1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 int fd; 355 356 fd = get_unused_fd_flags(flags); 357 if (unlikely(fd < 0)) 358 return fd; 359 360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 361 if (unlikely(!path.dentry)) { 362 put_unused_fd(fd); 363 return -ENOMEM; 364 } 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(!file)) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 put_unused_fd(fd); 377 return -ENFILE; 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 385 *f = file; 386 return fd; 387 } 388 389 int sock_map_fd(struct socket *sock, int flags) 390 { 391 struct file *newfile; 392 int fd = sock_alloc_file(sock, &newfile, flags); 393 394 if (likely(fd >= 0)) 395 fd_install(fd, newfile); 396 397 return fd; 398 } 399 EXPORT_SYMBOL(sock_map_fd); 400 401 static struct socket *sock_from_file(struct file *file, int *err) 402 { 403 if (file->f_op == &socket_file_ops) 404 return file->private_data; /* set in sock_map_fd */ 405 406 *err = -ENOTSOCK; 407 return NULL; 408 } 409 410 /** 411 * sockfd_lookup - Go from a file number to its socket slot 412 * @fd: file handle 413 * @err: pointer to an error code return 414 * 415 * The file handle passed in is locked and the socket it is bound 416 * too is returned. If an error occurs the err pointer is overwritten 417 * with a negative errno code and NULL is returned. The function checks 418 * for both invalid handles and passing a handle which is not a socket. 419 * 420 * On a success the socket object pointer is returned. 421 */ 422 423 struct socket *sockfd_lookup(int fd, int *err) 424 { 425 struct file *file; 426 struct socket *sock; 427 428 file = fget(fd); 429 if (!file) { 430 *err = -EBADF; 431 return NULL; 432 } 433 434 sock = sock_from_file(file, err); 435 if (!sock) 436 fput(file); 437 return sock; 438 } 439 EXPORT_SYMBOL(sockfd_lookup); 440 441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 442 { 443 struct file *file; 444 struct socket *sock; 445 446 *err = -EBADF; 447 file = fget_light(fd, fput_needed); 448 if (file) { 449 sock = sock_from_file(file, err); 450 if (sock) 451 return sock; 452 fput_light(file, *fput_needed); 453 } 454 return NULL; 455 } 456 457 /** 458 * sock_alloc - allocate a socket 459 * 460 * Allocate a new inode and socket object. The two are bound together 461 * and initialised. The socket is then returned. If we are out of inodes 462 * NULL is returned. 463 */ 464 465 static struct socket *sock_alloc(void) 466 { 467 struct inode *inode; 468 struct socket *sock; 469 470 inode = new_inode_pseudo(sock_mnt->mnt_sb); 471 if (!inode) 472 return NULL; 473 474 sock = SOCKET_I(inode); 475 476 kmemcheck_annotate_bitfield(sock, type); 477 inode->i_ino = get_next_ino(); 478 inode->i_mode = S_IFSOCK | S_IRWXUGO; 479 inode->i_uid = current_fsuid(); 480 inode->i_gid = current_fsgid(); 481 482 percpu_add(sockets_in_use, 1); 483 return sock; 484 } 485 486 /* 487 * In theory you can't get an open on this inode, but /proc provides 488 * a back door. Remember to keep it shut otherwise you'll let the 489 * creepy crawlies in. 490 */ 491 492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 493 { 494 return -ENXIO; 495 } 496 497 const struct file_operations bad_sock_fops = { 498 .owner = THIS_MODULE, 499 .open = sock_no_open, 500 .llseek = noop_llseek, 501 }; 502 503 /** 504 * sock_release - close a socket 505 * @sock: socket to close 506 * 507 * The socket is released from the protocol stack if it has a release 508 * callback, and the inode is then released if the socket is bound to 509 * an inode not a file. 510 */ 511 512 void sock_release(struct socket *sock) 513 { 514 if (sock->ops) { 515 struct module *owner = sock->ops->owner; 516 517 sock->ops->release(sock); 518 sock->ops = NULL; 519 module_put(owner); 520 } 521 522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 523 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 524 525 percpu_sub(sockets_in_use, 1); 526 if (!sock->file) { 527 iput(SOCK_INODE(sock)); 528 return; 529 } 530 sock->file = NULL; 531 } 532 EXPORT_SYMBOL(sock_release); 533 534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 535 { 536 *tx_flags = 0; 537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 538 *tx_flags |= SKBTX_HW_TSTAMP; 539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 540 *tx_flags |= SKBTX_SW_TSTAMP; 541 return 0; 542 } 543 EXPORT_SYMBOL(sock_tx_timestamp); 544 545 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 546 struct msghdr *msg, size_t size) 547 { 548 struct sock_iocb *si = kiocb_to_siocb(iocb); 549 550 sock_update_classid(sock->sk); 551 552 si->sock = sock; 553 si->scm = NULL; 554 si->msg = msg; 555 si->size = size; 556 557 return sock->ops->sendmsg(iocb, sock, msg, size); 558 } 559 560 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 561 struct msghdr *msg, size_t size) 562 { 563 int err = security_socket_sendmsg(sock, msg, size); 564 565 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 566 } 567 568 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 569 { 570 struct kiocb iocb; 571 struct sock_iocb siocb; 572 int ret; 573 574 init_sync_kiocb(&iocb, NULL); 575 iocb.private = &siocb; 576 ret = __sock_sendmsg(&iocb, sock, msg, size); 577 if (-EIOCBQUEUED == ret) 578 ret = wait_on_sync_kiocb(&iocb); 579 return ret; 580 } 581 EXPORT_SYMBOL(sock_sendmsg); 582 583 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 584 { 585 struct kiocb iocb; 586 struct sock_iocb siocb; 587 int ret; 588 589 init_sync_kiocb(&iocb, NULL); 590 iocb.private = &siocb; 591 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 592 if (-EIOCBQUEUED == ret) 593 ret = wait_on_sync_kiocb(&iocb); 594 return ret; 595 } 596 597 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 598 struct kvec *vec, size_t num, size_t size) 599 { 600 mm_segment_t oldfs = get_fs(); 601 int result; 602 603 set_fs(KERNEL_DS); 604 /* 605 * the following is safe, since for compiler definitions of kvec and 606 * iovec are identical, yielding the same in-core layout and alignment 607 */ 608 msg->msg_iov = (struct iovec *)vec; 609 msg->msg_iovlen = num; 610 result = sock_sendmsg(sock, msg, size); 611 set_fs(oldfs); 612 return result; 613 } 614 EXPORT_SYMBOL(kernel_sendmsg); 615 616 static int ktime2ts(ktime_t kt, struct timespec *ts) 617 { 618 if (kt.tv64) { 619 *ts = ktime_to_timespec(kt); 620 return 1; 621 } else { 622 return 0; 623 } 624 } 625 626 /* 627 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 628 */ 629 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 630 struct sk_buff *skb) 631 { 632 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 633 struct timespec ts[3]; 634 int empty = 1; 635 struct skb_shared_hwtstamps *shhwtstamps = 636 skb_hwtstamps(skb); 637 638 /* Race occurred between timestamp enabling and packet 639 receiving. Fill in the current time for now. */ 640 if (need_software_tstamp && skb->tstamp.tv64 == 0) 641 __net_timestamp(skb); 642 643 if (need_software_tstamp) { 644 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 645 struct timeval tv; 646 skb_get_timestamp(skb, &tv); 647 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 648 sizeof(tv), &tv); 649 } else { 650 skb_get_timestampns(skb, &ts[0]); 651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 652 sizeof(ts[0]), &ts[0]); 653 } 654 } 655 656 657 memset(ts, 0, sizeof(ts)); 658 if (skb->tstamp.tv64 && 659 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 660 skb_get_timestampns(skb, ts + 0); 661 empty = 0; 662 } 663 if (shhwtstamps) { 664 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 665 ktime2ts(shhwtstamps->syststamp, ts + 1)) 666 empty = 0; 667 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 668 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 669 empty = 0; 670 } 671 if (!empty) 672 put_cmsg(msg, SOL_SOCKET, 673 SCM_TIMESTAMPING, sizeof(ts), &ts); 674 } 675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 676 677 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 681 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 682 sizeof(__u32), &skb->dropcount); 683 } 684 685 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 686 struct sk_buff *skb) 687 { 688 sock_recv_timestamp(msg, sk, skb); 689 sock_recv_drops(msg, sk, skb); 690 } 691 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 692 693 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 694 struct msghdr *msg, size_t size, int flags) 695 { 696 struct sock_iocb *si = kiocb_to_siocb(iocb); 697 698 sock_update_classid(sock->sk); 699 700 si->sock = sock; 701 si->scm = NULL; 702 si->msg = msg; 703 si->size = size; 704 si->flags = flags; 705 706 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 707 } 708 709 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 710 struct msghdr *msg, size_t size, int flags) 711 { 712 int err = security_socket_recvmsg(sock, msg, size, flags); 713 714 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 715 } 716 717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 718 size_t size, int flags) 719 { 720 struct kiocb iocb; 721 struct sock_iocb siocb; 722 int ret; 723 724 init_sync_kiocb(&iocb, NULL); 725 iocb.private = &siocb; 726 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 727 if (-EIOCBQUEUED == ret) 728 ret = wait_on_sync_kiocb(&iocb); 729 return ret; 730 } 731 EXPORT_SYMBOL(sock_recvmsg); 732 733 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 734 size_t size, int flags) 735 { 736 struct kiocb iocb; 737 struct sock_iocb siocb; 738 int ret; 739 740 init_sync_kiocb(&iocb, NULL); 741 iocb.private = &siocb; 742 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 743 if (-EIOCBQUEUED == ret) 744 ret = wait_on_sync_kiocb(&iocb); 745 return ret; 746 } 747 748 /** 749 * kernel_recvmsg - Receive a message from a socket (kernel space) 750 * @sock: The socket to receive the message from 751 * @msg: Received message 752 * @vec: Input s/g array for message data 753 * @num: Size of input s/g array 754 * @size: Number of bytes to read 755 * @flags: Message flags (MSG_DONTWAIT, etc...) 756 * 757 * On return the msg structure contains the scatter/gather array passed in the 758 * vec argument. The array is modified so that it consists of the unfilled 759 * portion of the original array. 760 * 761 * The returned value is the total number of bytes received, or an error. 762 */ 763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size, int flags) 765 { 766 mm_segment_t oldfs = get_fs(); 767 int result; 768 769 set_fs(KERNEL_DS); 770 /* 771 * the following is safe, since for compiler definitions of kvec and 772 * iovec are identical, yielding the same in-core layout and alignment 773 */ 774 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 775 result = sock_recvmsg(sock, msg, size, flags); 776 set_fs(oldfs); 777 return result; 778 } 779 EXPORT_SYMBOL(kernel_recvmsg); 780 781 static void sock_aio_dtor(struct kiocb *iocb) 782 { 783 kfree(iocb->private); 784 } 785 786 static ssize_t sock_sendpage(struct file *file, struct page *page, 787 int offset, size_t size, loff_t *ppos, int more) 788 { 789 struct socket *sock; 790 int flags; 791 792 sock = file->private_data; 793 794 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 795 if (more) 796 flags |= MSG_MORE; 797 798 return kernel_sendpage(sock, page, offset, size, flags); 799 } 800 801 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 802 struct pipe_inode_info *pipe, size_t len, 803 unsigned int flags) 804 { 805 struct socket *sock = file->private_data; 806 807 if (unlikely(!sock->ops->splice_read)) 808 return -EINVAL; 809 810 sock_update_classid(sock->sk); 811 812 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 813 } 814 815 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 816 struct sock_iocb *siocb) 817 { 818 if (!is_sync_kiocb(iocb)) { 819 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 820 if (!siocb) 821 return NULL; 822 iocb->ki_dtor = sock_aio_dtor; 823 } 824 825 siocb->kiocb = iocb; 826 iocb->private = siocb; 827 return siocb; 828 } 829 830 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 831 struct file *file, const struct iovec *iov, 832 unsigned long nr_segs) 833 { 834 struct socket *sock = file->private_data; 835 size_t size = 0; 836 int i; 837 838 for (i = 0; i < nr_segs; i++) 839 size += iov[i].iov_len; 840 841 msg->msg_name = NULL; 842 msg->msg_namelen = 0; 843 msg->msg_control = NULL; 844 msg->msg_controllen = 0; 845 msg->msg_iov = (struct iovec *)iov; 846 msg->msg_iovlen = nr_segs; 847 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 848 849 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 850 } 851 852 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 853 unsigned long nr_segs, loff_t pos) 854 { 855 struct sock_iocb siocb, *x; 856 857 if (pos != 0) 858 return -ESPIPE; 859 860 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 861 return 0; 862 863 864 x = alloc_sock_iocb(iocb, &siocb); 865 if (!x) 866 return -ENOMEM; 867 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 868 } 869 870 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 871 struct file *file, const struct iovec *iov, 872 unsigned long nr_segs) 873 { 874 struct socket *sock = file->private_data; 875 size_t size = 0; 876 int i; 877 878 for (i = 0; i < nr_segs; i++) 879 size += iov[i].iov_len; 880 881 msg->msg_name = NULL; 882 msg->msg_namelen = 0; 883 msg->msg_control = NULL; 884 msg->msg_controllen = 0; 885 msg->msg_iov = (struct iovec *)iov; 886 msg->msg_iovlen = nr_segs; 887 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 888 if (sock->type == SOCK_SEQPACKET) 889 msg->msg_flags |= MSG_EOR; 890 891 return __sock_sendmsg(iocb, sock, msg, size); 892 } 893 894 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 895 unsigned long nr_segs, loff_t pos) 896 { 897 struct sock_iocb siocb, *x; 898 899 if (pos != 0) 900 return -ESPIPE; 901 902 x = alloc_sock_iocb(iocb, &siocb); 903 if (!x) 904 return -ENOMEM; 905 906 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 907 } 908 909 /* 910 * Atomic setting of ioctl hooks to avoid race 911 * with module unload. 912 */ 913 914 static DEFINE_MUTEX(br_ioctl_mutex); 915 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 916 917 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 918 { 919 mutex_lock(&br_ioctl_mutex); 920 br_ioctl_hook = hook; 921 mutex_unlock(&br_ioctl_mutex); 922 } 923 EXPORT_SYMBOL(brioctl_set); 924 925 static DEFINE_MUTEX(vlan_ioctl_mutex); 926 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 927 928 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 929 { 930 mutex_lock(&vlan_ioctl_mutex); 931 vlan_ioctl_hook = hook; 932 mutex_unlock(&vlan_ioctl_mutex); 933 } 934 EXPORT_SYMBOL(vlan_ioctl_set); 935 936 static DEFINE_MUTEX(dlci_ioctl_mutex); 937 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 938 939 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 940 { 941 mutex_lock(&dlci_ioctl_mutex); 942 dlci_ioctl_hook = hook; 943 mutex_unlock(&dlci_ioctl_mutex); 944 } 945 EXPORT_SYMBOL(dlci_ioctl_set); 946 947 static long sock_do_ioctl(struct net *net, struct socket *sock, 948 unsigned int cmd, unsigned long arg) 949 { 950 int err; 951 void __user *argp = (void __user *)arg; 952 953 err = sock->ops->ioctl(sock, cmd, arg); 954 955 /* 956 * If this ioctl is unknown try to hand it down 957 * to the NIC driver. 958 */ 959 if (err == -ENOIOCTLCMD) 960 err = dev_ioctl(net, cmd, argp); 961 962 return err; 963 } 964 965 /* 966 * With an ioctl, arg may well be a user mode pointer, but we don't know 967 * what to do with it - that's up to the protocol still. 968 */ 969 970 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 971 { 972 struct socket *sock; 973 struct sock *sk; 974 void __user *argp = (void __user *)arg; 975 int pid, err; 976 struct net *net; 977 978 sock = file->private_data; 979 sk = sock->sk; 980 net = sock_net(sk); 981 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 982 err = dev_ioctl(net, cmd, argp); 983 } else 984 #ifdef CONFIG_WEXT_CORE 985 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 986 err = dev_ioctl(net, cmd, argp); 987 } else 988 #endif 989 switch (cmd) { 990 case FIOSETOWN: 991 case SIOCSPGRP: 992 err = -EFAULT; 993 if (get_user(pid, (int __user *)argp)) 994 break; 995 err = f_setown(sock->file, pid, 1); 996 break; 997 case FIOGETOWN: 998 case SIOCGPGRP: 999 err = put_user(f_getown(sock->file), 1000 (int __user *)argp); 1001 break; 1002 case SIOCGIFBR: 1003 case SIOCSIFBR: 1004 case SIOCBRADDBR: 1005 case SIOCBRDELBR: 1006 err = -ENOPKG; 1007 if (!br_ioctl_hook) 1008 request_module("bridge"); 1009 1010 mutex_lock(&br_ioctl_mutex); 1011 if (br_ioctl_hook) 1012 err = br_ioctl_hook(net, cmd, argp); 1013 mutex_unlock(&br_ioctl_mutex); 1014 break; 1015 case SIOCGIFVLAN: 1016 case SIOCSIFVLAN: 1017 err = -ENOPKG; 1018 if (!vlan_ioctl_hook) 1019 request_module("8021q"); 1020 1021 mutex_lock(&vlan_ioctl_mutex); 1022 if (vlan_ioctl_hook) 1023 err = vlan_ioctl_hook(net, argp); 1024 mutex_unlock(&vlan_ioctl_mutex); 1025 break; 1026 case SIOCADDDLCI: 1027 case SIOCDELDLCI: 1028 err = -ENOPKG; 1029 if (!dlci_ioctl_hook) 1030 request_module("dlci"); 1031 1032 mutex_lock(&dlci_ioctl_mutex); 1033 if (dlci_ioctl_hook) 1034 err = dlci_ioctl_hook(cmd, argp); 1035 mutex_unlock(&dlci_ioctl_mutex); 1036 break; 1037 default: 1038 err = sock_do_ioctl(net, sock, cmd, arg); 1039 break; 1040 } 1041 return err; 1042 } 1043 1044 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1045 { 1046 int err; 1047 struct socket *sock = NULL; 1048 1049 err = security_socket_create(family, type, protocol, 1); 1050 if (err) 1051 goto out; 1052 1053 sock = sock_alloc(); 1054 if (!sock) { 1055 err = -ENOMEM; 1056 goto out; 1057 } 1058 1059 sock->type = type; 1060 err = security_socket_post_create(sock, family, type, protocol, 1); 1061 if (err) 1062 goto out_release; 1063 1064 out: 1065 *res = sock; 1066 return err; 1067 out_release: 1068 sock_release(sock); 1069 sock = NULL; 1070 goto out; 1071 } 1072 EXPORT_SYMBOL(sock_create_lite); 1073 1074 /* No kernel lock held - perfect */ 1075 static unsigned int sock_poll(struct file *file, poll_table *wait) 1076 { 1077 struct socket *sock; 1078 1079 /* 1080 * We can't return errors to poll, so it's either yes or no. 1081 */ 1082 sock = file->private_data; 1083 return sock->ops->poll(file, sock, wait); 1084 } 1085 1086 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1087 { 1088 struct socket *sock = file->private_data; 1089 1090 return sock->ops->mmap(file, sock, vma); 1091 } 1092 1093 static int sock_close(struct inode *inode, struct file *filp) 1094 { 1095 /* 1096 * It was possible the inode is NULL we were 1097 * closing an unfinished socket. 1098 */ 1099 1100 if (!inode) { 1101 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1102 return 0; 1103 } 1104 sock_release(SOCKET_I(inode)); 1105 return 0; 1106 } 1107 1108 /* 1109 * Update the socket async list 1110 * 1111 * Fasync_list locking strategy. 1112 * 1113 * 1. fasync_list is modified only under process context socket lock 1114 * i.e. under semaphore. 1115 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1116 * or under socket lock 1117 */ 1118 1119 static int sock_fasync(int fd, struct file *filp, int on) 1120 { 1121 struct socket *sock = filp->private_data; 1122 struct sock *sk = sock->sk; 1123 struct socket_wq *wq; 1124 1125 if (sk == NULL) 1126 return -EINVAL; 1127 1128 lock_sock(sk); 1129 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1130 fasync_helper(fd, filp, on, &wq->fasync_list); 1131 1132 if (!wq->fasync_list) 1133 sock_reset_flag(sk, SOCK_FASYNC); 1134 else 1135 sock_set_flag(sk, SOCK_FASYNC); 1136 1137 release_sock(sk); 1138 return 0; 1139 } 1140 1141 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1142 1143 int sock_wake_async(struct socket *sock, int how, int band) 1144 { 1145 struct socket_wq *wq; 1146 1147 if (!sock) 1148 return -1; 1149 rcu_read_lock(); 1150 wq = rcu_dereference(sock->wq); 1151 if (!wq || !wq->fasync_list) { 1152 rcu_read_unlock(); 1153 return -1; 1154 } 1155 switch (how) { 1156 case SOCK_WAKE_WAITD: 1157 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1158 break; 1159 goto call_kill; 1160 case SOCK_WAKE_SPACE: 1161 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1162 break; 1163 /* fall through */ 1164 case SOCK_WAKE_IO: 1165 call_kill: 1166 kill_fasync(&wq->fasync_list, SIGIO, band); 1167 break; 1168 case SOCK_WAKE_URG: 1169 kill_fasync(&wq->fasync_list, SIGURG, band); 1170 } 1171 rcu_read_unlock(); 1172 return 0; 1173 } 1174 EXPORT_SYMBOL(sock_wake_async); 1175 1176 int __sock_create(struct net *net, int family, int type, int protocol, 1177 struct socket **res, int kern) 1178 { 1179 int err; 1180 struct socket *sock; 1181 const struct net_proto_family *pf; 1182 1183 /* 1184 * Check protocol is in range 1185 */ 1186 if (family < 0 || family >= NPROTO) 1187 return -EAFNOSUPPORT; 1188 if (type < 0 || type >= SOCK_MAX) 1189 return -EINVAL; 1190 1191 /* Compatibility. 1192 1193 This uglymoron is moved from INET layer to here to avoid 1194 deadlock in module load. 1195 */ 1196 if (family == PF_INET && type == SOCK_PACKET) { 1197 static int warned; 1198 if (!warned) { 1199 warned = 1; 1200 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1201 current->comm); 1202 } 1203 family = PF_PACKET; 1204 } 1205 1206 err = security_socket_create(family, type, protocol, kern); 1207 if (err) 1208 return err; 1209 1210 /* 1211 * Allocate the socket and allow the family to set things up. if 1212 * the protocol is 0, the family is instructed to select an appropriate 1213 * default. 1214 */ 1215 sock = sock_alloc(); 1216 if (!sock) { 1217 if (net_ratelimit()) 1218 printk(KERN_WARNING "socket: no more sockets\n"); 1219 return -ENFILE; /* Not exactly a match, but its the 1220 closest posix thing */ 1221 } 1222 1223 sock->type = type; 1224 1225 #ifdef CONFIG_MODULES 1226 /* Attempt to load a protocol module if the find failed. 1227 * 1228 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1229 * requested real, full-featured networking support upon configuration. 1230 * Otherwise module support will break! 1231 */ 1232 if (rcu_access_pointer(net_families[family]) == NULL) 1233 request_module("net-pf-%d", family); 1234 #endif 1235 1236 rcu_read_lock(); 1237 pf = rcu_dereference(net_families[family]); 1238 err = -EAFNOSUPPORT; 1239 if (!pf) 1240 goto out_release; 1241 1242 /* 1243 * We will call the ->create function, that possibly is in a loadable 1244 * module, so we have to bump that loadable module refcnt first. 1245 */ 1246 if (!try_module_get(pf->owner)) 1247 goto out_release; 1248 1249 /* Now protected by module ref count */ 1250 rcu_read_unlock(); 1251 1252 err = pf->create(net, sock, protocol, kern); 1253 if (err < 0) 1254 goto out_module_put; 1255 1256 /* 1257 * Now to bump the refcnt of the [loadable] module that owns this 1258 * socket at sock_release time we decrement its refcnt. 1259 */ 1260 if (!try_module_get(sock->ops->owner)) 1261 goto out_module_busy; 1262 1263 /* 1264 * Now that we're done with the ->create function, the [loadable] 1265 * module can have its refcnt decremented 1266 */ 1267 module_put(pf->owner); 1268 err = security_socket_post_create(sock, family, type, protocol, kern); 1269 if (err) 1270 goto out_sock_release; 1271 *res = sock; 1272 1273 return 0; 1274 1275 out_module_busy: 1276 err = -EAFNOSUPPORT; 1277 out_module_put: 1278 sock->ops = NULL; 1279 module_put(pf->owner); 1280 out_sock_release: 1281 sock_release(sock); 1282 return err; 1283 1284 out_release: 1285 rcu_read_unlock(); 1286 goto out_sock_release; 1287 } 1288 EXPORT_SYMBOL(__sock_create); 1289 1290 int sock_create(int family, int type, int protocol, struct socket **res) 1291 { 1292 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1293 } 1294 EXPORT_SYMBOL(sock_create); 1295 1296 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1297 { 1298 return __sock_create(&init_net, family, type, protocol, res, 1); 1299 } 1300 EXPORT_SYMBOL(sock_create_kern); 1301 1302 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1303 { 1304 int retval; 1305 struct socket *sock; 1306 int flags; 1307 1308 /* Check the SOCK_* constants for consistency. */ 1309 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1310 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1311 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1312 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1313 1314 flags = type & ~SOCK_TYPE_MASK; 1315 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1316 return -EINVAL; 1317 type &= SOCK_TYPE_MASK; 1318 1319 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1320 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1321 1322 retval = sock_create(family, type, protocol, &sock); 1323 if (retval < 0) 1324 goto out; 1325 1326 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1327 if (retval < 0) 1328 goto out_release; 1329 1330 out: 1331 /* It may be already another descriptor 8) Not kernel problem. */ 1332 return retval; 1333 1334 out_release: 1335 sock_release(sock); 1336 return retval; 1337 } 1338 1339 /* 1340 * Create a pair of connected sockets. 1341 */ 1342 1343 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1344 int __user *, usockvec) 1345 { 1346 struct socket *sock1, *sock2; 1347 int fd1, fd2, err; 1348 struct file *newfile1, *newfile2; 1349 int flags; 1350 1351 flags = type & ~SOCK_TYPE_MASK; 1352 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1353 return -EINVAL; 1354 type &= SOCK_TYPE_MASK; 1355 1356 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1357 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1358 1359 /* 1360 * Obtain the first socket and check if the underlying protocol 1361 * supports the socketpair call. 1362 */ 1363 1364 err = sock_create(family, type, protocol, &sock1); 1365 if (err < 0) 1366 goto out; 1367 1368 err = sock_create(family, type, protocol, &sock2); 1369 if (err < 0) 1370 goto out_release_1; 1371 1372 err = sock1->ops->socketpair(sock1, sock2); 1373 if (err < 0) 1374 goto out_release_both; 1375 1376 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1377 if (unlikely(fd1 < 0)) { 1378 err = fd1; 1379 goto out_release_both; 1380 } 1381 1382 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1383 if (unlikely(fd2 < 0)) { 1384 err = fd2; 1385 fput(newfile1); 1386 put_unused_fd(fd1); 1387 sock_release(sock2); 1388 goto out; 1389 } 1390 1391 audit_fd_pair(fd1, fd2); 1392 fd_install(fd1, newfile1); 1393 fd_install(fd2, newfile2); 1394 /* fd1 and fd2 may be already another descriptors. 1395 * Not kernel problem. 1396 */ 1397 1398 err = put_user(fd1, &usockvec[0]); 1399 if (!err) 1400 err = put_user(fd2, &usockvec[1]); 1401 if (!err) 1402 return 0; 1403 1404 sys_close(fd2); 1405 sys_close(fd1); 1406 return err; 1407 1408 out_release_both: 1409 sock_release(sock2); 1410 out_release_1: 1411 sock_release(sock1); 1412 out: 1413 return err; 1414 } 1415 1416 /* 1417 * Bind a name to a socket. Nothing much to do here since it's 1418 * the protocol's responsibility to handle the local address. 1419 * 1420 * We move the socket address to kernel space before we call 1421 * the protocol layer (having also checked the address is ok). 1422 */ 1423 1424 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1425 { 1426 struct socket *sock; 1427 struct sockaddr_storage address; 1428 int err, fput_needed; 1429 1430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1431 if (sock) { 1432 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1433 if (err >= 0) { 1434 err = security_socket_bind(sock, 1435 (struct sockaddr *)&address, 1436 addrlen); 1437 if (!err) 1438 err = sock->ops->bind(sock, 1439 (struct sockaddr *) 1440 &address, addrlen); 1441 } 1442 fput_light(sock->file, fput_needed); 1443 } 1444 return err; 1445 } 1446 1447 /* 1448 * Perform a listen. Basically, we allow the protocol to do anything 1449 * necessary for a listen, and if that works, we mark the socket as 1450 * ready for listening. 1451 */ 1452 1453 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1454 { 1455 struct socket *sock; 1456 int err, fput_needed; 1457 int somaxconn; 1458 1459 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1460 if (sock) { 1461 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1462 if ((unsigned)backlog > somaxconn) 1463 backlog = somaxconn; 1464 1465 err = security_socket_listen(sock, backlog); 1466 if (!err) 1467 err = sock->ops->listen(sock, backlog); 1468 1469 fput_light(sock->file, fput_needed); 1470 } 1471 return err; 1472 } 1473 1474 /* 1475 * For accept, we attempt to create a new socket, set up the link 1476 * with the client, wake up the client, then return the new 1477 * connected fd. We collect the address of the connector in kernel 1478 * space and move it to user at the very end. This is unclean because 1479 * we open the socket then return an error. 1480 * 1481 * 1003.1g adds the ability to recvmsg() to query connection pending 1482 * status to recvmsg. We need to add that support in a way thats 1483 * clean when we restucture accept also. 1484 */ 1485 1486 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1487 int __user *, upeer_addrlen, int, flags) 1488 { 1489 struct socket *sock, *newsock; 1490 struct file *newfile; 1491 int err, len, newfd, fput_needed; 1492 struct sockaddr_storage address; 1493 1494 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1495 return -EINVAL; 1496 1497 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1498 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1499 1500 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1501 if (!sock) 1502 goto out; 1503 1504 err = -ENFILE; 1505 newsock = sock_alloc(); 1506 if (!newsock) 1507 goto out_put; 1508 1509 newsock->type = sock->type; 1510 newsock->ops = sock->ops; 1511 1512 /* 1513 * We don't need try_module_get here, as the listening socket (sock) 1514 * has the protocol module (sock->ops->owner) held. 1515 */ 1516 __module_get(newsock->ops->owner); 1517 1518 newfd = sock_alloc_file(newsock, &newfile, flags); 1519 if (unlikely(newfd < 0)) { 1520 err = newfd; 1521 sock_release(newsock); 1522 goto out_put; 1523 } 1524 1525 err = security_socket_accept(sock, newsock); 1526 if (err) 1527 goto out_fd; 1528 1529 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1530 if (err < 0) 1531 goto out_fd; 1532 1533 if (upeer_sockaddr) { 1534 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1535 &len, 2) < 0) { 1536 err = -ECONNABORTED; 1537 goto out_fd; 1538 } 1539 err = move_addr_to_user((struct sockaddr *)&address, 1540 len, upeer_sockaddr, upeer_addrlen); 1541 if (err < 0) 1542 goto out_fd; 1543 } 1544 1545 /* File flags are not inherited via accept() unlike another OSes. */ 1546 1547 fd_install(newfd, newfile); 1548 err = newfd; 1549 1550 out_put: 1551 fput_light(sock->file, fput_needed); 1552 out: 1553 return err; 1554 out_fd: 1555 fput(newfile); 1556 put_unused_fd(newfd); 1557 goto out_put; 1558 } 1559 1560 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1561 int __user *, upeer_addrlen) 1562 { 1563 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1564 } 1565 1566 /* 1567 * Attempt to connect to a socket with the server address. The address 1568 * is in user space so we verify it is OK and move it to kernel space. 1569 * 1570 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1571 * break bindings 1572 * 1573 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1574 * other SEQPACKET protocols that take time to connect() as it doesn't 1575 * include the -EINPROGRESS status for such sockets. 1576 */ 1577 1578 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1579 int, addrlen) 1580 { 1581 struct socket *sock; 1582 struct sockaddr_storage address; 1583 int err, fput_needed; 1584 1585 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1586 if (!sock) 1587 goto out; 1588 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1589 if (err < 0) 1590 goto out_put; 1591 1592 err = 1593 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1594 if (err) 1595 goto out_put; 1596 1597 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1598 sock->file->f_flags); 1599 out_put: 1600 fput_light(sock->file, fput_needed); 1601 out: 1602 return err; 1603 } 1604 1605 /* 1606 * Get the local address ('name') of a socket object. Move the obtained 1607 * name to user space. 1608 */ 1609 1610 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1611 int __user *, usockaddr_len) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int len, err, fput_needed; 1616 1617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1618 if (!sock) 1619 goto out; 1620 1621 err = security_socket_getsockname(sock); 1622 if (err) 1623 goto out_put; 1624 1625 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1626 if (err) 1627 goto out_put; 1628 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1629 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 } 1635 1636 /* 1637 * Get the remote address ('name') of a socket object. Move the obtained 1638 * name to user space. 1639 */ 1640 1641 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1642 int __user *, usockaddr_len) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int len, err, fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (sock != NULL) { 1650 err = security_socket_getpeername(sock); 1651 if (err) { 1652 fput_light(sock->file, fput_needed); 1653 return err; 1654 } 1655 1656 err = 1657 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1658 1); 1659 if (!err) 1660 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1661 usockaddr_len); 1662 fput_light(sock->file, fput_needed); 1663 } 1664 return err; 1665 } 1666 1667 /* 1668 * Send a datagram to a given address. We move the address into kernel 1669 * space and check the user space data area is readable before invoking 1670 * the protocol. 1671 */ 1672 1673 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1674 unsigned, flags, struct sockaddr __user *, addr, 1675 int, addr_len) 1676 { 1677 struct socket *sock; 1678 struct sockaddr_storage address; 1679 int err; 1680 struct msghdr msg; 1681 struct iovec iov; 1682 int fput_needed; 1683 1684 if (len > INT_MAX) 1685 len = INT_MAX; 1686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1687 if (!sock) 1688 goto out; 1689 1690 iov.iov_base = buff; 1691 iov.iov_len = len; 1692 msg.msg_name = NULL; 1693 msg.msg_iov = &iov; 1694 msg.msg_iovlen = 1; 1695 msg.msg_control = NULL; 1696 msg.msg_controllen = 0; 1697 msg.msg_namelen = 0; 1698 if (addr) { 1699 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1700 if (err < 0) 1701 goto out_put; 1702 msg.msg_name = (struct sockaddr *)&address; 1703 msg.msg_namelen = addr_len; 1704 } 1705 if (sock->file->f_flags & O_NONBLOCK) 1706 flags |= MSG_DONTWAIT; 1707 msg.msg_flags = flags; 1708 err = sock_sendmsg(sock, &msg, len); 1709 1710 out_put: 1711 fput_light(sock->file, fput_needed); 1712 out: 1713 return err; 1714 } 1715 1716 /* 1717 * Send a datagram down a socket. 1718 */ 1719 1720 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1721 unsigned, flags) 1722 { 1723 return sys_sendto(fd, buff, len, flags, NULL, 0); 1724 } 1725 1726 /* 1727 * Receive a frame from the socket and optionally record the address of the 1728 * sender. We verify the buffers are writable and if needed move the 1729 * sender address from kernel to user space. 1730 */ 1731 1732 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1733 unsigned, flags, struct sockaddr __user *, addr, 1734 int __user *, addr_len) 1735 { 1736 struct socket *sock; 1737 struct iovec iov; 1738 struct msghdr msg; 1739 struct sockaddr_storage address; 1740 int err, err2; 1741 int fput_needed; 1742 1743 if (size > INT_MAX) 1744 size = INT_MAX; 1745 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1746 if (!sock) 1747 goto out; 1748 1749 msg.msg_control = NULL; 1750 msg.msg_controllen = 0; 1751 msg.msg_iovlen = 1; 1752 msg.msg_iov = &iov; 1753 iov.iov_len = size; 1754 iov.iov_base = ubuf; 1755 msg.msg_name = (struct sockaddr *)&address; 1756 msg.msg_namelen = sizeof(address); 1757 if (sock->file->f_flags & O_NONBLOCK) 1758 flags |= MSG_DONTWAIT; 1759 err = sock_recvmsg(sock, &msg, size, flags); 1760 1761 if (err >= 0 && addr != NULL) { 1762 err2 = move_addr_to_user((struct sockaddr *)&address, 1763 msg.msg_namelen, addr, addr_len); 1764 if (err2 < 0) 1765 err = err2; 1766 } 1767 1768 fput_light(sock->file, fput_needed); 1769 out: 1770 return err; 1771 } 1772 1773 /* 1774 * Receive a datagram from a socket. 1775 */ 1776 1777 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1778 unsigned flags) 1779 { 1780 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1781 } 1782 1783 /* 1784 * Set a socket option. Because we don't know the option lengths we have 1785 * to pass the user mode parameter for the protocols to sort out. 1786 */ 1787 1788 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1789 char __user *, optval, int, optlen) 1790 { 1791 int err, fput_needed; 1792 struct socket *sock; 1793 1794 if (optlen < 0) 1795 return -EINVAL; 1796 1797 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1798 if (sock != NULL) { 1799 err = security_socket_setsockopt(sock, level, optname); 1800 if (err) 1801 goto out_put; 1802 1803 if (level == SOL_SOCKET) 1804 err = 1805 sock_setsockopt(sock, level, optname, optval, 1806 optlen); 1807 else 1808 err = 1809 sock->ops->setsockopt(sock, level, optname, optval, 1810 optlen); 1811 out_put: 1812 fput_light(sock->file, fput_needed); 1813 } 1814 return err; 1815 } 1816 1817 /* 1818 * Get a socket option. Because we don't know the option lengths we have 1819 * to pass a user mode parameter for the protocols to sort out. 1820 */ 1821 1822 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1823 char __user *, optval, int __user *, optlen) 1824 { 1825 int err, fput_needed; 1826 struct socket *sock; 1827 1828 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1829 if (sock != NULL) { 1830 err = security_socket_getsockopt(sock, level, optname); 1831 if (err) 1832 goto out_put; 1833 1834 if (level == SOL_SOCKET) 1835 err = 1836 sock_getsockopt(sock, level, optname, optval, 1837 optlen); 1838 else 1839 err = 1840 sock->ops->getsockopt(sock, level, optname, optval, 1841 optlen); 1842 out_put: 1843 fput_light(sock->file, fput_needed); 1844 } 1845 return err; 1846 } 1847 1848 /* 1849 * Shutdown a socket. 1850 */ 1851 1852 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1853 { 1854 int err, fput_needed; 1855 struct socket *sock; 1856 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (sock != NULL) { 1859 err = security_socket_shutdown(sock, how); 1860 if (!err) 1861 err = sock->ops->shutdown(sock, how); 1862 fput_light(sock->file, fput_needed); 1863 } 1864 return err; 1865 } 1866 1867 /* A couple of helpful macros for getting the address of the 32/64 bit 1868 * fields which are the same type (int / unsigned) on our platforms. 1869 */ 1870 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1871 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1872 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1873 1874 struct used_address { 1875 struct sockaddr_storage name; 1876 unsigned int name_len; 1877 }; 1878 1879 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1880 struct msghdr *msg_sys, unsigned flags, 1881 struct used_address *used_address) 1882 { 1883 struct compat_msghdr __user *msg_compat = 1884 (struct compat_msghdr __user *)msg; 1885 struct sockaddr_storage address; 1886 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1887 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1888 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1889 /* 20 is size of ipv6_pktinfo */ 1890 unsigned char *ctl_buf = ctl; 1891 int err, ctl_len, iov_size, total_len; 1892 1893 err = -EFAULT; 1894 if (MSG_CMSG_COMPAT & flags) { 1895 if (get_compat_msghdr(msg_sys, msg_compat)) 1896 return -EFAULT; 1897 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1898 return -EFAULT; 1899 1900 /* do not move before msg_sys is valid */ 1901 err = -EMSGSIZE; 1902 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1903 goto out; 1904 1905 /* Check whether to allocate the iovec area */ 1906 err = -ENOMEM; 1907 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1908 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1909 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1910 if (!iov) 1911 goto out; 1912 } 1913 1914 /* This will also move the address data into kernel space */ 1915 if (MSG_CMSG_COMPAT & flags) { 1916 err = verify_compat_iovec(msg_sys, iov, 1917 (struct sockaddr *)&address, 1918 VERIFY_READ); 1919 } else 1920 err = verify_iovec(msg_sys, iov, 1921 (struct sockaddr *)&address, 1922 VERIFY_READ); 1923 if (err < 0) 1924 goto out_freeiov; 1925 total_len = err; 1926 1927 err = -ENOBUFS; 1928 1929 if (msg_sys->msg_controllen > INT_MAX) 1930 goto out_freeiov; 1931 ctl_len = msg_sys->msg_controllen; 1932 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1933 err = 1934 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1935 sizeof(ctl)); 1936 if (err) 1937 goto out_freeiov; 1938 ctl_buf = msg_sys->msg_control; 1939 ctl_len = msg_sys->msg_controllen; 1940 } else if (ctl_len) { 1941 if (ctl_len > sizeof(ctl)) { 1942 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1943 if (ctl_buf == NULL) 1944 goto out_freeiov; 1945 } 1946 err = -EFAULT; 1947 /* 1948 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1949 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1950 * checking falls down on this. 1951 */ 1952 if (copy_from_user(ctl_buf, 1953 (void __user __force *)msg_sys->msg_control, 1954 ctl_len)) 1955 goto out_freectl; 1956 msg_sys->msg_control = ctl_buf; 1957 } 1958 msg_sys->msg_flags = flags; 1959 1960 if (sock->file->f_flags & O_NONBLOCK) 1961 msg_sys->msg_flags |= MSG_DONTWAIT; 1962 /* 1963 * If this is sendmmsg() and current destination address is same as 1964 * previously succeeded address, omit asking LSM's decision. 1965 * used_address->name_len is initialized to UINT_MAX so that the first 1966 * destination address never matches. 1967 */ 1968 if (used_address && used_address->name_len == msg_sys->msg_namelen && 1969 !memcmp(&used_address->name, msg->msg_name, 1970 used_address->name_len)) { 1971 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 1972 goto out_freectl; 1973 } 1974 err = sock_sendmsg(sock, msg_sys, total_len); 1975 /* 1976 * If this is sendmmsg() and sending to current destination address was 1977 * successful, remember it. 1978 */ 1979 if (used_address && err >= 0) { 1980 used_address->name_len = msg_sys->msg_namelen; 1981 memcpy(&used_address->name, msg->msg_name, 1982 used_address->name_len); 1983 } 1984 1985 out_freectl: 1986 if (ctl_buf != ctl) 1987 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1988 out_freeiov: 1989 if (iov != iovstack) 1990 sock_kfree_s(sock->sk, iov, iov_size); 1991 out: 1992 return err; 1993 } 1994 1995 /* 1996 * BSD sendmsg interface 1997 */ 1998 1999 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 2000 { 2001 int fput_needed, err; 2002 struct msghdr msg_sys; 2003 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2004 2005 if (!sock) 2006 goto out; 2007 2008 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2009 2010 fput_light(sock->file, fput_needed); 2011 out: 2012 return err; 2013 } 2014 2015 /* 2016 * Linux sendmmsg interface 2017 */ 2018 2019 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2020 unsigned int flags) 2021 { 2022 int fput_needed, err, datagrams; 2023 struct socket *sock; 2024 struct mmsghdr __user *entry; 2025 struct compat_mmsghdr __user *compat_entry; 2026 struct msghdr msg_sys; 2027 struct used_address used_address; 2028 2029 if (vlen > UIO_MAXIOV) 2030 vlen = UIO_MAXIOV; 2031 2032 datagrams = 0; 2033 2034 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2035 if (!sock) 2036 return err; 2037 2038 used_address.name_len = UINT_MAX; 2039 entry = mmsg; 2040 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2041 err = 0; 2042 2043 while (datagrams < vlen) { 2044 if (MSG_CMSG_COMPAT & flags) { 2045 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2046 &msg_sys, flags, &used_address); 2047 if (err < 0) 2048 break; 2049 err = __put_user(err, &compat_entry->msg_len); 2050 ++compat_entry; 2051 } else { 2052 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2053 &msg_sys, flags, &used_address); 2054 if (err < 0) 2055 break; 2056 err = put_user(err, &entry->msg_len); 2057 ++entry; 2058 } 2059 2060 if (err) 2061 break; 2062 ++datagrams; 2063 } 2064 2065 fput_light(sock->file, fput_needed); 2066 2067 /* We only return an error if no datagrams were able to be sent */ 2068 if (datagrams != 0) 2069 return datagrams; 2070 2071 return err; 2072 } 2073 2074 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2075 unsigned int, vlen, unsigned int, flags) 2076 { 2077 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2078 } 2079 2080 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2081 struct msghdr *msg_sys, unsigned flags, int nosec) 2082 { 2083 struct compat_msghdr __user *msg_compat = 2084 (struct compat_msghdr __user *)msg; 2085 struct iovec iovstack[UIO_FASTIOV]; 2086 struct iovec *iov = iovstack; 2087 unsigned long cmsg_ptr; 2088 int err, iov_size, total_len, len; 2089 2090 /* kernel mode address */ 2091 struct sockaddr_storage addr; 2092 2093 /* user mode address pointers */ 2094 struct sockaddr __user *uaddr; 2095 int __user *uaddr_len; 2096 2097 if (MSG_CMSG_COMPAT & flags) { 2098 if (get_compat_msghdr(msg_sys, msg_compat)) 2099 return -EFAULT; 2100 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2101 return -EFAULT; 2102 2103 err = -EMSGSIZE; 2104 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2105 goto out; 2106 2107 /* Check whether to allocate the iovec area */ 2108 err = -ENOMEM; 2109 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 2110 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2111 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 2112 if (!iov) 2113 goto out; 2114 } 2115 2116 /* 2117 * Save the user-mode address (verify_iovec will change the 2118 * kernel msghdr to use the kernel address space) 2119 */ 2120 2121 uaddr = (__force void __user *)msg_sys->msg_name; 2122 uaddr_len = COMPAT_NAMELEN(msg); 2123 if (MSG_CMSG_COMPAT & flags) { 2124 err = verify_compat_iovec(msg_sys, iov, 2125 (struct sockaddr *)&addr, 2126 VERIFY_WRITE); 2127 } else 2128 err = verify_iovec(msg_sys, iov, 2129 (struct sockaddr *)&addr, 2130 VERIFY_WRITE); 2131 if (err < 0) 2132 goto out_freeiov; 2133 total_len = err; 2134 2135 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2136 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2137 2138 if (sock->file->f_flags & O_NONBLOCK) 2139 flags |= MSG_DONTWAIT; 2140 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2141 total_len, flags); 2142 if (err < 0) 2143 goto out_freeiov; 2144 len = err; 2145 2146 if (uaddr != NULL) { 2147 err = move_addr_to_user((struct sockaddr *)&addr, 2148 msg_sys->msg_namelen, uaddr, 2149 uaddr_len); 2150 if (err < 0) 2151 goto out_freeiov; 2152 } 2153 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2154 COMPAT_FLAGS(msg)); 2155 if (err) 2156 goto out_freeiov; 2157 if (MSG_CMSG_COMPAT & flags) 2158 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2159 &msg_compat->msg_controllen); 2160 else 2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2162 &msg->msg_controllen); 2163 if (err) 2164 goto out_freeiov; 2165 err = len; 2166 2167 out_freeiov: 2168 if (iov != iovstack) 2169 sock_kfree_s(sock->sk, iov, iov_size); 2170 out: 2171 return err; 2172 } 2173 2174 /* 2175 * BSD recvmsg interface 2176 */ 2177 2178 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2179 unsigned int, flags) 2180 { 2181 int fput_needed, err; 2182 struct msghdr msg_sys; 2183 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2184 2185 if (!sock) 2186 goto out; 2187 2188 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2189 2190 fput_light(sock->file, fput_needed); 2191 out: 2192 return err; 2193 } 2194 2195 /* 2196 * Linux recvmmsg interface 2197 */ 2198 2199 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2200 unsigned int flags, struct timespec *timeout) 2201 { 2202 int fput_needed, err, datagrams; 2203 struct socket *sock; 2204 struct mmsghdr __user *entry; 2205 struct compat_mmsghdr __user *compat_entry; 2206 struct msghdr msg_sys; 2207 struct timespec end_time; 2208 2209 if (timeout && 2210 poll_select_set_timeout(&end_time, timeout->tv_sec, 2211 timeout->tv_nsec)) 2212 return -EINVAL; 2213 2214 datagrams = 0; 2215 2216 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2217 if (!sock) 2218 return err; 2219 2220 err = sock_error(sock->sk); 2221 if (err) 2222 goto out_put; 2223 2224 entry = mmsg; 2225 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2226 2227 while (datagrams < vlen) { 2228 /* 2229 * No need to ask LSM for more than the first datagram. 2230 */ 2231 if (MSG_CMSG_COMPAT & flags) { 2232 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2233 &msg_sys, flags & ~MSG_WAITFORONE, 2234 datagrams); 2235 if (err < 0) 2236 break; 2237 err = __put_user(err, &compat_entry->msg_len); 2238 ++compat_entry; 2239 } else { 2240 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2241 &msg_sys, flags & ~MSG_WAITFORONE, 2242 datagrams); 2243 if (err < 0) 2244 break; 2245 err = put_user(err, &entry->msg_len); 2246 ++entry; 2247 } 2248 2249 if (err) 2250 break; 2251 ++datagrams; 2252 2253 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2254 if (flags & MSG_WAITFORONE) 2255 flags |= MSG_DONTWAIT; 2256 2257 if (timeout) { 2258 ktime_get_ts(timeout); 2259 *timeout = timespec_sub(end_time, *timeout); 2260 if (timeout->tv_sec < 0) { 2261 timeout->tv_sec = timeout->tv_nsec = 0; 2262 break; 2263 } 2264 2265 /* Timeout, return less than vlen datagrams */ 2266 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2267 break; 2268 } 2269 2270 /* Out of band data, return right away */ 2271 if (msg_sys.msg_flags & MSG_OOB) 2272 break; 2273 } 2274 2275 out_put: 2276 fput_light(sock->file, fput_needed); 2277 2278 if (err == 0) 2279 return datagrams; 2280 2281 if (datagrams != 0) { 2282 /* 2283 * We may return less entries than requested (vlen) if the 2284 * sock is non block and there aren't enough datagrams... 2285 */ 2286 if (err != -EAGAIN) { 2287 /* 2288 * ... or if recvmsg returns an error after we 2289 * received some datagrams, where we record the 2290 * error to return on the next call or if the 2291 * app asks about it using getsockopt(SO_ERROR). 2292 */ 2293 sock->sk->sk_err = -err; 2294 } 2295 2296 return datagrams; 2297 } 2298 2299 return err; 2300 } 2301 2302 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2303 unsigned int, vlen, unsigned int, flags, 2304 struct timespec __user *, timeout) 2305 { 2306 int datagrams; 2307 struct timespec timeout_sys; 2308 2309 if (!timeout) 2310 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2311 2312 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2313 return -EFAULT; 2314 2315 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2316 2317 if (datagrams > 0 && 2318 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2319 datagrams = -EFAULT; 2320 2321 return datagrams; 2322 } 2323 2324 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2325 /* Argument list sizes for sys_socketcall */ 2326 #define AL(x) ((x) * sizeof(unsigned long)) 2327 static const unsigned char nargs[21] = { 2328 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2329 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2330 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2331 AL(4), AL(5), AL(4) 2332 }; 2333 2334 #undef AL 2335 2336 /* 2337 * System call vectors. 2338 * 2339 * Argument checking cleaned up. Saved 20% in size. 2340 * This function doesn't need to set the kernel lock because 2341 * it is set by the callees. 2342 */ 2343 2344 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2345 { 2346 unsigned long a[6]; 2347 unsigned long a0, a1; 2348 int err; 2349 unsigned int len; 2350 2351 if (call < 1 || call > SYS_SENDMMSG) 2352 return -EINVAL; 2353 2354 len = nargs[call]; 2355 if (len > sizeof(a)) 2356 return -EINVAL; 2357 2358 /* copy_from_user should be SMP safe. */ 2359 if (copy_from_user(a, args, len)) 2360 return -EFAULT; 2361 2362 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2363 2364 a0 = a[0]; 2365 a1 = a[1]; 2366 2367 switch (call) { 2368 case SYS_SOCKET: 2369 err = sys_socket(a0, a1, a[2]); 2370 break; 2371 case SYS_BIND: 2372 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2373 break; 2374 case SYS_CONNECT: 2375 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2376 break; 2377 case SYS_LISTEN: 2378 err = sys_listen(a0, a1); 2379 break; 2380 case SYS_ACCEPT: 2381 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2382 (int __user *)a[2], 0); 2383 break; 2384 case SYS_GETSOCKNAME: 2385 err = 2386 sys_getsockname(a0, (struct sockaddr __user *)a1, 2387 (int __user *)a[2]); 2388 break; 2389 case SYS_GETPEERNAME: 2390 err = 2391 sys_getpeername(a0, (struct sockaddr __user *)a1, 2392 (int __user *)a[2]); 2393 break; 2394 case SYS_SOCKETPAIR: 2395 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2396 break; 2397 case SYS_SEND: 2398 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2399 break; 2400 case SYS_SENDTO: 2401 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2402 (struct sockaddr __user *)a[4], a[5]); 2403 break; 2404 case SYS_RECV: 2405 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2406 break; 2407 case SYS_RECVFROM: 2408 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2409 (struct sockaddr __user *)a[4], 2410 (int __user *)a[5]); 2411 break; 2412 case SYS_SHUTDOWN: 2413 err = sys_shutdown(a0, a1); 2414 break; 2415 case SYS_SETSOCKOPT: 2416 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2417 break; 2418 case SYS_GETSOCKOPT: 2419 err = 2420 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2421 (int __user *)a[4]); 2422 break; 2423 case SYS_SENDMSG: 2424 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2425 break; 2426 case SYS_SENDMMSG: 2427 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2428 break; 2429 case SYS_RECVMSG: 2430 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2431 break; 2432 case SYS_RECVMMSG: 2433 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2434 (struct timespec __user *)a[4]); 2435 break; 2436 case SYS_ACCEPT4: 2437 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2438 (int __user *)a[2], a[3]); 2439 break; 2440 default: 2441 err = -EINVAL; 2442 break; 2443 } 2444 return err; 2445 } 2446 2447 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2448 2449 /** 2450 * sock_register - add a socket protocol handler 2451 * @ops: description of protocol 2452 * 2453 * This function is called by a protocol handler that wants to 2454 * advertise its address family, and have it linked into the 2455 * socket interface. The value ops->family coresponds to the 2456 * socket system call protocol family. 2457 */ 2458 int sock_register(const struct net_proto_family *ops) 2459 { 2460 int err; 2461 2462 if (ops->family >= NPROTO) { 2463 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2464 NPROTO); 2465 return -ENOBUFS; 2466 } 2467 2468 spin_lock(&net_family_lock); 2469 if (rcu_dereference_protected(net_families[ops->family], 2470 lockdep_is_held(&net_family_lock))) 2471 err = -EEXIST; 2472 else { 2473 rcu_assign_pointer(net_families[ops->family], ops); 2474 err = 0; 2475 } 2476 spin_unlock(&net_family_lock); 2477 2478 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2479 return err; 2480 } 2481 EXPORT_SYMBOL(sock_register); 2482 2483 /** 2484 * sock_unregister - remove a protocol handler 2485 * @family: protocol family to remove 2486 * 2487 * This function is called by a protocol handler that wants to 2488 * remove its address family, and have it unlinked from the 2489 * new socket creation. 2490 * 2491 * If protocol handler is a module, then it can use module reference 2492 * counts to protect against new references. If protocol handler is not 2493 * a module then it needs to provide its own protection in 2494 * the ops->create routine. 2495 */ 2496 void sock_unregister(int family) 2497 { 2498 BUG_ON(family < 0 || family >= NPROTO); 2499 2500 spin_lock(&net_family_lock); 2501 rcu_assign_pointer(net_families[family], NULL); 2502 spin_unlock(&net_family_lock); 2503 2504 synchronize_rcu(); 2505 2506 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2507 } 2508 EXPORT_SYMBOL(sock_unregister); 2509 2510 static int __init sock_init(void) 2511 { 2512 int err; 2513 2514 /* 2515 * Initialize sock SLAB cache. 2516 */ 2517 2518 sk_init(); 2519 2520 /* 2521 * Initialize skbuff SLAB cache 2522 */ 2523 skb_init(); 2524 2525 /* 2526 * Initialize the protocols module. 2527 */ 2528 2529 init_inodecache(); 2530 2531 err = register_filesystem(&sock_fs_type); 2532 if (err) 2533 goto out_fs; 2534 sock_mnt = kern_mount(&sock_fs_type); 2535 if (IS_ERR(sock_mnt)) { 2536 err = PTR_ERR(sock_mnt); 2537 goto out_mount; 2538 } 2539 2540 /* The real protocol initialization is performed in later initcalls. 2541 */ 2542 2543 #ifdef CONFIG_NETFILTER 2544 netfilter_init(); 2545 #endif 2546 2547 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2548 skb_timestamping_init(); 2549 #endif 2550 2551 out: 2552 return err; 2553 2554 out_mount: 2555 unregister_filesystem(&sock_fs_type); 2556 out_fs: 2557 goto out; 2558 } 2559 2560 core_initcall(sock_init); /* early initcall */ 2561 2562 #ifdef CONFIG_PROC_FS 2563 void socket_seq_show(struct seq_file *seq) 2564 { 2565 int cpu; 2566 int counter = 0; 2567 2568 for_each_possible_cpu(cpu) 2569 counter += per_cpu(sockets_in_use, cpu); 2570 2571 /* It can be negative, by the way. 8) */ 2572 if (counter < 0) 2573 counter = 0; 2574 2575 seq_printf(seq, "sockets: used %d\n", counter); 2576 } 2577 #endif /* CONFIG_PROC_FS */ 2578 2579 #ifdef CONFIG_COMPAT 2580 static int do_siocgstamp(struct net *net, struct socket *sock, 2581 unsigned int cmd, struct compat_timeval __user *up) 2582 { 2583 mm_segment_t old_fs = get_fs(); 2584 struct timeval ktv; 2585 int err; 2586 2587 set_fs(KERNEL_DS); 2588 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2589 set_fs(old_fs); 2590 if (!err) { 2591 err = put_user(ktv.tv_sec, &up->tv_sec); 2592 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2593 } 2594 return err; 2595 } 2596 2597 static int do_siocgstampns(struct net *net, struct socket *sock, 2598 unsigned int cmd, struct compat_timespec __user *up) 2599 { 2600 mm_segment_t old_fs = get_fs(); 2601 struct timespec kts; 2602 int err; 2603 2604 set_fs(KERNEL_DS); 2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2606 set_fs(old_fs); 2607 if (!err) { 2608 err = put_user(kts.tv_sec, &up->tv_sec); 2609 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2610 } 2611 return err; 2612 } 2613 2614 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2615 { 2616 struct ifreq __user *uifr; 2617 int err; 2618 2619 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2620 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2621 return -EFAULT; 2622 2623 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2624 if (err) 2625 return err; 2626 2627 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2628 return -EFAULT; 2629 2630 return 0; 2631 } 2632 2633 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2634 { 2635 struct compat_ifconf ifc32; 2636 struct ifconf ifc; 2637 struct ifconf __user *uifc; 2638 struct compat_ifreq __user *ifr32; 2639 struct ifreq __user *ifr; 2640 unsigned int i, j; 2641 int err; 2642 2643 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2644 return -EFAULT; 2645 2646 if (ifc32.ifcbuf == 0) { 2647 ifc32.ifc_len = 0; 2648 ifc.ifc_len = 0; 2649 ifc.ifc_req = NULL; 2650 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2651 } else { 2652 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2653 sizeof(struct ifreq); 2654 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2655 ifc.ifc_len = len; 2656 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2657 ifr32 = compat_ptr(ifc32.ifcbuf); 2658 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2659 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2660 return -EFAULT; 2661 ifr++; 2662 ifr32++; 2663 } 2664 } 2665 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2666 return -EFAULT; 2667 2668 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2669 if (err) 2670 return err; 2671 2672 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2673 return -EFAULT; 2674 2675 ifr = ifc.ifc_req; 2676 ifr32 = compat_ptr(ifc32.ifcbuf); 2677 for (i = 0, j = 0; 2678 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2679 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2680 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2681 return -EFAULT; 2682 ifr32++; 2683 ifr++; 2684 } 2685 2686 if (ifc32.ifcbuf == 0) { 2687 /* Translate from 64-bit structure multiple to 2688 * a 32-bit one. 2689 */ 2690 i = ifc.ifc_len; 2691 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2692 ifc32.ifc_len = i; 2693 } else { 2694 ifc32.ifc_len = i; 2695 } 2696 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2697 return -EFAULT; 2698 2699 return 0; 2700 } 2701 2702 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2703 { 2704 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2705 bool convert_in = false, convert_out = false; 2706 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2707 struct ethtool_rxnfc __user *rxnfc; 2708 struct ifreq __user *ifr; 2709 u32 rule_cnt = 0, actual_rule_cnt; 2710 u32 ethcmd; 2711 u32 data; 2712 int ret; 2713 2714 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2715 return -EFAULT; 2716 2717 compat_rxnfc = compat_ptr(data); 2718 2719 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2720 return -EFAULT; 2721 2722 /* Most ethtool structures are defined without padding. 2723 * Unfortunately struct ethtool_rxnfc is an exception. 2724 */ 2725 switch (ethcmd) { 2726 default: 2727 break; 2728 case ETHTOOL_GRXCLSRLALL: 2729 /* Buffer size is variable */ 2730 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2731 return -EFAULT; 2732 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2733 return -ENOMEM; 2734 buf_size += rule_cnt * sizeof(u32); 2735 /* fall through */ 2736 case ETHTOOL_GRXRINGS: 2737 case ETHTOOL_GRXCLSRLCNT: 2738 case ETHTOOL_GRXCLSRULE: 2739 convert_out = true; 2740 /* fall through */ 2741 case ETHTOOL_SRXCLSRLDEL: 2742 case ETHTOOL_SRXCLSRLINS: 2743 buf_size += sizeof(struct ethtool_rxnfc); 2744 convert_in = true; 2745 break; 2746 } 2747 2748 ifr = compat_alloc_user_space(buf_size); 2749 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2750 2751 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2752 return -EFAULT; 2753 2754 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2755 &ifr->ifr_ifru.ifru_data)) 2756 return -EFAULT; 2757 2758 if (convert_in) { 2759 /* We expect there to be holes between fs.m_ext and 2760 * fs.ring_cookie and at the end of fs, but nowhere else. 2761 */ 2762 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2763 sizeof(compat_rxnfc->fs.m_ext) != 2764 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2765 sizeof(rxnfc->fs.m_ext)); 2766 BUILD_BUG_ON( 2767 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2768 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2769 offsetof(struct ethtool_rxnfc, fs.location) - 2770 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2771 2772 if (copy_in_user(rxnfc, compat_rxnfc, 2773 (void *)(&rxnfc->fs.m_ext + 1) - 2774 (void *)rxnfc) || 2775 copy_in_user(&rxnfc->fs.ring_cookie, 2776 &compat_rxnfc->fs.ring_cookie, 2777 (void *)(&rxnfc->fs.location + 1) - 2778 (void *)&rxnfc->fs.ring_cookie) || 2779 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2780 sizeof(rxnfc->rule_cnt))) 2781 return -EFAULT; 2782 } 2783 2784 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2785 if (ret) 2786 return ret; 2787 2788 if (convert_out) { 2789 if (copy_in_user(compat_rxnfc, rxnfc, 2790 (const void *)(&rxnfc->fs.m_ext + 1) - 2791 (const void *)rxnfc) || 2792 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2793 &rxnfc->fs.ring_cookie, 2794 (const void *)(&rxnfc->fs.location + 1) - 2795 (const void *)&rxnfc->fs.ring_cookie) || 2796 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2797 sizeof(rxnfc->rule_cnt))) 2798 return -EFAULT; 2799 2800 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2801 /* As an optimisation, we only copy the actual 2802 * number of rules that the underlying 2803 * function returned. Since Mallory might 2804 * change the rule count in user memory, we 2805 * check that it is less than the rule count 2806 * originally given (as the user buffer size), 2807 * which has been range-checked. 2808 */ 2809 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2810 return -EFAULT; 2811 if (actual_rule_cnt < rule_cnt) 2812 rule_cnt = actual_rule_cnt; 2813 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2814 &rxnfc->rule_locs[0], 2815 rule_cnt * sizeof(u32))) 2816 return -EFAULT; 2817 } 2818 } 2819 2820 return 0; 2821 } 2822 2823 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2824 { 2825 void __user *uptr; 2826 compat_uptr_t uptr32; 2827 struct ifreq __user *uifr; 2828 2829 uifr = compat_alloc_user_space(sizeof(*uifr)); 2830 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2831 return -EFAULT; 2832 2833 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2834 return -EFAULT; 2835 2836 uptr = compat_ptr(uptr32); 2837 2838 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2839 return -EFAULT; 2840 2841 return dev_ioctl(net, SIOCWANDEV, uifr); 2842 } 2843 2844 static int bond_ioctl(struct net *net, unsigned int cmd, 2845 struct compat_ifreq __user *ifr32) 2846 { 2847 struct ifreq kifr; 2848 struct ifreq __user *uifr; 2849 mm_segment_t old_fs; 2850 int err; 2851 u32 data; 2852 void __user *datap; 2853 2854 switch (cmd) { 2855 case SIOCBONDENSLAVE: 2856 case SIOCBONDRELEASE: 2857 case SIOCBONDSETHWADDR: 2858 case SIOCBONDCHANGEACTIVE: 2859 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2860 return -EFAULT; 2861 2862 old_fs = get_fs(); 2863 set_fs(KERNEL_DS); 2864 err = dev_ioctl(net, cmd, 2865 (struct ifreq __user __force *) &kifr); 2866 set_fs(old_fs); 2867 2868 return err; 2869 case SIOCBONDSLAVEINFOQUERY: 2870 case SIOCBONDINFOQUERY: 2871 uifr = compat_alloc_user_space(sizeof(*uifr)); 2872 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2873 return -EFAULT; 2874 2875 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2876 return -EFAULT; 2877 2878 datap = compat_ptr(data); 2879 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2880 return -EFAULT; 2881 2882 return dev_ioctl(net, cmd, uifr); 2883 default: 2884 return -EINVAL; 2885 } 2886 } 2887 2888 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2889 struct compat_ifreq __user *u_ifreq32) 2890 { 2891 struct ifreq __user *u_ifreq64; 2892 char tmp_buf[IFNAMSIZ]; 2893 void __user *data64; 2894 u32 data32; 2895 2896 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2897 IFNAMSIZ)) 2898 return -EFAULT; 2899 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2900 return -EFAULT; 2901 data64 = compat_ptr(data32); 2902 2903 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2904 2905 /* Don't check these user accesses, just let that get trapped 2906 * in the ioctl handler instead. 2907 */ 2908 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2909 IFNAMSIZ)) 2910 return -EFAULT; 2911 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2912 return -EFAULT; 2913 2914 return dev_ioctl(net, cmd, u_ifreq64); 2915 } 2916 2917 static int dev_ifsioc(struct net *net, struct socket *sock, 2918 unsigned int cmd, struct compat_ifreq __user *uifr32) 2919 { 2920 struct ifreq __user *uifr; 2921 int err; 2922 2923 uifr = compat_alloc_user_space(sizeof(*uifr)); 2924 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2925 return -EFAULT; 2926 2927 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2928 2929 if (!err) { 2930 switch (cmd) { 2931 case SIOCGIFFLAGS: 2932 case SIOCGIFMETRIC: 2933 case SIOCGIFMTU: 2934 case SIOCGIFMEM: 2935 case SIOCGIFHWADDR: 2936 case SIOCGIFINDEX: 2937 case SIOCGIFADDR: 2938 case SIOCGIFBRDADDR: 2939 case SIOCGIFDSTADDR: 2940 case SIOCGIFNETMASK: 2941 case SIOCGIFPFLAGS: 2942 case SIOCGIFTXQLEN: 2943 case SIOCGMIIPHY: 2944 case SIOCGMIIREG: 2945 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2946 err = -EFAULT; 2947 break; 2948 } 2949 } 2950 return err; 2951 } 2952 2953 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2954 struct compat_ifreq __user *uifr32) 2955 { 2956 struct ifreq ifr; 2957 struct compat_ifmap __user *uifmap32; 2958 mm_segment_t old_fs; 2959 int err; 2960 2961 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2962 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2963 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2964 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2965 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2966 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2967 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2968 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2969 if (err) 2970 return -EFAULT; 2971 2972 old_fs = get_fs(); 2973 set_fs(KERNEL_DS); 2974 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2975 set_fs(old_fs); 2976 2977 if (cmd == SIOCGIFMAP && !err) { 2978 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2979 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2980 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2981 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2982 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2983 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2984 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2985 if (err) 2986 err = -EFAULT; 2987 } 2988 return err; 2989 } 2990 2991 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2992 { 2993 void __user *uptr; 2994 compat_uptr_t uptr32; 2995 struct ifreq __user *uifr; 2996 2997 uifr = compat_alloc_user_space(sizeof(*uifr)); 2998 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2999 return -EFAULT; 3000 3001 if (get_user(uptr32, &uifr32->ifr_data)) 3002 return -EFAULT; 3003 3004 uptr = compat_ptr(uptr32); 3005 3006 if (put_user(uptr, &uifr->ifr_data)) 3007 return -EFAULT; 3008 3009 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3010 } 3011 3012 struct rtentry32 { 3013 u32 rt_pad1; 3014 struct sockaddr rt_dst; /* target address */ 3015 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3016 struct sockaddr rt_genmask; /* target network mask (IP) */ 3017 unsigned short rt_flags; 3018 short rt_pad2; 3019 u32 rt_pad3; 3020 unsigned char rt_tos; 3021 unsigned char rt_class; 3022 short rt_pad4; 3023 short rt_metric; /* +1 for binary compatibility! */ 3024 /* char * */ u32 rt_dev; /* forcing the device at add */ 3025 u32 rt_mtu; /* per route MTU/Window */ 3026 u32 rt_window; /* Window clamping */ 3027 unsigned short rt_irtt; /* Initial RTT */ 3028 }; 3029 3030 struct in6_rtmsg32 { 3031 struct in6_addr rtmsg_dst; 3032 struct in6_addr rtmsg_src; 3033 struct in6_addr rtmsg_gateway; 3034 u32 rtmsg_type; 3035 u16 rtmsg_dst_len; 3036 u16 rtmsg_src_len; 3037 u32 rtmsg_metric; 3038 u32 rtmsg_info; 3039 u32 rtmsg_flags; 3040 s32 rtmsg_ifindex; 3041 }; 3042 3043 static int routing_ioctl(struct net *net, struct socket *sock, 3044 unsigned int cmd, void __user *argp) 3045 { 3046 int ret; 3047 void *r = NULL; 3048 struct in6_rtmsg r6; 3049 struct rtentry r4; 3050 char devname[16]; 3051 u32 rtdev; 3052 mm_segment_t old_fs = get_fs(); 3053 3054 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3055 struct in6_rtmsg32 __user *ur6 = argp; 3056 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3057 3 * sizeof(struct in6_addr)); 3058 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3059 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3060 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3061 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3062 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3063 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3064 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3065 3066 r = (void *) &r6; 3067 } else { /* ipv4 */ 3068 struct rtentry32 __user *ur4 = argp; 3069 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3070 3 * sizeof(struct sockaddr)); 3071 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3072 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3073 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3074 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3075 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3076 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3077 if (rtdev) { 3078 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3079 r4.rt_dev = (char __user __force *)devname; 3080 devname[15] = 0; 3081 } else 3082 r4.rt_dev = NULL; 3083 3084 r = (void *) &r4; 3085 } 3086 3087 if (ret) { 3088 ret = -EFAULT; 3089 goto out; 3090 } 3091 3092 set_fs(KERNEL_DS); 3093 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3094 set_fs(old_fs); 3095 3096 out: 3097 return ret; 3098 } 3099 3100 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3101 * for some operations; this forces use of the newer bridge-utils that 3102 * use compatible ioctls 3103 */ 3104 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3105 { 3106 compat_ulong_t tmp; 3107 3108 if (get_user(tmp, argp)) 3109 return -EFAULT; 3110 if (tmp == BRCTL_GET_VERSION) 3111 return BRCTL_VERSION + 1; 3112 return -EINVAL; 3113 } 3114 3115 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3116 unsigned int cmd, unsigned long arg) 3117 { 3118 void __user *argp = compat_ptr(arg); 3119 struct sock *sk = sock->sk; 3120 struct net *net = sock_net(sk); 3121 3122 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3123 return siocdevprivate_ioctl(net, cmd, argp); 3124 3125 switch (cmd) { 3126 case SIOCSIFBR: 3127 case SIOCGIFBR: 3128 return old_bridge_ioctl(argp); 3129 case SIOCGIFNAME: 3130 return dev_ifname32(net, argp); 3131 case SIOCGIFCONF: 3132 return dev_ifconf(net, argp); 3133 case SIOCETHTOOL: 3134 return ethtool_ioctl(net, argp); 3135 case SIOCWANDEV: 3136 return compat_siocwandev(net, argp); 3137 case SIOCGIFMAP: 3138 case SIOCSIFMAP: 3139 return compat_sioc_ifmap(net, cmd, argp); 3140 case SIOCBONDENSLAVE: 3141 case SIOCBONDRELEASE: 3142 case SIOCBONDSETHWADDR: 3143 case SIOCBONDSLAVEINFOQUERY: 3144 case SIOCBONDINFOQUERY: 3145 case SIOCBONDCHANGEACTIVE: 3146 return bond_ioctl(net, cmd, argp); 3147 case SIOCADDRT: 3148 case SIOCDELRT: 3149 return routing_ioctl(net, sock, cmd, argp); 3150 case SIOCGSTAMP: 3151 return do_siocgstamp(net, sock, cmd, argp); 3152 case SIOCGSTAMPNS: 3153 return do_siocgstampns(net, sock, cmd, argp); 3154 case SIOCSHWTSTAMP: 3155 return compat_siocshwtstamp(net, argp); 3156 3157 case FIOSETOWN: 3158 case SIOCSPGRP: 3159 case FIOGETOWN: 3160 case SIOCGPGRP: 3161 case SIOCBRADDBR: 3162 case SIOCBRDELBR: 3163 case SIOCGIFVLAN: 3164 case SIOCSIFVLAN: 3165 case SIOCADDDLCI: 3166 case SIOCDELDLCI: 3167 return sock_ioctl(file, cmd, arg); 3168 3169 case SIOCGIFFLAGS: 3170 case SIOCSIFFLAGS: 3171 case SIOCGIFMETRIC: 3172 case SIOCSIFMETRIC: 3173 case SIOCGIFMTU: 3174 case SIOCSIFMTU: 3175 case SIOCGIFMEM: 3176 case SIOCSIFMEM: 3177 case SIOCGIFHWADDR: 3178 case SIOCSIFHWADDR: 3179 case SIOCADDMULTI: 3180 case SIOCDELMULTI: 3181 case SIOCGIFINDEX: 3182 case SIOCGIFADDR: 3183 case SIOCSIFADDR: 3184 case SIOCSIFHWBROADCAST: 3185 case SIOCDIFADDR: 3186 case SIOCGIFBRDADDR: 3187 case SIOCSIFBRDADDR: 3188 case SIOCGIFDSTADDR: 3189 case SIOCSIFDSTADDR: 3190 case SIOCGIFNETMASK: 3191 case SIOCSIFNETMASK: 3192 case SIOCSIFPFLAGS: 3193 case SIOCGIFPFLAGS: 3194 case SIOCGIFTXQLEN: 3195 case SIOCSIFTXQLEN: 3196 case SIOCBRADDIF: 3197 case SIOCBRDELIF: 3198 case SIOCSIFNAME: 3199 case SIOCGMIIPHY: 3200 case SIOCGMIIREG: 3201 case SIOCSMIIREG: 3202 return dev_ifsioc(net, sock, cmd, argp); 3203 3204 case SIOCSARP: 3205 case SIOCGARP: 3206 case SIOCDARP: 3207 case SIOCATMARK: 3208 return sock_do_ioctl(net, sock, cmd, arg); 3209 } 3210 3211 /* Prevent warning from compat_sys_ioctl, these always 3212 * result in -EINVAL in the native case anyway. */ 3213 switch (cmd) { 3214 case SIOCRTMSG: 3215 case SIOCGIFCOUNT: 3216 case SIOCSRARP: 3217 case SIOCGRARP: 3218 case SIOCDRARP: 3219 case SIOCSIFLINK: 3220 case SIOCGIFSLAVE: 3221 case SIOCSIFSLAVE: 3222 return -EINVAL; 3223 } 3224 3225 return -ENOIOCTLCMD; 3226 } 3227 3228 static long compat_sock_ioctl(struct file *file, unsigned cmd, 3229 unsigned long arg) 3230 { 3231 struct socket *sock = file->private_data; 3232 int ret = -ENOIOCTLCMD; 3233 struct sock *sk; 3234 struct net *net; 3235 3236 sk = sock->sk; 3237 net = sock_net(sk); 3238 3239 if (sock->ops->compat_ioctl) 3240 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3241 3242 if (ret == -ENOIOCTLCMD && 3243 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3244 ret = compat_wext_handle_ioctl(net, cmd, arg); 3245 3246 if (ret == -ENOIOCTLCMD) 3247 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3248 3249 return ret; 3250 } 3251 #endif 3252 3253 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3254 { 3255 return sock->ops->bind(sock, addr, addrlen); 3256 } 3257 EXPORT_SYMBOL(kernel_bind); 3258 3259 int kernel_listen(struct socket *sock, int backlog) 3260 { 3261 return sock->ops->listen(sock, backlog); 3262 } 3263 EXPORT_SYMBOL(kernel_listen); 3264 3265 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3266 { 3267 struct sock *sk = sock->sk; 3268 int err; 3269 3270 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3271 newsock); 3272 if (err < 0) 3273 goto done; 3274 3275 err = sock->ops->accept(sock, *newsock, flags); 3276 if (err < 0) { 3277 sock_release(*newsock); 3278 *newsock = NULL; 3279 goto done; 3280 } 3281 3282 (*newsock)->ops = sock->ops; 3283 __module_get((*newsock)->ops->owner); 3284 3285 done: 3286 return err; 3287 } 3288 EXPORT_SYMBOL(kernel_accept); 3289 3290 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3291 int flags) 3292 { 3293 return sock->ops->connect(sock, addr, addrlen, flags); 3294 } 3295 EXPORT_SYMBOL(kernel_connect); 3296 3297 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3298 int *addrlen) 3299 { 3300 return sock->ops->getname(sock, addr, addrlen, 0); 3301 } 3302 EXPORT_SYMBOL(kernel_getsockname); 3303 3304 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3305 int *addrlen) 3306 { 3307 return sock->ops->getname(sock, addr, addrlen, 1); 3308 } 3309 EXPORT_SYMBOL(kernel_getpeername); 3310 3311 int kernel_getsockopt(struct socket *sock, int level, int optname, 3312 char *optval, int *optlen) 3313 { 3314 mm_segment_t oldfs = get_fs(); 3315 char __user *uoptval; 3316 int __user *uoptlen; 3317 int err; 3318 3319 uoptval = (char __user __force *) optval; 3320 uoptlen = (int __user __force *) optlen; 3321 3322 set_fs(KERNEL_DS); 3323 if (level == SOL_SOCKET) 3324 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3325 else 3326 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3327 uoptlen); 3328 set_fs(oldfs); 3329 return err; 3330 } 3331 EXPORT_SYMBOL(kernel_getsockopt); 3332 3333 int kernel_setsockopt(struct socket *sock, int level, int optname, 3334 char *optval, unsigned int optlen) 3335 { 3336 mm_segment_t oldfs = get_fs(); 3337 char __user *uoptval; 3338 int err; 3339 3340 uoptval = (char __user __force *) optval; 3341 3342 set_fs(KERNEL_DS); 3343 if (level == SOL_SOCKET) 3344 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3345 else 3346 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3347 optlen); 3348 set_fs(oldfs); 3349 return err; 3350 } 3351 EXPORT_SYMBOL(kernel_setsockopt); 3352 3353 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3354 size_t size, int flags) 3355 { 3356 sock_update_classid(sock->sk); 3357 3358 if (sock->ops->sendpage) 3359 return sock->ops->sendpage(sock, page, offset, size, flags); 3360 3361 return sock_no_sendpage(sock, page, offset, size, flags); 3362 } 3363 EXPORT_SYMBOL(kernel_sendpage); 3364 3365 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3366 { 3367 mm_segment_t oldfs = get_fs(); 3368 int err; 3369 3370 set_fs(KERNEL_DS); 3371 err = sock->ops->ioctl(sock, cmd, arg); 3372 set_fs(oldfs); 3373 3374 return err; 3375 } 3376 EXPORT_SYMBOL(kernel_sock_ioctl); 3377 3378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3379 { 3380 return sock->ops->shutdown(sock, how); 3381 } 3382 EXPORT_SYMBOL(kernel_sock_shutdown); 3383