); 3310 goto out_mount; 3311 } 3312 3313 /* The real protocol initialization is performed in later initcalls. 3314 */ 3315 3316 #ifdef CONFIG_NETFILTER 3317 err = netfilter_init(); 3318 if (err) 3319 goto out; 3320 #endif 3321 3322 ptp_classifier_init(); 3323 3324 out: 3325 return err; 3326 3327 out_mount: 3328 unregister_filesystem(&sock_fs_type); 3329 goto out; 3330 } 3331 3332 core_initcall(sock_init); /* early initcall */ 3333 3334 #ifdef CONFIG_PROC_FS 3335 void socket_seq_show(struct seq_file *seq) 3336 { 3337 seq_printf(seq, "sockets: used %d\n", 3338 sock_inuse_get(seq->private)); 3339 } 3340 #endif /* CONFIG_PROC_FS */ 3341 3342 /* Handle the fact that while struct ifreq has the same *layout* on 3343 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3344 * which are handled elsewhere, it still has different *size* due to 3345 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3346 * resulting in struct ifreq being 32 and 40 bytes respectively). 3347 * As a result, if the struct happens to be at the end of a page and 3348 * the next page isn't readable/writable, we get a fault. To prevent 3349 * that, copy back and forth to the full size. 3350 */ 3351 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3352 { 3353 if (in_compat_syscall()) { 3354 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3355 3356 memset(ifr, 0, sizeof(*ifr)); 3357 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3358 return -EFAULT; 3359 3360 if (ifrdata) 3361 *ifrdata = compat_ptr(ifr32->ifr_data); 3362 3363 return 0; 3364 } 3365 3366 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3367 return -EFAULT; 3368 3369 if (ifrdata) 3370 *ifrdata = ifr->ifr_data; 3371 3372 return 0; 3373 } 3374 EXPORT_SYMBOL(get_user_ifreq); 3375 3376 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3377 { 3378 size_t size = sizeof(*ifr); 3379 3380 if (in_compat_syscall()) 3381 size = sizeof(struct compat_ifreq); 3382 3383 if (copy_to_user(arg, ifr, size)) 3384 return -EFAULT; 3385 3386 return 0; 3387 } 3388 EXPORT_SYMBOL(put_user_ifreq); 3389 3390 #ifdef CONFIG_COMPAT 3391 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3392 { 3393 compat_uptr_t uptr32; 3394 struct ifreq ifr; 3395 void __user *saved; 3396 int err; 3397 3398 if (get_user_ifreq(&ifr, NULL, uifr32)) 3399 return -EFAULT; 3400 3401 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3402 return -EFAULT; 3403 3404 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3405 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3406 3407 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3408 if (!err) { 3409 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3410 if (put_user_ifreq(&ifr, uifr32)) 3411 err = -EFAULT; 3412 } 3413 return err; 3414 } 3415 3416 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3417 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3418 struct compat_ifreq __user *u_ifreq32) 3419 { 3420 struct ifreq ifreq; 3421 void __user *data; 3422 3423 if (!is_socket_ioctl_cmd(cmd)) 3424 return -ENOTTY; 3425 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3426 return -EFAULT; 3427 ifreq.ifr_data = data; 3428 3429 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3430 } 3431 3432 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3433 unsigned int cmd, unsigned long arg) 3434 { 3435 void __user *argp = compat_ptr(arg); 3436 struct sock *sk = sock->sk; 3437 struct net *net = sock_net(sk); 3438 const struct proto_ops *ops; 3439 3440 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3441 return sock_ioctl(file, cmd, (unsigned long)argp); 3442 3443 switch (cmd) { 3444 case SIOCWANDEV: 3445 return compat_siocwandev(net, argp); 3446 case SIOCGSTAMP_OLD: 3447 case SIOCGSTAMPNS_OLD: 3448 ops = READ_ONCE(sock->ops); 3449 if (!ops->gettstamp) 3450 return -ENOIOCTLCMD; 3451 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3452 !COMPAT_USE_64BIT_TIME); 3453 3454 case SIOCETHTOOL: 3455 case SIOCBONDSLAVEINFOQUERY: 3456 case SIOCBONDINFOQUERY: 3457 case SIOCSHWTSTAMP: 3458 case SIOCGHWTSTAMP: 3459 return compat_ifr_data_ioctl(net, cmd, argp); 3460 3461 case FIOSETOWN: 3462 case SIOCSPGRP: 3463 case FIOGETOWN: 3464 case SIOCGPGRP: 3465 case SIOCBRADDBR: 3466 case SIOCBRDELBR: 3467 case SIOCBRADDIF: 3468 case SIOCBRDELIF: 3469 case SIOCGIFVLAN: 3470 case SIOCSIFVLAN: 3471 case SIOCGSKNS: 3472 case SIOCGSTAMP_NEW: 3473 case SIOCGSTAMPNS_NEW: 3474 case SIOCGIFCONF: 3475 case SIOCSIFBR: 3476 case SIOCGIFBR: 3477 return sock_ioctl(file, cmd, arg); 3478 3479 case SIOCGIFFLAGS: 3480 case SIOCSIFFLAGS: 3481 case SIOCGIFMAP: 3482 case SIOCSIFMAP: 3483 case SIOCGIFMETRIC: 3484 case SIOCSIFMETRIC: 3485 case SIOCGIFMTU: 3486 case SIOCSIFMTU: 3487 case SIOCGIFMEM: 3488 case SIOCSIFMEM: 3489 case SIOCGIFHWADDR: 3490 case SIOCSIFHWADDR: 3491 case SIOCADDMULTI: 3492 case SIOCDELMULTI: 3493 case SIOCGIFINDEX: 3494 case SIOCGIFADDR: 3495 case SIOCSIFADDR: 3496 case SIOCSIFHWBROADCAST: 3497 case SIOCDIFADDR: 3498 case SIOCGIFBRDADDR: 3499 case SIOCSIFBRDADDR: 3500 case SIOCGIFDSTADDR: 3501 case SIOCSIFDSTADDR: 3502 case SIOCGIFNETMASK: 3503 case SIOCSIFNETMASK: 3504 case SIOCSIFPFLAGS: 3505 case SIOCGIFPFLAGS: 3506 case SIOCGIFTXQLEN: 3507 case SIOCSIFTXQLEN: 3508 case SIOCGIFNAME: 3509 case SIOCSIFNAME: 3510 case SIOCGMIIPHY: 3511 case SIOCGMIIREG: 3512 case SIOCSMIIREG: 3513 case SIOCBONDENSLAVE: 3514 case SIOCBONDRELEASE: 3515 case SIOCBONDSETHWADDR: 3516 case SIOCBONDCHANGEACTIVE: 3517 case SIOCSARP: 3518 case SIOCGARP: 3519 case SIOCDARP: 3520 case SIOCOUTQ: 3521 case SIOCOUTQNSD: 3522 case SIOCATMARK: 3523 return sock_do_ioctl(net, sock, cmd, arg); 3524 } 3525 3526 return -ENOIOCTLCMD; 3527 } 3528 3529 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3530 unsigned long arg) 3531 { 3532 struct socket *sock = file->private_data; 3533 const struct proto_ops *ops = READ_ONCE(sock->ops); 3534 int ret = -ENOIOCTLCMD; 3535 struct sock *sk; 3536 struct net *net; 3537 3538 sk = sock->sk; 3539 net = sock_net(sk); 3540 3541 if (ops->compat_ioctl) 3542 ret = ops->compat_ioctl(sock, cmd, arg); 3543 3544 if (ret == -ENOIOCTLCMD && 3545 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3546 ret = compat_wext_handle_ioctl(net, cmd, arg); 3547 3548 if (ret == -ENOIOCTLCMD) 3549 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3550 3551 return ret; 3552 } 3553 #endif 3554 3555 /** 3556 * kernel_bind - bind an address to a socket (kernel space) 3557 * @sock: socket 3558 * @addr: address 3559 * @addrlen: length of address 3560 * 3561 * Returns 0 or an error. 3562 */ 3563 3564 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3565 { 3566 struct sockaddr_storage address; 3567 3568 memcpy(&address, addr, addrlen); 3569 3570 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3571 addrlen); 3572 } 3573 EXPORT_SYMBOL(kernel_bind); 3574 3575 /** 3576 * kernel_listen - move socket to listening state (kernel space) 3577 * @sock: socket 3578 * @backlog: pending connections queue size 3579 * 3580 * Returns 0 or an error. 3581 */ 3582 3583 int kernel_listen(struct socket *sock, int backlog) 3584 { 3585 return READ_ONCE(sock->ops)->listen(sock, backlog); 3586 } 3587 EXPORT_SYMBOL(kernel_listen); 3588 3589 /** 3590 * kernel_accept - accept a connection (kernel space) 3591 * @sock: listening socket 3592 * @newsock: new connected socket 3593 * @flags: flags 3594 * 3595 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3596 * If it fails, @newsock is guaranteed to be %NULL. 3597 * Returns 0 or an error. 3598 */ 3599 3600 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3601 { 3602 struct sock *sk = sock->sk; 3603 const struct proto_ops *ops = READ_ONCE(sock->ops); 3604 struct proto_accept_arg arg = { 3605 .flags = flags, 3606 .kern = true, 3607 }; 3608 int err; 3609 3610 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3611 newsock); 3612 if (err < 0) 3613 goto done; 3614 3615 err = ops->accept(sock, *newsock, &arg); 3616 if (err < 0) { 3617 sock_release(*newsock); 3618 *newsock = NULL; 3619 goto done; 3620 } 3621 3622 (*newsock)->ops = ops; 3623 __module_get(ops->owner); 3624 3625 done: 3626 return err; 3627 } 3628 EXPORT_SYMBOL(kernel_accept); 3629 3630 /** 3631 * kernel_connect - connect a socket (kernel space) 3632 * @sock: socket 3633 * @addr: address 3634 * @addrlen: address length 3635 * @flags: flags (O_NONBLOCK, ...) 3636 * 3637 * For datagram sockets, @addr is the address to which datagrams are sent 3638 * by default, and the only address from which datagrams are received. 3639 * For stream sockets, attempts to connect to @addr. 3640 * Returns 0 or an error code. 3641 */ 3642 3643 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3644 int flags) 3645 { 3646 struct sockaddr_storage address; 3647 3648 memcpy(&address, addr, addrlen); 3649 3650 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3651 addrlen, flags); 3652 } 3653 EXPORT_SYMBOL(kernel_connect); 3654 3655 /** 3656 * kernel_getsockname - get the address which the socket is bound (kernel space) 3657 * @sock: socket 3658 * @addr: address holder 3659 * 3660 * Fills the @addr pointer with the address which the socket is bound. 3661 * Returns the length of the address in bytes or an error code. 3662 */ 3663 3664 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3665 { 3666 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3667 } 3668 EXPORT_SYMBOL(kernel_getsockname); 3669 3670 /** 3671 * kernel_getpeername - get the address which the socket is connected (kernel space) 3672 * @sock: socket 3673 * @addr: address holder 3674 * 3675 * Fills the @addr pointer with the address which the socket is connected. 3676 * Returns the length of the address in bytes or an error code. 3677 */ 3678 3679 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3680 { 3681 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3682 } 3683 EXPORT_SYMBOL(kernel_getpeername); 3684 3685 /** 3686 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3687 * @sock: socket 3688 * @how: connection part 3689 * 3690 * Returns 0 or an error. 3691 */ 3692 3693 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3694 { 3695 return READ_ONCE(sock->ops)->shutdown(sock, how); 3696 } 3697 EXPORT_SYMBOL(kernel_sock_shutdown); 3698 3699 /** 3700 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3701 * @sk: socket 3702 * 3703 * This routine returns the IP overhead imposed by a socket i.e. 3704 * the length of the underlying IP header, depending on whether 3705 * this is an IPv4 or IPv6 socket and the length from IP options turned 3706 * on at the socket. Assumes that the caller has a lock on the socket. 3707 */ 3708 3709 u32 kernel_sock_ip_overhead(struct sock *sk) 3710 { 3711 struct inet_sock *inet; 3712 struct ip_options_rcu *opt; 3713 u32 overhead = 0; 3714 #if IS_ENABLED(CONFIG_IPV6) 3715 struct ipv6_pinfo *np; 3716 struct ipv6_txoptions *optv6 = NULL; 3717 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3718 3719 if (!sk) 3720 return overhead; 3721 3722 switch (sk->sk_family) { 3723 case AF_INET: 3724 inet = inet_sk(sk); 3725 overhead += sizeof(struct iphdr); 3726 opt = rcu_dereference_protected(inet->inet_opt, 3727 sock_owned_by_user(sk)); 3728 if (opt) 3729 overhead += opt->opt.optlen; 3730 return overhead; 3731 #if IS_ENABLED(CONFIG_IPV6) 3732 case AF_INET6: 3733 np = inet6_sk(sk); 3734 overhead += sizeof(struct ipv6hdr); 3735 if (np) 3736 optv6 = rcu_dereference_protected(np->opt, 3737 sock_owned_by_user(sk)); 3738 if (optv6) 3739 overhead += (optv6->opt_flen + optv6->opt_nflen); 3740 return overhead; 3741 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3742 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3743 return overhead; 3744 } 3745 } 3746 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3747