1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/sockios.h> 104 #include <net/busy_poll.h> 105 #include <linux/errqueue.h> 106 107 #ifdef CONFIG_NET_RX_BUSY_POLL 108 unsigned int sysctl_net_busy_read __read_mostly; 109 unsigned int sysctl_net_busy_poll __read_mostly; 110 #endif 111 112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 114 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116 static int sock_close(struct inode *inode, struct file *file); 117 static __poll_t sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120 #ifdef CONFIG_COMPAT 121 static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123 #endif 124 static int sock_fasync(int fd, struct file *filp, int on); 125 static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131 /* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136 static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .read_iter = sock_read_iter, 140 .write_iter = sock_write_iter, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143 #ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145 #endif 146 .mmap = sock_mmap, 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Support routines. 163 * Move socket addresses back and forth across the kernel/user 164 * divide and look after the messy bits. 165 */ 166 167 /** 168 * move_addr_to_kernel - copy a socket address into kernel space 169 * @uaddr: Address in user space 170 * @kaddr: Address in kernel space 171 * @ulen: Length in user space 172 * 173 * The address is copied into kernel space. If the provided address is 174 * too long an error code of -EINVAL is returned. If the copy gives 175 * invalid addresses -EFAULT is returned. On a success 0 is returned. 176 */ 177 178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 179 { 180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 181 return -EINVAL; 182 if (ulen == 0) 183 return 0; 184 if (copy_from_user(kaddr, uaddr, ulen)) 185 return -EFAULT; 186 return audit_sockaddr(ulen, kaddr); 187 } 188 189 /** 190 * move_addr_to_user - copy an address to user space 191 * @kaddr: kernel space address 192 * @klen: length of address in kernel 193 * @uaddr: user space address 194 * @ulen: pointer to user length field 195 * 196 * The value pointed to by ulen on entry is the buffer length available. 197 * This is overwritten with the buffer space used. -EINVAL is returned 198 * if an overlong buffer is specified or a negative buffer size. -EFAULT 199 * is returned if either the buffer or the length field are not 200 * accessible. 201 * After copying the data up to the limit the user specifies, the true 202 * length of the data is written over the length limit the user 203 * specified. Zero is returned for a success. 204 */ 205 206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 207 void __user *uaddr, int __user *ulen) 208 { 209 int err; 210 int len; 211 212 BUG_ON(klen > sizeof(struct sockaddr_storage)); 213 err = get_user(len, ulen); 214 if (err) 215 return err; 216 if (len > klen) 217 len = klen; 218 if (len < 0) 219 return -EINVAL; 220 if (len) { 221 if (audit_sockaddr(klen, kaddr)) 222 return -ENOMEM; 223 if (copy_to_user(uaddr, kaddr, len)) 224 return -EFAULT; 225 } 226 /* 227 * "fromlen shall refer to the value before truncation.." 228 * 1003.1g 229 */ 230 return __put_user(klen, ulen); 231 } 232 233 static struct kmem_cache *sock_inode_cachep __ro_after_init; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wq.wait); 243 ei->socket.wq.fasync_list = NULL; 244 ei->socket.wq.flags = 0; 245 246 ei->socket.state = SS_UNCONNECTED; 247 ei->socket.flags = 0; 248 ei->socket.ops = NULL; 249 ei->socket.sk = NULL; 250 ei->socket.file = NULL; 251 252 return &ei->vfs_inode; 253 } 254 255 static void sock_free_inode(struct inode *inode) 256 { 257 struct socket_alloc *ei; 258 259 ei = container_of(inode, struct socket_alloc, vfs_inode); 260 kmem_cache_free(sock_inode_cachep, ei); 261 } 262 263 static void init_once(void *foo) 264 { 265 struct socket_alloc *ei = (struct socket_alloc *)foo; 266 267 inode_init_once(&ei->vfs_inode); 268 } 269 270 static void init_inodecache(void) 271 { 272 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 273 sizeof(struct socket_alloc), 274 0, 275 (SLAB_HWCACHE_ALIGN | 276 SLAB_RECLAIM_ACCOUNT | 277 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 278 init_once); 279 BUG_ON(sock_inode_cachep == NULL); 280 } 281 282 static const struct super_operations sockfs_ops = { 283 .alloc_inode = sock_alloc_inode, 284 .free_inode = sock_free_inode, 285 .statfs = simple_statfs, 286 }; 287 288 /* 289 * sockfs_dname() is called from d_path(). 290 */ 291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 292 { 293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 294 d_inode(dentry)->i_ino); 295 } 296 297 static const struct dentry_operations sockfs_dentry_operations = { 298 .d_dname = sockfs_dname, 299 }; 300 301 static int sockfs_xattr_get(const struct xattr_handler *handler, 302 struct dentry *dentry, struct inode *inode, 303 const char *suffix, void *value, size_t size) 304 { 305 if (value) { 306 if (dentry->d_name.len + 1 > size) 307 return -ERANGE; 308 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 309 } 310 return dentry->d_name.len + 1; 311 } 312 313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 316 317 static const struct xattr_handler sockfs_xattr_handler = { 318 .name = XATTR_NAME_SOCKPROTONAME, 319 .get = sockfs_xattr_get, 320 }; 321 322 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 323 struct dentry *dentry, struct inode *inode, 324 const char *suffix, const void *value, 325 size_t size, int flags) 326 { 327 /* Handled by LSM. */ 328 return -EAGAIN; 329 } 330 331 static const struct xattr_handler sockfs_security_xattr_handler = { 332 .prefix = XATTR_SECURITY_PREFIX, 333 .set = sockfs_security_xattr_set, 334 }; 335 336 static const struct xattr_handler *sockfs_xattr_handlers[] = { 337 &sockfs_xattr_handler, 338 &sockfs_security_xattr_handler, 339 NULL 340 }; 341 342 static int sockfs_init_fs_context(struct fs_context *fc) 343 { 344 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 345 if (!ctx) 346 return -ENOMEM; 347 ctx->ops = &sockfs_ops; 348 ctx->dops = &sockfs_dentry_operations; 349 ctx->xattr = sockfs_xattr_handlers; 350 return 0; 351 } 352 353 static struct vfsmount *sock_mnt __read_mostly; 354 355 static struct file_system_type sock_fs_type = { 356 .name = "sockfs", 357 .init_fs_context = sockfs_init_fs_context, 358 .kill_sb = kill_anon_super, 359 }; 360 361 /* 362 * Obtains the first available file descriptor and sets it up for use. 363 * 364 * These functions create file structures and maps them to fd space 365 * of the current process. On success it returns file descriptor 366 * and file struct implicitly stored in sock->file. 367 * Note that another thread may close file descriptor before we return 368 * from this function. We use the fact that now we do not refer 369 * to socket after mapping. If one day we will need it, this 370 * function will increment ref. count on file by 1. 371 * 372 * In any case returned fd MAY BE not valid! 373 * This race condition is unavoidable 374 * with shared fd spaces, we cannot solve it inside kernel, 375 * but we take care of internal coherence yet. 376 */ 377 378 /** 379 * sock_alloc_file - Bind a &socket to a &file 380 * @sock: socket 381 * @flags: file status flags 382 * @dname: protocol name 383 * 384 * Returns the &file bound with @sock, implicitly storing it 385 * in sock->file. If dname is %NULL, sets to "". 386 * On failure the return is a ERR pointer (see linux/err.h). 387 * This function uses GFP_KERNEL internally. 388 */ 389 390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 391 { 392 struct file *file; 393 394 if (!dname) 395 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 396 397 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 398 O_RDWR | (flags & O_NONBLOCK), 399 &socket_file_ops); 400 if (IS_ERR(file)) { 401 sock_release(sock); 402 return file; 403 } 404 405 sock->file = file; 406 file->private_data = sock; 407 stream_open(SOCK_INODE(sock), file); 408 return file; 409 } 410 EXPORT_SYMBOL(sock_alloc_file); 411 412 static int sock_map_fd(struct socket *sock, int flags) 413 { 414 struct file *newfile; 415 int fd = get_unused_fd_flags(flags); 416 if (unlikely(fd < 0)) { 417 sock_release(sock); 418 return fd; 419 } 420 421 newfile = sock_alloc_file(sock, flags, NULL); 422 if (!IS_ERR(newfile)) { 423 fd_install(fd, newfile); 424 return fd; 425 } 426 427 put_unused_fd(fd); 428 return PTR_ERR(newfile); 429 } 430 431 /** 432 * sock_from_file - Return the &socket bounded to @file. 433 * @file: file 434 * @err: pointer to an error code return 435 * 436 * On failure returns %NULL and assigns -ENOTSOCK to @err. 437 */ 438 439 struct socket *sock_from_file(struct file *file, int *err) 440 { 441 if (file->f_op == &socket_file_ops) 442 return file->private_data; /* set in sock_map_fd */ 443 444 *err = -ENOTSOCK; 445 return NULL; 446 } 447 EXPORT_SYMBOL(sock_from_file); 448 449 /** 450 * sockfd_lookup - Go from a file number to its socket slot 451 * @fd: file handle 452 * @err: pointer to an error code return 453 * 454 * The file handle passed in is locked and the socket it is bound 455 * to is returned. If an error occurs the err pointer is overwritten 456 * with a negative errno code and NULL is returned. The function checks 457 * for both invalid handles and passing a handle which is not a socket. 458 * 459 * On a success the socket object pointer is returned. 460 */ 461 462 struct socket *sockfd_lookup(int fd, int *err) 463 { 464 struct file *file; 465 struct socket *sock; 466 467 file = fget(fd); 468 if (!file) { 469 *err = -EBADF; 470 return NULL; 471 } 472 473 sock = sock_from_file(file, err); 474 if (!sock) 475 fput(file); 476 return sock; 477 } 478 EXPORT_SYMBOL(sockfd_lookup); 479 480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 481 { 482 struct fd f = fdget(fd); 483 struct socket *sock; 484 485 *err = -EBADF; 486 if (f.file) { 487 sock = sock_from_file(f.file, err); 488 if (likely(sock)) { 489 *fput_needed = f.flags; 490 return sock; 491 } 492 fdput(f); 493 } 494 return NULL; 495 } 496 497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 498 size_t size) 499 { 500 ssize_t len; 501 ssize_t used = 0; 502 503 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 504 if (len < 0) 505 return len; 506 used += len; 507 if (buffer) { 508 if (size < used) 509 return -ERANGE; 510 buffer += len; 511 } 512 513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 519 buffer += len; 520 } 521 522 return used; 523 } 524 525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 526 { 527 int err = simple_setattr(dentry, iattr); 528 529 if (!err && (iattr->ia_valid & ATTR_UID)) { 530 struct socket *sock = SOCKET_I(d_inode(dentry)); 531 532 if (sock->sk) 533 sock->sk->sk_uid = iattr->ia_uid; 534 else 535 err = -ENOENT; 536 } 537 538 return err; 539 } 540 541 static const struct inode_operations sockfs_inode_ops = { 542 .listxattr = sockfs_listxattr, 543 .setattr = sockfs_setattr, 544 }; 545 546 /** 547 * sock_alloc - allocate a socket 548 * 549 * Allocate a new inode and socket object. The two are bound together 550 * and initialised. The socket is then returned. If we are out of inodes 551 * NULL is returned. This functions uses GFP_KERNEL internally. 552 */ 553 554 struct socket *sock_alloc(void) 555 { 556 struct inode *inode; 557 struct socket *sock; 558 559 inode = new_inode_pseudo(sock_mnt->mnt_sb); 560 if (!inode) 561 return NULL; 562 563 sock = SOCKET_I(inode); 564 565 inode->i_ino = get_next_ino(); 566 inode->i_mode = S_IFSOCK | S_IRWXUGO; 567 inode->i_uid = current_fsuid(); 568 inode->i_gid = current_fsgid(); 569 inode->i_op = &sockfs_inode_ops; 570 571 return sock; 572 } 573 EXPORT_SYMBOL(sock_alloc); 574 575 /** 576 * sock_release - close a socket 577 * @sock: socket to close 578 * 579 * The socket is released from the protocol stack if it has a release 580 * callback, and the inode is then released if the socket is bound to 581 * an inode not a file. 582 */ 583 584 static void __sock_release(struct socket *sock, struct inode *inode) 585 { 586 if (sock->ops) { 587 struct module *owner = sock->ops->owner; 588 589 if (inode) 590 inode_lock(inode); 591 sock->ops->release(sock); 592 sock->sk = NULL; 593 if (inode) 594 inode_unlock(inode); 595 sock->ops = NULL; 596 module_put(owner); 597 } 598 599 if (sock->wq.fasync_list) 600 pr_err("%s: fasync list not empty!\n", __func__); 601 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 609 void sock_release(struct socket *sock) 610 { 611 __sock_release(sock, NULL); 612 } 613 EXPORT_SYMBOL(sock_release); 614 615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 616 { 617 u8 flags = *tx_flags; 618 619 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 620 flags |= SKBTX_HW_TSTAMP; 621 622 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 623 flags |= SKBTX_SW_TSTAMP; 624 625 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 626 flags |= SKBTX_SCHED_TSTAMP; 627 628 *tx_flags = flags; 629 } 630 EXPORT_SYMBOL(__sock_tx_timestamp); 631 632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 633 size_t)); 634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 635 size_t)); 636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 637 { 638 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 639 inet_sendmsg, sock, msg, 640 msg_data_left(msg)); 641 BUG_ON(ret == -EIOCBQUEUED); 642 return ret; 643 } 644 645 /** 646 * sock_sendmsg - send a message through @sock 647 * @sock: socket 648 * @msg: message to send 649 * 650 * Sends @msg through @sock, passing through LSM. 651 * Returns the number of bytes sent, or an error code. 652 */ 653 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 654 { 655 int err = security_socket_sendmsg(sock, msg, 656 msg_data_left(msg)); 657 658 return err ?: sock_sendmsg_nosec(sock, msg); 659 } 660 EXPORT_SYMBOL(sock_sendmsg); 661 662 /** 663 * kernel_sendmsg - send a message through @sock (kernel-space) 664 * @sock: socket 665 * @msg: message header 666 * @vec: kernel vec 667 * @num: vec array length 668 * @size: total message data size 669 * 670 * Builds the message data with @vec and sends it through @sock. 671 * Returns the number of bytes sent, or an error code. 672 */ 673 674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 675 struct kvec *vec, size_t num, size_t size) 676 { 677 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 678 return sock_sendmsg(sock, msg); 679 } 680 EXPORT_SYMBOL(kernel_sendmsg); 681 682 /** 683 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 684 * @sk: sock 685 * @msg: message header 686 * @vec: output s/g array 687 * @num: output s/g array length 688 * @size: total message data size 689 * 690 * Builds the message data with @vec and sends it through @sock. 691 * Returns the number of bytes sent, or an error code. 692 * Caller must hold @sk. 693 */ 694 695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 696 struct kvec *vec, size_t num, size_t size) 697 { 698 struct socket *sock = sk->sk_socket; 699 700 if (!sock->ops->sendmsg_locked) 701 return sock_no_sendmsg_locked(sk, msg, size); 702 703 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 704 705 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 706 } 707 EXPORT_SYMBOL(kernel_sendmsg_locked); 708 709 static bool skb_is_err_queue(const struct sk_buff *skb) 710 { 711 /* pkt_type of skbs enqueued on the error queue are set to 712 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 713 * in recvmsg, since skbs received on a local socket will never 714 * have a pkt_type of PACKET_OUTGOING. 715 */ 716 return skb->pkt_type == PACKET_OUTGOING; 717 } 718 719 /* On transmit, software and hardware timestamps are returned independently. 720 * As the two skb clones share the hardware timestamp, which may be updated 721 * before the software timestamp is received, a hardware TX timestamp may be 722 * returned only if there is no software TX timestamp. Ignore false software 723 * timestamps, which may be made in the __sock_recv_timestamp() call when the 724 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 725 * hardware timestamp. 726 */ 727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 728 { 729 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 730 } 731 732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 733 { 734 struct scm_ts_pktinfo ts_pktinfo; 735 struct net_device *orig_dev; 736 737 if (!skb_mac_header_was_set(skb)) 738 return; 739 740 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 741 742 rcu_read_lock(); 743 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 744 if (orig_dev) 745 ts_pktinfo.if_index = orig_dev->ifindex; 746 rcu_read_unlock(); 747 748 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 750 sizeof(ts_pktinfo), &ts_pktinfo); 751 } 752 753 /* 754 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 755 */ 756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 757 struct sk_buff *skb) 758 { 759 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 760 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 761 struct scm_timestamping_internal tss; 762 763 int empty = 1, false_tstamp = 0; 764 struct skb_shared_hwtstamps *shhwtstamps = 765 skb_hwtstamps(skb); 766 767 /* Race occurred between timestamp enabling and packet 768 receiving. Fill in the current time for now. */ 769 if (need_software_tstamp && skb->tstamp == 0) { 770 __net_timestamp(skb); 771 false_tstamp = 1; 772 } 773 774 if (need_software_tstamp) { 775 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 776 if (new_tstamp) { 777 struct __kernel_sock_timeval tv; 778 779 skb_get_new_timestamp(skb, &tv); 780 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 781 sizeof(tv), &tv); 782 } else { 783 struct __kernel_old_timeval tv; 784 785 skb_get_timestamp(skb, &tv); 786 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 787 sizeof(tv), &tv); 788 } 789 } else { 790 if (new_tstamp) { 791 struct __kernel_timespec ts; 792 793 skb_get_new_timestampns(skb, &ts); 794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 795 sizeof(ts), &ts); 796 } else { 797 struct timespec ts; 798 799 skb_get_timestampns(skb, &ts); 800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 801 sizeof(ts), &ts); 802 } 803 } 804 } 805 806 memset(&tss, 0, sizeof(tss)); 807 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 808 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 809 empty = 0; 810 if (shhwtstamps && 811 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 812 !skb_is_swtx_tstamp(skb, false_tstamp) && 813 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 814 empty = 0; 815 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 816 !skb_is_err_queue(skb)) 817 put_ts_pktinfo(msg, skb); 818 } 819 if (!empty) { 820 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 821 put_cmsg_scm_timestamping64(msg, &tss); 822 else 823 put_cmsg_scm_timestamping(msg, &tss); 824 825 if (skb_is_err_queue(skb) && skb->len && 826 SKB_EXT_ERR(skb)->opt_stats) 827 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 828 skb->len, skb->data); 829 } 830 } 831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 832 833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 834 struct sk_buff *skb) 835 { 836 int ack; 837 838 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 839 return; 840 if (!skb->wifi_acked_valid) 841 return; 842 843 ack = skb->wifi_acked; 844 845 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 846 } 847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 848 849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 850 struct sk_buff *skb) 851 { 852 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 853 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 854 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 855 } 856 857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 858 struct sk_buff *skb) 859 { 860 sock_recv_timestamp(msg, sk, skb); 861 sock_recv_drops(msg, sk, skb); 862 } 863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 864 865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 866 size_t, int)); 867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 868 size_t, int)); 869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 870 int flags) 871 { 872 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 873 inet_recvmsg, sock, msg, msg_data_left(msg), 874 flags); 875 } 876 877 /** 878 * sock_recvmsg - receive a message from @sock 879 * @sock: socket 880 * @msg: message to receive 881 * @flags: message flags 882 * 883 * Receives @msg from @sock, passing through LSM. Returns the total number 884 * of bytes received, or an error. 885 */ 886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 887 { 888 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 889 890 return err ?: sock_recvmsg_nosec(sock, msg, flags); 891 } 892 EXPORT_SYMBOL(sock_recvmsg); 893 894 /** 895 * kernel_recvmsg - Receive a message from a socket (kernel space) 896 * @sock: The socket to receive the message from 897 * @msg: Received message 898 * @vec: Input s/g array for message data 899 * @num: Size of input s/g array 900 * @size: Number of bytes to read 901 * @flags: Message flags (MSG_DONTWAIT, etc...) 902 * 903 * On return the msg structure contains the scatter/gather array passed in the 904 * vec argument. The array is modified so that it consists of the unfilled 905 * portion of the original array. 906 * 907 * The returned value is the total number of bytes received, or an error. 908 */ 909 910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 911 struct kvec *vec, size_t num, size_t size, int flags) 912 { 913 mm_segment_t oldfs = get_fs(); 914 int result; 915 916 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 917 set_fs(KERNEL_DS); 918 result = sock_recvmsg(sock, msg, flags); 919 set_fs(oldfs); 920 return result; 921 } 922 EXPORT_SYMBOL(kernel_recvmsg); 923 924 static ssize_t sock_sendpage(struct file *file, struct page *page, 925 int offset, size_t size, loff_t *ppos, int more) 926 { 927 struct socket *sock; 928 int flags; 929 930 sock = file->private_data; 931 932 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 933 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 934 flags |= more; 935 936 return kernel_sendpage(sock, page, offset, size, flags); 937 } 938 939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 940 struct pipe_inode_info *pipe, size_t len, 941 unsigned int flags) 942 { 943 struct socket *sock = file->private_data; 944 945 if (unlikely(!sock->ops->splice_read)) 946 return generic_file_splice_read(file, ppos, pipe, len, flags); 947 948 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 949 } 950 951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 952 { 953 struct file *file = iocb->ki_filp; 954 struct socket *sock = file->private_data; 955 struct msghdr msg = {.msg_iter = *to, 956 .msg_iocb = iocb}; 957 ssize_t res; 958 959 if (file->f_flags & O_NONBLOCK) 960 msg.msg_flags = MSG_DONTWAIT; 961 962 if (iocb->ki_pos != 0) 963 return -ESPIPE; 964 965 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 966 return 0; 967 968 res = sock_recvmsg(sock, &msg, msg.msg_flags); 969 *to = msg.msg_iter; 970 return res; 971 } 972 973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 974 { 975 struct file *file = iocb->ki_filp; 976 struct socket *sock = file->private_data; 977 struct msghdr msg = {.msg_iter = *from, 978 .msg_iocb = iocb}; 979 ssize_t res; 980 981 if (iocb->ki_pos != 0) 982 return -ESPIPE; 983 984 if (file->f_flags & O_NONBLOCK) 985 msg.msg_flags = MSG_DONTWAIT; 986 987 if (sock->type == SOCK_SEQPACKET) 988 msg.msg_flags |= MSG_EOR; 989 990 res = sock_sendmsg(sock, &msg); 991 *from = msg.msg_iter; 992 return res; 993 } 994 995 /* 996 * Atomic setting of ioctl hooks to avoid race 997 * with module unload. 998 */ 999 1000 static DEFINE_MUTEX(br_ioctl_mutex); 1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1002 1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1004 { 1005 mutex_lock(&br_ioctl_mutex); 1006 br_ioctl_hook = hook; 1007 mutex_unlock(&br_ioctl_mutex); 1008 } 1009 EXPORT_SYMBOL(brioctl_set); 1010 1011 static DEFINE_MUTEX(vlan_ioctl_mutex); 1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1013 1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1015 { 1016 mutex_lock(&vlan_ioctl_mutex); 1017 vlan_ioctl_hook = hook; 1018 mutex_unlock(&vlan_ioctl_mutex); 1019 } 1020 EXPORT_SYMBOL(vlan_ioctl_set); 1021 1022 static DEFINE_MUTEX(dlci_ioctl_mutex); 1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1024 1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1026 { 1027 mutex_lock(&dlci_ioctl_mutex); 1028 dlci_ioctl_hook = hook; 1029 mutex_unlock(&dlci_ioctl_mutex); 1030 } 1031 EXPORT_SYMBOL(dlci_ioctl_set); 1032 1033 static long sock_do_ioctl(struct net *net, struct socket *sock, 1034 unsigned int cmd, unsigned long arg) 1035 { 1036 int err; 1037 void __user *argp = (void __user *)arg; 1038 1039 err = sock->ops->ioctl(sock, cmd, arg); 1040 1041 /* 1042 * If this ioctl is unknown try to hand it down 1043 * to the NIC driver. 1044 */ 1045 if (err != -ENOIOCTLCMD) 1046 return err; 1047 1048 if (cmd == SIOCGIFCONF) { 1049 struct ifconf ifc; 1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1051 return -EFAULT; 1052 rtnl_lock(); 1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1054 rtnl_unlock(); 1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1056 err = -EFAULT; 1057 } else { 1058 struct ifreq ifr; 1059 bool need_copyout; 1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1061 return -EFAULT; 1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1063 if (!err && need_copyout) 1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1065 return -EFAULT; 1066 } 1067 return err; 1068 } 1069 1070 /* 1071 * With an ioctl, arg may well be a user mode pointer, but we don't know 1072 * what to do with it - that's up to the protocol still. 1073 */ 1074 1075 /** 1076 * get_net_ns - increment the refcount of the network namespace 1077 * @ns: common namespace (net) 1078 * 1079 * Returns the net's common namespace. 1080 */ 1081 1082 struct ns_common *get_net_ns(struct ns_common *ns) 1083 { 1084 return &get_net(container_of(ns, struct net, ns))->ns; 1085 } 1086 EXPORT_SYMBOL_GPL(get_net_ns); 1087 1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1089 { 1090 struct socket *sock; 1091 struct sock *sk; 1092 void __user *argp = (void __user *)arg; 1093 int pid, err; 1094 struct net *net; 1095 1096 sock = file->private_data; 1097 sk = sock->sk; 1098 net = sock_net(sk); 1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1100 struct ifreq ifr; 1101 bool need_copyout; 1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1103 return -EFAULT; 1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1105 if (!err && need_copyout) 1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1107 return -EFAULT; 1108 } else 1109 #ifdef CONFIG_WEXT_CORE 1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1111 err = wext_handle_ioctl(net, cmd, argp); 1112 } else 1113 #endif 1114 switch (cmd) { 1115 case FIOSETOWN: 1116 case SIOCSPGRP: 1117 err = -EFAULT; 1118 if (get_user(pid, (int __user *)argp)) 1119 break; 1120 err = f_setown(sock->file, pid, 1); 1121 break; 1122 case FIOGETOWN: 1123 case SIOCGPGRP: 1124 err = put_user(f_getown(sock->file), 1125 (int __user *)argp); 1126 break; 1127 case SIOCGIFBR: 1128 case SIOCSIFBR: 1129 case SIOCBRADDBR: 1130 case SIOCBRDELBR: 1131 err = -ENOPKG; 1132 if (!br_ioctl_hook) 1133 request_module("bridge"); 1134 1135 mutex_lock(&br_ioctl_mutex); 1136 if (br_ioctl_hook) 1137 err = br_ioctl_hook(net, cmd, argp); 1138 mutex_unlock(&br_ioctl_mutex); 1139 break; 1140 case SIOCGIFVLAN: 1141 case SIOCSIFVLAN: 1142 err = -ENOPKG; 1143 if (!vlan_ioctl_hook) 1144 request_module("8021q"); 1145 1146 mutex_lock(&vlan_ioctl_mutex); 1147 if (vlan_ioctl_hook) 1148 err = vlan_ioctl_hook(net, argp); 1149 mutex_unlock(&vlan_ioctl_mutex); 1150 break; 1151 case SIOCADDDLCI: 1152 case SIOCDELDLCI: 1153 err = -ENOPKG; 1154 if (!dlci_ioctl_hook) 1155 request_module("dlci"); 1156 1157 mutex_lock(&dlci_ioctl_mutex); 1158 if (dlci_ioctl_hook) 1159 err = dlci_ioctl_hook(cmd, argp); 1160 mutex_unlock(&dlci_ioctl_mutex); 1161 break; 1162 case SIOCGSKNS: 1163 err = -EPERM; 1164 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1165 break; 1166 1167 err = open_related_ns(&net->ns, get_net_ns); 1168 break; 1169 case SIOCGSTAMP_OLD: 1170 case SIOCGSTAMPNS_OLD: 1171 if (!sock->ops->gettstamp) { 1172 err = -ENOIOCTLCMD; 1173 break; 1174 } 1175 err = sock->ops->gettstamp(sock, argp, 1176 cmd == SIOCGSTAMP_OLD, 1177 !IS_ENABLED(CONFIG_64BIT)); 1178 break; 1179 case SIOCGSTAMP_NEW: 1180 case SIOCGSTAMPNS_NEW: 1181 if (!sock->ops->gettstamp) { 1182 err = -ENOIOCTLCMD; 1183 break; 1184 } 1185 err = sock->ops->gettstamp(sock, argp, 1186 cmd == SIOCGSTAMP_NEW, 1187 false); 1188 break; 1189 default: 1190 err = sock_do_ioctl(net, sock, cmd, arg); 1191 break; 1192 } 1193 return err; 1194 } 1195 1196 /** 1197 * sock_create_lite - creates a socket 1198 * @family: protocol family (AF_INET, ...) 1199 * @type: communication type (SOCK_STREAM, ...) 1200 * @protocol: protocol (0, ...) 1201 * @res: new socket 1202 * 1203 * Creates a new socket and assigns it to @res, passing through LSM. 1204 * The new socket initialization is not complete, see kernel_accept(). 1205 * Returns 0 or an error. On failure @res is set to %NULL. 1206 * This function internally uses GFP_KERNEL. 1207 */ 1208 1209 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1210 { 1211 int err; 1212 struct socket *sock = NULL; 1213 1214 err = security_socket_create(family, type, protocol, 1); 1215 if (err) 1216 goto out; 1217 1218 sock = sock_alloc(); 1219 if (!sock) { 1220 err = -ENOMEM; 1221 goto out; 1222 } 1223 1224 sock->type = type; 1225 err = security_socket_post_create(sock, family, type, protocol, 1); 1226 if (err) 1227 goto out_release; 1228 1229 out: 1230 *res = sock; 1231 return err; 1232 out_release: 1233 sock_release(sock); 1234 sock = NULL; 1235 goto out; 1236 } 1237 EXPORT_SYMBOL(sock_create_lite); 1238 1239 /* No kernel lock held - perfect */ 1240 static __poll_t sock_poll(struct file *file, poll_table *wait) 1241 { 1242 struct socket *sock = file->private_data; 1243 __poll_t events = poll_requested_events(wait), flag = 0; 1244 1245 if (!sock->ops->poll) 1246 return 0; 1247 1248 if (sk_can_busy_loop(sock->sk)) { 1249 /* poll once if requested by the syscall */ 1250 if (events & POLL_BUSY_LOOP) 1251 sk_busy_loop(sock->sk, 1); 1252 1253 /* if this socket can poll_ll, tell the system call */ 1254 flag = POLL_BUSY_LOOP; 1255 } 1256 1257 return sock->ops->poll(file, sock, wait) | flag; 1258 } 1259 1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1261 { 1262 struct socket *sock = file->private_data; 1263 1264 return sock->ops->mmap(file, sock, vma); 1265 } 1266 1267 static int sock_close(struct inode *inode, struct file *filp) 1268 { 1269 __sock_release(SOCKET_I(inode), inode); 1270 return 0; 1271 } 1272 1273 /* 1274 * Update the socket async list 1275 * 1276 * Fasync_list locking strategy. 1277 * 1278 * 1. fasync_list is modified only under process context socket lock 1279 * i.e. under semaphore. 1280 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1281 * or under socket lock 1282 */ 1283 1284 static int sock_fasync(int fd, struct file *filp, int on) 1285 { 1286 struct socket *sock = filp->private_data; 1287 struct sock *sk = sock->sk; 1288 struct socket_wq *wq = &sock->wq; 1289 1290 if (sk == NULL) 1291 return -EINVAL; 1292 1293 lock_sock(sk); 1294 fasync_helper(fd, filp, on, &wq->fasync_list); 1295 1296 if (!wq->fasync_list) 1297 sock_reset_flag(sk, SOCK_FASYNC); 1298 else 1299 sock_set_flag(sk, SOCK_FASYNC); 1300 1301 release_sock(sk); 1302 return 0; 1303 } 1304 1305 /* This function may be called only under rcu_lock */ 1306 1307 int sock_wake_async(struct socket_wq *wq, int how, int band) 1308 { 1309 if (!wq || !wq->fasync_list) 1310 return -1; 1311 1312 switch (how) { 1313 case SOCK_WAKE_WAITD: 1314 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1315 break; 1316 goto call_kill; 1317 case SOCK_WAKE_SPACE: 1318 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1319 break; 1320 /* fall through */ 1321 case SOCK_WAKE_IO: 1322 call_kill: 1323 kill_fasync(&wq->fasync_list, SIGIO, band); 1324 break; 1325 case SOCK_WAKE_URG: 1326 kill_fasync(&wq->fasync_list, SIGURG, band); 1327 } 1328 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(sock_wake_async); 1332 1333 /** 1334 * __sock_create - creates a socket 1335 * @net: net namespace 1336 * @family: protocol family (AF_INET, ...) 1337 * @type: communication type (SOCK_STREAM, ...) 1338 * @protocol: protocol (0, ...) 1339 * @res: new socket 1340 * @kern: boolean for kernel space sockets 1341 * 1342 * Creates a new socket and assigns it to @res, passing through LSM. 1343 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1344 * be set to true if the socket resides in kernel space. 1345 * This function internally uses GFP_KERNEL. 1346 */ 1347 1348 int __sock_create(struct net *net, int family, int type, int protocol, 1349 struct socket **res, int kern) 1350 { 1351 int err; 1352 struct socket *sock; 1353 const struct net_proto_family *pf; 1354 1355 /* 1356 * Check protocol is in range 1357 */ 1358 if (family < 0 || family >= NPROTO) 1359 return -EAFNOSUPPORT; 1360 if (type < 0 || type >= SOCK_MAX) 1361 return -EINVAL; 1362 1363 /* Compatibility. 1364 1365 This uglymoron is moved from INET layer to here to avoid 1366 deadlock in module load. 1367 */ 1368 if (family == PF_INET && type == SOCK_PACKET) { 1369 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1370 current->comm); 1371 family = PF_PACKET; 1372 } 1373 1374 err = security_socket_create(family, type, protocol, kern); 1375 if (err) 1376 return err; 1377 1378 /* 1379 * Allocate the socket and allow the family to set things up. if 1380 * the protocol is 0, the family is instructed to select an appropriate 1381 * default. 1382 */ 1383 sock = sock_alloc(); 1384 if (!sock) { 1385 net_warn_ratelimited("socket: no more sockets\n"); 1386 return -ENFILE; /* Not exactly a match, but its the 1387 closest posix thing */ 1388 } 1389 1390 sock->type = type; 1391 1392 #ifdef CONFIG_MODULES 1393 /* Attempt to load a protocol module if the find failed. 1394 * 1395 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1396 * requested real, full-featured networking support upon configuration. 1397 * Otherwise module support will break! 1398 */ 1399 if (rcu_access_pointer(net_families[family]) == NULL) 1400 request_module("net-pf-%d", family); 1401 #endif 1402 1403 rcu_read_lock(); 1404 pf = rcu_dereference(net_families[family]); 1405 err = -EAFNOSUPPORT; 1406 if (!pf) 1407 goto out_release; 1408 1409 /* 1410 * We will call the ->create function, that possibly is in a loadable 1411 * module, so we have to bump that loadable module refcnt first. 1412 */ 1413 if (!try_module_get(pf->owner)) 1414 goto out_release; 1415 1416 /* Now protected by module ref count */ 1417 rcu_read_unlock(); 1418 1419 err = pf->create(net, sock, protocol, kern); 1420 if (err < 0) 1421 goto out_module_put; 1422 1423 /* 1424 * Now to bump the refcnt of the [loadable] module that owns this 1425 * socket at sock_release time we decrement its refcnt. 1426 */ 1427 if (!try_module_get(sock->ops->owner)) 1428 goto out_module_busy; 1429 1430 /* 1431 * Now that we're done with the ->create function, the [loadable] 1432 * module can have its refcnt decremented 1433 */ 1434 module_put(pf->owner); 1435 err = security_socket_post_create(sock, family, type, protocol, kern); 1436 if (err) 1437 goto out_sock_release; 1438 *res = sock; 1439 1440 return 0; 1441 1442 out_module_busy: 1443 err = -EAFNOSUPPORT; 1444 out_module_put: 1445 sock->ops = NULL; 1446 module_put(pf->owner); 1447 out_sock_release: 1448 sock_release(sock); 1449 return err; 1450 1451 out_release: 1452 rcu_read_unlock(); 1453 goto out_sock_release; 1454 } 1455 EXPORT_SYMBOL(__sock_create); 1456 1457 /** 1458 * sock_create - creates a socket 1459 * @family: protocol family (AF_INET, ...) 1460 * @type: communication type (SOCK_STREAM, ...) 1461 * @protocol: protocol (0, ...) 1462 * @res: new socket 1463 * 1464 * A wrapper around __sock_create(). 1465 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1466 */ 1467 1468 int sock_create(int family, int type, int protocol, struct socket **res) 1469 { 1470 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1471 } 1472 EXPORT_SYMBOL(sock_create); 1473 1474 /** 1475 * sock_create_kern - creates a socket (kernel space) 1476 * @net: net namespace 1477 * @family: protocol family (AF_INET, ...) 1478 * @type: communication type (SOCK_STREAM, ...) 1479 * @protocol: protocol (0, ...) 1480 * @res: new socket 1481 * 1482 * A wrapper around __sock_create(). 1483 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1484 */ 1485 1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1487 { 1488 return __sock_create(net, family, type, protocol, res, 1); 1489 } 1490 EXPORT_SYMBOL(sock_create_kern); 1491 1492 int __sys_socket(int family, int type, int protocol) 1493 { 1494 int retval; 1495 struct socket *sock; 1496 int flags; 1497 1498 /* Check the SOCK_* constants for consistency. */ 1499 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1500 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1501 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1502 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1503 1504 flags = type & ~SOCK_TYPE_MASK; 1505 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1506 return -EINVAL; 1507 type &= SOCK_TYPE_MASK; 1508 1509 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1510 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1511 1512 retval = sock_create(family, type, protocol, &sock); 1513 if (retval < 0) 1514 return retval; 1515 1516 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1517 } 1518 1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1520 { 1521 return __sys_socket(family, type, protocol); 1522 } 1523 1524 /* 1525 * Create a pair of connected sockets. 1526 */ 1527 1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1529 { 1530 struct socket *sock1, *sock2; 1531 int fd1, fd2, err; 1532 struct file *newfile1, *newfile2; 1533 int flags; 1534 1535 flags = type & ~SOCK_TYPE_MASK; 1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1537 return -EINVAL; 1538 type &= SOCK_TYPE_MASK; 1539 1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1542 1543 /* 1544 * reserve descriptors and make sure we won't fail 1545 * to return them to userland. 1546 */ 1547 fd1 = get_unused_fd_flags(flags); 1548 if (unlikely(fd1 < 0)) 1549 return fd1; 1550 1551 fd2 = get_unused_fd_flags(flags); 1552 if (unlikely(fd2 < 0)) { 1553 put_unused_fd(fd1); 1554 return fd2; 1555 } 1556 1557 err = put_user(fd1, &usockvec[0]); 1558 if (err) 1559 goto out; 1560 1561 err = put_user(fd2, &usockvec[1]); 1562 if (err) 1563 goto out; 1564 1565 /* 1566 * Obtain the first socket and check if the underlying protocol 1567 * supports the socketpair call. 1568 */ 1569 1570 err = sock_create(family, type, protocol, &sock1); 1571 if (unlikely(err < 0)) 1572 goto out; 1573 1574 err = sock_create(family, type, protocol, &sock2); 1575 if (unlikely(err < 0)) { 1576 sock_release(sock1); 1577 goto out; 1578 } 1579 1580 err = security_socket_socketpair(sock1, sock2); 1581 if (unlikely(err)) { 1582 sock_release(sock2); 1583 sock_release(sock1); 1584 goto out; 1585 } 1586 1587 err = sock1->ops->socketpair(sock1, sock2); 1588 if (unlikely(err < 0)) { 1589 sock_release(sock2); 1590 sock_release(sock1); 1591 goto out; 1592 } 1593 1594 newfile1 = sock_alloc_file(sock1, flags, NULL); 1595 if (IS_ERR(newfile1)) { 1596 err = PTR_ERR(newfile1); 1597 sock_release(sock2); 1598 goto out; 1599 } 1600 1601 newfile2 = sock_alloc_file(sock2, flags, NULL); 1602 if (IS_ERR(newfile2)) { 1603 err = PTR_ERR(newfile2); 1604 fput(newfile1); 1605 goto out; 1606 } 1607 1608 audit_fd_pair(fd1, fd2); 1609 1610 fd_install(fd1, newfile1); 1611 fd_install(fd2, newfile2); 1612 return 0; 1613 1614 out: 1615 put_unused_fd(fd2); 1616 put_unused_fd(fd1); 1617 return err; 1618 } 1619 1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1621 int __user *, usockvec) 1622 { 1623 return __sys_socketpair(family, type, protocol, usockvec); 1624 } 1625 1626 /* 1627 * Bind a name to a socket. Nothing much to do here since it's 1628 * the protocol's responsibility to handle the local address. 1629 * 1630 * We move the socket address to kernel space before we call 1631 * the protocol layer (having also checked the address is ok). 1632 */ 1633 1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1635 { 1636 struct socket *sock; 1637 struct sockaddr_storage address; 1638 int err, fput_needed; 1639 1640 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1641 if (sock) { 1642 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1643 if (!err) { 1644 err = security_socket_bind(sock, 1645 (struct sockaddr *)&address, 1646 addrlen); 1647 if (!err) 1648 err = sock->ops->bind(sock, 1649 (struct sockaddr *) 1650 &address, addrlen); 1651 } 1652 fput_light(sock->file, fput_needed); 1653 } 1654 return err; 1655 } 1656 1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1658 { 1659 return __sys_bind(fd, umyaddr, addrlen); 1660 } 1661 1662 /* 1663 * Perform a listen. Basically, we allow the protocol to do anything 1664 * necessary for a listen, and if that works, we mark the socket as 1665 * ready for listening. 1666 */ 1667 1668 int __sys_listen(int fd, int backlog) 1669 { 1670 struct socket *sock; 1671 int err, fput_needed; 1672 int somaxconn; 1673 1674 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1675 if (sock) { 1676 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1677 if ((unsigned int)backlog > somaxconn) 1678 backlog = somaxconn; 1679 1680 err = security_socket_listen(sock, backlog); 1681 if (!err) 1682 err = sock->ops->listen(sock, backlog); 1683 1684 fput_light(sock->file, fput_needed); 1685 } 1686 return err; 1687 } 1688 1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1690 { 1691 return __sys_listen(fd, backlog); 1692 } 1693 1694 int __sys_accept4_file(struct file *file, unsigned file_flags, 1695 struct sockaddr __user *upeer_sockaddr, 1696 int __user *upeer_addrlen, int flags) 1697 { 1698 struct socket *sock, *newsock; 1699 struct file *newfile; 1700 int err, len, newfd; 1701 struct sockaddr_storage address; 1702 1703 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1704 return -EINVAL; 1705 1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1708 1709 sock = sock_from_file(file, &err); 1710 if (!sock) 1711 goto out; 1712 1713 err = -ENFILE; 1714 newsock = sock_alloc(); 1715 if (!newsock) 1716 goto out; 1717 1718 newsock->type = sock->type; 1719 newsock->ops = sock->ops; 1720 1721 /* 1722 * We don't need try_module_get here, as the listening socket (sock) 1723 * has the protocol module (sock->ops->owner) held. 1724 */ 1725 __module_get(newsock->ops->owner); 1726 1727 newfd = get_unused_fd_flags(flags); 1728 if (unlikely(newfd < 0)) { 1729 err = newfd; 1730 sock_release(newsock); 1731 goto out; 1732 } 1733 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1734 if (IS_ERR(newfile)) { 1735 err = PTR_ERR(newfile); 1736 put_unused_fd(newfd); 1737 goto out; 1738 } 1739 1740 err = security_socket_accept(sock, newsock); 1741 if (err) 1742 goto out_fd; 1743 1744 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1745 false); 1746 if (err < 0) 1747 goto out_fd; 1748 1749 if (upeer_sockaddr) { 1750 len = newsock->ops->getname(newsock, 1751 (struct sockaddr *)&address, 2); 1752 if (len < 0) { 1753 err = -ECONNABORTED; 1754 goto out_fd; 1755 } 1756 err = move_addr_to_user(&address, 1757 len, upeer_sockaddr, upeer_addrlen); 1758 if (err < 0) 1759 goto out_fd; 1760 } 1761 1762 /* File flags are not inherited via accept() unlike another OSes. */ 1763 1764 fd_install(newfd, newfile); 1765 err = newfd; 1766 out: 1767 return err; 1768 out_fd: 1769 fput(newfile); 1770 put_unused_fd(newfd); 1771 goto out; 1772 1773 } 1774 1775 /* 1776 * For accept, we attempt to create a new socket, set up the link 1777 * with the client, wake up the client, then return the new 1778 * connected fd. We collect the address of the connector in kernel 1779 * space and move it to user at the very end. This is unclean because 1780 * we open the socket then return an error. 1781 * 1782 * 1003.1g adds the ability to recvmsg() to query connection pending 1783 * status to recvmsg. We need to add that support in a way thats 1784 * clean when we restructure accept also. 1785 */ 1786 1787 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1788 int __user *upeer_addrlen, int flags) 1789 { 1790 int ret = -EBADF; 1791 struct fd f; 1792 1793 f = fdget(fd); 1794 if (f.file) { 1795 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1796 upeer_addrlen, flags); 1797 if (f.flags) 1798 fput(f.file); 1799 } 1800 1801 return ret; 1802 } 1803 1804 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1805 int __user *, upeer_addrlen, int, flags) 1806 { 1807 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1808 } 1809 1810 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1811 int __user *, upeer_addrlen) 1812 { 1813 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1814 } 1815 1816 /* 1817 * Attempt to connect to a socket with the server address. The address 1818 * is in user space so we verify it is OK and move it to kernel space. 1819 * 1820 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1821 * break bindings 1822 * 1823 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1824 * other SEQPACKET protocols that take time to connect() as it doesn't 1825 * include the -EINPROGRESS status for such sockets. 1826 */ 1827 1828 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1829 { 1830 struct socket *sock; 1831 struct sockaddr_storage address; 1832 int err, fput_needed; 1833 1834 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1835 if (!sock) 1836 goto out; 1837 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1838 if (err < 0) 1839 goto out_put; 1840 1841 err = 1842 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1843 if (err) 1844 goto out_put; 1845 1846 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1847 sock->file->f_flags); 1848 out_put: 1849 fput_light(sock->file, fput_needed); 1850 out: 1851 return err; 1852 } 1853 1854 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1855 int, addrlen) 1856 { 1857 return __sys_connect(fd, uservaddr, addrlen); 1858 } 1859 1860 /* 1861 * Get the local address ('name') of a socket object. Move the obtained 1862 * name to user space. 1863 */ 1864 1865 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1866 int __user *usockaddr_len) 1867 { 1868 struct socket *sock; 1869 struct sockaddr_storage address; 1870 int err, fput_needed; 1871 1872 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1873 if (!sock) 1874 goto out; 1875 1876 err = security_socket_getsockname(sock); 1877 if (err) 1878 goto out_put; 1879 1880 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1881 if (err < 0) 1882 goto out_put; 1883 /* "err" is actually length in this case */ 1884 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1885 1886 out_put: 1887 fput_light(sock->file, fput_needed); 1888 out: 1889 return err; 1890 } 1891 1892 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1893 int __user *, usockaddr_len) 1894 { 1895 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1896 } 1897 1898 /* 1899 * Get the remote address ('name') of a socket object. Move the obtained 1900 * name to user space. 1901 */ 1902 1903 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1904 int __user *usockaddr_len) 1905 { 1906 struct socket *sock; 1907 struct sockaddr_storage address; 1908 int err, fput_needed; 1909 1910 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1911 if (sock != NULL) { 1912 err = security_socket_getpeername(sock); 1913 if (err) { 1914 fput_light(sock->file, fput_needed); 1915 return err; 1916 } 1917 1918 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1919 if (err >= 0) 1920 /* "err" is actually length in this case */ 1921 err = move_addr_to_user(&address, err, usockaddr, 1922 usockaddr_len); 1923 fput_light(sock->file, fput_needed); 1924 } 1925 return err; 1926 } 1927 1928 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1929 int __user *, usockaddr_len) 1930 { 1931 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1932 } 1933 1934 /* 1935 * Send a datagram to a given address. We move the address into kernel 1936 * space and check the user space data area is readable before invoking 1937 * the protocol. 1938 */ 1939 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1940 struct sockaddr __user *addr, int addr_len) 1941 { 1942 struct socket *sock; 1943 struct sockaddr_storage address; 1944 int err; 1945 struct msghdr msg; 1946 struct iovec iov; 1947 int fput_needed; 1948 1949 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1950 if (unlikely(err)) 1951 return err; 1952 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1953 if (!sock) 1954 goto out; 1955 1956 msg.msg_name = NULL; 1957 msg.msg_control = NULL; 1958 msg.msg_controllen = 0; 1959 msg.msg_namelen = 0; 1960 if (addr) { 1961 err = move_addr_to_kernel(addr, addr_len, &address); 1962 if (err < 0) 1963 goto out_put; 1964 msg.msg_name = (struct sockaddr *)&address; 1965 msg.msg_namelen = addr_len; 1966 } 1967 if (sock->file->f_flags & O_NONBLOCK) 1968 flags |= MSG_DONTWAIT; 1969 msg.msg_flags = flags; 1970 err = sock_sendmsg(sock, &msg); 1971 1972 out_put: 1973 fput_light(sock->file, fput_needed); 1974 out: 1975 return err; 1976 } 1977 1978 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1979 unsigned int, flags, struct sockaddr __user *, addr, 1980 int, addr_len) 1981 { 1982 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1983 } 1984 1985 /* 1986 * Send a datagram down a socket. 1987 */ 1988 1989 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1990 unsigned int, flags) 1991 { 1992 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1993 } 1994 1995 /* 1996 * Receive a frame from the socket and optionally record the address of the 1997 * sender. We verify the buffers are writable and if needed move the 1998 * sender address from kernel to user space. 1999 */ 2000 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2001 struct sockaddr __user *addr, int __user *addr_len) 2002 { 2003 struct socket *sock; 2004 struct iovec iov; 2005 struct msghdr msg; 2006 struct sockaddr_storage address; 2007 int err, err2; 2008 int fput_needed; 2009 2010 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2011 if (unlikely(err)) 2012 return err; 2013 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2014 if (!sock) 2015 goto out; 2016 2017 msg.msg_control = NULL; 2018 msg.msg_controllen = 0; 2019 /* Save some cycles and don't copy the address if not needed */ 2020 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2021 /* We assume all kernel code knows the size of sockaddr_storage */ 2022 msg.msg_namelen = 0; 2023 msg.msg_iocb = NULL; 2024 msg.msg_flags = 0; 2025 if (sock->file->f_flags & O_NONBLOCK) 2026 flags |= MSG_DONTWAIT; 2027 err = sock_recvmsg(sock, &msg, flags); 2028 2029 if (err >= 0 && addr != NULL) { 2030 err2 = move_addr_to_user(&address, 2031 msg.msg_namelen, addr, addr_len); 2032 if (err2 < 0) 2033 err = err2; 2034 } 2035 2036 fput_light(sock->file, fput_needed); 2037 out: 2038 return err; 2039 } 2040 2041 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2042 unsigned int, flags, struct sockaddr __user *, addr, 2043 int __user *, addr_len) 2044 { 2045 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2046 } 2047 2048 /* 2049 * Receive a datagram from a socket. 2050 */ 2051 2052 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2053 unsigned int, flags) 2054 { 2055 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2056 } 2057 2058 /* 2059 * Set a socket option. Because we don't know the option lengths we have 2060 * to pass the user mode parameter for the protocols to sort out. 2061 */ 2062 2063 static int __sys_setsockopt(int fd, int level, int optname, 2064 char __user *optval, int optlen) 2065 { 2066 mm_segment_t oldfs = get_fs(); 2067 char *kernel_optval = NULL; 2068 int err, fput_needed; 2069 struct socket *sock; 2070 2071 if (optlen < 0) 2072 return -EINVAL; 2073 2074 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2075 if (sock != NULL) { 2076 err = security_socket_setsockopt(sock, level, optname); 2077 if (err) 2078 goto out_put; 2079 2080 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2081 &optname, optval, &optlen, 2082 &kernel_optval); 2083 2084 if (err < 0) { 2085 goto out_put; 2086 } else if (err > 0) { 2087 err = 0; 2088 goto out_put; 2089 } 2090 2091 if (kernel_optval) { 2092 set_fs(KERNEL_DS); 2093 optval = (char __user __force *)kernel_optval; 2094 } 2095 2096 if (level == SOL_SOCKET) 2097 err = 2098 sock_setsockopt(sock, level, optname, optval, 2099 optlen); 2100 else 2101 err = 2102 sock->ops->setsockopt(sock, level, optname, optval, 2103 optlen); 2104 2105 if (kernel_optval) { 2106 set_fs(oldfs); 2107 kfree(kernel_optval); 2108 } 2109 out_put: 2110 fput_light(sock->file, fput_needed); 2111 } 2112 return err; 2113 } 2114 2115 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2116 char __user *, optval, int, optlen) 2117 { 2118 return __sys_setsockopt(fd, level, optname, optval, optlen); 2119 } 2120 2121 /* 2122 * Get a socket option. Because we don't know the option lengths we have 2123 * to pass a user mode parameter for the protocols to sort out. 2124 */ 2125 2126 static int __sys_getsockopt(int fd, int level, int optname, 2127 char __user *optval, int __user *optlen) 2128 { 2129 int err, fput_needed; 2130 struct socket *sock; 2131 int max_optlen; 2132 2133 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2134 if (sock != NULL) { 2135 err = security_socket_getsockopt(sock, level, optname); 2136 if (err) 2137 goto out_put; 2138 2139 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2140 2141 if (level == SOL_SOCKET) 2142 err = 2143 sock_getsockopt(sock, level, optname, optval, 2144 optlen); 2145 else 2146 err = 2147 sock->ops->getsockopt(sock, level, optname, optval, 2148 optlen); 2149 2150 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2151 optval, optlen, 2152 max_optlen, err); 2153 out_put: 2154 fput_light(sock->file, fput_needed); 2155 } 2156 return err; 2157 } 2158 2159 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2160 char __user *, optval, int __user *, optlen) 2161 { 2162 return __sys_getsockopt(fd, level, optname, optval, optlen); 2163 } 2164 2165 /* 2166 * Shutdown a socket. 2167 */ 2168 2169 int __sys_shutdown(int fd, int how) 2170 { 2171 int err, fput_needed; 2172 struct socket *sock; 2173 2174 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2175 if (sock != NULL) { 2176 err = security_socket_shutdown(sock, how); 2177 if (!err) 2178 err = sock->ops->shutdown(sock, how); 2179 fput_light(sock->file, fput_needed); 2180 } 2181 return err; 2182 } 2183 2184 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2185 { 2186 return __sys_shutdown(fd, how); 2187 } 2188 2189 /* A couple of helpful macros for getting the address of the 32/64 bit 2190 * fields which are the same type (int / unsigned) on our platforms. 2191 */ 2192 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2193 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2194 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2195 2196 struct used_address { 2197 struct sockaddr_storage name; 2198 unsigned int name_len; 2199 }; 2200 2201 static int copy_msghdr_from_user(struct msghdr *kmsg, 2202 struct user_msghdr __user *umsg, 2203 struct sockaddr __user **save_addr, 2204 struct iovec **iov) 2205 { 2206 struct user_msghdr msg; 2207 ssize_t err; 2208 2209 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2210 return -EFAULT; 2211 2212 kmsg->msg_control = (void __force *)msg.msg_control; 2213 kmsg->msg_controllen = msg.msg_controllen; 2214 kmsg->msg_flags = msg.msg_flags; 2215 2216 kmsg->msg_namelen = msg.msg_namelen; 2217 if (!msg.msg_name) 2218 kmsg->msg_namelen = 0; 2219 2220 if (kmsg->msg_namelen < 0) 2221 return -EINVAL; 2222 2223 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2224 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2225 2226 if (save_addr) 2227 *save_addr = msg.msg_name; 2228 2229 if (msg.msg_name && kmsg->msg_namelen) { 2230 if (!save_addr) { 2231 err = move_addr_to_kernel(msg.msg_name, 2232 kmsg->msg_namelen, 2233 kmsg->msg_name); 2234 if (err < 0) 2235 return err; 2236 } 2237 } else { 2238 kmsg->msg_name = NULL; 2239 kmsg->msg_namelen = 0; 2240 } 2241 2242 if (msg.msg_iovlen > UIO_MAXIOV) 2243 return -EMSGSIZE; 2244 2245 kmsg->msg_iocb = NULL; 2246 2247 err = import_iovec(save_addr ? READ : WRITE, 2248 msg.msg_iov, msg.msg_iovlen, 2249 UIO_FASTIOV, iov, &kmsg->msg_iter); 2250 return err < 0 ? err : 0; 2251 } 2252 2253 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2254 struct msghdr *msg_sys, unsigned int flags, 2255 struct used_address *used_address, 2256 unsigned int allowed_msghdr_flags) 2257 { 2258 struct compat_msghdr __user *msg_compat = 2259 (struct compat_msghdr __user *)msg; 2260 struct sockaddr_storage address; 2261 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2262 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2263 __aligned(sizeof(__kernel_size_t)); 2264 /* 20 is size of ipv6_pktinfo */ 2265 unsigned char *ctl_buf = ctl; 2266 int ctl_len; 2267 ssize_t err; 2268 2269 msg_sys->msg_name = &address; 2270 2271 if (MSG_CMSG_COMPAT & flags) 2272 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2273 else 2274 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2275 if (err < 0) 2276 return err; 2277 2278 err = -ENOBUFS; 2279 2280 if (msg_sys->msg_controllen > INT_MAX) 2281 goto out_freeiov; 2282 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2283 ctl_len = msg_sys->msg_controllen; 2284 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2285 err = 2286 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2287 sizeof(ctl)); 2288 if (err) 2289 goto out_freeiov; 2290 ctl_buf = msg_sys->msg_control; 2291 ctl_len = msg_sys->msg_controllen; 2292 } else if (ctl_len) { 2293 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2294 CMSG_ALIGN(sizeof(struct cmsghdr))); 2295 if (ctl_len > sizeof(ctl)) { 2296 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2297 if (ctl_buf == NULL) 2298 goto out_freeiov; 2299 } 2300 err = -EFAULT; 2301 /* 2302 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2303 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2304 * checking falls down on this. 2305 */ 2306 if (copy_from_user(ctl_buf, 2307 (void __user __force *)msg_sys->msg_control, 2308 ctl_len)) 2309 goto out_freectl; 2310 msg_sys->msg_control = ctl_buf; 2311 } 2312 msg_sys->msg_flags = flags; 2313 2314 if (sock->file->f_flags & O_NONBLOCK) 2315 msg_sys->msg_flags |= MSG_DONTWAIT; 2316 /* 2317 * If this is sendmmsg() and current destination address is same as 2318 * previously succeeded address, omit asking LSM's decision. 2319 * used_address->name_len is initialized to UINT_MAX so that the first 2320 * destination address never matches. 2321 */ 2322 if (used_address && msg_sys->msg_name && 2323 used_address->name_len == msg_sys->msg_namelen && 2324 !memcmp(&used_address->name, msg_sys->msg_name, 2325 used_address->name_len)) { 2326 err = sock_sendmsg_nosec(sock, msg_sys); 2327 goto out_freectl; 2328 } 2329 err = sock_sendmsg(sock, msg_sys); 2330 /* 2331 * If this is sendmmsg() and sending to current destination address was 2332 * successful, remember it. 2333 */ 2334 if (used_address && err >= 0) { 2335 used_address->name_len = msg_sys->msg_namelen; 2336 if (msg_sys->msg_name) 2337 memcpy(&used_address->name, msg_sys->msg_name, 2338 used_address->name_len); 2339 } 2340 2341 out_freectl: 2342 if (ctl_buf != ctl) 2343 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2344 out_freeiov: 2345 kfree(iov); 2346 return err; 2347 } 2348 2349 /* 2350 * BSD sendmsg interface 2351 */ 2352 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg, 2353 unsigned int flags) 2354 { 2355 struct msghdr msg_sys; 2356 2357 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2358 } 2359 2360 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2361 bool forbid_cmsg_compat) 2362 { 2363 int fput_needed, err; 2364 struct msghdr msg_sys; 2365 struct socket *sock; 2366 2367 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2368 return -EINVAL; 2369 2370 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2371 if (!sock) 2372 goto out; 2373 2374 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2375 2376 fput_light(sock->file, fput_needed); 2377 out: 2378 return err; 2379 } 2380 2381 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2382 { 2383 return __sys_sendmsg(fd, msg, flags, true); 2384 } 2385 2386 /* 2387 * Linux sendmmsg interface 2388 */ 2389 2390 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2391 unsigned int flags, bool forbid_cmsg_compat) 2392 { 2393 int fput_needed, err, datagrams; 2394 struct socket *sock; 2395 struct mmsghdr __user *entry; 2396 struct compat_mmsghdr __user *compat_entry; 2397 struct msghdr msg_sys; 2398 struct used_address used_address; 2399 unsigned int oflags = flags; 2400 2401 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2402 return -EINVAL; 2403 2404 if (vlen > UIO_MAXIOV) 2405 vlen = UIO_MAXIOV; 2406 2407 datagrams = 0; 2408 2409 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2410 if (!sock) 2411 return err; 2412 2413 used_address.name_len = UINT_MAX; 2414 entry = mmsg; 2415 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2416 err = 0; 2417 flags |= MSG_BATCH; 2418 2419 while (datagrams < vlen) { 2420 if (datagrams == vlen - 1) 2421 flags = oflags; 2422 2423 if (MSG_CMSG_COMPAT & flags) { 2424 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2425 &msg_sys, flags, &used_address, MSG_EOR); 2426 if (err < 0) 2427 break; 2428 err = __put_user(err, &compat_entry->msg_len); 2429 ++compat_entry; 2430 } else { 2431 err = ___sys_sendmsg(sock, 2432 (struct user_msghdr __user *)entry, 2433 &msg_sys, flags, &used_address, MSG_EOR); 2434 if (err < 0) 2435 break; 2436 err = put_user(err, &entry->msg_len); 2437 ++entry; 2438 } 2439 2440 if (err) 2441 break; 2442 ++datagrams; 2443 if (msg_data_left(&msg_sys)) 2444 break; 2445 cond_resched(); 2446 } 2447 2448 fput_light(sock->file, fput_needed); 2449 2450 /* We only return an error if no datagrams were able to be sent */ 2451 if (datagrams != 0) 2452 return datagrams; 2453 2454 return err; 2455 } 2456 2457 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2458 unsigned int, vlen, unsigned int, flags) 2459 { 2460 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2461 } 2462 2463 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2464 struct msghdr *msg_sys, unsigned int flags, int nosec) 2465 { 2466 struct compat_msghdr __user *msg_compat = 2467 (struct compat_msghdr __user *)msg; 2468 struct iovec iovstack[UIO_FASTIOV]; 2469 struct iovec *iov = iovstack; 2470 unsigned long cmsg_ptr; 2471 int len; 2472 ssize_t err; 2473 2474 /* kernel mode address */ 2475 struct sockaddr_storage addr; 2476 2477 /* user mode address pointers */ 2478 struct sockaddr __user *uaddr; 2479 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2480 2481 msg_sys->msg_name = &addr; 2482 2483 if (MSG_CMSG_COMPAT & flags) 2484 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2485 else 2486 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2487 if (err < 0) 2488 return err; 2489 2490 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2491 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2492 2493 /* We assume all kernel code knows the size of sockaddr_storage */ 2494 msg_sys->msg_namelen = 0; 2495 2496 if (sock->file->f_flags & O_NONBLOCK) 2497 flags |= MSG_DONTWAIT; 2498 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2499 if (err < 0) 2500 goto out_freeiov; 2501 len = err; 2502 2503 if (uaddr != NULL) { 2504 err = move_addr_to_user(&addr, 2505 msg_sys->msg_namelen, uaddr, 2506 uaddr_len); 2507 if (err < 0) 2508 goto out_freeiov; 2509 } 2510 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2511 COMPAT_FLAGS(msg)); 2512 if (err) 2513 goto out_freeiov; 2514 if (MSG_CMSG_COMPAT & flags) 2515 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2516 &msg_compat->msg_controllen); 2517 else 2518 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2519 &msg->msg_controllen); 2520 if (err) 2521 goto out_freeiov; 2522 err = len; 2523 2524 out_freeiov: 2525 kfree(iov); 2526 return err; 2527 } 2528 2529 /* 2530 * BSD recvmsg interface 2531 */ 2532 2533 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg, 2534 unsigned int flags) 2535 { 2536 struct msghdr msg_sys; 2537 2538 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2539 } 2540 2541 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2542 bool forbid_cmsg_compat) 2543 { 2544 int fput_needed, err; 2545 struct msghdr msg_sys; 2546 struct socket *sock; 2547 2548 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2549 return -EINVAL; 2550 2551 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2552 if (!sock) 2553 goto out; 2554 2555 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2556 2557 fput_light(sock->file, fput_needed); 2558 out: 2559 return err; 2560 } 2561 2562 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2563 unsigned int, flags) 2564 { 2565 return __sys_recvmsg(fd, msg, flags, true); 2566 } 2567 2568 /* 2569 * Linux recvmmsg interface 2570 */ 2571 2572 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2573 unsigned int vlen, unsigned int flags, 2574 struct timespec64 *timeout) 2575 { 2576 int fput_needed, err, datagrams; 2577 struct socket *sock; 2578 struct mmsghdr __user *entry; 2579 struct compat_mmsghdr __user *compat_entry; 2580 struct msghdr msg_sys; 2581 struct timespec64 end_time; 2582 struct timespec64 timeout64; 2583 2584 if (timeout && 2585 poll_select_set_timeout(&end_time, timeout->tv_sec, 2586 timeout->tv_nsec)) 2587 return -EINVAL; 2588 2589 datagrams = 0; 2590 2591 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2592 if (!sock) 2593 return err; 2594 2595 if (likely(!(flags & MSG_ERRQUEUE))) { 2596 err = sock_error(sock->sk); 2597 if (err) { 2598 datagrams = err; 2599 goto out_put; 2600 } 2601 } 2602 2603 entry = mmsg; 2604 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2605 2606 while (datagrams < vlen) { 2607 /* 2608 * No need to ask LSM for more than the first datagram. 2609 */ 2610 if (MSG_CMSG_COMPAT & flags) { 2611 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2612 &msg_sys, flags & ~MSG_WAITFORONE, 2613 datagrams); 2614 if (err < 0) 2615 break; 2616 err = __put_user(err, &compat_entry->msg_len); 2617 ++compat_entry; 2618 } else { 2619 err = ___sys_recvmsg(sock, 2620 (struct user_msghdr __user *)entry, 2621 &msg_sys, flags & ~MSG_WAITFORONE, 2622 datagrams); 2623 if (err < 0) 2624 break; 2625 err = put_user(err, &entry->msg_len); 2626 ++entry; 2627 } 2628 2629 if (err) 2630 break; 2631 ++datagrams; 2632 2633 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2634 if (flags & MSG_WAITFORONE) 2635 flags |= MSG_DONTWAIT; 2636 2637 if (timeout) { 2638 ktime_get_ts64(&timeout64); 2639 *timeout = timespec64_sub(end_time, timeout64); 2640 if (timeout->tv_sec < 0) { 2641 timeout->tv_sec = timeout->tv_nsec = 0; 2642 break; 2643 } 2644 2645 /* Timeout, return less than vlen datagrams */ 2646 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2647 break; 2648 } 2649 2650 /* Out of band data, return right away */ 2651 if (msg_sys.msg_flags & MSG_OOB) 2652 break; 2653 cond_resched(); 2654 } 2655 2656 if (err == 0) 2657 goto out_put; 2658 2659 if (datagrams == 0) { 2660 datagrams = err; 2661 goto out_put; 2662 } 2663 2664 /* 2665 * We may return less entries than requested (vlen) if the 2666 * sock is non block and there aren't enough datagrams... 2667 */ 2668 if (err != -EAGAIN) { 2669 /* 2670 * ... or if recvmsg returns an error after we 2671 * received some datagrams, where we record the 2672 * error to return on the next call or if the 2673 * app asks about it using getsockopt(SO_ERROR). 2674 */ 2675 sock->sk->sk_err = -err; 2676 } 2677 out_put: 2678 fput_light(sock->file, fput_needed); 2679 2680 return datagrams; 2681 } 2682 2683 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2684 unsigned int vlen, unsigned int flags, 2685 struct __kernel_timespec __user *timeout, 2686 struct old_timespec32 __user *timeout32) 2687 { 2688 int datagrams; 2689 struct timespec64 timeout_sys; 2690 2691 if (timeout && get_timespec64(&timeout_sys, timeout)) 2692 return -EFAULT; 2693 2694 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2695 return -EFAULT; 2696 2697 if (!timeout && !timeout32) 2698 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2699 2700 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2701 2702 if (datagrams <= 0) 2703 return datagrams; 2704 2705 if (timeout && put_timespec64(&timeout_sys, timeout)) 2706 datagrams = -EFAULT; 2707 2708 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2709 datagrams = -EFAULT; 2710 2711 return datagrams; 2712 } 2713 2714 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2715 unsigned int, vlen, unsigned int, flags, 2716 struct __kernel_timespec __user *, timeout) 2717 { 2718 if (flags & MSG_CMSG_COMPAT) 2719 return -EINVAL; 2720 2721 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2722 } 2723 2724 #ifdef CONFIG_COMPAT_32BIT_TIME 2725 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2726 unsigned int, vlen, unsigned int, flags, 2727 struct old_timespec32 __user *, timeout) 2728 { 2729 if (flags & MSG_CMSG_COMPAT) 2730 return -EINVAL; 2731 2732 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2733 } 2734 #endif 2735 2736 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2737 /* Argument list sizes for sys_socketcall */ 2738 #define AL(x) ((x) * sizeof(unsigned long)) 2739 static const unsigned char nargs[21] = { 2740 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2741 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2742 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2743 AL(4), AL(5), AL(4) 2744 }; 2745 2746 #undef AL 2747 2748 /* 2749 * System call vectors. 2750 * 2751 * Argument checking cleaned up. Saved 20% in size. 2752 * This function doesn't need to set the kernel lock because 2753 * it is set by the callees. 2754 */ 2755 2756 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2757 { 2758 unsigned long a[AUDITSC_ARGS]; 2759 unsigned long a0, a1; 2760 int err; 2761 unsigned int len; 2762 2763 if (call < 1 || call > SYS_SENDMMSG) 2764 return -EINVAL; 2765 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2766 2767 len = nargs[call]; 2768 if (len > sizeof(a)) 2769 return -EINVAL; 2770 2771 /* copy_from_user should be SMP safe. */ 2772 if (copy_from_user(a, args, len)) 2773 return -EFAULT; 2774 2775 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2776 if (err) 2777 return err; 2778 2779 a0 = a[0]; 2780 a1 = a[1]; 2781 2782 switch (call) { 2783 case SYS_SOCKET: 2784 err = __sys_socket(a0, a1, a[2]); 2785 break; 2786 case SYS_BIND: 2787 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2788 break; 2789 case SYS_CONNECT: 2790 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2791 break; 2792 case SYS_LISTEN: 2793 err = __sys_listen(a0, a1); 2794 break; 2795 case SYS_ACCEPT: 2796 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2797 (int __user *)a[2], 0); 2798 break; 2799 case SYS_GETSOCKNAME: 2800 err = 2801 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2802 (int __user *)a[2]); 2803 break; 2804 case SYS_GETPEERNAME: 2805 err = 2806 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2807 (int __user *)a[2]); 2808 break; 2809 case SYS_SOCKETPAIR: 2810 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2811 break; 2812 case SYS_SEND: 2813 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2814 NULL, 0); 2815 break; 2816 case SYS_SENDTO: 2817 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2818 (struct sockaddr __user *)a[4], a[5]); 2819 break; 2820 case SYS_RECV: 2821 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2822 NULL, NULL); 2823 break; 2824 case SYS_RECVFROM: 2825 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2826 (struct sockaddr __user *)a[4], 2827 (int __user *)a[5]); 2828 break; 2829 case SYS_SHUTDOWN: 2830 err = __sys_shutdown(a0, a1); 2831 break; 2832 case SYS_SETSOCKOPT: 2833 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2834 a[4]); 2835 break; 2836 case SYS_GETSOCKOPT: 2837 err = 2838 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2839 (int __user *)a[4]); 2840 break; 2841 case SYS_SENDMSG: 2842 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2843 a[2], true); 2844 break; 2845 case SYS_SENDMMSG: 2846 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2847 a[3], true); 2848 break; 2849 case SYS_RECVMSG: 2850 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2851 a[2], true); 2852 break; 2853 case SYS_RECVMMSG: 2854 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2855 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2856 a[2], a[3], 2857 (struct __kernel_timespec __user *)a[4], 2858 NULL); 2859 else 2860 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2861 a[2], a[3], NULL, 2862 (struct old_timespec32 __user *)a[4]); 2863 break; 2864 case SYS_ACCEPT4: 2865 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2866 (int __user *)a[2], a[3]); 2867 break; 2868 default: 2869 err = -EINVAL; 2870 break; 2871 } 2872 return err; 2873 } 2874 2875 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2876 2877 /** 2878 * sock_register - add a socket protocol handler 2879 * @ops: description of protocol 2880 * 2881 * This function is called by a protocol handler that wants to 2882 * advertise its address family, and have it linked into the 2883 * socket interface. The value ops->family corresponds to the 2884 * socket system call protocol family. 2885 */ 2886 int sock_register(const struct net_proto_family *ops) 2887 { 2888 int err; 2889 2890 if (ops->family >= NPROTO) { 2891 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2892 return -ENOBUFS; 2893 } 2894 2895 spin_lock(&net_family_lock); 2896 if (rcu_dereference_protected(net_families[ops->family], 2897 lockdep_is_held(&net_family_lock))) 2898 err = -EEXIST; 2899 else { 2900 rcu_assign_pointer(net_families[ops->family], ops); 2901 err = 0; 2902 } 2903 spin_unlock(&net_family_lock); 2904 2905 pr_info("NET: Registered protocol family %d\n", ops->family); 2906 return err; 2907 } 2908 EXPORT_SYMBOL(sock_register); 2909 2910 /** 2911 * sock_unregister - remove a protocol handler 2912 * @family: protocol family to remove 2913 * 2914 * This function is called by a protocol handler that wants to 2915 * remove its address family, and have it unlinked from the 2916 * new socket creation. 2917 * 2918 * If protocol handler is a module, then it can use module reference 2919 * counts to protect against new references. If protocol handler is not 2920 * a module then it needs to provide its own protection in 2921 * the ops->create routine. 2922 */ 2923 void sock_unregister(int family) 2924 { 2925 BUG_ON(family < 0 || family >= NPROTO); 2926 2927 spin_lock(&net_family_lock); 2928 RCU_INIT_POINTER(net_families[family], NULL); 2929 spin_unlock(&net_family_lock); 2930 2931 synchronize_rcu(); 2932 2933 pr_info("NET: Unregistered protocol family %d\n", family); 2934 } 2935 EXPORT_SYMBOL(sock_unregister); 2936 2937 bool sock_is_registered(int family) 2938 { 2939 return family < NPROTO && rcu_access_pointer(net_families[family]); 2940 } 2941 2942 static int __init sock_init(void) 2943 { 2944 int err; 2945 /* 2946 * Initialize the network sysctl infrastructure. 2947 */ 2948 err = net_sysctl_init(); 2949 if (err) 2950 goto out; 2951 2952 /* 2953 * Initialize skbuff SLAB cache 2954 */ 2955 skb_init(); 2956 2957 /* 2958 * Initialize the protocols module. 2959 */ 2960 2961 init_inodecache(); 2962 2963 err = register_filesystem(&sock_fs_type); 2964 if (err) 2965 goto out_fs; 2966 sock_mnt = kern_mount(&sock_fs_type); 2967 if (IS_ERR(sock_mnt)) { 2968 err = PTR_ERR(sock_mnt); 2969 goto out_mount; 2970 } 2971 2972 /* The real protocol initialization is performed in later initcalls. 2973 */ 2974 2975 #ifdef CONFIG_NETFILTER 2976 err = netfilter_init(); 2977 if (err) 2978 goto out; 2979 #endif 2980 2981 ptp_classifier_init(); 2982 2983 out: 2984 return err; 2985 2986 out_mount: 2987 unregister_filesystem(&sock_fs_type); 2988 out_fs: 2989 goto out; 2990 } 2991 2992 core_initcall(sock_init); /* early initcall */ 2993 2994 #ifdef CONFIG_PROC_FS 2995 void socket_seq_show(struct seq_file *seq) 2996 { 2997 seq_printf(seq, "sockets: used %d\n", 2998 sock_inuse_get(seq->private)); 2999 } 3000 #endif /* CONFIG_PROC_FS */ 3001 3002 #ifdef CONFIG_COMPAT 3003 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3004 { 3005 struct compat_ifconf ifc32; 3006 struct ifconf ifc; 3007 int err; 3008 3009 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3010 return -EFAULT; 3011 3012 ifc.ifc_len = ifc32.ifc_len; 3013 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3014 3015 rtnl_lock(); 3016 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3017 rtnl_unlock(); 3018 if (err) 3019 return err; 3020 3021 ifc32.ifc_len = ifc.ifc_len; 3022 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3023 return -EFAULT; 3024 3025 return 0; 3026 } 3027 3028 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3029 { 3030 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3031 bool convert_in = false, convert_out = false; 3032 size_t buf_size = 0; 3033 struct ethtool_rxnfc __user *rxnfc = NULL; 3034 struct ifreq ifr; 3035 u32 rule_cnt = 0, actual_rule_cnt; 3036 u32 ethcmd; 3037 u32 data; 3038 int ret; 3039 3040 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3041 return -EFAULT; 3042 3043 compat_rxnfc = compat_ptr(data); 3044 3045 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3046 return -EFAULT; 3047 3048 /* Most ethtool structures are defined without padding. 3049 * Unfortunately struct ethtool_rxnfc is an exception. 3050 */ 3051 switch (ethcmd) { 3052 default: 3053 break; 3054 case ETHTOOL_GRXCLSRLALL: 3055 /* Buffer size is variable */ 3056 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3057 return -EFAULT; 3058 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3059 return -ENOMEM; 3060 buf_size += rule_cnt * sizeof(u32); 3061 /* fall through */ 3062 case ETHTOOL_GRXRINGS: 3063 case ETHTOOL_GRXCLSRLCNT: 3064 case ETHTOOL_GRXCLSRULE: 3065 case ETHTOOL_SRXCLSRLINS: 3066 convert_out = true; 3067 /* fall through */ 3068 case ETHTOOL_SRXCLSRLDEL: 3069 buf_size += sizeof(struct ethtool_rxnfc); 3070 convert_in = true; 3071 rxnfc = compat_alloc_user_space(buf_size); 3072 break; 3073 } 3074 3075 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3076 return -EFAULT; 3077 3078 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3079 3080 if (convert_in) { 3081 /* We expect there to be holes between fs.m_ext and 3082 * fs.ring_cookie and at the end of fs, but nowhere else. 3083 */ 3084 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3085 sizeof(compat_rxnfc->fs.m_ext) != 3086 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3087 sizeof(rxnfc->fs.m_ext)); 3088 BUILD_BUG_ON( 3089 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3090 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3091 offsetof(struct ethtool_rxnfc, fs.location) - 3092 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3093 3094 if (copy_in_user(rxnfc, compat_rxnfc, 3095 (void __user *)(&rxnfc->fs.m_ext + 1) - 3096 (void __user *)rxnfc) || 3097 copy_in_user(&rxnfc->fs.ring_cookie, 3098 &compat_rxnfc->fs.ring_cookie, 3099 (void __user *)(&rxnfc->fs.location + 1) - 3100 (void __user *)&rxnfc->fs.ring_cookie)) 3101 return -EFAULT; 3102 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3103 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3104 return -EFAULT; 3105 } else if (copy_in_user(&rxnfc->rule_cnt, 3106 &compat_rxnfc->rule_cnt, 3107 sizeof(rxnfc->rule_cnt))) 3108 return -EFAULT; 3109 } 3110 3111 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3112 if (ret) 3113 return ret; 3114 3115 if (convert_out) { 3116 if (copy_in_user(compat_rxnfc, rxnfc, 3117 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3118 (const void __user *)rxnfc) || 3119 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3120 &rxnfc->fs.ring_cookie, 3121 (const void __user *)(&rxnfc->fs.location + 1) - 3122 (const void __user *)&rxnfc->fs.ring_cookie) || 3123 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3124 sizeof(rxnfc->rule_cnt))) 3125 return -EFAULT; 3126 3127 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3128 /* As an optimisation, we only copy the actual 3129 * number of rules that the underlying 3130 * function returned. Since Mallory might 3131 * change the rule count in user memory, we 3132 * check that it is less than the rule count 3133 * originally given (as the user buffer size), 3134 * which has been range-checked. 3135 */ 3136 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3137 return -EFAULT; 3138 if (actual_rule_cnt < rule_cnt) 3139 rule_cnt = actual_rule_cnt; 3140 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3141 &rxnfc->rule_locs[0], 3142 rule_cnt * sizeof(u32))) 3143 return -EFAULT; 3144 } 3145 } 3146 3147 return 0; 3148 } 3149 3150 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3151 { 3152 compat_uptr_t uptr32; 3153 struct ifreq ifr; 3154 void __user *saved; 3155 int err; 3156 3157 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3158 return -EFAULT; 3159 3160 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3161 return -EFAULT; 3162 3163 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3164 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3165 3166 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3167 if (!err) { 3168 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3169 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3170 err = -EFAULT; 3171 } 3172 return err; 3173 } 3174 3175 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3176 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3177 struct compat_ifreq __user *u_ifreq32) 3178 { 3179 struct ifreq ifreq; 3180 u32 data32; 3181 3182 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3183 return -EFAULT; 3184 if (get_user(data32, &u_ifreq32->ifr_data)) 3185 return -EFAULT; 3186 ifreq.ifr_data = compat_ptr(data32); 3187 3188 return dev_ioctl(net, cmd, &ifreq, NULL); 3189 } 3190 3191 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3192 unsigned int cmd, 3193 struct compat_ifreq __user *uifr32) 3194 { 3195 struct ifreq __user *uifr; 3196 int err; 3197 3198 /* Handle the fact that while struct ifreq has the same *layout* on 3199 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3200 * which are handled elsewhere, it still has different *size* due to 3201 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3202 * resulting in struct ifreq being 32 and 40 bytes respectively). 3203 * As a result, if the struct happens to be at the end of a page and 3204 * the next page isn't readable/writable, we get a fault. To prevent 3205 * that, copy back and forth to the full size. 3206 */ 3207 3208 uifr = compat_alloc_user_space(sizeof(*uifr)); 3209 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3210 return -EFAULT; 3211 3212 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3213 3214 if (!err) { 3215 switch (cmd) { 3216 case SIOCGIFFLAGS: 3217 case SIOCGIFMETRIC: 3218 case SIOCGIFMTU: 3219 case SIOCGIFMEM: 3220 case SIOCGIFHWADDR: 3221 case SIOCGIFINDEX: 3222 case SIOCGIFADDR: 3223 case SIOCGIFBRDADDR: 3224 case SIOCGIFDSTADDR: 3225 case SIOCGIFNETMASK: 3226 case SIOCGIFPFLAGS: 3227 case SIOCGIFTXQLEN: 3228 case SIOCGMIIPHY: 3229 case SIOCGMIIREG: 3230 case SIOCGIFNAME: 3231 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3232 err = -EFAULT; 3233 break; 3234 } 3235 } 3236 return err; 3237 } 3238 3239 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3240 struct compat_ifreq __user *uifr32) 3241 { 3242 struct ifreq ifr; 3243 struct compat_ifmap __user *uifmap32; 3244 int err; 3245 3246 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3247 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3248 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3249 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3250 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3251 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3252 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3253 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3254 if (err) 3255 return -EFAULT; 3256 3257 err = dev_ioctl(net, cmd, &ifr, NULL); 3258 3259 if (cmd == SIOCGIFMAP && !err) { 3260 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3261 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3262 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3263 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3264 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3265 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3266 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3267 if (err) 3268 err = -EFAULT; 3269 } 3270 return err; 3271 } 3272 3273 struct rtentry32 { 3274 u32 rt_pad1; 3275 struct sockaddr rt_dst; /* target address */ 3276 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3277 struct sockaddr rt_genmask; /* target network mask (IP) */ 3278 unsigned short rt_flags; 3279 short rt_pad2; 3280 u32 rt_pad3; 3281 unsigned char rt_tos; 3282 unsigned char rt_class; 3283 short rt_pad4; 3284 short rt_metric; /* +1 for binary compatibility! */ 3285 /* char * */ u32 rt_dev; /* forcing the device at add */ 3286 u32 rt_mtu; /* per route MTU/Window */ 3287 u32 rt_window; /* Window clamping */ 3288 unsigned short rt_irtt; /* Initial RTT */ 3289 }; 3290 3291 struct in6_rtmsg32 { 3292 struct in6_addr rtmsg_dst; 3293 struct in6_addr rtmsg_src; 3294 struct in6_addr rtmsg_gateway; 3295 u32 rtmsg_type; 3296 u16 rtmsg_dst_len; 3297 u16 rtmsg_src_len; 3298 u32 rtmsg_metric; 3299 u32 rtmsg_info; 3300 u32 rtmsg_flags; 3301 s32 rtmsg_ifindex; 3302 }; 3303 3304 static int routing_ioctl(struct net *net, struct socket *sock, 3305 unsigned int cmd, void __user *argp) 3306 { 3307 int ret; 3308 void *r = NULL; 3309 struct in6_rtmsg r6; 3310 struct rtentry r4; 3311 char devname[16]; 3312 u32 rtdev; 3313 mm_segment_t old_fs = get_fs(); 3314 3315 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3316 struct in6_rtmsg32 __user *ur6 = argp; 3317 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3318 3 * sizeof(struct in6_addr)); 3319 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3320 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3321 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3322 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3323 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3324 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3325 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3326 3327 r = (void *) &r6; 3328 } else { /* ipv4 */ 3329 struct rtentry32 __user *ur4 = argp; 3330 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3331 3 * sizeof(struct sockaddr)); 3332 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3333 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3334 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3335 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3336 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3337 ret |= get_user(rtdev, &(ur4->rt_dev)); 3338 if (rtdev) { 3339 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3340 r4.rt_dev = (char __user __force *)devname; 3341 devname[15] = 0; 3342 } else 3343 r4.rt_dev = NULL; 3344 3345 r = (void *) &r4; 3346 } 3347 3348 if (ret) { 3349 ret = -EFAULT; 3350 goto out; 3351 } 3352 3353 set_fs(KERNEL_DS); 3354 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3355 set_fs(old_fs); 3356 3357 out: 3358 return ret; 3359 } 3360 3361 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3362 * for some operations; this forces use of the newer bridge-utils that 3363 * use compatible ioctls 3364 */ 3365 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3366 { 3367 compat_ulong_t tmp; 3368 3369 if (get_user(tmp, argp)) 3370 return -EFAULT; 3371 if (tmp == BRCTL_GET_VERSION) 3372 return BRCTL_VERSION + 1; 3373 return -EINVAL; 3374 } 3375 3376 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3377 unsigned int cmd, unsigned long arg) 3378 { 3379 void __user *argp = compat_ptr(arg); 3380 struct sock *sk = sock->sk; 3381 struct net *net = sock_net(sk); 3382 3383 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3384 return compat_ifr_data_ioctl(net, cmd, argp); 3385 3386 switch (cmd) { 3387 case SIOCSIFBR: 3388 case SIOCGIFBR: 3389 return old_bridge_ioctl(argp); 3390 case SIOCGIFCONF: 3391 return compat_dev_ifconf(net, argp); 3392 case SIOCETHTOOL: 3393 return ethtool_ioctl(net, argp); 3394 case SIOCWANDEV: 3395 return compat_siocwandev(net, argp); 3396 case SIOCGIFMAP: 3397 case SIOCSIFMAP: 3398 return compat_sioc_ifmap(net, cmd, argp); 3399 case SIOCADDRT: 3400 case SIOCDELRT: 3401 return routing_ioctl(net, sock, cmd, argp); 3402 case SIOCGSTAMP_OLD: 3403 case SIOCGSTAMPNS_OLD: 3404 if (!sock->ops->gettstamp) 3405 return -ENOIOCTLCMD; 3406 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3407 !COMPAT_USE_64BIT_TIME); 3408 3409 case SIOCBONDSLAVEINFOQUERY: 3410 case SIOCBONDINFOQUERY: 3411 case SIOCSHWTSTAMP: 3412 case SIOCGHWTSTAMP: 3413 return compat_ifr_data_ioctl(net, cmd, argp); 3414 3415 case FIOSETOWN: 3416 case SIOCSPGRP: 3417 case FIOGETOWN: 3418 case SIOCGPGRP: 3419 case SIOCBRADDBR: 3420 case SIOCBRDELBR: 3421 case SIOCGIFVLAN: 3422 case SIOCSIFVLAN: 3423 case SIOCADDDLCI: 3424 case SIOCDELDLCI: 3425 case SIOCGSKNS: 3426 case SIOCGSTAMP_NEW: 3427 case SIOCGSTAMPNS_NEW: 3428 return sock_ioctl(file, cmd, arg); 3429 3430 case SIOCGIFFLAGS: 3431 case SIOCSIFFLAGS: 3432 case SIOCGIFMETRIC: 3433 case SIOCSIFMETRIC: 3434 case SIOCGIFMTU: 3435 case SIOCSIFMTU: 3436 case SIOCGIFMEM: 3437 case SIOCSIFMEM: 3438 case SIOCGIFHWADDR: 3439 case SIOCSIFHWADDR: 3440 case SIOCADDMULTI: 3441 case SIOCDELMULTI: 3442 case SIOCGIFINDEX: 3443 case SIOCGIFADDR: 3444 case SIOCSIFADDR: 3445 case SIOCSIFHWBROADCAST: 3446 case SIOCDIFADDR: 3447 case SIOCGIFBRDADDR: 3448 case SIOCSIFBRDADDR: 3449 case SIOCGIFDSTADDR: 3450 case SIOCSIFDSTADDR: 3451 case SIOCGIFNETMASK: 3452 case SIOCSIFNETMASK: 3453 case SIOCSIFPFLAGS: 3454 case SIOCGIFPFLAGS: 3455 case SIOCGIFTXQLEN: 3456 case SIOCSIFTXQLEN: 3457 case SIOCBRADDIF: 3458 case SIOCBRDELIF: 3459 case SIOCGIFNAME: 3460 case SIOCSIFNAME: 3461 case SIOCGMIIPHY: 3462 case SIOCGMIIREG: 3463 case SIOCSMIIREG: 3464 case SIOCBONDENSLAVE: 3465 case SIOCBONDRELEASE: 3466 case SIOCBONDSETHWADDR: 3467 case SIOCBONDCHANGEACTIVE: 3468 return compat_ifreq_ioctl(net, sock, cmd, argp); 3469 3470 case SIOCSARP: 3471 case SIOCGARP: 3472 case SIOCDARP: 3473 case SIOCATMARK: 3474 return sock_do_ioctl(net, sock, cmd, arg); 3475 } 3476 3477 return -ENOIOCTLCMD; 3478 } 3479 3480 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3481 unsigned long arg) 3482 { 3483 struct socket *sock = file->private_data; 3484 int ret = -ENOIOCTLCMD; 3485 struct sock *sk; 3486 struct net *net; 3487 3488 sk = sock->sk; 3489 net = sock_net(sk); 3490 3491 if (sock->ops->compat_ioctl) 3492 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3493 3494 if (ret == -ENOIOCTLCMD && 3495 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3496 ret = compat_wext_handle_ioctl(net, cmd, arg); 3497 3498 if (ret == -ENOIOCTLCMD) 3499 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3500 3501 return ret; 3502 } 3503 #endif 3504 3505 /** 3506 * kernel_bind - bind an address to a socket (kernel space) 3507 * @sock: socket 3508 * @addr: address 3509 * @addrlen: length of address 3510 * 3511 * Returns 0 or an error. 3512 */ 3513 3514 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3515 { 3516 return sock->ops->bind(sock, addr, addrlen); 3517 } 3518 EXPORT_SYMBOL(kernel_bind); 3519 3520 /** 3521 * kernel_listen - move socket to listening state (kernel space) 3522 * @sock: socket 3523 * @backlog: pending connections queue size 3524 * 3525 * Returns 0 or an error. 3526 */ 3527 3528 int kernel_listen(struct socket *sock, int backlog) 3529 { 3530 return sock->ops->listen(sock, backlog); 3531 } 3532 EXPORT_SYMBOL(kernel_listen); 3533 3534 /** 3535 * kernel_accept - accept a connection (kernel space) 3536 * @sock: listening socket 3537 * @newsock: new connected socket 3538 * @flags: flags 3539 * 3540 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3541 * If it fails, @newsock is guaranteed to be %NULL. 3542 * Returns 0 or an error. 3543 */ 3544 3545 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3546 { 3547 struct sock *sk = sock->sk; 3548 int err; 3549 3550 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3551 newsock); 3552 if (err < 0) 3553 goto done; 3554 3555 err = sock->ops->accept(sock, *newsock, flags, true); 3556 if (err < 0) { 3557 sock_release(*newsock); 3558 *newsock = NULL; 3559 goto done; 3560 } 3561 3562 (*newsock)->ops = sock->ops; 3563 __module_get((*newsock)->ops->owner); 3564 3565 done: 3566 return err; 3567 } 3568 EXPORT_SYMBOL(kernel_accept); 3569 3570 /** 3571 * kernel_connect - connect a socket (kernel space) 3572 * @sock: socket 3573 * @addr: address 3574 * @addrlen: address length 3575 * @flags: flags (O_NONBLOCK, ...) 3576 * 3577 * For datagram sockets, @addr is the addres to which datagrams are sent 3578 * by default, and the only address from which datagrams are received. 3579 * For stream sockets, attempts to connect to @addr. 3580 * Returns 0 or an error code. 3581 */ 3582 3583 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3584 int flags) 3585 { 3586 return sock->ops->connect(sock, addr, addrlen, flags); 3587 } 3588 EXPORT_SYMBOL(kernel_connect); 3589 3590 /** 3591 * kernel_getsockname - get the address which the socket is bound (kernel space) 3592 * @sock: socket 3593 * @addr: address holder 3594 * 3595 * Fills the @addr pointer with the address which the socket is bound. 3596 * Returns 0 or an error code. 3597 */ 3598 3599 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3600 { 3601 return sock->ops->getname(sock, addr, 0); 3602 } 3603 EXPORT_SYMBOL(kernel_getsockname); 3604 3605 /** 3606 * kernel_peername - get the address which the socket is connected (kernel space) 3607 * @sock: socket 3608 * @addr: address holder 3609 * 3610 * Fills the @addr pointer with the address which the socket is connected. 3611 * Returns 0 or an error code. 3612 */ 3613 3614 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3615 { 3616 return sock->ops->getname(sock, addr, 1); 3617 } 3618 EXPORT_SYMBOL(kernel_getpeername); 3619 3620 /** 3621 * kernel_getsockopt - get a socket option (kernel space) 3622 * @sock: socket 3623 * @level: API level (SOL_SOCKET, ...) 3624 * @optname: option tag 3625 * @optval: option value 3626 * @optlen: option length 3627 * 3628 * Assigns the option length to @optlen. 3629 * Returns 0 or an error. 3630 */ 3631 3632 int kernel_getsockopt(struct socket *sock, int level, int optname, 3633 char *optval, int *optlen) 3634 { 3635 mm_segment_t oldfs = get_fs(); 3636 char __user *uoptval; 3637 int __user *uoptlen; 3638 int err; 3639 3640 uoptval = (char __user __force *) optval; 3641 uoptlen = (int __user __force *) optlen; 3642 3643 set_fs(KERNEL_DS); 3644 if (level == SOL_SOCKET) 3645 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3646 else 3647 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3648 uoptlen); 3649 set_fs(oldfs); 3650 return err; 3651 } 3652 EXPORT_SYMBOL(kernel_getsockopt); 3653 3654 /** 3655 * kernel_setsockopt - set a socket option (kernel space) 3656 * @sock: socket 3657 * @level: API level (SOL_SOCKET, ...) 3658 * @optname: option tag 3659 * @optval: option value 3660 * @optlen: option length 3661 * 3662 * Returns 0 or an error. 3663 */ 3664 3665 int kernel_setsockopt(struct socket *sock, int level, int optname, 3666 char *optval, unsigned int optlen) 3667 { 3668 mm_segment_t oldfs = get_fs(); 3669 char __user *uoptval; 3670 int err; 3671 3672 uoptval = (char __user __force *) optval; 3673 3674 set_fs(KERNEL_DS); 3675 if (level == SOL_SOCKET) 3676 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3677 else 3678 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3679 optlen); 3680 set_fs(oldfs); 3681 return err; 3682 } 3683 EXPORT_SYMBOL(kernel_setsockopt); 3684 3685 /** 3686 * kernel_sendpage - send a &page through a socket (kernel space) 3687 * @sock: socket 3688 * @page: page 3689 * @offset: page offset 3690 * @size: total size in bytes 3691 * @flags: flags (MSG_DONTWAIT, ...) 3692 * 3693 * Returns the total amount sent in bytes or an error. 3694 */ 3695 3696 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3697 size_t size, int flags) 3698 { 3699 if (sock->ops->sendpage) 3700 return sock->ops->sendpage(sock, page, offset, size, flags); 3701 3702 return sock_no_sendpage(sock, page, offset, size, flags); 3703 } 3704 EXPORT_SYMBOL(kernel_sendpage); 3705 3706 /** 3707 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3708 * @sk: sock 3709 * @page: page 3710 * @offset: page offset 3711 * @size: total size in bytes 3712 * @flags: flags (MSG_DONTWAIT, ...) 3713 * 3714 * Returns the total amount sent in bytes or an error. 3715 * Caller must hold @sk. 3716 */ 3717 3718 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3719 size_t size, int flags) 3720 { 3721 struct socket *sock = sk->sk_socket; 3722 3723 if (sock->ops->sendpage_locked) 3724 return sock->ops->sendpage_locked(sk, page, offset, size, 3725 flags); 3726 3727 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3728 } 3729 EXPORT_SYMBOL(kernel_sendpage_locked); 3730 3731 /** 3732 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3733 * @sock: socket 3734 * @how: connection part 3735 * 3736 * Returns 0 or an error. 3737 */ 3738 3739 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3740 { 3741 return sock->ops->shutdown(sock, how); 3742 } 3743 EXPORT_SYMBOL(kernel_sock_shutdown); 3744 3745 /** 3746 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3747 * @sk: socket 3748 * 3749 * This routine returns the IP overhead imposed by a socket i.e. 3750 * the length of the underlying IP header, depending on whether 3751 * this is an IPv4 or IPv6 socket and the length from IP options turned 3752 * on at the socket. Assumes that the caller has a lock on the socket. 3753 */ 3754 3755 u32 kernel_sock_ip_overhead(struct sock *sk) 3756 { 3757 struct inet_sock *inet; 3758 struct ip_options_rcu *opt; 3759 u32 overhead = 0; 3760 #if IS_ENABLED(CONFIG_IPV6) 3761 struct ipv6_pinfo *np; 3762 struct ipv6_txoptions *optv6 = NULL; 3763 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3764 3765 if (!sk) 3766 return overhead; 3767 3768 switch (sk->sk_family) { 3769 case AF_INET: 3770 inet = inet_sk(sk); 3771 overhead += sizeof(struct iphdr); 3772 opt = rcu_dereference_protected(inet->inet_opt, 3773 sock_owned_by_user(sk)); 3774 if (opt) 3775 overhead += opt->opt.optlen; 3776 return overhead; 3777 #if IS_ENABLED(CONFIG_IPV6) 3778 case AF_INET6: 3779 np = inet6_sk(sk); 3780 overhead += sizeof(struct ipv6hdr); 3781 if (np) 3782 optv6 = rcu_dereference_protected(np->opt, 3783 sock_owned_by_user(sk)); 3784 if (optv6) 3785 overhead += (optv6->opt_flen + optv6->opt_nflen); 3786 return overhead; 3787 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3788 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3789 return overhead; 3790 } 3791 } 3792 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3793