xref: /linux/net/socket.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/divert.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 			 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 			  size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 		      unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 		      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
116 			  unsigned long count, loff_t *ppos);
117 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
118 			  unsigned long count, loff_t *ppos);
119 static ssize_t sock_sendpage(struct file *file, struct page *page,
120 			     int offset, size_t size, loff_t *ppos, int more);
121 
122 /*
123  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124  *	in the operation structures but are done directly via the socketcall() multiplexor.
125  */
126 
127 static struct file_operations socket_file_ops = {
128 	.owner =	THIS_MODULE,
129 	.llseek =	no_llseek,
130 	.aio_read =	sock_aio_read,
131 	.aio_write =	sock_aio_write,
132 	.poll =		sock_poll,
133 	.unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 	.compat_ioctl = compat_sock_ioctl,
136 #endif
137 	.mmap =		sock_mmap,
138 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
139 	.release =	sock_close,
140 	.fasync =	sock_fasync,
141 	.readv =	sock_readv,
142 	.writev =	sock_writev,
143 	.sendpage =	sock_sendpage,
144 	.splice_write = generic_splice_sendpage,
145 };
146 
147 /*
148  *	The protocol list. Each protocol is registered in here.
149  */
150 
151 static struct net_proto_family *net_families[NPROTO];
152 
153 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
154 static atomic_t net_family_lockct = ATOMIC_INIT(0);
155 static DEFINE_SPINLOCK(net_family_lock);
156 
157 /* The strategy is: modifications net_family vector are short, do not
158    sleep and veeery rare, but read access should be free of any exclusive
159    locks.
160  */
161 
162 static void net_family_write_lock(void)
163 {
164 	spin_lock(&net_family_lock);
165 	while (atomic_read(&net_family_lockct) != 0) {
166 		spin_unlock(&net_family_lock);
167 
168 		yield();
169 
170 		spin_lock(&net_family_lock);
171 	}
172 }
173 
174 static __inline__ void net_family_write_unlock(void)
175 {
176 	spin_unlock(&net_family_lock);
177 }
178 
179 static __inline__ void net_family_read_lock(void)
180 {
181 	atomic_inc(&net_family_lockct);
182 	spin_unlock_wait(&net_family_lock);
183 }
184 
185 static __inline__ void net_family_read_unlock(void)
186 {
187 	atomic_dec(&net_family_lockct);
188 }
189 
190 #else
191 #define net_family_write_lock() do { } while(0)
192 #define net_family_write_unlock() do { } while(0)
193 #define net_family_read_lock() do { } while(0)
194 #define net_family_read_unlock() do { } while(0)
195 #endif
196 
197 
198 /*
199  *	Statistics counters of the socket lists
200  */
201 
202 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
203 
204 /*
205  *	Support routines. Move socket addresses back and forth across the kernel/user
206  *	divide and look after the messy bits.
207  */
208 
209 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
210 					   16 for IP, 16 for IPX,
211 					   24 for IPv6,
212 					   about 80 for AX.25
213 					   must be at least one bigger than
214 					   the AF_UNIX size (see net/unix/af_unix.c
215 					   :unix_mkname()).
216 					 */
217 
218 /**
219  *	move_addr_to_kernel	-	copy a socket address into kernel space
220  *	@uaddr: Address in user space
221  *	@kaddr: Address in kernel space
222  *	@ulen: Length in user space
223  *
224  *	The address is copied into kernel space. If the provided address is
225  *	too long an error code of -EINVAL is returned. If the copy gives
226  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
227  */
228 
229 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
230 {
231 	if(ulen<0||ulen>MAX_SOCK_ADDR)
232 		return -EINVAL;
233 	if(ulen==0)
234 		return 0;
235 	if(copy_from_user(kaddr,uaddr,ulen))
236 		return -EFAULT;
237 	return audit_sockaddr(ulen, kaddr);
238 }
239 
240 /**
241  *	move_addr_to_user	-	copy an address to user space
242  *	@kaddr: kernel space address
243  *	@klen: length of address in kernel
244  *	@uaddr: user space address
245  *	@ulen: pointer to user length field
246  *
247  *	The value pointed to by ulen on entry is the buffer length available.
248  *	This is overwritten with the buffer space used. -EINVAL is returned
249  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
250  *	is returned if either the buffer or the length field are not
251  *	accessible.
252  *	After copying the data up to the limit the user specifies, the true
253  *	length of the data is written over the length limit the user
254  *	specified. Zero is returned for a success.
255  */
256 
257 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
258 {
259 	int err;
260 	int len;
261 
262 	if((err=get_user(len, ulen)))
263 		return err;
264 	if(len>klen)
265 		len=klen;
266 	if(len<0 || len> MAX_SOCK_ADDR)
267 		return -EINVAL;
268 	if(len)
269 	{
270 		if(copy_to_user(uaddr,kaddr,len))
271 			return -EFAULT;
272 	}
273 	/*
274 	 *	"fromlen shall refer to the value before truncation.."
275 	 *			1003.1g
276 	 */
277 	return __put_user(klen, ulen);
278 }
279 
280 #define SOCKFS_MAGIC 0x534F434B
281 
282 static kmem_cache_t * sock_inode_cachep __read_mostly;
283 
284 static struct inode *sock_alloc_inode(struct super_block *sb)
285 {
286 	struct socket_alloc *ei;
287 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
288 	if (!ei)
289 		return NULL;
290 	init_waitqueue_head(&ei->socket.wait);
291 
292 	ei->socket.fasync_list = NULL;
293 	ei->socket.state = SS_UNCONNECTED;
294 	ei->socket.flags = 0;
295 	ei->socket.ops = NULL;
296 	ei->socket.sk = NULL;
297 	ei->socket.file = NULL;
298 	ei->socket.flags = 0;
299 
300 	return &ei->vfs_inode;
301 }
302 
303 static void sock_destroy_inode(struct inode *inode)
304 {
305 	kmem_cache_free(sock_inode_cachep,
306 			container_of(inode, struct socket_alloc, vfs_inode));
307 }
308 
309 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
310 {
311 	struct socket_alloc *ei = (struct socket_alloc *) foo;
312 
313 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
314 	    SLAB_CTOR_CONSTRUCTOR)
315 		inode_init_once(&ei->vfs_inode);
316 }
317 
318 static int init_inodecache(void)
319 {
320 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
321 				sizeof(struct socket_alloc),
322 				0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
323 					SLAB_MEM_SPREAD),
324 				init_once, NULL);
325 	if (sock_inode_cachep == NULL)
326 		return -ENOMEM;
327 	return 0;
328 }
329 
330 static struct super_operations sockfs_ops = {
331 	.alloc_inode =	sock_alloc_inode,
332 	.destroy_inode =sock_destroy_inode,
333 	.statfs =	simple_statfs,
334 };
335 
336 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
337 	int flags, const char *dev_name, void *data)
338 {
339 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
340 }
341 
342 static struct vfsmount *sock_mnt __read_mostly;
343 
344 static struct file_system_type sock_fs_type = {
345 	.name =		"sockfs",
346 	.get_sb =	sockfs_get_sb,
347 	.kill_sb =	kill_anon_super,
348 };
349 static int sockfs_delete_dentry(struct dentry *dentry)
350 {
351 	return 1;
352 }
353 static struct dentry_operations sockfs_dentry_operations = {
354 	.d_delete =	sockfs_delete_dentry,
355 };
356 
357 /*
358  *	Obtains the first available file descriptor and sets it up for use.
359  *
360  *	These functions create file structures and maps them to fd space
361  *	of the current process. On success it returns file descriptor
362  *	and file struct implicitly stored in sock->file.
363  *	Note that another thread may close file descriptor before we return
364  *	from this function. We use the fact that now we do not refer
365  *	to socket after mapping. If one day we will need it, this
366  *	function will increment ref. count on file by 1.
367  *
368  *	In any case returned fd MAY BE not valid!
369  *	This race condition is unavoidable
370  *	with shared fd spaces, we cannot solve it inside kernel,
371  *	but we take care of internal coherence yet.
372  */
373 
374 static int sock_alloc_fd(struct file **filep)
375 {
376 	int fd;
377 
378 	fd = get_unused_fd();
379 	if (likely(fd >= 0)) {
380 		struct file *file = get_empty_filp();
381 
382 		*filep = file;
383 		if (unlikely(!file)) {
384 			put_unused_fd(fd);
385 			return -ENFILE;
386 		}
387 	} else
388 		*filep = NULL;
389 	return fd;
390 }
391 
392 static int sock_attach_fd(struct socket *sock, struct file *file)
393 {
394 	struct qstr this;
395 	char name[32];
396 
397 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
398 	this.name = name;
399 	this.hash = SOCK_INODE(sock)->i_ino;
400 
401 	file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
402 	if (unlikely(!file->f_dentry))
403 		return -ENOMEM;
404 
405 	file->f_dentry->d_op = &sockfs_dentry_operations;
406 	d_add(file->f_dentry, SOCK_INODE(sock));
407 	file->f_vfsmnt = mntget(sock_mnt);
408 	file->f_mapping = file->f_dentry->d_inode->i_mapping;
409 
410 	sock->file = file;
411 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
412 	file->f_mode = FMODE_READ | FMODE_WRITE;
413 	file->f_flags = O_RDWR;
414 	file->f_pos = 0;
415 	file->private_data = sock;
416 
417 	return 0;
418 }
419 
420 int sock_map_fd(struct socket *sock)
421 {
422 	struct file *newfile;
423 	int fd = sock_alloc_fd(&newfile);
424 
425 	if (likely(fd >= 0)) {
426 		int err = sock_attach_fd(sock, newfile);
427 
428 		if (unlikely(err < 0)) {
429 			put_filp(newfile);
430 			put_unused_fd(fd);
431 			return err;
432 		}
433 		fd_install(fd, newfile);
434 	}
435 	return fd;
436 }
437 
438 static struct socket *sock_from_file(struct file *file, int *err)
439 {
440 	struct inode *inode;
441 	struct socket *sock;
442 
443 	if (file->f_op == &socket_file_ops)
444 		return file->private_data;	/* set in sock_map_fd */
445 
446 	inode = file->f_dentry->d_inode;
447 	if (!S_ISSOCK(inode->i_mode)) {
448 		*err = -ENOTSOCK;
449 		return NULL;
450 	}
451 
452 	sock = SOCKET_I(inode);
453 	if (sock->file != file) {
454 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
455 		sock->file = file;
456 	}
457 	return sock;
458 }
459 
460 /**
461  *	sockfd_lookup	- 	Go from a file number to its socket slot
462  *	@fd: file handle
463  *	@err: pointer to an error code return
464  *
465  *	The file handle passed in is locked and the socket it is bound
466  *	too is returned. If an error occurs the err pointer is overwritten
467  *	with a negative errno code and NULL is returned. The function checks
468  *	for both invalid handles and passing a handle which is not a socket.
469  *
470  *	On a success the socket object pointer is returned.
471  */
472 
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 	struct file *file;
476 	struct socket *sock;
477 
478 	if (!(file = fget(fd))) {
479 		*err = -EBADF;
480 		return NULL;
481 	}
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 	struct file *file;
491 	struct socket *sock;
492 
493 	*err = -EBADF;
494 	file = fget_light(fd, fput_needed);
495 	if (file) {
496 		sock = sock_from_file(file, err);
497 		if (sock)
498 			return sock;
499 		fput_light(file, *fput_needed);
500 	}
501 	return NULL;
502 }
503 
504 /**
505  *	sock_alloc	-	allocate a socket
506  *
507  *	Allocate a new inode and socket object. The two are bound together
508  *	and initialised. The socket is then returned. If we are out of inodes
509  *	NULL is returned.
510  */
511 
512 static struct socket *sock_alloc(void)
513 {
514 	struct inode * inode;
515 	struct socket * sock;
516 
517 	inode = new_inode(sock_mnt->mnt_sb);
518 	if (!inode)
519 		return NULL;
520 
521 	sock = SOCKET_I(inode);
522 
523 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
524 	inode->i_uid = current->fsuid;
525 	inode->i_gid = current->fsgid;
526 
527 	get_cpu_var(sockets_in_use)++;
528 	put_cpu_var(sockets_in_use);
529 	return sock;
530 }
531 
532 /*
533  *	In theory you can't get an open on this inode, but /proc provides
534  *	a back door. Remember to keep it shut otherwise you'll let the
535  *	creepy crawlies in.
536  */
537 
538 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
539 {
540 	return -ENXIO;
541 }
542 
543 const struct file_operations bad_sock_fops = {
544 	.owner = THIS_MODULE,
545 	.open = sock_no_open,
546 };
547 
548 /**
549  *	sock_release	-	close a socket
550  *	@sock: socket to close
551  *
552  *	The socket is released from the protocol stack if it has a release
553  *	callback, and the inode is then released if the socket is bound to
554  *	an inode not a file.
555  */
556 
557 void sock_release(struct socket *sock)
558 {
559 	if (sock->ops) {
560 		struct module *owner = sock->ops->owner;
561 
562 		sock->ops->release(sock);
563 		sock->ops = NULL;
564 		module_put(owner);
565 	}
566 
567 	if (sock->fasync_list)
568 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
569 
570 	get_cpu_var(sockets_in_use)--;
571 	put_cpu_var(sockets_in_use);
572 	if (!sock->file) {
573 		iput(SOCK_INODE(sock));
574 		return;
575 	}
576 	sock->file=NULL;
577 }
578 
579 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
580 				 struct msghdr *msg, size_t size)
581 {
582 	struct sock_iocb *si = kiocb_to_siocb(iocb);
583 	int err;
584 
585 	si->sock = sock;
586 	si->scm = NULL;
587 	si->msg = msg;
588 	si->size = size;
589 
590 	err = security_socket_sendmsg(sock, msg, size);
591 	if (err)
592 		return err;
593 
594 	return sock->ops->sendmsg(iocb, sock, msg, size);
595 }
596 
597 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
598 {
599 	struct kiocb iocb;
600 	struct sock_iocb siocb;
601 	int ret;
602 
603 	init_sync_kiocb(&iocb, NULL);
604 	iocb.private = &siocb;
605 	ret = __sock_sendmsg(&iocb, sock, msg, size);
606 	if (-EIOCBQUEUED == ret)
607 		ret = wait_on_sync_kiocb(&iocb);
608 	return ret;
609 }
610 
611 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
612 		   struct kvec *vec, size_t num, size_t size)
613 {
614 	mm_segment_t oldfs = get_fs();
615 	int result;
616 
617 	set_fs(KERNEL_DS);
618 	/*
619 	 * the following is safe, since for compiler definitions of kvec and
620 	 * iovec are identical, yielding the same in-core layout and alignment
621 	 */
622 	msg->msg_iov = (struct iovec *)vec,
623 	msg->msg_iovlen = num;
624 	result = sock_sendmsg(sock, msg, size);
625 	set_fs(oldfs);
626 	return result;
627 }
628 
629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
630 				 struct msghdr *msg, size_t size, int flags)
631 {
632 	int err;
633 	struct sock_iocb *si = kiocb_to_siocb(iocb);
634 
635 	si->sock = sock;
636 	si->scm = NULL;
637 	si->msg = msg;
638 	si->size = size;
639 	si->flags = flags;
640 
641 	err = security_socket_recvmsg(sock, msg, size, flags);
642 	if (err)
643 		return err;
644 
645 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
646 }
647 
648 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
649 		 size_t size, int flags)
650 {
651 	struct kiocb iocb;
652 	struct sock_iocb siocb;
653 	int ret;
654 
655         init_sync_kiocb(&iocb, NULL);
656 	iocb.private = &siocb;
657 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
658 	if (-EIOCBQUEUED == ret)
659 		ret = wait_on_sync_kiocb(&iocb);
660 	return ret;
661 }
662 
663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
664 		   struct kvec *vec, size_t num,
665 		   size_t size, int flags)
666 {
667 	mm_segment_t oldfs = get_fs();
668 	int result;
669 
670 	set_fs(KERNEL_DS);
671 	/*
672 	 * the following is safe, since for compiler definitions of kvec and
673 	 * iovec are identical, yielding the same in-core layout and alignment
674 	 */
675 	msg->msg_iov = (struct iovec *)vec,
676 	msg->msg_iovlen = num;
677 	result = sock_recvmsg(sock, msg, size, flags);
678 	set_fs(oldfs);
679 	return result;
680 }
681 
682 static void sock_aio_dtor(struct kiocb *iocb)
683 {
684 	kfree(iocb->private);
685 }
686 
687 static ssize_t sock_sendpage(struct file *file, struct page *page,
688 			     int offset, size_t size, loff_t *ppos, int more)
689 {
690 	struct socket *sock;
691 	int flags;
692 
693 	sock = file->private_data;
694 
695 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
696 	if (more)
697 		flags |= MSG_MORE;
698 
699 	return sock->ops->sendpage(sock, page, offset, size, flags);
700 }
701 
702 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
703 		char __user *ubuf, size_t size, struct sock_iocb *siocb)
704 {
705 	if (!is_sync_kiocb(iocb)) {
706 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
707 		if (!siocb)
708 			return NULL;
709 		iocb->ki_dtor = sock_aio_dtor;
710 	}
711 
712 	siocb->kiocb = iocb;
713 	siocb->async_iov.iov_base = ubuf;
714 	siocb->async_iov.iov_len = size;
715 
716 	iocb->private = siocb;
717 	return siocb;
718 }
719 
720 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
721 		struct file *file, struct iovec *iov, unsigned long nr_segs)
722 {
723 	struct socket *sock = file->private_data;
724 	size_t size = 0;
725 	int i;
726 
727         for (i = 0 ; i < nr_segs ; i++)
728                 size += iov[i].iov_len;
729 
730 	msg->msg_name = NULL;
731 	msg->msg_namelen = 0;
732 	msg->msg_control = NULL;
733 	msg->msg_controllen = 0;
734 	msg->msg_iov = (struct iovec *) iov;
735 	msg->msg_iovlen = nr_segs;
736 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
737 
738 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
739 }
740 
741 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
742 			  unsigned long nr_segs, loff_t *ppos)
743 {
744 	struct kiocb iocb;
745 	struct sock_iocb siocb;
746 	struct msghdr msg;
747 	int ret;
748 
749         init_sync_kiocb(&iocb, NULL);
750 	iocb.private = &siocb;
751 
752 	ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
753 	if (-EIOCBQUEUED == ret)
754 		ret = wait_on_sync_kiocb(&iocb);
755 	return ret;
756 }
757 
758 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
759 			 size_t count, loff_t pos)
760 {
761 	struct sock_iocb siocb, *x;
762 
763 	if (pos != 0)
764 		return -ESPIPE;
765 	if (count == 0)		/* Match SYS5 behaviour */
766 		return 0;
767 
768 	x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
769 	if (!x)
770 		return -ENOMEM;
771 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
772 			&x->async_iov, 1);
773 }
774 
775 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
776 		struct file *file, struct iovec *iov, unsigned long nr_segs)
777 {
778 	struct socket *sock = file->private_data;
779 	size_t size = 0;
780 	int i;
781 
782         for (i = 0 ; i < nr_segs ; i++)
783                 size += iov[i].iov_len;
784 
785 	msg->msg_name = NULL;
786 	msg->msg_namelen = 0;
787 	msg->msg_control = NULL;
788 	msg->msg_controllen = 0;
789 	msg->msg_iov = (struct iovec *) iov;
790 	msg->msg_iovlen = nr_segs;
791 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
792 	if (sock->type == SOCK_SEQPACKET)
793 		msg->msg_flags |= MSG_EOR;
794 
795 	return __sock_sendmsg(iocb, sock, msg, size);
796 }
797 
798 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
799 			   unsigned long nr_segs, loff_t *ppos)
800 {
801 	struct msghdr msg;
802 	struct kiocb iocb;
803 	struct sock_iocb siocb;
804 	int ret;
805 
806 	init_sync_kiocb(&iocb, NULL);
807 	iocb.private = &siocb;
808 
809 	ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
810 	if (-EIOCBQUEUED == ret)
811 		ret = wait_on_sync_kiocb(&iocb);
812 	return ret;
813 }
814 
815 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
816 			  size_t count, loff_t pos)
817 {
818 	struct sock_iocb siocb, *x;
819 
820 	if (pos != 0)
821 		return -ESPIPE;
822 	if (count == 0)		/* Match SYS5 behaviour */
823 		return 0;
824 
825 	x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
826 	if (!x)
827 		return -ENOMEM;
828 
829 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
830 			&x->async_iov, 1);
831 }
832 
833 
834 /*
835  * Atomic setting of ioctl hooks to avoid race
836  * with module unload.
837  */
838 
839 static DEFINE_MUTEX(br_ioctl_mutex);
840 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
841 
842 void brioctl_set(int (*hook)(unsigned int, void __user *))
843 {
844 	mutex_lock(&br_ioctl_mutex);
845 	br_ioctl_hook = hook;
846 	mutex_unlock(&br_ioctl_mutex);
847 }
848 EXPORT_SYMBOL(brioctl_set);
849 
850 static DEFINE_MUTEX(vlan_ioctl_mutex);
851 static int (*vlan_ioctl_hook)(void __user *arg);
852 
853 void vlan_ioctl_set(int (*hook)(void __user *))
854 {
855 	mutex_lock(&vlan_ioctl_mutex);
856 	vlan_ioctl_hook = hook;
857 	mutex_unlock(&vlan_ioctl_mutex);
858 }
859 EXPORT_SYMBOL(vlan_ioctl_set);
860 
861 static DEFINE_MUTEX(dlci_ioctl_mutex);
862 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
863 
864 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
865 {
866 	mutex_lock(&dlci_ioctl_mutex);
867 	dlci_ioctl_hook = hook;
868 	mutex_unlock(&dlci_ioctl_mutex);
869 }
870 EXPORT_SYMBOL(dlci_ioctl_set);
871 
872 /*
873  *	With an ioctl, arg may well be a user mode pointer, but we don't know
874  *	what to do with it - that's up to the protocol still.
875  */
876 
877 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
878 {
879 	struct socket *sock;
880 	void __user *argp = (void __user *)arg;
881 	int pid, err;
882 
883 	sock = file->private_data;
884 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
885 		err = dev_ioctl(cmd, argp);
886 	} else
887 #ifdef CONFIG_WIRELESS_EXT
888 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
889 		err = dev_ioctl(cmd, argp);
890 	} else
891 #endif	/* CONFIG_WIRELESS_EXT */
892 	switch (cmd) {
893 		case FIOSETOWN:
894 		case SIOCSPGRP:
895 			err = -EFAULT;
896 			if (get_user(pid, (int __user *)argp))
897 				break;
898 			err = f_setown(sock->file, pid, 1);
899 			break;
900 		case FIOGETOWN:
901 		case SIOCGPGRP:
902 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
903 			break;
904 		case SIOCGIFBR:
905 		case SIOCSIFBR:
906 		case SIOCBRADDBR:
907 		case SIOCBRDELBR:
908 			err = -ENOPKG;
909 			if (!br_ioctl_hook)
910 				request_module("bridge");
911 
912 			mutex_lock(&br_ioctl_mutex);
913 			if (br_ioctl_hook)
914 				err = br_ioctl_hook(cmd, argp);
915 			mutex_unlock(&br_ioctl_mutex);
916 			break;
917 		case SIOCGIFVLAN:
918 		case SIOCSIFVLAN:
919 			err = -ENOPKG;
920 			if (!vlan_ioctl_hook)
921 				request_module("8021q");
922 
923 			mutex_lock(&vlan_ioctl_mutex);
924 			if (vlan_ioctl_hook)
925 				err = vlan_ioctl_hook(argp);
926 			mutex_unlock(&vlan_ioctl_mutex);
927 			break;
928 		case SIOCGIFDIVERT:
929 		case SIOCSIFDIVERT:
930 		/* Convert this to call through a hook */
931 			err = divert_ioctl(cmd, argp);
932 			break;
933 		case SIOCADDDLCI:
934 		case SIOCDELDLCI:
935 			err = -ENOPKG;
936 			if (!dlci_ioctl_hook)
937 				request_module("dlci");
938 
939 			if (dlci_ioctl_hook) {
940 				mutex_lock(&dlci_ioctl_mutex);
941 				err = dlci_ioctl_hook(cmd, argp);
942 				mutex_unlock(&dlci_ioctl_mutex);
943 			}
944 			break;
945 		default:
946 			err = sock->ops->ioctl(sock, cmd, arg);
947 
948 			/*
949 			 * If this ioctl is unknown try to hand it down
950 			 * to the NIC driver.
951 			 */
952 			if (err == -ENOIOCTLCMD)
953 				err = dev_ioctl(cmd, argp);
954 			break;
955 	}
956 	return err;
957 }
958 
959 int sock_create_lite(int family, int type, int protocol, struct socket **res)
960 {
961 	int err;
962 	struct socket *sock = NULL;
963 
964 	err = security_socket_create(family, type, protocol, 1);
965 	if (err)
966 		goto out;
967 
968 	sock = sock_alloc();
969 	if (!sock) {
970 		err = -ENOMEM;
971 		goto out;
972 	}
973 
974 	security_socket_post_create(sock, family, type, protocol, 1);
975 	sock->type = type;
976 out:
977 	*res = sock;
978 	return err;
979 }
980 
981 /* No kernel lock held - perfect */
982 static unsigned int sock_poll(struct file *file, poll_table * wait)
983 {
984 	struct socket *sock;
985 
986 	/*
987 	 *	We can't return errors to poll, so it's either yes or no.
988 	 */
989 	sock = file->private_data;
990 	return sock->ops->poll(file, sock, wait);
991 }
992 
993 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
994 {
995 	struct socket *sock = file->private_data;
996 
997 	return sock->ops->mmap(file, sock, vma);
998 }
999 
1000 static int sock_close(struct inode *inode, struct file *filp)
1001 {
1002 	/*
1003 	 *	It was possible the inode is NULL we were
1004 	 *	closing an unfinished socket.
1005 	 */
1006 
1007 	if (!inode)
1008 	{
1009 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1010 		return 0;
1011 	}
1012 	sock_fasync(-1, filp, 0);
1013 	sock_release(SOCKET_I(inode));
1014 	return 0;
1015 }
1016 
1017 /*
1018  *	Update the socket async list
1019  *
1020  *	Fasync_list locking strategy.
1021  *
1022  *	1. fasync_list is modified only under process context socket lock
1023  *	   i.e. under semaphore.
1024  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1025  *	   or under socket lock.
1026  *	3. fasync_list can be used from softirq context, so that
1027  *	   modification under socket lock have to be enhanced with
1028  *	   write_lock_bh(&sk->sk_callback_lock).
1029  *							--ANK (990710)
1030  */
1031 
1032 static int sock_fasync(int fd, struct file *filp, int on)
1033 {
1034 	struct fasync_struct *fa, *fna=NULL, **prev;
1035 	struct socket *sock;
1036 	struct sock *sk;
1037 
1038 	if (on)
1039 	{
1040 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1041 		if(fna==NULL)
1042 			return -ENOMEM;
1043 	}
1044 
1045 	sock = filp->private_data;
1046 
1047 	if ((sk=sock->sk) == NULL) {
1048 		kfree(fna);
1049 		return -EINVAL;
1050 	}
1051 
1052 	lock_sock(sk);
1053 
1054 	prev=&(sock->fasync_list);
1055 
1056 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1057 		if (fa->fa_file==filp)
1058 			break;
1059 
1060 	if(on)
1061 	{
1062 		if(fa!=NULL)
1063 		{
1064 			write_lock_bh(&sk->sk_callback_lock);
1065 			fa->fa_fd=fd;
1066 			write_unlock_bh(&sk->sk_callback_lock);
1067 
1068 			kfree(fna);
1069 			goto out;
1070 		}
1071 		fna->fa_file=filp;
1072 		fna->fa_fd=fd;
1073 		fna->magic=FASYNC_MAGIC;
1074 		fna->fa_next=sock->fasync_list;
1075 		write_lock_bh(&sk->sk_callback_lock);
1076 		sock->fasync_list=fna;
1077 		write_unlock_bh(&sk->sk_callback_lock);
1078 	}
1079 	else
1080 	{
1081 		if (fa!=NULL)
1082 		{
1083 			write_lock_bh(&sk->sk_callback_lock);
1084 			*prev=fa->fa_next;
1085 			write_unlock_bh(&sk->sk_callback_lock);
1086 			kfree(fa);
1087 		}
1088 	}
1089 
1090 out:
1091 	release_sock(sock->sk);
1092 	return 0;
1093 }
1094 
1095 /* This function may be called only under socket lock or callback_lock */
1096 
1097 int sock_wake_async(struct socket *sock, int how, int band)
1098 {
1099 	if (!sock || !sock->fasync_list)
1100 		return -1;
1101 	switch (how)
1102 	{
1103 	case 1:
1104 
1105 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1106 			break;
1107 		goto call_kill;
1108 	case 2:
1109 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1110 			break;
1111 		/* fall through */
1112 	case 0:
1113 	call_kill:
1114 		__kill_fasync(sock->fasync_list, SIGIO, band);
1115 		break;
1116 	case 3:
1117 		__kill_fasync(sock->fasync_list, SIGURG, band);
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1123 {
1124 	int err;
1125 	struct socket *sock;
1126 
1127 	/*
1128 	 *	Check protocol is in range
1129 	 */
1130 	if (family < 0 || family >= NPROTO)
1131 		return -EAFNOSUPPORT;
1132 	if (type < 0 || type >= SOCK_MAX)
1133 		return -EINVAL;
1134 
1135 	/* Compatibility.
1136 
1137 	   This uglymoron is moved from INET layer to here to avoid
1138 	   deadlock in module load.
1139 	 */
1140 	if (family == PF_INET && type == SOCK_PACKET) {
1141 		static int warned;
1142 		if (!warned) {
1143 			warned = 1;
1144 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1145 		}
1146 		family = PF_PACKET;
1147 	}
1148 
1149 	err = security_socket_create(family, type, protocol, kern);
1150 	if (err)
1151 		return err;
1152 
1153 #if defined(CONFIG_KMOD)
1154 	/* Attempt to load a protocol module if the find failed.
1155 	 *
1156 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1157 	 * requested real, full-featured networking support upon configuration.
1158 	 * Otherwise module support will break!
1159 	 */
1160 	if (net_families[family]==NULL)
1161 	{
1162 		request_module("net-pf-%d",family);
1163 	}
1164 #endif
1165 
1166 	net_family_read_lock();
1167 	if (net_families[family] == NULL) {
1168 		err = -EAFNOSUPPORT;
1169 		goto out;
1170 	}
1171 
1172 /*
1173  *	Allocate the socket and allow the family to set things up. if
1174  *	the protocol is 0, the family is instructed to select an appropriate
1175  *	default.
1176  */
1177 
1178 	if (!(sock = sock_alloc())) {
1179 		printk(KERN_WARNING "socket: no more sockets\n");
1180 		err = -ENFILE;		/* Not exactly a match, but its the
1181 					   closest posix thing */
1182 		goto out;
1183 	}
1184 
1185 	sock->type  = type;
1186 
1187 	/*
1188 	 * We will call the ->create function, that possibly is in a loadable
1189 	 * module, so we have to bump that loadable module refcnt first.
1190 	 */
1191 	err = -EAFNOSUPPORT;
1192 	if (!try_module_get(net_families[family]->owner))
1193 		goto out_release;
1194 
1195 	if ((err = net_families[family]->create(sock, protocol)) < 0) {
1196 		sock->ops = NULL;
1197 		goto out_module_put;
1198 	}
1199 
1200 	/*
1201 	 * Now to bump the refcnt of the [loadable] module that owns this
1202 	 * socket at sock_release time we decrement its refcnt.
1203 	 */
1204 	if (!try_module_get(sock->ops->owner)) {
1205 		sock->ops = NULL;
1206 		goto out_module_put;
1207 	}
1208 	/*
1209 	 * Now that we're done with the ->create function, the [loadable]
1210 	 * module can have its refcnt decremented
1211 	 */
1212 	module_put(net_families[family]->owner);
1213 	*res = sock;
1214 	security_socket_post_create(sock, family, type, protocol, kern);
1215 
1216 out:
1217 	net_family_read_unlock();
1218 	return err;
1219 out_module_put:
1220 	module_put(net_families[family]->owner);
1221 out_release:
1222 	sock_release(sock);
1223 	goto out;
1224 }
1225 
1226 int sock_create(int family, int type, int protocol, struct socket **res)
1227 {
1228 	return __sock_create(family, type, protocol, res, 0);
1229 }
1230 
1231 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1232 {
1233 	return __sock_create(family, type, protocol, res, 1);
1234 }
1235 
1236 asmlinkage long sys_socket(int family, int type, int protocol)
1237 {
1238 	int retval;
1239 	struct socket *sock;
1240 
1241 	retval = sock_create(family, type, protocol, &sock);
1242 	if (retval < 0)
1243 		goto out;
1244 
1245 	retval = sock_map_fd(sock);
1246 	if (retval < 0)
1247 		goto out_release;
1248 
1249 out:
1250 	/* It may be already another descriptor 8) Not kernel problem. */
1251 	return retval;
1252 
1253 out_release:
1254 	sock_release(sock);
1255 	return retval;
1256 }
1257 
1258 /*
1259  *	Create a pair of connected sockets.
1260  */
1261 
1262 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1263 {
1264 	struct socket *sock1, *sock2;
1265 	int fd1, fd2, err;
1266 
1267 	/*
1268 	 * Obtain the first socket and check if the underlying protocol
1269 	 * supports the socketpair call.
1270 	 */
1271 
1272 	err = sock_create(family, type, protocol, &sock1);
1273 	if (err < 0)
1274 		goto out;
1275 
1276 	err = sock_create(family, type, protocol, &sock2);
1277 	if (err < 0)
1278 		goto out_release_1;
1279 
1280 	err = sock1->ops->socketpair(sock1, sock2);
1281 	if (err < 0)
1282 		goto out_release_both;
1283 
1284 	fd1 = fd2 = -1;
1285 
1286 	err = sock_map_fd(sock1);
1287 	if (err < 0)
1288 		goto out_release_both;
1289 	fd1 = err;
1290 
1291 	err = sock_map_fd(sock2);
1292 	if (err < 0)
1293 		goto out_close_1;
1294 	fd2 = err;
1295 
1296 	/* fd1 and fd2 may be already another descriptors.
1297 	 * Not kernel problem.
1298 	 */
1299 
1300 	err = put_user(fd1, &usockvec[0]);
1301 	if (!err)
1302 		err = put_user(fd2, &usockvec[1]);
1303 	if (!err)
1304 		return 0;
1305 
1306 	sys_close(fd2);
1307 	sys_close(fd1);
1308 	return err;
1309 
1310 out_close_1:
1311         sock_release(sock2);
1312 	sys_close(fd1);
1313 	return err;
1314 
1315 out_release_both:
1316         sock_release(sock2);
1317 out_release_1:
1318         sock_release(sock1);
1319 out:
1320 	return err;
1321 }
1322 
1323 
1324 /*
1325  *	Bind a name to a socket. Nothing much to do here since it's
1326  *	the protocol's responsibility to handle the local address.
1327  *
1328  *	We move the socket address to kernel space before we call
1329  *	the protocol layer (having also checked the address is ok).
1330  */
1331 
1332 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1333 {
1334 	struct socket *sock;
1335 	char address[MAX_SOCK_ADDR];
1336 	int err, fput_needed;
1337 
1338 	if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1339 	{
1340 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1341 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1342 			if (!err)
1343 				err = sock->ops->bind(sock,
1344 					(struct sockaddr *)address, addrlen);
1345 		}
1346 		fput_light(sock->file, fput_needed);
1347 	}
1348 	return err;
1349 }
1350 
1351 
1352 /*
1353  *	Perform a listen. Basically, we allow the protocol to do anything
1354  *	necessary for a listen, and if that works, we mark the socket as
1355  *	ready for listening.
1356  */
1357 
1358 int sysctl_somaxconn = SOMAXCONN;
1359 
1360 asmlinkage long sys_listen(int fd, int backlog)
1361 {
1362 	struct socket *sock;
1363 	int err, fput_needed;
1364 
1365 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1366 		if ((unsigned) backlog > sysctl_somaxconn)
1367 			backlog = sysctl_somaxconn;
1368 
1369 		err = security_socket_listen(sock, backlog);
1370 		if (!err)
1371 			err = sock->ops->listen(sock, backlog);
1372 
1373 		fput_light(sock->file, fput_needed);
1374 	}
1375 	return err;
1376 }
1377 
1378 
1379 /*
1380  *	For accept, we attempt to create a new socket, set up the link
1381  *	with the client, wake up the client, then return the new
1382  *	connected fd. We collect the address of the connector in kernel
1383  *	space and move it to user at the very end. This is unclean because
1384  *	we open the socket then return an error.
1385  *
1386  *	1003.1g adds the ability to recvmsg() to query connection pending
1387  *	status to recvmsg. We need to add that support in a way thats
1388  *	clean when we restucture accept also.
1389  */
1390 
1391 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1392 {
1393 	struct socket *sock, *newsock;
1394 	struct file *newfile;
1395 	int err, len, newfd, fput_needed;
1396 	char address[MAX_SOCK_ADDR];
1397 
1398 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1399 	if (!sock)
1400 		goto out;
1401 
1402 	err = -ENFILE;
1403 	if (!(newsock = sock_alloc()))
1404 		goto out_put;
1405 
1406 	newsock->type = sock->type;
1407 	newsock->ops = sock->ops;
1408 
1409 	/*
1410 	 * We don't need try_module_get here, as the listening socket (sock)
1411 	 * has the protocol module (sock->ops->owner) held.
1412 	 */
1413 	__module_get(newsock->ops->owner);
1414 
1415 	newfd = sock_alloc_fd(&newfile);
1416 	if (unlikely(newfd < 0)) {
1417 		err = newfd;
1418 		sock_release(newsock);
1419 		goto out_put;
1420 	}
1421 
1422 	err = sock_attach_fd(newsock, newfile);
1423 	if (err < 0)
1424 		goto out_fd;
1425 
1426 	err = security_socket_accept(sock, newsock);
1427 	if (err)
1428 		goto out_fd;
1429 
1430 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1431 	if (err < 0)
1432 		goto out_fd;
1433 
1434 	if (upeer_sockaddr) {
1435 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1436 			err = -ECONNABORTED;
1437 			goto out_fd;
1438 		}
1439 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1440 		if (err < 0)
1441 			goto out_fd;
1442 	}
1443 
1444 	/* File flags are not inherited via accept() unlike another OSes. */
1445 
1446 	fd_install(newfd, newfile);
1447 	err = newfd;
1448 
1449 	security_socket_post_accept(sock, newsock);
1450 
1451 out_put:
1452 	fput_light(sock->file, fput_needed);
1453 out:
1454 	return err;
1455 out_fd:
1456 	fput(newfile);
1457 	put_unused_fd(newfd);
1458 	goto out_put;
1459 }
1460 
1461 
1462 /*
1463  *	Attempt to connect to a socket with the server address.  The address
1464  *	is in user space so we verify it is OK and move it to kernel space.
1465  *
1466  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1467  *	break bindings
1468  *
1469  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1470  *	other SEQPACKET protocols that take time to connect() as it doesn't
1471  *	include the -EINPROGRESS status for such sockets.
1472  */
1473 
1474 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1475 {
1476 	struct socket *sock;
1477 	char address[MAX_SOCK_ADDR];
1478 	int err, fput_needed;
1479 
1480 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 	if (!sock)
1482 		goto out;
1483 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1484 	if (err < 0)
1485 		goto out_put;
1486 
1487 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1488 	if (err)
1489 		goto out_put;
1490 
1491 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1492 				 sock->file->f_flags);
1493 out_put:
1494 	fput_light(sock->file, fput_needed);
1495 out:
1496 	return err;
1497 }
1498 
1499 /*
1500  *	Get the local address ('name') of a socket object. Move the obtained
1501  *	name to user space.
1502  */
1503 
1504 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1505 {
1506 	struct socket *sock;
1507 	char address[MAX_SOCK_ADDR];
1508 	int len, err, fput_needed;
1509 
1510 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 	if (!sock)
1512 		goto out;
1513 
1514 	err = security_socket_getsockname(sock);
1515 	if (err)
1516 		goto out_put;
1517 
1518 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1519 	if (err)
1520 		goto out_put;
1521 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1522 
1523 out_put:
1524 	fput_light(sock->file, fput_needed);
1525 out:
1526 	return err;
1527 }
1528 
1529 /*
1530  *	Get the remote address ('name') of a socket object. Move the obtained
1531  *	name to user space.
1532  */
1533 
1534 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1535 {
1536 	struct socket *sock;
1537 	char address[MAX_SOCK_ADDR];
1538 	int len, err, fput_needed;
1539 
1540 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1541 		err = security_socket_getpeername(sock);
1542 		if (err) {
1543 			fput_light(sock->file, fput_needed);
1544 			return err;
1545 		}
1546 
1547 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1548 		if (!err)
1549 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1550 		fput_light(sock->file, fput_needed);
1551 	}
1552 	return err;
1553 }
1554 
1555 /*
1556  *	Send a datagram to a given address. We move the address into kernel
1557  *	space and check the user space data area is readable before invoking
1558  *	the protocol.
1559  */
1560 
1561 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1562 			   struct sockaddr __user *addr, int addr_len)
1563 {
1564 	struct socket *sock;
1565 	char address[MAX_SOCK_ADDR];
1566 	int err;
1567 	struct msghdr msg;
1568 	struct iovec iov;
1569 	int fput_needed;
1570 	struct file *sock_file;
1571 
1572 	sock_file = fget_light(fd, &fput_needed);
1573 	if (!sock_file)
1574 		return -EBADF;
1575 
1576 	sock = sock_from_file(sock_file, &err);
1577 	if (!sock)
1578 		goto out_put;
1579 	iov.iov_base=buff;
1580 	iov.iov_len=len;
1581 	msg.msg_name=NULL;
1582 	msg.msg_iov=&iov;
1583 	msg.msg_iovlen=1;
1584 	msg.msg_control=NULL;
1585 	msg.msg_controllen=0;
1586 	msg.msg_namelen=0;
1587 	if (addr) {
1588 		err = move_addr_to_kernel(addr, addr_len, address);
1589 		if (err < 0)
1590 			goto out_put;
1591 		msg.msg_name=address;
1592 		msg.msg_namelen=addr_len;
1593 	}
1594 	if (sock->file->f_flags & O_NONBLOCK)
1595 		flags |= MSG_DONTWAIT;
1596 	msg.msg_flags = flags;
1597 	err = sock_sendmsg(sock, &msg, len);
1598 
1599 out_put:
1600 	fput_light(sock_file, fput_needed);
1601 	return err;
1602 }
1603 
1604 /*
1605  *	Send a datagram down a socket.
1606  */
1607 
1608 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1609 {
1610 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1611 }
1612 
1613 /*
1614  *	Receive a frame from the socket and optionally record the address of the
1615  *	sender. We verify the buffers are writable and if needed move the
1616  *	sender address from kernel to user space.
1617  */
1618 
1619 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1620 			     struct sockaddr __user *addr, int __user *addr_len)
1621 {
1622 	struct socket *sock;
1623 	struct iovec iov;
1624 	struct msghdr msg;
1625 	char address[MAX_SOCK_ADDR];
1626 	int err,err2;
1627 	struct file *sock_file;
1628 	int fput_needed;
1629 
1630 	sock_file = fget_light(fd, &fput_needed);
1631 	if (!sock_file)
1632 		return -EBADF;
1633 
1634 	sock = sock_from_file(sock_file, &err);
1635 	if (!sock)
1636 		goto out;
1637 
1638 	msg.msg_control=NULL;
1639 	msg.msg_controllen=0;
1640 	msg.msg_iovlen=1;
1641 	msg.msg_iov=&iov;
1642 	iov.iov_len=size;
1643 	iov.iov_base=ubuf;
1644 	msg.msg_name=address;
1645 	msg.msg_namelen=MAX_SOCK_ADDR;
1646 	if (sock->file->f_flags & O_NONBLOCK)
1647 		flags |= MSG_DONTWAIT;
1648 	err=sock_recvmsg(sock, &msg, size, flags);
1649 
1650 	if(err >= 0 && addr != NULL)
1651 	{
1652 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1653 		if(err2<0)
1654 			err=err2;
1655 	}
1656 out:
1657 	fput_light(sock_file, fput_needed);
1658 	return err;
1659 }
1660 
1661 /*
1662  *	Receive a datagram from a socket.
1663  */
1664 
1665 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1666 {
1667 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1668 }
1669 
1670 /*
1671  *	Set a socket option. Because we don't know the option lengths we have
1672  *	to pass the user mode parameter for the protocols to sort out.
1673  */
1674 
1675 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1676 {
1677 	int err, fput_needed;
1678 	struct socket *sock;
1679 
1680 	if (optlen < 0)
1681 		return -EINVAL;
1682 
1683 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL)
1684 	{
1685 		err = security_socket_setsockopt(sock,level,optname);
1686 		if (err)
1687 			goto out_put;
1688 
1689 		if (level == SOL_SOCKET)
1690 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1691 		else
1692 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1693 out_put:
1694 		fput_light(sock->file, fput_needed);
1695 	}
1696 	return err;
1697 }
1698 
1699 /*
1700  *	Get a socket option. Because we don't know the option lengths we have
1701  *	to pass a user mode parameter for the protocols to sort out.
1702  */
1703 
1704 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1705 {
1706 	int err, fput_needed;
1707 	struct socket *sock;
1708 
1709 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1710 		err = security_socket_getsockopt(sock, level, optname);
1711 		if (err)
1712 			goto out_put;
1713 
1714 		if (level == SOL_SOCKET)
1715 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1716 		else
1717 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1718 out_put:
1719 		fput_light(sock->file, fput_needed);
1720 	}
1721 	return err;
1722 }
1723 
1724 
1725 /*
1726  *	Shutdown a socket.
1727  */
1728 
1729 asmlinkage long sys_shutdown(int fd, int how)
1730 {
1731 	int err, fput_needed;
1732 	struct socket *sock;
1733 
1734 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1735 	{
1736 		err = security_socket_shutdown(sock, how);
1737 		if (!err)
1738 			err = sock->ops->shutdown(sock, how);
1739 		fput_light(sock->file, fput_needed);
1740 	}
1741 	return err;
1742 }
1743 
1744 /* A couple of helpful macros for getting the address of the 32/64 bit
1745  * fields which are the same type (int / unsigned) on our platforms.
1746  */
1747 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1748 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1749 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1750 
1751 
1752 /*
1753  *	BSD sendmsg interface
1754  */
1755 
1756 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1757 {
1758 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1759 	struct socket *sock;
1760 	char address[MAX_SOCK_ADDR];
1761 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1762 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1763 			__attribute__ ((aligned (sizeof(__kernel_size_t))));
1764 			/* 20 is size of ipv6_pktinfo */
1765 	unsigned char *ctl_buf = ctl;
1766 	struct msghdr msg_sys;
1767 	int err, ctl_len, iov_size, total_len;
1768 	int fput_needed;
1769 
1770 	err = -EFAULT;
1771 	if (MSG_CMSG_COMPAT & flags) {
1772 		if (get_compat_msghdr(&msg_sys, msg_compat))
1773 			return -EFAULT;
1774 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1775 		return -EFAULT;
1776 
1777 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1778 	if (!sock)
1779 		goto out;
1780 
1781 	/* do not move before msg_sys is valid */
1782 	err = -EMSGSIZE;
1783 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1784 		goto out_put;
1785 
1786 	/* Check whether to allocate the iovec area*/
1787 	err = -ENOMEM;
1788 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1789 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1790 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1791 		if (!iov)
1792 			goto out_put;
1793 	}
1794 
1795 	/* This will also move the address data into kernel space */
1796 	if (MSG_CMSG_COMPAT & flags) {
1797 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1798 	} else
1799 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1800 	if (err < 0)
1801 		goto out_freeiov;
1802 	total_len = err;
1803 
1804 	err = -ENOBUFS;
1805 
1806 	if (msg_sys.msg_controllen > INT_MAX)
1807 		goto out_freeiov;
1808 	ctl_len = msg_sys.msg_controllen;
1809 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1810 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1811 		if (err)
1812 			goto out_freeiov;
1813 		ctl_buf = msg_sys.msg_control;
1814 		ctl_len = msg_sys.msg_controllen;
1815 	} else if (ctl_len) {
1816 		if (ctl_len > sizeof(ctl))
1817 		{
1818 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1819 			if (ctl_buf == NULL)
1820 				goto out_freeiov;
1821 		}
1822 		err = -EFAULT;
1823 		/*
1824 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1825 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1826 		 * checking falls down on this.
1827 		 */
1828 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1829 			goto out_freectl;
1830 		msg_sys.msg_control = ctl_buf;
1831 	}
1832 	msg_sys.msg_flags = flags;
1833 
1834 	if (sock->file->f_flags & O_NONBLOCK)
1835 		msg_sys.msg_flags |= MSG_DONTWAIT;
1836 	err = sock_sendmsg(sock, &msg_sys, total_len);
1837 
1838 out_freectl:
1839 	if (ctl_buf != ctl)
1840 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1841 out_freeiov:
1842 	if (iov != iovstack)
1843 		sock_kfree_s(sock->sk, iov, iov_size);
1844 out_put:
1845 	fput_light(sock->file, fput_needed);
1846 out:
1847 	return err;
1848 }
1849 
1850 /*
1851  *	BSD recvmsg interface
1852  */
1853 
1854 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1855 {
1856 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1857 	struct socket *sock;
1858 	struct iovec iovstack[UIO_FASTIOV];
1859 	struct iovec *iov=iovstack;
1860 	struct msghdr msg_sys;
1861 	unsigned long cmsg_ptr;
1862 	int err, iov_size, total_len, len;
1863 	int fput_needed;
1864 
1865 	/* kernel mode address */
1866 	char addr[MAX_SOCK_ADDR];
1867 
1868 	/* user mode address pointers */
1869 	struct sockaddr __user *uaddr;
1870 	int __user *uaddr_len;
1871 
1872 	if (MSG_CMSG_COMPAT & flags) {
1873 		if (get_compat_msghdr(&msg_sys, msg_compat))
1874 			return -EFAULT;
1875 	} else
1876 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1877 			return -EFAULT;
1878 
1879 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 	if (!sock)
1881 		goto out;
1882 
1883 	err = -EMSGSIZE;
1884 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1885 		goto out_put;
1886 
1887 	/* Check whether to allocate the iovec area*/
1888 	err = -ENOMEM;
1889 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1890 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1891 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1892 		if (!iov)
1893 			goto out_put;
1894 	}
1895 
1896 	/*
1897 	 *	Save the user-mode address (verify_iovec will change the
1898 	 *	kernel msghdr to use the kernel address space)
1899 	 */
1900 
1901 	uaddr = (void __user *) msg_sys.msg_name;
1902 	uaddr_len = COMPAT_NAMELEN(msg);
1903 	if (MSG_CMSG_COMPAT & flags) {
1904 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1905 	} else
1906 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1907 	if (err < 0)
1908 		goto out_freeiov;
1909 	total_len=err;
1910 
1911 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1912 	msg_sys.msg_flags = 0;
1913 	if (MSG_CMSG_COMPAT & flags)
1914 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1915 
1916 	if (sock->file->f_flags & O_NONBLOCK)
1917 		flags |= MSG_DONTWAIT;
1918 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1919 	if (err < 0)
1920 		goto out_freeiov;
1921 	len = err;
1922 
1923 	if (uaddr != NULL) {
1924 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1925 		if (err < 0)
1926 			goto out_freeiov;
1927 	}
1928 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1929 			 COMPAT_FLAGS(msg));
1930 	if (err)
1931 		goto out_freeiov;
1932 	if (MSG_CMSG_COMPAT & flags)
1933 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1934 				 &msg_compat->msg_controllen);
1935 	else
1936 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1937 				 &msg->msg_controllen);
1938 	if (err)
1939 		goto out_freeiov;
1940 	err = len;
1941 
1942 out_freeiov:
1943 	if (iov != iovstack)
1944 		sock_kfree_s(sock->sk, iov, iov_size);
1945 out_put:
1946 	fput_light(sock->file, fput_needed);
1947 out:
1948 	return err;
1949 }
1950 
1951 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1952 
1953 /* Argument list sizes for sys_socketcall */
1954 #define AL(x) ((x) * sizeof(unsigned long))
1955 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1956 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1957 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1958 #undef AL
1959 
1960 /*
1961  *	System call vectors.
1962  *
1963  *	Argument checking cleaned up. Saved 20% in size.
1964  *  This function doesn't need to set the kernel lock because
1965  *  it is set by the callees.
1966  */
1967 
1968 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1969 {
1970 	unsigned long a[6];
1971 	unsigned long a0,a1;
1972 	int err;
1973 
1974 	if(call<1||call>SYS_RECVMSG)
1975 		return -EINVAL;
1976 
1977 	/* copy_from_user should be SMP safe. */
1978 	if (copy_from_user(a, args, nargs[call]))
1979 		return -EFAULT;
1980 
1981 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1982 	if (err)
1983 		return err;
1984 
1985 	a0=a[0];
1986 	a1=a[1];
1987 
1988 	switch(call)
1989 	{
1990 		case SYS_SOCKET:
1991 			err = sys_socket(a0,a1,a[2]);
1992 			break;
1993 		case SYS_BIND:
1994 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1995 			break;
1996 		case SYS_CONNECT:
1997 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1998 			break;
1999 		case SYS_LISTEN:
2000 			err = sys_listen(a0,a1);
2001 			break;
2002 		case SYS_ACCEPT:
2003 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2004 			break;
2005 		case SYS_GETSOCKNAME:
2006 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2007 			break;
2008 		case SYS_GETPEERNAME:
2009 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
2010 			break;
2011 		case SYS_SOCKETPAIR:
2012 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
2013 			break;
2014 		case SYS_SEND:
2015 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2016 			break;
2017 		case SYS_SENDTO:
2018 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
2019 					 (struct sockaddr __user *)a[4], a[5]);
2020 			break;
2021 		case SYS_RECV:
2022 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2023 			break;
2024 		case SYS_RECVFROM:
2025 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2026 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
2027 			break;
2028 		case SYS_SHUTDOWN:
2029 			err = sys_shutdown(a0,a1);
2030 			break;
2031 		case SYS_SETSOCKOPT:
2032 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2033 			break;
2034 		case SYS_GETSOCKOPT:
2035 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2036 			break;
2037 		case SYS_SENDMSG:
2038 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2039 			break;
2040 		case SYS_RECVMSG:
2041 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2042 			break;
2043 		default:
2044 			err = -EINVAL;
2045 			break;
2046 	}
2047 	return err;
2048 }
2049 
2050 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2051 
2052 /*
2053  *	This function is called by a protocol handler that wants to
2054  *	advertise its address family, and have it linked into the
2055  *	SOCKET module.
2056  */
2057 
2058 int sock_register(struct net_proto_family *ops)
2059 {
2060 	int err;
2061 
2062 	if (ops->family >= NPROTO) {
2063 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2064 		return -ENOBUFS;
2065 	}
2066 	net_family_write_lock();
2067 	err = -EEXIST;
2068 	if (net_families[ops->family] == NULL) {
2069 		net_families[ops->family]=ops;
2070 		err = 0;
2071 	}
2072 	net_family_write_unlock();
2073 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2074 	       ops->family);
2075 	return err;
2076 }
2077 
2078 /*
2079  *	This function is called by a protocol handler that wants to
2080  *	remove its address family, and have it unlinked from the
2081  *	SOCKET module.
2082  */
2083 
2084 int sock_unregister(int family)
2085 {
2086 	if (family < 0 || family >= NPROTO)
2087 		return -1;
2088 
2089 	net_family_write_lock();
2090 	net_families[family]=NULL;
2091 	net_family_write_unlock();
2092 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2093 	       family);
2094 	return 0;
2095 }
2096 
2097 static int __init sock_init(void)
2098 {
2099 	/*
2100 	 *	Initialize sock SLAB cache.
2101 	 */
2102 
2103 	sk_init();
2104 
2105 	/*
2106 	 *	Initialize skbuff SLAB cache
2107 	 */
2108 	skb_init();
2109 
2110 	/*
2111 	 *	Initialize the protocols module.
2112 	 */
2113 
2114 	init_inodecache();
2115 	register_filesystem(&sock_fs_type);
2116 	sock_mnt = kern_mount(&sock_fs_type);
2117 
2118 	/* The real protocol initialization is performed in later initcalls.
2119 	 */
2120 
2121 #ifdef CONFIG_NETFILTER
2122 	netfilter_init();
2123 #endif
2124 
2125 	return 0;
2126 }
2127 
2128 core_initcall(sock_init);	/* early initcall */
2129 
2130 #ifdef CONFIG_PROC_FS
2131 void socket_seq_show(struct seq_file *seq)
2132 {
2133 	int cpu;
2134 	int counter = 0;
2135 
2136 	for_each_possible_cpu(cpu)
2137 		counter += per_cpu(sockets_in_use, cpu);
2138 
2139 	/* It can be negative, by the way. 8) */
2140 	if (counter < 0)
2141 		counter = 0;
2142 
2143 	seq_printf(seq, "sockets: used %d\n", counter);
2144 }
2145 #endif /* CONFIG_PROC_FS */
2146 
2147 #ifdef CONFIG_COMPAT
2148 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2149 				unsigned long arg)
2150 {
2151 	struct socket *sock = file->private_data;
2152 	int ret = -ENOIOCTLCMD;
2153 
2154 	if (sock->ops->compat_ioctl)
2155 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2156 
2157 	return ret;
2158 }
2159 #endif
2160 
2161 /* ABI emulation layers need these two */
2162 EXPORT_SYMBOL(move_addr_to_kernel);
2163 EXPORT_SYMBOL(move_addr_to_user);
2164 EXPORT_SYMBOL(sock_create);
2165 EXPORT_SYMBOL(sock_create_kern);
2166 EXPORT_SYMBOL(sock_create_lite);
2167 EXPORT_SYMBOL(sock_map_fd);
2168 EXPORT_SYMBOL(sock_recvmsg);
2169 EXPORT_SYMBOL(sock_register);
2170 EXPORT_SYMBOL(sock_release);
2171 EXPORT_SYMBOL(sock_sendmsg);
2172 EXPORT_SYMBOL(sock_unregister);
2173 EXPORT_SYMBOL(sock_wake_async);
2174 EXPORT_SYMBOL(sockfd_lookup);
2175 EXPORT_SYMBOL(kernel_sendmsg);
2176 EXPORT_SYMBOL(kernel_recvmsg);
2177