xref: /linux/net/socket.c (revision 7505576d1c1ac0cfe85fdf90999433dd8b673012)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106 
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111 
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.read_iter =	sock_read_iter,
140 	.write_iter =	sock_write_iter,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  * Support routines.
163  * Move socket addresses back and forth across the kernel/user
164  * divide and look after the messy bits.
165  */
166 
167 /**
168  *	move_addr_to_kernel	-	copy a socket address into kernel space
169  *	@uaddr: Address in user space
170  *	@kaddr: Address in kernel space
171  *	@ulen: Length in user space
172  *
173  *	The address is copied into kernel space. If the provided address is
174  *	too long an error code of -EINVAL is returned. If the copy gives
175  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
176  */
177 
178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 		return -EINVAL;
182 	if (ulen == 0)
183 		return 0;
184 	if (copy_from_user(kaddr, uaddr, ulen))
185 		return -EFAULT;
186 	return audit_sockaddr(ulen, kaddr);
187 }
188 
189 /**
190  *	move_addr_to_user	-	copy an address to user space
191  *	@kaddr: kernel space address
192  *	@klen: length of address in kernel
193  *	@uaddr: user space address
194  *	@ulen: pointer to user length field
195  *
196  *	The value pointed to by ulen on entry is the buffer length available.
197  *	This is overwritten with the buffer space used. -EINVAL is returned
198  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
199  *	is returned if either the buffer or the length field are not
200  *	accessible.
201  *	After copying the data up to the limit the user specifies, the true
202  *	length of the data is written over the length limit the user
203  *	specified. Zero is returned for a success.
204  */
205 
206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 			     void __user *uaddr, int __user *ulen)
208 {
209 	int err;
210 	int len;
211 
212 	BUG_ON(klen > sizeof(struct sockaddr_storage));
213 	err = get_user(len, ulen);
214 	if (err)
215 		return err;
216 	if (len > klen)
217 		len = klen;
218 	if (len < 0)
219 		return -EINVAL;
220 	if (len) {
221 		if (audit_sockaddr(klen, kaddr))
222 			return -ENOMEM;
223 		if (copy_to_user(uaddr, kaddr, len))
224 			return -EFAULT;
225 	}
226 	/*
227 	 *      "fromlen shall refer to the value before truncation.."
228 	 *                      1003.1g
229 	 */
230 	return __put_user(klen, ulen);
231 }
232 
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wq.wait);
243 	ei->socket.wq.fasync_list = NULL;
244 	ei->socket.wq.flags = 0;
245 
246 	ei->socket.state = SS_UNCONNECTED;
247 	ei->socket.flags = 0;
248 	ei->socket.ops = NULL;
249 	ei->socket.sk = NULL;
250 	ei->socket.file = NULL;
251 
252 	return &ei->vfs_inode;
253 }
254 
255 static void sock_free_inode(struct inode *inode)
256 {
257 	struct socket_alloc *ei;
258 
259 	ei = container_of(inode, struct socket_alloc, vfs_inode);
260 	kmem_cache_free(sock_inode_cachep, ei);
261 }
262 
263 static void init_once(void *foo)
264 {
265 	struct socket_alloc *ei = (struct socket_alloc *)foo;
266 
267 	inode_init_once(&ei->vfs_inode);
268 }
269 
270 static void init_inodecache(void)
271 {
272 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 					      sizeof(struct socket_alloc),
274 					      0,
275 					      (SLAB_HWCACHE_ALIGN |
276 					       SLAB_RECLAIM_ACCOUNT |
277 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 					      init_once);
279 	BUG_ON(sock_inode_cachep == NULL);
280 }
281 
282 static const struct super_operations sockfs_ops = {
283 	.alloc_inode	= sock_alloc_inode,
284 	.free_inode	= sock_free_inode,
285 	.statfs		= simple_statfs,
286 };
287 
288 /*
289  * sockfs_dname() is called from d_path().
290  */
291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 				d_inode(dentry)->i_ino);
295 }
296 
297 static const struct dentry_operations sockfs_dentry_operations = {
298 	.d_dname  = sockfs_dname,
299 };
300 
301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 			    struct dentry *dentry, struct inode *inode,
303 			    const char *suffix, void *value, size_t size)
304 {
305 	if (value) {
306 		if (dentry->d_name.len + 1 > size)
307 			return -ERANGE;
308 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 	}
310 	return dentry->d_name.len + 1;
311 }
312 
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316 
317 static const struct xattr_handler sockfs_xattr_handler = {
318 	.name = XATTR_NAME_SOCKPROTONAME,
319 	.get = sockfs_xattr_get,
320 };
321 
322 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
323 				     struct dentry *dentry, struct inode *inode,
324 				     const char *suffix, const void *value,
325 				     size_t size, int flags)
326 {
327 	/* Handled by LSM. */
328 	return -EAGAIN;
329 }
330 
331 static const struct xattr_handler sockfs_security_xattr_handler = {
332 	.prefix = XATTR_SECURITY_PREFIX,
333 	.set = sockfs_security_xattr_set,
334 };
335 
336 static const struct xattr_handler *sockfs_xattr_handlers[] = {
337 	&sockfs_xattr_handler,
338 	&sockfs_security_xattr_handler,
339 	NULL
340 };
341 
342 static int sockfs_init_fs_context(struct fs_context *fc)
343 {
344 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
345 	if (!ctx)
346 		return -ENOMEM;
347 	ctx->ops = &sockfs_ops;
348 	ctx->dops = &sockfs_dentry_operations;
349 	ctx->xattr = sockfs_xattr_handlers;
350 	return 0;
351 }
352 
353 static struct vfsmount *sock_mnt __read_mostly;
354 
355 static struct file_system_type sock_fs_type = {
356 	.name =		"sockfs",
357 	.init_fs_context = sockfs_init_fs_context,
358 	.kill_sb =	kill_anon_super,
359 };
360 
361 /*
362  *	Obtains the first available file descriptor and sets it up for use.
363  *
364  *	These functions create file structures and maps them to fd space
365  *	of the current process. On success it returns file descriptor
366  *	and file struct implicitly stored in sock->file.
367  *	Note that another thread may close file descriptor before we return
368  *	from this function. We use the fact that now we do not refer
369  *	to socket after mapping. If one day we will need it, this
370  *	function will increment ref. count on file by 1.
371  *
372  *	In any case returned fd MAY BE not valid!
373  *	This race condition is unavoidable
374  *	with shared fd spaces, we cannot solve it inside kernel,
375  *	but we take care of internal coherence yet.
376  */
377 
378 /**
379  *	sock_alloc_file - Bind a &socket to a &file
380  *	@sock: socket
381  *	@flags: file status flags
382  *	@dname: protocol name
383  *
384  *	Returns the &file bound with @sock, implicitly storing it
385  *	in sock->file. If dname is %NULL, sets to "".
386  *	On failure the return is a ERR pointer (see linux/err.h).
387  *	This function uses GFP_KERNEL internally.
388  */
389 
390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 {
392 	struct file *file;
393 
394 	if (!dname)
395 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
396 
397 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
398 				O_RDWR | (flags & O_NONBLOCK),
399 				&socket_file_ops);
400 	if (IS_ERR(file)) {
401 		sock_release(sock);
402 		return file;
403 	}
404 
405 	sock->file = file;
406 	file->private_data = sock;
407 	return file;
408 }
409 EXPORT_SYMBOL(sock_alloc_file);
410 
411 static int sock_map_fd(struct socket *sock, int flags)
412 {
413 	struct file *newfile;
414 	int fd = get_unused_fd_flags(flags);
415 	if (unlikely(fd < 0)) {
416 		sock_release(sock);
417 		return fd;
418 	}
419 
420 	newfile = sock_alloc_file(sock, flags, NULL);
421 	if (!IS_ERR(newfile)) {
422 		fd_install(fd, newfile);
423 		return fd;
424 	}
425 
426 	put_unused_fd(fd);
427 	return PTR_ERR(newfile);
428 }
429 
430 /**
431  *	sock_from_file - Return the &socket bounded to @file.
432  *	@file: file
433  *	@err: pointer to an error code return
434  *
435  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
436  */
437 
438 struct socket *sock_from_file(struct file *file, int *err)
439 {
440 	if (file->f_op == &socket_file_ops)
441 		return file->private_data;	/* set in sock_map_fd */
442 
443 	*err = -ENOTSOCK;
444 	return NULL;
445 }
446 EXPORT_SYMBOL(sock_from_file);
447 
448 /**
449  *	sockfd_lookup - Go from a file number to its socket slot
450  *	@fd: file handle
451  *	@err: pointer to an error code return
452  *
453  *	The file handle passed in is locked and the socket it is bound
454  *	to is returned. If an error occurs the err pointer is overwritten
455  *	with a negative errno code and NULL is returned. The function checks
456  *	for both invalid handles and passing a handle which is not a socket.
457  *
458  *	On a success the socket object pointer is returned.
459  */
460 
461 struct socket *sockfd_lookup(int fd, int *err)
462 {
463 	struct file *file;
464 	struct socket *sock;
465 
466 	file = fget(fd);
467 	if (!file) {
468 		*err = -EBADF;
469 		return NULL;
470 	}
471 
472 	sock = sock_from_file(file, err);
473 	if (!sock)
474 		fput(file);
475 	return sock;
476 }
477 EXPORT_SYMBOL(sockfd_lookup);
478 
479 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
480 {
481 	struct fd f = fdget(fd);
482 	struct socket *sock;
483 
484 	*err = -EBADF;
485 	if (f.file) {
486 		sock = sock_from_file(f.file, err);
487 		if (likely(sock)) {
488 			*fput_needed = f.flags;
489 			return sock;
490 		}
491 		fdput(f);
492 	}
493 	return NULL;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
525 {
526 	int err = simple_setattr(dentry, iattr);
527 
528 	if (!err && (iattr->ia_valid & ATTR_UID)) {
529 		struct socket *sock = SOCKET_I(d_inode(dentry));
530 
531 		if (sock->sk)
532 			sock->sk->sk_uid = iattr->ia_uid;
533 		else
534 			err = -ENOENT;
535 	}
536 
537 	return err;
538 }
539 
540 static const struct inode_operations sockfs_inode_ops = {
541 	.listxattr = sockfs_listxattr,
542 	.setattr = sockfs_setattr,
543 };
544 
545 /**
546  *	sock_alloc - allocate a socket
547  *
548  *	Allocate a new inode and socket object. The two are bound together
549  *	and initialised. The socket is then returned. If we are out of inodes
550  *	NULL is returned. This functions uses GFP_KERNEL internally.
551  */
552 
553 struct socket *sock_alloc(void)
554 {
555 	struct inode *inode;
556 	struct socket *sock;
557 
558 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
559 	if (!inode)
560 		return NULL;
561 
562 	sock = SOCKET_I(inode);
563 
564 	inode->i_ino = get_next_ino();
565 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
566 	inode->i_uid = current_fsuid();
567 	inode->i_gid = current_fsgid();
568 	inode->i_op = &sockfs_inode_ops;
569 
570 	return sock;
571 }
572 EXPORT_SYMBOL(sock_alloc);
573 
574 /**
575  *	sock_release - close a socket
576  *	@sock: socket to close
577  *
578  *	The socket is released from the protocol stack if it has a release
579  *	callback, and the inode is then released if the socket is bound to
580  *	an inode not a file.
581  */
582 
583 static void __sock_release(struct socket *sock, struct inode *inode)
584 {
585 	if (sock->ops) {
586 		struct module *owner = sock->ops->owner;
587 
588 		if (inode)
589 			inode_lock(inode);
590 		sock->ops->release(sock);
591 		sock->sk = NULL;
592 		if (inode)
593 			inode_unlock(inode);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (sock->wq.fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (!sock->file) {
602 		iput(SOCK_INODE(sock));
603 		return;
604 	}
605 	sock->file = NULL;
606 }
607 
608 void sock_release(struct socket *sock)
609 {
610 	__sock_release(sock, NULL);
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
632 					   size_t));
633 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
634 					    size_t));
635 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
636 {
637 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
638 				     inet_sendmsg, sock, msg,
639 				     msg_data_left(msg));
640 	BUG_ON(ret == -EIOCBQUEUED);
641 	return ret;
642 }
643 
644 /**
645  *	sock_sendmsg - send a message through @sock
646  *	@sock: socket
647  *	@msg: message to send
648  *
649  *	Sends @msg through @sock, passing through LSM.
650  *	Returns the number of bytes sent, or an error code.
651  */
652 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
653 {
654 	int err = security_socket_sendmsg(sock, msg,
655 					  msg_data_left(msg));
656 
657 	return err ?: sock_sendmsg_nosec(sock, msg);
658 }
659 EXPORT_SYMBOL(sock_sendmsg);
660 
661 /**
662  *	kernel_sendmsg - send a message through @sock (kernel-space)
663  *	@sock: socket
664  *	@msg: message header
665  *	@vec: kernel vec
666  *	@num: vec array length
667  *	@size: total message data size
668  *
669  *	Builds the message data with @vec and sends it through @sock.
670  *	Returns the number of bytes sent, or an error code.
671  */
672 
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 		   struct kvec *vec, size_t num, size_t size)
675 {
676 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
677 	return sock_sendmsg(sock, msg);
678 }
679 EXPORT_SYMBOL(kernel_sendmsg);
680 
681 /**
682  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
683  *	@sk: sock
684  *	@msg: message header
685  *	@vec: output s/g array
686  *	@num: output s/g array length
687  *	@size: total message data size
688  *
689  *	Builds the message data with @vec and sends it through @sock.
690  *	Returns the number of bytes sent, or an error code.
691  *	Caller must hold @sk.
692  */
693 
694 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
695 			  struct kvec *vec, size_t num, size_t size)
696 {
697 	struct socket *sock = sk->sk_socket;
698 
699 	if (!sock->ops->sendmsg_locked)
700 		return sock_no_sendmsg_locked(sk, msg, size);
701 
702 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
703 
704 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
705 }
706 EXPORT_SYMBOL(kernel_sendmsg_locked);
707 
708 static bool skb_is_err_queue(const struct sk_buff *skb)
709 {
710 	/* pkt_type of skbs enqueued on the error queue are set to
711 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
712 	 * in recvmsg, since skbs received on a local socket will never
713 	 * have a pkt_type of PACKET_OUTGOING.
714 	 */
715 	return skb->pkt_type == PACKET_OUTGOING;
716 }
717 
718 /* On transmit, software and hardware timestamps are returned independently.
719  * As the two skb clones share the hardware timestamp, which may be updated
720  * before the software timestamp is received, a hardware TX timestamp may be
721  * returned only if there is no software TX timestamp. Ignore false software
722  * timestamps, which may be made in the __sock_recv_timestamp() call when the
723  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
724  * hardware timestamp.
725  */
726 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
727 {
728 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
729 }
730 
731 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
732 {
733 	struct scm_ts_pktinfo ts_pktinfo;
734 	struct net_device *orig_dev;
735 
736 	if (!skb_mac_header_was_set(skb))
737 		return;
738 
739 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
740 
741 	rcu_read_lock();
742 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
743 	if (orig_dev)
744 		ts_pktinfo.if_index = orig_dev->ifindex;
745 	rcu_read_unlock();
746 
747 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
748 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
749 		 sizeof(ts_pktinfo), &ts_pktinfo);
750 }
751 
752 /*
753  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
754  */
755 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
756 	struct sk_buff *skb)
757 {
758 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
759 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
760 	struct scm_timestamping_internal tss;
761 
762 	int empty = 1, false_tstamp = 0;
763 	struct skb_shared_hwtstamps *shhwtstamps =
764 		skb_hwtstamps(skb);
765 
766 	/* Race occurred between timestamp enabling and packet
767 	   receiving.  Fill in the current time for now. */
768 	if (need_software_tstamp && skb->tstamp == 0) {
769 		__net_timestamp(skb);
770 		false_tstamp = 1;
771 	}
772 
773 	if (need_software_tstamp) {
774 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
775 			if (new_tstamp) {
776 				struct __kernel_sock_timeval tv;
777 
778 				skb_get_new_timestamp(skb, &tv);
779 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
780 					 sizeof(tv), &tv);
781 			} else {
782 				struct __kernel_old_timeval tv;
783 
784 				skb_get_timestamp(skb, &tv);
785 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
786 					 sizeof(tv), &tv);
787 			}
788 		} else {
789 			if (new_tstamp) {
790 				struct __kernel_timespec ts;
791 
792 				skb_get_new_timestampns(skb, &ts);
793 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
794 					 sizeof(ts), &ts);
795 			} else {
796 				struct timespec ts;
797 
798 				skb_get_timestampns(skb, &ts);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
800 					 sizeof(ts), &ts);
801 			}
802 		}
803 	}
804 
805 	memset(&tss, 0, sizeof(tss));
806 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
807 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
808 		empty = 0;
809 	if (shhwtstamps &&
810 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
811 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
812 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
813 		empty = 0;
814 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
815 		    !skb_is_err_queue(skb))
816 			put_ts_pktinfo(msg, skb);
817 	}
818 	if (!empty) {
819 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
820 			put_cmsg_scm_timestamping64(msg, &tss);
821 		else
822 			put_cmsg_scm_timestamping(msg, &tss);
823 
824 		if (skb_is_err_queue(skb) && skb->len &&
825 		    SKB_EXT_ERR(skb)->opt_stats)
826 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
827 				 skb->len, skb->data);
828 	}
829 }
830 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
831 
832 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
833 	struct sk_buff *skb)
834 {
835 	int ack;
836 
837 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
838 		return;
839 	if (!skb->wifi_acked_valid)
840 		return;
841 
842 	ack = skb->wifi_acked;
843 
844 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
845 }
846 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
847 
848 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
849 				   struct sk_buff *skb)
850 {
851 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
852 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
853 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
854 }
855 
856 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
857 	struct sk_buff *skb)
858 {
859 	sock_recv_timestamp(msg, sk, skb);
860 	sock_recv_drops(msg, sk, skb);
861 }
862 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
863 
864 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
865 					   size_t, int));
866 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
867 					    size_t, int));
868 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
869 				     int flags)
870 {
871 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
872 				  inet_recvmsg, sock, msg, msg_data_left(msg),
873 				  flags);
874 }
875 
876 /**
877  *	sock_recvmsg - receive a message from @sock
878  *	@sock: socket
879  *	@msg: message to receive
880  *	@flags: message flags
881  *
882  *	Receives @msg from @sock, passing through LSM. Returns the total number
883  *	of bytes received, or an error.
884  */
885 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
886 {
887 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
888 
889 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
890 }
891 EXPORT_SYMBOL(sock_recvmsg);
892 
893 /**
894  *	kernel_recvmsg - Receive a message from a socket (kernel space)
895  *	@sock: The socket to receive the message from
896  *	@msg: Received message
897  *	@vec: Input s/g array for message data
898  *	@num: Size of input s/g array
899  *	@size: Number of bytes to read
900  *	@flags: Message flags (MSG_DONTWAIT, etc...)
901  *
902  *	On return the msg structure contains the scatter/gather array passed in the
903  *	vec argument. The array is modified so that it consists of the unfilled
904  *	portion of the original array.
905  *
906  *	The returned value is the total number of bytes received, or an error.
907  */
908 
909 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
910 		   struct kvec *vec, size_t num, size_t size, int flags)
911 {
912 	mm_segment_t oldfs = get_fs();
913 	int result;
914 
915 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
916 	set_fs(KERNEL_DS);
917 	result = sock_recvmsg(sock, msg, flags);
918 	set_fs(oldfs);
919 	return result;
920 }
921 EXPORT_SYMBOL(kernel_recvmsg);
922 
923 static ssize_t sock_sendpage(struct file *file, struct page *page,
924 			     int offset, size_t size, loff_t *ppos, int more)
925 {
926 	struct socket *sock;
927 	int flags;
928 
929 	sock = file->private_data;
930 
931 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
932 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
933 	flags |= more;
934 
935 	return kernel_sendpage(sock, page, offset, size, flags);
936 }
937 
938 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
939 				struct pipe_inode_info *pipe, size_t len,
940 				unsigned int flags)
941 {
942 	struct socket *sock = file->private_data;
943 
944 	if (unlikely(!sock->ops->splice_read))
945 		return generic_file_splice_read(file, ppos, pipe, len, flags);
946 
947 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
948 }
949 
950 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
951 {
952 	struct file *file = iocb->ki_filp;
953 	struct socket *sock = file->private_data;
954 	struct msghdr msg = {.msg_iter = *to,
955 			     .msg_iocb = iocb};
956 	ssize_t res;
957 
958 	if (file->f_flags & O_NONBLOCK)
959 		msg.msg_flags = MSG_DONTWAIT;
960 
961 	if (iocb->ki_pos != 0)
962 		return -ESPIPE;
963 
964 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
965 		return 0;
966 
967 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
968 	*to = msg.msg_iter;
969 	return res;
970 }
971 
972 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
973 {
974 	struct file *file = iocb->ki_filp;
975 	struct socket *sock = file->private_data;
976 	struct msghdr msg = {.msg_iter = *from,
977 			     .msg_iocb = iocb};
978 	ssize_t res;
979 
980 	if (iocb->ki_pos != 0)
981 		return -ESPIPE;
982 
983 	if (file->f_flags & O_NONBLOCK)
984 		msg.msg_flags = MSG_DONTWAIT;
985 
986 	if (sock->type == SOCK_SEQPACKET)
987 		msg.msg_flags |= MSG_EOR;
988 
989 	res = sock_sendmsg(sock, &msg);
990 	*from = msg.msg_iter;
991 	return res;
992 }
993 
994 /*
995  * Atomic setting of ioctl hooks to avoid race
996  * with module unload.
997  */
998 
999 static DEFINE_MUTEX(br_ioctl_mutex);
1000 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001 
1002 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003 {
1004 	mutex_lock(&br_ioctl_mutex);
1005 	br_ioctl_hook = hook;
1006 	mutex_unlock(&br_ioctl_mutex);
1007 }
1008 EXPORT_SYMBOL(brioctl_set);
1009 
1010 static DEFINE_MUTEX(vlan_ioctl_mutex);
1011 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012 
1013 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014 {
1015 	mutex_lock(&vlan_ioctl_mutex);
1016 	vlan_ioctl_hook = hook;
1017 	mutex_unlock(&vlan_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(vlan_ioctl_set);
1020 
1021 static DEFINE_MUTEX(dlci_ioctl_mutex);
1022 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023 
1024 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025 {
1026 	mutex_lock(&dlci_ioctl_mutex);
1027 	dlci_ioctl_hook = hook;
1028 	mutex_unlock(&dlci_ioctl_mutex);
1029 }
1030 EXPORT_SYMBOL(dlci_ioctl_set);
1031 
1032 static long sock_do_ioctl(struct net *net, struct socket *sock,
1033 			  unsigned int cmd, unsigned long arg)
1034 {
1035 	int err;
1036 	void __user *argp = (void __user *)arg;
1037 
1038 	err = sock->ops->ioctl(sock, cmd, arg);
1039 
1040 	/*
1041 	 * If this ioctl is unknown try to hand it down
1042 	 * to the NIC driver.
1043 	 */
1044 	if (err != -ENOIOCTLCMD)
1045 		return err;
1046 
1047 	if (cmd == SIOCGIFCONF) {
1048 		struct ifconf ifc;
1049 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1050 			return -EFAULT;
1051 		rtnl_lock();
1052 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053 		rtnl_unlock();
1054 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055 			err = -EFAULT;
1056 	} else {
1057 		struct ifreq ifr;
1058 		bool need_copyout;
1059 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060 			return -EFAULT;
1061 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1062 		if (!err && need_copyout)
1063 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1064 				return -EFAULT;
1065 	}
1066 	return err;
1067 }
1068 
1069 /*
1070  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1071  *	what to do with it - that's up to the protocol still.
1072  */
1073 
1074 /**
1075  *	get_net_ns - increment the refcount of the network namespace
1076  *	@ns: common namespace (net)
1077  *
1078  *	Returns the net's common namespace.
1079  */
1080 
1081 struct ns_common *get_net_ns(struct ns_common *ns)
1082 {
1083 	return &get_net(container_of(ns, struct net, ns))->ns;
1084 }
1085 EXPORT_SYMBOL_GPL(get_net_ns);
1086 
1087 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1088 {
1089 	struct socket *sock;
1090 	struct sock *sk;
1091 	void __user *argp = (void __user *)arg;
1092 	int pid, err;
1093 	struct net *net;
1094 
1095 	sock = file->private_data;
1096 	sk = sock->sk;
1097 	net = sock_net(sk);
1098 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1099 		struct ifreq ifr;
1100 		bool need_copyout;
1101 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1102 			return -EFAULT;
1103 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1104 		if (!err && need_copyout)
1105 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1106 				return -EFAULT;
1107 	} else
1108 #ifdef CONFIG_WEXT_CORE
1109 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1110 		err = wext_handle_ioctl(net, cmd, argp);
1111 	} else
1112 #endif
1113 		switch (cmd) {
1114 		case FIOSETOWN:
1115 		case SIOCSPGRP:
1116 			err = -EFAULT;
1117 			if (get_user(pid, (int __user *)argp))
1118 				break;
1119 			err = f_setown(sock->file, pid, 1);
1120 			break;
1121 		case FIOGETOWN:
1122 		case SIOCGPGRP:
1123 			err = put_user(f_getown(sock->file),
1124 				       (int __user *)argp);
1125 			break;
1126 		case SIOCGIFBR:
1127 		case SIOCSIFBR:
1128 		case SIOCBRADDBR:
1129 		case SIOCBRDELBR:
1130 			err = -ENOPKG;
1131 			if (!br_ioctl_hook)
1132 				request_module("bridge");
1133 
1134 			mutex_lock(&br_ioctl_mutex);
1135 			if (br_ioctl_hook)
1136 				err = br_ioctl_hook(net, cmd, argp);
1137 			mutex_unlock(&br_ioctl_mutex);
1138 			break;
1139 		case SIOCGIFVLAN:
1140 		case SIOCSIFVLAN:
1141 			err = -ENOPKG;
1142 			if (!vlan_ioctl_hook)
1143 				request_module("8021q");
1144 
1145 			mutex_lock(&vlan_ioctl_mutex);
1146 			if (vlan_ioctl_hook)
1147 				err = vlan_ioctl_hook(net, argp);
1148 			mutex_unlock(&vlan_ioctl_mutex);
1149 			break;
1150 		case SIOCADDDLCI:
1151 		case SIOCDELDLCI:
1152 			err = -ENOPKG;
1153 			if (!dlci_ioctl_hook)
1154 				request_module("dlci");
1155 
1156 			mutex_lock(&dlci_ioctl_mutex);
1157 			if (dlci_ioctl_hook)
1158 				err = dlci_ioctl_hook(cmd, argp);
1159 			mutex_unlock(&dlci_ioctl_mutex);
1160 			break;
1161 		case SIOCGSKNS:
1162 			err = -EPERM;
1163 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1164 				break;
1165 
1166 			err = open_related_ns(&net->ns, get_net_ns);
1167 			break;
1168 		case SIOCGSTAMP_OLD:
1169 		case SIOCGSTAMPNS_OLD:
1170 			if (!sock->ops->gettstamp) {
1171 				err = -ENOIOCTLCMD;
1172 				break;
1173 			}
1174 			err = sock->ops->gettstamp(sock, argp,
1175 						   cmd == SIOCGSTAMP_OLD,
1176 						   !IS_ENABLED(CONFIG_64BIT));
1177 			break;
1178 		case SIOCGSTAMP_NEW:
1179 		case SIOCGSTAMPNS_NEW:
1180 			if (!sock->ops->gettstamp) {
1181 				err = -ENOIOCTLCMD;
1182 				break;
1183 			}
1184 			err = sock->ops->gettstamp(sock, argp,
1185 						   cmd == SIOCGSTAMP_NEW,
1186 						   false);
1187 			break;
1188 		default:
1189 			err = sock_do_ioctl(net, sock, cmd, arg);
1190 			break;
1191 		}
1192 	return err;
1193 }
1194 
1195 /**
1196  *	sock_create_lite - creates a socket
1197  *	@family: protocol family (AF_INET, ...)
1198  *	@type: communication type (SOCK_STREAM, ...)
1199  *	@protocol: protocol (0, ...)
1200  *	@res: new socket
1201  *
1202  *	Creates a new socket and assigns it to @res, passing through LSM.
1203  *	The new socket initialization is not complete, see kernel_accept().
1204  *	Returns 0 or an error. On failure @res is set to %NULL.
1205  *	This function internally uses GFP_KERNEL.
1206  */
1207 
1208 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1209 {
1210 	int err;
1211 	struct socket *sock = NULL;
1212 
1213 	err = security_socket_create(family, type, protocol, 1);
1214 	if (err)
1215 		goto out;
1216 
1217 	sock = sock_alloc();
1218 	if (!sock) {
1219 		err = -ENOMEM;
1220 		goto out;
1221 	}
1222 
1223 	sock->type = type;
1224 	err = security_socket_post_create(sock, family, type, protocol, 1);
1225 	if (err)
1226 		goto out_release;
1227 
1228 out:
1229 	*res = sock;
1230 	return err;
1231 out_release:
1232 	sock_release(sock);
1233 	sock = NULL;
1234 	goto out;
1235 }
1236 EXPORT_SYMBOL(sock_create_lite);
1237 
1238 /* No kernel lock held - perfect */
1239 static __poll_t sock_poll(struct file *file, poll_table *wait)
1240 {
1241 	struct socket *sock = file->private_data;
1242 	__poll_t events = poll_requested_events(wait), flag = 0;
1243 
1244 	if (!sock->ops->poll)
1245 		return 0;
1246 
1247 	if (sk_can_busy_loop(sock->sk)) {
1248 		/* poll once if requested by the syscall */
1249 		if (events & POLL_BUSY_LOOP)
1250 			sk_busy_loop(sock->sk, 1);
1251 
1252 		/* if this socket can poll_ll, tell the system call */
1253 		flag = POLL_BUSY_LOOP;
1254 	}
1255 
1256 	return sock->ops->poll(file, sock, wait) | flag;
1257 }
1258 
1259 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1260 {
1261 	struct socket *sock = file->private_data;
1262 
1263 	return sock->ops->mmap(file, sock, vma);
1264 }
1265 
1266 static int sock_close(struct inode *inode, struct file *filp)
1267 {
1268 	__sock_release(SOCKET_I(inode), inode);
1269 	return 0;
1270 }
1271 
1272 /*
1273  *	Update the socket async list
1274  *
1275  *	Fasync_list locking strategy.
1276  *
1277  *	1. fasync_list is modified only under process context socket lock
1278  *	   i.e. under semaphore.
1279  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1280  *	   or under socket lock
1281  */
1282 
1283 static int sock_fasync(int fd, struct file *filp, int on)
1284 {
1285 	struct socket *sock = filp->private_data;
1286 	struct sock *sk = sock->sk;
1287 	struct socket_wq *wq = &sock->wq;
1288 
1289 	if (sk == NULL)
1290 		return -EINVAL;
1291 
1292 	lock_sock(sk);
1293 	fasync_helper(fd, filp, on, &wq->fasync_list);
1294 
1295 	if (!wq->fasync_list)
1296 		sock_reset_flag(sk, SOCK_FASYNC);
1297 	else
1298 		sock_set_flag(sk, SOCK_FASYNC);
1299 
1300 	release_sock(sk);
1301 	return 0;
1302 }
1303 
1304 /* This function may be called only under rcu_lock */
1305 
1306 int sock_wake_async(struct socket_wq *wq, int how, int band)
1307 {
1308 	if (!wq || !wq->fasync_list)
1309 		return -1;
1310 
1311 	switch (how) {
1312 	case SOCK_WAKE_WAITD:
1313 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1314 			break;
1315 		goto call_kill;
1316 	case SOCK_WAKE_SPACE:
1317 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318 			break;
1319 		/* fall through */
1320 	case SOCK_WAKE_IO:
1321 call_kill:
1322 		kill_fasync(&wq->fasync_list, SIGIO, band);
1323 		break;
1324 	case SOCK_WAKE_URG:
1325 		kill_fasync(&wq->fasync_list, SIGURG, band);
1326 	}
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL(sock_wake_async);
1331 
1332 /**
1333  *	__sock_create - creates a socket
1334  *	@net: net namespace
1335  *	@family: protocol family (AF_INET, ...)
1336  *	@type: communication type (SOCK_STREAM, ...)
1337  *	@protocol: protocol (0, ...)
1338  *	@res: new socket
1339  *	@kern: boolean for kernel space sockets
1340  *
1341  *	Creates a new socket and assigns it to @res, passing through LSM.
1342  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343  *	be set to true if the socket resides in kernel space.
1344  *	This function internally uses GFP_KERNEL.
1345  */
1346 
1347 int __sock_create(struct net *net, int family, int type, int protocol,
1348 			 struct socket **res, int kern)
1349 {
1350 	int err;
1351 	struct socket *sock;
1352 	const struct net_proto_family *pf;
1353 
1354 	/*
1355 	 *      Check protocol is in range
1356 	 */
1357 	if (family < 0 || family >= NPROTO)
1358 		return -EAFNOSUPPORT;
1359 	if (type < 0 || type >= SOCK_MAX)
1360 		return -EINVAL;
1361 
1362 	/* Compatibility.
1363 
1364 	   This uglymoron is moved from INET layer to here to avoid
1365 	   deadlock in module load.
1366 	 */
1367 	if (family == PF_INET && type == SOCK_PACKET) {
1368 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369 			     current->comm);
1370 		family = PF_PACKET;
1371 	}
1372 
1373 	err = security_socket_create(family, type, protocol, kern);
1374 	if (err)
1375 		return err;
1376 
1377 	/*
1378 	 *	Allocate the socket and allow the family to set things up. if
1379 	 *	the protocol is 0, the family is instructed to select an appropriate
1380 	 *	default.
1381 	 */
1382 	sock = sock_alloc();
1383 	if (!sock) {
1384 		net_warn_ratelimited("socket: no more sockets\n");
1385 		return -ENFILE;	/* Not exactly a match, but its the
1386 				   closest posix thing */
1387 	}
1388 
1389 	sock->type = type;
1390 
1391 #ifdef CONFIG_MODULES
1392 	/* Attempt to load a protocol module if the find failed.
1393 	 *
1394 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395 	 * requested real, full-featured networking support upon configuration.
1396 	 * Otherwise module support will break!
1397 	 */
1398 	if (rcu_access_pointer(net_families[family]) == NULL)
1399 		request_module("net-pf-%d", family);
1400 #endif
1401 
1402 	rcu_read_lock();
1403 	pf = rcu_dereference(net_families[family]);
1404 	err = -EAFNOSUPPORT;
1405 	if (!pf)
1406 		goto out_release;
1407 
1408 	/*
1409 	 * We will call the ->create function, that possibly is in a loadable
1410 	 * module, so we have to bump that loadable module refcnt first.
1411 	 */
1412 	if (!try_module_get(pf->owner))
1413 		goto out_release;
1414 
1415 	/* Now protected by module ref count */
1416 	rcu_read_unlock();
1417 
1418 	err = pf->create(net, sock, protocol, kern);
1419 	if (err < 0)
1420 		goto out_module_put;
1421 
1422 	/*
1423 	 * Now to bump the refcnt of the [loadable] module that owns this
1424 	 * socket at sock_release time we decrement its refcnt.
1425 	 */
1426 	if (!try_module_get(sock->ops->owner))
1427 		goto out_module_busy;
1428 
1429 	/*
1430 	 * Now that we're done with the ->create function, the [loadable]
1431 	 * module can have its refcnt decremented
1432 	 */
1433 	module_put(pf->owner);
1434 	err = security_socket_post_create(sock, family, type, protocol, kern);
1435 	if (err)
1436 		goto out_sock_release;
1437 	*res = sock;
1438 
1439 	return 0;
1440 
1441 out_module_busy:
1442 	err = -EAFNOSUPPORT;
1443 out_module_put:
1444 	sock->ops = NULL;
1445 	module_put(pf->owner);
1446 out_sock_release:
1447 	sock_release(sock);
1448 	return err;
1449 
1450 out_release:
1451 	rcu_read_unlock();
1452 	goto out_sock_release;
1453 }
1454 EXPORT_SYMBOL(__sock_create);
1455 
1456 /**
1457  *	sock_create - creates a socket
1458  *	@family: protocol family (AF_INET, ...)
1459  *	@type: communication type (SOCK_STREAM, ...)
1460  *	@protocol: protocol (0, ...)
1461  *	@res: new socket
1462  *
1463  *	A wrapper around __sock_create().
1464  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1465  */
1466 
1467 int sock_create(int family, int type, int protocol, struct socket **res)
1468 {
1469 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470 }
1471 EXPORT_SYMBOL(sock_create);
1472 
1473 /**
1474  *	sock_create_kern - creates a socket (kernel space)
1475  *	@net: net namespace
1476  *	@family: protocol family (AF_INET, ...)
1477  *	@type: communication type (SOCK_STREAM, ...)
1478  *	@protocol: protocol (0, ...)
1479  *	@res: new socket
1480  *
1481  *	A wrapper around __sock_create().
1482  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1483  */
1484 
1485 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486 {
1487 	return __sock_create(net, family, type, protocol, res, 1);
1488 }
1489 EXPORT_SYMBOL(sock_create_kern);
1490 
1491 int __sys_socket(int family, int type, int protocol)
1492 {
1493 	int retval;
1494 	struct socket *sock;
1495 	int flags;
1496 
1497 	/* Check the SOCK_* constants for consistency.  */
1498 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1499 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1500 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1501 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502 
1503 	flags = type & ~SOCK_TYPE_MASK;
1504 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505 		return -EINVAL;
1506 	type &= SOCK_TYPE_MASK;
1507 
1508 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1509 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510 
1511 	retval = sock_create(family, type, protocol, &sock);
1512 	if (retval < 0)
1513 		return retval;
1514 
1515 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1516 }
1517 
1518 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519 {
1520 	return __sys_socket(family, type, protocol);
1521 }
1522 
1523 /*
1524  *	Create a pair of connected sockets.
1525  */
1526 
1527 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1528 {
1529 	struct socket *sock1, *sock2;
1530 	int fd1, fd2, err;
1531 	struct file *newfile1, *newfile2;
1532 	int flags;
1533 
1534 	flags = type & ~SOCK_TYPE_MASK;
1535 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536 		return -EINVAL;
1537 	type &= SOCK_TYPE_MASK;
1538 
1539 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1540 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1541 
1542 	/*
1543 	 * reserve descriptors and make sure we won't fail
1544 	 * to return them to userland.
1545 	 */
1546 	fd1 = get_unused_fd_flags(flags);
1547 	if (unlikely(fd1 < 0))
1548 		return fd1;
1549 
1550 	fd2 = get_unused_fd_flags(flags);
1551 	if (unlikely(fd2 < 0)) {
1552 		put_unused_fd(fd1);
1553 		return fd2;
1554 	}
1555 
1556 	err = put_user(fd1, &usockvec[0]);
1557 	if (err)
1558 		goto out;
1559 
1560 	err = put_user(fd2, &usockvec[1]);
1561 	if (err)
1562 		goto out;
1563 
1564 	/*
1565 	 * Obtain the first socket and check if the underlying protocol
1566 	 * supports the socketpair call.
1567 	 */
1568 
1569 	err = sock_create(family, type, protocol, &sock1);
1570 	if (unlikely(err < 0))
1571 		goto out;
1572 
1573 	err = sock_create(family, type, protocol, &sock2);
1574 	if (unlikely(err < 0)) {
1575 		sock_release(sock1);
1576 		goto out;
1577 	}
1578 
1579 	err = security_socket_socketpair(sock1, sock2);
1580 	if (unlikely(err)) {
1581 		sock_release(sock2);
1582 		sock_release(sock1);
1583 		goto out;
1584 	}
1585 
1586 	err = sock1->ops->socketpair(sock1, sock2);
1587 	if (unlikely(err < 0)) {
1588 		sock_release(sock2);
1589 		sock_release(sock1);
1590 		goto out;
1591 	}
1592 
1593 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1594 	if (IS_ERR(newfile1)) {
1595 		err = PTR_ERR(newfile1);
1596 		sock_release(sock2);
1597 		goto out;
1598 	}
1599 
1600 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1601 	if (IS_ERR(newfile2)) {
1602 		err = PTR_ERR(newfile2);
1603 		fput(newfile1);
1604 		goto out;
1605 	}
1606 
1607 	audit_fd_pair(fd1, fd2);
1608 
1609 	fd_install(fd1, newfile1);
1610 	fd_install(fd2, newfile2);
1611 	return 0;
1612 
1613 out:
1614 	put_unused_fd(fd2);
1615 	put_unused_fd(fd1);
1616 	return err;
1617 }
1618 
1619 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1620 		int __user *, usockvec)
1621 {
1622 	return __sys_socketpair(family, type, protocol, usockvec);
1623 }
1624 
1625 /*
1626  *	Bind a name to a socket. Nothing much to do here since it's
1627  *	the protocol's responsibility to handle the local address.
1628  *
1629  *	We move the socket address to kernel space before we call
1630  *	the protocol layer (having also checked the address is ok).
1631  */
1632 
1633 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634 {
1635 	struct socket *sock;
1636 	struct sockaddr_storage address;
1637 	int err, fput_needed;
1638 
1639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 	if (sock) {
1641 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642 		if (!err) {
1643 			err = security_socket_bind(sock,
1644 						   (struct sockaddr *)&address,
1645 						   addrlen);
1646 			if (!err)
1647 				err = sock->ops->bind(sock,
1648 						      (struct sockaddr *)
1649 						      &address, addrlen);
1650 		}
1651 		fput_light(sock->file, fput_needed);
1652 	}
1653 	return err;
1654 }
1655 
1656 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657 {
1658 	return __sys_bind(fd, umyaddr, addrlen);
1659 }
1660 
1661 /*
1662  *	Perform a listen. Basically, we allow the protocol to do anything
1663  *	necessary for a listen, and if that works, we mark the socket as
1664  *	ready for listening.
1665  */
1666 
1667 int __sys_listen(int fd, int backlog)
1668 {
1669 	struct socket *sock;
1670 	int err, fput_needed;
1671 	int somaxconn;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (sock) {
1675 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1676 		if ((unsigned int)backlog > somaxconn)
1677 			backlog = somaxconn;
1678 
1679 		err = security_socket_listen(sock, backlog);
1680 		if (!err)
1681 			err = sock->ops->listen(sock, backlog);
1682 
1683 		fput_light(sock->file, fput_needed);
1684 	}
1685 	return err;
1686 }
1687 
1688 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689 {
1690 	return __sys_listen(fd, backlog);
1691 }
1692 
1693 /*
1694  *	For accept, we attempt to create a new socket, set up the link
1695  *	with the client, wake up the client, then return the new
1696  *	connected fd. We collect the address of the connector in kernel
1697  *	space and move it to user at the very end. This is unclean because
1698  *	we open the socket then return an error.
1699  *
1700  *	1003.1g adds the ability to recvmsg() to query connection pending
1701  *	status to recvmsg. We need to add that support in a way thats
1702  *	clean when we restructure accept also.
1703  */
1704 
1705 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1706 		  int __user *upeer_addrlen, int flags)
1707 {
1708 	struct socket *sock, *newsock;
1709 	struct file *newfile;
1710 	int err, len, newfd, fput_needed;
1711 	struct sockaddr_storage address;
1712 
1713 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714 		return -EINVAL;
1715 
1716 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718 
1719 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	err = -ENFILE;
1724 	newsock = sock_alloc();
1725 	if (!newsock)
1726 		goto out_put;
1727 
1728 	newsock->type = sock->type;
1729 	newsock->ops = sock->ops;
1730 
1731 	/*
1732 	 * We don't need try_module_get here, as the listening socket (sock)
1733 	 * has the protocol module (sock->ops->owner) held.
1734 	 */
1735 	__module_get(newsock->ops->owner);
1736 
1737 	newfd = get_unused_fd_flags(flags);
1738 	if (unlikely(newfd < 0)) {
1739 		err = newfd;
1740 		sock_release(newsock);
1741 		goto out_put;
1742 	}
1743 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744 	if (IS_ERR(newfile)) {
1745 		err = PTR_ERR(newfile);
1746 		put_unused_fd(newfd);
1747 		goto out_put;
1748 	}
1749 
1750 	err = security_socket_accept(sock, newsock);
1751 	if (err)
1752 		goto out_fd;
1753 
1754 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1755 	if (err < 0)
1756 		goto out_fd;
1757 
1758 	if (upeer_sockaddr) {
1759 		len = newsock->ops->getname(newsock,
1760 					(struct sockaddr *)&address, 2);
1761 		if (len < 0) {
1762 			err = -ECONNABORTED;
1763 			goto out_fd;
1764 		}
1765 		err = move_addr_to_user(&address,
1766 					len, upeer_sockaddr, upeer_addrlen);
1767 		if (err < 0)
1768 			goto out_fd;
1769 	}
1770 
1771 	/* File flags are not inherited via accept() unlike another OSes. */
1772 
1773 	fd_install(newfd, newfile);
1774 	err = newfd;
1775 
1776 out_put:
1777 	fput_light(sock->file, fput_needed);
1778 out:
1779 	return err;
1780 out_fd:
1781 	fput(newfile);
1782 	put_unused_fd(newfd);
1783 	goto out_put;
1784 }
1785 
1786 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1787 		int __user *, upeer_addrlen, int, flags)
1788 {
1789 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1790 }
1791 
1792 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793 		int __user *, upeer_addrlen)
1794 {
1795 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1796 }
1797 
1798 /*
1799  *	Attempt to connect to a socket with the server address.  The address
1800  *	is in user space so we verify it is OK and move it to kernel space.
1801  *
1802  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1803  *	break bindings
1804  *
1805  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806  *	other SEQPACKET protocols that take time to connect() as it doesn't
1807  *	include the -EINPROGRESS status for such sockets.
1808  */
1809 
1810 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1811 {
1812 	struct socket *sock;
1813 	struct sockaddr_storage address;
1814 	int err, fput_needed;
1815 
1816 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 	if (!sock)
1818 		goto out;
1819 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820 	if (err < 0)
1821 		goto out_put;
1822 
1823 	err =
1824 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1825 	if (err)
1826 		goto out_put;
1827 
1828 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1829 				 sock->file->f_flags);
1830 out_put:
1831 	fput_light(sock->file, fput_needed);
1832 out:
1833 	return err;
1834 }
1835 
1836 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1837 		int, addrlen)
1838 {
1839 	return __sys_connect(fd, uservaddr, addrlen);
1840 }
1841 
1842 /*
1843  *	Get the local address ('name') of a socket object. Move the obtained
1844  *	name to user space.
1845  */
1846 
1847 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1848 		      int __user *usockaddr_len)
1849 {
1850 	struct socket *sock;
1851 	struct sockaddr_storage address;
1852 	int err, fput_needed;
1853 
1854 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 	if (!sock)
1856 		goto out;
1857 
1858 	err = security_socket_getsockname(sock);
1859 	if (err)
1860 		goto out_put;
1861 
1862 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1863 	if (err < 0)
1864 		goto out_put;
1865         /* "err" is actually length in this case */
1866 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1867 
1868 out_put:
1869 	fput_light(sock->file, fput_needed);
1870 out:
1871 	return err;
1872 }
1873 
1874 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1875 		int __user *, usockaddr_len)
1876 {
1877 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1878 }
1879 
1880 /*
1881  *	Get the remote address ('name') of a socket object. Move the obtained
1882  *	name to user space.
1883  */
1884 
1885 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1886 		      int __user *usockaddr_len)
1887 {
1888 	struct socket *sock;
1889 	struct sockaddr_storage address;
1890 	int err, fput_needed;
1891 
1892 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 	if (sock != NULL) {
1894 		err = security_socket_getpeername(sock);
1895 		if (err) {
1896 			fput_light(sock->file, fput_needed);
1897 			return err;
1898 		}
1899 
1900 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901 		if (err >= 0)
1902 			/* "err" is actually length in this case */
1903 			err = move_addr_to_user(&address, err, usockaddr,
1904 						usockaddr_len);
1905 		fput_light(sock->file, fput_needed);
1906 	}
1907 	return err;
1908 }
1909 
1910 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1911 		int __user *, usockaddr_len)
1912 {
1913 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1914 }
1915 
1916 /*
1917  *	Send a datagram to a given address. We move the address into kernel
1918  *	space and check the user space data area is readable before invoking
1919  *	the protocol.
1920  */
1921 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1922 		 struct sockaddr __user *addr,  int addr_len)
1923 {
1924 	struct socket *sock;
1925 	struct sockaddr_storage address;
1926 	int err;
1927 	struct msghdr msg;
1928 	struct iovec iov;
1929 	int fput_needed;
1930 
1931 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1932 	if (unlikely(err))
1933 		return err;
1934 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 	if (!sock)
1936 		goto out;
1937 
1938 	msg.msg_name = NULL;
1939 	msg.msg_control = NULL;
1940 	msg.msg_controllen = 0;
1941 	msg.msg_namelen = 0;
1942 	if (addr) {
1943 		err = move_addr_to_kernel(addr, addr_len, &address);
1944 		if (err < 0)
1945 			goto out_put;
1946 		msg.msg_name = (struct sockaddr *)&address;
1947 		msg.msg_namelen = addr_len;
1948 	}
1949 	if (sock->file->f_flags & O_NONBLOCK)
1950 		flags |= MSG_DONTWAIT;
1951 	msg.msg_flags = flags;
1952 	err = sock_sendmsg(sock, &msg);
1953 
1954 out_put:
1955 	fput_light(sock->file, fput_needed);
1956 out:
1957 	return err;
1958 }
1959 
1960 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1961 		unsigned int, flags, struct sockaddr __user *, addr,
1962 		int, addr_len)
1963 {
1964 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1965 }
1966 
1967 /*
1968  *	Send a datagram down a socket.
1969  */
1970 
1971 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1972 		unsigned int, flags)
1973 {
1974 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1975 }
1976 
1977 /*
1978  *	Receive a frame from the socket and optionally record the address of the
1979  *	sender. We verify the buffers are writable and if needed move the
1980  *	sender address from kernel to user space.
1981  */
1982 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1983 		   struct sockaddr __user *addr, int __user *addr_len)
1984 {
1985 	struct socket *sock;
1986 	struct iovec iov;
1987 	struct msghdr msg;
1988 	struct sockaddr_storage address;
1989 	int err, err2;
1990 	int fput_needed;
1991 
1992 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1993 	if (unlikely(err))
1994 		return err;
1995 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996 	if (!sock)
1997 		goto out;
1998 
1999 	msg.msg_control = NULL;
2000 	msg.msg_controllen = 0;
2001 	/* Save some cycles and don't copy the address if not needed */
2002 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2003 	/* We assume all kernel code knows the size of sockaddr_storage */
2004 	msg.msg_namelen = 0;
2005 	msg.msg_iocb = NULL;
2006 	msg.msg_flags = 0;
2007 	if (sock->file->f_flags & O_NONBLOCK)
2008 		flags |= MSG_DONTWAIT;
2009 	err = sock_recvmsg(sock, &msg, flags);
2010 
2011 	if (err >= 0 && addr != NULL) {
2012 		err2 = move_addr_to_user(&address,
2013 					 msg.msg_namelen, addr, addr_len);
2014 		if (err2 < 0)
2015 			err = err2;
2016 	}
2017 
2018 	fput_light(sock->file, fput_needed);
2019 out:
2020 	return err;
2021 }
2022 
2023 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2024 		unsigned int, flags, struct sockaddr __user *, addr,
2025 		int __user *, addr_len)
2026 {
2027 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2028 }
2029 
2030 /*
2031  *	Receive a datagram from a socket.
2032  */
2033 
2034 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2035 		unsigned int, flags)
2036 {
2037 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2038 }
2039 
2040 /*
2041  *	Set a socket option. Because we don't know the option lengths we have
2042  *	to pass the user mode parameter for the protocols to sort out.
2043  */
2044 
2045 static int __sys_setsockopt(int fd, int level, int optname,
2046 			    char __user *optval, int optlen)
2047 {
2048 	mm_segment_t oldfs = get_fs();
2049 	char *kernel_optval = NULL;
2050 	int err, fput_needed;
2051 	struct socket *sock;
2052 
2053 	if (optlen < 0)
2054 		return -EINVAL;
2055 
2056 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 	if (sock != NULL) {
2058 		err = security_socket_setsockopt(sock, level, optname);
2059 		if (err)
2060 			goto out_put;
2061 
2062 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2063 						     &optname, optval, &optlen,
2064 						     &kernel_optval);
2065 
2066 		if (err < 0) {
2067 			goto out_put;
2068 		} else if (err > 0) {
2069 			err = 0;
2070 			goto out_put;
2071 		}
2072 
2073 		if (kernel_optval) {
2074 			set_fs(KERNEL_DS);
2075 			optval = (char __user __force *)kernel_optval;
2076 		}
2077 
2078 		if (level == SOL_SOCKET)
2079 			err =
2080 			    sock_setsockopt(sock, level, optname, optval,
2081 					    optlen);
2082 		else
2083 			err =
2084 			    sock->ops->setsockopt(sock, level, optname, optval,
2085 						  optlen);
2086 
2087 		if (kernel_optval) {
2088 			set_fs(oldfs);
2089 			kfree(kernel_optval);
2090 		}
2091 out_put:
2092 		fput_light(sock->file, fput_needed);
2093 	}
2094 	return err;
2095 }
2096 
2097 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2098 		char __user *, optval, int, optlen)
2099 {
2100 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2101 }
2102 
2103 /*
2104  *	Get a socket option. Because we don't know the option lengths we have
2105  *	to pass a user mode parameter for the protocols to sort out.
2106  */
2107 
2108 static int __sys_getsockopt(int fd, int level, int optname,
2109 			    char __user *optval, int __user *optlen)
2110 {
2111 	int err, fput_needed;
2112 	struct socket *sock;
2113 	int max_optlen;
2114 
2115 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116 	if (sock != NULL) {
2117 		err = security_socket_getsockopt(sock, level, optname);
2118 		if (err)
2119 			goto out_put;
2120 
2121 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2122 
2123 		if (level == SOL_SOCKET)
2124 			err =
2125 			    sock_getsockopt(sock, level, optname, optval,
2126 					    optlen);
2127 		else
2128 			err =
2129 			    sock->ops->getsockopt(sock, level, optname, optval,
2130 						  optlen);
2131 
2132 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2133 						     optval, optlen,
2134 						     max_optlen, err);
2135 out_put:
2136 		fput_light(sock->file, fput_needed);
2137 	}
2138 	return err;
2139 }
2140 
2141 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2142 		char __user *, optval, int __user *, optlen)
2143 {
2144 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2145 }
2146 
2147 /*
2148  *	Shutdown a socket.
2149  */
2150 
2151 int __sys_shutdown(int fd, int how)
2152 {
2153 	int err, fput_needed;
2154 	struct socket *sock;
2155 
2156 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157 	if (sock != NULL) {
2158 		err = security_socket_shutdown(sock, how);
2159 		if (!err)
2160 			err = sock->ops->shutdown(sock, how);
2161 		fput_light(sock->file, fput_needed);
2162 	}
2163 	return err;
2164 }
2165 
2166 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2167 {
2168 	return __sys_shutdown(fd, how);
2169 }
2170 
2171 /* A couple of helpful macros for getting the address of the 32/64 bit
2172  * fields which are the same type (int / unsigned) on our platforms.
2173  */
2174 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2175 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2176 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2177 
2178 struct used_address {
2179 	struct sockaddr_storage name;
2180 	unsigned int name_len;
2181 };
2182 
2183 static int copy_msghdr_from_user(struct msghdr *kmsg,
2184 				 struct user_msghdr __user *umsg,
2185 				 struct sockaddr __user **save_addr,
2186 				 struct iovec **iov)
2187 {
2188 	struct user_msghdr msg;
2189 	ssize_t err;
2190 
2191 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2192 		return -EFAULT;
2193 
2194 	kmsg->msg_control = (void __force *)msg.msg_control;
2195 	kmsg->msg_controllen = msg.msg_controllen;
2196 	kmsg->msg_flags = msg.msg_flags;
2197 
2198 	kmsg->msg_namelen = msg.msg_namelen;
2199 	if (!msg.msg_name)
2200 		kmsg->msg_namelen = 0;
2201 
2202 	if (kmsg->msg_namelen < 0)
2203 		return -EINVAL;
2204 
2205 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2206 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2207 
2208 	if (save_addr)
2209 		*save_addr = msg.msg_name;
2210 
2211 	if (msg.msg_name && kmsg->msg_namelen) {
2212 		if (!save_addr) {
2213 			err = move_addr_to_kernel(msg.msg_name,
2214 						  kmsg->msg_namelen,
2215 						  kmsg->msg_name);
2216 			if (err < 0)
2217 				return err;
2218 		}
2219 	} else {
2220 		kmsg->msg_name = NULL;
2221 		kmsg->msg_namelen = 0;
2222 	}
2223 
2224 	if (msg.msg_iovlen > UIO_MAXIOV)
2225 		return -EMSGSIZE;
2226 
2227 	kmsg->msg_iocb = NULL;
2228 
2229 	err = import_iovec(save_addr ? READ : WRITE,
2230 			    msg.msg_iov, msg.msg_iovlen,
2231 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2232 	return err < 0 ? err : 0;
2233 }
2234 
2235 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2236 			 struct msghdr *msg_sys, unsigned int flags,
2237 			 struct used_address *used_address,
2238 			 unsigned int allowed_msghdr_flags)
2239 {
2240 	struct compat_msghdr __user *msg_compat =
2241 	    (struct compat_msghdr __user *)msg;
2242 	struct sockaddr_storage address;
2243 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2244 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2245 				__aligned(sizeof(__kernel_size_t));
2246 	/* 20 is size of ipv6_pktinfo */
2247 	unsigned char *ctl_buf = ctl;
2248 	int ctl_len;
2249 	ssize_t err;
2250 
2251 	msg_sys->msg_name = &address;
2252 
2253 	if (MSG_CMSG_COMPAT & flags)
2254 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2255 	else
2256 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2257 	if (err < 0)
2258 		return err;
2259 
2260 	err = -ENOBUFS;
2261 
2262 	if (msg_sys->msg_controllen > INT_MAX)
2263 		goto out_freeiov;
2264 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2265 	ctl_len = msg_sys->msg_controllen;
2266 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2267 		err =
2268 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2269 						     sizeof(ctl));
2270 		if (err)
2271 			goto out_freeiov;
2272 		ctl_buf = msg_sys->msg_control;
2273 		ctl_len = msg_sys->msg_controllen;
2274 	} else if (ctl_len) {
2275 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2276 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2277 		if (ctl_len > sizeof(ctl)) {
2278 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2279 			if (ctl_buf == NULL)
2280 				goto out_freeiov;
2281 		}
2282 		err = -EFAULT;
2283 		/*
2284 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2285 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2286 		 * checking falls down on this.
2287 		 */
2288 		if (copy_from_user(ctl_buf,
2289 				   (void __user __force *)msg_sys->msg_control,
2290 				   ctl_len))
2291 			goto out_freectl;
2292 		msg_sys->msg_control = ctl_buf;
2293 	}
2294 	msg_sys->msg_flags = flags;
2295 
2296 	if (sock->file->f_flags & O_NONBLOCK)
2297 		msg_sys->msg_flags |= MSG_DONTWAIT;
2298 	/*
2299 	 * If this is sendmmsg() and current destination address is same as
2300 	 * previously succeeded address, omit asking LSM's decision.
2301 	 * used_address->name_len is initialized to UINT_MAX so that the first
2302 	 * destination address never matches.
2303 	 */
2304 	if (used_address && msg_sys->msg_name &&
2305 	    used_address->name_len == msg_sys->msg_namelen &&
2306 	    !memcmp(&used_address->name, msg_sys->msg_name,
2307 		    used_address->name_len)) {
2308 		err = sock_sendmsg_nosec(sock, msg_sys);
2309 		goto out_freectl;
2310 	}
2311 	err = sock_sendmsg(sock, msg_sys);
2312 	/*
2313 	 * If this is sendmmsg() and sending to current destination address was
2314 	 * successful, remember it.
2315 	 */
2316 	if (used_address && err >= 0) {
2317 		used_address->name_len = msg_sys->msg_namelen;
2318 		if (msg_sys->msg_name)
2319 			memcpy(&used_address->name, msg_sys->msg_name,
2320 			       used_address->name_len);
2321 	}
2322 
2323 out_freectl:
2324 	if (ctl_buf != ctl)
2325 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2326 out_freeiov:
2327 	kfree(iov);
2328 	return err;
2329 }
2330 
2331 /*
2332  *	BSD sendmsg interface
2333  */
2334 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2335 			unsigned int flags)
2336 {
2337 	struct msghdr msg_sys;
2338 
2339 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2340 }
2341 
2342 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2343 		   bool forbid_cmsg_compat)
2344 {
2345 	int fput_needed, err;
2346 	struct msghdr msg_sys;
2347 	struct socket *sock;
2348 
2349 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2350 		return -EINVAL;
2351 
2352 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353 	if (!sock)
2354 		goto out;
2355 
2356 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2357 
2358 	fput_light(sock->file, fput_needed);
2359 out:
2360 	return err;
2361 }
2362 
2363 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2364 {
2365 	return __sys_sendmsg(fd, msg, flags, true);
2366 }
2367 
2368 /*
2369  *	Linux sendmmsg interface
2370  */
2371 
2372 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2373 		   unsigned int flags, bool forbid_cmsg_compat)
2374 {
2375 	int fput_needed, err, datagrams;
2376 	struct socket *sock;
2377 	struct mmsghdr __user *entry;
2378 	struct compat_mmsghdr __user *compat_entry;
2379 	struct msghdr msg_sys;
2380 	struct used_address used_address;
2381 	unsigned int oflags = flags;
2382 
2383 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2384 		return -EINVAL;
2385 
2386 	if (vlen > UIO_MAXIOV)
2387 		vlen = UIO_MAXIOV;
2388 
2389 	datagrams = 0;
2390 
2391 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392 	if (!sock)
2393 		return err;
2394 
2395 	used_address.name_len = UINT_MAX;
2396 	entry = mmsg;
2397 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2398 	err = 0;
2399 	flags |= MSG_BATCH;
2400 
2401 	while (datagrams < vlen) {
2402 		if (datagrams == vlen - 1)
2403 			flags = oflags;
2404 
2405 		if (MSG_CMSG_COMPAT & flags) {
2406 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2407 					     &msg_sys, flags, &used_address, MSG_EOR);
2408 			if (err < 0)
2409 				break;
2410 			err = __put_user(err, &compat_entry->msg_len);
2411 			++compat_entry;
2412 		} else {
2413 			err = ___sys_sendmsg(sock,
2414 					     (struct user_msghdr __user *)entry,
2415 					     &msg_sys, flags, &used_address, MSG_EOR);
2416 			if (err < 0)
2417 				break;
2418 			err = put_user(err, &entry->msg_len);
2419 			++entry;
2420 		}
2421 
2422 		if (err)
2423 			break;
2424 		++datagrams;
2425 		if (msg_data_left(&msg_sys))
2426 			break;
2427 		cond_resched();
2428 	}
2429 
2430 	fput_light(sock->file, fput_needed);
2431 
2432 	/* We only return an error if no datagrams were able to be sent */
2433 	if (datagrams != 0)
2434 		return datagrams;
2435 
2436 	return err;
2437 }
2438 
2439 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2440 		unsigned int, vlen, unsigned int, flags)
2441 {
2442 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2443 }
2444 
2445 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2446 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2447 {
2448 	struct compat_msghdr __user *msg_compat =
2449 	    (struct compat_msghdr __user *)msg;
2450 	struct iovec iovstack[UIO_FASTIOV];
2451 	struct iovec *iov = iovstack;
2452 	unsigned long cmsg_ptr;
2453 	int len;
2454 	ssize_t err;
2455 
2456 	/* kernel mode address */
2457 	struct sockaddr_storage addr;
2458 
2459 	/* user mode address pointers */
2460 	struct sockaddr __user *uaddr;
2461 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2462 
2463 	msg_sys->msg_name = &addr;
2464 
2465 	if (MSG_CMSG_COMPAT & flags)
2466 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2467 	else
2468 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2469 	if (err < 0)
2470 		return err;
2471 
2472 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2473 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2474 
2475 	/* We assume all kernel code knows the size of sockaddr_storage */
2476 	msg_sys->msg_namelen = 0;
2477 
2478 	if (sock->file->f_flags & O_NONBLOCK)
2479 		flags |= MSG_DONTWAIT;
2480 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2481 	if (err < 0)
2482 		goto out_freeiov;
2483 	len = err;
2484 
2485 	if (uaddr != NULL) {
2486 		err = move_addr_to_user(&addr,
2487 					msg_sys->msg_namelen, uaddr,
2488 					uaddr_len);
2489 		if (err < 0)
2490 			goto out_freeiov;
2491 	}
2492 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2493 			 COMPAT_FLAGS(msg));
2494 	if (err)
2495 		goto out_freeiov;
2496 	if (MSG_CMSG_COMPAT & flags)
2497 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2498 				 &msg_compat->msg_controllen);
2499 	else
2500 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2501 				 &msg->msg_controllen);
2502 	if (err)
2503 		goto out_freeiov;
2504 	err = len;
2505 
2506 out_freeiov:
2507 	kfree(iov);
2508 	return err;
2509 }
2510 
2511 /*
2512  *	BSD recvmsg interface
2513  */
2514 
2515 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2516 			unsigned int flags)
2517 {
2518 	struct msghdr msg_sys;
2519 
2520 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2521 }
2522 
2523 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2524 		   bool forbid_cmsg_compat)
2525 {
2526 	int fput_needed, err;
2527 	struct msghdr msg_sys;
2528 	struct socket *sock;
2529 
2530 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2531 		return -EINVAL;
2532 
2533 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2534 	if (!sock)
2535 		goto out;
2536 
2537 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2538 
2539 	fput_light(sock->file, fput_needed);
2540 out:
2541 	return err;
2542 }
2543 
2544 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2545 		unsigned int, flags)
2546 {
2547 	return __sys_recvmsg(fd, msg, flags, true);
2548 }
2549 
2550 /*
2551  *     Linux recvmmsg interface
2552  */
2553 
2554 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2555 			  unsigned int vlen, unsigned int flags,
2556 			  struct timespec64 *timeout)
2557 {
2558 	int fput_needed, err, datagrams;
2559 	struct socket *sock;
2560 	struct mmsghdr __user *entry;
2561 	struct compat_mmsghdr __user *compat_entry;
2562 	struct msghdr msg_sys;
2563 	struct timespec64 end_time;
2564 	struct timespec64 timeout64;
2565 
2566 	if (timeout &&
2567 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2568 				    timeout->tv_nsec))
2569 		return -EINVAL;
2570 
2571 	datagrams = 0;
2572 
2573 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574 	if (!sock)
2575 		return err;
2576 
2577 	if (likely(!(flags & MSG_ERRQUEUE))) {
2578 		err = sock_error(sock->sk);
2579 		if (err) {
2580 			datagrams = err;
2581 			goto out_put;
2582 		}
2583 	}
2584 
2585 	entry = mmsg;
2586 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2587 
2588 	while (datagrams < vlen) {
2589 		/*
2590 		 * No need to ask LSM for more than the first datagram.
2591 		 */
2592 		if (MSG_CMSG_COMPAT & flags) {
2593 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2594 					     &msg_sys, flags & ~MSG_WAITFORONE,
2595 					     datagrams);
2596 			if (err < 0)
2597 				break;
2598 			err = __put_user(err, &compat_entry->msg_len);
2599 			++compat_entry;
2600 		} else {
2601 			err = ___sys_recvmsg(sock,
2602 					     (struct user_msghdr __user *)entry,
2603 					     &msg_sys, flags & ~MSG_WAITFORONE,
2604 					     datagrams);
2605 			if (err < 0)
2606 				break;
2607 			err = put_user(err, &entry->msg_len);
2608 			++entry;
2609 		}
2610 
2611 		if (err)
2612 			break;
2613 		++datagrams;
2614 
2615 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2616 		if (flags & MSG_WAITFORONE)
2617 			flags |= MSG_DONTWAIT;
2618 
2619 		if (timeout) {
2620 			ktime_get_ts64(&timeout64);
2621 			*timeout = timespec64_sub(end_time, timeout64);
2622 			if (timeout->tv_sec < 0) {
2623 				timeout->tv_sec = timeout->tv_nsec = 0;
2624 				break;
2625 			}
2626 
2627 			/* Timeout, return less than vlen datagrams */
2628 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2629 				break;
2630 		}
2631 
2632 		/* Out of band data, return right away */
2633 		if (msg_sys.msg_flags & MSG_OOB)
2634 			break;
2635 		cond_resched();
2636 	}
2637 
2638 	if (err == 0)
2639 		goto out_put;
2640 
2641 	if (datagrams == 0) {
2642 		datagrams = err;
2643 		goto out_put;
2644 	}
2645 
2646 	/*
2647 	 * We may return less entries than requested (vlen) if the
2648 	 * sock is non block and there aren't enough datagrams...
2649 	 */
2650 	if (err != -EAGAIN) {
2651 		/*
2652 		 * ... or  if recvmsg returns an error after we
2653 		 * received some datagrams, where we record the
2654 		 * error to return on the next call or if the
2655 		 * app asks about it using getsockopt(SO_ERROR).
2656 		 */
2657 		sock->sk->sk_err = -err;
2658 	}
2659 out_put:
2660 	fput_light(sock->file, fput_needed);
2661 
2662 	return datagrams;
2663 }
2664 
2665 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666 		   unsigned int vlen, unsigned int flags,
2667 		   struct __kernel_timespec __user *timeout,
2668 		   struct old_timespec32 __user *timeout32)
2669 {
2670 	int datagrams;
2671 	struct timespec64 timeout_sys;
2672 
2673 	if (timeout && get_timespec64(&timeout_sys, timeout))
2674 		return -EFAULT;
2675 
2676 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2677 		return -EFAULT;
2678 
2679 	if (!timeout && !timeout32)
2680 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2681 
2682 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2683 
2684 	if (datagrams <= 0)
2685 		return datagrams;
2686 
2687 	if (timeout && put_timespec64(&timeout_sys, timeout))
2688 		datagrams = -EFAULT;
2689 
2690 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2691 		datagrams = -EFAULT;
2692 
2693 	return datagrams;
2694 }
2695 
2696 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2697 		unsigned int, vlen, unsigned int, flags,
2698 		struct __kernel_timespec __user *, timeout)
2699 {
2700 	if (flags & MSG_CMSG_COMPAT)
2701 		return -EINVAL;
2702 
2703 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2704 }
2705 
2706 #ifdef CONFIG_COMPAT_32BIT_TIME
2707 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2708 		unsigned int, vlen, unsigned int, flags,
2709 		struct old_timespec32 __user *, timeout)
2710 {
2711 	if (flags & MSG_CMSG_COMPAT)
2712 		return -EINVAL;
2713 
2714 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2715 }
2716 #endif
2717 
2718 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2719 /* Argument list sizes for sys_socketcall */
2720 #define AL(x) ((x) * sizeof(unsigned long))
2721 static const unsigned char nargs[21] = {
2722 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2723 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2724 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2725 	AL(4), AL(5), AL(4)
2726 };
2727 
2728 #undef AL
2729 
2730 /*
2731  *	System call vectors.
2732  *
2733  *	Argument checking cleaned up. Saved 20% in size.
2734  *  This function doesn't need to set the kernel lock because
2735  *  it is set by the callees.
2736  */
2737 
2738 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2739 {
2740 	unsigned long a[AUDITSC_ARGS];
2741 	unsigned long a0, a1;
2742 	int err;
2743 	unsigned int len;
2744 
2745 	if (call < 1 || call > SYS_SENDMMSG)
2746 		return -EINVAL;
2747 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2748 
2749 	len = nargs[call];
2750 	if (len > sizeof(a))
2751 		return -EINVAL;
2752 
2753 	/* copy_from_user should be SMP safe. */
2754 	if (copy_from_user(a, args, len))
2755 		return -EFAULT;
2756 
2757 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2758 	if (err)
2759 		return err;
2760 
2761 	a0 = a[0];
2762 	a1 = a[1];
2763 
2764 	switch (call) {
2765 	case SYS_SOCKET:
2766 		err = __sys_socket(a0, a1, a[2]);
2767 		break;
2768 	case SYS_BIND:
2769 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2770 		break;
2771 	case SYS_CONNECT:
2772 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2773 		break;
2774 	case SYS_LISTEN:
2775 		err = __sys_listen(a0, a1);
2776 		break;
2777 	case SYS_ACCEPT:
2778 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2779 				    (int __user *)a[2], 0);
2780 		break;
2781 	case SYS_GETSOCKNAME:
2782 		err =
2783 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2784 				      (int __user *)a[2]);
2785 		break;
2786 	case SYS_GETPEERNAME:
2787 		err =
2788 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2789 				      (int __user *)a[2]);
2790 		break;
2791 	case SYS_SOCKETPAIR:
2792 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2793 		break;
2794 	case SYS_SEND:
2795 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2796 				   NULL, 0);
2797 		break;
2798 	case SYS_SENDTO:
2799 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2800 				   (struct sockaddr __user *)a[4], a[5]);
2801 		break;
2802 	case SYS_RECV:
2803 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2804 				     NULL, NULL);
2805 		break;
2806 	case SYS_RECVFROM:
2807 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2808 				     (struct sockaddr __user *)a[4],
2809 				     (int __user *)a[5]);
2810 		break;
2811 	case SYS_SHUTDOWN:
2812 		err = __sys_shutdown(a0, a1);
2813 		break;
2814 	case SYS_SETSOCKOPT:
2815 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2816 				       a[4]);
2817 		break;
2818 	case SYS_GETSOCKOPT:
2819 		err =
2820 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2821 				     (int __user *)a[4]);
2822 		break;
2823 	case SYS_SENDMSG:
2824 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2825 				    a[2], true);
2826 		break;
2827 	case SYS_SENDMMSG:
2828 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2829 				     a[3], true);
2830 		break;
2831 	case SYS_RECVMSG:
2832 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2833 				    a[2], true);
2834 		break;
2835 	case SYS_RECVMMSG:
2836 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2837 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2838 					     a[2], a[3],
2839 					     (struct __kernel_timespec __user *)a[4],
2840 					     NULL);
2841 		else
2842 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2843 					     a[2], a[3], NULL,
2844 					     (struct old_timespec32 __user *)a[4]);
2845 		break;
2846 	case SYS_ACCEPT4:
2847 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2848 				    (int __user *)a[2], a[3]);
2849 		break;
2850 	default:
2851 		err = -EINVAL;
2852 		break;
2853 	}
2854 	return err;
2855 }
2856 
2857 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2858 
2859 /**
2860  *	sock_register - add a socket protocol handler
2861  *	@ops: description of protocol
2862  *
2863  *	This function is called by a protocol handler that wants to
2864  *	advertise its address family, and have it linked into the
2865  *	socket interface. The value ops->family corresponds to the
2866  *	socket system call protocol family.
2867  */
2868 int sock_register(const struct net_proto_family *ops)
2869 {
2870 	int err;
2871 
2872 	if (ops->family >= NPROTO) {
2873 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2874 		return -ENOBUFS;
2875 	}
2876 
2877 	spin_lock(&net_family_lock);
2878 	if (rcu_dereference_protected(net_families[ops->family],
2879 				      lockdep_is_held(&net_family_lock)))
2880 		err = -EEXIST;
2881 	else {
2882 		rcu_assign_pointer(net_families[ops->family], ops);
2883 		err = 0;
2884 	}
2885 	spin_unlock(&net_family_lock);
2886 
2887 	pr_info("NET: Registered protocol family %d\n", ops->family);
2888 	return err;
2889 }
2890 EXPORT_SYMBOL(sock_register);
2891 
2892 /**
2893  *	sock_unregister - remove a protocol handler
2894  *	@family: protocol family to remove
2895  *
2896  *	This function is called by a protocol handler that wants to
2897  *	remove its address family, and have it unlinked from the
2898  *	new socket creation.
2899  *
2900  *	If protocol handler is a module, then it can use module reference
2901  *	counts to protect against new references. If protocol handler is not
2902  *	a module then it needs to provide its own protection in
2903  *	the ops->create routine.
2904  */
2905 void sock_unregister(int family)
2906 {
2907 	BUG_ON(family < 0 || family >= NPROTO);
2908 
2909 	spin_lock(&net_family_lock);
2910 	RCU_INIT_POINTER(net_families[family], NULL);
2911 	spin_unlock(&net_family_lock);
2912 
2913 	synchronize_rcu();
2914 
2915 	pr_info("NET: Unregistered protocol family %d\n", family);
2916 }
2917 EXPORT_SYMBOL(sock_unregister);
2918 
2919 bool sock_is_registered(int family)
2920 {
2921 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2922 }
2923 
2924 static int __init sock_init(void)
2925 {
2926 	int err;
2927 	/*
2928 	 *      Initialize the network sysctl infrastructure.
2929 	 */
2930 	err = net_sysctl_init();
2931 	if (err)
2932 		goto out;
2933 
2934 	/*
2935 	 *      Initialize skbuff SLAB cache
2936 	 */
2937 	skb_init();
2938 
2939 	/*
2940 	 *      Initialize the protocols module.
2941 	 */
2942 
2943 	init_inodecache();
2944 
2945 	err = register_filesystem(&sock_fs_type);
2946 	if (err)
2947 		goto out_fs;
2948 	sock_mnt = kern_mount(&sock_fs_type);
2949 	if (IS_ERR(sock_mnt)) {
2950 		err = PTR_ERR(sock_mnt);
2951 		goto out_mount;
2952 	}
2953 
2954 	/* The real protocol initialization is performed in later initcalls.
2955 	 */
2956 
2957 #ifdef CONFIG_NETFILTER
2958 	err = netfilter_init();
2959 	if (err)
2960 		goto out;
2961 #endif
2962 
2963 	ptp_classifier_init();
2964 
2965 out:
2966 	return err;
2967 
2968 out_mount:
2969 	unregister_filesystem(&sock_fs_type);
2970 out_fs:
2971 	goto out;
2972 }
2973 
2974 core_initcall(sock_init);	/* early initcall */
2975 
2976 #ifdef CONFIG_PROC_FS
2977 void socket_seq_show(struct seq_file *seq)
2978 {
2979 	seq_printf(seq, "sockets: used %d\n",
2980 		   sock_inuse_get(seq->private));
2981 }
2982 #endif				/* CONFIG_PROC_FS */
2983 
2984 #ifdef CONFIG_COMPAT
2985 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2986 {
2987 	struct compat_ifconf ifc32;
2988 	struct ifconf ifc;
2989 	int err;
2990 
2991 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2992 		return -EFAULT;
2993 
2994 	ifc.ifc_len = ifc32.ifc_len;
2995 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2996 
2997 	rtnl_lock();
2998 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2999 	rtnl_unlock();
3000 	if (err)
3001 		return err;
3002 
3003 	ifc32.ifc_len = ifc.ifc_len;
3004 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3005 		return -EFAULT;
3006 
3007 	return 0;
3008 }
3009 
3010 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3011 {
3012 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3013 	bool convert_in = false, convert_out = false;
3014 	size_t buf_size = 0;
3015 	struct ethtool_rxnfc __user *rxnfc = NULL;
3016 	struct ifreq ifr;
3017 	u32 rule_cnt = 0, actual_rule_cnt;
3018 	u32 ethcmd;
3019 	u32 data;
3020 	int ret;
3021 
3022 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3023 		return -EFAULT;
3024 
3025 	compat_rxnfc = compat_ptr(data);
3026 
3027 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3028 		return -EFAULT;
3029 
3030 	/* Most ethtool structures are defined without padding.
3031 	 * Unfortunately struct ethtool_rxnfc is an exception.
3032 	 */
3033 	switch (ethcmd) {
3034 	default:
3035 		break;
3036 	case ETHTOOL_GRXCLSRLALL:
3037 		/* Buffer size is variable */
3038 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3039 			return -EFAULT;
3040 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3041 			return -ENOMEM;
3042 		buf_size += rule_cnt * sizeof(u32);
3043 		/* fall through */
3044 	case ETHTOOL_GRXRINGS:
3045 	case ETHTOOL_GRXCLSRLCNT:
3046 	case ETHTOOL_GRXCLSRULE:
3047 	case ETHTOOL_SRXCLSRLINS:
3048 		convert_out = true;
3049 		/* fall through */
3050 	case ETHTOOL_SRXCLSRLDEL:
3051 		buf_size += sizeof(struct ethtool_rxnfc);
3052 		convert_in = true;
3053 		rxnfc = compat_alloc_user_space(buf_size);
3054 		break;
3055 	}
3056 
3057 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3058 		return -EFAULT;
3059 
3060 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3061 
3062 	if (convert_in) {
3063 		/* We expect there to be holes between fs.m_ext and
3064 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3065 		 */
3066 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3067 			     sizeof(compat_rxnfc->fs.m_ext) !=
3068 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3069 			     sizeof(rxnfc->fs.m_ext));
3070 		BUILD_BUG_ON(
3071 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3072 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3073 			offsetof(struct ethtool_rxnfc, fs.location) -
3074 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3075 
3076 		if (copy_in_user(rxnfc, compat_rxnfc,
3077 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3078 				 (void __user *)rxnfc) ||
3079 		    copy_in_user(&rxnfc->fs.ring_cookie,
3080 				 &compat_rxnfc->fs.ring_cookie,
3081 				 (void __user *)(&rxnfc->fs.location + 1) -
3082 				 (void __user *)&rxnfc->fs.ring_cookie))
3083 			return -EFAULT;
3084 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3085 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3086 				return -EFAULT;
3087 		} else if (copy_in_user(&rxnfc->rule_cnt,
3088 					&compat_rxnfc->rule_cnt,
3089 					sizeof(rxnfc->rule_cnt)))
3090 			return -EFAULT;
3091 	}
3092 
3093 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3094 	if (ret)
3095 		return ret;
3096 
3097 	if (convert_out) {
3098 		if (copy_in_user(compat_rxnfc, rxnfc,
3099 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3100 				 (const void __user *)rxnfc) ||
3101 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3102 				 &rxnfc->fs.ring_cookie,
3103 				 (const void __user *)(&rxnfc->fs.location + 1) -
3104 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3105 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3106 				 sizeof(rxnfc->rule_cnt)))
3107 			return -EFAULT;
3108 
3109 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3110 			/* As an optimisation, we only copy the actual
3111 			 * number of rules that the underlying
3112 			 * function returned.  Since Mallory might
3113 			 * change the rule count in user memory, we
3114 			 * check that it is less than the rule count
3115 			 * originally given (as the user buffer size),
3116 			 * which has been range-checked.
3117 			 */
3118 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3119 				return -EFAULT;
3120 			if (actual_rule_cnt < rule_cnt)
3121 				rule_cnt = actual_rule_cnt;
3122 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3123 					 &rxnfc->rule_locs[0],
3124 					 rule_cnt * sizeof(u32)))
3125 				return -EFAULT;
3126 		}
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3133 {
3134 	compat_uptr_t uptr32;
3135 	struct ifreq ifr;
3136 	void __user *saved;
3137 	int err;
3138 
3139 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3140 		return -EFAULT;
3141 
3142 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3143 		return -EFAULT;
3144 
3145 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3146 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3147 
3148 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3149 	if (!err) {
3150 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3151 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3152 			err = -EFAULT;
3153 	}
3154 	return err;
3155 }
3156 
3157 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3158 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3159 				 struct compat_ifreq __user *u_ifreq32)
3160 {
3161 	struct ifreq ifreq;
3162 	u32 data32;
3163 
3164 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3165 		return -EFAULT;
3166 	if (get_user(data32, &u_ifreq32->ifr_data))
3167 		return -EFAULT;
3168 	ifreq.ifr_data = compat_ptr(data32);
3169 
3170 	return dev_ioctl(net, cmd, &ifreq, NULL);
3171 }
3172 
3173 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3174 			      unsigned int cmd,
3175 			      struct compat_ifreq __user *uifr32)
3176 {
3177 	struct ifreq __user *uifr;
3178 	int err;
3179 
3180 	/* Handle the fact that while struct ifreq has the same *layout* on
3181 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182 	 * which are handled elsewhere, it still has different *size* due to
3183 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3185 	 * As a result, if the struct happens to be at the end of a page and
3186 	 * the next page isn't readable/writable, we get a fault. To prevent
3187 	 * that, copy back and forth to the full size.
3188 	 */
3189 
3190 	uifr = compat_alloc_user_space(sizeof(*uifr));
3191 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3192 		return -EFAULT;
3193 
3194 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3195 
3196 	if (!err) {
3197 		switch (cmd) {
3198 		case SIOCGIFFLAGS:
3199 		case SIOCGIFMETRIC:
3200 		case SIOCGIFMTU:
3201 		case SIOCGIFMEM:
3202 		case SIOCGIFHWADDR:
3203 		case SIOCGIFINDEX:
3204 		case SIOCGIFADDR:
3205 		case SIOCGIFBRDADDR:
3206 		case SIOCGIFDSTADDR:
3207 		case SIOCGIFNETMASK:
3208 		case SIOCGIFPFLAGS:
3209 		case SIOCGIFTXQLEN:
3210 		case SIOCGMIIPHY:
3211 		case SIOCGMIIREG:
3212 		case SIOCGIFNAME:
3213 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3214 				err = -EFAULT;
3215 			break;
3216 		}
3217 	}
3218 	return err;
3219 }
3220 
3221 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3222 			struct compat_ifreq __user *uifr32)
3223 {
3224 	struct ifreq ifr;
3225 	struct compat_ifmap __user *uifmap32;
3226 	int err;
3227 
3228 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3229 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3230 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3231 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3232 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3233 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3234 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3235 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3236 	if (err)
3237 		return -EFAULT;
3238 
3239 	err = dev_ioctl(net, cmd, &ifr, NULL);
3240 
3241 	if (cmd == SIOCGIFMAP && !err) {
3242 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3243 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3244 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3245 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3246 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3247 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3248 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3249 		if (err)
3250 			err = -EFAULT;
3251 	}
3252 	return err;
3253 }
3254 
3255 struct rtentry32 {
3256 	u32		rt_pad1;
3257 	struct sockaddr rt_dst;         /* target address               */
3258 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3259 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3260 	unsigned short	rt_flags;
3261 	short		rt_pad2;
3262 	u32		rt_pad3;
3263 	unsigned char	rt_tos;
3264 	unsigned char	rt_class;
3265 	short		rt_pad4;
3266 	short		rt_metric;      /* +1 for binary compatibility! */
3267 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3268 	u32		rt_mtu;         /* per route MTU/Window         */
3269 	u32		rt_window;      /* Window clamping              */
3270 	unsigned short  rt_irtt;        /* Initial RTT                  */
3271 };
3272 
3273 struct in6_rtmsg32 {
3274 	struct in6_addr		rtmsg_dst;
3275 	struct in6_addr		rtmsg_src;
3276 	struct in6_addr		rtmsg_gateway;
3277 	u32			rtmsg_type;
3278 	u16			rtmsg_dst_len;
3279 	u16			rtmsg_src_len;
3280 	u32			rtmsg_metric;
3281 	u32			rtmsg_info;
3282 	u32			rtmsg_flags;
3283 	s32			rtmsg_ifindex;
3284 };
3285 
3286 static int routing_ioctl(struct net *net, struct socket *sock,
3287 			 unsigned int cmd, void __user *argp)
3288 {
3289 	int ret;
3290 	void *r = NULL;
3291 	struct in6_rtmsg r6;
3292 	struct rtentry r4;
3293 	char devname[16];
3294 	u32 rtdev;
3295 	mm_segment_t old_fs = get_fs();
3296 
3297 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3298 		struct in6_rtmsg32 __user *ur6 = argp;
3299 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3300 			3 * sizeof(struct in6_addr));
3301 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3302 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3303 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3304 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3305 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3306 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3307 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3308 
3309 		r = (void *) &r6;
3310 	} else { /* ipv4 */
3311 		struct rtentry32 __user *ur4 = argp;
3312 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3313 					3 * sizeof(struct sockaddr));
3314 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3315 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3316 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3317 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3318 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3319 		ret |= get_user(rtdev, &(ur4->rt_dev));
3320 		if (rtdev) {
3321 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3322 			r4.rt_dev = (char __user __force *)devname;
3323 			devname[15] = 0;
3324 		} else
3325 			r4.rt_dev = NULL;
3326 
3327 		r = (void *) &r4;
3328 	}
3329 
3330 	if (ret) {
3331 		ret = -EFAULT;
3332 		goto out;
3333 	}
3334 
3335 	set_fs(KERNEL_DS);
3336 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3337 	set_fs(old_fs);
3338 
3339 out:
3340 	return ret;
3341 }
3342 
3343 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3344  * for some operations; this forces use of the newer bridge-utils that
3345  * use compatible ioctls
3346  */
3347 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3348 {
3349 	compat_ulong_t tmp;
3350 
3351 	if (get_user(tmp, argp))
3352 		return -EFAULT;
3353 	if (tmp == BRCTL_GET_VERSION)
3354 		return BRCTL_VERSION + 1;
3355 	return -EINVAL;
3356 }
3357 
3358 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3359 			 unsigned int cmd, unsigned long arg)
3360 {
3361 	void __user *argp = compat_ptr(arg);
3362 	struct sock *sk = sock->sk;
3363 	struct net *net = sock_net(sk);
3364 
3365 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3366 		return compat_ifr_data_ioctl(net, cmd, argp);
3367 
3368 	switch (cmd) {
3369 	case SIOCSIFBR:
3370 	case SIOCGIFBR:
3371 		return old_bridge_ioctl(argp);
3372 	case SIOCGIFCONF:
3373 		return compat_dev_ifconf(net, argp);
3374 	case SIOCETHTOOL:
3375 		return ethtool_ioctl(net, argp);
3376 	case SIOCWANDEV:
3377 		return compat_siocwandev(net, argp);
3378 	case SIOCGIFMAP:
3379 	case SIOCSIFMAP:
3380 		return compat_sioc_ifmap(net, cmd, argp);
3381 	case SIOCADDRT:
3382 	case SIOCDELRT:
3383 		return routing_ioctl(net, sock, cmd, argp);
3384 	case SIOCGSTAMP_OLD:
3385 	case SIOCGSTAMPNS_OLD:
3386 		if (!sock->ops->gettstamp)
3387 			return -ENOIOCTLCMD;
3388 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3389 					    !COMPAT_USE_64BIT_TIME);
3390 
3391 	case SIOCBONDSLAVEINFOQUERY:
3392 	case SIOCBONDINFOQUERY:
3393 	case SIOCSHWTSTAMP:
3394 	case SIOCGHWTSTAMP:
3395 		return compat_ifr_data_ioctl(net, cmd, argp);
3396 
3397 	case FIOSETOWN:
3398 	case SIOCSPGRP:
3399 	case FIOGETOWN:
3400 	case SIOCGPGRP:
3401 	case SIOCBRADDBR:
3402 	case SIOCBRDELBR:
3403 	case SIOCGIFVLAN:
3404 	case SIOCSIFVLAN:
3405 	case SIOCADDDLCI:
3406 	case SIOCDELDLCI:
3407 	case SIOCGSKNS:
3408 	case SIOCGSTAMP_NEW:
3409 	case SIOCGSTAMPNS_NEW:
3410 		return sock_ioctl(file, cmd, arg);
3411 
3412 	case SIOCGIFFLAGS:
3413 	case SIOCSIFFLAGS:
3414 	case SIOCGIFMETRIC:
3415 	case SIOCSIFMETRIC:
3416 	case SIOCGIFMTU:
3417 	case SIOCSIFMTU:
3418 	case SIOCGIFMEM:
3419 	case SIOCSIFMEM:
3420 	case SIOCGIFHWADDR:
3421 	case SIOCSIFHWADDR:
3422 	case SIOCADDMULTI:
3423 	case SIOCDELMULTI:
3424 	case SIOCGIFINDEX:
3425 	case SIOCGIFADDR:
3426 	case SIOCSIFADDR:
3427 	case SIOCSIFHWBROADCAST:
3428 	case SIOCDIFADDR:
3429 	case SIOCGIFBRDADDR:
3430 	case SIOCSIFBRDADDR:
3431 	case SIOCGIFDSTADDR:
3432 	case SIOCSIFDSTADDR:
3433 	case SIOCGIFNETMASK:
3434 	case SIOCSIFNETMASK:
3435 	case SIOCSIFPFLAGS:
3436 	case SIOCGIFPFLAGS:
3437 	case SIOCGIFTXQLEN:
3438 	case SIOCSIFTXQLEN:
3439 	case SIOCBRADDIF:
3440 	case SIOCBRDELIF:
3441 	case SIOCGIFNAME:
3442 	case SIOCSIFNAME:
3443 	case SIOCGMIIPHY:
3444 	case SIOCGMIIREG:
3445 	case SIOCSMIIREG:
3446 	case SIOCBONDENSLAVE:
3447 	case SIOCBONDRELEASE:
3448 	case SIOCBONDSETHWADDR:
3449 	case SIOCBONDCHANGEACTIVE:
3450 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3451 
3452 	case SIOCSARP:
3453 	case SIOCGARP:
3454 	case SIOCDARP:
3455 	case SIOCATMARK:
3456 		return sock_do_ioctl(net, sock, cmd, arg);
3457 	}
3458 
3459 	return -ENOIOCTLCMD;
3460 }
3461 
3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3463 			      unsigned long arg)
3464 {
3465 	struct socket *sock = file->private_data;
3466 	int ret = -ENOIOCTLCMD;
3467 	struct sock *sk;
3468 	struct net *net;
3469 
3470 	sk = sock->sk;
3471 	net = sock_net(sk);
3472 
3473 	if (sock->ops->compat_ioctl)
3474 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3475 
3476 	if (ret == -ENOIOCTLCMD &&
3477 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3478 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3479 
3480 	if (ret == -ENOIOCTLCMD)
3481 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3482 
3483 	return ret;
3484 }
3485 #endif
3486 
3487 /**
3488  *	kernel_bind - bind an address to a socket (kernel space)
3489  *	@sock: socket
3490  *	@addr: address
3491  *	@addrlen: length of address
3492  *
3493  *	Returns 0 or an error.
3494  */
3495 
3496 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3497 {
3498 	return sock->ops->bind(sock, addr, addrlen);
3499 }
3500 EXPORT_SYMBOL(kernel_bind);
3501 
3502 /**
3503  *	kernel_listen - move socket to listening state (kernel space)
3504  *	@sock: socket
3505  *	@backlog: pending connections queue size
3506  *
3507  *	Returns 0 or an error.
3508  */
3509 
3510 int kernel_listen(struct socket *sock, int backlog)
3511 {
3512 	return sock->ops->listen(sock, backlog);
3513 }
3514 EXPORT_SYMBOL(kernel_listen);
3515 
3516 /**
3517  *	kernel_accept - accept a connection (kernel space)
3518  *	@sock: listening socket
3519  *	@newsock: new connected socket
3520  *	@flags: flags
3521  *
3522  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3523  *	If it fails, @newsock is guaranteed to be %NULL.
3524  *	Returns 0 or an error.
3525  */
3526 
3527 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3528 {
3529 	struct sock *sk = sock->sk;
3530 	int err;
3531 
3532 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3533 			       newsock);
3534 	if (err < 0)
3535 		goto done;
3536 
3537 	err = sock->ops->accept(sock, *newsock, flags, true);
3538 	if (err < 0) {
3539 		sock_release(*newsock);
3540 		*newsock = NULL;
3541 		goto done;
3542 	}
3543 
3544 	(*newsock)->ops = sock->ops;
3545 	__module_get((*newsock)->ops->owner);
3546 
3547 done:
3548 	return err;
3549 }
3550 EXPORT_SYMBOL(kernel_accept);
3551 
3552 /**
3553  *	kernel_connect - connect a socket (kernel space)
3554  *	@sock: socket
3555  *	@addr: address
3556  *	@addrlen: address length
3557  *	@flags: flags (O_NONBLOCK, ...)
3558  *
3559  *	For datagram sockets, @addr is the addres to which datagrams are sent
3560  *	by default, and the only address from which datagrams are received.
3561  *	For stream sockets, attempts to connect to @addr.
3562  *	Returns 0 or an error code.
3563  */
3564 
3565 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3566 		   int flags)
3567 {
3568 	return sock->ops->connect(sock, addr, addrlen, flags);
3569 }
3570 EXPORT_SYMBOL(kernel_connect);
3571 
3572 /**
3573  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3574  *	@sock: socket
3575  *	@addr: address holder
3576  *
3577  * 	Fills the @addr pointer with the address which the socket is bound.
3578  *	Returns 0 or an error code.
3579  */
3580 
3581 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3582 {
3583 	return sock->ops->getname(sock, addr, 0);
3584 }
3585 EXPORT_SYMBOL(kernel_getsockname);
3586 
3587 /**
3588  *	kernel_peername - get the address which the socket is connected (kernel space)
3589  *	@sock: socket
3590  *	@addr: address holder
3591  *
3592  * 	Fills the @addr pointer with the address which the socket is connected.
3593  *	Returns 0 or an error code.
3594  */
3595 
3596 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3597 {
3598 	return sock->ops->getname(sock, addr, 1);
3599 }
3600 EXPORT_SYMBOL(kernel_getpeername);
3601 
3602 /**
3603  *	kernel_getsockopt - get a socket option (kernel space)
3604  *	@sock: socket
3605  *	@level: API level (SOL_SOCKET, ...)
3606  *	@optname: option tag
3607  *	@optval: option value
3608  *	@optlen: option length
3609  *
3610  *	Assigns the option length to @optlen.
3611  *	Returns 0 or an error.
3612  */
3613 
3614 int kernel_getsockopt(struct socket *sock, int level, int optname,
3615 			char *optval, int *optlen)
3616 {
3617 	mm_segment_t oldfs = get_fs();
3618 	char __user *uoptval;
3619 	int __user *uoptlen;
3620 	int err;
3621 
3622 	uoptval = (char __user __force *) optval;
3623 	uoptlen = (int __user __force *) optlen;
3624 
3625 	set_fs(KERNEL_DS);
3626 	if (level == SOL_SOCKET)
3627 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3628 	else
3629 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3630 					    uoptlen);
3631 	set_fs(oldfs);
3632 	return err;
3633 }
3634 EXPORT_SYMBOL(kernel_getsockopt);
3635 
3636 /**
3637  *	kernel_setsockopt - set a socket option (kernel space)
3638  *	@sock: socket
3639  *	@level: API level (SOL_SOCKET, ...)
3640  *	@optname: option tag
3641  *	@optval: option value
3642  *	@optlen: option length
3643  *
3644  *	Returns 0 or an error.
3645  */
3646 
3647 int kernel_setsockopt(struct socket *sock, int level, int optname,
3648 			char *optval, unsigned int optlen)
3649 {
3650 	mm_segment_t oldfs = get_fs();
3651 	char __user *uoptval;
3652 	int err;
3653 
3654 	uoptval = (char __user __force *) optval;
3655 
3656 	set_fs(KERNEL_DS);
3657 	if (level == SOL_SOCKET)
3658 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3659 	else
3660 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3661 					    optlen);
3662 	set_fs(oldfs);
3663 	return err;
3664 }
3665 EXPORT_SYMBOL(kernel_setsockopt);
3666 
3667 /**
3668  *	kernel_sendpage - send a &page through a socket (kernel space)
3669  *	@sock: socket
3670  *	@page: page
3671  *	@offset: page offset
3672  *	@size: total size in bytes
3673  *	@flags: flags (MSG_DONTWAIT, ...)
3674  *
3675  *	Returns the total amount sent in bytes or an error.
3676  */
3677 
3678 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3679 		    size_t size, int flags)
3680 {
3681 	if (sock->ops->sendpage)
3682 		return sock->ops->sendpage(sock, page, offset, size, flags);
3683 
3684 	return sock_no_sendpage(sock, page, offset, size, flags);
3685 }
3686 EXPORT_SYMBOL(kernel_sendpage);
3687 
3688 /**
3689  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3690  *	@sk: sock
3691  *	@page: page
3692  *	@offset: page offset
3693  *	@size: total size in bytes
3694  *	@flags: flags (MSG_DONTWAIT, ...)
3695  *
3696  *	Returns the total amount sent in bytes or an error.
3697  *	Caller must hold @sk.
3698  */
3699 
3700 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3701 			   size_t size, int flags)
3702 {
3703 	struct socket *sock = sk->sk_socket;
3704 
3705 	if (sock->ops->sendpage_locked)
3706 		return sock->ops->sendpage_locked(sk, page, offset, size,
3707 						  flags);
3708 
3709 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3710 }
3711 EXPORT_SYMBOL(kernel_sendpage_locked);
3712 
3713 /**
3714  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3715  *	@sock: socket
3716  *	@how: connection part
3717  *
3718  *	Returns 0 or an error.
3719  */
3720 
3721 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3722 {
3723 	return sock->ops->shutdown(sock, how);
3724 }
3725 EXPORT_SYMBOL(kernel_sock_shutdown);
3726 
3727 /**
3728  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3729  *	@sk: socket
3730  *
3731  *	This routine returns the IP overhead imposed by a socket i.e.
3732  *	the length of the underlying IP header, depending on whether
3733  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3734  *	on at the socket. Assumes that the caller has a lock on the socket.
3735  */
3736 
3737 u32 kernel_sock_ip_overhead(struct sock *sk)
3738 {
3739 	struct inet_sock *inet;
3740 	struct ip_options_rcu *opt;
3741 	u32 overhead = 0;
3742 #if IS_ENABLED(CONFIG_IPV6)
3743 	struct ipv6_pinfo *np;
3744 	struct ipv6_txoptions *optv6 = NULL;
3745 #endif /* IS_ENABLED(CONFIG_IPV6) */
3746 
3747 	if (!sk)
3748 		return overhead;
3749 
3750 	switch (sk->sk_family) {
3751 	case AF_INET:
3752 		inet = inet_sk(sk);
3753 		overhead += sizeof(struct iphdr);
3754 		opt = rcu_dereference_protected(inet->inet_opt,
3755 						sock_owned_by_user(sk));
3756 		if (opt)
3757 			overhead += opt->opt.optlen;
3758 		return overhead;
3759 #if IS_ENABLED(CONFIG_IPV6)
3760 	case AF_INET6:
3761 		np = inet6_sk(sk);
3762 		overhead += sizeof(struct ipv6hdr);
3763 		if (np)
3764 			optv6 = rcu_dereference_protected(np->opt,
3765 							  sock_owned_by_user(sk));
3766 		if (optv6)
3767 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3768 		return overhead;
3769 #endif /* IS_ENABLED(CONFIG_IPV6) */
3770 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3771 		return overhead;
3772 	}
3773 }
3774 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3775