xref: /linux/net/socket.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106 
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111 
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.read_iter =	sock_read_iter,
140 	.write_iter =	sock_write_iter,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  * Support routines.
163  * Move socket addresses back and forth across the kernel/user
164  * divide and look after the messy bits.
165  */
166 
167 /**
168  *	move_addr_to_kernel	-	copy a socket address into kernel space
169  *	@uaddr: Address in user space
170  *	@kaddr: Address in kernel space
171  *	@ulen: Length in user space
172  *
173  *	The address is copied into kernel space. If the provided address is
174  *	too long an error code of -EINVAL is returned. If the copy gives
175  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
176  */
177 
178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 		return -EINVAL;
182 	if (ulen == 0)
183 		return 0;
184 	if (copy_from_user(kaddr, uaddr, ulen))
185 		return -EFAULT;
186 	return audit_sockaddr(ulen, kaddr);
187 }
188 
189 /**
190  *	move_addr_to_user	-	copy an address to user space
191  *	@kaddr: kernel space address
192  *	@klen: length of address in kernel
193  *	@uaddr: user space address
194  *	@ulen: pointer to user length field
195  *
196  *	The value pointed to by ulen on entry is the buffer length available.
197  *	This is overwritten with the buffer space used. -EINVAL is returned
198  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
199  *	is returned if either the buffer or the length field are not
200  *	accessible.
201  *	After copying the data up to the limit the user specifies, the true
202  *	length of the data is written over the length limit the user
203  *	specified. Zero is returned for a success.
204  */
205 
206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 			     void __user *uaddr, int __user *ulen)
208 {
209 	int err;
210 	int len;
211 
212 	BUG_ON(klen > sizeof(struct sockaddr_storage));
213 	err = get_user(len, ulen);
214 	if (err)
215 		return err;
216 	if (len > klen)
217 		len = klen;
218 	if (len < 0)
219 		return -EINVAL;
220 	if (len) {
221 		if (audit_sockaddr(klen, kaddr))
222 			return -ENOMEM;
223 		if (copy_to_user(uaddr, kaddr, len))
224 			return -EFAULT;
225 	}
226 	/*
227 	 *      "fromlen shall refer to the value before truncation.."
228 	 *                      1003.1g
229 	 */
230 	return __put_user(klen, ulen);
231 }
232 
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wq.wait);
243 	ei->socket.wq.fasync_list = NULL;
244 	ei->socket.wq.flags = 0;
245 
246 	ei->socket.state = SS_UNCONNECTED;
247 	ei->socket.flags = 0;
248 	ei->socket.ops = NULL;
249 	ei->socket.sk = NULL;
250 	ei->socket.file = NULL;
251 
252 	return &ei->vfs_inode;
253 }
254 
255 static void sock_free_inode(struct inode *inode)
256 {
257 	struct socket_alloc *ei;
258 
259 	ei = container_of(inode, struct socket_alloc, vfs_inode);
260 	kmem_cache_free(sock_inode_cachep, ei);
261 }
262 
263 static void init_once(void *foo)
264 {
265 	struct socket_alloc *ei = (struct socket_alloc *)foo;
266 
267 	inode_init_once(&ei->vfs_inode);
268 }
269 
270 static void init_inodecache(void)
271 {
272 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 					      sizeof(struct socket_alloc),
274 					      0,
275 					      (SLAB_HWCACHE_ALIGN |
276 					       SLAB_RECLAIM_ACCOUNT |
277 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 					      init_once);
279 	BUG_ON(sock_inode_cachep == NULL);
280 }
281 
282 static const struct super_operations sockfs_ops = {
283 	.alloc_inode	= sock_alloc_inode,
284 	.free_inode	= sock_free_inode,
285 	.statfs		= simple_statfs,
286 };
287 
288 /*
289  * sockfs_dname() is called from d_path().
290  */
291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 				d_inode(dentry)->i_ino);
295 }
296 
297 static const struct dentry_operations sockfs_dentry_operations = {
298 	.d_dname  = sockfs_dname,
299 };
300 
301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 			    struct dentry *dentry, struct inode *inode,
303 			    const char *suffix, void *value, size_t size)
304 {
305 	if (value) {
306 		if (dentry->d_name.len + 1 > size)
307 			return -ERANGE;
308 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 	}
310 	return dentry->d_name.len + 1;
311 }
312 
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316 
317 static const struct xattr_handler sockfs_xattr_handler = {
318 	.name = XATTR_NAME_SOCKPROTONAME,
319 	.get = sockfs_xattr_get,
320 };
321 
322 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
323 				     struct dentry *dentry, struct inode *inode,
324 				     const char *suffix, const void *value,
325 				     size_t size, int flags)
326 {
327 	/* Handled by LSM. */
328 	return -EAGAIN;
329 }
330 
331 static const struct xattr_handler sockfs_security_xattr_handler = {
332 	.prefix = XATTR_SECURITY_PREFIX,
333 	.set = sockfs_security_xattr_set,
334 };
335 
336 static const struct xattr_handler *sockfs_xattr_handlers[] = {
337 	&sockfs_xattr_handler,
338 	&sockfs_security_xattr_handler,
339 	NULL
340 };
341 
342 static int sockfs_init_fs_context(struct fs_context *fc)
343 {
344 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
345 	if (!ctx)
346 		return -ENOMEM;
347 	ctx->ops = &sockfs_ops;
348 	ctx->dops = &sockfs_dentry_operations;
349 	ctx->xattr = sockfs_xattr_handlers;
350 	return 0;
351 }
352 
353 static struct vfsmount *sock_mnt __read_mostly;
354 
355 static struct file_system_type sock_fs_type = {
356 	.name =		"sockfs",
357 	.init_fs_context = sockfs_init_fs_context,
358 	.kill_sb =	kill_anon_super,
359 };
360 
361 /*
362  *	Obtains the first available file descriptor and sets it up for use.
363  *
364  *	These functions create file structures and maps them to fd space
365  *	of the current process. On success it returns file descriptor
366  *	and file struct implicitly stored in sock->file.
367  *	Note that another thread may close file descriptor before we return
368  *	from this function. We use the fact that now we do not refer
369  *	to socket after mapping. If one day we will need it, this
370  *	function will increment ref. count on file by 1.
371  *
372  *	In any case returned fd MAY BE not valid!
373  *	This race condition is unavoidable
374  *	with shared fd spaces, we cannot solve it inside kernel,
375  *	but we take care of internal coherence yet.
376  */
377 
378 /**
379  *	sock_alloc_file - Bind a &socket to a &file
380  *	@sock: socket
381  *	@flags: file status flags
382  *	@dname: protocol name
383  *
384  *	Returns the &file bound with @sock, implicitly storing it
385  *	in sock->file. If dname is %NULL, sets to "".
386  *	On failure the return is a ERR pointer (see linux/err.h).
387  *	This function uses GFP_KERNEL internally.
388  */
389 
390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 {
392 	struct file *file;
393 
394 	if (!dname)
395 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
396 
397 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
398 				O_RDWR | (flags & O_NONBLOCK),
399 				&socket_file_ops);
400 	if (IS_ERR(file)) {
401 		sock_release(sock);
402 		return file;
403 	}
404 
405 	sock->file = file;
406 	file->private_data = sock;
407 	stream_open(SOCK_INODE(sock), file);
408 	return file;
409 }
410 EXPORT_SYMBOL(sock_alloc_file);
411 
412 static int sock_map_fd(struct socket *sock, int flags)
413 {
414 	struct file *newfile;
415 	int fd = get_unused_fd_flags(flags);
416 	if (unlikely(fd < 0)) {
417 		sock_release(sock);
418 		return fd;
419 	}
420 
421 	newfile = sock_alloc_file(sock, flags, NULL);
422 	if (!IS_ERR(newfile)) {
423 		fd_install(fd, newfile);
424 		return fd;
425 	}
426 
427 	put_unused_fd(fd);
428 	return PTR_ERR(newfile);
429 }
430 
431 /**
432  *	sock_from_file - Return the &socket bounded to @file.
433  *	@file: file
434  *	@err: pointer to an error code return
435  *
436  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
437  */
438 
439 struct socket *sock_from_file(struct file *file, int *err)
440 {
441 	if (file->f_op == &socket_file_ops)
442 		return file->private_data;	/* set in sock_map_fd */
443 
444 	*err = -ENOTSOCK;
445 	return NULL;
446 }
447 EXPORT_SYMBOL(sock_from_file);
448 
449 /**
450  *	sockfd_lookup - Go from a file number to its socket slot
451  *	@fd: file handle
452  *	@err: pointer to an error code return
453  *
454  *	The file handle passed in is locked and the socket it is bound
455  *	to is returned. If an error occurs the err pointer is overwritten
456  *	with a negative errno code and NULL is returned. The function checks
457  *	for both invalid handles and passing a handle which is not a socket.
458  *
459  *	On a success the socket object pointer is returned.
460  */
461 
462 struct socket *sockfd_lookup(int fd, int *err)
463 {
464 	struct file *file;
465 	struct socket *sock;
466 
467 	file = fget(fd);
468 	if (!file) {
469 		*err = -EBADF;
470 		return NULL;
471 	}
472 
473 	sock = sock_from_file(file, err);
474 	if (!sock)
475 		fput(file);
476 	return sock;
477 }
478 EXPORT_SYMBOL(sockfd_lookup);
479 
480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
481 {
482 	struct fd f = fdget(fd);
483 	struct socket *sock;
484 
485 	*err = -EBADF;
486 	if (f.file) {
487 		sock = sock_from_file(f.file, err);
488 		if (likely(sock)) {
489 			*fput_needed = f.flags;
490 			return sock;
491 		}
492 		fdput(f);
493 	}
494 	return NULL;
495 }
496 
497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 				size_t size)
499 {
500 	ssize_t len;
501 	ssize_t used = 0;
502 
503 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
504 	if (len < 0)
505 		return len;
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		buffer += len;
511 	}
512 
513 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 		buffer += len;
520 	}
521 
522 	return used;
523 }
524 
525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
526 {
527 	int err = simple_setattr(dentry, iattr);
528 
529 	if (!err && (iattr->ia_valid & ATTR_UID)) {
530 		struct socket *sock = SOCKET_I(d_inode(dentry));
531 
532 		if (sock->sk)
533 			sock->sk->sk_uid = iattr->ia_uid;
534 		else
535 			err = -ENOENT;
536 	}
537 
538 	return err;
539 }
540 
541 static const struct inode_operations sockfs_inode_ops = {
542 	.listxattr = sockfs_listxattr,
543 	.setattr = sockfs_setattr,
544 };
545 
546 /**
547  *	sock_alloc - allocate a socket
548  *
549  *	Allocate a new inode and socket object. The two are bound together
550  *	and initialised. The socket is then returned. If we are out of inodes
551  *	NULL is returned. This functions uses GFP_KERNEL internally.
552  */
553 
554 struct socket *sock_alloc(void)
555 {
556 	struct inode *inode;
557 	struct socket *sock;
558 
559 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 	if (!inode)
561 		return NULL;
562 
563 	sock = SOCKET_I(inode);
564 
565 	inode->i_ino = get_next_ino();
566 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
567 	inode->i_uid = current_fsuid();
568 	inode->i_gid = current_fsgid();
569 	inode->i_op = &sockfs_inode_ops;
570 
571 	return sock;
572 }
573 EXPORT_SYMBOL(sock_alloc);
574 
575 /**
576  *	sock_release - close a socket
577  *	@sock: socket to close
578  *
579  *	The socket is released from the protocol stack if it has a release
580  *	callback, and the inode is then released if the socket is bound to
581  *	an inode not a file.
582  */
583 
584 static void __sock_release(struct socket *sock, struct inode *inode)
585 {
586 	if (sock->ops) {
587 		struct module *owner = sock->ops->owner;
588 
589 		if (inode)
590 			inode_lock(inode);
591 		sock->ops->release(sock);
592 		sock->sk = NULL;
593 		if (inode)
594 			inode_unlock(inode);
595 		sock->ops = NULL;
596 		module_put(owner);
597 	}
598 
599 	if (sock->wq.fasync_list)
600 		pr_err("%s: fasync list not empty!\n", __func__);
601 
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 
609 void sock_release(struct socket *sock)
610 {
611 	__sock_release(sock, NULL);
612 }
613 EXPORT_SYMBOL(sock_release);
614 
615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 	u8 flags = *tx_flags;
618 
619 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 		flags |= SKBTX_HW_TSTAMP;
621 
622 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 		flags |= SKBTX_SW_TSTAMP;
624 
625 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 		flags |= SKBTX_SCHED_TSTAMP;
627 
628 	*tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631 
632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
633 					   size_t));
634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
635 					    size_t));
636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
639 				     inet_sendmsg, sock, msg,
640 				     msg_data_left(msg));
641 	BUG_ON(ret == -EIOCBQUEUED);
642 	return ret;
643 }
644 
645 /**
646  *	sock_sendmsg - send a message through @sock
647  *	@sock: socket
648  *	@msg: message to send
649  *
650  *	Sends @msg through @sock, passing through LSM.
651  *	Returns the number of bytes sent, or an error code.
652  */
653 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
654 {
655 	int err = security_socket_sendmsg(sock, msg,
656 					  msg_data_left(msg));
657 
658 	return err ?: sock_sendmsg_nosec(sock, msg);
659 }
660 EXPORT_SYMBOL(sock_sendmsg);
661 
662 /**
663  *	kernel_sendmsg - send a message through @sock (kernel-space)
664  *	@sock: socket
665  *	@msg: message header
666  *	@vec: kernel vec
667  *	@num: vec array length
668  *	@size: total message data size
669  *
670  *	Builds the message data with @vec and sends it through @sock.
671  *	Returns the number of bytes sent, or an error code.
672  */
673 
674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 		   struct kvec *vec, size_t num, size_t size)
676 {
677 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
678 	return sock_sendmsg(sock, msg);
679 }
680 EXPORT_SYMBOL(kernel_sendmsg);
681 
682 /**
683  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
684  *	@sk: sock
685  *	@msg: message header
686  *	@vec: output s/g array
687  *	@num: output s/g array length
688  *	@size: total message data size
689  *
690  *	Builds the message data with @vec and sends it through @sock.
691  *	Returns the number of bytes sent, or an error code.
692  *	Caller must hold @sk.
693  */
694 
695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
696 			  struct kvec *vec, size_t num, size_t size)
697 {
698 	struct socket *sock = sk->sk_socket;
699 
700 	if (!sock->ops->sendmsg_locked)
701 		return sock_no_sendmsg_locked(sk, msg, size);
702 
703 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
704 
705 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
706 }
707 EXPORT_SYMBOL(kernel_sendmsg_locked);
708 
709 static bool skb_is_err_queue(const struct sk_buff *skb)
710 {
711 	/* pkt_type of skbs enqueued on the error queue are set to
712 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
713 	 * in recvmsg, since skbs received on a local socket will never
714 	 * have a pkt_type of PACKET_OUTGOING.
715 	 */
716 	return skb->pkt_type == PACKET_OUTGOING;
717 }
718 
719 /* On transmit, software and hardware timestamps are returned independently.
720  * As the two skb clones share the hardware timestamp, which may be updated
721  * before the software timestamp is received, a hardware TX timestamp may be
722  * returned only if there is no software TX timestamp. Ignore false software
723  * timestamps, which may be made in the __sock_recv_timestamp() call when the
724  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
725  * hardware timestamp.
726  */
727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
728 {
729 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
730 }
731 
732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
733 {
734 	struct scm_ts_pktinfo ts_pktinfo;
735 	struct net_device *orig_dev;
736 
737 	if (!skb_mac_header_was_set(skb))
738 		return;
739 
740 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
741 
742 	rcu_read_lock();
743 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
744 	if (orig_dev)
745 		ts_pktinfo.if_index = orig_dev->ifindex;
746 	rcu_read_unlock();
747 
748 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
749 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
750 		 sizeof(ts_pktinfo), &ts_pktinfo);
751 }
752 
753 /*
754  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
755  */
756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
757 	struct sk_buff *skb)
758 {
759 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
760 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
761 	struct scm_timestamping_internal tss;
762 
763 	int empty = 1, false_tstamp = 0;
764 	struct skb_shared_hwtstamps *shhwtstamps =
765 		skb_hwtstamps(skb);
766 
767 	/* Race occurred between timestamp enabling and packet
768 	   receiving.  Fill in the current time for now. */
769 	if (need_software_tstamp && skb->tstamp == 0) {
770 		__net_timestamp(skb);
771 		false_tstamp = 1;
772 	}
773 
774 	if (need_software_tstamp) {
775 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
776 			if (new_tstamp) {
777 				struct __kernel_sock_timeval tv;
778 
779 				skb_get_new_timestamp(skb, &tv);
780 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
781 					 sizeof(tv), &tv);
782 			} else {
783 				struct __kernel_old_timeval tv;
784 
785 				skb_get_timestamp(skb, &tv);
786 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
787 					 sizeof(tv), &tv);
788 			}
789 		} else {
790 			if (new_tstamp) {
791 				struct __kernel_timespec ts;
792 
793 				skb_get_new_timestampns(skb, &ts);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
795 					 sizeof(ts), &ts);
796 			} else {
797 				struct timespec ts;
798 
799 				skb_get_timestampns(skb, &ts);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
801 					 sizeof(ts), &ts);
802 			}
803 		}
804 	}
805 
806 	memset(&tss, 0, sizeof(tss));
807 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
808 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
809 		empty = 0;
810 	if (shhwtstamps &&
811 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
812 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
813 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
814 		empty = 0;
815 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
816 		    !skb_is_err_queue(skb))
817 			put_ts_pktinfo(msg, skb);
818 	}
819 	if (!empty) {
820 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
821 			put_cmsg_scm_timestamping64(msg, &tss);
822 		else
823 			put_cmsg_scm_timestamping(msg, &tss);
824 
825 		if (skb_is_err_queue(skb) && skb->len &&
826 		    SKB_EXT_ERR(skb)->opt_stats)
827 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
828 				 skb->len, skb->data);
829 	}
830 }
831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
832 
833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
834 	struct sk_buff *skb)
835 {
836 	int ack;
837 
838 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
839 		return;
840 	if (!skb->wifi_acked_valid)
841 		return;
842 
843 	ack = skb->wifi_acked;
844 
845 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
848 
849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
850 				   struct sk_buff *skb)
851 {
852 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
853 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
854 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
855 }
856 
857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
858 	struct sk_buff *skb)
859 {
860 	sock_recv_timestamp(msg, sk, skb);
861 	sock_recv_drops(msg, sk, skb);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
864 
865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
866 					   size_t, int));
867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
868 					    size_t, int));
869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
870 				     int flags)
871 {
872 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
873 				  inet_recvmsg, sock, msg, msg_data_left(msg),
874 				  flags);
875 }
876 
877 /**
878  *	sock_recvmsg - receive a message from @sock
879  *	@sock: socket
880  *	@msg: message to receive
881  *	@flags: message flags
882  *
883  *	Receives @msg from @sock, passing through LSM. Returns the total number
884  *	of bytes received, or an error.
885  */
886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
887 {
888 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
889 
890 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
891 }
892 EXPORT_SYMBOL(sock_recvmsg);
893 
894 /**
895  *	kernel_recvmsg - Receive a message from a socket (kernel space)
896  *	@sock: The socket to receive the message from
897  *	@msg: Received message
898  *	@vec: Input s/g array for message data
899  *	@num: Size of input s/g array
900  *	@size: Number of bytes to read
901  *	@flags: Message flags (MSG_DONTWAIT, etc...)
902  *
903  *	On return the msg structure contains the scatter/gather array passed in the
904  *	vec argument. The array is modified so that it consists of the unfilled
905  *	portion of the original array.
906  *
907  *	The returned value is the total number of bytes received, or an error.
908  */
909 
910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
911 		   struct kvec *vec, size_t num, size_t size, int flags)
912 {
913 	mm_segment_t oldfs = get_fs();
914 	int result;
915 
916 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
917 	set_fs(KERNEL_DS);
918 	result = sock_recvmsg(sock, msg, flags);
919 	set_fs(oldfs);
920 	return result;
921 }
922 EXPORT_SYMBOL(kernel_recvmsg);
923 
924 static ssize_t sock_sendpage(struct file *file, struct page *page,
925 			     int offset, size_t size, loff_t *ppos, int more)
926 {
927 	struct socket *sock;
928 	int flags;
929 
930 	sock = file->private_data;
931 
932 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
934 	flags |= more;
935 
936 	return kernel_sendpage(sock, page, offset, size, flags);
937 }
938 
939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
940 				struct pipe_inode_info *pipe, size_t len,
941 				unsigned int flags)
942 {
943 	struct socket *sock = file->private_data;
944 
945 	if (unlikely(!sock->ops->splice_read))
946 		return generic_file_splice_read(file, ppos, pipe, len, flags);
947 
948 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
949 }
950 
951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
952 {
953 	struct file *file = iocb->ki_filp;
954 	struct socket *sock = file->private_data;
955 	struct msghdr msg = {.msg_iter = *to,
956 			     .msg_iocb = iocb};
957 	ssize_t res;
958 
959 	if (file->f_flags & O_NONBLOCK)
960 		msg.msg_flags = MSG_DONTWAIT;
961 
962 	if (iocb->ki_pos != 0)
963 		return -ESPIPE;
964 
965 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
966 		return 0;
967 
968 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
969 	*to = msg.msg_iter;
970 	return res;
971 }
972 
973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
974 {
975 	struct file *file = iocb->ki_filp;
976 	struct socket *sock = file->private_data;
977 	struct msghdr msg = {.msg_iter = *from,
978 			     .msg_iocb = iocb};
979 	ssize_t res;
980 
981 	if (iocb->ki_pos != 0)
982 		return -ESPIPE;
983 
984 	if (file->f_flags & O_NONBLOCK)
985 		msg.msg_flags = MSG_DONTWAIT;
986 
987 	if (sock->type == SOCK_SEQPACKET)
988 		msg.msg_flags |= MSG_EOR;
989 
990 	res = sock_sendmsg(sock, &msg);
991 	*from = msg.msg_iter;
992 	return res;
993 }
994 
995 /*
996  * Atomic setting of ioctl hooks to avoid race
997  * with module unload.
998  */
999 
1000 static DEFINE_MUTEX(br_ioctl_mutex);
1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1002 
1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1004 {
1005 	mutex_lock(&br_ioctl_mutex);
1006 	br_ioctl_hook = hook;
1007 	mutex_unlock(&br_ioctl_mutex);
1008 }
1009 EXPORT_SYMBOL(brioctl_set);
1010 
1011 static DEFINE_MUTEX(vlan_ioctl_mutex);
1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1013 
1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1015 {
1016 	mutex_lock(&vlan_ioctl_mutex);
1017 	vlan_ioctl_hook = hook;
1018 	mutex_unlock(&vlan_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(vlan_ioctl_set);
1021 
1022 static DEFINE_MUTEX(dlci_ioctl_mutex);
1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1024 
1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1026 {
1027 	mutex_lock(&dlci_ioctl_mutex);
1028 	dlci_ioctl_hook = hook;
1029 	mutex_unlock(&dlci_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(dlci_ioctl_set);
1032 
1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 			  unsigned int cmd, unsigned long arg)
1035 {
1036 	int err;
1037 	void __user *argp = (void __user *)arg;
1038 
1039 	err = sock->ops->ioctl(sock, cmd, arg);
1040 
1041 	/*
1042 	 * If this ioctl is unknown try to hand it down
1043 	 * to the NIC driver.
1044 	 */
1045 	if (err != -ENOIOCTLCMD)
1046 		return err;
1047 
1048 	if (cmd == SIOCGIFCONF) {
1049 		struct ifconf ifc;
1050 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 			return -EFAULT;
1052 		rtnl_lock();
1053 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 		rtnl_unlock();
1055 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 			err = -EFAULT;
1057 	} else {
1058 		struct ifreq ifr;
1059 		bool need_copyout;
1060 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 			return -EFAULT;
1062 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 		if (!err && need_copyout)
1064 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 				return -EFAULT;
1066 	}
1067 	return err;
1068 }
1069 
1070 /*
1071  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1072  *	what to do with it - that's up to the protocol still.
1073  */
1074 
1075 /**
1076  *	get_net_ns - increment the refcount of the network namespace
1077  *	@ns: common namespace (net)
1078  *
1079  *	Returns the net's common namespace.
1080  */
1081 
1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 	return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087 
1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 	struct socket *sock;
1091 	struct sock *sk;
1092 	void __user *argp = (void __user *)arg;
1093 	int pid, err;
1094 	struct net *net;
1095 
1096 	sock = file->private_data;
1097 	sk = sock->sk;
1098 	net = sock_net(sk);
1099 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 		struct ifreq ifr;
1101 		bool need_copyout;
1102 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 			return -EFAULT;
1104 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 		if (!err && need_copyout)
1106 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 				return -EFAULT;
1108 	} else
1109 #ifdef CONFIG_WEXT_CORE
1110 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 		err = wext_handle_ioctl(net, cmd, argp);
1112 	} else
1113 #endif
1114 		switch (cmd) {
1115 		case FIOSETOWN:
1116 		case SIOCSPGRP:
1117 			err = -EFAULT;
1118 			if (get_user(pid, (int __user *)argp))
1119 				break;
1120 			err = f_setown(sock->file, pid, 1);
1121 			break;
1122 		case FIOGETOWN:
1123 		case SIOCGPGRP:
1124 			err = put_user(f_getown(sock->file),
1125 				       (int __user *)argp);
1126 			break;
1127 		case SIOCGIFBR:
1128 		case SIOCSIFBR:
1129 		case SIOCBRADDBR:
1130 		case SIOCBRDELBR:
1131 			err = -ENOPKG;
1132 			if (!br_ioctl_hook)
1133 				request_module("bridge");
1134 
1135 			mutex_lock(&br_ioctl_mutex);
1136 			if (br_ioctl_hook)
1137 				err = br_ioctl_hook(net, cmd, argp);
1138 			mutex_unlock(&br_ioctl_mutex);
1139 			break;
1140 		case SIOCGIFVLAN:
1141 		case SIOCSIFVLAN:
1142 			err = -ENOPKG;
1143 			if (!vlan_ioctl_hook)
1144 				request_module("8021q");
1145 
1146 			mutex_lock(&vlan_ioctl_mutex);
1147 			if (vlan_ioctl_hook)
1148 				err = vlan_ioctl_hook(net, argp);
1149 			mutex_unlock(&vlan_ioctl_mutex);
1150 			break;
1151 		case SIOCADDDLCI:
1152 		case SIOCDELDLCI:
1153 			err = -ENOPKG;
1154 			if (!dlci_ioctl_hook)
1155 				request_module("dlci");
1156 
1157 			mutex_lock(&dlci_ioctl_mutex);
1158 			if (dlci_ioctl_hook)
1159 				err = dlci_ioctl_hook(cmd, argp);
1160 			mutex_unlock(&dlci_ioctl_mutex);
1161 			break;
1162 		case SIOCGSKNS:
1163 			err = -EPERM;
1164 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1165 				break;
1166 
1167 			err = open_related_ns(&net->ns, get_net_ns);
1168 			break;
1169 		case SIOCGSTAMP_OLD:
1170 		case SIOCGSTAMPNS_OLD:
1171 			if (!sock->ops->gettstamp) {
1172 				err = -ENOIOCTLCMD;
1173 				break;
1174 			}
1175 			err = sock->ops->gettstamp(sock, argp,
1176 						   cmd == SIOCGSTAMP_OLD,
1177 						   !IS_ENABLED(CONFIG_64BIT));
1178 			break;
1179 		case SIOCGSTAMP_NEW:
1180 		case SIOCGSTAMPNS_NEW:
1181 			if (!sock->ops->gettstamp) {
1182 				err = -ENOIOCTLCMD;
1183 				break;
1184 			}
1185 			err = sock->ops->gettstamp(sock, argp,
1186 						   cmd == SIOCGSTAMP_NEW,
1187 						   false);
1188 			break;
1189 		default:
1190 			err = sock_do_ioctl(net, sock, cmd, arg);
1191 			break;
1192 		}
1193 	return err;
1194 }
1195 
1196 /**
1197  *	sock_create_lite - creates a socket
1198  *	@family: protocol family (AF_INET, ...)
1199  *	@type: communication type (SOCK_STREAM, ...)
1200  *	@protocol: protocol (0, ...)
1201  *	@res: new socket
1202  *
1203  *	Creates a new socket and assigns it to @res, passing through LSM.
1204  *	The new socket initialization is not complete, see kernel_accept().
1205  *	Returns 0 or an error. On failure @res is set to %NULL.
1206  *	This function internally uses GFP_KERNEL.
1207  */
1208 
1209 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1210 {
1211 	int err;
1212 	struct socket *sock = NULL;
1213 
1214 	err = security_socket_create(family, type, protocol, 1);
1215 	if (err)
1216 		goto out;
1217 
1218 	sock = sock_alloc();
1219 	if (!sock) {
1220 		err = -ENOMEM;
1221 		goto out;
1222 	}
1223 
1224 	sock->type = type;
1225 	err = security_socket_post_create(sock, family, type, protocol, 1);
1226 	if (err)
1227 		goto out_release;
1228 
1229 out:
1230 	*res = sock;
1231 	return err;
1232 out_release:
1233 	sock_release(sock);
1234 	sock = NULL;
1235 	goto out;
1236 }
1237 EXPORT_SYMBOL(sock_create_lite);
1238 
1239 /* No kernel lock held - perfect */
1240 static __poll_t sock_poll(struct file *file, poll_table *wait)
1241 {
1242 	struct socket *sock = file->private_data;
1243 	__poll_t events = poll_requested_events(wait), flag = 0;
1244 
1245 	if (!sock->ops->poll)
1246 		return 0;
1247 
1248 	if (sk_can_busy_loop(sock->sk)) {
1249 		/* poll once if requested by the syscall */
1250 		if (events & POLL_BUSY_LOOP)
1251 			sk_busy_loop(sock->sk, 1);
1252 
1253 		/* if this socket can poll_ll, tell the system call */
1254 		flag = POLL_BUSY_LOOP;
1255 	}
1256 
1257 	return sock->ops->poll(file, sock, wait) | flag;
1258 }
1259 
1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1261 {
1262 	struct socket *sock = file->private_data;
1263 
1264 	return sock->ops->mmap(file, sock, vma);
1265 }
1266 
1267 static int sock_close(struct inode *inode, struct file *filp)
1268 {
1269 	__sock_release(SOCKET_I(inode), inode);
1270 	return 0;
1271 }
1272 
1273 /*
1274  *	Update the socket async list
1275  *
1276  *	Fasync_list locking strategy.
1277  *
1278  *	1. fasync_list is modified only under process context socket lock
1279  *	   i.e. under semaphore.
1280  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1281  *	   or under socket lock
1282  */
1283 
1284 static int sock_fasync(int fd, struct file *filp, int on)
1285 {
1286 	struct socket *sock = filp->private_data;
1287 	struct sock *sk = sock->sk;
1288 	struct socket_wq *wq = &sock->wq;
1289 
1290 	if (sk == NULL)
1291 		return -EINVAL;
1292 
1293 	lock_sock(sk);
1294 	fasync_helper(fd, filp, on, &wq->fasync_list);
1295 
1296 	if (!wq->fasync_list)
1297 		sock_reset_flag(sk, SOCK_FASYNC);
1298 	else
1299 		sock_set_flag(sk, SOCK_FASYNC);
1300 
1301 	release_sock(sk);
1302 	return 0;
1303 }
1304 
1305 /* This function may be called only under rcu_lock */
1306 
1307 int sock_wake_async(struct socket_wq *wq, int how, int band)
1308 {
1309 	if (!wq || !wq->fasync_list)
1310 		return -1;
1311 
1312 	switch (how) {
1313 	case SOCK_WAKE_WAITD:
1314 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1315 			break;
1316 		goto call_kill;
1317 	case SOCK_WAKE_SPACE:
1318 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1319 			break;
1320 		/* fall through */
1321 	case SOCK_WAKE_IO:
1322 call_kill:
1323 		kill_fasync(&wq->fasync_list, SIGIO, band);
1324 		break;
1325 	case SOCK_WAKE_URG:
1326 		kill_fasync(&wq->fasync_list, SIGURG, band);
1327 	}
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(sock_wake_async);
1332 
1333 /**
1334  *	__sock_create - creates a socket
1335  *	@net: net namespace
1336  *	@family: protocol family (AF_INET, ...)
1337  *	@type: communication type (SOCK_STREAM, ...)
1338  *	@protocol: protocol (0, ...)
1339  *	@res: new socket
1340  *	@kern: boolean for kernel space sockets
1341  *
1342  *	Creates a new socket and assigns it to @res, passing through LSM.
1343  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1344  *	be set to true if the socket resides in kernel space.
1345  *	This function internally uses GFP_KERNEL.
1346  */
1347 
1348 int __sock_create(struct net *net, int family, int type, int protocol,
1349 			 struct socket **res, int kern)
1350 {
1351 	int err;
1352 	struct socket *sock;
1353 	const struct net_proto_family *pf;
1354 
1355 	/*
1356 	 *      Check protocol is in range
1357 	 */
1358 	if (family < 0 || family >= NPROTO)
1359 		return -EAFNOSUPPORT;
1360 	if (type < 0 || type >= SOCK_MAX)
1361 		return -EINVAL;
1362 
1363 	/* Compatibility.
1364 
1365 	   This uglymoron is moved from INET layer to here to avoid
1366 	   deadlock in module load.
1367 	 */
1368 	if (family == PF_INET && type == SOCK_PACKET) {
1369 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1370 			     current->comm);
1371 		family = PF_PACKET;
1372 	}
1373 
1374 	err = security_socket_create(family, type, protocol, kern);
1375 	if (err)
1376 		return err;
1377 
1378 	/*
1379 	 *	Allocate the socket and allow the family to set things up. if
1380 	 *	the protocol is 0, the family is instructed to select an appropriate
1381 	 *	default.
1382 	 */
1383 	sock = sock_alloc();
1384 	if (!sock) {
1385 		net_warn_ratelimited("socket: no more sockets\n");
1386 		return -ENFILE;	/* Not exactly a match, but its the
1387 				   closest posix thing */
1388 	}
1389 
1390 	sock->type = type;
1391 
1392 #ifdef CONFIG_MODULES
1393 	/* Attempt to load a protocol module if the find failed.
1394 	 *
1395 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1396 	 * requested real, full-featured networking support upon configuration.
1397 	 * Otherwise module support will break!
1398 	 */
1399 	if (rcu_access_pointer(net_families[family]) == NULL)
1400 		request_module("net-pf-%d", family);
1401 #endif
1402 
1403 	rcu_read_lock();
1404 	pf = rcu_dereference(net_families[family]);
1405 	err = -EAFNOSUPPORT;
1406 	if (!pf)
1407 		goto out_release;
1408 
1409 	/*
1410 	 * We will call the ->create function, that possibly is in a loadable
1411 	 * module, so we have to bump that loadable module refcnt first.
1412 	 */
1413 	if (!try_module_get(pf->owner))
1414 		goto out_release;
1415 
1416 	/* Now protected by module ref count */
1417 	rcu_read_unlock();
1418 
1419 	err = pf->create(net, sock, protocol, kern);
1420 	if (err < 0)
1421 		goto out_module_put;
1422 
1423 	/*
1424 	 * Now to bump the refcnt of the [loadable] module that owns this
1425 	 * socket at sock_release time we decrement its refcnt.
1426 	 */
1427 	if (!try_module_get(sock->ops->owner))
1428 		goto out_module_busy;
1429 
1430 	/*
1431 	 * Now that we're done with the ->create function, the [loadable]
1432 	 * module can have its refcnt decremented
1433 	 */
1434 	module_put(pf->owner);
1435 	err = security_socket_post_create(sock, family, type, protocol, kern);
1436 	if (err)
1437 		goto out_sock_release;
1438 	*res = sock;
1439 
1440 	return 0;
1441 
1442 out_module_busy:
1443 	err = -EAFNOSUPPORT;
1444 out_module_put:
1445 	sock->ops = NULL;
1446 	module_put(pf->owner);
1447 out_sock_release:
1448 	sock_release(sock);
1449 	return err;
1450 
1451 out_release:
1452 	rcu_read_unlock();
1453 	goto out_sock_release;
1454 }
1455 EXPORT_SYMBOL(__sock_create);
1456 
1457 /**
1458  *	sock_create - creates a socket
1459  *	@family: protocol family (AF_INET, ...)
1460  *	@type: communication type (SOCK_STREAM, ...)
1461  *	@protocol: protocol (0, ...)
1462  *	@res: new socket
1463  *
1464  *	A wrapper around __sock_create().
1465  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1466  */
1467 
1468 int sock_create(int family, int type, int protocol, struct socket **res)
1469 {
1470 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1471 }
1472 EXPORT_SYMBOL(sock_create);
1473 
1474 /**
1475  *	sock_create_kern - creates a socket (kernel space)
1476  *	@net: net namespace
1477  *	@family: protocol family (AF_INET, ...)
1478  *	@type: communication type (SOCK_STREAM, ...)
1479  *	@protocol: protocol (0, ...)
1480  *	@res: new socket
1481  *
1482  *	A wrapper around __sock_create().
1483  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1484  */
1485 
1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1487 {
1488 	return __sock_create(net, family, type, protocol, res, 1);
1489 }
1490 EXPORT_SYMBOL(sock_create_kern);
1491 
1492 int __sys_socket(int family, int type, int protocol)
1493 {
1494 	int retval;
1495 	struct socket *sock;
1496 	int flags;
1497 
1498 	/* Check the SOCK_* constants for consistency.  */
1499 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1500 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1501 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1502 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1503 
1504 	flags = type & ~SOCK_TYPE_MASK;
1505 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1506 		return -EINVAL;
1507 	type &= SOCK_TYPE_MASK;
1508 
1509 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511 
1512 	retval = sock_create(family, type, protocol, &sock);
1513 	if (retval < 0)
1514 		return retval;
1515 
1516 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1517 }
1518 
1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1520 {
1521 	return __sys_socket(family, type, protocol);
1522 }
1523 
1524 /*
1525  *	Create a pair of connected sockets.
1526  */
1527 
1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1529 {
1530 	struct socket *sock1, *sock2;
1531 	int fd1, fd2, err;
1532 	struct file *newfile1, *newfile2;
1533 	int flags;
1534 
1535 	flags = type & ~SOCK_TYPE_MASK;
1536 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1537 		return -EINVAL;
1538 	type &= SOCK_TYPE_MASK;
1539 
1540 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1541 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542 
1543 	/*
1544 	 * reserve descriptors and make sure we won't fail
1545 	 * to return them to userland.
1546 	 */
1547 	fd1 = get_unused_fd_flags(flags);
1548 	if (unlikely(fd1 < 0))
1549 		return fd1;
1550 
1551 	fd2 = get_unused_fd_flags(flags);
1552 	if (unlikely(fd2 < 0)) {
1553 		put_unused_fd(fd1);
1554 		return fd2;
1555 	}
1556 
1557 	err = put_user(fd1, &usockvec[0]);
1558 	if (err)
1559 		goto out;
1560 
1561 	err = put_user(fd2, &usockvec[1]);
1562 	if (err)
1563 		goto out;
1564 
1565 	/*
1566 	 * Obtain the first socket and check if the underlying protocol
1567 	 * supports the socketpair call.
1568 	 */
1569 
1570 	err = sock_create(family, type, protocol, &sock1);
1571 	if (unlikely(err < 0))
1572 		goto out;
1573 
1574 	err = sock_create(family, type, protocol, &sock2);
1575 	if (unlikely(err < 0)) {
1576 		sock_release(sock1);
1577 		goto out;
1578 	}
1579 
1580 	err = security_socket_socketpair(sock1, sock2);
1581 	if (unlikely(err)) {
1582 		sock_release(sock2);
1583 		sock_release(sock1);
1584 		goto out;
1585 	}
1586 
1587 	err = sock1->ops->socketpair(sock1, sock2);
1588 	if (unlikely(err < 0)) {
1589 		sock_release(sock2);
1590 		sock_release(sock1);
1591 		goto out;
1592 	}
1593 
1594 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1595 	if (IS_ERR(newfile1)) {
1596 		err = PTR_ERR(newfile1);
1597 		sock_release(sock2);
1598 		goto out;
1599 	}
1600 
1601 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1602 	if (IS_ERR(newfile2)) {
1603 		err = PTR_ERR(newfile2);
1604 		fput(newfile1);
1605 		goto out;
1606 	}
1607 
1608 	audit_fd_pair(fd1, fd2);
1609 
1610 	fd_install(fd1, newfile1);
1611 	fd_install(fd2, newfile2);
1612 	return 0;
1613 
1614 out:
1615 	put_unused_fd(fd2);
1616 	put_unused_fd(fd1);
1617 	return err;
1618 }
1619 
1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1621 		int __user *, usockvec)
1622 {
1623 	return __sys_socketpair(family, type, protocol, usockvec);
1624 }
1625 
1626 /*
1627  *	Bind a name to a socket. Nothing much to do here since it's
1628  *	the protocol's responsibility to handle the local address.
1629  *
1630  *	We move the socket address to kernel space before we call
1631  *	the protocol layer (having also checked the address is ok).
1632  */
1633 
1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock) {
1642 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1643 		if (!err) {
1644 			err = security_socket_bind(sock,
1645 						   (struct sockaddr *)&address,
1646 						   addrlen);
1647 			if (!err)
1648 				err = sock->ops->bind(sock,
1649 						      (struct sockaddr *)
1650 						      &address, addrlen);
1651 		}
1652 		fput_light(sock->file, fput_needed);
1653 	}
1654 	return err;
1655 }
1656 
1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1658 {
1659 	return __sys_bind(fd, umyaddr, addrlen);
1660 }
1661 
1662 /*
1663  *	Perform a listen. Basically, we allow the protocol to do anything
1664  *	necessary for a listen, and if that works, we mark the socket as
1665  *	ready for listening.
1666  */
1667 
1668 int __sys_listen(int fd, int backlog)
1669 {
1670 	struct socket *sock;
1671 	int err, fput_needed;
1672 	int somaxconn;
1673 
1674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 	if (sock) {
1676 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1677 		if ((unsigned int)backlog > somaxconn)
1678 			backlog = somaxconn;
1679 
1680 		err = security_socket_listen(sock, backlog);
1681 		if (!err)
1682 			err = sock->ops->listen(sock, backlog);
1683 
1684 		fput_light(sock->file, fput_needed);
1685 	}
1686 	return err;
1687 }
1688 
1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1690 {
1691 	return __sys_listen(fd, backlog);
1692 }
1693 
1694 int __sys_accept4_file(struct file *file, unsigned file_flags,
1695 		       struct sockaddr __user *upeer_sockaddr,
1696 		       int __user *upeer_addrlen, int flags)
1697 {
1698 	struct socket *sock, *newsock;
1699 	struct file *newfile;
1700 	int err, len, newfd;
1701 	struct sockaddr_storage address;
1702 
1703 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1704 		return -EINVAL;
1705 
1706 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708 
1709 	sock = sock_from_file(file, &err);
1710 	if (!sock)
1711 		goto out;
1712 
1713 	err = -ENFILE;
1714 	newsock = sock_alloc();
1715 	if (!newsock)
1716 		goto out;
1717 
1718 	newsock->type = sock->type;
1719 	newsock->ops = sock->ops;
1720 
1721 	/*
1722 	 * We don't need try_module_get here, as the listening socket (sock)
1723 	 * has the protocol module (sock->ops->owner) held.
1724 	 */
1725 	__module_get(newsock->ops->owner);
1726 
1727 	newfd = get_unused_fd_flags(flags);
1728 	if (unlikely(newfd < 0)) {
1729 		err = newfd;
1730 		sock_release(newsock);
1731 		goto out;
1732 	}
1733 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1734 	if (IS_ERR(newfile)) {
1735 		err = PTR_ERR(newfile);
1736 		put_unused_fd(newfd);
1737 		goto out;
1738 	}
1739 
1740 	err = security_socket_accept(sock, newsock);
1741 	if (err)
1742 		goto out_fd;
1743 
1744 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1745 					false);
1746 	if (err < 0)
1747 		goto out_fd;
1748 
1749 	if (upeer_sockaddr) {
1750 		len = newsock->ops->getname(newsock,
1751 					(struct sockaddr *)&address, 2);
1752 		if (len < 0) {
1753 			err = -ECONNABORTED;
1754 			goto out_fd;
1755 		}
1756 		err = move_addr_to_user(&address,
1757 					len, upeer_sockaddr, upeer_addrlen);
1758 		if (err < 0)
1759 			goto out_fd;
1760 	}
1761 
1762 	/* File flags are not inherited via accept() unlike another OSes. */
1763 
1764 	fd_install(newfd, newfile);
1765 	err = newfd;
1766 out:
1767 	return err;
1768 out_fd:
1769 	fput(newfile);
1770 	put_unused_fd(newfd);
1771 	goto out;
1772 
1773 }
1774 
1775 /*
1776  *	For accept, we attempt to create a new socket, set up the link
1777  *	with the client, wake up the client, then return the new
1778  *	connected fd. We collect the address of the connector in kernel
1779  *	space and move it to user at the very end. This is unclean because
1780  *	we open the socket then return an error.
1781  *
1782  *	1003.1g adds the ability to recvmsg() to query connection pending
1783  *	status to recvmsg. We need to add that support in a way thats
1784  *	clean when we restructure accept also.
1785  */
1786 
1787 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1788 		  int __user *upeer_addrlen, int flags)
1789 {
1790 	int ret = -EBADF;
1791 	struct fd f;
1792 
1793 	f = fdget(fd);
1794 	if (f.file) {
1795 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1796 						upeer_addrlen, flags);
1797 		if (f.flags)
1798 			fput(f.file);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1805 		int __user *, upeer_addrlen, int, flags)
1806 {
1807 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1808 }
1809 
1810 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1811 		int __user *, upeer_addrlen)
1812 {
1813 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1814 }
1815 
1816 /*
1817  *	Attempt to connect to a socket with the server address.  The address
1818  *	is in user space so we verify it is OK and move it to kernel space.
1819  *
1820  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1821  *	break bindings
1822  *
1823  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1824  *	other SEQPACKET protocols that take time to connect() as it doesn't
1825  *	include the -EINPROGRESS status for such sockets.
1826  */
1827 
1828 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1829 {
1830 	struct socket *sock;
1831 	struct sockaddr_storage address;
1832 	int err, fput_needed;
1833 
1834 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 	if (!sock)
1836 		goto out;
1837 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1838 	if (err < 0)
1839 		goto out_put;
1840 
1841 	err =
1842 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1843 	if (err)
1844 		goto out_put;
1845 
1846 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1847 				 sock->file->f_flags);
1848 out_put:
1849 	fput_light(sock->file, fput_needed);
1850 out:
1851 	return err;
1852 }
1853 
1854 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1855 		int, addrlen)
1856 {
1857 	return __sys_connect(fd, uservaddr, addrlen);
1858 }
1859 
1860 /*
1861  *	Get the local address ('name') of a socket object. Move the obtained
1862  *	name to user space.
1863  */
1864 
1865 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1866 		      int __user *usockaddr_len)
1867 {
1868 	struct socket *sock;
1869 	struct sockaddr_storage address;
1870 	int err, fput_needed;
1871 
1872 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 	if (!sock)
1874 		goto out;
1875 
1876 	err = security_socket_getsockname(sock);
1877 	if (err)
1878 		goto out_put;
1879 
1880 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1881 	if (err < 0)
1882 		goto out_put;
1883         /* "err" is actually length in this case */
1884 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1885 
1886 out_put:
1887 	fput_light(sock->file, fput_needed);
1888 out:
1889 	return err;
1890 }
1891 
1892 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1893 		int __user *, usockaddr_len)
1894 {
1895 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1896 }
1897 
1898 /*
1899  *	Get the remote address ('name') of a socket object. Move the obtained
1900  *	name to user space.
1901  */
1902 
1903 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1904 		      int __user *usockaddr_len)
1905 {
1906 	struct socket *sock;
1907 	struct sockaddr_storage address;
1908 	int err, fput_needed;
1909 
1910 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1911 	if (sock != NULL) {
1912 		err = security_socket_getpeername(sock);
1913 		if (err) {
1914 			fput_light(sock->file, fput_needed);
1915 			return err;
1916 		}
1917 
1918 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1919 		if (err >= 0)
1920 			/* "err" is actually length in this case */
1921 			err = move_addr_to_user(&address, err, usockaddr,
1922 						usockaddr_len);
1923 		fput_light(sock->file, fput_needed);
1924 	}
1925 	return err;
1926 }
1927 
1928 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1929 		int __user *, usockaddr_len)
1930 {
1931 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1932 }
1933 
1934 /*
1935  *	Send a datagram to a given address. We move the address into kernel
1936  *	space and check the user space data area is readable before invoking
1937  *	the protocol.
1938  */
1939 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1940 		 struct sockaddr __user *addr,  int addr_len)
1941 {
1942 	struct socket *sock;
1943 	struct sockaddr_storage address;
1944 	int err;
1945 	struct msghdr msg;
1946 	struct iovec iov;
1947 	int fput_needed;
1948 
1949 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1950 	if (unlikely(err))
1951 		return err;
1952 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 	if (!sock)
1954 		goto out;
1955 
1956 	msg.msg_name = NULL;
1957 	msg.msg_control = NULL;
1958 	msg.msg_controllen = 0;
1959 	msg.msg_namelen = 0;
1960 	if (addr) {
1961 		err = move_addr_to_kernel(addr, addr_len, &address);
1962 		if (err < 0)
1963 			goto out_put;
1964 		msg.msg_name = (struct sockaddr *)&address;
1965 		msg.msg_namelen = addr_len;
1966 	}
1967 	if (sock->file->f_flags & O_NONBLOCK)
1968 		flags |= MSG_DONTWAIT;
1969 	msg.msg_flags = flags;
1970 	err = sock_sendmsg(sock, &msg);
1971 
1972 out_put:
1973 	fput_light(sock->file, fput_needed);
1974 out:
1975 	return err;
1976 }
1977 
1978 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1979 		unsigned int, flags, struct sockaddr __user *, addr,
1980 		int, addr_len)
1981 {
1982 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1983 }
1984 
1985 /*
1986  *	Send a datagram down a socket.
1987  */
1988 
1989 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1990 		unsigned int, flags)
1991 {
1992 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1993 }
1994 
1995 /*
1996  *	Receive a frame from the socket and optionally record the address of the
1997  *	sender. We verify the buffers are writable and if needed move the
1998  *	sender address from kernel to user space.
1999  */
2000 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2001 		   struct sockaddr __user *addr, int __user *addr_len)
2002 {
2003 	struct socket *sock;
2004 	struct iovec iov;
2005 	struct msghdr msg;
2006 	struct sockaddr_storage address;
2007 	int err, err2;
2008 	int fput_needed;
2009 
2010 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2011 	if (unlikely(err))
2012 		return err;
2013 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2014 	if (!sock)
2015 		goto out;
2016 
2017 	msg.msg_control = NULL;
2018 	msg.msg_controllen = 0;
2019 	/* Save some cycles and don't copy the address if not needed */
2020 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2021 	/* We assume all kernel code knows the size of sockaddr_storage */
2022 	msg.msg_namelen = 0;
2023 	msg.msg_iocb = NULL;
2024 	msg.msg_flags = 0;
2025 	if (sock->file->f_flags & O_NONBLOCK)
2026 		flags |= MSG_DONTWAIT;
2027 	err = sock_recvmsg(sock, &msg, flags);
2028 
2029 	if (err >= 0 && addr != NULL) {
2030 		err2 = move_addr_to_user(&address,
2031 					 msg.msg_namelen, addr, addr_len);
2032 		if (err2 < 0)
2033 			err = err2;
2034 	}
2035 
2036 	fput_light(sock->file, fput_needed);
2037 out:
2038 	return err;
2039 }
2040 
2041 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2042 		unsigned int, flags, struct sockaddr __user *, addr,
2043 		int __user *, addr_len)
2044 {
2045 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2046 }
2047 
2048 /*
2049  *	Receive a datagram from a socket.
2050  */
2051 
2052 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2053 		unsigned int, flags)
2054 {
2055 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2056 }
2057 
2058 /*
2059  *	Set a socket option. Because we don't know the option lengths we have
2060  *	to pass the user mode parameter for the protocols to sort out.
2061  */
2062 
2063 static int __sys_setsockopt(int fd, int level, int optname,
2064 			    char __user *optval, int optlen)
2065 {
2066 	mm_segment_t oldfs = get_fs();
2067 	char *kernel_optval = NULL;
2068 	int err, fput_needed;
2069 	struct socket *sock;
2070 
2071 	if (optlen < 0)
2072 		return -EINVAL;
2073 
2074 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2075 	if (sock != NULL) {
2076 		err = security_socket_setsockopt(sock, level, optname);
2077 		if (err)
2078 			goto out_put;
2079 
2080 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2081 						     &optname, optval, &optlen,
2082 						     &kernel_optval);
2083 
2084 		if (err < 0) {
2085 			goto out_put;
2086 		} else if (err > 0) {
2087 			err = 0;
2088 			goto out_put;
2089 		}
2090 
2091 		if (kernel_optval) {
2092 			set_fs(KERNEL_DS);
2093 			optval = (char __user __force *)kernel_optval;
2094 		}
2095 
2096 		if (level == SOL_SOCKET)
2097 			err =
2098 			    sock_setsockopt(sock, level, optname, optval,
2099 					    optlen);
2100 		else
2101 			err =
2102 			    sock->ops->setsockopt(sock, level, optname, optval,
2103 						  optlen);
2104 
2105 		if (kernel_optval) {
2106 			set_fs(oldfs);
2107 			kfree(kernel_optval);
2108 		}
2109 out_put:
2110 		fput_light(sock->file, fput_needed);
2111 	}
2112 	return err;
2113 }
2114 
2115 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2116 		char __user *, optval, int, optlen)
2117 {
2118 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2119 }
2120 
2121 /*
2122  *	Get a socket option. Because we don't know the option lengths we have
2123  *	to pass a user mode parameter for the protocols to sort out.
2124  */
2125 
2126 static int __sys_getsockopt(int fd, int level, int optname,
2127 			    char __user *optval, int __user *optlen)
2128 {
2129 	int err, fput_needed;
2130 	struct socket *sock;
2131 	int max_optlen;
2132 
2133 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2134 	if (sock != NULL) {
2135 		err = security_socket_getsockopt(sock, level, optname);
2136 		if (err)
2137 			goto out_put;
2138 
2139 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2140 
2141 		if (level == SOL_SOCKET)
2142 			err =
2143 			    sock_getsockopt(sock, level, optname, optval,
2144 					    optlen);
2145 		else
2146 			err =
2147 			    sock->ops->getsockopt(sock, level, optname, optval,
2148 						  optlen);
2149 
2150 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2151 						     optval, optlen,
2152 						     max_optlen, err);
2153 out_put:
2154 		fput_light(sock->file, fput_needed);
2155 	}
2156 	return err;
2157 }
2158 
2159 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2160 		char __user *, optval, int __user *, optlen)
2161 {
2162 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2163 }
2164 
2165 /*
2166  *	Shutdown a socket.
2167  */
2168 
2169 int __sys_shutdown(int fd, int how)
2170 {
2171 	int err, fput_needed;
2172 	struct socket *sock;
2173 
2174 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2175 	if (sock != NULL) {
2176 		err = security_socket_shutdown(sock, how);
2177 		if (!err)
2178 			err = sock->ops->shutdown(sock, how);
2179 		fput_light(sock->file, fput_needed);
2180 	}
2181 	return err;
2182 }
2183 
2184 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2185 {
2186 	return __sys_shutdown(fd, how);
2187 }
2188 
2189 /* A couple of helpful macros for getting the address of the 32/64 bit
2190  * fields which are the same type (int / unsigned) on our platforms.
2191  */
2192 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2193 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2194 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2195 
2196 struct used_address {
2197 	struct sockaddr_storage name;
2198 	unsigned int name_len;
2199 };
2200 
2201 static int copy_msghdr_from_user(struct msghdr *kmsg,
2202 				 struct user_msghdr __user *umsg,
2203 				 struct sockaddr __user **save_addr,
2204 				 struct iovec **iov)
2205 {
2206 	struct user_msghdr msg;
2207 	ssize_t err;
2208 
2209 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2210 		return -EFAULT;
2211 
2212 	kmsg->msg_control = (void __force *)msg.msg_control;
2213 	kmsg->msg_controllen = msg.msg_controllen;
2214 	kmsg->msg_flags = msg.msg_flags;
2215 
2216 	kmsg->msg_namelen = msg.msg_namelen;
2217 	if (!msg.msg_name)
2218 		kmsg->msg_namelen = 0;
2219 
2220 	if (kmsg->msg_namelen < 0)
2221 		return -EINVAL;
2222 
2223 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2224 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2225 
2226 	if (save_addr)
2227 		*save_addr = msg.msg_name;
2228 
2229 	if (msg.msg_name && kmsg->msg_namelen) {
2230 		if (!save_addr) {
2231 			err = move_addr_to_kernel(msg.msg_name,
2232 						  kmsg->msg_namelen,
2233 						  kmsg->msg_name);
2234 			if (err < 0)
2235 				return err;
2236 		}
2237 	} else {
2238 		kmsg->msg_name = NULL;
2239 		kmsg->msg_namelen = 0;
2240 	}
2241 
2242 	if (msg.msg_iovlen > UIO_MAXIOV)
2243 		return -EMSGSIZE;
2244 
2245 	kmsg->msg_iocb = NULL;
2246 
2247 	err = import_iovec(save_addr ? READ : WRITE,
2248 			    msg.msg_iov, msg.msg_iovlen,
2249 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2250 	return err < 0 ? err : 0;
2251 }
2252 
2253 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2254 			 struct msghdr *msg_sys, unsigned int flags,
2255 			 struct used_address *used_address,
2256 			 unsigned int allowed_msghdr_flags)
2257 {
2258 	struct compat_msghdr __user *msg_compat =
2259 	    (struct compat_msghdr __user *)msg;
2260 	struct sockaddr_storage address;
2261 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2262 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2263 				__aligned(sizeof(__kernel_size_t));
2264 	/* 20 is size of ipv6_pktinfo */
2265 	unsigned char *ctl_buf = ctl;
2266 	int ctl_len;
2267 	ssize_t err;
2268 
2269 	msg_sys->msg_name = &address;
2270 
2271 	if (MSG_CMSG_COMPAT & flags)
2272 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2273 	else
2274 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2275 	if (err < 0)
2276 		return err;
2277 
2278 	err = -ENOBUFS;
2279 
2280 	if (msg_sys->msg_controllen > INT_MAX)
2281 		goto out_freeiov;
2282 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2283 	ctl_len = msg_sys->msg_controllen;
2284 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2285 		err =
2286 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2287 						     sizeof(ctl));
2288 		if (err)
2289 			goto out_freeiov;
2290 		ctl_buf = msg_sys->msg_control;
2291 		ctl_len = msg_sys->msg_controllen;
2292 	} else if (ctl_len) {
2293 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2294 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2295 		if (ctl_len > sizeof(ctl)) {
2296 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2297 			if (ctl_buf == NULL)
2298 				goto out_freeiov;
2299 		}
2300 		err = -EFAULT;
2301 		/*
2302 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2303 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2304 		 * checking falls down on this.
2305 		 */
2306 		if (copy_from_user(ctl_buf,
2307 				   (void __user __force *)msg_sys->msg_control,
2308 				   ctl_len))
2309 			goto out_freectl;
2310 		msg_sys->msg_control = ctl_buf;
2311 	}
2312 	msg_sys->msg_flags = flags;
2313 
2314 	if (sock->file->f_flags & O_NONBLOCK)
2315 		msg_sys->msg_flags |= MSG_DONTWAIT;
2316 	/*
2317 	 * If this is sendmmsg() and current destination address is same as
2318 	 * previously succeeded address, omit asking LSM's decision.
2319 	 * used_address->name_len is initialized to UINT_MAX so that the first
2320 	 * destination address never matches.
2321 	 */
2322 	if (used_address && msg_sys->msg_name &&
2323 	    used_address->name_len == msg_sys->msg_namelen &&
2324 	    !memcmp(&used_address->name, msg_sys->msg_name,
2325 		    used_address->name_len)) {
2326 		err = sock_sendmsg_nosec(sock, msg_sys);
2327 		goto out_freectl;
2328 	}
2329 	err = sock_sendmsg(sock, msg_sys);
2330 	/*
2331 	 * If this is sendmmsg() and sending to current destination address was
2332 	 * successful, remember it.
2333 	 */
2334 	if (used_address && err >= 0) {
2335 		used_address->name_len = msg_sys->msg_namelen;
2336 		if (msg_sys->msg_name)
2337 			memcpy(&used_address->name, msg_sys->msg_name,
2338 			       used_address->name_len);
2339 	}
2340 
2341 out_freectl:
2342 	if (ctl_buf != ctl)
2343 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2344 out_freeiov:
2345 	kfree(iov);
2346 	return err;
2347 }
2348 
2349 /*
2350  *	BSD sendmsg interface
2351  */
2352 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2353 			unsigned int flags)
2354 {
2355 	struct msghdr msg_sys;
2356 
2357 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2358 }
2359 
2360 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2361 		   bool forbid_cmsg_compat)
2362 {
2363 	int fput_needed, err;
2364 	struct msghdr msg_sys;
2365 	struct socket *sock;
2366 
2367 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2368 		return -EINVAL;
2369 
2370 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2371 	if (!sock)
2372 		goto out;
2373 
2374 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2375 
2376 	fput_light(sock->file, fput_needed);
2377 out:
2378 	return err;
2379 }
2380 
2381 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2382 {
2383 	return __sys_sendmsg(fd, msg, flags, true);
2384 }
2385 
2386 /*
2387  *	Linux sendmmsg interface
2388  */
2389 
2390 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2391 		   unsigned int flags, bool forbid_cmsg_compat)
2392 {
2393 	int fput_needed, err, datagrams;
2394 	struct socket *sock;
2395 	struct mmsghdr __user *entry;
2396 	struct compat_mmsghdr __user *compat_entry;
2397 	struct msghdr msg_sys;
2398 	struct used_address used_address;
2399 	unsigned int oflags = flags;
2400 
2401 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2402 		return -EINVAL;
2403 
2404 	if (vlen > UIO_MAXIOV)
2405 		vlen = UIO_MAXIOV;
2406 
2407 	datagrams = 0;
2408 
2409 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2410 	if (!sock)
2411 		return err;
2412 
2413 	used_address.name_len = UINT_MAX;
2414 	entry = mmsg;
2415 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2416 	err = 0;
2417 	flags |= MSG_BATCH;
2418 
2419 	while (datagrams < vlen) {
2420 		if (datagrams == vlen - 1)
2421 			flags = oflags;
2422 
2423 		if (MSG_CMSG_COMPAT & flags) {
2424 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2425 					     &msg_sys, flags, &used_address, MSG_EOR);
2426 			if (err < 0)
2427 				break;
2428 			err = __put_user(err, &compat_entry->msg_len);
2429 			++compat_entry;
2430 		} else {
2431 			err = ___sys_sendmsg(sock,
2432 					     (struct user_msghdr __user *)entry,
2433 					     &msg_sys, flags, &used_address, MSG_EOR);
2434 			if (err < 0)
2435 				break;
2436 			err = put_user(err, &entry->msg_len);
2437 			++entry;
2438 		}
2439 
2440 		if (err)
2441 			break;
2442 		++datagrams;
2443 		if (msg_data_left(&msg_sys))
2444 			break;
2445 		cond_resched();
2446 	}
2447 
2448 	fput_light(sock->file, fput_needed);
2449 
2450 	/* We only return an error if no datagrams were able to be sent */
2451 	if (datagrams != 0)
2452 		return datagrams;
2453 
2454 	return err;
2455 }
2456 
2457 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2458 		unsigned int, vlen, unsigned int, flags)
2459 {
2460 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2461 }
2462 
2463 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2464 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2465 {
2466 	struct compat_msghdr __user *msg_compat =
2467 	    (struct compat_msghdr __user *)msg;
2468 	struct iovec iovstack[UIO_FASTIOV];
2469 	struct iovec *iov = iovstack;
2470 	unsigned long cmsg_ptr;
2471 	int len;
2472 	ssize_t err;
2473 
2474 	/* kernel mode address */
2475 	struct sockaddr_storage addr;
2476 
2477 	/* user mode address pointers */
2478 	struct sockaddr __user *uaddr;
2479 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2480 
2481 	msg_sys->msg_name = &addr;
2482 
2483 	if (MSG_CMSG_COMPAT & flags)
2484 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2485 	else
2486 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2487 	if (err < 0)
2488 		return err;
2489 
2490 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2491 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2492 
2493 	/* We assume all kernel code knows the size of sockaddr_storage */
2494 	msg_sys->msg_namelen = 0;
2495 
2496 	if (sock->file->f_flags & O_NONBLOCK)
2497 		flags |= MSG_DONTWAIT;
2498 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2499 	if (err < 0)
2500 		goto out_freeiov;
2501 	len = err;
2502 
2503 	if (uaddr != NULL) {
2504 		err = move_addr_to_user(&addr,
2505 					msg_sys->msg_namelen, uaddr,
2506 					uaddr_len);
2507 		if (err < 0)
2508 			goto out_freeiov;
2509 	}
2510 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2511 			 COMPAT_FLAGS(msg));
2512 	if (err)
2513 		goto out_freeiov;
2514 	if (MSG_CMSG_COMPAT & flags)
2515 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2516 				 &msg_compat->msg_controllen);
2517 	else
2518 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2519 				 &msg->msg_controllen);
2520 	if (err)
2521 		goto out_freeiov;
2522 	err = len;
2523 
2524 out_freeiov:
2525 	kfree(iov);
2526 	return err;
2527 }
2528 
2529 /*
2530  *	BSD recvmsg interface
2531  */
2532 
2533 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2534 			unsigned int flags)
2535 {
2536 	struct msghdr msg_sys;
2537 
2538 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2539 }
2540 
2541 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2542 		   bool forbid_cmsg_compat)
2543 {
2544 	int fput_needed, err;
2545 	struct msghdr msg_sys;
2546 	struct socket *sock;
2547 
2548 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2549 		return -EINVAL;
2550 
2551 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2552 	if (!sock)
2553 		goto out;
2554 
2555 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2556 
2557 	fput_light(sock->file, fput_needed);
2558 out:
2559 	return err;
2560 }
2561 
2562 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2563 		unsigned int, flags)
2564 {
2565 	return __sys_recvmsg(fd, msg, flags, true);
2566 }
2567 
2568 /*
2569  *     Linux recvmmsg interface
2570  */
2571 
2572 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2573 			  unsigned int vlen, unsigned int flags,
2574 			  struct timespec64 *timeout)
2575 {
2576 	int fput_needed, err, datagrams;
2577 	struct socket *sock;
2578 	struct mmsghdr __user *entry;
2579 	struct compat_mmsghdr __user *compat_entry;
2580 	struct msghdr msg_sys;
2581 	struct timespec64 end_time;
2582 	struct timespec64 timeout64;
2583 
2584 	if (timeout &&
2585 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2586 				    timeout->tv_nsec))
2587 		return -EINVAL;
2588 
2589 	datagrams = 0;
2590 
2591 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2592 	if (!sock)
2593 		return err;
2594 
2595 	if (likely(!(flags & MSG_ERRQUEUE))) {
2596 		err = sock_error(sock->sk);
2597 		if (err) {
2598 			datagrams = err;
2599 			goto out_put;
2600 		}
2601 	}
2602 
2603 	entry = mmsg;
2604 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2605 
2606 	while (datagrams < vlen) {
2607 		/*
2608 		 * No need to ask LSM for more than the first datagram.
2609 		 */
2610 		if (MSG_CMSG_COMPAT & flags) {
2611 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2612 					     &msg_sys, flags & ~MSG_WAITFORONE,
2613 					     datagrams);
2614 			if (err < 0)
2615 				break;
2616 			err = __put_user(err, &compat_entry->msg_len);
2617 			++compat_entry;
2618 		} else {
2619 			err = ___sys_recvmsg(sock,
2620 					     (struct user_msghdr __user *)entry,
2621 					     &msg_sys, flags & ~MSG_WAITFORONE,
2622 					     datagrams);
2623 			if (err < 0)
2624 				break;
2625 			err = put_user(err, &entry->msg_len);
2626 			++entry;
2627 		}
2628 
2629 		if (err)
2630 			break;
2631 		++datagrams;
2632 
2633 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2634 		if (flags & MSG_WAITFORONE)
2635 			flags |= MSG_DONTWAIT;
2636 
2637 		if (timeout) {
2638 			ktime_get_ts64(&timeout64);
2639 			*timeout = timespec64_sub(end_time, timeout64);
2640 			if (timeout->tv_sec < 0) {
2641 				timeout->tv_sec = timeout->tv_nsec = 0;
2642 				break;
2643 			}
2644 
2645 			/* Timeout, return less than vlen datagrams */
2646 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2647 				break;
2648 		}
2649 
2650 		/* Out of band data, return right away */
2651 		if (msg_sys.msg_flags & MSG_OOB)
2652 			break;
2653 		cond_resched();
2654 	}
2655 
2656 	if (err == 0)
2657 		goto out_put;
2658 
2659 	if (datagrams == 0) {
2660 		datagrams = err;
2661 		goto out_put;
2662 	}
2663 
2664 	/*
2665 	 * We may return less entries than requested (vlen) if the
2666 	 * sock is non block and there aren't enough datagrams...
2667 	 */
2668 	if (err != -EAGAIN) {
2669 		/*
2670 		 * ... or  if recvmsg returns an error after we
2671 		 * received some datagrams, where we record the
2672 		 * error to return on the next call or if the
2673 		 * app asks about it using getsockopt(SO_ERROR).
2674 		 */
2675 		sock->sk->sk_err = -err;
2676 	}
2677 out_put:
2678 	fput_light(sock->file, fput_needed);
2679 
2680 	return datagrams;
2681 }
2682 
2683 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2684 		   unsigned int vlen, unsigned int flags,
2685 		   struct __kernel_timespec __user *timeout,
2686 		   struct old_timespec32 __user *timeout32)
2687 {
2688 	int datagrams;
2689 	struct timespec64 timeout_sys;
2690 
2691 	if (timeout && get_timespec64(&timeout_sys, timeout))
2692 		return -EFAULT;
2693 
2694 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2695 		return -EFAULT;
2696 
2697 	if (!timeout && !timeout32)
2698 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2699 
2700 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2701 
2702 	if (datagrams <= 0)
2703 		return datagrams;
2704 
2705 	if (timeout && put_timespec64(&timeout_sys, timeout))
2706 		datagrams = -EFAULT;
2707 
2708 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2709 		datagrams = -EFAULT;
2710 
2711 	return datagrams;
2712 }
2713 
2714 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2715 		unsigned int, vlen, unsigned int, flags,
2716 		struct __kernel_timespec __user *, timeout)
2717 {
2718 	if (flags & MSG_CMSG_COMPAT)
2719 		return -EINVAL;
2720 
2721 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2722 }
2723 
2724 #ifdef CONFIG_COMPAT_32BIT_TIME
2725 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2726 		unsigned int, vlen, unsigned int, flags,
2727 		struct old_timespec32 __user *, timeout)
2728 {
2729 	if (flags & MSG_CMSG_COMPAT)
2730 		return -EINVAL;
2731 
2732 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2733 }
2734 #endif
2735 
2736 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2737 /* Argument list sizes for sys_socketcall */
2738 #define AL(x) ((x) * sizeof(unsigned long))
2739 static const unsigned char nargs[21] = {
2740 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2741 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2742 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2743 	AL(4), AL(5), AL(4)
2744 };
2745 
2746 #undef AL
2747 
2748 /*
2749  *	System call vectors.
2750  *
2751  *	Argument checking cleaned up. Saved 20% in size.
2752  *  This function doesn't need to set the kernel lock because
2753  *  it is set by the callees.
2754  */
2755 
2756 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2757 {
2758 	unsigned long a[AUDITSC_ARGS];
2759 	unsigned long a0, a1;
2760 	int err;
2761 	unsigned int len;
2762 
2763 	if (call < 1 || call > SYS_SENDMMSG)
2764 		return -EINVAL;
2765 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2766 
2767 	len = nargs[call];
2768 	if (len > sizeof(a))
2769 		return -EINVAL;
2770 
2771 	/* copy_from_user should be SMP safe. */
2772 	if (copy_from_user(a, args, len))
2773 		return -EFAULT;
2774 
2775 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2776 	if (err)
2777 		return err;
2778 
2779 	a0 = a[0];
2780 	a1 = a[1];
2781 
2782 	switch (call) {
2783 	case SYS_SOCKET:
2784 		err = __sys_socket(a0, a1, a[2]);
2785 		break;
2786 	case SYS_BIND:
2787 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2788 		break;
2789 	case SYS_CONNECT:
2790 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2791 		break;
2792 	case SYS_LISTEN:
2793 		err = __sys_listen(a0, a1);
2794 		break;
2795 	case SYS_ACCEPT:
2796 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2797 				    (int __user *)a[2], 0);
2798 		break;
2799 	case SYS_GETSOCKNAME:
2800 		err =
2801 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2802 				      (int __user *)a[2]);
2803 		break;
2804 	case SYS_GETPEERNAME:
2805 		err =
2806 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2807 				      (int __user *)a[2]);
2808 		break;
2809 	case SYS_SOCKETPAIR:
2810 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2811 		break;
2812 	case SYS_SEND:
2813 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2814 				   NULL, 0);
2815 		break;
2816 	case SYS_SENDTO:
2817 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2818 				   (struct sockaddr __user *)a[4], a[5]);
2819 		break;
2820 	case SYS_RECV:
2821 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2822 				     NULL, NULL);
2823 		break;
2824 	case SYS_RECVFROM:
2825 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2826 				     (struct sockaddr __user *)a[4],
2827 				     (int __user *)a[5]);
2828 		break;
2829 	case SYS_SHUTDOWN:
2830 		err = __sys_shutdown(a0, a1);
2831 		break;
2832 	case SYS_SETSOCKOPT:
2833 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2834 				       a[4]);
2835 		break;
2836 	case SYS_GETSOCKOPT:
2837 		err =
2838 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2839 				     (int __user *)a[4]);
2840 		break;
2841 	case SYS_SENDMSG:
2842 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2843 				    a[2], true);
2844 		break;
2845 	case SYS_SENDMMSG:
2846 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2847 				     a[3], true);
2848 		break;
2849 	case SYS_RECVMSG:
2850 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2851 				    a[2], true);
2852 		break;
2853 	case SYS_RECVMMSG:
2854 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2855 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2856 					     a[2], a[3],
2857 					     (struct __kernel_timespec __user *)a[4],
2858 					     NULL);
2859 		else
2860 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2861 					     a[2], a[3], NULL,
2862 					     (struct old_timespec32 __user *)a[4]);
2863 		break;
2864 	case SYS_ACCEPT4:
2865 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2866 				    (int __user *)a[2], a[3]);
2867 		break;
2868 	default:
2869 		err = -EINVAL;
2870 		break;
2871 	}
2872 	return err;
2873 }
2874 
2875 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2876 
2877 /**
2878  *	sock_register - add a socket protocol handler
2879  *	@ops: description of protocol
2880  *
2881  *	This function is called by a protocol handler that wants to
2882  *	advertise its address family, and have it linked into the
2883  *	socket interface. The value ops->family corresponds to the
2884  *	socket system call protocol family.
2885  */
2886 int sock_register(const struct net_proto_family *ops)
2887 {
2888 	int err;
2889 
2890 	if (ops->family >= NPROTO) {
2891 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2892 		return -ENOBUFS;
2893 	}
2894 
2895 	spin_lock(&net_family_lock);
2896 	if (rcu_dereference_protected(net_families[ops->family],
2897 				      lockdep_is_held(&net_family_lock)))
2898 		err = -EEXIST;
2899 	else {
2900 		rcu_assign_pointer(net_families[ops->family], ops);
2901 		err = 0;
2902 	}
2903 	spin_unlock(&net_family_lock);
2904 
2905 	pr_info("NET: Registered protocol family %d\n", ops->family);
2906 	return err;
2907 }
2908 EXPORT_SYMBOL(sock_register);
2909 
2910 /**
2911  *	sock_unregister - remove a protocol handler
2912  *	@family: protocol family to remove
2913  *
2914  *	This function is called by a protocol handler that wants to
2915  *	remove its address family, and have it unlinked from the
2916  *	new socket creation.
2917  *
2918  *	If protocol handler is a module, then it can use module reference
2919  *	counts to protect against new references. If protocol handler is not
2920  *	a module then it needs to provide its own protection in
2921  *	the ops->create routine.
2922  */
2923 void sock_unregister(int family)
2924 {
2925 	BUG_ON(family < 0 || family >= NPROTO);
2926 
2927 	spin_lock(&net_family_lock);
2928 	RCU_INIT_POINTER(net_families[family], NULL);
2929 	spin_unlock(&net_family_lock);
2930 
2931 	synchronize_rcu();
2932 
2933 	pr_info("NET: Unregistered protocol family %d\n", family);
2934 }
2935 EXPORT_SYMBOL(sock_unregister);
2936 
2937 bool sock_is_registered(int family)
2938 {
2939 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2940 }
2941 
2942 static int __init sock_init(void)
2943 {
2944 	int err;
2945 	/*
2946 	 *      Initialize the network sysctl infrastructure.
2947 	 */
2948 	err = net_sysctl_init();
2949 	if (err)
2950 		goto out;
2951 
2952 	/*
2953 	 *      Initialize skbuff SLAB cache
2954 	 */
2955 	skb_init();
2956 
2957 	/*
2958 	 *      Initialize the protocols module.
2959 	 */
2960 
2961 	init_inodecache();
2962 
2963 	err = register_filesystem(&sock_fs_type);
2964 	if (err)
2965 		goto out_fs;
2966 	sock_mnt = kern_mount(&sock_fs_type);
2967 	if (IS_ERR(sock_mnt)) {
2968 		err = PTR_ERR(sock_mnt);
2969 		goto out_mount;
2970 	}
2971 
2972 	/* The real protocol initialization is performed in later initcalls.
2973 	 */
2974 
2975 #ifdef CONFIG_NETFILTER
2976 	err = netfilter_init();
2977 	if (err)
2978 		goto out;
2979 #endif
2980 
2981 	ptp_classifier_init();
2982 
2983 out:
2984 	return err;
2985 
2986 out_mount:
2987 	unregister_filesystem(&sock_fs_type);
2988 out_fs:
2989 	goto out;
2990 }
2991 
2992 core_initcall(sock_init);	/* early initcall */
2993 
2994 #ifdef CONFIG_PROC_FS
2995 void socket_seq_show(struct seq_file *seq)
2996 {
2997 	seq_printf(seq, "sockets: used %d\n",
2998 		   sock_inuse_get(seq->private));
2999 }
3000 #endif				/* CONFIG_PROC_FS */
3001 
3002 #ifdef CONFIG_COMPAT
3003 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3004 {
3005 	struct compat_ifconf ifc32;
3006 	struct ifconf ifc;
3007 	int err;
3008 
3009 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3010 		return -EFAULT;
3011 
3012 	ifc.ifc_len = ifc32.ifc_len;
3013 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3014 
3015 	rtnl_lock();
3016 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3017 	rtnl_unlock();
3018 	if (err)
3019 		return err;
3020 
3021 	ifc32.ifc_len = ifc.ifc_len;
3022 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3023 		return -EFAULT;
3024 
3025 	return 0;
3026 }
3027 
3028 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3029 {
3030 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3031 	bool convert_in = false, convert_out = false;
3032 	size_t buf_size = 0;
3033 	struct ethtool_rxnfc __user *rxnfc = NULL;
3034 	struct ifreq ifr;
3035 	u32 rule_cnt = 0, actual_rule_cnt;
3036 	u32 ethcmd;
3037 	u32 data;
3038 	int ret;
3039 
3040 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3041 		return -EFAULT;
3042 
3043 	compat_rxnfc = compat_ptr(data);
3044 
3045 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3046 		return -EFAULT;
3047 
3048 	/* Most ethtool structures are defined without padding.
3049 	 * Unfortunately struct ethtool_rxnfc is an exception.
3050 	 */
3051 	switch (ethcmd) {
3052 	default:
3053 		break;
3054 	case ETHTOOL_GRXCLSRLALL:
3055 		/* Buffer size is variable */
3056 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3057 			return -EFAULT;
3058 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3059 			return -ENOMEM;
3060 		buf_size += rule_cnt * sizeof(u32);
3061 		/* fall through */
3062 	case ETHTOOL_GRXRINGS:
3063 	case ETHTOOL_GRXCLSRLCNT:
3064 	case ETHTOOL_GRXCLSRULE:
3065 	case ETHTOOL_SRXCLSRLINS:
3066 		convert_out = true;
3067 		/* fall through */
3068 	case ETHTOOL_SRXCLSRLDEL:
3069 		buf_size += sizeof(struct ethtool_rxnfc);
3070 		convert_in = true;
3071 		rxnfc = compat_alloc_user_space(buf_size);
3072 		break;
3073 	}
3074 
3075 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3076 		return -EFAULT;
3077 
3078 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3079 
3080 	if (convert_in) {
3081 		/* We expect there to be holes between fs.m_ext and
3082 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3083 		 */
3084 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3085 			     sizeof(compat_rxnfc->fs.m_ext) !=
3086 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3087 			     sizeof(rxnfc->fs.m_ext));
3088 		BUILD_BUG_ON(
3089 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3090 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3091 			offsetof(struct ethtool_rxnfc, fs.location) -
3092 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3093 
3094 		if (copy_in_user(rxnfc, compat_rxnfc,
3095 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3096 				 (void __user *)rxnfc) ||
3097 		    copy_in_user(&rxnfc->fs.ring_cookie,
3098 				 &compat_rxnfc->fs.ring_cookie,
3099 				 (void __user *)(&rxnfc->fs.location + 1) -
3100 				 (void __user *)&rxnfc->fs.ring_cookie))
3101 			return -EFAULT;
3102 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3103 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3104 				return -EFAULT;
3105 		} else if (copy_in_user(&rxnfc->rule_cnt,
3106 					&compat_rxnfc->rule_cnt,
3107 					sizeof(rxnfc->rule_cnt)))
3108 			return -EFAULT;
3109 	}
3110 
3111 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (convert_out) {
3116 		if (copy_in_user(compat_rxnfc, rxnfc,
3117 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3118 				 (const void __user *)rxnfc) ||
3119 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3120 				 &rxnfc->fs.ring_cookie,
3121 				 (const void __user *)(&rxnfc->fs.location + 1) -
3122 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3123 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3124 				 sizeof(rxnfc->rule_cnt)))
3125 			return -EFAULT;
3126 
3127 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3128 			/* As an optimisation, we only copy the actual
3129 			 * number of rules that the underlying
3130 			 * function returned.  Since Mallory might
3131 			 * change the rule count in user memory, we
3132 			 * check that it is less than the rule count
3133 			 * originally given (as the user buffer size),
3134 			 * which has been range-checked.
3135 			 */
3136 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3137 				return -EFAULT;
3138 			if (actual_rule_cnt < rule_cnt)
3139 				rule_cnt = actual_rule_cnt;
3140 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3141 					 &rxnfc->rule_locs[0],
3142 					 rule_cnt * sizeof(u32)))
3143 				return -EFAULT;
3144 		}
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3151 {
3152 	compat_uptr_t uptr32;
3153 	struct ifreq ifr;
3154 	void __user *saved;
3155 	int err;
3156 
3157 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3158 		return -EFAULT;
3159 
3160 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3161 		return -EFAULT;
3162 
3163 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3164 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3165 
3166 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3167 	if (!err) {
3168 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3169 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3170 			err = -EFAULT;
3171 	}
3172 	return err;
3173 }
3174 
3175 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3176 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3177 				 struct compat_ifreq __user *u_ifreq32)
3178 {
3179 	struct ifreq ifreq;
3180 	u32 data32;
3181 
3182 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3183 		return -EFAULT;
3184 	if (get_user(data32, &u_ifreq32->ifr_data))
3185 		return -EFAULT;
3186 	ifreq.ifr_data = compat_ptr(data32);
3187 
3188 	return dev_ioctl(net, cmd, &ifreq, NULL);
3189 }
3190 
3191 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3192 			      unsigned int cmd,
3193 			      struct compat_ifreq __user *uifr32)
3194 {
3195 	struct ifreq __user *uifr;
3196 	int err;
3197 
3198 	/* Handle the fact that while struct ifreq has the same *layout* on
3199 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3200 	 * which are handled elsewhere, it still has different *size* due to
3201 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3202 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3203 	 * As a result, if the struct happens to be at the end of a page and
3204 	 * the next page isn't readable/writable, we get a fault. To prevent
3205 	 * that, copy back and forth to the full size.
3206 	 */
3207 
3208 	uifr = compat_alloc_user_space(sizeof(*uifr));
3209 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3210 		return -EFAULT;
3211 
3212 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3213 
3214 	if (!err) {
3215 		switch (cmd) {
3216 		case SIOCGIFFLAGS:
3217 		case SIOCGIFMETRIC:
3218 		case SIOCGIFMTU:
3219 		case SIOCGIFMEM:
3220 		case SIOCGIFHWADDR:
3221 		case SIOCGIFINDEX:
3222 		case SIOCGIFADDR:
3223 		case SIOCGIFBRDADDR:
3224 		case SIOCGIFDSTADDR:
3225 		case SIOCGIFNETMASK:
3226 		case SIOCGIFPFLAGS:
3227 		case SIOCGIFTXQLEN:
3228 		case SIOCGMIIPHY:
3229 		case SIOCGMIIREG:
3230 		case SIOCGIFNAME:
3231 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3232 				err = -EFAULT;
3233 			break;
3234 		}
3235 	}
3236 	return err;
3237 }
3238 
3239 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3240 			struct compat_ifreq __user *uifr32)
3241 {
3242 	struct ifreq ifr;
3243 	struct compat_ifmap __user *uifmap32;
3244 	int err;
3245 
3246 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3247 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3248 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3249 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3250 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3251 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3252 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3253 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3254 	if (err)
3255 		return -EFAULT;
3256 
3257 	err = dev_ioctl(net, cmd, &ifr, NULL);
3258 
3259 	if (cmd == SIOCGIFMAP && !err) {
3260 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3261 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3262 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3263 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3264 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3265 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3266 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3267 		if (err)
3268 			err = -EFAULT;
3269 	}
3270 	return err;
3271 }
3272 
3273 struct rtentry32 {
3274 	u32		rt_pad1;
3275 	struct sockaddr rt_dst;         /* target address               */
3276 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3277 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3278 	unsigned short	rt_flags;
3279 	short		rt_pad2;
3280 	u32		rt_pad3;
3281 	unsigned char	rt_tos;
3282 	unsigned char	rt_class;
3283 	short		rt_pad4;
3284 	short		rt_metric;      /* +1 for binary compatibility! */
3285 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3286 	u32		rt_mtu;         /* per route MTU/Window         */
3287 	u32		rt_window;      /* Window clamping              */
3288 	unsigned short  rt_irtt;        /* Initial RTT                  */
3289 };
3290 
3291 struct in6_rtmsg32 {
3292 	struct in6_addr		rtmsg_dst;
3293 	struct in6_addr		rtmsg_src;
3294 	struct in6_addr		rtmsg_gateway;
3295 	u32			rtmsg_type;
3296 	u16			rtmsg_dst_len;
3297 	u16			rtmsg_src_len;
3298 	u32			rtmsg_metric;
3299 	u32			rtmsg_info;
3300 	u32			rtmsg_flags;
3301 	s32			rtmsg_ifindex;
3302 };
3303 
3304 static int routing_ioctl(struct net *net, struct socket *sock,
3305 			 unsigned int cmd, void __user *argp)
3306 {
3307 	int ret;
3308 	void *r = NULL;
3309 	struct in6_rtmsg r6;
3310 	struct rtentry r4;
3311 	char devname[16];
3312 	u32 rtdev;
3313 	mm_segment_t old_fs = get_fs();
3314 
3315 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3316 		struct in6_rtmsg32 __user *ur6 = argp;
3317 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3318 			3 * sizeof(struct in6_addr));
3319 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3320 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3321 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3322 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3323 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3324 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3325 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3326 
3327 		r = (void *) &r6;
3328 	} else { /* ipv4 */
3329 		struct rtentry32 __user *ur4 = argp;
3330 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3331 					3 * sizeof(struct sockaddr));
3332 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3333 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3334 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3335 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3336 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3337 		ret |= get_user(rtdev, &(ur4->rt_dev));
3338 		if (rtdev) {
3339 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3340 			r4.rt_dev = (char __user __force *)devname;
3341 			devname[15] = 0;
3342 		} else
3343 			r4.rt_dev = NULL;
3344 
3345 		r = (void *) &r4;
3346 	}
3347 
3348 	if (ret) {
3349 		ret = -EFAULT;
3350 		goto out;
3351 	}
3352 
3353 	set_fs(KERNEL_DS);
3354 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3355 	set_fs(old_fs);
3356 
3357 out:
3358 	return ret;
3359 }
3360 
3361 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3362  * for some operations; this forces use of the newer bridge-utils that
3363  * use compatible ioctls
3364  */
3365 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3366 {
3367 	compat_ulong_t tmp;
3368 
3369 	if (get_user(tmp, argp))
3370 		return -EFAULT;
3371 	if (tmp == BRCTL_GET_VERSION)
3372 		return BRCTL_VERSION + 1;
3373 	return -EINVAL;
3374 }
3375 
3376 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3377 			 unsigned int cmd, unsigned long arg)
3378 {
3379 	void __user *argp = compat_ptr(arg);
3380 	struct sock *sk = sock->sk;
3381 	struct net *net = sock_net(sk);
3382 
3383 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3384 		return compat_ifr_data_ioctl(net, cmd, argp);
3385 
3386 	switch (cmd) {
3387 	case SIOCSIFBR:
3388 	case SIOCGIFBR:
3389 		return old_bridge_ioctl(argp);
3390 	case SIOCGIFCONF:
3391 		return compat_dev_ifconf(net, argp);
3392 	case SIOCETHTOOL:
3393 		return ethtool_ioctl(net, argp);
3394 	case SIOCWANDEV:
3395 		return compat_siocwandev(net, argp);
3396 	case SIOCGIFMAP:
3397 	case SIOCSIFMAP:
3398 		return compat_sioc_ifmap(net, cmd, argp);
3399 	case SIOCADDRT:
3400 	case SIOCDELRT:
3401 		return routing_ioctl(net, sock, cmd, argp);
3402 	case SIOCGSTAMP_OLD:
3403 	case SIOCGSTAMPNS_OLD:
3404 		if (!sock->ops->gettstamp)
3405 			return -ENOIOCTLCMD;
3406 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3407 					    !COMPAT_USE_64BIT_TIME);
3408 
3409 	case SIOCBONDSLAVEINFOQUERY:
3410 	case SIOCBONDINFOQUERY:
3411 	case SIOCSHWTSTAMP:
3412 	case SIOCGHWTSTAMP:
3413 		return compat_ifr_data_ioctl(net, cmd, argp);
3414 
3415 	case FIOSETOWN:
3416 	case SIOCSPGRP:
3417 	case FIOGETOWN:
3418 	case SIOCGPGRP:
3419 	case SIOCBRADDBR:
3420 	case SIOCBRDELBR:
3421 	case SIOCGIFVLAN:
3422 	case SIOCSIFVLAN:
3423 	case SIOCADDDLCI:
3424 	case SIOCDELDLCI:
3425 	case SIOCGSKNS:
3426 	case SIOCGSTAMP_NEW:
3427 	case SIOCGSTAMPNS_NEW:
3428 		return sock_ioctl(file, cmd, arg);
3429 
3430 	case SIOCGIFFLAGS:
3431 	case SIOCSIFFLAGS:
3432 	case SIOCGIFMETRIC:
3433 	case SIOCSIFMETRIC:
3434 	case SIOCGIFMTU:
3435 	case SIOCSIFMTU:
3436 	case SIOCGIFMEM:
3437 	case SIOCSIFMEM:
3438 	case SIOCGIFHWADDR:
3439 	case SIOCSIFHWADDR:
3440 	case SIOCADDMULTI:
3441 	case SIOCDELMULTI:
3442 	case SIOCGIFINDEX:
3443 	case SIOCGIFADDR:
3444 	case SIOCSIFADDR:
3445 	case SIOCSIFHWBROADCAST:
3446 	case SIOCDIFADDR:
3447 	case SIOCGIFBRDADDR:
3448 	case SIOCSIFBRDADDR:
3449 	case SIOCGIFDSTADDR:
3450 	case SIOCSIFDSTADDR:
3451 	case SIOCGIFNETMASK:
3452 	case SIOCSIFNETMASK:
3453 	case SIOCSIFPFLAGS:
3454 	case SIOCGIFPFLAGS:
3455 	case SIOCGIFTXQLEN:
3456 	case SIOCSIFTXQLEN:
3457 	case SIOCBRADDIF:
3458 	case SIOCBRDELIF:
3459 	case SIOCGIFNAME:
3460 	case SIOCSIFNAME:
3461 	case SIOCGMIIPHY:
3462 	case SIOCGMIIREG:
3463 	case SIOCSMIIREG:
3464 	case SIOCBONDENSLAVE:
3465 	case SIOCBONDRELEASE:
3466 	case SIOCBONDSETHWADDR:
3467 	case SIOCBONDCHANGEACTIVE:
3468 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3469 
3470 	case SIOCSARP:
3471 	case SIOCGARP:
3472 	case SIOCDARP:
3473 	case SIOCATMARK:
3474 		return sock_do_ioctl(net, sock, cmd, arg);
3475 	}
3476 
3477 	return -ENOIOCTLCMD;
3478 }
3479 
3480 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3481 			      unsigned long arg)
3482 {
3483 	struct socket *sock = file->private_data;
3484 	int ret = -ENOIOCTLCMD;
3485 	struct sock *sk;
3486 	struct net *net;
3487 
3488 	sk = sock->sk;
3489 	net = sock_net(sk);
3490 
3491 	if (sock->ops->compat_ioctl)
3492 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3493 
3494 	if (ret == -ENOIOCTLCMD &&
3495 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3496 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3497 
3498 	if (ret == -ENOIOCTLCMD)
3499 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3500 
3501 	return ret;
3502 }
3503 #endif
3504 
3505 /**
3506  *	kernel_bind - bind an address to a socket (kernel space)
3507  *	@sock: socket
3508  *	@addr: address
3509  *	@addrlen: length of address
3510  *
3511  *	Returns 0 or an error.
3512  */
3513 
3514 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3515 {
3516 	return sock->ops->bind(sock, addr, addrlen);
3517 }
3518 EXPORT_SYMBOL(kernel_bind);
3519 
3520 /**
3521  *	kernel_listen - move socket to listening state (kernel space)
3522  *	@sock: socket
3523  *	@backlog: pending connections queue size
3524  *
3525  *	Returns 0 or an error.
3526  */
3527 
3528 int kernel_listen(struct socket *sock, int backlog)
3529 {
3530 	return sock->ops->listen(sock, backlog);
3531 }
3532 EXPORT_SYMBOL(kernel_listen);
3533 
3534 /**
3535  *	kernel_accept - accept a connection (kernel space)
3536  *	@sock: listening socket
3537  *	@newsock: new connected socket
3538  *	@flags: flags
3539  *
3540  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3541  *	If it fails, @newsock is guaranteed to be %NULL.
3542  *	Returns 0 or an error.
3543  */
3544 
3545 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3546 {
3547 	struct sock *sk = sock->sk;
3548 	int err;
3549 
3550 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3551 			       newsock);
3552 	if (err < 0)
3553 		goto done;
3554 
3555 	err = sock->ops->accept(sock, *newsock, flags, true);
3556 	if (err < 0) {
3557 		sock_release(*newsock);
3558 		*newsock = NULL;
3559 		goto done;
3560 	}
3561 
3562 	(*newsock)->ops = sock->ops;
3563 	__module_get((*newsock)->ops->owner);
3564 
3565 done:
3566 	return err;
3567 }
3568 EXPORT_SYMBOL(kernel_accept);
3569 
3570 /**
3571  *	kernel_connect - connect a socket (kernel space)
3572  *	@sock: socket
3573  *	@addr: address
3574  *	@addrlen: address length
3575  *	@flags: flags (O_NONBLOCK, ...)
3576  *
3577  *	For datagram sockets, @addr is the addres to which datagrams are sent
3578  *	by default, and the only address from which datagrams are received.
3579  *	For stream sockets, attempts to connect to @addr.
3580  *	Returns 0 or an error code.
3581  */
3582 
3583 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3584 		   int flags)
3585 {
3586 	return sock->ops->connect(sock, addr, addrlen, flags);
3587 }
3588 EXPORT_SYMBOL(kernel_connect);
3589 
3590 /**
3591  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3592  *	@sock: socket
3593  *	@addr: address holder
3594  *
3595  * 	Fills the @addr pointer with the address which the socket is bound.
3596  *	Returns 0 or an error code.
3597  */
3598 
3599 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3600 {
3601 	return sock->ops->getname(sock, addr, 0);
3602 }
3603 EXPORT_SYMBOL(kernel_getsockname);
3604 
3605 /**
3606  *	kernel_peername - get the address which the socket is connected (kernel space)
3607  *	@sock: socket
3608  *	@addr: address holder
3609  *
3610  * 	Fills the @addr pointer with the address which the socket is connected.
3611  *	Returns 0 or an error code.
3612  */
3613 
3614 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3615 {
3616 	return sock->ops->getname(sock, addr, 1);
3617 }
3618 EXPORT_SYMBOL(kernel_getpeername);
3619 
3620 /**
3621  *	kernel_getsockopt - get a socket option (kernel space)
3622  *	@sock: socket
3623  *	@level: API level (SOL_SOCKET, ...)
3624  *	@optname: option tag
3625  *	@optval: option value
3626  *	@optlen: option length
3627  *
3628  *	Assigns the option length to @optlen.
3629  *	Returns 0 or an error.
3630  */
3631 
3632 int kernel_getsockopt(struct socket *sock, int level, int optname,
3633 			char *optval, int *optlen)
3634 {
3635 	mm_segment_t oldfs = get_fs();
3636 	char __user *uoptval;
3637 	int __user *uoptlen;
3638 	int err;
3639 
3640 	uoptval = (char __user __force *) optval;
3641 	uoptlen = (int __user __force *) optlen;
3642 
3643 	set_fs(KERNEL_DS);
3644 	if (level == SOL_SOCKET)
3645 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3646 	else
3647 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3648 					    uoptlen);
3649 	set_fs(oldfs);
3650 	return err;
3651 }
3652 EXPORT_SYMBOL(kernel_getsockopt);
3653 
3654 /**
3655  *	kernel_setsockopt - set a socket option (kernel space)
3656  *	@sock: socket
3657  *	@level: API level (SOL_SOCKET, ...)
3658  *	@optname: option tag
3659  *	@optval: option value
3660  *	@optlen: option length
3661  *
3662  *	Returns 0 or an error.
3663  */
3664 
3665 int kernel_setsockopt(struct socket *sock, int level, int optname,
3666 			char *optval, unsigned int optlen)
3667 {
3668 	mm_segment_t oldfs = get_fs();
3669 	char __user *uoptval;
3670 	int err;
3671 
3672 	uoptval = (char __user __force *) optval;
3673 
3674 	set_fs(KERNEL_DS);
3675 	if (level == SOL_SOCKET)
3676 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3677 	else
3678 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3679 					    optlen);
3680 	set_fs(oldfs);
3681 	return err;
3682 }
3683 EXPORT_SYMBOL(kernel_setsockopt);
3684 
3685 /**
3686  *	kernel_sendpage - send a &page through a socket (kernel space)
3687  *	@sock: socket
3688  *	@page: page
3689  *	@offset: page offset
3690  *	@size: total size in bytes
3691  *	@flags: flags (MSG_DONTWAIT, ...)
3692  *
3693  *	Returns the total amount sent in bytes or an error.
3694  */
3695 
3696 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3697 		    size_t size, int flags)
3698 {
3699 	if (sock->ops->sendpage)
3700 		return sock->ops->sendpage(sock, page, offset, size, flags);
3701 
3702 	return sock_no_sendpage(sock, page, offset, size, flags);
3703 }
3704 EXPORT_SYMBOL(kernel_sendpage);
3705 
3706 /**
3707  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3708  *	@sk: sock
3709  *	@page: page
3710  *	@offset: page offset
3711  *	@size: total size in bytes
3712  *	@flags: flags (MSG_DONTWAIT, ...)
3713  *
3714  *	Returns the total amount sent in bytes or an error.
3715  *	Caller must hold @sk.
3716  */
3717 
3718 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3719 			   size_t size, int flags)
3720 {
3721 	struct socket *sock = sk->sk_socket;
3722 
3723 	if (sock->ops->sendpage_locked)
3724 		return sock->ops->sendpage_locked(sk, page, offset, size,
3725 						  flags);
3726 
3727 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3728 }
3729 EXPORT_SYMBOL(kernel_sendpage_locked);
3730 
3731 /**
3732  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3733  *	@sock: socket
3734  *	@how: connection part
3735  *
3736  *	Returns 0 or an error.
3737  */
3738 
3739 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3740 {
3741 	return sock->ops->shutdown(sock, how);
3742 }
3743 EXPORT_SYMBOL(kernel_sock_shutdown);
3744 
3745 /**
3746  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3747  *	@sk: socket
3748  *
3749  *	This routine returns the IP overhead imposed by a socket i.e.
3750  *	the length of the underlying IP header, depending on whether
3751  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3752  *	on at the socket. Assumes that the caller has a lock on the socket.
3753  */
3754 
3755 u32 kernel_sock_ip_overhead(struct sock *sk)
3756 {
3757 	struct inet_sock *inet;
3758 	struct ip_options_rcu *opt;
3759 	u32 overhead = 0;
3760 #if IS_ENABLED(CONFIG_IPV6)
3761 	struct ipv6_pinfo *np;
3762 	struct ipv6_txoptions *optv6 = NULL;
3763 #endif /* IS_ENABLED(CONFIG_IPV6) */
3764 
3765 	if (!sk)
3766 		return overhead;
3767 
3768 	switch (sk->sk_family) {
3769 	case AF_INET:
3770 		inet = inet_sk(sk);
3771 		overhead += sizeof(struct iphdr);
3772 		opt = rcu_dereference_protected(inet->inet_opt,
3773 						sock_owned_by_user(sk));
3774 		if (opt)
3775 			overhead += opt->opt.optlen;
3776 		return overhead;
3777 #if IS_ENABLED(CONFIG_IPV6)
3778 	case AF_INET6:
3779 		np = inet6_sk(sk);
3780 		overhead += sizeof(struct ipv6hdr);
3781 		if (np)
3782 			optv6 = rcu_dereference_protected(np->opt,
3783 							  sock_owned_by_user(sk));
3784 		if (optv6)
3785 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3786 		return overhead;
3787 #endif /* IS_ENABLED(CONFIG_IPV6) */
3788 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3789 		return overhead;
3790 	}
3791 }
3792 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3793