xref: /linux/net/socket.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 			 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 			  unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.aio_read =	sock_aio_read,
140 	.aio_write =	sock_aio_write,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
148 	.release =	sock_close,
149 	.fasync =	sock_fasync,
150 	.sendpage =	sock_sendpage,
151 	.splice_write = generic_splice_sendpage,
152 	.splice_read =	sock_splice_read,
153 };
154 
155 /*
156  *	The protocol list. Each protocol is registered in here.
157  */
158 
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
161 
162 /*
163  *	Statistics counters of the socket lists
164  */
165 
166 static DEFINE_PER_CPU(int, sockets_in_use);
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	err = get_user(len, ulen);
220 	if (err)
221 		return err;
222 	if (len > klen)
223 		len = klen;
224 	if (len < 0 || len > sizeof(struct sockaddr_storage))
225 		return -EINVAL;
226 	if (len) {
227 		if (audit_sockaddr(klen, kaddr))
228 			return -ENOMEM;
229 		if (copy_to_user(uaddr, kaddr, len))
230 			return -EFAULT;
231 	}
232 	/*
233 	 *      "fromlen shall refer to the value before truncation.."
234 	 *                      1003.1g
235 	 */
236 	return __put_user(klen, ulen);
237 }
238 
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 	struct socket_alloc *ei;
244 	struct socket_wq *wq;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 	if (!wq) {
251 		kmem_cache_free(sock_inode_cachep, ei);
252 		return NULL;
253 	}
254 	init_waitqueue_head(&wq->wait);
255 	wq->fasync_list = NULL;
256 	RCU_INIT_POINTER(ei->socket.wq, wq);
257 
258 	ei->socket.state = SS_UNCONNECTED;
259 	ei->socket.flags = 0;
260 	ei->socket.ops = NULL;
261 	ei->socket.sk = NULL;
262 	ei->socket.file = NULL;
263 
264 	return &ei->vfs_inode;
265 }
266 
267 static void sock_destroy_inode(struct inode *inode)
268 {
269 	struct socket_alloc *ei;
270 	struct socket_wq *wq;
271 
272 	ei = container_of(inode, struct socket_alloc, vfs_inode);
273 	wq = rcu_dereference_protected(ei->socket.wq, 1);
274 	kfree_rcu(wq, rcu);
275 	kmem_cache_free(sock_inode_cachep, ei);
276 }
277 
278 static void init_once(void *foo)
279 {
280 	struct socket_alloc *ei = (struct socket_alloc *)foo;
281 
282 	inode_init_once(&ei->vfs_inode);
283 }
284 
285 static int init_inodecache(void)
286 {
287 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 					      sizeof(struct socket_alloc),
289 					      0,
290 					      (SLAB_HWCACHE_ALIGN |
291 					       SLAB_RECLAIM_ACCOUNT |
292 					       SLAB_MEM_SPREAD),
293 					      init_once);
294 	if (sock_inode_cachep == NULL)
295 		return -ENOMEM;
296 	return 0;
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				dentry->d_inode->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 			 int flags, const char *dev_name, void *data)
320 {
321 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 		&sockfs_dentry_operations, SOCKFS_MAGIC);
323 }
324 
325 static struct vfsmount *sock_mnt __read_mostly;
326 
327 static struct file_system_type sock_fs_type = {
328 	.name =		"sockfs",
329 	.mount =	sockfs_mount,
330 	.kill_sb =	kill_anon_super,
331 };
332 
333 /*
334  *	Obtains the first available file descriptor and sets it up for use.
335  *
336  *	These functions create file structures and maps them to fd space
337  *	of the current process. On success it returns file descriptor
338  *	and file struct implicitly stored in sock->file.
339  *	Note that another thread may close file descriptor before we return
340  *	from this function. We use the fact that now we do not refer
341  *	to socket after mapping. If one day we will need it, this
342  *	function will increment ref. count on file by 1.
343  *
344  *	In any case returned fd MAY BE not valid!
345  *	This race condition is unavoidable
346  *	with shared fd spaces, we cannot solve it inside kernel,
347  *	but we take care of internal coherence yet.
348  */
349 
350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351 {
352 	struct qstr name = { .name = "" };
353 	struct path path;
354 	struct file *file;
355 
356 	if (dname) {
357 		name.name = dname;
358 		name.len = strlen(name.name);
359 	} else if (sock->sk) {
360 		name.name = sock->sk->sk_prot_creator->name;
361 		name.len = strlen(name.name);
362 	}
363 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
364 	if (unlikely(!path.dentry))
365 		return ERR_PTR(-ENOMEM);
366 	path.mnt = mntget(sock_mnt);
367 
368 	d_instantiate(path.dentry, SOCK_INODE(sock));
369 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 
371 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 		  &socket_file_ops);
373 	if (unlikely(!file)) {
374 		/* drop dentry, keep inode */
375 		ihold(path.dentry->d_inode);
376 		path_put(&path);
377 		return ERR_PTR(-ENFILE);
378 	}
379 
380 	sock->file = file;
381 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 	file->f_pos = 0;
383 	file->private_data = sock;
384 	return file;
385 }
386 EXPORT_SYMBOL(sock_alloc_file);
387 
388 static int sock_map_fd(struct socket *sock, int flags)
389 {
390 	struct file *newfile;
391 	int fd = get_unused_fd_flags(flags);
392 	if (unlikely(fd < 0))
393 		return fd;
394 
395 	newfile = sock_alloc_file(sock, flags, NULL);
396 	if (likely(!IS_ERR(newfile))) {
397 		fd_install(fd, newfile);
398 		return fd;
399 	}
400 
401 	put_unused_fd(fd);
402 	return PTR_ERR(newfile);
403 }
404 
405 struct socket *sock_from_file(struct file *file, int *err)
406 {
407 	if (file->f_op == &socket_file_ops)
408 		return file->private_data;	/* set in sock_map_fd */
409 
410 	*err = -ENOTSOCK;
411 	return NULL;
412 }
413 EXPORT_SYMBOL(sock_from_file);
414 
415 /**
416  *	sockfd_lookup - Go from a file number to its socket slot
417  *	@fd: file handle
418  *	@err: pointer to an error code return
419  *
420  *	The file handle passed in is locked and the socket it is bound
421  *	too is returned. If an error occurs the err pointer is overwritten
422  *	with a negative errno code and NULL is returned. The function checks
423  *	for both invalid handles and passing a handle which is not a socket.
424  *
425  *	On a success the socket object pointer is returned.
426  */
427 
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 	struct file *file;
431 	struct socket *sock;
432 
433 	file = fget(fd);
434 	if (!file) {
435 		*err = -EBADF;
436 		return NULL;
437 	}
438 
439 	sock = sock_from_file(file, err);
440 	if (!sock)
441 		fput(file);
442 	return sock;
443 }
444 EXPORT_SYMBOL(sockfd_lookup);
445 
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 {
448 	struct file *file;
449 	struct socket *sock;
450 
451 	*err = -EBADF;
452 	file = fget_light(fd, fput_needed);
453 	if (file) {
454 		sock = sock_from_file(file, err);
455 		if (sock)
456 			return sock;
457 		fput_light(file, *fput_needed);
458 	}
459 	return NULL;
460 }
461 
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t sockfs_getxattr(struct dentry *dentry,
466 			       const char *name, void *value, size_t size)
467 {
468 	const char *proto_name;
469 	size_t proto_size;
470 	int error;
471 
472 	error = -ENODATA;
473 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
474 		proto_name = dentry->d_name.name;
475 		proto_size = strlen(proto_name);
476 
477 		if (value) {
478 			error = -ERANGE;
479 			if (proto_size + 1 > size)
480 				goto out;
481 
482 			strncpy(value, proto_name, proto_size + 1);
483 		}
484 		error = proto_size + 1;
485 	}
486 
487 out:
488 	return error;
489 }
490 
491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
492 				size_t size)
493 {
494 	ssize_t len;
495 	ssize_t used = 0;
496 
497 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
498 	if (len < 0)
499 		return len;
500 	used += len;
501 	if (buffer) {
502 		if (size < used)
503 			return -ERANGE;
504 		buffer += len;
505 	}
506 
507 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
513 		buffer += len;
514 	}
515 
516 	return used;
517 }
518 
519 static const struct inode_operations sockfs_inode_ops = {
520 	.getxattr = sockfs_getxattr,
521 	.listxattr = sockfs_listxattr,
522 };
523 
524 /**
525  *	sock_alloc	-	allocate a socket
526  *
527  *	Allocate a new inode and socket object. The two are bound together
528  *	and initialised. The socket is then returned. If we are out of inodes
529  *	NULL is returned.
530  */
531 
532 static struct socket *sock_alloc(void)
533 {
534 	struct inode *inode;
535 	struct socket *sock;
536 
537 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
538 	if (!inode)
539 		return NULL;
540 
541 	sock = SOCKET_I(inode);
542 
543 	kmemcheck_annotate_bitfield(sock, type);
544 	inode->i_ino = get_next_ino();
545 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
546 	inode->i_uid = current_fsuid();
547 	inode->i_gid = current_fsgid();
548 	inode->i_op = &sockfs_inode_ops;
549 
550 	this_cpu_add(sockets_in_use, 1);
551 	return sock;
552 }
553 
554 /*
555  *	In theory you can't get an open on this inode, but /proc provides
556  *	a back door. Remember to keep it shut otherwise you'll let the
557  *	creepy crawlies in.
558  */
559 
560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
561 {
562 	return -ENXIO;
563 }
564 
565 const struct file_operations bad_sock_fops = {
566 	.owner = THIS_MODULE,
567 	.open = sock_no_open,
568 	.llseek = noop_llseek,
569 };
570 
571 /**
572  *	sock_release	-	close a socket
573  *	@sock: socket to close
574  *
575  *	The socket is released from the protocol stack if it has a release
576  *	callback, and the inode is then released if the socket is bound to
577  *	an inode not a file.
578  */
579 
580 void sock_release(struct socket *sock)
581 {
582 	if (sock->ops) {
583 		struct module *owner = sock->ops->owner;
584 
585 		sock->ops->release(sock);
586 		sock->ops = NULL;
587 		module_put(owner);
588 	}
589 
590 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
592 
593 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
594 		return;
595 
596 	this_cpu_sub(sockets_in_use, 1);
597 	if (!sock->file) {
598 		iput(SOCK_INODE(sock));
599 		return;
600 	}
601 	sock->file = NULL;
602 }
603 EXPORT_SYMBOL(sock_release);
604 
605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
606 {
607 	*tx_flags = 0;
608 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
609 		*tx_flags |= SKBTX_HW_TSTAMP;
610 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
611 		*tx_flags |= SKBTX_SW_TSTAMP;
612 	if (sock_flag(sk, SOCK_WIFI_STATUS))
613 		*tx_flags |= SKBTX_WIFI_STATUS;
614 	return 0;
615 }
616 EXPORT_SYMBOL(sock_tx_timestamp);
617 
618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
619 				       struct msghdr *msg, size_t size)
620 {
621 	struct sock_iocb *si = kiocb_to_siocb(iocb);
622 
623 	sock_update_classid(sock->sk);
624 
625 	si->sock = sock;
626 	si->scm = NULL;
627 	si->msg = msg;
628 	si->size = size;
629 
630 	return sock->ops->sendmsg(iocb, sock, msg, size);
631 }
632 
633 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
634 				 struct msghdr *msg, size_t size)
635 {
636 	int err = security_socket_sendmsg(sock, msg, size);
637 
638 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
639 }
640 
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
642 {
643 	struct kiocb iocb;
644 	struct sock_iocb siocb;
645 	int ret;
646 
647 	init_sync_kiocb(&iocb, NULL);
648 	iocb.private = &siocb;
649 	ret = __sock_sendmsg(&iocb, sock, msg, size);
650 	if (-EIOCBQUEUED == ret)
651 		ret = wait_on_sync_kiocb(&iocb);
652 	return ret;
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655 
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 	struct kiocb iocb;
659 	struct sock_iocb siocb;
660 	int ret;
661 
662 	init_sync_kiocb(&iocb, NULL);
663 	iocb.private = &siocb;
664 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
665 	if (-EIOCBQUEUED == ret)
666 		ret = wait_on_sync_kiocb(&iocb);
667 	return ret;
668 }
669 
670 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
671 		   struct kvec *vec, size_t num, size_t size)
672 {
673 	mm_segment_t oldfs = get_fs();
674 	int result;
675 
676 	set_fs(KERNEL_DS);
677 	/*
678 	 * the following is safe, since for compiler definitions of kvec and
679 	 * iovec are identical, yielding the same in-core layout and alignment
680 	 */
681 	msg->msg_iov = (struct iovec *)vec;
682 	msg->msg_iovlen = num;
683 	result = sock_sendmsg(sock, msg, size);
684 	set_fs(oldfs);
685 	return result;
686 }
687 EXPORT_SYMBOL(kernel_sendmsg);
688 
689 static int ktime2ts(ktime_t kt, struct timespec *ts)
690 {
691 	if (kt.tv64) {
692 		*ts = ktime_to_timespec(kt);
693 		return 1;
694 	} else {
695 		return 0;
696 	}
697 }
698 
699 /*
700  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701  */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 	struct timespec ts[3];
707 	int empty = 1;
708 	struct skb_shared_hwtstamps *shhwtstamps =
709 		skb_hwtstamps(skb);
710 
711 	/* Race occurred between timestamp enabling and packet
712 	   receiving.  Fill in the current time for now. */
713 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 		__net_timestamp(skb);
715 
716 	if (need_software_tstamp) {
717 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 			struct timeval tv;
719 			skb_get_timestamp(skb, &tv);
720 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 				 sizeof(tv), &tv);
722 		} else {
723 			skb_get_timestampns(skb, &ts[0]);
724 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
725 				 sizeof(ts[0]), &ts[0]);
726 		}
727 	}
728 
729 
730 	memset(ts, 0, sizeof(ts));
731 	if (skb->tstamp.tv64 &&
732 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
733 		skb_get_timestampns(skb, ts + 0);
734 		empty = 0;
735 	}
736 	if (shhwtstamps) {
737 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
738 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
739 			empty = 0;
740 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
741 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
742 			empty = 0;
743 	}
744 	if (!empty)
745 		put_cmsg(msg, SOL_SOCKET,
746 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
749 
750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
751 	struct sk_buff *skb)
752 {
753 	int ack;
754 
755 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
756 		return;
757 	if (!skb->wifi_acked_valid)
758 		return;
759 
760 	ack = skb->wifi_acked;
761 
762 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
765 
766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
767 				   struct sk_buff *skb)
768 {
769 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
770 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
771 			sizeof(__u32), &skb->dropcount);
772 }
773 
774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
775 	struct sk_buff *skb)
776 {
777 	sock_recv_timestamp(msg, sk, skb);
778 	sock_recv_drops(msg, sk, skb);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
781 
782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
783 				       struct msghdr *msg, size_t size, int flags)
784 {
785 	struct sock_iocb *si = kiocb_to_siocb(iocb);
786 
787 	sock_update_classid(sock->sk);
788 
789 	si->sock = sock;
790 	si->scm = NULL;
791 	si->msg = msg;
792 	si->size = size;
793 	si->flags = flags;
794 
795 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
796 }
797 
798 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
799 				 struct msghdr *msg, size_t size, int flags)
800 {
801 	int err = security_socket_recvmsg(sock, msg, size, flags);
802 
803 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
804 }
805 
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
807 		 size_t size, int flags)
808 {
809 	struct kiocb iocb;
810 	struct sock_iocb siocb;
811 	int ret;
812 
813 	init_sync_kiocb(&iocb, NULL);
814 	iocb.private = &siocb;
815 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
816 	if (-EIOCBQUEUED == ret)
817 		ret = wait_on_sync_kiocb(&iocb);
818 	return ret;
819 }
820 EXPORT_SYMBOL(sock_recvmsg);
821 
822 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
823 			      size_t size, int flags)
824 {
825 	struct kiocb iocb;
826 	struct sock_iocb siocb;
827 	int ret;
828 
829 	init_sync_kiocb(&iocb, NULL);
830 	iocb.private = &siocb;
831 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
832 	if (-EIOCBQUEUED == ret)
833 		ret = wait_on_sync_kiocb(&iocb);
834 	return ret;
835 }
836 
837 /**
838  * kernel_recvmsg - Receive a message from a socket (kernel space)
839  * @sock:       The socket to receive the message from
840  * @msg:        Received message
841  * @vec:        Input s/g array for message data
842  * @num:        Size of input s/g array
843  * @size:       Number of bytes to read
844  * @flags:      Message flags (MSG_DONTWAIT, etc...)
845  *
846  * On return the msg structure contains the scatter/gather array passed in the
847  * vec argument. The array is modified so that it consists of the unfilled
848  * portion of the original array.
849  *
850  * The returned value is the total number of bytes received, or an error.
851  */
852 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
853 		   struct kvec *vec, size_t num, size_t size, int flags)
854 {
855 	mm_segment_t oldfs = get_fs();
856 	int result;
857 
858 	set_fs(KERNEL_DS);
859 	/*
860 	 * the following is safe, since for compiler definitions of kvec and
861 	 * iovec are identical, yielding the same in-core layout and alignment
862 	 */
863 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
864 	result = sock_recvmsg(sock, msg, size, flags);
865 	set_fs(oldfs);
866 	return result;
867 }
868 EXPORT_SYMBOL(kernel_recvmsg);
869 
870 static void sock_aio_dtor(struct kiocb *iocb)
871 {
872 	kfree(iocb->private);
873 }
874 
875 static ssize_t sock_sendpage(struct file *file, struct page *page,
876 			     int offset, size_t size, loff_t *ppos, int more)
877 {
878 	struct socket *sock;
879 	int flags;
880 
881 	sock = file->private_data;
882 
883 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
884 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
885 	flags |= more;
886 
887 	return kernel_sendpage(sock, page, offset, size, flags);
888 }
889 
890 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
891 				struct pipe_inode_info *pipe, size_t len,
892 				unsigned int flags)
893 {
894 	struct socket *sock = file->private_data;
895 
896 	if (unlikely(!sock->ops->splice_read))
897 		return -EINVAL;
898 
899 	sock_update_classid(sock->sk);
900 
901 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
902 }
903 
904 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
905 					 struct sock_iocb *siocb)
906 {
907 	if (!is_sync_kiocb(iocb)) {
908 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
909 		if (!siocb)
910 			return NULL;
911 		iocb->ki_dtor = sock_aio_dtor;
912 	}
913 
914 	siocb->kiocb = iocb;
915 	iocb->private = siocb;
916 	return siocb;
917 }
918 
919 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
920 		struct file *file, const struct iovec *iov,
921 		unsigned long nr_segs)
922 {
923 	struct socket *sock = file->private_data;
924 	size_t size = 0;
925 	int i;
926 
927 	for (i = 0; i < nr_segs; i++)
928 		size += iov[i].iov_len;
929 
930 	msg->msg_name = NULL;
931 	msg->msg_namelen = 0;
932 	msg->msg_control = NULL;
933 	msg->msg_controllen = 0;
934 	msg->msg_iov = (struct iovec *)iov;
935 	msg->msg_iovlen = nr_segs;
936 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
937 
938 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
939 }
940 
941 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
942 				unsigned long nr_segs, loff_t pos)
943 {
944 	struct sock_iocb siocb, *x;
945 
946 	if (pos != 0)
947 		return -ESPIPE;
948 
949 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
950 		return 0;
951 
952 
953 	x = alloc_sock_iocb(iocb, &siocb);
954 	if (!x)
955 		return -ENOMEM;
956 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
957 }
958 
959 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
960 			struct file *file, const struct iovec *iov,
961 			unsigned long nr_segs)
962 {
963 	struct socket *sock = file->private_data;
964 	size_t size = 0;
965 	int i;
966 
967 	for (i = 0; i < nr_segs; i++)
968 		size += iov[i].iov_len;
969 
970 	msg->msg_name = NULL;
971 	msg->msg_namelen = 0;
972 	msg->msg_control = NULL;
973 	msg->msg_controllen = 0;
974 	msg->msg_iov = (struct iovec *)iov;
975 	msg->msg_iovlen = nr_segs;
976 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
977 	if (sock->type == SOCK_SEQPACKET)
978 		msg->msg_flags |= MSG_EOR;
979 
980 	return __sock_sendmsg(iocb, sock, msg, size);
981 }
982 
983 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
984 			  unsigned long nr_segs, loff_t pos)
985 {
986 	struct sock_iocb siocb, *x;
987 
988 	if (pos != 0)
989 		return -ESPIPE;
990 
991 	x = alloc_sock_iocb(iocb, &siocb);
992 	if (!x)
993 		return -ENOMEM;
994 
995 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
996 }
997 
998 /*
999  * Atomic setting of ioctl hooks to avoid race
1000  * with module unload.
1001  */
1002 
1003 static DEFINE_MUTEX(br_ioctl_mutex);
1004 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1005 
1006 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1007 {
1008 	mutex_lock(&br_ioctl_mutex);
1009 	br_ioctl_hook = hook;
1010 	mutex_unlock(&br_ioctl_mutex);
1011 }
1012 EXPORT_SYMBOL(brioctl_set);
1013 
1014 static DEFINE_MUTEX(vlan_ioctl_mutex);
1015 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1016 
1017 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1018 {
1019 	mutex_lock(&vlan_ioctl_mutex);
1020 	vlan_ioctl_hook = hook;
1021 	mutex_unlock(&vlan_ioctl_mutex);
1022 }
1023 EXPORT_SYMBOL(vlan_ioctl_set);
1024 
1025 static DEFINE_MUTEX(dlci_ioctl_mutex);
1026 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1027 
1028 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1029 {
1030 	mutex_lock(&dlci_ioctl_mutex);
1031 	dlci_ioctl_hook = hook;
1032 	mutex_unlock(&dlci_ioctl_mutex);
1033 }
1034 EXPORT_SYMBOL(dlci_ioctl_set);
1035 
1036 static long sock_do_ioctl(struct net *net, struct socket *sock,
1037 				 unsigned int cmd, unsigned long arg)
1038 {
1039 	int err;
1040 	void __user *argp = (void __user *)arg;
1041 
1042 	err = sock->ops->ioctl(sock, cmd, arg);
1043 
1044 	/*
1045 	 * If this ioctl is unknown try to hand it down
1046 	 * to the NIC driver.
1047 	 */
1048 	if (err == -ENOIOCTLCMD)
1049 		err = dev_ioctl(net, cmd, argp);
1050 
1051 	return err;
1052 }
1053 
1054 /*
1055  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1056  *	what to do with it - that's up to the protocol still.
1057  */
1058 
1059 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1060 {
1061 	struct socket *sock;
1062 	struct sock *sk;
1063 	void __user *argp = (void __user *)arg;
1064 	int pid, err;
1065 	struct net *net;
1066 
1067 	sock = file->private_data;
1068 	sk = sock->sk;
1069 	net = sock_net(sk);
1070 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1071 		err = dev_ioctl(net, cmd, argp);
1072 	} else
1073 #ifdef CONFIG_WEXT_CORE
1074 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1075 		err = dev_ioctl(net, cmd, argp);
1076 	} else
1077 #endif
1078 		switch (cmd) {
1079 		case FIOSETOWN:
1080 		case SIOCSPGRP:
1081 			err = -EFAULT;
1082 			if (get_user(pid, (int __user *)argp))
1083 				break;
1084 			err = f_setown(sock->file, pid, 1);
1085 			break;
1086 		case FIOGETOWN:
1087 		case SIOCGPGRP:
1088 			err = put_user(f_getown(sock->file),
1089 				       (int __user *)argp);
1090 			break;
1091 		case SIOCGIFBR:
1092 		case SIOCSIFBR:
1093 		case SIOCBRADDBR:
1094 		case SIOCBRDELBR:
1095 			err = -ENOPKG;
1096 			if (!br_ioctl_hook)
1097 				request_module("bridge");
1098 
1099 			mutex_lock(&br_ioctl_mutex);
1100 			if (br_ioctl_hook)
1101 				err = br_ioctl_hook(net, cmd, argp);
1102 			mutex_unlock(&br_ioctl_mutex);
1103 			break;
1104 		case SIOCGIFVLAN:
1105 		case SIOCSIFVLAN:
1106 			err = -ENOPKG;
1107 			if (!vlan_ioctl_hook)
1108 				request_module("8021q");
1109 
1110 			mutex_lock(&vlan_ioctl_mutex);
1111 			if (vlan_ioctl_hook)
1112 				err = vlan_ioctl_hook(net, argp);
1113 			mutex_unlock(&vlan_ioctl_mutex);
1114 			break;
1115 		case SIOCADDDLCI:
1116 		case SIOCDELDLCI:
1117 			err = -ENOPKG;
1118 			if (!dlci_ioctl_hook)
1119 				request_module("dlci");
1120 
1121 			mutex_lock(&dlci_ioctl_mutex);
1122 			if (dlci_ioctl_hook)
1123 				err = dlci_ioctl_hook(cmd, argp);
1124 			mutex_unlock(&dlci_ioctl_mutex);
1125 			break;
1126 		default:
1127 			err = sock_do_ioctl(net, sock, cmd, arg);
1128 			break;
1129 		}
1130 	return err;
1131 }
1132 
1133 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1134 {
1135 	int err;
1136 	struct socket *sock = NULL;
1137 
1138 	err = security_socket_create(family, type, protocol, 1);
1139 	if (err)
1140 		goto out;
1141 
1142 	sock = sock_alloc();
1143 	if (!sock) {
1144 		err = -ENOMEM;
1145 		goto out;
1146 	}
1147 
1148 	sock->type = type;
1149 	err = security_socket_post_create(sock, family, type, protocol, 1);
1150 	if (err)
1151 		goto out_release;
1152 
1153 out:
1154 	*res = sock;
1155 	return err;
1156 out_release:
1157 	sock_release(sock);
1158 	sock = NULL;
1159 	goto out;
1160 }
1161 EXPORT_SYMBOL(sock_create_lite);
1162 
1163 /* No kernel lock held - perfect */
1164 static unsigned int sock_poll(struct file *file, poll_table *wait)
1165 {
1166 	struct socket *sock;
1167 
1168 	/*
1169 	 *      We can't return errors to poll, so it's either yes or no.
1170 	 */
1171 	sock = file->private_data;
1172 	return sock->ops->poll(file, sock, wait);
1173 }
1174 
1175 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1176 {
1177 	struct socket *sock = file->private_data;
1178 
1179 	return sock->ops->mmap(file, sock, vma);
1180 }
1181 
1182 static int sock_close(struct inode *inode, struct file *filp)
1183 {
1184 	/*
1185 	 *      It was possible the inode is NULL we were
1186 	 *      closing an unfinished socket.
1187 	 */
1188 
1189 	if (!inode) {
1190 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1191 		return 0;
1192 	}
1193 	sock_release(SOCKET_I(inode));
1194 	return 0;
1195 }
1196 
1197 /*
1198  *	Update the socket async list
1199  *
1200  *	Fasync_list locking strategy.
1201  *
1202  *	1. fasync_list is modified only under process context socket lock
1203  *	   i.e. under semaphore.
1204  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1205  *	   or under socket lock
1206  */
1207 
1208 static int sock_fasync(int fd, struct file *filp, int on)
1209 {
1210 	struct socket *sock = filp->private_data;
1211 	struct sock *sk = sock->sk;
1212 	struct socket_wq *wq;
1213 
1214 	if (sk == NULL)
1215 		return -EINVAL;
1216 
1217 	lock_sock(sk);
1218 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1219 	fasync_helper(fd, filp, on, &wq->fasync_list);
1220 
1221 	if (!wq->fasync_list)
1222 		sock_reset_flag(sk, SOCK_FASYNC);
1223 	else
1224 		sock_set_flag(sk, SOCK_FASYNC);
1225 
1226 	release_sock(sk);
1227 	return 0;
1228 }
1229 
1230 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1231 
1232 int sock_wake_async(struct socket *sock, int how, int band)
1233 {
1234 	struct socket_wq *wq;
1235 
1236 	if (!sock)
1237 		return -1;
1238 	rcu_read_lock();
1239 	wq = rcu_dereference(sock->wq);
1240 	if (!wq || !wq->fasync_list) {
1241 		rcu_read_unlock();
1242 		return -1;
1243 	}
1244 	switch (how) {
1245 	case SOCK_WAKE_WAITD:
1246 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1247 			break;
1248 		goto call_kill;
1249 	case SOCK_WAKE_SPACE:
1250 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1251 			break;
1252 		/* fall through */
1253 	case SOCK_WAKE_IO:
1254 call_kill:
1255 		kill_fasync(&wq->fasync_list, SIGIO, band);
1256 		break;
1257 	case SOCK_WAKE_URG:
1258 		kill_fasync(&wq->fasync_list, SIGURG, band);
1259 	}
1260 	rcu_read_unlock();
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL(sock_wake_async);
1264 
1265 int __sock_create(struct net *net, int family, int type, int protocol,
1266 			 struct socket **res, int kern)
1267 {
1268 	int err;
1269 	struct socket *sock;
1270 	const struct net_proto_family *pf;
1271 
1272 	/*
1273 	 *      Check protocol is in range
1274 	 */
1275 	if (family < 0 || family >= NPROTO)
1276 		return -EAFNOSUPPORT;
1277 	if (type < 0 || type >= SOCK_MAX)
1278 		return -EINVAL;
1279 
1280 	/* Compatibility.
1281 
1282 	   This uglymoron is moved from INET layer to here to avoid
1283 	   deadlock in module load.
1284 	 */
1285 	if (family == PF_INET && type == SOCK_PACKET) {
1286 		static int warned;
1287 		if (!warned) {
1288 			warned = 1;
1289 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1290 			       current->comm);
1291 		}
1292 		family = PF_PACKET;
1293 	}
1294 
1295 	err = security_socket_create(family, type, protocol, kern);
1296 	if (err)
1297 		return err;
1298 
1299 	/*
1300 	 *	Allocate the socket and allow the family to set things up. if
1301 	 *	the protocol is 0, the family is instructed to select an appropriate
1302 	 *	default.
1303 	 */
1304 	sock = sock_alloc();
1305 	if (!sock) {
1306 		net_warn_ratelimited("socket: no more sockets\n");
1307 		return -ENFILE;	/* Not exactly a match, but its the
1308 				   closest posix thing */
1309 	}
1310 
1311 	sock->type = type;
1312 
1313 #ifdef CONFIG_MODULES
1314 	/* Attempt to load a protocol module if the find failed.
1315 	 *
1316 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1317 	 * requested real, full-featured networking support upon configuration.
1318 	 * Otherwise module support will break!
1319 	 */
1320 	if (rcu_access_pointer(net_families[family]) == NULL)
1321 		request_module("net-pf-%d", family);
1322 #endif
1323 
1324 	rcu_read_lock();
1325 	pf = rcu_dereference(net_families[family]);
1326 	err = -EAFNOSUPPORT;
1327 	if (!pf)
1328 		goto out_release;
1329 
1330 	/*
1331 	 * We will call the ->create function, that possibly is in a loadable
1332 	 * module, so we have to bump that loadable module refcnt first.
1333 	 */
1334 	if (!try_module_get(pf->owner))
1335 		goto out_release;
1336 
1337 	/* Now protected by module ref count */
1338 	rcu_read_unlock();
1339 
1340 	err = pf->create(net, sock, protocol, kern);
1341 	if (err < 0)
1342 		goto out_module_put;
1343 
1344 	/*
1345 	 * Now to bump the refcnt of the [loadable] module that owns this
1346 	 * socket at sock_release time we decrement its refcnt.
1347 	 */
1348 	if (!try_module_get(sock->ops->owner))
1349 		goto out_module_busy;
1350 
1351 	/*
1352 	 * Now that we're done with the ->create function, the [loadable]
1353 	 * module can have its refcnt decremented
1354 	 */
1355 	module_put(pf->owner);
1356 	err = security_socket_post_create(sock, family, type, protocol, kern);
1357 	if (err)
1358 		goto out_sock_release;
1359 	*res = sock;
1360 
1361 	return 0;
1362 
1363 out_module_busy:
1364 	err = -EAFNOSUPPORT;
1365 out_module_put:
1366 	sock->ops = NULL;
1367 	module_put(pf->owner);
1368 out_sock_release:
1369 	sock_release(sock);
1370 	return err;
1371 
1372 out_release:
1373 	rcu_read_unlock();
1374 	goto out_sock_release;
1375 }
1376 EXPORT_SYMBOL(__sock_create);
1377 
1378 int sock_create(int family, int type, int protocol, struct socket **res)
1379 {
1380 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1381 }
1382 EXPORT_SYMBOL(sock_create);
1383 
1384 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1385 {
1386 	return __sock_create(&init_net, family, type, protocol, res, 1);
1387 }
1388 EXPORT_SYMBOL(sock_create_kern);
1389 
1390 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1391 {
1392 	int retval;
1393 	struct socket *sock;
1394 	int flags;
1395 
1396 	/* Check the SOCK_* constants for consistency.  */
1397 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1398 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1399 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1400 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1401 
1402 	flags = type & ~SOCK_TYPE_MASK;
1403 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1404 		return -EINVAL;
1405 	type &= SOCK_TYPE_MASK;
1406 
1407 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1408 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1409 
1410 	retval = sock_create(family, type, protocol, &sock);
1411 	if (retval < 0)
1412 		goto out;
1413 
1414 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1415 	if (retval < 0)
1416 		goto out_release;
1417 
1418 out:
1419 	/* It may be already another descriptor 8) Not kernel problem. */
1420 	return retval;
1421 
1422 out_release:
1423 	sock_release(sock);
1424 	return retval;
1425 }
1426 
1427 /*
1428  *	Create a pair of connected sockets.
1429  */
1430 
1431 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1432 		int __user *, usockvec)
1433 {
1434 	struct socket *sock1, *sock2;
1435 	int fd1, fd2, err;
1436 	struct file *newfile1, *newfile2;
1437 	int flags;
1438 
1439 	flags = type & ~SOCK_TYPE_MASK;
1440 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1441 		return -EINVAL;
1442 	type &= SOCK_TYPE_MASK;
1443 
1444 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1445 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1446 
1447 	/*
1448 	 * Obtain the first socket and check if the underlying protocol
1449 	 * supports the socketpair call.
1450 	 */
1451 
1452 	err = sock_create(family, type, protocol, &sock1);
1453 	if (err < 0)
1454 		goto out;
1455 
1456 	err = sock_create(family, type, protocol, &sock2);
1457 	if (err < 0)
1458 		goto out_release_1;
1459 
1460 	err = sock1->ops->socketpair(sock1, sock2);
1461 	if (err < 0)
1462 		goto out_release_both;
1463 
1464 	fd1 = get_unused_fd_flags(flags);
1465 	if (unlikely(fd1 < 0)) {
1466 		err = fd1;
1467 		goto out_release_both;
1468 	}
1469 	fd2 = get_unused_fd_flags(flags);
1470 	if (unlikely(fd2 < 0)) {
1471 		err = fd2;
1472 		put_unused_fd(fd1);
1473 		goto out_release_both;
1474 	}
1475 
1476 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1477 	if (unlikely(IS_ERR(newfile1))) {
1478 		err = PTR_ERR(newfile1);
1479 		put_unused_fd(fd1);
1480 		put_unused_fd(fd2);
1481 		goto out_release_both;
1482 	}
1483 
1484 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1485 	if (IS_ERR(newfile2)) {
1486 		err = PTR_ERR(newfile2);
1487 		fput(newfile1);
1488 		put_unused_fd(fd1);
1489 		put_unused_fd(fd2);
1490 		sock_release(sock2);
1491 		goto out;
1492 	}
1493 
1494 	audit_fd_pair(fd1, fd2);
1495 	fd_install(fd1, newfile1);
1496 	fd_install(fd2, newfile2);
1497 	/* fd1 and fd2 may be already another descriptors.
1498 	 * Not kernel problem.
1499 	 */
1500 
1501 	err = put_user(fd1, &usockvec[0]);
1502 	if (!err)
1503 		err = put_user(fd2, &usockvec[1]);
1504 	if (!err)
1505 		return 0;
1506 
1507 	sys_close(fd2);
1508 	sys_close(fd1);
1509 	return err;
1510 
1511 out_release_both:
1512 	sock_release(sock2);
1513 out_release_1:
1514 	sock_release(sock1);
1515 out:
1516 	return err;
1517 }
1518 
1519 /*
1520  *	Bind a name to a socket. Nothing much to do here since it's
1521  *	the protocol's responsibility to handle the local address.
1522  *
1523  *	We move the socket address to kernel space before we call
1524  *	the protocol layer (having also checked the address is ok).
1525  */
1526 
1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528 {
1529 	struct socket *sock;
1530 	struct sockaddr_storage address;
1531 	int err, fput_needed;
1532 
1533 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 	if (sock) {
1535 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536 		if (err >= 0) {
1537 			err = security_socket_bind(sock,
1538 						   (struct sockaddr *)&address,
1539 						   addrlen);
1540 			if (!err)
1541 				err = sock->ops->bind(sock,
1542 						      (struct sockaddr *)
1543 						      &address, addrlen);
1544 		}
1545 		fput_light(sock->file, fput_needed);
1546 	}
1547 	return err;
1548 }
1549 
1550 /*
1551  *	Perform a listen. Basically, we allow the protocol to do anything
1552  *	necessary for a listen, and if that works, we mark the socket as
1553  *	ready for listening.
1554  */
1555 
1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557 {
1558 	struct socket *sock;
1559 	int err, fput_needed;
1560 	int somaxconn;
1561 
1562 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 	if (sock) {
1564 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565 		if ((unsigned int)backlog > somaxconn)
1566 			backlog = somaxconn;
1567 
1568 		err = security_socket_listen(sock, backlog);
1569 		if (!err)
1570 			err = sock->ops->listen(sock, backlog);
1571 
1572 		fput_light(sock->file, fput_needed);
1573 	}
1574 	return err;
1575 }
1576 
1577 /*
1578  *	For accept, we attempt to create a new socket, set up the link
1579  *	with the client, wake up the client, then return the new
1580  *	connected fd. We collect the address of the connector in kernel
1581  *	space and move it to user at the very end. This is unclean because
1582  *	we open the socket then return an error.
1583  *
1584  *	1003.1g adds the ability to recvmsg() to query connection pending
1585  *	status to recvmsg. We need to add that support in a way thats
1586  *	clean when we restucture accept also.
1587  */
1588 
1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590 		int __user *, upeer_addrlen, int, flags)
1591 {
1592 	struct socket *sock, *newsock;
1593 	struct file *newfile;
1594 	int err, len, newfd, fput_needed;
1595 	struct sockaddr_storage address;
1596 
1597 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598 		return -EINVAL;
1599 
1600 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602 
1603 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 	if (!sock)
1605 		goto out;
1606 
1607 	err = -ENFILE;
1608 	newsock = sock_alloc();
1609 	if (!newsock)
1610 		goto out_put;
1611 
1612 	newsock->type = sock->type;
1613 	newsock->ops = sock->ops;
1614 
1615 	/*
1616 	 * We don't need try_module_get here, as the listening socket (sock)
1617 	 * has the protocol module (sock->ops->owner) held.
1618 	 */
1619 	__module_get(newsock->ops->owner);
1620 
1621 	newfd = get_unused_fd_flags(flags);
1622 	if (unlikely(newfd < 0)) {
1623 		err = newfd;
1624 		sock_release(newsock);
1625 		goto out_put;
1626 	}
1627 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628 	if (unlikely(IS_ERR(newfile))) {
1629 		err = PTR_ERR(newfile);
1630 		put_unused_fd(newfd);
1631 		sock_release(newsock);
1632 		goto out_put;
1633 	}
1634 
1635 	err = security_socket_accept(sock, newsock);
1636 	if (err)
1637 		goto out_fd;
1638 
1639 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640 	if (err < 0)
1641 		goto out_fd;
1642 
1643 	if (upeer_sockaddr) {
1644 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645 					  &len, 2) < 0) {
1646 			err = -ECONNABORTED;
1647 			goto out_fd;
1648 		}
1649 		err = move_addr_to_user(&address,
1650 					len, upeer_sockaddr, upeer_addrlen);
1651 		if (err < 0)
1652 			goto out_fd;
1653 	}
1654 
1655 	/* File flags are not inherited via accept() unlike another OSes. */
1656 
1657 	fd_install(newfd, newfile);
1658 	err = newfd;
1659 
1660 out_put:
1661 	fput_light(sock->file, fput_needed);
1662 out:
1663 	return err;
1664 out_fd:
1665 	fput(newfile);
1666 	put_unused_fd(newfd);
1667 	goto out_put;
1668 }
1669 
1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671 		int __user *, upeer_addrlen)
1672 {
1673 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674 }
1675 
1676 /*
1677  *	Attempt to connect to a socket with the server address.  The address
1678  *	is in user space so we verify it is OK and move it to kernel space.
1679  *
1680  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681  *	break bindings
1682  *
1683  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684  *	other SEQPACKET protocols that take time to connect() as it doesn't
1685  *	include the -EINPROGRESS status for such sockets.
1686  */
1687 
1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689 		int, addrlen)
1690 {
1691 	struct socket *sock;
1692 	struct sockaddr_storage address;
1693 	int err, fput_needed;
1694 
1695 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 	if (!sock)
1697 		goto out;
1698 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699 	if (err < 0)
1700 		goto out_put;
1701 
1702 	err =
1703 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704 	if (err)
1705 		goto out_put;
1706 
1707 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708 				 sock->file->f_flags);
1709 out_put:
1710 	fput_light(sock->file, fput_needed);
1711 out:
1712 	return err;
1713 }
1714 
1715 /*
1716  *	Get the local address ('name') of a socket object. Move the obtained
1717  *	name to user space.
1718  */
1719 
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 		int __user *, usockaddr_len)
1722 {
1723 	struct socket *sock;
1724 	struct sockaddr_storage address;
1725 	int len, err, fput_needed;
1726 
1727 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 	if (!sock)
1729 		goto out;
1730 
1731 	err = security_socket_getsockname(sock);
1732 	if (err)
1733 		goto out_put;
1734 
1735 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736 	if (err)
1737 		goto out_put;
1738 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739 
1740 out_put:
1741 	fput_light(sock->file, fput_needed);
1742 out:
1743 	return err;
1744 }
1745 
1746 /*
1747  *	Get the remote address ('name') of a socket object. Move the obtained
1748  *	name to user space.
1749  */
1750 
1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752 		int __user *, usockaddr_len)
1753 {
1754 	struct socket *sock;
1755 	struct sockaddr_storage address;
1756 	int len, err, fput_needed;
1757 
1758 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759 	if (sock != NULL) {
1760 		err = security_socket_getpeername(sock);
1761 		if (err) {
1762 			fput_light(sock->file, fput_needed);
1763 			return err;
1764 		}
1765 
1766 		err =
1767 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768 				       1);
1769 		if (!err)
1770 			err = move_addr_to_user(&address, len, usockaddr,
1771 						usockaddr_len);
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /*
1778  *	Send a datagram to a given address. We move the address into kernel
1779  *	space and check the user space data area is readable before invoking
1780  *	the protocol.
1781  */
1782 
1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784 		unsigned int, flags, struct sockaddr __user *, addr,
1785 		int, addr_len)
1786 {
1787 	struct socket *sock;
1788 	struct sockaddr_storage address;
1789 	int err;
1790 	struct msghdr msg;
1791 	struct iovec iov;
1792 	int fput_needed;
1793 
1794 	if (len > INT_MAX)
1795 		len = INT_MAX;
1796 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 	if (!sock)
1798 		goto out;
1799 
1800 	iov.iov_base = buff;
1801 	iov.iov_len = len;
1802 	msg.msg_name = NULL;
1803 	msg.msg_iov = &iov;
1804 	msg.msg_iovlen = 1;
1805 	msg.msg_control = NULL;
1806 	msg.msg_controllen = 0;
1807 	msg.msg_namelen = 0;
1808 	if (addr) {
1809 		err = move_addr_to_kernel(addr, addr_len, &address);
1810 		if (err < 0)
1811 			goto out_put;
1812 		msg.msg_name = (struct sockaddr *)&address;
1813 		msg.msg_namelen = addr_len;
1814 	}
1815 	if (sock->file->f_flags & O_NONBLOCK)
1816 		flags |= MSG_DONTWAIT;
1817 	msg.msg_flags = flags;
1818 	err = sock_sendmsg(sock, &msg, len);
1819 
1820 out_put:
1821 	fput_light(sock->file, fput_needed);
1822 out:
1823 	return err;
1824 }
1825 
1826 /*
1827  *	Send a datagram down a socket.
1828  */
1829 
1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831 		unsigned int, flags)
1832 {
1833 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1834 }
1835 
1836 /*
1837  *	Receive a frame from the socket and optionally record the address of the
1838  *	sender. We verify the buffers are writable and if needed move the
1839  *	sender address from kernel to user space.
1840  */
1841 
1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843 		unsigned int, flags, struct sockaddr __user *, addr,
1844 		int __user *, addr_len)
1845 {
1846 	struct socket *sock;
1847 	struct iovec iov;
1848 	struct msghdr msg;
1849 	struct sockaddr_storage address;
1850 	int err, err2;
1851 	int fput_needed;
1852 
1853 	if (size > INT_MAX)
1854 		size = INT_MAX;
1855 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 	if (!sock)
1857 		goto out;
1858 
1859 	msg.msg_control = NULL;
1860 	msg.msg_controllen = 0;
1861 	msg.msg_iovlen = 1;
1862 	msg.msg_iov = &iov;
1863 	iov.iov_len = size;
1864 	iov.iov_base = ubuf;
1865 	msg.msg_name = (struct sockaddr *)&address;
1866 	msg.msg_namelen = sizeof(address);
1867 	if (sock->file->f_flags & O_NONBLOCK)
1868 		flags |= MSG_DONTWAIT;
1869 	err = sock_recvmsg(sock, &msg, size, flags);
1870 
1871 	if (err >= 0 && addr != NULL) {
1872 		err2 = move_addr_to_user(&address,
1873 					 msg.msg_namelen, addr, addr_len);
1874 		if (err2 < 0)
1875 			err = err2;
1876 	}
1877 
1878 	fput_light(sock->file, fput_needed);
1879 out:
1880 	return err;
1881 }
1882 
1883 /*
1884  *	Receive a datagram from a socket.
1885  */
1886 
1887 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1888 			 unsigned int flags)
1889 {
1890 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1891 }
1892 
1893 /*
1894  *	Set a socket option. Because we don't know the option lengths we have
1895  *	to pass the user mode parameter for the protocols to sort out.
1896  */
1897 
1898 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1899 		char __user *, optval, int, optlen)
1900 {
1901 	int err, fput_needed;
1902 	struct socket *sock;
1903 
1904 	if (optlen < 0)
1905 		return -EINVAL;
1906 
1907 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 	if (sock != NULL) {
1909 		err = security_socket_setsockopt(sock, level, optname);
1910 		if (err)
1911 			goto out_put;
1912 
1913 		if (level == SOL_SOCKET)
1914 			err =
1915 			    sock_setsockopt(sock, level, optname, optval,
1916 					    optlen);
1917 		else
1918 			err =
1919 			    sock->ops->setsockopt(sock, level, optname, optval,
1920 						  optlen);
1921 out_put:
1922 		fput_light(sock->file, fput_needed);
1923 	}
1924 	return err;
1925 }
1926 
1927 /*
1928  *	Get a socket option. Because we don't know the option lengths we have
1929  *	to pass a user mode parameter for the protocols to sort out.
1930  */
1931 
1932 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1933 		char __user *, optval, int __user *, optlen)
1934 {
1935 	int err, fput_needed;
1936 	struct socket *sock;
1937 
1938 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 	if (sock != NULL) {
1940 		err = security_socket_getsockopt(sock, level, optname);
1941 		if (err)
1942 			goto out_put;
1943 
1944 		if (level == SOL_SOCKET)
1945 			err =
1946 			    sock_getsockopt(sock, level, optname, optval,
1947 					    optlen);
1948 		else
1949 			err =
1950 			    sock->ops->getsockopt(sock, level, optname, optval,
1951 						  optlen);
1952 out_put:
1953 		fput_light(sock->file, fput_needed);
1954 	}
1955 	return err;
1956 }
1957 
1958 /*
1959  *	Shutdown a socket.
1960  */
1961 
1962 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1963 {
1964 	int err, fput_needed;
1965 	struct socket *sock;
1966 
1967 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1968 	if (sock != NULL) {
1969 		err = security_socket_shutdown(sock, how);
1970 		if (!err)
1971 			err = sock->ops->shutdown(sock, how);
1972 		fput_light(sock->file, fput_needed);
1973 	}
1974 	return err;
1975 }
1976 
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978  * fields which are the same type (int / unsigned) on our platforms.
1979  */
1980 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1983 
1984 struct used_address {
1985 	struct sockaddr_storage name;
1986 	unsigned int name_len;
1987 };
1988 
1989 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1990 			 struct msghdr *msg_sys, unsigned int flags,
1991 			 struct used_address *used_address)
1992 {
1993 	struct compat_msghdr __user *msg_compat =
1994 	    (struct compat_msghdr __user *)msg;
1995 	struct sockaddr_storage address;
1996 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1997 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1998 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1999 	/* 20 is size of ipv6_pktinfo */
2000 	unsigned char *ctl_buf = ctl;
2001 	int err, ctl_len, total_len;
2002 
2003 	err = -EFAULT;
2004 	if (MSG_CMSG_COMPAT & flags) {
2005 		if (get_compat_msghdr(msg_sys, msg_compat))
2006 			return -EFAULT;
2007 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2008 		return -EFAULT;
2009 
2010 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2011 		err = -EMSGSIZE;
2012 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2013 			goto out;
2014 		err = -ENOMEM;
2015 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2016 			      GFP_KERNEL);
2017 		if (!iov)
2018 			goto out;
2019 	}
2020 
2021 	/* This will also move the address data into kernel space */
2022 	if (MSG_CMSG_COMPAT & flags) {
2023 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2024 	} else
2025 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2026 	if (err < 0)
2027 		goto out_freeiov;
2028 	total_len = err;
2029 
2030 	err = -ENOBUFS;
2031 
2032 	if (msg_sys->msg_controllen > INT_MAX)
2033 		goto out_freeiov;
2034 	ctl_len = msg_sys->msg_controllen;
2035 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2036 		err =
2037 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2038 						     sizeof(ctl));
2039 		if (err)
2040 			goto out_freeiov;
2041 		ctl_buf = msg_sys->msg_control;
2042 		ctl_len = msg_sys->msg_controllen;
2043 	} else if (ctl_len) {
2044 		if (ctl_len > sizeof(ctl)) {
2045 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2046 			if (ctl_buf == NULL)
2047 				goto out_freeiov;
2048 		}
2049 		err = -EFAULT;
2050 		/*
2051 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2052 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2053 		 * checking falls down on this.
2054 		 */
2055 		if (copy_from_user(ctl_buf,
2056 				   (void __user __force *)msg_sys->msg_control,
2057 				   ctl_len))
2058 			goto out_freectl;
2059 		msg_sys->msg_control = ctl_buf;
2060 	}
2061 	msg_sys->msg_flags = flags;
2062 
2063 	if (sock->file->f_flags & O_NONBLOCK)
2064 		msg_sys->msg_flags |= MSG_DONTWAIT;
2065 	/*
2066 	 * If this is sendmmsg() and current destination address is same as
2067 	 * previously succeeded address, omit asking LSM's decision.
2068 	 * used_address->name_len is initialized to UINT_MAX so that the first
2069 	 * destination address never matches.
2070 	 */
2071 	if (used_address && msg_sys->msg_name &&
2072 	    used_address->name_len == msg_sys->msg_namelen &&
2073 	    !memcmp(&used_address->name, msg_sys->msg_name,
2074 		    used_address->name_len)) {
2075 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2076 		goto out_freectl;
2077 	}
2078 	err = sock_sendmsg(sock, msg_sys, total_len);
2079 	/*
2080 	 * If this is sendmmsg() and sending to current destination address was
2081 	 * successful, remember it.
2082 	 */
2083 	if (used_address && err >= 0) {
2084 		used_address->name_len = msg_sys->msg_namelen;
2085 		if (msg_sys->msg_name)
2086 			memcpy(&used_address->name, msg_sys->msg_name,
2087 			       used_address->name_len);
2088 	}
2089 
2090 out_freectl:
2091 	if (ctl_buf != ctl)
2092 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2093 out_freeiov:
2094 	if (iov != iovstack)
2095 		kfree(iov);
2096 out:
2097 	return err;
2098 }
2099 
2100 /*
2101  *	BSD sendmsg interface
2102  */
2103 
2104 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2105 {
2106 	int fput_needed, err;
2107 	struct msghdr msg_sys;
2108 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 
2110 	if (!sock)
2111 		goto out;
2112 
2113 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2114 
2115 	fput_light(sock->file, fput_needed);
2116 out:
2117 	return err;
2118 }
2119 
2120 /*
2121  *	Linux sendmmsg interface
2122  */
2123 
2124 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2125 		   unsigned int flags)
2126 {
2127 	int fput_needed, err, datagrams;
2128 	struct socket *sock;
2129 	struct mmsghdr __user *entry;
2130 	struct compat_mmsghdr __user *compat_entry;
2131 	struct msghdr msg_sys;
2132 	struct used_address used_address;
2133 
2134 	if (vlen > UIO_MAXIOV)
2135 		vlen = UIO_MAXIOV;
2136 
2137 	datagrams = 0;
2138 
2139 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2140 	if (!sock)
2141 		return err;
2142 
2143 	used_address.name_len = UINT_MAX;
2144 	entry = mmsg;
2145 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2146 	err = 0;
2147 
2148 	while (datagrams < vlen) {
2149 		if (MSG_CMSG_COMPAT & flags) {
2150 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2151 					    &msg_sys, flags, &used_address);
2152 			if (err < 0)
2153 				break;
2154 			err = __put_user(err, &compat_entry->msg_len);
2155 			++compat_entry;
2156 		} else {
2157 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2158 					    &msg_sys, flags, &used_address);
2159 			if (err < 0)
2160 				break;
2161 			err = put_user(err, &entry->msg_len);
2162 			++entry;
2163 		}
2164 
2165 		if (err)
2166 			break;
2167 		++datagrams;
2168 	}
2169 
2170 	fput_light(sock->file, fput_needed);
2171 
2172 	/* We only return an error if no datagrams were able to be sent */
2173 	if (datagrams != 0)
2174 		return datagrams;
2175 
2176 	return err;
2177 }
2178 
2179 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2180 		unsigned int, vlen, unsigned int, flags)
2181 {
2182 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2183 }
2184 
2185 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2186 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2187 {
2188 	struct compat_msghdr __user *msg_compat =
2189 	    (struct compat_msghdr __user *)msg;
2190 	struct iovec iovstack[UIO_FASTIOV];
2191 	struct iovec *iov = iovstack;
2192 	unsigned long cmsg_ptr;
2193 	int err, total_len, len;
2194 
2195 	/* kernel mode address */
2196 	struct sockaddr_storage addr;
2197 
2198 	/* user mode address pointers */
2199 	struct sockaddr __user *uaddr;
2200 	int __user *uaddr_len;
2201 
2202 	if (MSG_CMSG_COMPAT & flags) {
2203 		if (get_compat_msghdr(msg_sys, msg_compat))
2204 			return -EFAULT;
2205 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2206 		return -EFAULT;
2207 
2208 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2209 		err = -EMSGSIZE;
2210 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2211 			goto out;
2212 		err = -ENOMEM;
2213 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2214 			      GFP_KERNEL);
2215 		if (!iov)
2216 			goto out;
2217 	}
2218 
2219 	/*
2220 	 *      Save the user-mode address (verify_iovec will change the
2221 	 *      kernel msghdr to use the kernel address space)
2222 	 */
2223 
2224 	uaddr = (__force void __user *)msg_sys->msg_name;
2225 	uaddr_len = COMPAT_NAMELEN(msg);
2226 	if (MSG_CMSG_COMPAT & flags) {
2227 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228 	} else
2229 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2230 	if (err < 0)
2231 		goto out_freeiov;
2232 	total_len = err;
2233 
2234 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2235 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2236 
2237 	if (sock->file->f_flags & O_NONBLOCK)
2238 		flags |= MSG_DONTWAIT;
2239 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2240 							  total_len, flags);
2241 	if (err < 0)
2242 		goto out_freeiov;
2243 	len = err;
2244 
2245 	if (uaddr != NULL) {
2246 		err = move_addr_to_user(&addr,
2247 					msg_sys->msg_namelen, uaddr,
2248 					uaddr_len);
2249 		if (err < 0)
2250 			goto out_freeiov;
2251 	}
2252 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2253 			 COMPAT_FLAGS(msg));
2254 	if (err)
2255 		goto out_freeiov;
2256 	if (MSG_CMSG_COMPAT & flags)
2257 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2258 				 &msg_compat->msg_controllen);
2259 	else
2260 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2261 				 &msg->msg_controllen);
2262 	if (err)
2263 		goto out_freeiov;
2264 	err = len;
2265 
2266 out_freeiov:
2267 	if (iov != iovstack)
2268 		kfree(iov);
2269 out:
2270 	return err;
2271 }
2272 
2273 /*
2274  *	BSD recvmsg interface
2275  */
2276 
2277 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2278 		unsigned int, flags)
2279 {
2280 	int fput_needed, err;
2281 	struct msghdr msg_sys;
2282 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2283 
2284 	if (!sock)
2285 		goto out;
2286 
2287 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2288 
2289 	fput_light(sock->file, fput_needed);
2290 out:
2291 	return err;
2292 }
2293 
2294 /*
2295  *     Linux recvmmsg interface
2296  */
2297 
2298 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2299 		   unsigned int flags, struct timespec *timeout)
2300 {
2301 	int fput_needed, err, datagrams;
2302 	struct socket *sock;
2303 	struct mmsghdr __user *entry;
2304 	struct compat_mmsghdr __user *compat_entry;
2305 	struct msghdr msg_sys;
2306 	struct timespec end_time;
2307 
2308 	if (timeout &&
2309 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2310 				    timeout->tv_nsec))
2311 		return -EINVAL;
2312 
2313 	datagrams = 0;
2314 
2315 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2316 	if (!sock)
2317 		return err;
2318 
2319 	err = sock_error(sock->sk);
2320 	if (err)
2321 		goto out_put;
2322 
2323 	entry = mmsg;
2324 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2325 
2326 	while (datagrams < vlen) {
2327 		/*
2328 		 * No need to ask LSM for more than the first datagram.
2329 		 */
2330 		if (MSG_CMSG_COMPAT & flags) {
2331 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2332 					    &msg_sys, flags & ~MSG_WAITFORONE,
2333 					    datagrams);
2334 			if (err < 0)
2335 				break;
2336 			err = __put_user(err, &compat_entry->msg_len);
2337 			++compat_entry;
2338 		} else {
2339 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2340 					    &msg_sys, flags & ~MSG_WAITFORONE,
2341 					    datagrams);
2342 			if (err < 0)
2343 				break;
2344 			err = put_user(err, &entry->msg_len);
2345 			++entry;
2346 		}
2347 
2348 		if (err)
2349 			break;
2350 		++datagrams;
2351 
2352 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2353 		if (flags & MSG_WAITFORONE)
2354 			flags |= MSG_DONTWAIT;
2355 
2356 		if (timeout) {
2357 			ktime_get_ts(timeout);
2358 			*timeout = timespec_sub(end_time, *timeout);
2359 			if (timeout->tv_sec < 0) {
2360 				timeout->tv_sec = timeout->tv_nsec = 0;
2361 				break;
2362 			}
2363 
2364 			/* Timeout, return less than vlen datagrams */
2365 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2366 				break;
2367 		}
2368 
2369 		/* Out of band data, return right away */
2370 		if (msg_sys.msg_flags & MSG_OOB)
2371 			break;
2372 	}
2373 
2374 out_put:
2375 	fput_light(sock->file, fput_needed);
2376 
2377 	if (err == 0)
2378 		return datagrams;
2379 
2380 	if (datagrams != 0) {
2381 		/*
2382 		 * We may return less entries than requested (vlen) if the
2383 		 * sock is non block and there aren't enough datagrams...
2384 		 */
2385 		if (err != -EAGAIN) {
2386 			/*
2387 			 * ... or  if recvmsg returns an error after we
2388 			 * received some datagrams, where we record the
2389 			 * error to return on the next call or if the
2390 			 * app asks about it using getsockopt(SO_ERROR).
2391 			 */
2392 			sock->sk->sk_err = -err;
2393 		}
2394 
2395 		return datagrams;
2396 	}
2397 
2398 	return err;
2399 }
2400 
2401 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2402 		unsigned int, vlen, unsigned int, flags,
2403 		struct timespec __user *, timeout)
2404 {
2405 	int datagrams;
2406 	struct timespec timeout_sys;
2407 
2408 	if (!timeout)
2409 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2410 
2411 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2412 		return -EFAULT;
2413 
2414 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2415 
2416 	if (datagrams > 0 &&
2417 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2418 		datagrams = -EFAULT;
2419 
2420 	return datagrams;
2421 }
2422 
2423 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2424 /* Argument list sizes for sys_socketcall */
2425 #define AL(x) ((x) * sizeof(unsigned long))
2426 static const unsigned char nargs[21] = {
2427 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2428 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2429 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2430 	AL(4), AL(5), AL(4)
2431 };
2432 
2433 #undef AL
2434 
2435 /*
2436  *	System call vectors.
2437  *
2438  *	Argument checking cleaned up. Saved 20% in size.
2439  *  This function doesn't need to set the kernel lock because
2440  *  it is set by the callees.
2441  */
2442 
2443 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2444 {
2445 	unsigned long a[6];
2446 	unsigned long a0, a1;
2447 	int err;
2448 	unsigned int len;
2449 
2450 	if (call < 1 || call > SYS_SENDMMSG)
2451 		return -EINVAL;
2452 
2453 	len = nargs[call];
2454 	if (len > sizeof(a))
2455 		return -EINVAL;
2456 
2457 	/* copy_from_user should be SMP safe. */
2458 	if (copy_from_user(a, args, len))
2459 		return -EFAULT;
2460 
2461 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2462 
2463 	a0 = a[0];
2464 	a1 = a[1];
2465 
2466 	switch (call) {
2467 	case SYS_SOCKET:
2468 		err = sys_socket(a0, a1, a[2]);
2469 		break;
2470 	case SYS_BIND:
2471 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2472 		break;
2473 	case SYS_CONNECT:
2474 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2475 		break;
2476 	case SYS_LISTEN:
2477 		err = sys_listen(a0, a1);
2478 		break;
2479 	case SYS_ACCEPT:
2480 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2481 				  (int __user *)a[2], 0);
2482 		break;
2483 	case SYS_GETSOCKNAME:
2484 		err =
2485 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2486 				    (int __user *)a[2]);
2487 		break;
2488 	case SYS_GETPEERNAME:
2489 		err =
2490 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2491 				    (int __user *)a[2]);
2492 		break;
2493 	case SYS_SOCKETPAIR:
2494 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2495 		break;
2496 	case SYS_SEND:
2497 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2498 		break;
2499 	case SYS_SENDTO:
2500 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2501 				 (struct sockaddr __user *)a[4], a[5]);
2502 		break;
2503 	case SYS_RECV:
2504 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2505 		break;
2506 	case SYS_RECVFROM:
2507 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2508 				   (struct sockaddr __user *)a[4],
2509 				   (int __user *)a[5]);
2510 		break;
2511 	case SYS_SHUTDOWN:
2512 		err = sys_shutdown(a0, a1);
2513 		break;
2514 	case SYS_SETSOCKOPT:
2515 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2516 		break;
2517 	case SYS_GETSOCKOPT:
2518 		err =
2519 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2520 				   (int __user *)a[4]);
2521 		break;
2522 	case SYS_SENDMSG:
2523 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2524 		break;
2525 	case SYS_SENDMMSG:
2526 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2527 		break;
2528 	case SYS_RECVMSG:
2529 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2530 		break;
2531 	case SYS_RECVMMSG:
2532 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2533 				   (struct timespec __user *)a[4]);
2534 		break;
2535 	case SYS_ACCEPT4:
2536 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2537 				  (int __user *)a[2], a[3]);
2538 		break;
2539 	default:
2540 		err = -EINVAL;
2541 		break;
2542 	}
2543 	return err;
2544 }
2545 
2546 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2547 
2548 /**
2549  *	sock_register - add a socket protocol handler
2550  *	@ops: description of protocol
2551  *
2552  *	This function is called by a protocol handler that wants to
2553  *	advertise its address family, and have it linked into the
2554  *	socket interface. The value ops->family coresponds to the
2555  *	socket system call protocol family.
2556  */
2557 int sock_register(const struct net_proto_family *ops)
2558 {
2559 	int err;
2560 
2561 	if (ops->family >= NPROTO) {
2562 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2563 		       NPROTO);
2564 		return -ENOBUFS;
2565 	}
2566 
2567 	spin_lock(&net_family_lock);
2568 	if (rcu_dereference_protected(net_families[ops->family],
2569 				      lockdep_is_held(&net_family_lock)))
2570 		err = -EEXIST;
2571 	else {
2572 		rcu_assign_pointer(net_families[ops->family], ops);
2573 		err = 0;
2574 	}
2575 	spin_unlock(&net_family_lock);
2576 
2577 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2578 	return err;
2579 }
2580 EXPORT_SYMBOL(sock_register);
2581 
2582 /**
2583  *	sock_unregister - remove a protocol handler
2584  *	@family: protocol family to remove
2585  *
2586  *	This function is called by a protocol handler that wants to
2587  *	remove its address family, and have it unlinked from the
2588  *	new socket creation.
2589  *
2590  *	If protocol handler is a module, then it can use module reference
2591  *	counts to protect against new references. If protocol handler is not
2592  *	a module then it needs to provide its own protection in
2593  *	the ops->create routine.
2594  */
2595 void sock_unregister(int family)
2596 {
2597 	BUG_ON(family < 0 || family >= NPROTO);
2598 
2599 	spin_lock(&net_family_lock);
2600 	RCU_INIT_POINTER(net_families[family], NULL);
2601 	spin_unlock(&net_family_lock);
2602 
2603 	synchronize_rcu();
2604 
2605 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2606 }
2607 EXPORT_SYMBOL(sock_unregister);
2608 
2609 static int __init sock_init(void)
2610 {
2611 	int err;
2612 	/*
2613 	 *      Initialize the network sysctl infrastructure.
2614 	 */
2615 	err = net_sysctl_init();
2616 	if (err)
2617 		goto out;
2618 
2619 	/*
2620 	 *      Initialize skbuff SLAB cache
2621 	 */
2622 	skb_init();
2623 
2624 	/*
2625 	 *      Initialize the protocols module.
2626 	 */
2627 
2628 	init_inodecache();
2629 
2630 	err = register_filesystem(&sock_fs_type);
2631 	if (err)
2632 		goto out_fs;
2633 	sock_mnt = kern_mount(&sock_fs_type);
2634 	if (IS_ERR(sock_mnt)) {
2635 		err = PTR_ERR(sock_mnt);
2636 		goto out_mount;
2637 	}
2638 
2639 	/* The real protocol initialization is performed in later initcalls.
2640 	 */
2641 
2642 #ifdef CONFIG_NETFILTER
2643 	netfilter_init();
2644 #endif
2645 
2646 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2647 	skb_timestamping_init();
2648 #endif
2649 
2650 out:
2651 	return err;
2652 
2653 out_mount:
2654 	unregister_filesystem(&sock_fs_type);
2655 out_fs:
2656 	goto out;
2657 }
2658 
2659 core_initcall(sock_init);	/* early initcall */
2660 
2661 #ifdef CONFIG_PROC_FS
2662 void socket_seq_show(struct seq_file *seq)
2663 {
2664 	int cpu;
2665 	int counter = 0;
2666 
2667 	for_each_possible_cpu(cpu)
2668 	    counter += per_cpu(sockets_in_use, cpu);
2669 
2670 	/* It can be negative, by the way. 8) */
2671 	if (counter < 0)
2672 		counter = 0;
2673 
2674 	seq_printf(seq, "sockets: used %d\n", counter);
2675 }
2676 #endif				/* CONFIG_PROC_FS */
2677 
2678 #ifdef CONFIG_COMPAT
2679 static int do_siocgstamp(struct net *net, struct socket *sock,
2680 			 unsigned int cmd, void __user *up)
2681 {
2682 	mm_segment_t old_fs = get_fs();
2683 	struct timeval ktv;
2684 	int err;
2685 
2686 	set_fs(KERNEL_DS);
2687 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2688 	set_fs(old_fs);
2689 	if (!err)
2690 		err = compat_put_timeval(&ktv, up);
2691 
2692 	return err;
2693 }
2694 
2695 static int do_siocgstampns(struct net *net, struct socket *sock,
2696 			   unsigned int cmd, void __user *up)
2697 {
2698 	mm_segment_t old_fs = get_fs();
2699 	struct timespec kts;
2700 	int err;
2701 
2702 	set_fs(KERNEL_DS);
2703 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2704 	set_fs(old_fs);
2705 	if (!err)
2706 		err = compat_put_timespec(&kts, up);
2707 
2708 	return err;
2709 }
2710 
2711 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2712 {
2713 	struct ifreq __user *uifr;
2714 	int err;
2715 
2716 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2717 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2718 		return -EFAULT;
2719 
2720 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2721 	if (err)
2722 		return err;
2723 
2724 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2725 		return -EFAULT;
2726 
2727 	return 0;
2728 }
2729 
2730 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2731 {
2732 	struct compat_ifconf ifc32;
2733 	struct ifconf ifc;
2734 	struct ifconf __user *uifc;
2735 	struct compat_ifreq __user *ifr32;
2736 	struct ifreq __user *ifr;
2737 	unsigned int i, j;
2738 	int err;
2739 
2740 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2741 		return -EFAULT;
2742 
2743 	memset(&ifc, 0, sizeof(ifc));
2744 	if (ifc32.ifcbuf == 0) {
2745 		ifc32.ifc_len = 0;
2746 		ifc.ifc_len = 0;
2747 		ifc.ifc_req = NULL;
2748 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2749 	} else {
2750 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2751 			sizeof(struct ifreq);
2752 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2753 		ifc.ifc_len = len;
2754 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2755 		ifr32 = compat_ptr(ifc32.ifcbuf);
2756 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2757 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2758 				return -EFAULT;
2759 			ifr++;
2760 			ifr32++;
2761 		}
2762 	}
2763 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2764 		return -EFAULT;
2765 
2766 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2767 	if (err)
2768 		return err;
2769 
2770 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2771 		return -EFAULT;
2772 
2773 	ifr = ifc.ifc_req;
2774 	ifr32 = compat_ptr(ifc32.ifcbuf);
2775 	for (i = 0, j = 0;
2776 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2777 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2778 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2779 			return -EFAULT;
2780 		ifr32++;
2781 		ifr++;
2782 	}
2783 
2784 	if (ifc32.ifcbuf == 0) {
2785 		/* Translate from 64-bit structure multiple to
2786 		 * a 32-bit one.
2787 		 */
2788 		i = ifc.ifc_len;
2789 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2790 		ifc32.ifc_len = i;
2791 	} else {
2792 		ifc32.ifc_len = i;
2793 	}
2794 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2795 		return -EFAULT;
2796 
2797 	return 0;
2798 }
2799 
2800 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2801 {
2802 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2803 	bool convert_in = false, convert_out = false;
2804 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2805 	struct ethtool_rxnfc __user *rxnfc;
2806 	struct ifreq __user *ifr;
2807 	u32 rule_cnt = 0, actual_rule_cnt;
2808 	u32 ethcmd;
2809 	u32 data;
2810 	int ret;
2811 
2812 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2813 		return -EFAULT;
2814 
2815 	compat_rxnfc = compat_ptr(data);
2816 
2817 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2818 		return -EFAULT;
2819 
2820 	/* Most ethtool structures are defined without padding.
2821 	 * Unfortunately struct ethtool_rxnfc is an exception.
2822 	 */
2823 	switch (ethcmd) {
2824 	default:
2825 		break;
2826 	case ETHTOOL_GRXCLSRLALL:
2827 		/* Buffer size is variable */
2828 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2829 			return -EFAULT;
2830 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2831 			return -ENOMEM;
2832 		buf_size += rule_cnt * sizeof(u32);
2833 		/* fall through */
2834 	case ETHTOOL_GRXRINGS:
2835 	case ETHTOOL_GRXCLSRLCNT:
2836 	case ETHTOOL_GRXCLSRULE:
2837 	case ETHTOOL_SRXCLSRLINS:
2838 		convert_out = true;
2839 		/* fall through */
2840 	case ETHTOOL_SRXCLSRLDEL:
2841 		buf_size += sizeof(struct ethtool_rxnfc);
2842 		convert_in = true;
2843 		break;
2844 	}
2845 
2846 	ifr = compat_alloc_user_space(buf_size);
2847 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2848 
2849 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2850 		return -EFAULT;
2851 
2852 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2853 		     &ifr->ifr_ifru.ifru_data))
2854 		return -EFAULT;
2855 
2856 	if (convert_in) {
2857 		/* We expect there to be holes between fs.m_ext and
2858 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 		 */
2860 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861 			     sizeof(compat_rxnfc->fs.m_ext) !=
2862 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863 			     sizeof(rxnfc->fs.m_ext));
2864 		BUILD_BUG_ON(
2865 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867 			offsetof(struct ethtool_rxnfc, fs.location) -
2868 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869 
2870 		if (copy_in_user(rxnfc, compat_rxnfc,
2871 				 (void *)(&rxnfc->fs.m_ext + 1) -
2872 				 (void *)rxnfc) ||
2873 		    copy_in_user(&rxnfc->fs.ring_cookie,
2874 				 &compat_rxnfc->fs.ring_cookie,
2875 				 (void *)(&rxnfc->fs.location + 1) -
2876 				 (void *)&rxnfc->fs.ring_cookie) ||
2877 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878 				 sizeof(rxnfc->rule_cnt)))
2879 			return -EFAULT;
2880 	}
2881 
2882 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2883 	if (ret)
2884 		return ret;
2885 
2886 	if (convert_out) {
2887 		if (copy_in_user(compat_rxnfc, rxnfc,
2888 				 (const void *)(&rxnfc->fs.m_ext + 1) -
2889 				 (const void *)rxnfc) ||
2890 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891 				 &rxnfc->fs.ring_cookie,
2892 				 (const void *)(&rxnfc->fs.location + 1) -
2893 				 (const void *)&rxnfc->fs.ring_cookie) ||
2894 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895 				 sizeof(rxnfc->rule_cnt)))
2896 			return -EFAULT;
2897 
2898 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899 			/* As an optimisation, we only copy the actual
2900 			 * number of rules that the underlying
2901 			 * function returned.  Since Mallory might
2902 			 * change the rule count in user memory, we
2903 			 * check that it is less than the rule count
2904 			 * originally given (as the user buffer size),
2905 			 * which has been range-checked.
2906 			 */
2907 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908 				return -EFAULT;
2909 			if (actual_rule_cnt < rule_cnt)
2910 				rule_cnt = actual_rule_cnt;
2911 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912 					 &rxnfc->rule_locs[0],
2913 					 rule_cnt * sizeof(u32)))
2914 				return -EFAULT;
2915 		}
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922 {
2923 	void __user *uptr;
2924 	compat_uptr_t uptr32;
2925 	struct ifreq __user *uifr;
2926 
2927 	uifr = compat_alloc_user_space(sizeof(*uifr));
2928 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2929 		return -EFAULT;
2930 
2931 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932 		return -EFAULT;
2933 
2934 	uptr = compat_ptr(uptr32);
2935 
2936 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2937 		return -EFAULT;
2938 
2939 	return dev_ioctl(net, SIOCWANDEV, uifr);
2940 }
2941 
2942 static int bond_ioctl(struct net *net, unsigned int cmd,
2943 			 struct compat_ifreq __user *ifr32)
2944 {
2945 	struct ifreq kifr;
2946 	struct ifreq __user *uifr;
2947 	mm_segment_t old_fs;
2948 	int err;
2949 	u32 data;
2950 	void __user *datap;
2951 
2952 	switch (cmd) {
2953 	case SIOCBONDENSLAVE:
2954 	case SIOCBONDRELEASE:
2955 	case SIOCBONDSETHWADDR:
2956 	case SIOCBONDCHANGEACTIVE:
2957 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2958 			return -EFAULT;
2959 
2960 		old_fs = get_fs();
2961 		set_fs(KERNEL_DS);
2962 		err = dev_ioctl(net, cmd,
2963 				(struct ifreq __user __force *) &kifr);
2964 		set_fs(old_fs);
2965 
2966 		return err;
2967 	case SIOCBONDSLAVEINFOQUERY:
2968 	case SIOCBONDINFOQUERY:
2969 		uifr = compat_alloc_user_space(sizeof(*uifr));
2970 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2971 			return -EFAULT;
2972 
2973 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2974 			return -EFAULT;
2975 
2976 		datap = compat_ptr(data);
2977 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2978 			return -EFAULT;
2979 
2980 		return dev_ioctl(net, cmd, uifr);
2981 	default:
2982 		return -ENOIOCTLCMD;
2983 	}
2984 }
2985 
2986 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2987 				 struct compat_ifreq __user *u_ifreq32)
2988 {
2989 	struct ifreq __user *u_ifreq64;
2990 	char tmp_buf[IFNAMSIZ];
2991 	void __user *data64;
2992 	u32 data32;
2993 
2994 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2995 			   IFNAMSIZ))
2996 		return -EFAULT;
2997 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2998 		return -EFAULT;
2999 	data64 = compat_ptr(data32);
3000 
3001 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3002 
3003 	/* Don't check these user accesses, just let that get trapped
3004 	 * in the ioctl handler instead.
3005 	 */
3006 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3007 			 IFNAMSIZ))
3008 		return -EFAULT;
3009 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3010 		return -EFAULT;
3011 
3012 	return dev_ioctl(net, cmd, u_ifreq64);
3013 }
3014 
3015 static int dev_ifsioc(struct net *net, struct socket *sock,
3016 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3017 {
3018 	struct ifreq __user *uifr;
3019 	int err;
3020 
3021 	uifr = compat_alloc_user_space(sizeof(*uifr));
3022 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3023 		return -EFAULT;
3024 
3025 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3026 
3027 	if (!err) {
3028 		switch (cmd) {
3029 		case SIOCGIFFLAGS:
3030 		case SIOCGIFMETRIC:
3031 		case SIOCGIFMTU:
3032 		case SIOCGIFMEM:
3033 		case SIOCGIFHWADDR:
3034 		case SIOCGIFINDEX:
3035 		case SIOCGIFADDR:
3036 		case SIOCGIFBRDADDR:
3037 		case SIOCGIFDSTADDR:
3038 		case SIOCGIFNETMASK:
3039 		case SIOCGIFPFLAGS:
3040 		case SIOCGIFTXQLEN:
3041 		case SIOCGMIIPHY:
3042 		case SIOCGMIIREG:
3043 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3044 				err = -EFAULT;
3045 			break;
3046 		}
3047 	}
3048 	return err;
3049 }
3050 
3051 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3052 			struct compat_ifreq __user *uifr32)
3053 {
3054 	struct ifreq ifr;
3055 	struct compat_ifmap __user *uifmap32;
3056 	mm_segment_t old_fs;
3057 	int err;
3058 
3059 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3060 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3061 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3067 	if (err)
3068 		return -EFAULT;
3069 
3070 	old_fs = get_fs();
3071 	set_fs(KERNEL_DS);
3072 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3073 	set_fs(old_fs);
3074 
3075 	if (cmd == SIOCGIFMAP && !err) {
3076 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3077 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3078 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3079 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3080 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3081 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3082 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3083 		if (err)
3084 			err = -EFAULT;
3085 	}
3086 	return err;
3087 }
3088 
3089 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3090 {
3091 	void __user *uptr;
3092 	compat_uptr_t uptr32;
3093 	struct ifreq __user *uifr;
3094 
3095 	uifr = compat_alloc_user_space(sizeof(*uifr));
3096 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3097 		return -EFAULT;
3098 
3099 	if (get_user(uptr32, &uifr32->ifr_data))
3100 		return -EFAULT;
3101 
3102 	uptr = compat_ptr(uptr32);
3103 
3104 	if (put_user(uptr, &uifr->ifr_data))
3105 		return -EFAULT;
3106 
3107 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3108 }
3109 
3110 struct rtentry32 {
3111 	u32		rt_pad1;
3112 	struct sockaddr rt_dst;         /* target address               */
3113 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3114 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3115 	unsigned short	rt_flags;
3116 	short		rt_pad2;
3117 	u32		rt_pad3;
3118 	unsigned char	rt_tos;
3119 	unsigned char	rt_class;
3120 	short		rt_pad4;
3121 	short		rt_metric;      /* +1 for binary compatibility! */
3122 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3123 	u32		rt_mtu;         /* per route MTU/Window         */
3124 	u32		rt_window;      /* Window clamping              */
3125 	unsigned short  rt_irtt;        /* Initial RTT                  */
3126 };
3127 
3128 struct in6_rtmsg32 {
3129 	struct in6_addr		rtmsg_dst;
3130 	struct in6_addr		rtmsg_src;
3131 	struct in6_addr		rtmsg_gateway;
3132 	u32			rtmsg_type;
3133 	u16			rtmsg_dst_len;
3134 	u16			rtmsg_src_len;
3135 	u32			rtmsg_metric;
3136 	u32			rtmsg_info;
3137 	u32			rtmsg_flags;
3138 	s32			rtmsg_ifindex;
3139 };
3140 
3141 static int routing_ioctl(struct net *net, struct socket *sock,
3142 			 unsigned int cmd, void __user *argp)
3143 {
3144 	int ret;
3145 	void *r = NULL;
3146 	struct in6_rtmsg r6;
3147 	struct rtentry r4;
3148 	char devname[16];
3149 	u32 rtdev;
3150 	mm_segment_t old_fs = get_fs();
3151 
3152 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3153 		struct in6_rtmsg32 __user *ur6 = argp;
3154 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3155 			3 * sizeof(struct in6_addr));
3156 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3157 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3158 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3159 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3160 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3161 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3162 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3163 
3164 		r = (void *) &r6;
3165 	} else { /* ipv4 */
3166 		struct rtentry32 __user *ur4 = argp;
3167 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3168 					3 * sizeof(struct sockaddr));
3169 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3170 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3171 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3172 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3173 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3174 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3175 		if (rtdev) {
3176 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3177 			r4.rt_dev = (char __user __force *)devname;
3178 			devname[15] = 0;
3179 		} else
3180 			r4.rt_dev = NULL;
3181 
3182 		r = (void *) &r4;
3183 	}
3184 
3185 	if (ret) {
3186 		ret = -EFAULT;
3187 		goto out;
3188 	}
3189 
3190 	set_fs(KERNEL_DS);
3191 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3192 	set_fs(old_fs);
3193 
3194 out:
3195 	return ret;
3196 }
3197 
3198 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3199  * for some operations; this forces use of the newer bridge-utils that
3200  * use compatible ioctls
3201  */
3202 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3203 {
3204 	compat_ulong_t tmp;
3205 
3206 	if (get_user(tmp, argp))
3207 		return -EFAULT;
3208 	if (tmp == BRCTL_GET_VERSION)
3209 		return BRCTL_VERSION + 1;
3210 	return -EINVAL;
3211 }
3212 
3213 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3214 			 unsigned int cmd, unsigned long arg)
3215 {
3216 	void __user *argp = compat_ptr(arg);
3217 	struct sock *sk = sock->sk;
3218 	struct net *net = sock_net(sk);
3219 
3220 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3221 		return siocdevprivate_ioctl(net, cmd, argp);
3222 
3223 	switch (cmd) {
3224 	case SIOCSIFBR:
3225 	case SIOCGIFBR:
3226 		return old_bridge_ioctl(argp);
3227 	case SIOCGIFNAME:
3228 		return dev_ifname32(net, argp);
3229 	case SIOCGIFCONF:
3230 		return dev_ifconf(net, argp);
3231 	case SIOCETHTOOL:
3232 		return ethtool_ioctl(net, argp);
3233 	case SIOCWANDEV:
3234 		return compat_siocwandev(net, argp);
3235 	case SIOCGIFMAP:
3236 	case SIOCSIFMAP:
3237 		return compat_sioc_ifmap(net, cmd, argp);
3238 	case SIOCBONDENSLAVE:
3239 	case SIOCBONDRELEASE:
3240 	case SIOCBONDSETHWADDR:
3241 	case SIOCBONDSLAVEINFOQUERY:
3242 	case SIOCBONDINFOQUERY:
3243 	case SIOCBONDCHANGEACTIVE:
3244 		return bond_ioctl(net, cmd, argp);
3245 	case SIOCADDRT:
3246 	case SIOCDELRT:
3247 		return routing_ioctl(net, sock, cmd, argp);
3248 	case SIOCGSTAMP:
3249 		return do_siocgstamp(net, sock, cmd, argp);
3250 	case SIOCGSTAMPNS:
3251 		return do_siocgstampns(net, sock, cmd, argp);
3252 	case SIOCSHWTSTAMP:
3253 		return compat_siocshwtstamp(net, argp);
3254 
3255 	case FIOSETOWN:
3256 	case SIOCSPGRP:
3257 	case FIOGETOWN:
3258 	case SIOCGPGRP:
3259 	case SIOCBRADDBR:
3260 	case SIOCBRDELBR:
3261 	case SIOCGIFVLAN:
3262 	case SIOCSIFVLAN:
3263 	case SIOCADDDLCI:
3264 	case SIOCDELDLCI:
3265 		return sock_ioctl(file, cmd, arg);
3266 
3267 	case SIOCGIFFLAGS:
3268 	case SIOCSIFFLAGS:
3269 	case SIOCGIFMETRIC:
3270 	case SIOCSIFMETRIC:
3271 	case SIOCGIFMTU:
3272 	case SIOCSIFMTU:
3273 	case SIOCGIFMEM:
3274 	case SIOCSIFMEM:
3275 	case SIOCGIFHWADDR:
3276 	case SIOCSIFHWADDR:
3277 	case SIOCADDMULTI:
3278 	case SIOCDELMULTI:
3279 	case SIOCGIFINDEX:
3280 	case SIOCGIFADDR:
3281 	case SIOCSIFADDR:
3282 	case SIOCSIFHWBROADCAST:
3283 	case SIOCDIFADDR:
3284 	case SIOCGIFBRDADDR:
3285 	case SIOCSIFBRDADDR:
3286 	case SIOCGIFDSTADDR:
3287 	case SIOCSIFDSTADDR:
3288 	case SIOCGIFNETMASK:
3289 	case SIOCSIFNETMASK:
3290 	case SIOCSIFPFLAGS:
3291 	case SIOCGIFPFLAGS:
3292 	case SIOCGIFTXQLEN:
3293 	case SIOCSIFTXQLEN:
3294 	case SIOCBRADDIF:
3295 	case SIOCBRDELIF:
3296 	case SIOCSIFNAME:
3297 	case SIOCGMIIPHY:
3298 	case SIOCGMIIREG:
3299 	case SIOCSMIIREG:
3300 		return dev_ifsioc(net, sock, cmd, argp);
3301 
3302 	case SIOCSARP:
3303 	case SIOCGARP:
3304 	case SIOCDARP:
3305 	case SIOCATMARK:
3306 		return sock_do_ioctl(net, sock, cmd, arg);
3307 	}
3308 
3309 	return -ENOIOCTLCMD;
3310 }
3311 
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 			      unsigned long arg)
3314 {
3315 	struct socket *sock = file->private_data;
3316 	int ret = -ENOIOCTLCMD;
3317 	struct sock *sk;
3318 	struct net *net;
3319 
3320 	sk = sock->sk;
3321 	net = sock_net(sk);
3322 
3323 	if (sock->ops->compat_ioctl)
3324 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325 
3326 	if (ret == -ENOIOCTLCMD &&
3327 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3329 
3330 	if (ret == -ENOIOCTLCMD)
3331 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332 
3333 	return ret;
3334 }
3335 #endif
3336 
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338 {
3339 	return sock->ops->bind(sock, addr, addrlen);
3340 }
3341 EXPORT_SYMBOL(kernel_bind);
3342 
3343 int kernel_listen(struct socket *sock, int backlog)
3344 {
3345 	return sock->ops->listen(sock, backlog);
3346 }
3347 EXPORT_SYMBOL(kernel_listen);
3348 
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350 {
3351 	struct sock *sk = sock->sk;
3352 	int err;
3353 
3354 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 			       newsock);
3356 	if (err < 0)
3357 		goto done;
3358 
3359 	err = sock->ops->accept(sock, *newsock, flags);
3360 	if (err < 0) {
3361 		sock_release(*newsock);
3362 		*newsock = NULL;
3363 		goto done;
3364 	}
3365 
3366 	(*newsock)->ops = sock->ops;
3367 	__module_get((*newsock)->ops->owner);
3368 
3369 done:
3370 	return err;
3371 }
3372 EXPORT_SYMBOL(kernel_accept);
3373 
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 		   int flags)
3376 {
3377 	return sock->ops->connect(sock, addr, addrlen, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_connect);
3380 
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 			 int *addrlen)
3383 {
3384 	return sock->ops->getname(sock, addr, addrlen, 0);
3385 }
3386 EXPORT_SYMBOL(kernel_getsockname);
3387 
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 			 int *addrlen)
3390 {
3391 	return sock->ops->getname(sock, addr, addrlen, 1);
3392 }
3393 EXPORT_SYMBOL(kernel_getpeername);
3394 
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 			char *optval, int *optlen)
3397 {
3398 	mm_segment_t oldfs = get_fs();
3399 	char __user *uoptval;
3400 	int __user *uoptlen;
3401 	int err;
3402 
3403 	uoptval = (char __user __force *) optval;
3404 	uoptlen = (int __user __force *) optlen;
3405 
3406 	set_fs(KERNEL_DS);
3407 	if (level == SOL_SOCKET)
3408 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 	else
3410 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 					    uoptlen);
3412 	set_fs(oldfs);
3413 	return err;
3414 }
3415 EXPORT_SYMBOL(kernel_getsockopt);
3416 
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 			char *optval, unsigned int optlen)
3419 {
3420 	mm_segment_t oldfs = get_fs();
3421 	char __user *uoptval;
3422 	int err;
3423 
3424 	uoptval = (char __user __force *) optval;
3425 
3426 	set_fs(KERNEL_DS);
3427 	if (level == SOL_SOCKET)
3428 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 	else
3430 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 					    optlen);
3432 	set_fs(oldfs);
3433 	return err;
3434 }
3435 EXPORT_SYMBOL(kernel_setsockopt);
3436 
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 		    size_t size, int flags)
3439 {
3440 	sock_update_classid(sock->sk);
3441 
3442 	if (sock->ops->sendpage)
3443 		return sock->ops->sendpage(sock, page, offset, size, flags);
3444 
3445 	return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448 
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451 	mm_segment_t oldfs = get_fs();
3452 	int err;
3453 
3454 	set_fs(KERNEL_DS);
3455 	err = sock->ops->ioctl(sock, cmd, arg);
3456 	set_fs(oldfs);
3457 
3458 	return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461 
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464 	return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);
3467