1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/divert.h> 82 #include <linux/mount.h> 83 #include <linux/security.h> 84 #include <linux/syscalls.h> 85 #include <linux/compat.h> 86 #include <linux/kmod.h> 87 #include <linux/audit.h> 88 #include <linux/wireless.h> 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #ifdef CONFIG_COMPAT 111 static long compat_sock_ioctl(struct file *file, 112 unsigned int cmd, unsigned long arg); 113 #endif 114 static int sock_fasync(int fd, struct file *filp, int on); 115 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 118 unsigned long count, loff_t *ppos); 119 static ssize_t sock_sendpage(struct file *file, struct page *page, 120 int offset, size_t size, loff_t *ppos, int more); 121 122 /* 123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 124 * in the operation structures but are done directly via the socketcall() multiplexor. 125 */ 126 127 static struct file_operations socket_file_ops = { 128 .owner = THIS_MODULE, 129 .llseek = no_llseek, 130 .aio_read = sock_aio_read, 131 .aio_write = sock_aio_write, 132 .poll = sock_poll, 133 .unlocked_ioctl = sock_ioctl, 134 #ifdef CONFIG_COMPAT 135 .compat_ioctl = compat_sock_ioctl, 136 #endif 137 .mmap = sock_mmap, 138 .open = sock_no_open, /* special open code to disallow open via /proc */ 139 .release = sock_close, 140 .fasync = sock_fasync, 141 .readv = sock_readv, 142 .writev = sock_writev, 143 .sendpage = sock_sendpage, 144 .splice_write = generic_splice_sendpage, 145 }; 146 147 /* 148 * The protocol list. Each protocol is registered in here. 149 */ 150 151 static struct net_proto_family *net_families[NPROTO]; 152 153 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 154 static atomic_t net_family_lockct = ATOMIC_INIT(0); 155 static DEFINE_SPINLOCK(net_family_lock); 156 157 /* The strategy is: modifications net_family vector are short, do not 158 sleep and veeery rare, but read access should be free of any exclusive 159 locks. 160 */ 161 162 static void net_family_write_lock(void) 163 { 164 spin_lock(&net_family_lock); 165 while (atomic_read(&net_family_lockct) != 0) { 166 spin_unlock(&net_family_lock); 167 168 yield(); 169 170 spin_lock(&net_family_lock); 171 } 172 } 173 174 static __inline__ void net_family_write_unlock(void) 175 { 176 spin_unlock(&net_family_lock); 177 } 178 179 static __inline__ void net_family_read_lock(void) 180 { 181 atomic_inc(&net_family_lockct); 182 spin_unlock_wait(&net_family_lock); 183 } 184 185 static __inline__ void net_family_read_unlock(void) 186 { 187 atomic_dec(&net_family_lockct); 188 } 189 190 #else 191 #define net_family_write_lock() do { } while(0) 192 #define net_family_write_unlock() do { } while(0) 193 #define net_family_read_lock() do { } while(0) 194 #define net_family_read_unlock() do { } while(0) 195 #endif 196 197 198 /* 199 * Statistics counters of the socket lists 200 */ 201 202 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 203 204 /* 205 * Support routines. Move socket addresses back and forth across the kernel/user 206 * divide and look after the messy bits. 207 */ 208 209 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 210 16 for IP, 16 for IPX, 211 24 for IPv6, 212 about 80 for AX.25 213 must be at least one bigger than 214 the AF_UNIX size (see net/unix/af_unix.c 215 :unix_mkname()). 216 */ 217 218 /** 219 * move_addr_to_kernel - copy a socket address into kernel space 220 * @uaddr: Address in user space 221 * @kaddr: Address in kernel space 222 * @ulen: Length in user space 223 * 224 * The address is copied into kernel space. If the provided address is 225 * too long an error code of -EINVAL is returned. If the copy gives 226 * invalid addresses -EFAULT is returned. On a success 0 is returned. 227 */ 228 229 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 230 { 231 if(ulen<0||ulen>MAX_SOCK_ADDR) 232 return -EINVAL; 233 if(ulen==0) 234 return 0; 235 if(copy_from_user(kaddr,uaddr,ulen)) 236 return -EFAULT; 237 return audit_sockaddr(ulen, kaddr); 238 } 239 240 /** 241 * move_addr_to_user - copy an address to user space 242 * @kaddr: kernel space address 243 * @klen: length of address in kernel 244 * @uaddr: user space address 245 * @ulen: pointer to user length field 246 * 247 * The value pointed to by ulen on entry is the buffer length available. 248 * This is overwritten with the buffer space used. -EINVAL is returned 249 * if an overlong buffer is specified or a negative buffer size. -EFAULT 250 * is returned if either the buffer or the length field are not 251 * accessible. 252 * After copying the data up to the limit the user specifies, the true 253 * length of the data is written over the length limit the user 254 * specified. Zero is returned for a success. 255 */ 256 257 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 258 { 259 int err; 260 int len; 261 262 if((err=get_user(len, ulen))) 263 return err; 264 if(len>klen) 265 len=klen; 266 if(len<0 || len> MAX_SOCK_ADDR) 267 return -EINVAL; 268 if(len) 269 { 270 if(copy_to_user(uaddr,kaddr,len)) 271 return -EFAULT; 272 } 273 /* 274 * "fromlen shall refer to the value before truncation.." 275 * 1003.1g 276 */ 277 return __put_user(klen, ulen); 278 } 279 280 #define SOCKFS_MAGIC 0x534F434B 281 282 static kmem_cache_t * sock_inode_cachep __read_mostly; 283 284 static struct inode *sock_alloc_inode(struct super_block *sb) 285 { 286 struct socket_alloc *ei; 287 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 288 if (!ei) 289 return NULL; 290 init_waitqueue_head(&ei->socket.wait); 291 292 ei->socket.fasync_list = NULL; 293 ei->socket.state = SS_UNCONNECTED; 294 ei->socket.flags = 0; 295 ei->socket.ops = NULL; 296 ei->socket.sk = NULL; 297 ei->socket.file = NULL; 298 ei->socket.flags = 0; 299 300 return &ei->vfs_inode; 301 } 302 303 static void sock_destroy_inode(struct inode *inode) 304 { 305 kmem_cache_free(sock_inode_cachep, 306 container_of(inode, struct socket_alloc, vfs_inode)); 307 } 308 309 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 310 { 311 struct socket_alloc *ei = (struct socket_alloc *) foo; 312 313 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 314 SLAB_CTOR_CONSTRUCTOR) 315 inode_init_once(&ei->vfs_inode); 316 } 317 318 static int init_inodecache(void) 319 { 320 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 321 sizeof(struct socket_alloc), 322 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 323 SLAB_MEM_SPREAD), 324 init_once, NULL); 325 if (sock_inode_cachep == NULL) 326 return -ENOMEM; 327 return 0; 328 } 329 330 static struct super_operations sockfs_ops = { 331 .alloc_inode = sock_alloc_inode, 332 .destroy_inode =sock_destroy_inode, 333 .statfs = simple_statfs, 334 }; 335 336 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 337 int flags, const char *dev_name, void *data) 338 { 339 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 340 } 341 342 static struct vfsmount *sock_mnt __read_mostly; 343 344 static struct file_system_type sock_fs_type = { 345 .name = "sockfs", 346 .get_sb = sockfs_get_sb, 347 .kill_sb = kill_anon_super, 348 }; 349 static int sockfs_delete_dentry(struct dentry *dentry) 350 { 351 return 1; 352 } 353 static struct dentry_operations sockfs_dentry_operations = { 354 .d_delete = sockfs_delete_dentry, 355 }; 356 357 /* 358 * Obtains the first available file descriptor and sets it up for use. 359 * 360 * These functions create file structures and maps them to fd space 361 * of the current process. On success it returns file descriptor 362 * and file struct implicitly stored in sock->file. 363 * Note that another thread may close file descriptor before we return 364 * from this function. We use the fact that now we do not refer 365 * to socket after mapping. If one day we will need it, this 366 * function will increment ref. count on file by 1. 367 * 368 * In any case returned fd MAY BE not valid! 369 * This race condition is unavoidable 370 * with shared fd spaces, we cannot solve it inside kernel, 371 * but we take care of internal coherence yet. 372 */ 373 374 static int sock_alloc_fd(struct file **filep) 375 { 376 int fd; 377 378 fd = get_unused_fd(); 379 if (likely(fd >= 0)) { 380 struct file *file = get_empty_filp(); 381 382 *filep = file; 383 if (unlikely(!file)) { 384 put_unused_fd(fd); 385 return -ENFILE; 386 } 387 } else 388 *filep = NULL; 389 return fd; 390 } 391 392 static int sock_attach_fd(struct socket *sock, struct file *file) 393 { 394 struct qstr this; 395 char name[32]; 396 397 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 398 this.name = name; 399 this.hash = SOCK_INODE(sock)->i_ino; 400 401 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 402 if (unlikely(!file->f_dentry)) 403 return -ENOMEM; 404 405 file->f_dentry->d_op = &sockfs_dentry_operations; 406 d_add(file->f_dentry, SOCK_INODE(sock)); 407 file->f_vfsmnt = mntget(sock_mnt); 408 file->f_mapping = file->f_dentry->d_inode->i_mapping; 409 410 sock->file = file; 411 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 412 file->f_mode = FMODE_READ | FMODE_WRITE; 413 file->f_flags = O_RDWR; 414 file->f_pos = 0; 415 file->private_data = sock; 416 417 return 0; 418 } 419 420 int sock_map_fd(struct socket *sock) 421 { 422 struct file *newfile; 423 int fd = sock_alloc_fd(&newfile); 424 425 if (likely(fd >= 0)) { 426 int err = sock_attach_fd(sock, newfile); 427 428 if (unlikely(err < 0)) { 429 put_filp(newfile); 430 put_unused_fd(fd); 431 return err; 432 } 433 fd_install(fd, newfile); 434 } 435 return fd; 436 } 437 438 static struct socket *sock_from_file(struct file *file, int *err) 439 { 440 struct inode *inode; 441 struct socket *sock; 442 443 if (file->f_op == &socket_file_ops) 444 return file->private_data; /* set in sock_map_fd */ 445 446 inode = file->f_dentry->d_inode; 447 if (!S_ISSOCK(inode->i_mode)) { 448 *err = -ENOTSOCK; 449 return NULL; 450 } 451 452 sock = SOCKET_I(inode); 453 if (sock->file != file) { 454 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 455 sock->file = file; 456 } 457 return sock; 458 } 459 460 /** 461 * sockfd_lookup - Go from a file number to its socket slot 462 * @fd: file handle 463 * @err: pointer to an error code return 464 * 465 * The file handle passed in is locked and the socket it is bound 466 * too is returned. If an error occurs the err pointer is overwritten 467 * with a negative errno code and NULL is returned. The function checks 468 * for both invalid handles and passing a handle which is not a socket. 469 * 470 * On a success the socket object pointer is returned. 471 */ 472 473 struct socket *sockfd_lookup(int fd, int *err) 474 { 475 struct file *file; 476 struct socket *sock; 477 478 if (!(file = fget(fd))) { 479 *err = -EBADF; 480 return NULL; 481 } 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct file *file; 491 struct socket *sock; 492 493 *err = -EBADF; 494 file = fget_light(fd, fput_needed); 495 if (file) { 496 sock = sock_from_file(file, err); 497 if (sock) 498 return sock; 499 fput_light(file, *fput_needed); 500 } 501 return NULL; 502 } 503 504 /** 505 * sock_alloc - allocate a socket 506 * 507 * Allocate a new inode and socket object. The two are bound together 508 * and initialised. The socket is then returned. If we are out of inodes 509 * NULL is returned. 510 */ 511 512 static struct socket *sock_alloc(void) 513 { 514 struct inode * inode; 515 struct socket * sock; 516 517 inode = new_inode(sock_mnt->mnt_sb); 518 if (!inode) 519 return NULL; 520 521 sock = SOCKET_I(inode); 522 523 inode->i_mode = S_IFSOCK|S_IRWXUGO; 524 inode->i_uid = current->fsuid; 525 inode->i_gid = current->fsgid; 526 527 get_cpu_var(sockets_in_use)++; 528 put_cpu_var(sockets_in_use); 529 return sock; 530 } 531 532 /* 533 * In theory you can't get an open on this inode, but /proc provides 534 * a back door. Remember to keep it shut otherwise you'll let the 535 * creepy crawlies in. 536 */ 537 538 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 539 { 540 return -ENXIO; 541 } 542 543 const struct file_operations bad_sock_fops = { 544 .owner = THIS_MODULE, 545 .open = sock_no_open, 546 }; 547 548 /** 549 * sock_release - close a socket 550 * @sock: socket to close 551 * 552 * The socket is released from the protocol stack if it has a release 553 * callback, and the inode is then released if the socket is bound to 554 * an inode not a file. 555 */ 556 557 void sock_release(struct socket *sock) 558 { 559 if (sock->ops) { 560 struct module *owner = sock->ops->owner; 561 562 sock->ops->release(sock); 563 sock->ops = NULL; 564 module_put(owner); 565 } 566 567 if (sock->fasync_list) 568 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 569 570 get_cpu_var(sockets_in_use)--; 571 put_cpu_var(sockets_in_use); 572 if (!sock->file) { 573 iput(SOCK_INODE(sock)); 574 return; 575 } 576 sock->file=NULL; 577 } 578 579 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 580 struct msghdr *msg, size_t size) 581 { 582 struct sock_iocb *si = kiocb_to_siocb(iocb); 583 int err; 584 585 si->sock = sock; 586 si->scm = NULL; 587 si->msg = msg; 588 si->size = size; 589 590 err = security_socket_sendmsg(sock, msg, size); 591 if (err) 592 return err; 593 594 return sock->ops->sendmsg(iocb, sock, msg, size); 595 } 596 597 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 598 { 599 struct kiocb iocb; 600 struct sock_iocb siocb; 601 int ret; 602 603 init_sync_kiocb(&iocb, NULL); 604 iocb.private = &siocb; 605 ret = __sock_sendmsg(&iocb, sock, msg, size); 606 if (-EIOCBQUEUED == ret) 607 ret = wait_on_sync_kiocb(&iocb); 608 return ret; 609 } 610 611 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 612 struct kvec *vec, size_t num, size_t size) 613 { 614 mm_segment_t oldfs = get_fs(); 615 int result; 616 617 set_fs(KERNEL_DS); 618 /* 619 * the following is safe, since for compiler definitions of kvec and 620 * iovec are identical, yielding the same in-core layout and alignment 621 */ 622 msg->msg_iov = (struct iovec *)vec, 623 msg->msg_iovlen = num; 624 result = sock_sendmsg(sock, msg, size); 625 set_fs(oldfs); 626 return result; 627 } 628 629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 630 struct msghdr *msg, size_t size, int flags) 631 { 632 int err; 633 struct sock_iocb *si = kiocb_to_siocb(iocb); 634 635 si->sock = sock; 636 si->scm = NULL; 637 si->msg = msg; 638 si->size = size; 639 si->flags = flags; 640 641 err = security_socket_recvmsg(sock, msg, size, flags); 642 if (err) 643 return err; 644 645 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 646 } 647 648 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 649 size_t size, int flags) 650 { 651 struct kiocb iocb; 652 struct sock_iocb siocb; 653 int ret; 654 655 init_sync_kiocb(&iocb, NULL); 656 iocb.private = &siocb; 657 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 658 if (-EIOCBQUEUED == ret) 659 ret = wait_on_sync_kiocb(&iocb); 660 return ret; 661 } 662 663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 664 struct kvec *vec, size_t num, 665 size_t size, int flags) 666 { 667 mm_segment_t oldfs = get_fs(); 668 int result; 669 670 set_fs(KERNEL_DS); 671 /* 672 * the following is safe, since for compiler definitions of kvec and 673 * iovec are identical, yielding the same in-core layout and alignment 674 */ 675 msg->msg_iov = (struct iovec *)vec, 676 msg->msg_iovlen = num; 677 result = sock_recvmsg(sock, msg, size, flags); 678 set_fs(oldfs); 679 return result; 680 } 681 682 static void sock_aio_dtor(struct kiocb *iocb) 683 { 684 kfree(iocb->private); 685 } 686 687 static ssize_t sock_sendpage(struct file *file, struct page *page, 688 int offset, size_t size, loff_t *ppos, int more) 689 { 690 struct socket *sock; 691 int flags; 692 693 sock = file->private_data; 694 695 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 696 if (more) 697 flags |= MSG_MORE; 698 699 return sock->ops->sendpage(sock, page, offset, size, flags); 700 } 701 702 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 703 char __user *ubuf, size_t size, struct sock_iocb *siocb) 704 { 705 if (!is_sync_kiocb(iocb)) { 706 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 707 if (!siocb) 708 return NULL; 709 iocb->ki_dtor = sock_aio_dtor; 710 } 711 712 siocb->kiocb = iocb; 713 siocb->async_iov.iov_base = ubuf; 714 siocb->async_iov.iov_len = size; 715 716 iocb->private = siocb; 717 return siocb; 718 } 719 720 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 721 struct file *file, struct iovec *iov, unsigned long nr_segs) 722 { 723 struct socket *sock = file->private_data; 724 size_t size = 0; 725 int i; 726 727 for (i = 0 ; i < nr_segs ; i++) 728 size += iov[i].iov_len; 729 730 msg->msg_name = NULL; 731 msg->msg_namelen = 0; 732 msg->msg_control = NULL; 733 msg->msg_controllen = 0; 734 msg->msg_iov = (struct iovec *) iov; 735 msg->msg_iovlen = nr_segs; 736 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 737 738 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 739 } 740 741 static ssize_t sock_readv(struct file *file, const struct iovec *iov, 742 unsigned long nr_segs, loff_t *ppos) 743 { 744 struct kiocb iocb; 745 struct sock_iocb siocb; 746 struct msghdr msg; 747 int ret; 748 749 init_sync_kiocb(&iocb, NULL); 750 iocb.private = &siocb; 751 752 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 753 if (-EIOCBQUEUED == ret) 754 ret = wait_on_sync_kiocb(&iocb); 755 return ret; 756 } 757 758 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 759 size_t count, loff_t pos) 760 { 761 struct sock_iocb siocb, *x; 762 763 if (pos != 0) 764 return -ESPIPE; 765 if (count == 0) /* Match SYS5 behaviour */ 766 return 0; 767 768 x = alloc_sock_iocb(iocb, ubuf, count, &siocb); 769 if (!x) 770 return -ENOMEM; 771 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, 772 &x->async_iov, 1); 773 } 774 775 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 776 struct file *file, struct iovec *iov, unsigned long nr_segs) 777 { 778 struct socket *sock = file->private_data; 779 size_t size = 0; 780 int i; 781 782 for (i = 0 ; i < nr_segs ; i++) 783 size += iov[i].iov_len; 784 785 msg->msg_name = NULL; 786 msg->msg_namelen = 0; 787 msg->msg_control = NULL; 788 msg->msg_controllen = 0; 789 msg->msg_iov = (struct iovec *) iov; 790 msg->msg_iovlen = nr_segs; 791 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 792 if (sock->type == SOCK_SEQPACKET) 793 msg->msg_flags |= MSG_EOR; 794 795 return __sock_sendmsg(iocb, sock, msg, size); 796 } 797 798 static ssize_t sock_writev(struct file *file, const struct iovec *iov, 799 unsigned long nr_segs, loff_t *ppos) 800 { 801 struct msghdr msg; 802 struct kiocb iocb; 803 struct sock_iocb siocb; 804 int ret; 805 806 init_sync_kiocb(&iocb, NULL); 807 iocb.private = &siocb; 808 809 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 810 if (-EIOCBQUEUED == ret) 811 ret = wait_on_sync_kiocb(&iocb); 812 return ret; 813 } 814 815 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 816 size_t count, loff_t pos) 817 { 818 struct sock_iocb siocb, *x; 819 820 if (pos != 0) 821 return -ESPIPE; 822 if (count == 0) /* Match SYS5 behaviour */ 823 return 0; 824 825 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb); 826 if (!x) 827 return -ENOMEM; 828 829 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, 830 &x->async_iov, 1); 831 } 832 833 834 /* 835 * Atomic setting of ioctl hooks to avoid race 836 * with module unload. 837 */ 838 839 static DEFINE_MUTEX(br_ioctl_mutex); 840 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 841 842 void brioctl_set(int (*hook)(unsigned int, void __user *)) 843 { 844 mutex_lock(&br_ioctl_mutex); 845 br_ioctl_hook = hook; 846 mutex_unlock(&br_ioctl_mutex); 847 } 848 EXPORT_SYMBOL(brioctl_set); 849 850 static DEFINE_MUTEX(vlan_ioctl_mutex); 851 static int (*vlan_ioctl_hook)(void __user *arg); 852 853 void vlan_ioctl_set(int (*hook)(void __user *)) 854 { 855 mutex_lock(&vlan_ioctl_mutex); 856 vlan_ioctl_hook = hook; 857 mutex_unlock(&vlan_ioctl_mutex); 858 } 859 EXPORT_SYMBOL(vlan_ioctl_set); 860 861 static DEFINE_MUTEX(dlci_ioctl_mutex); 862 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 863 864 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 865 { 866 mutex_lock(&dlci_ioctl_mutex); 867 dlci_ioctl_hook = hook; 868 mutex_unlock(&dlci_ioctl_mutex); 869 } 870 EXPORT_SYMBOL(dlci_ioctl_set); 871 872 /* 873 * With an ioctl, arg may well be a user mode pointer, but we don't know 874 * what to do with it - that's up to the protocol still. 875 */ 876 877 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 878 { 879 struct socket *sock; 880 void __user *argp = (void __user *)arg; 881 int pid, err; 882 883 sock = file->private_data; 884 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 885 err = dev_ioctl(cmd, argp); 886 } else 887 #ifdef CONFIG_WIRELESS_EXT 888 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 889 err = dev_ioctl(cmd, argp); 890 } else 891 #endif /* CONFIG_WIRELESS_EXT */ 892 switch (cmd) { 893 case FIOSETOWN: 894 case SIOCSPGRP: 895 err = -EFAULT; 896 if (get_user(pid, (int __user *)argp)) 897 break; 898 err = f_setown(sock->file, pid, 1); 899 break; 900 case FIOGETOWN: 901 case SIOCGPGRP: 902 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 903 break; 904 case SIOCGIFBR: 905 case SIOCSIFBR: 906 case SIOCBRADDBR: 907 case SIOCBRDELBR: 908 err = -ENOPKG; 909 if (!br_ioctl_hook) 910 request_module("bridge"); 911 912 mutex_lock(&br_ioctl_mutex); 913 if (br_ioctl_hook) 914 err = br_ioctl_hook(cmd, argp); 915 mutex_unlock(&br_ioctl_mutex); 916 break; 917 case SIOCGIFVLAN: 918 case SIOCSIFVLAN: 919 err = -ENOPKG; 920 if (!vlan_ioctl_hook) 921 request_module("8021q"); 922 923 mutex_lock(&vlan_ioctl_mutex); 924 if (vlan_ioctl_hook) 925 err = vlan_ioctl_hook(argp); 926 mutex_unlock(&vlan_ioctl_mutex); 927 break; 928 case SIOCGIFDIVERT: 929 case SIOCSIFDIVERT: 930 /* Convert this to call through a hook */ 931 err = divert_ioctl(cmd, argp); 932 break; 933 case SIOCADDDLCI: 934 case SIOCDELDLCI: 935 err = -ENOPKG; 936 if (!dlci_ioctl_hook) 937 request_module("dlci"); 938 939 if (dlci_ioctl_hook) { 940 mutex_lock(&dlci_ioctl_mutex); 941 err = dlci_ioctl_hook(cmd, argp); 942 mutex_unlock(&dlci_ioctl_mutex); 943 } 944 break; 945 default: 946 err = sock->ops->ioctl(sock, cmd, arg); 947 948 /* 949 * If this ioctl is unknown try to hand it down 950 * to the NIC driver. 951 */ 952 if (err == -ENOIOCTLCMD) 953 err = dev_ioctl(cmd, argp); 954 break; 955 } 956 return err; 957 } 958 959 int sock_create_lite(int family, int type, int protocol, struct socket **res) 960 { 961 int err; 962 struct socket *sock = NULL; 963 964 err = security_socket_create(family, type, protocol, 1); 965 if (err) 966 goto out; 967 968 sock = sock_alloc(); 969 if (!sock) { 970 err = -ENOMEM; 971 goto out; 972 } 973 974 security_socket_post_create(sock, family, type, protocol, 1); 975 sock->type = type; 976 out: 977 *res = sock; 978 return err; 979 } 980 981 /* No kernel lock held - perfect */ 982 static unsigned int sock_poll(struct file *file, poll_table * wait) 983 { 984 struct socket *sock; 985 986 /* 987 * We can't return errors to poll, so it's either yes or no. 988 */ 989 sock = file->private_data; 990 return sock->ops->poll(file, sock, wait); 991 } 992 993 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 994 { 995 struct socket *sock = file->private_data; 996 997 return sock->ops->mmap(file, sock, vma); 998 } 999 1000 static int sock_close(struct inode *inode, struct file *filp) 1001 { 1002 /* 1003 * It was possible the inode is NULL we were 1004 * closing an unfinished socket. 1005 */ 1006 1007 if (!inode) 1008 { 1009 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1010 return 0; 1011 } 1012 sock_fasync(-1, filp, 0); 1013 sock_release(SOCKET_I(inode)); 1014 return 0; 1015 } 1016 1017 /* 1018 * Update the socket async list 1019 * 1020 * Fasync_list locking strategy. 1021 * 1022 * 1. fasync_list is modified only under process context socket lock 1023 * i.e. under semaphore. 1024 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1025 * or under socket lock. 1026 * 3. fasync_list can be used from softirq context, so that 1027 * modification under socket lock have to be enhanced with 1028 * write_lock_bh(&sk->sk_callback_lock). 1029 * --ANK (990710) 1030 */ 1031 1032 static int sock_fasync(int fd, struct file *filp, int on) 1033 { 1034 struct fasync_struct *fa, *fna=NULL, **prev; 1035 struct socket *sock; 1036 struct sock *sk; 1037 1038 if (on) 1039 { 1040 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1041 if(fna==NULL) 1042 return -ENOMEM; 1043 } 1044 1045 sock = filp->private_data; 1046 1047 if ((sk=sock->sk) == NULL) { 1048 kfree(fna); 1049 return -EINVAL; 1050 } 1051 1052 lock_sock(sk); 1053 1054 prev=&(sock->fasync_list); 1055 1056 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1057 if (fa->fa_file==filp) 1058 break; 1059 1060 if(on) 1061 { 1062 if(fa!=NULL) 1063 { 1064 write_lock_bh(&sk->sk_callback_lock); 1065 fa->fa_fd=fd; 1066 write_unlock_bh(&sk->sk_callback_lock); 1067 1068 kfree(fna); 1069 goto out; 1070 } 1071 fna->fa_file=filp; 1072 fna->fa_fd=fd; 1073 fna->magic=FASYNC_MAGIC; 1074 fna->fa_next=sock->fasync_list; 1075 write_lock_bh(&sk->sk_callback_lock); 1076 sock->fasync_list=fna; 1077 write_unlock_bh(&sk->sk_callback_lock); 1078 } 1079 else 1080 { 1081 if (fa!=NULL) 1082 { 1083 write_lock_bh(&sk->sk_callback_lock); 1084 *prev=fa->fa_next; 1085 write_unlock_bh(&sk->sk_callback_lock); 1086 kfree(fa); 1087 } 1088 } 1089 1090 out: 1091 release_sock(sock->sk); 1092 return 0; 1093 } 1094 1095 /* This function may be called only under socket lock or callback_lock */ 1096 1097 int sock_wake_async(struct socket *sock, int how, int band) 1098 { 1099 if (!sock || !sock->fasync_list) 1100 return -1; 1101 switch (how) 1102 { 1103 case 1: 1104 1105 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1106 break; 1107 goto call_kill; 1108 case 2: 1109 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1110 break; 1111 /* fall through */ 1112 case 0: 1113 call_kill: 1114 __kill_fasync(sock->fasync_list, SIGIO, band); 1115 break; 1116 case 3: 1117 __kill_fasync(sock->fasync_list, SIGURG, band); 1118 } 1119 return 0; 1120 } 1121 1122 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1123 { 1124 int err; 1125 struct socket *sock; 1126 1127 /* 1128 * Check protocol is in range 1129 */ 1130 if (family < 0 || family >= NPROTO) 1131 return -EAFNOSUPPORT; 1132 if (type < 0 || type >= SOCK_MAX) 1133 return -EINVAL; 1134 1135 /* Compatibility. 1136 1137 This uglymoron is moved from INET layer to here to avoid 1138 deadlock in module load. 1139 */ 1140 if (family == PF_INET && type == SOCK_PACKET) { 1141 static int warned; 1142 if (!warned) { 1143 warned = 1; 1144 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1145 } 1146 family = PF_PACKET; 1147 } 1148 1149 err = security_socket_create(family, type, protocol, kern); 1150 if (err) 1151 return err; 1152 1153 #if defined(CONFIG_KMOD) 1154 /* Attempt to load a protocol module if the find failed. 1155 * 1156 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1157 * requested real, full-featured networking support upon configuration. 1158 * Otherwise module support will break! 1159 */ 1160 if (net_families[family]==NULL) 1161 { 1162 request_module("net-pf-%d",family); 1163 } 1164 #endif 1165 1166 net_family_read_lock(); 1167 if (net_families[family] == NULL) { 1168 err = -EAFNOSUPPORT; 1169 goto out; 1170 } 1171 1172 /* 1173 * Allocate the socket and allow the family to set things up. if 1174 * the protocol is 0, the family is instructed to select an appropriate 1175 * default. 1176 */ 1177 1178 if (!(sock = sock_alloc())) { 1179 printk(KERN_WARNING "socket: no more sockets\n"); 1180 err = -ENFILE; /* Not exactly a match, but its the 1181 closest posix thing */ 1182 goto out; 1183 } 1184 1185 sock->type = type; 1186 1187 /* 1188 * We will call the ->create function, that possibly is in a loadable 1189 * module, so we have to bump that loadable module refcnt first. 1190 */ 1191 err = -EAFNOSUPPORT; 1192 if (!try_module_get(net_families[family]->owner)) 1193 goto out_release; 1194 1195 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1196 sock->ops = NULL; 1197 goto out_module_put; 1198 } 1199 1200 /* 1201 * Now to bump the refcnt of the [loadable] module that owns this 1202 * socket at sock_release time we decrement its refcnt. 1203 */ 1204 if (!try_module_get(sock->ops->owner)) { 1205 sock->ops = NULL; 1206 goto out_module_put; 1207 } 1208 /* 1209 * Now that we're done with the ->create function, the [loadable] 1210 * module can have its refcnt decremented 1211 */ 1212 module_put(net_families[family]->owner); 1213 *res = sock; 1214 security_socket_post_create(sock, family, type, protocol, kern); 1215 1216 out: 1217 net_family_read_unlock(); 1218 return err; 1219 out_module_put: 1220 module_put(net_families[family]->owner); 1221 out_release: 1222 sock_release(sock); 1223 goto out; 1224 } 1225 1226 int sock_create(int family, int type, int protocol, struct socket **res) 1227 { 1228 return __sock_create(family, type, protocol, res, 0); 1229 } 1230 1231 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1232 { 1233 return __sock_create(family, type, protocol, res, 1); 1234 } 1235 1236 asmlinkage long sys_socket(int family, int type, int protocol) 1237 { 1238 int retval; 1239 struct socket *sock; 1240 1241 retval = sock_create(family, type, protocol, &sock); 1242 if (retval < 0) 1243 goto out; 1244 1245 retval = sock_map_fd(sock); 1246 if (retval < 0) 1247 goto out_release; 1248 1249 out: 1250 /* It may be already another descriptor 8) Not kernel problem. */ 1251 return retval; 1252 1253 out_release: 1254 sock_release(sock); 1255 return retval; 1256 } 1257 1258 /* 1259 * Create a pair of connected sockets. 1260 */ 1261 1262 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1263 { 1264 struct socket *sock1, *sock2; 1265 int fd1, fd2, err; 1266 1267 /* 1268 * Obtain the first socket and check if the underlying protocol 1269 * supports the socketpair call. 1270 */ 1271 1272 err = sock_create(family, type, protocol, &sock1); 1273 if (err < 0) 1274 goto out; 1275 1276 err = sock_create(family, type, protocol, &sock2); 1277 if (err < 0) 1278 goto out_release_1; 1279 1280 err = sock1->ops->socketpair(sock1, sock2); 1281 if (err < 0) 1282 goto out_release_both; 1283 1284 fd1 = fd2 = -1; 1285 1286 err = sock_map_fd(sock1); 1287 if (err < 0) 1288 goto out_release_both; 1289 fd1 = err; 1290 1291 err = sock_map_fd(sock2); 1292 if (err < 0) 1293 goto out_close_1; 1294 fd2 = err; 1295 1296 /* fd1 and fd2 may be already another descriptors. 1297 * Not kernel problem. 1298 */ 1299 1300 err = put_user(fd1, &usockvec[0]); 1301 if (!err) 1302 err = put_user(fd2, &usockvec[1]); 1303 if (!err) 1304 return 0; 1305 1306 sys_close(fd2); 1307 sys_close(fd1); 1308 return err; 1309 1310 out_close_1: 1311 sock_release(sock2); 1312 sys_close(fd1); 1313 return err; 1314 1315 out_release_both: 1316 sock_release(sock2); 1317 out_release_1: 1318 sock_release(sock1); 1319 out: 1320 return err; 1321 } 1322 1323 1324 /* 1325 * Bind a name to a socket. Nothing much to do here since it's 1326 * the protocol's responsibility to handle the local address. 1327 * 1328 * We move the socket address to kernel space before we call 1329 * the protocol layer (having also checked the address is ok). 1330 */ 1331 1332 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1333 { 1334 struct socket *sock; 1335 char address[MAX_SOCK_ADDR]; 1336 int err, fput_needed; 1337 1338 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1339 { 1340 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1341 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1342 if (!err) 1343 err = sock->ops->bind(sock, 1344 (struct sockaddr *)address, addrlen); 1345 } 1346 fput_light(sock->file, fput_needed); 1347 } 1348 return err; 1349 } 1350 1351 1352 /* 1353 * Perform a listen. Basically, we allow the protocol to do anything 1354 * necessary for a listen, and if that works, we mark the socket as 1355 * ready for listening. 1356 */ 1357 1358 int sysctl_somaxconn = SOMAXCONN; 1359 1360 asmlinkage long sys_listen(int fd, int backlog) 1361 { 1362 struct socket *sock; 1363 int err, fput_needed; 1364 1365 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1366 if ((unsigned) backlog > sysctl_somaxconn) 1367 backlog = sysctl_somaxconn; 1368 1369 err = security_socket_listen(sock, backlog); 1370 if (!err) 1371 err = sock->ops->listen(sock, backlog); 1372 1373 fput_light(sock->file, fput_needed); 1374 } 1375 return err; 1376 } 1377 1378 1379 /* 1380 * For accept, we attempt to create a new socket, set up the link 1381 * with the client, wake up the client, then return the new 1382 * connected fd. We collect the address of the connector in kernel 1383 * space and move it to user at the very end. This is unclean because 1384 * we open the socket then return an error. 1385 * 1386 * 1003.1g adds the ability to recvmsg() to query connection pending 1387 * status to recvmsg. We need to add that support in a way thats 1388 * clean when we restucture accept also. 1389 */ 1390 1391 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1392 { 1393 struct socket *sock, *newsock; 1394 struct file *newfile; 1395 int err, len, newfd, fput_needed; 1396 char address[MAX_SOCK_ADDR]; 1397 1398 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1399 if (!sock) 1400 goto out; 1401 1402 err = -ENFILE; 1403 if (!(newsock = sock_alloc())) 1404 goto out_put; 1405 1406 newsock->type = sock->type; 1407 newsock->ops = sock->ops; 1408 1409 /* 1410 * We don't need try_module_get here, as the listening socket (sock) 1411 * has the protocol module (sock->ops->owner) held. 1412 */ 1413 __module_get(newsock->ops->owner); 1414 1415 newfd = sock_alloc_fd(&newfile); 1416 if (unlikely(newfd < 0)) { 1417 err = newfd; 1418 sock_release(newsock); 1419 goto out_put; 1420 } 1421 1422 err = sock_attach_fd(newsock, newfile); 1423 if (err < 0) 1424 goto out_fd; 1425 1426 err = security_socket_accept(sock, newsock); 1427 if (err) 1428 goto out_fd; 1429 1430 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1431 if (err < 0) 1432 goto out_fd; 1433 1434 if (upeer_sockaddr) { 1435 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1436 err = -ECONNABORTED; 1437 goto out_fd; 1438 } 1439 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1440 if (err < 0) 1441 goto out_fd; 1442 } 1443 1444 /* File flags are not inherited via accept() unlike another OSes. */ 1445 1446 fd_install(newfd, newfile); 1447 err = newfd; 1448 1449 security_socket_post_accept(sock, newsock); 1450 1451 out_put: 1452 fput_light(sock->file, fput_needed); 1453 out: 1454 return err; 1455 out_fd: 1456 fput(newfile); 1457 put_unused_fd(newfd); 1458 goto out_put; 1459 } 1460 1461 1462 /* 1463 * Attempt to connect to a socket with the server address. The address 1464 * is in user space so we verify it is OK and move it to kernel space. 1465 * 1466 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1467 * break bindings 1468 * 1469 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1470 * other SEQPACKET protocols that take time to connect() as it doesn't 1471 * include the -EINPROGRESS status for such sockets. 1472 */ 1473 1474 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1475 { 1476 struct socket *sock; 1477 char address[MAX_SOCK_ADDR]; 1478 int err, fput_needed; 1479 1480 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1481 if (!sock) 1482 goto out; 1483 err = move_addr_to_kernel(uservaddr, addrlen, address); 1484 if (err < 0) 1485 goto out_put; 1486 1487 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1488 if (err) 1489 goto out_put; 1490 1491 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1492 sock->file->f_flags); 1493 out_put: 1494 fput_light(sock->file, fput_needed); 1495 out: 1496 return err; 1497 } 1498 1499 /* 1500 * Get the local address ('name') of a socket object. Move the obtained 1501 * name to user space. 1502 */ 1503 1504 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1505 { 1506 struct socket *sock; 1507 char address[MAX_SOCK_ADDR]; 1508 int len, err, fput_needed; 1509 1510 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1511 if (!sock) 1512 goto out; 1513 1514 err = security_socket_getsockname(sock); 1515 if (err) 1516 goto out_put; 1517 1518 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1519 if (err) 1520 goto out_put; 1521 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1522 1523 out_put: 1524 fput_light(sock->file, fput_needed); 1525 out: 1526 return err; 1527 } 1528 1529 /* 1530 * Get the remote address ('name') of a socket object. Move the obtained 1531 * name to user space. 1532 */ 1533 1534 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1535 { 1536 struct socket *sock; 1537 char address[MAX_SOCK_ADDR]; 1538 int len, err, fput_needed; 1539 1540 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1541 err = security_socket_getpeername(sock); 1542 if (err) { 1543 fput_light(sock->file, fput_needed); 1544 return err; 1545 } 1546 1547 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1548 if (!err) 1549 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1550 fput_light(sock->file, fput_needed); 1551 } 1552 return err; 1553 } 1554 1555 /* 1556 * Send a datagram to a given address. We move the address into kernel 1557 * space and check the user space data area is readable before invoking 1558 * the protocol. 1559 */ 1560 1561 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1562 struct sockaddr __user *addr, int addr_len) 1563 { 1564 struct socket *sock; 1565 char address[MAX_SOCK_ADDR]; 1566 int err; 1567 struct msghdr msg; 1568 struct iovec iov; 1569 int fput_needed; 1570 struct file *sock_file; 1571 1572 sock_file = fget_light(fd, &fput_needed); 1573 if (!sock_file) 1574 return -EBADF; 1575 1576 sock = sock_from_file(sock_file, &err); 1577 if (!sock) 1578 goto out_put; 1579 iov.iov_base=buff; 1580 iov.iov_len=len; 1581 msg.msg_name=NULL; 1582 msg.msg_iov=&iov; 1583 msg.msg_iovlen=1; 1584 msg.msg_control=NULL; 1585 msg.msg_controllen=0; 1586 msg.msg_namelen=0; 1587 if (addr) { 1588 err = move_addr_to_kernel(addr, addr_len, address); 1589 if (err < 0) 1590 goto out_put; 1591 msg.msg_name=address; 1592 msg.msg_namelen=addr_len; 1593 } 1594 if (sock->file->f_flags & O_NONBLOCK) 1595 flags |= MSG_DONTWAIT; 1596 msg.msg_flags = flags; 1597 err = sock_sendmsg(sock, &msg, len); 1598 1599 out_put: 1600 fput_light(sock_file, fput_needed); 1601 return err; 1602 } 1603 1604 /* 1605 * Send a datagram down a socket. 1606 */ 1607 1608 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1609 { 1610 return sys_sendto(fd, buff, len, flags, NULL, 0); 1611 } 1612 1613 /* 1614 * Receive a frame from the socket and optionally record the address of the 1615 * sender. We verify the buffers are writable and if needed move the 1616 * sender address from kernel to user space. 1617 */ 1618 1619 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1620 struct sockaddr __user *addr, int __user *addr_len) 1621 { 1622 struct socket *sock; 1623 struct iovec iov; 1624 struct msghdr msg; 1625 char address[MAX_SOCK_ADDR]; 1626 int err,err2; 1627 struct file *sock_file; 1628 int fput_needed; 1629 1630 sock_file = fget_light(fd, &fput_needed); 1631 if (!sock_file) 1632 return -EBADF; 1633 1634 sock = sock_from_file(sock_file, &err); 1635 if (!sock) 1636 goto out; 1637 1638 msg.msg_control=NULL; 1639 msg.msg_controllen=0; 1640 msg.msg_iovlen=1; 1641 msg.msg_iov=&iov; 1642 iov.iov_len=size; 1643 iov.iov_base=ubuf; 1644 msg.msg_name=address; 1645 msg.msg_namelen=MAX_SOCK_ADDR; 1646 if (sock->file->f_flags & O_NONBLOCK) 1647 flags |= MSG_DONTWAIT; 1648 err=sock_recvmsg(sock, &msg, size, flags); 1649 1650 if(err >= 0 && addr != NULL) 1651 { 1652 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1653 if(err2<0) 1654 err=err2; 1655 } 1656 out: 1657 fput_light(sock_file, fput_needed); 1658 return err; 1659 } 1660 1661 /* 1662 * Receive a datagram from a socket. 1663 */ 1664 1665 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1666 { 1667 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1668 } 1669 1670 /* 1671 * Set a socket option. Because we don't know the option lengths we have 1672 * to pass the user mode parameter for the protocols to sort out. 1673 */ 1674 1675 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1676 { 1677 int err, fput_needed; 1678 struct socket *sock; 1679 1680 if (optlen < 0) 1681 return -EINVAL; 1682 1683 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) 1684 { 1685 err = security_socket_setsockopt(sock,level,optname); 1686 if (err) 1687 goto out_put; 1688 1689 if (level == SOL_SOCKET) 1690 err=sock_setsockopt(sock,level,optname,optval,optlen); 1691 else 1692 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1693 out_put: 1694 fput_light(sock->file, fput_needed); 1695 } 1696 return err; 1697 } 1698 1699 /* 1700 * Get a socket option. Because we don't know the option lengths we have 1701 * to pass a user mode parameter for the protocols to sort out. 1702 */ 1703 1704 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1705 { 1706 int err, fput_needed; 1707 struct socket *sock; 1708 1709 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1710 err = security_socket_getsockopt(sock, level, optname); 1711 if (err) 1712 goto out_put; 1713 1714 if (level == SOL_SOCKET) 1715 err=sock_getsockopt(sock,level,optname,optval,optlen); 1716 else 1717 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1718 out_put: 1719 fput_light(sock->file, fput_needed); 1720 } 1721 return err; 1722 } 1723 1724 1725 /* 1726 * Shutdown a socket. 1727 */ 1728 1729 asmlinkage long sys_shutdown(int fd, int how) 1730 { 1731 int err, fput_needed; 1732 struct socket *sock; 1733 1734 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1735 { 1736 err = security_socket_shutdown(sock, how); 1737 if (!err) 1738 err = sock->ops->shutdown(sock, how); 1739 fput_light(sock->file, fput_needed); 1740 } 1741 return err; 1742 } 1743 1744 /* A couple of helpful macros for getting the address of the 32/64 bit 1745 * fields which are the same type (int / unsigned) on our platforms. 1746 */ 1747 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1748 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1749 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1750 1751 1752 /* 1753 * BSD sendmsg interface 1754 */ 1755 1756 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1757 { 1758 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1759 struct socket *sock; 1760 char address[MAX_SOCK_ADDR]; 1761 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1762 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1763 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1764 /* 20 is size of ipv6_pktinfo */ 1765 unsigned char *ctl_buf = ctl; 1766 struct msghdr msg_sys; 1767 int err, ctl_len, iov_size, total_len; 1768 int fput_needed; 1769 1770 err = -EFAULT; 1771 if (MSG_CMSG_COMPAT & flags) { 1772 if (get_compat_msghdr(&msg_sys, msg_compat)) 1773 return -EFAULT; 1774 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1775 return -EFAULT; 1776 1777 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1778 if (!sock) 1779 goto out; 1780 1781 /* do not move before msg_sys is valid */ 1782 err = -EMSGSIZE; 1783 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1784 goto out_put; 1785 1786 /* Check whether to allocate the iovec area*/ 1787 err = -ENOMEM; 1788 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1789 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1790 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1791 if (!iov) 1792 goto out_put; 1793 } 1794 1795 /* This will also move the address data into kernel space */ 1796 if (MSG_CMSG_COMPAT & flags) { 1797 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1798 } else 1799 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1800 if (err < 0) 1801 goto out_freeiov; 1802 total_len = err; 1803 1804 err = -ENOBUFS; 1805 1806 if (msg_sys.msg_controllen > INT_MAX) 1807 goto out_freeiov; 1808 ctl_len = msg_sys.msg_controllen; 1809 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1810 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1811 if (err) 1812 goto out_freeiov; 1813 ctl_buf = msg_sys.msg_control; 1814 ctl_len = msg_sys.msg_controllen; 1815 } else if (ctl_len) { 1816 if (ctl_len > sizeof(ctl)) 1817 { 1818 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1819 if (ctl_buf == NULL) 1820 goto out_freeiov; 1821 } 1822 err = -EFAULT; 1823 /* 1824 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1825 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1826 * checking falls down on this. 1827 */ 1828 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1829 goto out_freectl; 1830 msg_sys.msg_control = ctl_buf; 1831 } 1832 msg_sys.msg_flags = flags; 1833 1834 if (sock->file->f_flags & O_NONBLOCK) 1835 msg_sys.msg_flags |= MSG_DONTWAIT; 1836 err = sock_sendmsg(sock, &msg_sys, total_len); 1837 1838 out_freectl: 1839 if (ctl_buf != ctl) 1840 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1841 out_freeiov: 1842 if (iov != iovstack) 1843 sock_kfree_s(sock->sk, iov, iov_size); 1844 out_put: 1845 fput_light(sock->file, fput_needed); 1846 out: 1847 return err; 1848 } 1849 1850 /* 1851 * BSD recvmsg interface 1852 */ 1853 1854 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1855 { 1856 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1857 struct socket *sock; 1858 struct iovec iovstack[UIO_FASTIOV]; 1859 struct iovec *iov=iovstack; 1860 struct msghdr msg_sys; 1861 unsigned long cmsg_ptr; 1862 int err, iov_size, total_len, len; 1863 int fput_needed; 1864 1865 /* kernel mode address */ 1866 char addr[MAX_SOCK_ADDR]; 1867 1868 /* user mode address pointers */ 1869 struct sockaddr __user *uaddr; 1870 int __user *uaddr_len; 1871 1872 if (MSG_CMSG_COMPAT & flags) { 1873 if (get_compat_msghdr(&msg_sys, msg_compat)) 1874 return -EFAULT; 1875 } else 1876 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1877 return -EFAULT; 1878 1879 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1880 if (!sock) 1881 goto out; 1882 1883 err = -EMSGSIZE; 1884 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1885 goto out_put; 1886 1887 /* Check whether to allocate the iovec area*/ 1888 err = -ENOMEM; 1889 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1890 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1891 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1892 if (!iov) 1893 goto out_put; 1894 } 1895 1896 /* 1897 * Save the user-mode address (verify_iovec will change the 1898 * kernel msghdr to use the kernel address space) 1899 */ 1900 1901 uaddr = (void __user *) msg_sys.msg_name; 1902 uaddr_len = COMPAT_NAMELEN(msg); 1903 if (MSG_CMSG_COMPAT & flags) { 1904 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1905 } else 1906 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1907 if (err < 0) 1908 goto out_freeiov; 1909 total_len=err; 1910 1911 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1912 msg_sys.msg_flags = 0; 1913 if (MSG_CMSG_COMPAT & flags) 1914 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1915 1916 if (sock->file->f_flags & O_NONBLOCK) 1917 flags |= MSG_DONTWAIT; 1918 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1919 if (err < 0) 1920 goto out_freeiov; 1921 len = err; 1922 1923 if (uaddr != NULL) { 1924 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1925 if (err < 0) 1926 goto out_freeiov; 1927 } 1928 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1929 COMPAT_FLAGS(msg)); 1930 if (err) 1931 goto out_freeiov; 1932 if (MSG_CMSG_COMPAT & flags) 1933 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1934 &msg_compat->msg_controllen); 1935 else 1936 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1937 &msg->msg_controllen); 1938 if (err) 1939 goto out_freeiov; 1940 err = len; 1941 1942 out_freeiov: 1943 if (iov != iovstack) 1944 sock_kfree_s(sock->sk, iov, iov_size); 1945 out_put: 1946 fput_light(sock->file, fput_needed); 1947 out: 1948 return err; 1949 } 1950 1951 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1952 1953 /* Argument list sizes for sys_socketcall */ 1954 #define AL(x) ((x) * sizeof(unsigned long)) 1955 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1956 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1957 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1958 #undef AL 1959 1960 /* 1961 * System call vectors. 1962 * 1963 * Argument checking cleaned up. Saved 20% in size. 1964 * This function doesn't need to set the kernel lock because 1965 * it is set by the callees. 1966 */ 1967 1968 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1969 { 1970 unsigned long a[6]; 1971 unsigned long a0,a1; 1972 int err; 1973 1974 if(call<1||call>SYS_RECVMSG) 1975 return -EINVAL; 1976 1977 /* copy_from_user should be SMP safe. */ 1978 if (copy_from_user(a, args, nargs[call])) 1979 return -EFAULT; 1980 1981 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1982 if (err) 1983 return err; 1984 1985 a0=a[0]; 1986 a1=a[1]; 1987 1988 switch(call) 1989 { 1990 case SYS_SOCKET: 1991 err = sys_socket(a0,a1,a[2]); 1992 break; 1993 case SYS_BIND: 1994 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1995 break; 1996 case SYS_CONNECT: 1997 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1998 break; 1999 case SYS_LISTEN: 2000 err = sys_listen(a0,a1); 2001 break; 2002 case SYS_ACCEPT: 2003 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2004 break; 2005 case SYS_GETSOCKNAME: 2006 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2007 break; 2008 case SYS_GETPEERNAME: 2009 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 2010 break; 2011 case SYS_SOCKETPAIR: 2012 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 2013 break; 2014 case SYS_SEND: 2015 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2016 break; 2017 case SYS_SENDTO: 2018 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 2019 (struct sockaddr __user *)a[4], a[5]); 2020 break; 2021 case SYS_RECV: 2022 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2023 break; 2024 case SYS_RECVFROM: 2025 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2026 (struct sockaddr __user *)a[4], (int __user *)a[5]); 2027 break; 2028 case SYS_SHUTDOWN: 2029 err = sys_shutdown(a0,a1); 2030 break; 2031 case SYS_SETSOCKOPT: 2032 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2033 break; 2034 case SYS_GETSOCKOPT: 2035 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 2036 break; 2037 case SYS_SENDMSG: 2038 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 2039 break; 2040 case SYS_RECVMSG: 2041 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 2042 break; 2043 default: 2044 err = -EINVAL; 2045 break; 2046 } 2047 return err; 2048 } 2049 2050 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2051 2052 /* 2053 * This function is called by a protocol handler that wants to 2054 * advertise its address family, and have it linked into the 2055 * SOCKET module. 2056 */ 2057 2058 int sock_register(struct net_proto_family *ops) 2059 { 2060 int err; 2061 2062 if (ops->family >= NPROTO) { 2063 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2064 return -ENOBUFS; 2065 } 2066 net_family_write_lock(); 2067 err = -EEXIST; 2068 if (net_families[ops->family] == NULL) { 2069 net_families[ops->family]=ops; 2070 err = 0; 2071 } 2072 net_family_write_unlock(); 2073 printk(KERN_INFO "NET: Registered protocol family %d\n", 2074 ops->family); 2075 return err; 2076 } 2077 2078 /* 2079 * This function is called by a protocol handler that wants to 2080 * remove its address family, and have it unlinked from the 2081 * SOCKET module. 2082 */ 2083 2084 int sock_unregister(int family) 2085 { 2086 if (family < 0 || family >= NPROTO) 2087 return -1; 2088 2089 net_family_write_lock(); 2090 net_families[family]=NULL; 2091 net_family_write_unlock(); 2092 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2093 family); 2094 return 0; 2095 } 2096 2097 static int __init sock_init(void) 2098 { 2099 /* 2100 * Initialize sock SLAB cache. 2101 */ 2102 2103 sk_init(); 2104 2105 /* 2106 * Initialize skbuff SLAB cache 2107 */ 2108 skb_init(); 2109 2110 /* 2111 * Initialize the protocols module. 2112 */ 2113 2114 init_inodecache(); 2115 register_filesystem(&sock_fs_type); 2116 sock_mnt = kern_mount(&sock_fs_type); 2117 2118 /* The real protocol initialization is performed in later initcalls. 2119 */ 2120 2121 #ifdef CONFIG_NETFILTER 2122 netfilter_init(); 2123 #endif 2124 2125 return 0; 2126 } 2127 2128 core_initcall(sock_init); /* early initcall */ 2129 2130 #ifdef CONFIG_PROC_FS 2131 void socket_seq_show(struct seq_file *seq) 2132 { 2133 int cpu; 2134 int counter = 0; 2135 2136 for_each_possible_cpu(cpu) 2137 counter += per_cpu(sockets_in_use, cpu); 2138 2139 /* It can be negative, by the way. 8) */ 2140 if (counter < 0) 2141 counter = 0; 2142 2143 seq_printf(seq, "sockets: used %d\n", counter); 2144 } 2145 #endif /* CONFIG_PROC_FS */ 2146 2147 #ifdef CONFIG_COMPAT 2148 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2149 unsigned long arg) 2150 { 2151 struct socket *sock = file->private_data; 2152 int ret = -ENOIOCTLCMD; 2153 2154 if (sock->ops->compat_ioctl) 2155 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2156 2157 return ret; 2158 } 2159 #endif 2160 2161 /* ABI emulation layers need these two */ 2162 EXPORT_SYMBOL(move_addr_to_kernel); 2163 EXPORT_SYMBOL(move_addr_to_user); 2164 EXPORT_SYMBOL(sock_create); 2165 EXPORT_SYMBOL(sock_create_kern); 2166 EXPORT_SYMBOL(sock_create_lite); 2167 EXPORT_SYMBOL(sock_map_fd); 2168 EXPORT_SYMBOL(sock_recvmsg); 2169 EXPORT_SYMBOL(sock_register); 2170 EXPORT_SYMBOL(sock_release); 2171 EXPORT_SYMBOL(sock_sendmsg); 2172 EXPORT_SYMBOL(sock_unregister); 2173 EXPORT_SYMBOL(sock_wake_async); 2174 EXPORT_SYMBOL(sockfd_lookup); 2175 EXPORT_SYMBOL(kernel_sendmsg); 2176 EXPORT_SYMBOL(kernel_recvmsg); 2177