1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 111 unsigned long nr_segs, loff_t pos); 112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 113 unsigned long nr_segs, loff_t pos); 114 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116 static int sock_close(struct inode *inode, struct file *file); 117 static unsigned int sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120 #ifdef CONFIG_COMPAT 121 static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123 #endif 124 static int sock_fasync(int fd, struct file *filp, int on); 125 static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131 /* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136 static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .aio_read = sock_aio_read, 140 .aio_write = sock_aio_write, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143 #ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145 #endif 146 .mmap = sock_mmap, 147 .open = sock_no_open, /* special open code to disallow open via /proc */ 148 .release = sock_close, 149 .fasync = sock_fasync, 150 .sendpage = sock_sendpage, 151 .splice_write = generic_splice_sendpage, 152 .splice_read = sock_splice_read, 153 }; 154 155 /* 156 * The protocol list. Each protocol is registered in here. 157 */ 158 159 static DEFINE_SPINLOCK(net_family_lock); 160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 161 162 /* 163 * Statistics counters of the socket lists 164 */ 165 166 static DEFINE_PER_CPU(int, sockets_in_use); 167 168 /* 169 * Support routines. 170 * Move socket addresses back and forth across the kernel/user 171 * divide and look after the messy bits. 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 214 void __user *uaddr, int __user *ulen) 215 { 216 int err; 217 int len; 218 219 err = get_user(len, ulen); 220 if (err) 221 return err; 222 if (len > klen) 223 len = klen; 224 if (len < 0 || len > sizeof(struct sockaddr_storage)) 225 return -EINVAL; 226 if (len) { 227 if (audit_sockaddr(klen, kaddr)) 228 return -ENOMEM; 229 if (copy_to_user(uaddr, kaddr, len)) 230 return -EFAULT; 231 } 232 /* 233 * "fromlen shall refer to the value before truncation.." 234 * 1003.1g 235 */ 236 return __put_user(klen, ulen); 237 } 238 239 static struct kmem_cache *sock_inode_cachep __read_mostly; 240 241 static struct inode *sock_alloc_inode(struct super_block *sb) 242 { 243 struct socket_alloc *ei; 244 struct socket_wq *wq; 245 246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 247 if (!ei) 248 return NULL; 249 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 250 if (!wq) { 251 kmem_cache_free(sock_inode_cachep, ei); 252 return NULL; 253 } 254 init_waitqueue_head(&wq->wait); 255 wq->fasync_list = NULL; 256 RCU_INIT_POINTER(ei->socket.wq, wq); 257 258 ei->socket.state = SS_UNCONNECTED; 259 ei->socket.flags = 0; 260 ei->socket.ops = NULL; 261 ei->socket.sk = NULL; 262 ei->socket.file = NULL; 263 264 return &ei->vfs_inode; 265 } 266 267 static void sock_destroy_inode(struct inode *inode) 268 { 269 struct socket_alloc *ei; 270 struct socket_wq *wq; 271 272 ei = container_of(inode, struct socket_alloc, vfs_inode); 273 wq = rcu_dereference_protected(ei->socket.wq, 1); 274 kfree_rcu(wq, rcu); 275 kmem_cache_free(sock_inode_cachep, ei); 276 } 277 278 static void init_once(void *foo) 279 { 280 struct socket_alloc *ei = (struct socket_alloc *)foo; 281 282 inode_init_once(&ei->vfs_inode); 283 } 284 285 static int init_inodecache(void) 286 { 287 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 288 sizeof(struct socket_alloc), 289 0, 290 (SLAB_HWCACHE_ALIGN | 291 SLAB_RECLAIM_ACCOUNT | 292 SLAB_MEM_SPREAD), 293 init_once); 294 if (sock_inode_cachep == NULL) 295 return -ENOMEM; 296 return 0; 297 } 298 299 static const struct super_operations sockfs_ops = { 300 .alloc_inode = sock_alloc_inode, 301 .destroy_inode = sock_destroy_inode, 302 .statfs = simple_statfs, 303 }; 304 305 /* 306 * sockfs_dname() is called from d_path(). 307 */ 308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 309 { 310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 311 dentry->d_inode->i_ino); 312 } 313 314 static const struct dentry_operations sockfs_dentry_operations = { 315 .d_dname = sockfs_dname, 316 }; 317 318 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 319 int flags, const char *dev_name, void *data) 320 { 321 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 322 &sockfs_dentry_operations, SOCKFS_MAGIC); 323 } 324 325 static struct vfsmount *sock_mnt __read_mostly; 326 327 static struct file_system_type sock_fs_type = { 328 .name = "sockfs", 329 .mount = sockfs_mount, 330 .kill_sb = kill_anon_super, 331 }; 332 333 /* 334 * Obtains the first available file descriptor and sets it up for use. 335 * 336 * These functions create file structures and maps them to fd space 337 * of the current process. On success it returns file descriptor 338 * and file struct implicitly stored in sock->file. 339 * Note that another thread may close file descriptor before we return 340 * from this function. We use the fact that now we do not refer 341 * to socket after mapping. If one day we will need it, this 342 * function will increment ref. count on file by 1. 343 * 344 * In any case returned fd MAY BE not valid! 345 * This race condition is unavoidable 346 * with shared fd spaces, we cannot solve it inside kernel, 347 * but we take care of internal coherence yet. 348 */ 349 350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 351 { 352 struct qstr name = { .name = "" }; 353 struct path path; 354 struct file *file; 355 356 if (dname) { 357 name.name = dname; 358 name.len = strlen(name.name); 359 } else if (sock->sk) { 360 name.name = sock->sk->sk_prot_creator->name; 361 name.len = strlen(name.name); 362 } 363 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 364 if (unlikely(!path.dentry)) 365 return ERR_PTR(-ENOMEM); 366 path.mnt = mntget(sock_mnt); 367 368 d_instantiate(path.dentry, SOCK_INODE(sock)); 369 SOCK_INODE(sock)->i_fop = &socket_file_ops; 370 371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 372 &socket_file_ops); 373 if (unlikely(!file)) { 374 /* drop dentry, keep inode */ 375 ihold(path.dentry->d_inode); 376 path_put(&path); 377 return ERR_PTR(-ENFILE); 378 } 379 380 sock->file = file; 381 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 382 file->f_pos = 0; 383 file->private_data = sock; 384 return file; 385 } 386 EXPORT_SYMBOL(sock_alloc_file); 387 388 static int sock_map_fd(struct socket *sock, int flags) 389 { 390 struct file *newfile; 391 int fd = get_unused_fd_flags(flags); 392 if (unlikely(fd < 0)) 393 return fd; 394 395 newfile = sock_alloc_file(sock, flags, NULL); 396 if (likely(!IS_ERR(newfile))) { 397 fd_install(fd, newfile); 398 return fd; 399 } 400 401 put_unused_fd(fd); 402 return PTR_ERR(newfile); 403 } 404 405 struct socket *sock_from_file(struct file *file, int *err) 406 { 407 if (file->f_op == &socket_file_ops) 408 return file->private_data; /* set in sock_map_fd */ 409 410 *err = -ENOTSOCK; 411 return NULL; 412 } 413 EXPORT_SYMBOL(sock_from_file); 414 415 /** 416 * sockfd_lookup - Go from a file number to its socket slot 417 * @fd: file handle 418 * @err: pointer to an error code return 419 * 420 * The file handle passed in is locked and the socket it is bound 421 * too is returned. If an error occurs the err pointer is overwritten 422 * with a negative errno code and NULL is returned. The function checks 423 * for both invalid handles and passing a handle which is not a socket. 424 * 425 * On a success the socket object pointer is returned. 426 */ 427 428 struct socket *sockfd_lookup(int fd, int *err) 429 { 430 struct file *file; 431 struct socket *sock; 432 433 file = fget(fd); 434 if (!file) { 435 *err = -EBADF; 436 return NULL; 437 } 438 439 sock = sock_from_file(file, err); 440 if (!sock) 441 fput(file); 442 return sock; 443 } 444 EXPORT_SYMBOL(sockfd_lookup); 445 446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 447 { 448 struct file *file; 449 struct socket *sock; 450 451 *err = -EBADF; 452 file = fget_light(fd, fput_needed); 453 if (file) { 454 sock = sock_from_file(file, err); 455 if (sock) 456 return sock; 457 fput_light(file, *fput_needed); 458 } 459 return NULL; 460 } 461 462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 465 static ssize_t sockfs_getxattr(struct dentry *dentry, 466 const char *name, void *value, size_t size) 467 { 468 const char *proto_name; 469 size_t proto_size; 470 int error; 471 472 error = -ENODATA; 473 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 474 proto_name = dentry->d_name.name; 475 proto_size = strlen(proto_name); 476 477 if (value) { 478 error = -ERANGE; 479 if (proto_size + 1 > size) 480 goto out; 481 482 strncpy(value, proto_name, proto_size + 1); 483 } 484 error = proto_size + 1; 485 } 486 487 out: 488 return error; 489 } 490 491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 492 size_t size) 493 { 494 ssize_t len; 495 ssize_t used = 0; 496 497 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 498 if (len < 0) 499 return len; 500 used += len; 501 if (buffer) { 502 if (size < used) 503 return -ERANGE; 504 buffer += len; 505 } 506 507 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 513 buffer += len; 514 } 515 516 return used; 517 } 518 519 static const struct inode_operations sockfs_inode_ops = { 520 .getxattr = sockfs_getxattr, 521 .listxattr = sockfs_listxattr, 522 }; 523 524 /** 525 * sock_alloc - allocate a socket 526 * 527 * Allocate a new inode and socket object. The two are bound together 528 * and initialised. The socket is then returned. If we are out of inodes 529 * NULL is returned. 530 */ 531 532 static struct socket *sock_alloc(void) 533 { 534 struct inode *inode; 535 struct socket *sock; 536 537 inode = new_inode_pseudo(sock_mnt->mnt_sb); 538 if (!inode) 539 return NULL; 540 541 sock = SOCKET_I(inode); 542 543 kmemcheck_annotate_bitfield(sock, type); 544 inode->i_ino = get_next_ino(); 545 inode->i_mode = S_IFSOCK | S_IRWXUGO; 546 inode->i_uid = current_fsuid(); 547 inode->i_gid = current_fsgid(); 548 inode->i_op = &sockfs_inode_ops; 549 550 this_cpu_add(sockets_in_use, 1); 551 return sock; 552 } 553 554 /* 555 * In theory you can't get an open on this inode, but /proc provides 556 * a back door. Remember to keep it shut otherwise you'll let the 557 * creepy crawlies in. 558 */ 559 560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 561 { 562 return -ENXIO; 563 } 564 565 const struct file_operations bad_sock_fops = { 566 .owner = THIS_MODULE, 567 .open = sock_no_open, 568 .llseek = noop_llseek, 569 }; 570 571 /** 572 * sock_release - close a socket 573 * @sock: socket to close 574 * 575 * The socket is released from the protocol stack if it has a release 576 * callback, and the inode is then released if the socket is bound to 577 * an inode not a file. 578 */ 579 580 void sock_release(struct socket *sock) 581 { 582 if (sock->ops) { 583 struct module *owner = sock->ops->owner; 584 585 sock->ops->release(sock); 586 sock->ops = NULL; 587 module_put(owner); 588 } 589 590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 591 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 592 593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 594 return; 595 596 this_cpu_sub(sockets_in_use, 1); 597 if (!sock->file) { 598 iput(SOCK_INODE(sock)); 599 return; 600 } 601 sock->file = NULL; 602 } 603 EXPORT_SYMBOL(sock_release); 604 605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 606 { 607 *tx_flags = 0; 608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 609 *tx_flags |= SKBTX_HW_TSTAMP; 610 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 611 *tx_flags |= SKBTX_SW_TSTAMP; 612 if (sock_flag(sk, SOCK_WIFI_STATUS)) 613 *tx_flags |= SKBTX_WIFI_STATUS; 614 return 0; 615 } 616 EXPORT_SYMBOL(sock_tx_timestamp); 617 618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 619 struct msghdr *msg, size_t size) 620 { 621 struct sock_iocb *si = kiocb_to_siocb(iocb); 622 623 sock_update_classid(sock->sk); 624 625 si->sock = sock; 626 si->scm = NULL; 627 si->msg = msg; 628 si->size = size; 629 630 return sock->ops->sendmsg(iocb, sock, msg, size); 631 } 632 633 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 634 struct msghdr *msg, size_t size) 635 { 636 int err = security_socket_sendmsg(sock, msg, size); 637 638 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 639 } 640 641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 642 { 643 struct kiocb iocb; 644 struct sock_iocb siocb; 645 int ret; 646 647 init_sync_kiocb(&iocb, NULL); 648 iocb.private = &siocb; 649 ret = __sock_sendmsg(&iocb, sock, msg, size); 650 if (-EIOCBQUEUED == ret) 651 ret = wait_on_sync_kiocb(&iocb); 652 return ret; 653 } 654 EXPORT_SYMBOL(sock_sendmsg); 655 656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 657 { 658 struct kiocb iocb; 659 struct sock_iocb siocb; 660 int ret; 661 662 init_sync_kiocb(&iocb, NULL); 663 iocb.private = &siocb; 664 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 665 if (-EIOCBQUEUED == ret) 666 ret = wait_on_sync_kiocb(&iocb); 667 return ret; 668 } 669 670 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 671 struct kvec *vec, size_t num, size_t size) 672 { 673 mm_segment_t oldfs = get_fs(); 674 int result; 675 676 set_fs(KERNEL_DS); 677 /* 678 * the following is safe, since for compiler definitions of kvec and 679 * iovec are identical, yielding the same in-core layout and alignment 680 */ 681 msg->msg_iov = (struct iovec *)vec; 682 msg->msg_iovlen = num; 683 result = sock_sendmsg(sock, msg, size); 684 set_fs(oldfs); 685 return result; 686 } 687 EXPORT_SYMBOL(kernel_sendmsg); 688 689 static int ktime2ts(ktime_t kt, struct timespec *ts) 690 { 691 if (kt.tv64) { 692 *ts = ktime_to_timespec(kt); 693 return 1; 694 } else { 695 return 0; 696 } 697 } 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct timespec ts[3]; 707 int empty = 1; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp.tv64 == 0) 714 __net_timestamp(skb); 715 716 if (need_software_tstamp) { 717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 718 struct timeval tv; 719 skb_get_timestamp(skb, &tv); 720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 721 sizeof(tv), &tv); 722 } else { 723 skb_get_timestampns(skb, &ts[0]); 724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 725 sizeof(ts[0]), &ts[0]); 726 } 727 } 728 729 730 memset(ts, 0, sizeof(ts)); 731 if (skb->tstamp.tv64 && 732 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 733 skb_get_timestampns(skb, ts + 0); 734 empty = 0; 735 } 736 if (shhwtstamps) { 737 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 738 ktime2ts(shhwtstamps->syststamp, ts + 1)) 739 empty = 0; 740 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 741 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 742 empty = 0; 743 } 744 if (!empty) 745 put_cmsg(msg, SOL_SOCKET, 746 SCM_TIMESTAMPING, sizeof(ts), &ts); 747 } 748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 749 750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 751 struct sk_buff *skb) 752 { 753 int ack; 754 755 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 756 return; 757 if (!skb->wifi_acked_valid) 758 return; 759 760 ack = skb->wifi_acked; 761 762 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 763 } 764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 765 766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 767 struct sk_buff *skb) 768 { 769 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 770 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 771 sizeof(__u32), &skb->dropcount); 772 } 773 774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 775 struct sk_buff *skb) 776 { 777 sock_recv_timestamp(msg, sk, skb); 778 sock_recv_drops(msg, sk, skb); 779 } 780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 781 782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 783 struct msghdr *msg, size_t size, int flags) 784 { 785 struct sock_iocb *si = kiocb_to_siocb(iocb); 786 787 sock_update_classid(sock->sk); 788 789 si->sock = sock; 790 si->scm = NULL; 791 si->msg = msg; 792 si->size = size; 793 si->flags = flags; 794 795 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 796 } 797 798 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 799 struct msghdr *msg, size_t size, int flags) 800 { 801 int err = security_socket_recvmsg(sock, msg, size, flags); 802 803 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 804 } 805 806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 807 size_t size, int flags) 808 { 809 struct kiocb iocb; 810 struct sock_iocb siocb; 811 int ret; 812 813 init_sync_kiocb(&iocb, NULL); 814 iocb.private = &siocb; 815 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 816 if (-EIOCBQUEUED == ret) 817 ret = wait_on_sync_kiocb(&iocb); 818 return ret; 819 } 820 EXPORT_SYMBOL(sock_recvmsg); 821 822 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 823 size_t size, int flags) 824 { 825 struct kiocb iocb; 826 struct sock_iocb siocb; 827 int ret; 828 829 init_sync_kiocb(&iocb, NULL); 830 iocb.private = &siocb; 831 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 832 if (-EIOCBQUEUED == ret) 833 ret = wait_on_sync_kiocb(&iocb); 834 return ret; 835 } 836 837 /** 838 * kernel_recvmsg - Receive a message from a socket (kernel space) 839 * @sock: The socket to receive the message from 840 * @msg: Received message 841 * @vec: Input s/g array for message data 842 * @num: Size of input s/g array 843 * @size: Number of bytes to read 844 * @flags: Message flags (MSG_DONTWAIT, etc...) 845 * 846 * On return the msg structure contains the scatter/gather array passed in the 847 * vec argument. The array is modified so that it consists of the unfilled 848 * portion of the original array. 849 * 850 * The returned value is the total number of bytes received, or an error. 851 */ 852 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 853 struct kvec *vec, size_t num, size_t size, int flags) 854 { 855 mm_segment_t oldfs = get_fs(); 856 int result; 857 858 set_fs(KERNEL_DS); 859 /* 860 * the following is safe, since for compiler definitions of kvec and 861 * iovec are identical, yielding the same in-core layout and alignment 862 */ 863 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 864 result = sock_recvmsg(sock, msg, size, flags); 865 set_fs(oldfs); 866 return result; 867 } 868 EXPORT_SYMBOL(kernel_recvmsg); 869 870 static void sock_aio_dtor(struct kiocb *iocb) 871 { 872 kfree(iocb->private); 873 } 874 875 static ssize_t sock_sendpage(struct file *file, struct page *page, 876 int offset, size_t size, loff_t *ppos, int more) 877 { 878 struct socket *sock; 879 int flags; 880 881 sock = file->private_data; 882 883 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 884 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 885 flags |= more; 886 887 return kernel_sendpage(sock, page, offset, size, flags); 888 } 889 890 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 891 struct pipe_inode_info *pipe, size_t len, 892 unsigned int flags) 893 { 894 struct socket *sock = file->private_data; 895 896 if (unlikely(!sock->ops->splice_read)) 897 return -EINVAL; 898 899 sock_update_classid(sock->sk); 900 901 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 902 } 903 904 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 905 struct sock_iocb *siocb) 906 { 907 if (!is_sync_kiocb(iocb)) { 908 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 909 if (!siocb) 910 return NULL; 911 iocb->ki_dtor = sock_aio_dtor; 912 } 913 914 siocb->kiocb = iocb; 915 iocb->private = siocb; 916 return siocb; 917 } 918 919 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 920 struct file *file, const struct iovec *iov, 921 unsigned long nr_segs) 922 { 923 struct socket *sock = file->private_data; 924 size_t size = 0; 925 int i; 926 927 for (i = 0; i < nr_segs; i++) 928 size += iov[i].iov_len; 929 930 msg->msg_name = NULL; 931 msg->msg_namelen = 0; 932 msg->msg_control = NULL; 933 msg->msg_controllen = 0; 934 msg->msg_iov = (struct iovec *)iov; 935 msg->msg_iovlen = nr_segs; 936 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 937 938 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 939 } 940 941 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 942 unsigned long nr_segs, loff_t pos) 943 { 944 struct sock_iocb siocb, *x; 945 946 if (pos != 0) 947 return -ESPIPE; 948 949 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 950 return 0; 951 952 953 x = alloc_sock_iocb(iocb, &siocb); 954 if (!x) 955 return -ENOMEM; 956 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 957 } 958 959 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 960 struct file *file, const struct iovec *iov, 961 unsigned long nr_segs) 962 { 963 struct socket *sock = file->private_data; 964 size_t size = 0; 965 int i; 966 967 for (i = 0; i < nr_segs; i++) 968 size += iov[i].iov_len; 969 970 msg->msg_name = NULL; 971 msg->msg_namelen = 0; 972 msg->msg_control = NULL; 973 msg->msg_controllen = 0; 974 msg->msg_iov = (struct iovec *)iov; 975 msg->msg_iovlen = nr_segs; 976 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 977 if (sock->type == SOCK_SEQPACKET) 978 msg->msg_flags |= MSG_EOR; 979 980 return __sock_sendmsg(iocb, sock, msg, size); 981 } 982 983 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 984 unsigned long nr_segs, loff_t pos) 985 { 986 struct sock_iocb siocb, *x; 987 988 if (pos != 0) 989 return -ESPIPE; 990 991 x = alloc_sock_iocb(iocb, &siocb); 992 if (!x) 993 return -ENOMEM; 994 995 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 996 } 997 998 /* 999 * Atomic setting of ioctl hooks to avoid race 1000 * with module unload. 1001 */ 1002 1003 static DEFINE_MUTEX(br_ioctl_mutex); 1004 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1005 1006 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1007 { 1008 mutex_lock(&br_ioctl_mutex); 1009 br_ioctl_hook = hook; 1010 mutex_unlock(&br_ioctl_mutex); 1011 } 1012 EXPORT_SYMBOL(brioctl_set); 1013 1014 static DEFINE_MUTEX(vlan_ioctl_mutex); 1015 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1016 1017 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1018 { 1019 mutex_lock(&vlan_ioctl_mutex); 1020 vlan_ioctl_hook = hook; 1021 mutex_unlock(&vlan_ioctl_mutex); 1022 } 1023 EXPORT_SYMBOL(vlan_ioctl_set); 1024 1025 static DEFINE_MUTEX(dlci_ioctl_mutex); 1026 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1027 1028 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1029 { 1030 mutex_lock(&dlci_ioctl_mutex); 1031 dlci_ioctl_hook = hook; 1032 mutex_unlock(&dlci_ioctl_mutex); 1033 } 1034 EXPORT_SYMBOL(dlci_ioctl_set); 1035 1036 static long sock_do_ioctl(struct net *net, struct socket *sock, 1037 unsigned int cmd, unsigned long arg) 1038 { 1039 int err; 1040 void __user *argp = (void __user *)arg; 1041 1042 err = sock->ops->ioctl(sock, cmd, arg); 1043 1044 /* 1045 * If this ioctl is unknown try to hand it down 1046 * to the NIC driver. 1047 */ 1048 if (err == -ENOIOCTLCMD) 1049 err = dev_ioctl(net, cmd, argp); 1050 1051 return err; 1052 } 1053 1054 /* 1055 * With an ioctl, arg may well be a user mode pointer, but we don't know 1056 * what to do with it - that's up to the protocol still. 1057 */ 1058 1059 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1060 { 1061 struct socket *sock; 1062 struct sock *sk; 1063 void __user *argp = (void __user *)arg; 1064 int pid, err; 1065 struct net *net; 1066 1067 sock = file->private_data; 1068 sk = sock->sk; 1069 net = sock_net(sk); 1070 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1071 err = dev_ioctl(net, cmd, argp); 1072 } else 1073 #ifdef CONFIG_WEXT_CORE 1074 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1075 err = dev_ioctl(net, cmd, argp); 1076 } else 1077 #endif 1078 switch (cmd) { 1079 case FIOSETOWN: 1080 case SIOCSPGRP: 1081 err = -EFAULT; 1082 if (get_user(pid, (int __user *)argp)) 1083 break; 1084 err = f_setown(sock->file, pid, 1); 1085 break; 1086 case FIOGETOWN: 1087 case SIOCGPGRP: 1088 err = put_user(f_getown(sock->file), 1089 (int __user *)argp); 1090 break; 1091 case SIOCGIFBR: 1092 case SIOCSIFBR: 1093 case SIOCBRADDBR: 1094 case SIOCBRDELBR: 1095 err = -ENOPKG; 1096 if (!br_ioctl_hook) 1097 request_module("bridge"); 1098 1099 mutex_lock(&br_ioctl_mutex); 1100 if (br_ioctl_hook) 1101 err = br_ioctl_hook(net, cmd, argp); 1102 mutex_unlock(&br_ioctl_mutex); 1103 break; 1104 case SIOCGIFVLAN: 1105 case SIOCSIFVLAN: 1106 err = -ENOPKG; 1107 if (!vlan_ioctl_hook) 1108 request_module("8021q"); 1109 1110 mutex_lock(&vlan_ioctl_mutex); 1111 if (vlan_ioctl_hook) 1112 err = vlan_ioctl_hook(net, argp); 1113 mutex_unlock(&vlan_ioctl_mutex); 1114 break; 1115 case SIOCADDDLCI: 1116 case SIOCDELDLCI: 1117 err = -ENOPKG; 1118 if (!dlci_ioctl_hook) 1119 request_module("dlci"); 1120 1121 mutex_lock(&dlci_ioctl_mutex); 1122 if (dlci_ioctl_hook) 1123 err = dlci_ioctl_hook(cmd, argp); 1124 mutex_unlock(&dlci_ioctl_mutex); 1125 break; 1126 default: 1127 err = sock_do_ioctl(net, sock, cmd, arg); 1128 break; 1129 } 1130 return err; 1131 } 1132 1133 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1134 { 1135 int err; 1136 struct socket *sock = NULL; 1137 1138 err = security_socket_create(family, type, protocol, 1); 1139 if (err) 1140 goto out; 1141 1142 sock = sock_alloc(); 1143 if (!sock) { 1144 err = -ENOMEM; 1145 goto out; 1146 } 1147 1148 sock->type = type; 1149 err = security_socket_post_create(sock, family, type, protocol, 1); 1150 if (err) 1151 goto out_release; 1152 1153 out: 1154 *res = sock; 1155 return err; 1156 out_release: 1157 sock_release(sock); 1158 sock = NULL; 1159 goto out; 1160 } 1161 EXPORT_SYMBOL(sock_create_lite); 1162 1163 /* No kernel lock held - perfect */ 1164 static unsigned int sock_poll(struct file *file, poll_table *wait) 1165 { 1166 struct socket *sock; 1167 1168 /* 1169 * We can't return errors to poll, so it's either yes or no. 1170 */ 1171 sock = file->private_data; 1172 return sock->ops->poll(file, sock, wait); 1173 } 1174 1175 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1176 { 1177 struct socket *sock = file->private_data; 1178 1179 return sock->ops->mmap(file, sock, vma); 1180 } 1181 1182 static int sock_close(struct inode *inode, struct file *filp) 1183 { 1184 /* 1185 * It was possible the inode is NULL we were 1186 * closing an unfinished socket. 1187 */ 1188 1189 if (!inode) { 1190 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1191 return 0; 1192 } 1193 sock_release(SOCKET_I(inode)); 1194 return 0; 1195 } 1196 1197 /* 1198 * Update the socket async list 1199 * 1200 * Fasync_list locking strategy. 1201 * 1202 * 1. fasync_list is modified only under process context socket lock 1203 * i.e. under semaphore. 1204 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1205 * or under socket lock 1206 */ 1207 1208 static int sock_fasync(int fd, struct file *filp, int on) 1209 { 1210 struct socket *sock = filp->private_data; 1211 struct sock *sk = sock->sk; 1212 struct socket_wq *wq; 1213 1214 if (sk == NULL) 1215 return -EINVAL; 1216 1217 lock_sock(sk); 1218 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1219 fasync_helper(fd, filp, on, &wq->fasync_list); 1220 1221 if (!wq->fasync_list) 1222 sock_reset_flag(sk, SOCK_FASYNC); 1223 else 1224 sock_set_flag(sk, SOCK_FASYNC); 1225 1226 release_sock(sk); 1227 return 0; 1228 } 1229 1230 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1231 1232 int sock_wake_async(struct socket *sock, int how, int band) 1233 { 1234 struct socket_wq *wq; 1235 1236 if (!sock) 1237 return -1; 1238 rcu_read_lock(); 1239 wq = rcu_dereference(sock->wq); 1240 if (!wq || !wq->fasync_list) { 1241 rcu_read_unlock(); 1242 return -1; 1243 } 1244 switch (how) { 1245 case SOCK_WAKE_WAITD: 1246 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1247 break; 1248 goto call_kill; 1249 case SOCK_WAKE_SPACE: 1250 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1251 break; 1252 /* fall through */ 1253 case SOCK_WAKE_IO: 1254 call_kill: 1255 kill_fasync(&wq->fasync_list, SIGIO, band); 1256 break; 1257 case SOCK_WAKE_URG: 1258 kill_fasync(&wq->fasync_list, SIGURG, band); 1259 } 1260 rcu_read_unlock(); 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(sock_wake_async); 1264 1265 int __sock_create(struct net *net, int family, int type, int protocol, 1266 struct socket **res, int kern) 1267 { 1268 int err; 1269 struct socket *sock; 1270 const struct net_proto_family *pf; 1271 1272 /* 1273 * Check protocol is in range 1274 */ 1275 if (family < 0 || family >= NPROTO) 1276 return -EAFNOSUPPORT; 1277 if (type < 0 || type >= SOCK_MAX) 1278 return -EINVAL; 1279 1280 /* Compatibility. 1281 1282 This uglymoron is moved from INET layer to here to avoid 1283 deadlock in module load. 1284 */ 1285 if (family == PF_INET && type == SOCK_PACKET) { 1286 static int warned; 1287 if (!warned) { 1288 warned = 1; 1289 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1290 current->comm); 1291 } 1292 family = PF_PACKET; 1293 } 1294 1295 err = security_socket_create(family, type, protocol, kern); 1296 if (err) 1297 return err; 1298 1299 /* 1300 * Allocate the socket and allow the family to set things up. if 1301 * the protocol is 0, the family is instructed to select an appropriate 1302 * default. 1303 */ 1304 sock = sock_alloc(); 1305 if (!sock) { 1306 net_warn_ratelimited("socket: no more sockets\n"); 1307 return -ENFILE; /* Not exactly a match, but its the 1308 closest posix thing */ 1309 } 1310 1311 sock->type = type; 1312 1313 #ifdef CONFIG_MODULES 1314 /* Attempt to load a protocol module if the find failed. 1315 * 1316 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1317 * requested real, full-featured networking support upon configuration. 1318 * Otherwise module support will break! 1319 */ 1320 if (rcu_access_pointer(net_families[family]) == NULL) 1321 request_module("net-pf-%d", family); 1322 #endif 1323 1324 rcu_read_lock(); 1325 pf = rcu_dereference(net_families[family]); 1326 err = -EAFNOSUPPORT; 1327 if (!pf) 1328 goto out_release; 1329 1330 /* 1331 * We will call the ->create function, that possibly is in a loadable 1332 * module, so we have to bump that loadable module refcnt first. 1333 */ 1334 if (!try_module_get(pf->owner)) 1335 goto out_release; 1336 1337 /* Now protected by module ref count */ 1338 rcu_read_unlock(); 1339 1340 err = pf->create(net, sock, protocol, kern); 1341 if (err < 0) 1342 goto out_module_put; 1343 1344 /* 1345 * Now to bump the refcnt of the [loadable] module that owns this 1346 * socket at sock_release time we decrement its refcnt. 1347 */ 1348 if (!try_module_get(sock->ops->owner)) 1349 goto out_module_busy; 1350 1351 /* 1352 * Now that we're done with the ->create function, the [loadable] 1353 * module can have its refcnt decremented 1354 */ 1355 module_put(pf->owner); 1356 err = security_socket_post_create(sock, family, type, protocol, kern); 1357 if (err) 1358 goto out_sock_release; 1359 *res = sock; 1360 1361 return 0; 1362 1363 out_module_busy: 1364 err = -EAFNOSUPPORT; 1365 out_module_put: 1366 sock->ops = NULL; 1367 module_put(pf->owner); 1368 out_sock_release: 1369 sock_release(sock); 1370 return err; 1371 1372 out_release: 1373 rcu_read_unlock(); 1374 goto out_sock_release; 1375 } 1376 EXPORT_SYMBOL(__sock_create); 1377 1378 int sock_create(int family, int type, int protocol, struct socket **res) 1379 { 1380 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1381 } 1382 EXPORT_SYMBOL(sock_create); 1383 1384 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1385 { 1386 return __sock_create(&init_net, family, type, protocol, res, 1); 1387 } 1388 EXPORT_SYMBOL(sock_create_kern); 1389 1390 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1391 { 1392 int retval; 1393 struct socket *sock; 1394 int flags; 1395 1396 /* Check the SOCK_* constants for consistency. */ 1397 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1398 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1399 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1400 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1401 1402 flags = type & ~SOCK_TYPE_MASK; 1403 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1404 return -EINVAL; 1405 type &= SOCK_TYPE_MASK; 1406 1407 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1408 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1409 1410 retval = sock_create(family, type, protocol, &sock); 1411 if (retval < 0) 1412 goto out; 1413 1414 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1415 if (retval < 0) 1416 goto out_release; 1417 1418 out: 1419 /* It may be already another descriptor 8) Not kernel problem. */ 1420 return retval; 1421 1422 out_release: 1423 sock_release(sock); 1424 return retval; 1425 } 1426 1427 /* 1428 * Create a pair of connected sockets. 1429 */ 1430 1431 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1432 int __user *, usockvec) 1433 { 1434 struct socket *sock1, *sock2; 1435 int fd1, fd2, err; 1436 struct file *newfile1, *newfile2; 1437 int flags; 1438 1439 flags = type & ~SOCK_TYPE_MASK; 1440 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1441 return -EINVAL; 1442 type &= SOCK_TYPE_MASK; 1443 1444 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1445 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1446 1447 /* 1448 * Obtain the first socket and check if the underlying protocol 1449 * supports the socketpair call. 1450 */ 1451 1452 err = sock_create(family, type, protocol, &sock1); 1453 if (err < 0) 1454 goto out; 1455 1456 err = sock_create(family, type, protocol, &sock2); 1457 if (err < 0) 1458 goto out_release_1; 1459 1460 err = sock1->ops->socketpair(sock1, sock2); 1461 if (err < 0) 1462 goto out_release_both; 1463 1464 fd1 = get_unused_fd_flags(flags); 1465 if (unlikely(fd1 < 0)) { 1466 err = fd1; 1467 goto out_release_both; 1468 } 1469 fd2 = get_unused_fd_flags(flags); 1470 if (unlikely(fd2 < 0)) { 1471 err = fd2; 1472 put_unused_fd(fd1); 1473 goto out_release_both; 1474 } 1475 1476 newfile1 = sock_alloc_file(sock1, flags, NULL); 1477 if (unlikely(IS_ERR(newfile1))) { 1478 err = PTR_ERR(newfile1); 1479 put_unused_fd(fd1); 1480 put_unused_fd(fd2); 1481 goto out_release_both; 1482 } 1483 1484 newfile2 = sock_alloc_file(sock2, flags, NULL); 1485 if (IS_ERR(newfile2)) { 1486 err = PTR_ERR(newfile2); 1487 fput(newfile1); 1488 put_unused_fd(fd1); 1489 put_unused_fd(fd2); 1490 sock_release(sock2); 1491 goto out; 1492 } 1493 1494 audit_fd_pair(fd1, fd2); 1495 fd_install(fd1, newfile1); 1496 fd_install(fd2, newfile2); 1497 /* fd1 and fd2 may be already another descriptors. 1498 * Not kernel problem. 1499 */ 1500 1501 err = put_user(fd1, &usockvec[0]); 1502 if (!err) 1503 err = put_user(fd2, &usockvec[1]); 1504 if (!err) 1505 return 0; 1506 1507 sys_close(fd2); 1508 sys_close(fd1); 1509 return err; 1510 1511 out_release_both: 1512 sock_release(sock2); 1513 out_release_1: 1514 sock_release(sock1); 1515 out: 1516 return err; 1517 } 1518 1519 /* 1520 * Bind a name to a socket. Nothing much to do here since it's 1521 * the protocol's responsibility to handle the local address. 1522 * 1523 * We move the socket address to kernel space before we call 1524 * the protocol layer (having also checked the address is ok). 1525 */ 1526 1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1528 { 1529 struct socket *sock; 1530 struct sockaddr_storage address; 1531 int err, fput_needed; 1532 1533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1534 if (sock) { 1535 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1536 if (err >= 0) { 1537 err = security_socket_bind(sock, 1538 (struct sockaddr *)&address, 1539 addrlen); 1540 if (!err) 1541 err = sock->ops->bind(sock, 1542 (struct sockaddr *) 1543 &address, addrlen); 1544 } 1545 fput_light(sock->file, fput_needed); 1546 } 1547 return err; 1548 } 1549 1550 /* 1551 * Perform a listen. Basically, we allow the protocol to do anything 1552 * necessary for a listen, and if that works, we mark the socket as 1553 * ready for listening. 1554 */ 1555 1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1557 { 1558 struct socket *sock; 1559 int err, fput_needed; 1560 int somaxconn; 1561 1562 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1563 if (sock) { 1564 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1565 if ((unsigned int)backlog > somaxconn) 1566 backlog = somaxconn; 1567 1568 err = security_socket_listen(sock, backlog); 1569 if (!err) 1570 err = sock->ops->listen(sock, backlog); 1571 1572 fput_light(sock->file, fput_needed); 1573 } 1574 return err; 1575 } 1576 1577 /* 1578 * For accept, we attempt to create a new socket, set up the link 1579 * with the client, wake up the client, then return the new 1580 * connected fd. We collect the address of the connector in kernel 1581 * space and move it to user at the very end. This is unclean because 1582 * we open the socket then return an error. 1583 * 1584 * 1003.1g adds the ability to recvmsg() to query connection pending 1585 * status to recvmsg. We need to add that support in a way thats 1586 * clean when we restucture accept also. 1587 */ 1588 1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1590 int __user *, upeer_addrlen, int, flags) 1591 { 1592 struct socket *sock, *newsock; 1593 struct file *newfile; 1594 int err, len, newfd, fput_needed; 1595 struct sockaddr_storage address; 1596 1597 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1598 return -EINVAL; 1599 1600 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1601 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1602 1603 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1604 if (!sock) 1605 goto out; 1606 1607 err = -ENFILE; 1608 newsock = sock_alloc(); 1609 if (!newsock) 1610 goto out_put; 1611 1612 newsock->type = sock->type; 1613 newsock->ops = sock->ops; 1614 1615 /* 1616 * We don't need try_module_get here, as the listening socket (sock) 1617 * has the protocol module (sock->ops->owner) held. 1618 */ 1619 __module_get(newsock->ops->owner); 1620 1621 newfd = get_unused_fd_flags(flags); 1622 if (unlikely(newfd < 0)) { 1623 err = newfd; 1624 sock_release(newsock); 1625 goto out_put; 1626 } 1627 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1628 if (unlikely(IS_ERR(newfile))) { 1629 err = PTR_ERR(newfile); 1630 put_unused_fd(newfd); 1631 sock_release(newsock); 1632 goto out_put; 1633 } 1634 1635 err = security_socket_accept(sock, newsock); 1636 if (err) 1637 goto out_fd; 1638 1639 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1640 if (err < 0) 1641 goto out_fd; 1642 1643 if (upeer_sockaddr) { 1644 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1645 &len, 2) < 0) { 1646 err = -ECONNABORTED; 1647 goto out_fd; 1648 } 1649 err = move_addr_to_user(&address, 1650 len, upeer_sockaddr, upeer_addrlen); 1651 if (err < 0) 1652 goto out_fd; 1653 } 1654 1655 /* File flags are not inherited via accept() unlike another OSes. */ 1656 1657 fd_install(newfd, newfile); 1658 err = newfd; 1659 1660 out_put: 1661 fput_light(sock->file, fput_needed); 1662 out: 1663 return err; 1664 out_fd: 1665 fput(newfile); 1666 put_unused_fd(newfd); 1667 goto out_put; 1668 } 1669 1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1671 int __user *, upeer_addrlen) 1672 { 1673 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1674 } 1675 1676 /* 1677 * Attempt to connect to a socket with the server address. The address 1678 * is in user space so we verify it is OK and move it to kernel space. 1679 * 1680 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1681 * break bindings 1682 * 1683 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1684 * other SEQPACKET protocols that take time to connect() as it doesn't 1685 * include the -EINPROGRESS status for such sockets. 1686 */ 1687 1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1689 int, addrlen) 1690 { 1691 struct socket *sock; 1692 struct sockaddr_storage address; 1693 int err, fput_needed; 1694 1695 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1696 if (!sock) 1697 goto out; 1698 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1699 if (err < 0) 1700 goto out_put; 1701 1702 err = 1703 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1704 if (err) 1705 goto out_put; 1706 1707 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1708 sock->file->f_flags); 1709 out_put: 1710 fput_light(sock->file, fput_needed); 1711 out: 1712 return err; 1713 } 1714 1715 /* 1716 * Get the local address ('name') of a socket object. Move the obtained 1717 * name to user space. 1718 */ 1719 1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1721 int __user *, usockaddr_len) 1722 { 1723 struct socket *sock; 1724 struct sockaddr_storage address; 1725 int len, err, fput_needed; 1726 1727 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1728 if (!sock) 1729 goto out; 1730 1731 err = security_socket_getsockname(sock); 1732 if (err) 1733 goto out_put; 1734 1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1736 if (err) 1737 goto out_put; 1738 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1739 1740 out_put: 1741 fput_light(sock->file, fput_needed); 1742 out: 1743 return err; 1744 } 1745 1746 /* 1747 * Get the remote address ('name') of a socket object. Move the obtained 1748 * name to user space. 1749 */ 1750 1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1752 int __user *, usockaddr_len) 1753 { 1754 struct socket *sock; 1755 struct sockaddr_storage address; 1756 int len, err, fput_needed; 1757 1758 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1759 if (sock != NULL) { 1760 err = security_socket_getpeername(sock); 1761 if (err) { 1762 fput_light(sock->file, fput_needed); 1763 return err; 1764 } 1765 1766 err = 1767 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1768 1); 1769 if (!err) 1770 err = move_addr_to_user(&address, len, usockaddr, 1771 usockaddr_len); 1772 fput_light(sock->file, fput_needed); 1773 } 1774 return err; 1775 } 1776 1777 /* 1778 * Send a datagram to a given address. We move the address into kernel 1779 * space and check the user space data area is readable before invoking 1780 * the protocol. 1781 */ 1782 1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1784 unsigned int, flags, struct sockaddr __user *, addr, 1785 int, addr_len) 1786 { 1787 struct socket *sock; 1788 struct sockaddr_storage address; 1789 int err; 1790 struct msghdr msg; 1791 struct iovec iov; 1792 int fput_needed; 1793 1794 if (len > INT_MAX) 1795 len = INT_MAX; 1796 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1797 if (!sock) 1798 goto out; 1799 1800 iov.iov_base = buff; 1801 iov.iov_len = len; 1802 msg.msg_name = NULL; 1803 msg.msg_iov = &iov; 1804 msg.msg_iovlen = 1; 1805 msg.msg_control = NULL; 1806 msg.msg_controllen = 0; 1807 msg.msg_namelen = 0; 1808 if (addr) { 1809 err = move_addr_to_kernel(addr, addr_len, &address); 1810 if (err < 0) 1811 goto out_put; 1812 msg.msg_name = (struct sockaddr *)&address; 1813 msg.msg_namelen = addr_len; 1814 } 1815 if (sock->file->f_flags & O_NONBLOCK) 1816 flags |= MSG_DONTWAIT; 1817 msg.msg_flags = flags; 1818 err = sock_sendmsg(sock, &msg, len); 1819 1820 out_put: 1821 fput_light(sock->file, fput_needed); 1822 out: 1823 return err; 1824 } 1825 1826 /* 1827 * Send a datagram down a socket. 1828 */ 1829 1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1831 unsigned int, flags) 1832 { 1833 return sys_sendto(fd, buff, len, flags, NULL, 0); 1834 } 1835 1836 /* 1837 * Receive a frame from the socket and optionally record the address of the 1838 * sender. We verify the buffers are writable and if needed move the 1839 * sender address from kernel to user space. 1840 */ 1841 1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1843 unsigned int, flags, struct sockaddr __user *, addr, 1844 int __user *, addr_len) 1845 { 1846 struct socket *sock; 1847 struct iovec iov; 1848 struct msghdr msg; 1849 struct sockaddr_storage address; 1850 int err, err2; 1851 int fput_needed; 1852 1853 if (size > INT_MAX) 1854 size = INT_MAX; 1855 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1856 if (!sock) 1857 goto out; 1858 1859 msg.msg_control = NULL; 1860 msg.msg_controllen = 0; 1861 msg.msg_iovlen = 1; 1862 msg.msg_iov = &iov; 1863 iov.iov_len = size; 1864 iov.iov_base = ubuf; 1865 msg.msg_name = (struct sockaddr *)&address; 1866 msg.msg_namelen = sizeof(address); 1867 if (sock->file->f_flags & O_NONBLOCK) 1868 flags |= MSG_DONTWAIT; 1869 err = sock_recvmsg(sock, &msg, size, flags); 1870 1871 if (err >= 0 && addr != NULL) { 1872 err2 = move_addr_to_user(&address, 1873 msg.msg_namelen, addr, addr_len); 1874 if (err2 < 0) 1875 err = err2; 1876 } 1877 1878 fput_light(sock->file, fput_needed); 1879 out: 1880 return err; 1881 } 1882 1883 /* 1884 * Receive a datagram from a socket. 1885 */ 1886 1887 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1888 unsigned int flags) 1889 { 1890 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1891 } 1892 1893 /* 1894 * Set a socket option. Because we don't know the option lengths we have 1895 * to pass the user mode parameter for the protocols to sort out. 1896 */ 1897 1898 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1899 char __user *, optval, int, optlen) 1900 { 1901 int err, fput_needed; 1902 struct socket *sock; 1903 1904 if (optlen < 0) 1905 return -EINVAL; 1906 1907 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1908 if (sock != NULL) { 1909 err = security_socket_setsockopt(sock, level, optname); 1910 if (err) 1911 goto out_put; 1912 1913 if (level == SOL_SOCKET) 1914 err = 1915 sock_setsockopt(sock, level, optname, optval, 1916 optlen); 1917 else 1918 err = 1919 sock->ops->setsockopt(sock, level, optname, optval, 1920 optlen); 1921 out_put: 1922 fput_light(sock->file, fput_needed); 1923 } 1924 return err; 1925 } 1926 1927 /* 1928 * Get a socket option. Because we don't know the option lengths we have 1929 * to pass a user mode parameter for the protocols to sort out. 1930 */ 1931 1932 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1933 char __user *, optval, int __user *, optlen) 1934 { 1935 int err, fput_needed; 1936 struct socket *sock; 1937 1938 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1939 if (sock != NULL) { 1940 err = security_socket_getsockopt(sock, level, optname); 1941 if (err) 1942 goto out_put; 1943 1944 if (level == SOL_SOCKET) 1945 err = 1946 sock_getsockopt(sock, level, optname, optval, 1947 optlen); 1948 else 1949 err = 1950 sock->ops->getsockopt(sock, level, optname, optval, 1951 optlen); 1952 out_put: 1953 fput_light(sock->file, fput_needed); 1954 } 1955 return err; 1956 } 1957 1958 /* 1959 * Shutdown a socket. 1960 */ 1961 1962 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1963 { 1964 int err, fput_needed; 1965 struct socket *sock; 1966 1967 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1968 if (sock != NULL) { 1969 err = security_socket_shutdown(sock, how); 1970 if (!err) 1971 err = sock->ops->shutdown(sock, how); 1972 fput_light(sock->file, fput_needed); 1973 } 1974 return err; 1975 } 1976 1977 /* A couple of helpful macros for getting the address of the 32/64 bit 1978 * fields which are the same type (int / unsigned) on our platforms. 1979 */ 1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1983 1984 struct used_address { 1985 struct sockaddr_storage name; 1986 unsigned int name_len; 1987 }; 1988 1989 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1990 struct msghdr *msg_sys, unsigned int flags, 1991 struct used_address *used_address) 1992 { 1993 struct compat_msghdr __user *msg_compat = 1994 (struct compat_msghdr __user *)msg; 1995 struct sockaddr_storage address; 1996 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1997 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1998 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1999 /* 20 is size of ipv6_pktinfo */ 2000 unsigned char *ctl_buf = ctl; 2001 int err, ctl_len, total_len; 2002 2003 err = -EFAULT; 2004 if (MSG_CMSG_COMPAT & flags) { 2005 if (get_compat_msghdr(msg_sys, msg_compat)) 2006 return -EFAULT; 2007 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2008 return -EFAULT; 2009 2010 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2011 err = -EMSGSIZE; 2012 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2013 goto out; 2014 err = -ENOMEM; 2015 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2016 GFP_KERNEL); 2017 if (!iov) 2018 goto out; 2019 } 2020 2021 /* This will also move the address data into kernel space */ 2022 if (MSG_CMSG_COMPAT & flags) { 2023 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2024 } else 2025 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2026 if (err < 0) 2027 goto out_freeiov; 2028 total_len = err; 2029 2030 err = -ENOBUFS; 2031 2032 if (msg_sys->msg_controllen > INT_MAX) 2033 goto out_freeiov; 2034 ctl_len = msg_sys->msg_controllen; 2035 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2036 err = 2037 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2038 sizeof(ctl)); 2039 if (err) 2040 goto out_freeiov; 2041 ctl_buf = msg_sys->msg_control; 2042 ctl_len = msg_sys->msg_controllen; 2043 } else if (ctl_len) { 2044 if (ctl_len > sizeof(ctl)) { 2045 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2046 if (ctl_buf == NULL) 2047 goto out_freeiov; 2048 } 2049 err = -EFAULT; 2050 /* 2051 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2052 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2053 * checking falls down on this. 2054 */ 2055 if (copy_from_user(ctl_buf, 2056 (void __user __force *)msg_sys->msg_control, 2057 ctl_len)) 2058 goto out_freectl; 2059 msg_sys->msg_control = ctl_buf; 2060 } 2061 msg_sys->msg_flags = flags; 2062 2063 if (sock->file->f_flags & O_NONBLOCK) 2064 msg_sys->msg_flags |= MSG_DONTWAIT; 2065 /* 2066 * If this is sendmmsg() and current destination address is same as 2067 * previously succeeded address, omit asking LSM's decision. 2068 * used_address->name_len is initialized to UINT_MAX so that the first 2069 * destination address never matches. 2070 */ 2071 if (used_address && msg_sys->msg_name && 2072 used_address->name_len == msg_sys->msg_namelen && 2073 !memcmp(&used_address->name, msg_sys->msg_name, 2074 used_address->name_len)) { 2075 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2076 goto out_freectl; 2077 } 2078 err = sock_sendmsg(sock, msg_sys, total_len); 2079 /* 2080 * If this is sendmmsg() and sending to current destination address was 2081 * successful, remember it. 2082 */ 2083 if (used_address && err >= 0) { 2084 used_address->name_len = msg_sys->msg_namelen; 2085 if (msg_sys->msg_name) 2086 memcpy(&used_address->name, msg_sys->msg_name, 2087 used_address->name_len); 2088 } 2089 2090 out_freectl: 2091 if (ctl_buf != ctl) 2092 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2093 out_freeiov: 2094 if (iov != iovstack) 2095 kfree(iov); 2096 out: 2097 return err; 2098 } 2099 2100 /* 2101 * BSD sendmsg interface 2102 */ 2103 2104 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2105 { 2106 int fput_needed, err; 2107 struct msghdr msg_sys; 2108 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2109 2110 if (!sock) 2111 goto out; 2112 2113 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2114 2115 fput_light(sock->file, fput_needed); 2116 out: 2117 return err; 2118 } 2119 2120 /* 2121 * Linux sendmmsg interface 2122 */ 2123 2124 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2125 unsigned int flags) 2126 { 2127 int fput_needed, err, datagrams; 2128 struct socket *sock; 2129 struct mmsghdr __user *entry; 2130 struct compat_mmsghdr __user *compat_entry; 2131 struct msghdr msg_sys; 2132 struct used_address used_address; 2133 2134 if (vlen > UIO_MAXIOV) 2135 vlen = UIO_MAXIOV; 2136 2137 datagrams = 0; 2138 2139 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2140 if (!sock) 2141 return err; 2142 2143 used_address.name_len = UINT_MAX; 2144 entry = mmsg; 2145 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2146 err = 0; 2147 2148 while (datagrams < vlen) { 2149 if (MSG_CMSG_COMPAT & flags) { 2150 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2151 &msg_sys, flags, &used_address); 2152 if (err < 0) 2153 break; 2154 err = __put_user(err, &compat_entry->msg_len); 2155 ++compat_entry; 2156 } else { 2157 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2158 &msg_sys, flags, &used_address); 2159 if (err < 0) 2160 break; 2161 err = put_user(err, &entry->msg_len); 2162 ++entry; 2163 } 2164 2165 if (err) 2166 break; 2167 ++datagrams; 2168 } 2169 2170 fput_light(sock->file, fput_needed); 2171 2172 /* We only return an error if no datagrams were able to be sent */ 2173 if (datagrams != 0) 2174 return datagrams; 2175 2176 return err; 2177 } 2178 2179 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2180 unsigned int, vlen, unsigned int, flags) 2181 { 2182 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2183 } 2184 2185 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2186 struct msghdr *msg_sys, unsigned int flags, int nosec) 2187 { 2188 struct compat_msghdr __user *msg_compat = 2189 (struct compat_msghdr __user *)msg; 2190 struct iovec iovstack[UIO_FASTIOV]; 2191 struct iovec *iov = iovstack; 2192 unsigned long cmsg_ptr; 2193 int err, total_len, len; 2194 2195 /* kernel mode address */ 2196 struct sockaddr_storage addr; 2197 2198 /* user mode address pointers */ 2199 struct sockaddr __user *uaddr; 2200 int __user *uaddr_len; 2201 2202 if (MSG_CMSG_COMPAT & flags) { 2203 if (get_compat_msghdr(msg_sys, msg_compat)) 2204 return -EFAULT; 2205 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2206 return -EFAULT; 2207 2208 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2209 err = -EMSGSIZE; 2210 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2211 goto out; 2212 err = -ENOMEM; 2213 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2214 GFP_KERNEL); 2215 if (!iov) 2216 goto out; 2217 } 2218 2219 /* 2220 * Save the user-mode address (verify_iovec will change the 2221 * kernel msghdr to use the kernel address space) 2222 */ 2223 2224 uaddr = (__force void __user *)msg_sys->msg_name; 2225 uaddr_len = COMPAT_NAMELEN(msg); 2226 if (MSG_CMSG_COMPAT & flags) { 2227 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2228 } else 2229 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2230 if (err < 0) 2231 goto out_freeiov; 2232 total_len = err; 2233 2234 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2235 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2236 2237 if (sock->file->f_flags & O_NONBLOCK) 2238 flags |= MSG_DONTWAIT; 2239 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2240 total_len, flags); 2241 if (err < 0) 2242 goto out_freeiov; 2243 len = err; 2244 2245 if (uaddr != NULL) { 2246 err = move_addr_to_user(&addr, 2247 msg_sys->msg_namelen, uaddr, 2248 uaddr_len); 2249 if (err < 0) 2250 goto out_freeiov; 2251 } 2252 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2253 COMPAT_FLAGS(msg)); 2254 if (err) 2255 goto out_freeiov; 2256 if (MSG_CMSG_COMPAT & flags) 2257 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2258 &msg_compat->msg_controllen); 2259 else 2260 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2261 &msg->msg_controllen); 2262 if (err) 2263 goto out_freeiov; 2264 err = len; 2265 2266 out_freeiov: 2267 if (iov != iovstack) 2268 kfree(iov); 2269 out: 2270 return err; 2271 } 2272 2273 /* 2274 * BSD recvmsg interface 2275 */ 2276 2277 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2278 unsigned int, flags) 2279 { 2280 int fput_needed, err; 2281 struct msghdr msg_sys; 2282 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2283 2284 if (!sock) 2285 goto out; 2286 2287 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2288 2289 fput_light(sock->file, fput_needed); 2290 out: 2291 return err; 2292 } 2293 2294 /* 2295 * Linux recvmmsg interface 2296 */ 2297 2298 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2299 unsigned int flags, struct timespec *timeout) 2300 { 2301 int fput_needed, err, datagrams; 2302 struct socket *sock; 2303 struct mmsghdr __user *entry; 2304 struct compat_mmsghdr __user *compat_entry; 2305 struct msghdr msg_sys; 2306 struct timespec end_time; 2307 2308 if (timeout && 2309 poll_select_set_timeout(&end_time, timeout->tv_sec, 2310 timeout->tv_nsec)) 2311 return -EINVAL; 2312 2313 datagrams = 0; 2314 2315 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2316 if (!sock) 2317 return err; 2318 2319 err = sock_error(sock->sk); 2320 if (err) 2321 goto out_put; 2322 2323 entry = mmsg; 2324 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2325 2326 while (datagrams < vlen) { 2327 /* 2328 * No need to ask LSM for more than the first datagram. 2329 */ 2330 if (MSG_CMSG_COMPAT & flags) { 2331 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2332 &msg_sys, flags & ~MSG_WAITFORONE, 2333 datagrams); 2334 if (err < 0) 2335 break; 2336 err = __put_user(err, &compat_entry->msg_len); 2337 ++compat_entry; 2338 } else { 2339 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2340 &msg_sys, flags & ~MSG_WAITFORONE, 2341 datagrams); 2342 if (err < 0) 2343 break; 2344 err = put_user(err, &entry->msg_len); 2345 ++entry; 2346 } 2347 2348 if (err) 2349 break; 2350 ++datagrams; 2351 2352 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2353 if (flags & MSG_WAITFORONE) 2354 flags |= MSG_DONTWAIT; 2355 2356 if (timeout) { 2357 ktime_get_ts(timeout); 2358 *timeout = timespec_sub(end_time, *timeout); 2359 if (timeout->tv_sec < 0) { 2360 timeout->tv_sec = timeout->tv_nsec = 0; 2361 break; 2362 } 2363 2364 /* Timeout, return less than vlen datagrams */ 2365 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2366 break; 2367 } 2368 2369 /* Out of band data, return right away */ 2370 if (msg_sys.msg_flags & MSG_OOB) 2371 break; 2372 } 2373 2374 out_put: 2375 fput_light(sock->file, fput_needed); 2376 2377 if (err == 0) 2378 return datagrams; 2379 2380 if (datagrams != 0) { 2381 /* 2382 * We may return less entries than requested (vlen) if the 2383 * sock is non block and there aren't enough datagrams... 2384 */ 2385 if (err != -EAGAIN) { 2386 /* 2387 * ... or if recvmsg returns an error after we 2388 * received some datagrams, where we record the 2389 * error to return on the next call or if the 2390 * app asks about it using getsockopt(SO_ERROR). 2391 */ 2392 sock->sk->sk_err = -err; 2393 } 2394 2395 return datagrams; 2396 } 2397 2398 return err; 2399 } 2400 2401 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2402 unsigned int, vlen, unsigned int, flags, 2403 struct timespec __user *, timeout) 2404 { 2405 int datagrams; 2406 struct timespec timeout_sys; 2407 2408 if (!timeout) 2409 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2410 2411 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2412 return -EFAULT; 2413 2414 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2415 2416 if (datagrams > 0 && 2417 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2418 datagrams = -EFAULT; 2419 2420 return datagrams; 2421 } 2422 2423 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2424 /* Argument list sizes for sys_socketcall */ 2425 #define AL(x) ((x) * sizeof(unsigned long)) 2426 static const unsigned char nargs[21] = { 2427 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2428 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2429 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2430 AL(4), AL(5), AL(4) 2431 }; 2432 2433 #undef AL 2434 2435 /* 2436 * System call vectors. 2437 * 2438 * Argument checking cleaned up. Saved 20% in size. 2439 * This function doesn't need to set the kernel lock because 2440 * it is set by the callees. 2441 */ 2442 2443 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2444 { 2445 unsigned long a[6]; 2446 unsigned long a0, a1; 2447 int err; 2448 unsigned int len; 2449 2450 if (call < 1 || call > SYS_SENDMMSG) 2451 return -EINVAL; 2452 2453 len = nargs[call]; 2454 if (len > sizeof(a)) 2455 return -EINVAL; 2456 2457 /* copy_from_user should be SMP safe. */ 2458 if (copy_from_user(a, args, len)) 2459 return -EFAULT; 2460 2461 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2462 2463 a0 = a[0]; 2464 a1 = a[1]; 2465 2466 switch (call) { 2467 case SYS_SOCKET: 2468 err = sys_socket(a0, a1, a[2]); 2469 break; 2470 case SYS_BIND: 2471 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2472 break; 2473 case SYS_CONNECT: 2474 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2475 break; 2476 case SYS_LISTEN: 2477 err = sys_listen(a0, a1); 2478 break; 2479 case SYS_ACCEPT: 2480 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2481 (int __user *)a[2], 0); 2482 break; 2483 case SYS_GETSOCKNAME: 2484 err = 2485 sys_getsockname(a0, (struct sockaddr __user *)a1, 2486 (int __user *)a[2]); 2487 break; 2488 case SYS_GETPEERNAME: 2489 err = 2490 sys_getpeername(a0, (struct sockaddr __user *)a1, 2491 (int __user *)a[2]); 2492 break; 2493 case SYS_SOCKETPAIR: 2494 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2495 break; 2496 case SYS_SEND: 2497 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2498 break; 2499 case SYS_SENDTO: 2500 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2501 (struct sockaddr __user *)a[4], a[5]); 2502 break; 2503 case SYS_RECV: 2504 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2505 break; 2506 case SYS_RECVFROM: 2507 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2508 (struct sockaddr __user *)a[4], 2509 (int __user *)a[5]); 2510 break; 2511 case SYS_SHUTDOWN: 2512 err = sys_shutdown(a0, a1); 2513 break; 2514 case SYS_SETSOCKOPT: 2515 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2516 break; 2517 case SYS_GETSOCKOPT: 2518 err = 2519 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2520 (int __user *)a[4]); 2521 break; 2522 case SYS_SENDMSG: 2523 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2524 break; 2525 case SYS_SENDMMSG: 2526 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2527 break; 2528 case SYS_RECVMSG: 2529 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2530 break; 2531 case SYS_RECVMMSG: 2532 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2533 (struct timespec __user *)a[4]); 2534 break; 2535 case SYS_ACCEPT4: 2536 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2537 (int __user *)a[2], a[3]); 2538 break; 2539 default: 2540 err = -EINVAL; 2541 break; 2542 } 2543 return err; 2544 } 2545 2546 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2547 2548 /** 2549 * sock_register - add a socket protocol handler 2550 * @ops: description of protocol 2551 * 2552 * This function is called by a protocol handler that wants to 2553 * advertise its address family, and have it linked into the 2554 * socket interface. The value ops->family coresponds to the 2555 * socket system call protocol family. 2556 */ 2557 int sock_register(const struct net_proto_family *ops) 2558 { 2559 int err; 2560 2561 if (ops->family >= NPROTO) { 2562 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2563 NPROTO); 2564 return -ENOBUFS; 2565 } 2566 2567 spin_lock(&net_family_lock); 2568 if (rcu_dereference_protected(net_families[ops->family], 2569 lockdep_is_held(&net_family_lock))) 2570 err = -EEXIST; 2571 else { 2572 rcu_assign_pointer(net_families[ops->family], ops); 2573 err = 0; 2574 } 2575 spin_unlock(&net_family_lock); 2576 2577 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2578 return err; 2579 } 2580 EXPORT_SYMBOL(sock_register); 2581 2582 /** 2583 * sock_unregister - remove a protocol handler 2584 * @family: protocol family to remove 2585 * 2586 * This function is called by a protocol handler that wants to 2587 * remove its address family, and have it unlinked from the 2588 * new socket creation. 2589 * 2590 * If protocol handler is a module, then it can use module reference 2591 * counts to protect against new references. If protocol handler is not 2592 * a module then it needs to provide its own protection in 2593 * the ops->create routine. 2594 */ 2595 void sock_unregister(int family) 2596 { 2597 BUG_ON(family < 0 || family >= NPROTO); 2598 2599 spin_lock(&net_family_lock); 2600 RCU_INIT_POINTER(net_families[family], NULL); 2601 spin_unlock(&net_family_lock); 2602 2603 synchronize_rcu(); 2604 2605 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2606 } 2607 EXPORT_SYMBOL(sock_unregister); 2608 2609 static int __init sock_init(void) 2610 { 2611 int err; 2612 /* 2613 * Initialize the network sysctl infrastructure. 2614 */ 2615 err = net_sysctl_init(); 2616 if (err) 2617 goto out; 2618 2619 /* 2620 * Initialize skbuff SLAB cache 2621 */ 2622 skb_init(); 2623 2624 /* 2625 * Initialize the protocols module. 2626 */ 2627 2628 init_inodecache(); 2629 2630 err = register_filesystem(&sock_fs_type); 2631 if (err) 2632 goto out_fs; 2633 sock_mnt = kern_mount(&sock_fs_type); 2634 if (IS_ERR(sock_mnt)) { 2635 err = PTR_ERR(sock_mnt); 2636 goto out_mount; 2637 } 2638 2639 /* The real protocol initialization is performed in later initcalls. 2640 */ 2641 2642 #ifdef CONFIG_NETFILTER 2643 netfilter_init(); 2644 #endif 2645 2646 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2647 skb_timestamping_init(); 2648 #endif 2649 2650 out: 2651 return err; 2652 2653 out_mount: 2654 unregister_filesystem(&sock_fs_type); 2655 out_fs: 2656 goto out; 2657 } 2658 2659 core_initcall(sock_init); /* early initcall */ 2660 2661 #ifdef CONFIG_PROC_FS 2662 void socket_seq_show(struct seq_file *seq) 2663 { 2664 int cpu; 2665 int counter = 0; 2666 2667 for_each_possible_cpu(cpu) 2668 counter += per_cpu(sockets_in_use, cpu); 2669 2670 /* It can be negative, by the way. 8) */ 2671 if (counter < 0) 2672 counter = 0; 2673 2674 seq_printf(seq, "sockets: used %d\n", counter); 2675 } 2676 #endif /* CONFIG_PROC_FS */ 2677 2678 #ifdef CONFIG_COMPAT 2679 static int do_siocgstamp(struct net *net, struct socket *sock, 2680 unsigned int cmd, void __user *up) 2681 { 2682 mm_segment_t old_fs = get_fs(); 2683 struct timeval ktv; 2684 int err; 2685 2686 set_fs(KERNEL_DS); 2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2688 set_fs(old_fs); 2689 if (!err) 2690 err = compat_put_timeval(&ktv, up); 2691 2692 return err; 2693 } 2694 2695 static int do_siocgstampns(struct net *net, struct socket *sock, 2696 unsigned int cmd, void __user *up) 2697 { 2698 mm_segment_t old_fs = get_fs(); 2699 struct timespec kts; 2700 int err; 2701 2702 set_fs(KERNEL_DS); 2703 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2704 set_fs(old_fs); 2705 if (!err) 2706 err = compat_put_timespec(&kts, up); 2707 2708 return err; 2709 } 2710 2711 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2712 { 2713 struct ifreq __user *uifr; 2714 int err; 2715 2716 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2717 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2718 return -EFAULT; 2719 2720 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2721 if (err) 2722 return err; 2723 2724 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2725 return -EFAULT; 2726 2727 return 0; 2728 } 2729 2730 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2731 { 2732 struct compat_ifconf ifc32; 2733 struct ifconf ifc; 2734 struct ifconf __user *uifc; 2735 struct compat_ifreq __user *ifr32; 2736 struct ifreq __user *ifr; 2737 unsigned int i, j; 2738 int err; 2739 2740 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2741 return -EFAULT; 2742 2743 memset(&ifc, 0, sizeof(ifc)); 2744 if (ifc32.ifcbuf == 0) { 2745 ifc32.ifc_len = 0; 2746 ifc.ifc_len = 0; 2747 ifc.ifc_req = NULL; 2748 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2749 } else { 2750 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2751 sizeof(struct ifreq); 2752 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2753 ifc.ifc_len = len; 2754 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2755 ifr32 = compat_ptr(ifc32.ifcbuf); 2756 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2757 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2758 return -EFAULT; 2759 ifr++; 2760 ifr32++; 2761 } 2762 } 2763 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2764 return -EFAULT; 2765 2766 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2767 if (err) 2768 return err; 2769 2770 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2771 return -EFAULT; 2772 2773 ifr = ifc.ifc_req; 2774 ifr32 = compat_ptr(ifc32.ifcbuf); 2775 for (i = 0, j = 0; 2776 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2777 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2778 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2779 return -EFAULT; 2780 ifr32++; 2781 ifr++; 2782 } 2783 2784 if (ifc32.ifcbuf == 0) { 2785 /* Translate from 64-bit structure multiple to 2786 * a 32-bit one. 2787 */ 2788 i = ifc.ifc_len; 2789 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2790 ifc32.ifc_len = i; 2791 } else { 2792 ifc32.ifc_len = i; 2793 } 2794 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2795 return -EFAULT; 2796 2797 return 0; 2798 } 2799 2800 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2801 { 2802 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2803 bool convert_in = false, convert_out = false; 2804 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2805 struct ethtool_rxnfc __user *rxnfc; 2806 struct ifreq __user *ifr; 2807 u32 rule_cnt = 0, actual_rule_cnt; 2808 u32 ethcmd; 2809 u32 data; 2810 int ret; 2811 2812 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2813 return -EFAULT; 2814 2815 compat_rxnfc = compat_ptr(data); 2816 2817 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2818 return -EFAULT; 2819 2820 /* Most ethtool structures are defined without padding. 2821 * Unfortunately struct ethtool_rxnfc is an exception. 2822 */ 2823 switch (ethcmd) { 2824 default: 2825 break; 2826 case ETHTOOL_GRXCLSRLALL: 2827 /* Buffer size is variable */ 2828 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2829 return -EFAULT; 2830 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2831 return -ENOMEM; 2832 buf_size += rule_cnt * sizeof(u32); 2833 /* fall through */ 2834 case ETHTOOL_GRXRINGS: 2835 case ETHTOOL_GRXCLSRLCNT: 2836 case ETHTOOL_GRXCLSRULE: 2837 case ETHTOOL_SRXCLSRLINS: 2838 convert_out = true; 2839 /* fall through */ 2840 case ETHTOOL_SRXCLSRLDEL: 2841 buf_size += sizeof(struct ethtool_rxnfc); 2842 convert_in = true; 2843 break; 2844 } 2845 2846 ifr = compat_alloc_user_space(buf_size); 2847 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8); 2848 2849 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2850 return -EFAULT; 2851 2852 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2853 &ifr->ifr_ifru.ifru_data)) 2854 return -EFAULT; 2855 2856 if (convert_in) { 2857 /* We expect there to be holes between fs.m_ext and 2858 * fs.ring_cookie and at the end of fs, but nowhere else. 2859 */ 2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2861 sizeof(compat_rxnfc->fs.m_ext) != 2862 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2863 sizeof(rxnfc->fs.m_ext)); 2864 BUILD_BUG_ON( 2865 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2866 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2867 offsetof(struct ethtool_rxnfc, fs.location) - 2868 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2869 2870 if (copy_in_user(rxnfc, compat_rxnfc, 2871 (void *)(&rxnfc->fs.m_ext + 1) - 2872 (void *)rxnfc) || 2873 copy_in_user(&rxnfc->fs.ring_cookie, 2874 &compat_rxnfc->fs.ring_cookie, 2875 (void *)(&rxnfc->fs.location + 1) - 2876 (void *)&rxnfc->fs.ring_cookie) || 2877 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2878 sizeof(rxnfc->rule_cnt))) 2879 return -EFAULT; 2880 } 2881 2882 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2883 if (ret) 2884 return ret; 2885 2886 if (convert_out) { 2887 if (copy_in_user(compat_rxnfc, rxnfc, 2888 (const void *)(&rxnfc->fs.m_ext + 1) - 2889 (const void *)rxnfc) || 2890 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2891 &rxnfc->fs.ring_cookie, 2892 (const void *)(&rxnfc->fs.location + 1) - 2893 (const void *)&rxnfc->fs.ring_cookie) || 2894 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2895 sizeof(rxnfc->rule_cnt))) 2896 return -EFAULT; 2897 2898 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2899 /* As an optimisation, we only copy the actual 2900 * number of rules that the underlying 2901 * function returned. Since Mallory might 2902 * change the rule count in user memory, we 2903 * check that it is less than the rule count 2904 * originally given (as the user buffer size), 2905 * which has been range-checked. 2906 */ 2907 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2908 return -EFAULT; 2909 if (actual_rule_cnt < rule_cnt) 2910 rule_cnt = actual_rule_cnt; 2911 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2912 &rxnfc->rule_locs[0], 2913 rule_cnt * sizeof(u32))) 2914 return -EFAULT; 2915 } 2916 } 2917 2918 return 0; 2919 } 2920 2921 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2922 { 2923 void __user *uptr; 2924 compat_uptr_t uptr32; 2925 struct ifreq __user *uifr; 2926 2927 uifr = compat_alloc_user_space(sizeof(*uifr)); 2928 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2929 return -EFAULT; 2930 2931 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2932 return -EFAULT; 2933 2934 uptr = compat_ptr(uptr32); 2935 2936 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2937 return -EFAULT; 2938 2939 return dev_ioctl(net, SIOCWANDEV, uifr); 2940 } 2941 2942 static int bond_ioctl(struct net *net, unsigned int cmd, 2943 struct compat_ifreq __user *ifr32) 2944 { 2945 struct ifreq kifr; 2946 struct ifreq __user *uifr; 2947 mm_segment_t old_fs; 2948 int err; 2949 u32 data; 2950 void __user *datap; 2951 2952 switch (cmd) { 2953 case SIOCBONDENSLAVE: 2954 case SIOCBONDRELEASE: 2955 case SIOCBONDSETHWADDR: 2956 case SIOCBONDCHANGEACTIVE: 2957 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2958 return -EFAULT; 2959 2960 old_fs = get_fs(); 2961 set_fs(KERNEL_DS); 2962 err = dev_ioctl(net, cmd, 2963 (struct ifreq __user __force *) &kifr); 2964 set_fs(old_fs); 2965 2966 return err; 2967 case SIOCBONDSLAVEINFOQUERY: 2968 case SIOCBONDINFOQUERY: 2969 uifr = compat_alloc_user_space(sizeof(*uifr)); 2970 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2971 return -EFAULT; 2972 2973 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2974 return -EFAULT; 2975 2976 datap = compat_ptr(data); 2977 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2978 return -EFAULT; 2979 2980 return dev_ioctl(net, cmd, uifr); 2981 default: 2982 return -ENOIOCTLCMD; 2983 } 2984 } 2985 2986 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2987 struct compat_ifreq __user *u_ifreq32) 2988 { 2989 struct ifreq __user *u_ifreq64; 2990 char tmp_buf[IFNAMSIZ]; 2991 void __user *data64; 2992 u32 data32; 2993 2994 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2995 IFNAMSIZ)) 2996 return -EFAULT; 2997 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2998 return -EFAULT; 2999 data64 = compat_ptr(data32); 3000 3001 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3002 3003 /* Don't check these user accesses, just let that get trapped 3004 * in the ioctl handler instead. 3005 */ 3006 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3007 IFNAMSIZ)) 3008 return -EFAULT; 3009 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3010 return -EFAULT; 3011 3012 return dev_ioctl(net, cmd, u_ifreq64); 3013 } 3014 3015 static int dev_ifsioc(struct net *net, struct socket *sock, 3016 unsigned int cmd, struct compat_ifreq __user *uifr32) 3017 { 3018 struct ifreq __user *uifr; 3019 int err; 3020 3021 uifr = compat_alloc_user_space(sizeof(*uifr)); 3022 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3023 return -EFAULT; 3024 3025 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3026 3027 if (!err) { 3028 switch (cmd) { 3029 case SIOCGIFFLAGS: 3030 case SIOCGIFMETRIC: 3031 case SIOCGIFMTU: 3032 case SIOCGIFMEM: 3033 case SIOCGIFHWADDR: 3034 case SIOCGIFINDEX: 3035 case SIOCGIFADDR: 3036 case SIOCGIFBRDADDR: 3037 case SIOCGIFDSTADDR: 3038 case SIOCGIFNETMASK: 3039 case SIOCGIFPFLAGS: 3040 case SIOCGIFTXQLEN: 3041 case SIOCGMIIPHY: 3042 case SIOCGMIIREG: 3043 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3044 err = -EFAULT; 3045 break; 3046 } 3047 } 3048 return err; 3049 } 3050 3051 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3052 struct compat_ifreq __user *uifr32) 3053 { 3054 struct ifreq ifr; 3055 struct compat_ifmap __user *uifmap32; 3056 mm_segment_t old_fs; 3057 int err; 3058 3059 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3060 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3061 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3062 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3063 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3064 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3065 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3066 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3067 if (err) 3068 return -EFAULT; 3069 3070 old_fs = get_fs(); 3071 set_fs(KERNEL_DS); 3072 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3073 set_fs(old_fs); 3074 3075 if (cmd == SIOCGIFMAP && !err) { 3076 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3077 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3078 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3079 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3080 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3081 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3082 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3083 if (err) 3084 err = -EFAULT; 3085 } 3086 return err; 3087 } 3088 3089 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3090 { 3091 void __user *uptr; 3092 compat_uptr_t uptr32; 3093 struct ifreq __user *uifr; 3094 3095 uifr = compat_alloc_user_space(sizeof(*uifr)); 3096 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3097 return -EFAULT; 3098 3099 if (get_user(uptr32, &uifr32->ifr_data)) 3100 return -EFAULT; 3101 3102 uptr = compat_ptr(uptr32); 3103 3104 if (put_user(uptr, &uifr->ifr_data)) 3105 return -EFAULT; 3106 3107 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3108 } 3109 3110 struct rtentry32 { 3111 u32 rt_pad1; 3112 struct sockaddr rt_dst; /* target address */ 3113 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3114 struct sockaddr rt_genmask; /* target network mask (IP) */ 3115 unsigned short rt_flags; 3116 short rt_pad2; 3117 u32 rt_pad3; 3118 unsigned char rt_tos; 3119 unsigned char rt_class; 3120 short rt_pad4; 3121 short rt_metric; /* +1 for binary compatibility! */ 3122 /* char * */ u32 rt_dev; /* forcing the device at add */ 3123 u32 rt_mtu; /* per route MTU/Window */ 3124 u32 rt_window; /* Window clamping */ 3125 unsigned short rt_irtt; /* Initial RTT */ 3126 }; 3127 3128 struct in6_rtmsg32 { 3129 struct in6_addr rtmsg_dst; 3130 struct in6_addr rtmsg_src; 3131 struct in6_addr rtmsg_gateway; 3132 u32 rtmsg_type; 3133 u16 rtmsg_dst_len; 3134 u16 rtmsg_src_len; 3135 u32 rtmsg_metric; 3136 u32 rtmsg_info; 3137 u32 rtmsg_flags; 3138 s32 rtmsg_ifindex; 3139 }; 3140 3141 static int routing_ioctl(struct net *net, struct socket *sock, 3142 unsigned int cmd, void __user *argp) 3143 { 3144 int ret; 3145 void *r = NULL; 3146 struct in6_rtmsg r6; 3147 struct rtentry r4; 3148 char devname[16]; 3149 u32 rtdev; 3150 mm_segment_t old_fs = get_fs(); 3151 3152 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3153 struct in6_rtmsg32 __user *ur6 = argp; 3154 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3155 3 * sizeof(struct in6_addr)); 3156 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3157 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3158 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3159 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3160 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3161 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3162 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3163 3164 r = (void *) &r6; 3165 } else { /* ipv4 */ 3166 struct rtentry32 __user *ur4 = argp; 3167 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3168 3 * sizeof(struct sockaddr)); 3169 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3170 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3171 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3172 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3173 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3174 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3175 if (rtdev) { 3176 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3177 r4.rt_dev = (char __user __force *)devname; 3178 devname[15] = 0; 3179 } else 3180 r4.rt_dev = NULL; 3181 3182 r = (void *) &r4; 3183 } 3184 3185 if (ret) { 3186 ret = -EFAULT; 3187 goto out; 3188 } 3189 3190 set_fs(KERNEL_DS); 3191 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3192 set_fs(old_fs); 3193 3194 out: 3195 return ret; 3196 } 3197 3198 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3199 * for some operations; this forces use of the newer bridge-utils that 3200 * use compatible ioctls 3201 */ 3202 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3203 { 3204 compat_ulong_t tmp; 3205 3206 if (get_user(tmp, argp)) 3207 return -EFAULT; 3208 if (tmp == BRCTL_GET_VERSION) 3209 return BRCTL_VERSION + 1; 3210 return -EINVAL; 3211 } 3212 3213 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3214 unsigned int cmd, unsigned long arg) 3215 { 3216 void __user *argp = compat_ptr(arg); 3217 struct sock *sk = sock->sk; 3218 struct net *net = sock_net(sk); 3219 3220 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3221 return siocdevprivate_ioctl(net, cmd, argp); 3222 3223 switch (cmd) { 3224 case SIOCSIFBR: 3225 case SIOCGIFBR: 3226 return old_bridge_ioctl(argp); 3227 case SIOCGIFNAME: 3228 return dev_ifname32(net, argp); 3229 case SIOCGIFCONF: 3230 return dev_ifconf(net, argp); 3231 case SIOCETHTOOL: 3232 return ethtool_ioctl(net, argp); 3233 case SIOCWANDEV: 3234 return compat_siocwandev(net, argp); 3235 case SIOCGIFMAP: 3236 case SIOCSIFMAP: 3237 return compat_sioc_ifmap(net, cmd, argp); 3238 case SIOCBONDENSLAVE: 3239 case SIOCBONDRELEASE: 3240 case SIOCBONDSETHWADDR: 3241 case SIOCBONDSLAVEINFOQUERY: 3242 case SIOCBONDINFOQUERY: 3243 case SIOCBONDCHANGEACTIVE: 3244 return bond_ioctl(net, cmd, argp); 3245 case SIOCADDRT: 3246 case SIOCDELRT: 3247 return routing_ioctl(net, sock, cmd, argp); 3248 case SIOCGSTAMP: 3249 return do_siocgstamp(net, sock, cmd, argp); 3250 case SIOCGSTAMPNS: 3251 return do_siocgstampns(net, sock, cmd, argp); 3252 case SIOCSHWTSTAMP: 3253 return compat_siocshwtstamp(net, argp); 3254 3255 case FIOSETOWN: 3256 case SIOCSPGRP: 3257 case FIOGETOWN: 3258 case SIOCGPGRP: 3259 case SIOCBRADDBR: 3260 case SIOCBRDELBR: 3261 case SIOCGIFVLAN: 3262 case SIOCSIFVLAN: 3263 case SIOCADDDLCI: 3264 case SIOCDELDLCI: 3265 return sock_ioctl(file, cmd, arg); 3266 3267 case SIOCGIFFLAGS: 3268 case SIOCSIFFLAGS: 3269 case SIOCGIFMETRIC: 3270 case SIOCSIFMETRIC: 3271 case SIOCGIFMTU: 3272 case SIOCSIFMTU: 3273 case SIOCGIFMEM: 3274 case SIOCSIFMEM: 3275 case SIOCGIFHWADDR: 3276 case SIOCSIFHWADDR: 3277 case SIOCADDMULTI: 3278 case SIOCDELMULTI: 3279 case SIOCGIFINDEX: 3280 case SIOCGIFADDR: 3281 case SIOCSIFADDR: 3282 case SIOCSIFHWBROADCAST: 3283 case SIOCDIFADDR: 3284 case SIOCGIFBRDADDR: 3285 case SIOCSIFBRDADDR: 3286 case SIOCGIFDSTADDR: 3287 case SIOCSIFDSTADDR: 3288 case SIOCGIFNETMASK: 3289 case SIOCSIFNETMASK: 3290 case SIOCSIFPFLAGS: 3291 case SIOCGIFPFLAGS: 3292 case SIOCGIFTXQLEN: 3293 case SIOCSIFTXQLEN: 3294 case SIOCBRADDIF: 3295 case SIOCBRDELIF: 3296 case SIOCSIFNAME: 3297 case SIOCGMIIPHY: 3298 case SIOCGMIIREG: 3299 case SIOCSMIIREG: 3300 return dev_ifsioc(net, sock, cmd, argp); 3301 3302 case SIOCSARP: 3303 case SIOCGARP: 3304 case SIOCDARP: 3305 case SIOCATMARK: 3306 return sock_do_ioctl(net, sock, cmd, arg); 3307 } 3308 3309 return -ENOIOCTLCMD; 3310 } 3311 3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3313 unsigned long arg) 3314 { 3315 struct socket *sock = file->private_data; 3316 int ret = -ENOIOCTLCMD; 3317 struct sock *sk; 3318 struct net *net; 3319 3320 sk = sock->sk; 3321 net = sock_net(sk); 3322 3323 if (sock->ops->compat_ioctl) 3324 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3325 3326 if (ret == -ENOIOCTLCMD && 3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3328 ret = compat_wext_handle_ioctl(net, cmd, arg); 3329 3330 if (ret == -ENOIOCTLCMD) 3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3332 3333 return ret; 3334 } 3335 #endif 3336 3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3338 { 3339 return sock->ops->bind(sock, addr, addrlen); 3340 } 3341 EXPORT_SYMBOL(kernel_bind); 3342 3343 int kernel_listen(struct socket *sock, int backlog) 3344 { 3345 return sock->ops->listen(sock, backlog); 3346 } 3347 EXPORT_SYMBOL(kernel_listen); 3348 3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3350 { 3351 struct sock *sk = sock->sk; 3352 int err; 3353 3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3355 newsock); 3356 if (err < 0) 3357 goto done; 3358 3359 err = sock->ops->accept(sock, *newsock, flags); 3360 if (err < 0) { 3361 sock_release(*newsock); 3362 *newsock = NULL; 3363 goto done; 3364 } 3365 3366 (*newsock)->ops = sock->ops; 3367 __module_get((*newsock)->ops->owner); 3368 3369 done: 3370 return err; 3371 } 3372 EXPORT_SYMBOL(kernel_accept); 3373 3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3375 int flags) 3376 { 3377 return sock->ops->connect(sock, addr, addrlen, flags); 3378 } 3379 EXPORT_SYMBOL(kernel_connect); 3380 3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3382 int *addrlen) 3383 { 3384 return sock->ops->getname(sock, addr, addrlen, 0); 3385 } 3386 EXPORT_SYMBOL(kernel_getsockname); 3387 3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3389 int *addrlen) 3390 { 3391 return sock->ops->getname(sock, addr, addrlen, 1); 3392 } 3393 EXPORT_SYMBOL(kernel_getpeername); 3394 3395 int kernel_getsockopt(struct socket *sock, int level, int optname, 3396 char *optval, int *optlen) 3397 { 3398 mm_segment_t oldfs = get_fs(); 3399 char __user *uoptval; 3400 int __user *uoptlen; 3401 int err; 3402 3403 uoptval = (char __user __force *) optval; 3404 uoptlen = (int __user __force *) optlen; 3405 3406 set_fs(KERNEL_DS); 3407 if (level == SOL_SOCKET) 3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3409 else 3410 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3411 uoptlen); 3412 set_fs(oldfs); 3413 return err; 3414 } 3415 EXPORT_SYMBOL(kernel_getsockopt); 3416 3417 int kernel_setsockopt(struct socket *sock, int level, int optname, 3418 char *optval, unsigned int optlen) 3419 { 3420 mm_segment_t oldfs = get_fs(); 3421 char __user *uoptval; 3422 int err; 3423 3424 uoptval = (char __user __force *) optval; 3425 3426 set_fs(KERNEL_DS); 3427 if (level == SOL_SOCKET) 3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3429 else 3430 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3431 optlen); 3432 set_fs(oldfs); 3433 return err; 3434 } 3435 EXPORT_SYMBOL(kernel_setsockopt); 3436 3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3438 size_t size, int flags) 3439 { 3440 sock_update_classid(sock->sk); 3441 3442 if (sock->ops->sendpage) 3443 return sock->ops->sendpage(sock, page, offset, size, flags); 3444 3445 return sock_no_sendpage(sock, page, offset, size, flags); 3446 } 3447 EXPORT_SYMBOL(kernel_sendpage); 3448 3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3450 { 3451 mm_segment_t oldfs = get_fs(); 3452 int err; 3453 3454 set_fs(KERNEL_DS); 3455 err = sock->ops->ioctl(sock, cmd, arg); 3456 set_fs(oldfs); 3457 3458 return err; 3459 } 3460 EXPORT_SYMBOL(kernel_sock_ioctl); 3461 3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3463 { 3464 return sock->ops->shutdown(sock, how); 3465 } 3466 EXPORT_SYMBOL(kernel_sock_shutdown); 3467