xref: /linux/net/socket.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 
283 	if (can_do_masked_user_access())
284 		ulen = masked_user_access_begin(ulen);
285 	else if (!user_access_begin(ulen, 4))
286 		return -EFAULT;
287 
288 	unsafe_get_user(len, ulen, efault_end);
289 
290 	if (len > klen)
291 		len = klen;
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	if (len >= 0)
297 		unsafe_put_user(klen, ulen, efault_end);
298 
299 	user_access_end();
300 
301 	if (len) {
302 		if (len < 0)
303 			return -EINVAL;
304 		if (audit_sockaddr(klen, kaddr))
305 			return -ENOMEM;
306 		if (copy_to_user(uaddr, kaddr, len))
307 			return -EFAULT;
308 	}
309 	return 0;
310 
311 efault_end:
312 	user_access_end();
313 	return -EFAULT;
314 }
315 
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317 
318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 	if (!ei)
324 		return NULL;
325 	init_waitqueue_head(&ei->socket.wq.wait);
326 	ei->socket.wq.fasync_list = NULL;
327 	ei->socket.wq.flags = 0;
328 
329 	ei->socket.state = SS_UNCONNECTED;
330 	ei->socket.flags = 0;
331 	ei->socket.ops = NULL;
332 	ei->socket.sk = NULL;
333 	ei->socket.file = NULL;
334 
335 	return &ei->vfs_inode;
336 }
337 
338 static void sock_free_inode(struct inode *inode)
339 {
340 	struct socket_alloc *ei;
341 
342 	ei = container_of(inode, struct socket_alloc, vfs_inode);
343 	kmem_cache_free(sock_inode_cachep, ei);
344 }
345 
346 static void init_once(void *foo)
347 {
348 	struct socket_alloc *ei = (struct socket_alloc *)foo;
349 
350 	inode_init_once(&ei->vfs_inode);
351 }
352 
353 static void init_inodecache(void)
354 {
355 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 					      sizeof(struct socket_alloc),
357 					      0,
358 					      (SLAB_HWCACHE_ALIGN |
359 					       SLAB_RECLAIM_ACCOUNT |
360 					       SLAB_ACCOUNT),
361 					      init_once);
362 	BUG_ON(sock_inode_cachep == NULL);
363 }
364 
365 static const struct super_operations sockfs_ops = {
366 	.alloc_inode	= sock_alloc_inode,
367 	.free_inode	= sock_free_inode,
368 	.statfs		= simple_statfs,
369 };
370 
371 /*
372  * sockfs_dname() is called from d_path().
373  */
374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 				d_inode(dentry)->i_ino);
378 }
379 
380 static const struct dentry_operations sockfs_dentry_operations = {
381 	.d_dname  = sockfs_dname,
382 };
383 
384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 			    struct dentry *dentry, struct inode *inode,
386 			    const char *suffix, void *value, size_t size)
387 {
388 	if (value) {
389 		if (dentry->d_name.len + 1 > size)
390 			return -ERANGE;
391 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 	}
393 	return dentry->d_name.len + 1;
394 }
395 
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399 
400 static const struct xattr_handler sockfs_xattr_handler = {
401 	.name = XATTR_NAME_SOCKPROTONAME,
402 	.get = sockfs_xattr_get,
403 };
404 
405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 				     struct mnt_idmap *idmap,
407 				     struct dentry *dentry, struct inode *inode,
408 				     const char *suffix, const void *value,
409 				     size_t size, int flags)
410 {
411 	/* Handled by LSM. */
412 	return -EAGAIN;
413 }
414 
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 	.prefix = XATTR_SECURITY_PREFIX,
417 	.set = sockfs_security_xattr_set,
418 };
419 
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 	&sockfs_xattr_handler,
422 	&sockfs_security_xattr_handler,
423 	NULL
424 };
425 
426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 	if (!ctx)
430 		return -ENOMEM;
431 	ctx->ops = &sockfs_ops;
432 	ctx->dops = &sockfs_dentry_operations;
433 	ctx->xattr = sockfs_xattr_handlers;
434 	return 0;
435 }
436 
437 static struct vfsmount *sock_mnt __read_mostly;
438 
439 static struct file_system_type sock_fs_type = {
440 	.name =		"sockfs",
441 	.init_fs_context = sockfs_init_fs_context,
442 	.kill_sb =	kill_anon_super,
443 };
444 
445 /*
446  *	Obtains the first available file descriptor and sets it up for use.
447  *
448  *	These functions create file structures and maps them to fd space
449  *	of the current process. On success it returns file descriptor
450  *	and file struct implicitly stored in sock->file.
451  *	Note that another thread may close file descriptor before we return
452  *	from this function. We use the fact that now we do not refer
453  *	to socket after mapping. If one day we will need it, this
454  *	function will increment ref. count on file by 1.
455  *
456  *	In any case returned fd MAY BE not valid!
457  *	This race condition is unavoidable
458  *	with shared fd spaces, we cannot solve it inside kernel,
459  *	but we take care of internal coherence yet.
460  */
461 
462 /**
463  *	sock_alloc_file - Bind a &socket to a &file
464  *	@sock: socket
465  *	@flags: file status flags
466  *	@dname: protocol name
467  *
468  *	Returns the &file bound with @sock, implicitly storing it
469  *	in sock->file. If dname is %NULL, sets to "".
470  *
471  *	On failure @sock is released, and an ERR pointer is returned.
472  *
473  *	This function uses GFP_KERNEL internally.
474  */
475 
476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 	struct file *file;
479 
480 	if (!dname)
481 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482 
483 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 				O_RDWR | (flags & O_NONBLOCK),
485 				&socket_file_ops);
486 	if (IS_ERR(file)) {
487 		sock_release(sock);
488 		return file;
489 	}
490 
491 	file->f_mode |= FMODE_NOWAIT;
492 	sock->file = file;
493 	file->private_data = sock;
494 	stream_open(SOCK_INODE(sock), file);
495 	/*
496 	 * Disable permission and pre-content events, but enable legacy
497 	 * inotify events for legacy users.
498 	 */
499 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 	return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503 
504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 	int fd;
507 
508 	fd = FD_ADD(flags, sock_alloc_file(sock, flags, NULL));
509 	if (fd < 0)
510 		sock_release(sock);
511 	return fd;
512 }
513 
514 /**
515  *	sock_from_file - Return the &socket bounded to @file.
516  *	@file: file
517  *
518  *	On failure returns %NULL.
519  */
520 
521 struct socket *sock_from_file(struct file *file)
522 {
523 	if (likely(file->f_op == &socket_file_ops))
524 		return file->private_data;	/* set in sock_alloc_file */
525 
526 	return NULL;
527 }
528 EXPORT_SYMBOL(sock_from_file);
529 
530 /**
531  *	sockfd_lookup - Go from a file number to its socket slot
532  *	@fd: file handle
533  *	@err: pointer to an error code return
534  *
535  *	The file handle passed in is locked and the socket it is bound
536  *	to is returned. If an error occurs the err pointer is overwritten
537  *	with a negative errno code and NULL is returned. The function checks
538  *	for both invalid handles and passing a handle which is not a socket.
539  *
540  *	On a success the socket object pointer is returned.
541  */
542 
543 struct socket *sockfd_lookup(int fd, int *err)
544 {
545 	struct file *file;
546 	struct socket *sock;
547 
548 	file = fget(fd);
549 	if (!file) {
550 		*err = -EBADF;
551 		return NULL;
552 	}
553 
554 	sock = sock_from_file(file);
555 	if (!sock) {
556 		*err = -ENOTSOCK;
557 		fput(file);
558 	}
559 	return sock;
560 }
561 EXPORT_SYMBOL(sockfd_lookup);
562 
563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 				size_t size)
565 {
566 	ssize_t len;
567 	ssize_t used = 0;
568 
569 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 	if (len < 0)
571 		return len;
572 	used += len;
573 	if (buffer) {
574 		if (size < used)
575 			return -ERANGE;
576 		buffer += len;
577 	}
578 
579 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 		buffer += len;
586 	}
587 
588 	return used;
589 }
590 
591 static int sockfs_setattr(struct mnt_idmap *idmap,
592 			  struct dentry *dentry, struct iattr *iattr)
593 {
594 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
595 
596 	if (!err && (iattr->ia_valid & ATTR_UID)) {
597 		struct socket *sock = SOCKET_I(d_inode(dentry));
598 
599 		if (sock->sk) {
600 			/* Paired with READ_ONCE() in sk_uid() */
601 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
602 		} else {
603 			err = -ENOENT;
604 		}
605 	}
606 
607 	return err;
608 }
609 
610 static const struct inode_operations sockfs_inode_ops = {
611 	.listxattr = sockfs_listxattr,
612 	.setattr = sockfs_setattr,
613 };
614 
615 /**
616  *	sock_alloc - allocate a socket
617  *
618  *	Allocate a new inode and socket object. The two are bound together
619  *	and initialised. The socket is then returned. If we are out of inodes
620  *	NULL is returned. This functions uses GFP_KERNEL internally.
621  */
622 
623 struct socket *sock_alloc(void)
624 {
625 	struct inode *inode;
626 	struct socket *sock;
627 
628 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
629 	if (!inode)
630 		return NULL;
631 
632 	sock = SOCKET_I(inode);
633 
634 	inode->i_ino = get_next_ino();
635 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
636 	inode->i_uid = current_fsuid();
637 	inode->i_gid = current_fsgid();
638 	inode->i_op = &sockfs_inode_ops;
639 
640 	return sock;
641 }
642 EXPORT_SYMBOL(sock_alloc);
643 
644 static void __sock_release(struct socket *sock, struct inode *inode)
645 {
646 	const struct proto_ops *ops = READ_ONCE(sock->ops);
647 
648 	if (ops) {
649 		struct module *owner = ops->owner;
650 
651 		if (inode)
652 			inode_lock(inode);
653 		ops->release(sock);
654 		sock->sk = NULL;
655 		if (inode)
656 			inode_unlock(inode);
657 		sock->ops = NULL;
658 		module_put(owner);
659 	}
660 
661 	if (sock->wq.fasync_list)
662 		pr_err("%s: fasync list not empty!\n", __func__);
663 
664 	if (!sock->file) {
665 		iput(SOCK_INODE(sock));
666 		return;
667 	}
668 	sock->file = NULL;
669 }
670 
671 /**
672  *	sock_release - close a socket
673  *	@sock: socket to close
674  *
675  *	The socket is released from the protocol stack if it has a release
676  *	callback, and the inode is then released if the socket is bound to
677  *	an inode not a file.
678  */
679 void sock_release(struct socket *sock)
680 {
681 	__sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684 
685 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
686 {
687 	u8 flags = *tx_flags;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
690 		flags |= SKBTX_HW_TSTAMP_NOBPF;
691 
692 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
693 		flags |= SKBTX_SW_TSTAMP;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
696 		flags |= SKBTX_SCHED_TSTAMP;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
699 		flags |= SKBTX_COMPLETION_TSTAMP;
700 
701 	*tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704 
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 					   size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 					    size_t));
709 
710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 						 int flags)
712 {
713 	trace_sock_send_length(sk, ret, 0);
714 }
715 
716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 				     inet_sendmsg, sock, msg,
720 				     msg_data_left(msg));
721 	BUG_ON(ret == -EIOCBQUEUED);
722 
723 	if (trace_sock_send_length_enabled())
724 		call_trace_sock_send_length(sock->sk, ret, 0);
725 	return ret;
726 }
727 
728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 	int err = security_socket_sendmsg(sock, msg,
731 					  msg_data_left(msg));
732 
733 	return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735 
736 /**
737  *	sock_sendmsg - send a message through @sock
738  *	@sock: socket
739  *	@msg: message to send
740  *
741  *	Sends @msg through @sock, passing through LSM.
742  *	Returns the number of bytes sent, or an error code.
743  */
744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 	struct sockaddr_storage address;
748 	int save_len = msg->msg_namelen;
749 	int ret;
750 
751 	if (msg->msg_name) {
752 		memcpy(&address, msg->msg_name, msg->msg_namelen);
753 		msg->msg_name = &address;
754 	}
755 
756 	ret = __sock_sendmsg(sock, msg);
757 	msg->msg_name = save_addr;
758 	msg->msg_namelen = save_len;
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763 
764 /**
765  *	kernel_sendmsg - send a message through @sock (kernel-space)
766  *	@sock: socket
767  *	@msg: message header
768  *	@vec: kernel vec
769  *	@num: vec array length
770  *	@size: total message data size
771  *
772  *	Builds the message data with @vec and sends it through @sock.
773  *	Returns the number of bytes sent, or an error code.
774  */
775 
776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 		   struct kvec *vec, size_t num, size_t size)
778 {
779 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 	return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783 
784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 	/* pkt_type of skbs enqueued on the error queue are set to
787 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 	 * in recvmsg, since skbs received on a local socket will never
789 	 * have a pkt_type of PACKET_OUTGOING.
790 	 */
791 	return skb->pkt_type == PACKET_OUTGOING;
792 }
793 
794 /* On transmit, software and hardware timestamps are returned independently.
795  * As the two skb clones share the hardware timestamp, which may be updated
796  * before the software timestamp is received, a hardware TX timestamp may be
797  * returned only if there is no software TX timestamp. Ignore false software
798  * timestamps, which may be made in the __sock_recv_timestamp() call when the
799  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800  * hardware timestamp.
801  */
802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806 
807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 	struct net_device *orig_dev;
812 	ktime_t hwtstamp;
813 
814 	rcu_read_lock();
815 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 	if (orig_dev) {
817 		*if_index = orig_dev->ifindex;
818 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 	} else {
820 		hwtstamp = shhwtstamps->hwtstamp;
821 	}
822 	rcu_read_unlock();
823 
824 	return hwtstamp;
825 }
826 
827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 			   int if_index)
829 {
830 	struct scm_ts_pktinfo ts_pktinfo;
831 	struct net_device *orig_dev;
832 
833 	if (!skb_mac_header_was_set(skb))
834 		return;
835 
836 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837 
838 	if (!if_index) {
839 		rcu_read_lock();
840 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 		if (orig_dev)
842 			if_index = orig_dev->ifindex;
843 		rcu_read_unlock();
844 	}
845 	ts_pktinfo.if_index = if_index;
846 
847 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 		 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851 
852 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
853 {
854 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
855 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
856 
857 	if (serr->ee.ee_errno != ENOMSG ||
858 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
859 		return false;
860 
861 	/* software time stamp available and wanted */
862 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
863 		return true;
864 	/* hardware time stamps available and wanted */
865 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
866 		skb_hwtstamps(skb)->hwtstamp;
867 }
868 
869 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
870 			  struct timespec64 *ts)
871 {
872 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
873 	ktime_t hwtstamp;
874 	int if_index = 0;
875 
876 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
877 	    ktime_to_timespec64_cond(skb->tstamp, ts))
878 		return SOF_TIMESTAMPING_TX_SOFTWARE;
879 
880 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
881 	    skb_is_swtx_tstamp(skb, false))
882 		return -ENOENT;
883 
884 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
885 		hwtstamp = get_timestamp(sk, skb, &if_index);
886 	else
887 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
888 
889 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
890 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
891 						READ_ONCE(sk->sk_bind_phc));
892 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
893 		return -ENOENT;
894 
895 	return SOF_TIMESTAMPING_TX_HARDWARE;
896 }
897 
898 /*
899  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
900  */
901 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
902 	struct sk_buff *skb)
903 {
904 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
905 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
906 	struct scm_timestamping_internal tss;
907 	int empty = 1, false_tstamp = 0;
908 	struct skb_shared_hwtstamps *shhwtstamps =
909 		skb_hwtstamps(skb);
910 	int if_index;
911 	ktime_t hwtstamp;
912 	u32 tsflags;
913 
914 	/* Race occurred between timestamp enabling and packet
915 	   receiving.  Fill in the current time for now. */
916 	if (need_software_tstamp && skb->tstamp == 0) {
917 		__net_timestamp(skb);
918 		false_tstamp = 1;
919 	}
920 
921 	if (need_software_tstamp) {
922 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
923 			if (new_tstamp) {
924 				struct __kernel_sock_timeval tv;
925 
926 				skb_get_new_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
928 					 sizeof(tv), &tv);
929 			} else {
930 				struct __kernel_old_timeval tv;
931 
932 				skb_get_timestamp(skb, &tv);
933 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
934 					 sizeof(tv), &tv);
935 			}
936 		} else {
937 			if (new_tstamp) {
938 				struct __kernel_timespec ts;
939 
940 				skb_get_new_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
942 					 sizeof(ts), &ts);
943 			} else {
944 				struct __kernel_old_timespec ts;
945 
946 				skb_get_timestampns(skb, &ts);
947 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
948 					 sizeof(ts), &ts);
949 			}
950 		}
951 	}
952 
953 	memset(&tss, 0, sizeof(tss));
954 	tsflags = READ_ONCE(sk->sk_tsflags);
955 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
956 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
957 	      skb_is_err_queue(skb) ||
958 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
959 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
960 		empty = 0;
961 	if (shhwtstamps &&
962 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
963 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
964 	      skb_is_err_queue(skb) ||
965 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
966 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
967 		if_index = 0;
968 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
969 			hwtstamp = get_timestamp(sk, skb, &if_index);
970 		else
971 			hwtstamp = shhwtstamps->hwtstamp;
972 
973 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
974 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
975 							 READ_ONCE(sk->sk_bind_phc));
976 
977 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
978 			empty = 0;
979 
980 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
981 			    !skb_is_err_queue(skb))
982 				put_ts_pktinfo(msg, skb, if_index);
983 		}
984 	}
985 	if (!empty) {
986 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
987 			put_cmsg_scm_timestamping64(msg, &tss);
988 		else
989 			put_cmsg_scm_timestamping(msg, &tss);
990 
991 		if (skb_is_err_queue(skb) && skb->len &&
992 		    SKB_EXT_ERR(skb)->opt_stats)
993 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
994 				 skb->len, skb->data);
995 	}
996 }
997 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
998 
999 #ifdef CONFIG_WIRELESS
1000 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1001 	struct sk_buff *skb)
1002 {
1003 	int ack;
1004 
1005 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1006 		return;
1007 	if (!skb->wifi_acked_valid)
1008 		return;
1009 
1010 	ack = skb->wifi_acked;
1011 
1012 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1013 }
1014 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1015 #endif
1016 
1017 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1018 				   struct sk_buff *skb)
1019 {
1020 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1021 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1022 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1023 }
1024 
1025 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1026 			   struct sk_buff *skb)
1027 {
1028 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1029 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1030 		__u32 mark = skb->mark;
1031 
1032 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1033 	}
1034 }
1035 
1036 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1037 			       struct sk_buff *skb)
1038 {
1039 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1040 		__u32 priority = skb->priority;
1041 
1042 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1043 	}
1044 }
1045 
1046 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1047 		       struct sk_buff *skb)
1048 {
1049 	sock_recv_timestamp(msg, sk, skb);
1050 	sock_recv_drops(msg, sk, skb);
1051 	sock_recv_mark(msg, sk, skb);
1052 	sock_recv_priority(msg, sk, skb);
1053 }
1054 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1055 
1056 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1057 					   size_t, int));
1058 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1059 					    size_t, int));
1060 
1061 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1062 {
1063 	trace_sock_recv_length(sk, ret, flags);
1064 }
1065 
1066 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1067 				     int flags)
1068 {
1069 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1070 				     inet6_recvmsg,
1071 				     inet_recvmsg, sock, msg,
1072 				     msg_data_left(msg), flags);
1073 	if (trace_sock_recv_length_enabled())
1074 		call_trace_sock_recv_length(sock->sk, ret, flags);
1075 	return ret;
1076 }
1077 
1078 /**
1079  *	sock_recvmsg - receive a message from @sock
1080  *	@sock: socket
1081  *	@msg: message to receive
1082  *	@flags: message flags
1083  *
1084  *	Receives @msg from @sock, passing through LSM. Returns the total number
1085  *	of bytes received, or an error.
1086  */
1087 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1088 {
1089 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1090 
1091 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1092 }
1093 EXPORT_SYMBOL(sock_recvmsg);
1094 
1095 /**
1096  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1097  *	@sock: The socket to receive the message from
1098  *	@msg: Received message
1099  *	@vec: Input s/g array for message data
1100  *	@num: Size of input s/g array
1101  *	@size: Number of bytes to read
1102  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1103  *
1104  *	On return the msg structure contains the scatter/gather array passed in the
1105  *	vec argument. The array is modified so that it consists of the unfilled
1106  *	portion of the original array.
1107  *
1108  *	The returned value is the total number of bytes received, or an error.
1109  */
1110 
1111 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1112 		   struct kvec *vec, size_t num, size_t size, int flags)
1113 {
1114 	msg->msg_control_is_user = false;
1115 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1116 	return sock_recvmsg(sock, msg, flags);
1117 }
1118 EXPORT_SYMBOL(kernel_recvmsg);
1119 
1120 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1121 				struct pipe_inode_info *pipe, size_t len,
1122 				unsigned int flags)
1123 {
1124 	struct socket *sock = file->private_data;
1125 	const struct proto_ops *ops;
1126 
1127 	ops = READ_ONCE(sock->ops);
1128 	if (unlikely(!ops->splice_read))
1129 		return copy_splice_read(file, ppos, pipe, len, flags);
1130 
1131 	return ops->splice_read(sock, ppos, pipe, len, flags);
1132 }
1133 
1134 static void sock_splice_eof(struct file *file)
1135 {
1136 	struct socket *sock = file->private_data;
1137 	const struct proto_ops *ops;
1138 
1139 	ops = READ_ONCE(sock->ops);
1140 	if (ops->splice_eof)
1141 		ops->splice_eof(sock);
1142 }
1143 
1144 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1145 {
1146 	struct file *file = iocb->ki_filp;
1147 	struct socket *sock = file->private_data;
1148 	struct msghdr msg = {.msg_iter = *to,
1149 			     .msg_iocb = iocb};
1150 	ssize_t res;
1151 
1152 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1153 		msg.msg_flags = MSG_DONTWAIT;
1154 
1155 	if (iocb->ki_pos != 0)
1156 		return -ESPIPE;
1157 
1158 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1159 		return 0;
1160 
1161 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1162 	*to = msg.msg_iter;
1163 	return res;
1164 }
1165 
1166 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1167 {
1168 	struct file *file = iocb->ki_filp;
1169 	struct socket *sock = file->private_data;
1170 	struct msghdr msg = {.msg_iter = *from,
1171 			     .msg_iocb = iocb};
1172 	ssize_t res;
1173 
1174 	if (iocb->ki_pos != 0)
1175 		return -ESPIPE;
1176 
1177 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1178 		msg.msg_flags = MSG_DONTWAIT;
1179 
1180 	if (sock->type == SOCK_SEQPACKET)
1181 		msg.msg_flags |= MSG_EOR;
1182 
1183 	if (iocb->ki_flags & IOCB_NOSIGNAL)
1184 		msg.msg_flags |= MSG_NOSIGNAL;
1185 
1186 	res = __sock_sendmsg(sock, &msg);
1187 	*from = msg.msg_iter;
1188 	return res;
1189 }
1190 
1191 /*
1192  * Atomic setting of ioctl hooks to avoid race
1193  * with module unload.
1194  */
1195 
1196 static DEFINE_MUTEX(br_ioctl_mutex);
1197 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1198 			    void __user *uarg);
1199 
1200 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1201 			     void __user *uarg))
1202 {
1203 	mutex_lock(&br_ioctl_mutex);
1204 	br_ioctl_hook = hook;
1205 	mutex_unlock(&br_ioctl_mutex);
1206 }
1207 EXPORT_SYMBOL(brioctl_set);
1208 
1209 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1210 {
1211 	int err = -ENOPKG;
1212 
1213 	if (!br_ioctl_hook)
1214 		request_module("bridge");
1215 
1216 	mutex_lock(&br_ioctl_mutex);
1217 	if (br_ioctl_hook)
1218 		err = br_ioctl_hook(net, cmd, uarg);
1219 	mutex_unlock(&br_ioctl_mutex);
1220 
1221 	return err;
1222 }
1223 
1224 static DEFINE_MUTEX(vlan_ioctl_mutex);
1225 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1226 
1227 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1228 {
1229 	mutex_lock(&vlan_ioctl_mutex);
1230 	vlan_ioctl_hook = hook;
1231 	mutex_unlock(&vlan_ioctl_mutex);
1232 }
1233 EXPORT_SYMBOL(vlan_ioctl_set);
1234 
1235 static long sock_do_ioctl(struct net *net, struct socket *sock,
1236 			  unsigned int cmd, unsigned long arg)
1237 {
1238 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1239 	struct ifreq ifr;
1240 	bool need_copyout;
1241 	int err;
1242 	void __user *argp = (void __user *)arg;
1243 	void __user *data;
1244 
1245 	err = ops->ioctl(sock, cmd, arg);
1246 
1247 	/*
1248 	 * If this ioctl is unknown try to hand it down
1249 	 * to the NIC driver.
1250 	 */
1251 	if (err != -ENOIOCTLCMD)
1252 		return err;
1253 
1254 	if (!is_socket_ioctl_cmd(cmd))
1255 		return -ENOTTY;
1256 
1257 	if (get_user_ifreq(&ifr, &data, argp))
1258 		return -EFAULT;
1259 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1260 	if (!err && need_copyout)
1261 		if (put_user_ifreq(&ifr, argp))
1262 			return -EFAULT;
1263 
1264 	return err;
1265 }
1266 
1267 /*
1268  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1269  *	what to do with it - that's up to the protocol still.
1270  */
1271 
1272 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1273 {
1274 	const struct proto_ops  *ops;
1275 	struct socket *sock;
1276 	struct sock *sk;
1277 	void __user *argp = (void __user *)arg;
1278 	int pid, err;
1279 	struct net *net;
1280 
1281 	sock = file->private_data;
1282 	ops = READ_ONCE(sock->ops);
1283 	sk = sock->sk;
1284 	net = sock_net(sk);
1285 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1286 		struct ifreq ifr;
1287 		void __user *data;
1288 		bool need_copyout;
1289 		if (get_user_ifreq(&ifr, &data, argp))
1290 			return -EFAULT;
1291 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1292 		if (!err && need_copyout)
1293 			if (put_user_ifreq(&ifr, argp))
1294 				return -EFAULT;
1295 	} else
1296 #ifdef CONFIG_WEXT_CORE
1297 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1298 		err = wext_handle_ioctl(net, cmd, argp);
1299 	} else
1300 #endif
1301 		switch (cmd) {
1302 		case FIOSETOWN:
1303 		case SIOCSPGRP:
1304 			err = -EFAULT;
1305 			if (get_user(pid, (int __user *)argp))
1306 				break;
1307 			err = f_setown(sock->file, pid, 1);
1308 			break;
1309 		case FIOGETOWN:
1310 		case SIOCGPGRP:
1311 			err = put_user(f_getown(sock->file),
1312 				       (int __user *)argp);
1313 			break;
1314 		case SIOCGIFBR:
1315 		case SIOCSIFBR:
1316 		case SIOCBRADDBR:
1317 		case SIOCBRDELBR:
1318 		case SIOCBRADDIF:
1319 		case SIOCBRDELIF:
1320 			err = br_ioctl_call(net, cmd, argp);
1321 			break;
1322 		case SIOCGIFVLAN:
1323 		case SIOCSIFVLAN:
1324 			err = -ENOPKG;
1325 			if (!vlan_ioctl_hook)
1326 				request_module("8021q");
1327 
1328 			mutex_lock(&vlan_ioctl_mutex);
1329 			if (vlan_ioctl_hook)
1330 				err = vlan_ioctl_hook(net, argp);
1331 			mutex_unlock(&vlan_ioctl_mutex);
1332 			break;
1333 		case SIOCGSKNS:
1334 			err = -EPERM;
1335 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1336 				break;
1337 
1338 			err = open_related_ns(&net->ns, get_net_ns);
1339 			break;
1340 		case SIOCGSTAMP_OLD:
1341 		case SIOCGSTAMPNS_OLD:
1342 			if (!ops->gettstamp) {
1343 				err = -ENOIOCTLCMD;
1344 				break;
1345 			}
1346 			err = ops->gettstamp(sock, argp,
1347 					     cmd == SIOCGSTAMP_OLD,
1348 					     !IS_ENABLED(CONFIG_64BIT));
1349 			break;
1350 		case SIOCGSTAMP_NEW:
1351 		case SIOCGSTAMPNS_NEW:
1352 			if (!ops->gettstamp) {
1353 				err = -ENOIOCTLCMD;
1354 				break;
1355 			}
1356 			err = ops->gettstamp(sock, argp,
1357 					     cmd == SIOCGSTAMP_NEW,
1358 					     false);
1359 			break;
1360 
1361 		case SIOCGIFCONF:
1362 			err = dev_ifconf(net, argp);
1363 			break;
1364 
1365 		default:
1366 			err = sock_do_ioctl(net, sock, cmd, arg);
1367 			break;
1368 		}
1369 	return err;
1370 }
1371 
1372 /**
1373  *	sock_create_lite - creates a socket
1374  *	@family: protocol family (AF_INET, ...)
1375  *	@type: communication type (SOCK_STREAM, ...)
1376  *	@protocol: protocol (0, ...)
1377  *	@res: new socket
1378  *
1379  *	Creates a new socket and assigns it to @res, passing through LSM.
1380  *	The new socket initialization is not complete, see kernel_accept().
1381  *	Returns 0 or an error. On failure @res is set to %NULL.
1382  *	This function internally uses GFP_KERNEL.
1383  */
1384 
1385 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1386 {
1387 	int err;
1388 	struct socket *sock = NULL;
1389 
1390 	err = security_socket_create(family, type, protocol, 1);
1391 	if (err)
1392 		goto out;
1393 
1394 	sock = sock_alloc();
1395 	if (!sock) {
1396 		err = -ENOMEM;
1397 		goto out;
1398 	}
1399 
1400 	sock->type = type;
1401 	err = security_socket_post_create(sock, family, type, protocol, 1);
1402 	if (err)
1403 		goto out_release;
1404 
1405 out:
1406 	*res = sock;
1407 	return err;
1408 out_release:
1409 	sock_release(sock);
1410 	sock = NULL;
1411 	goto out;
1412 }
1413 EXPORT_SYMBOL(sock_create_lite);
1414 
1415 /* No kernel lock held - perfect */
1416 static __poll_t sock_poll(struct file *file, poll_table *wait)
1417 {
1418 	struct socket *sock = file->private_data;
1419 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1420 	__poll_t events = poll_requested_events(wait), flag = 0;
1421 
1422 	if (!ops->poll)
1423 		return 0;
1424 
1425 	if (sk_can_busy_loop(sock->sk)) {
1426 		/* poll once if requested by the syscall */
1427 		if (events & POLL_BUSY_LOOP)
1428 			sk_busy_loop(sock->sk, 1);
1429 
1430 		/* if this socket can poll_ll, tell the system call */
1431 		flag = POLL_BUSY_LOOP;
1432 	}
1433 
1434 	return ops->poll(file, sock, wait) | flag;
1435 }
1436 
1437 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1438 {
1439 	struct socket *sock = file->private_data;
1440 
1441 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1442 }
1443 
1444 static int sock_close(struct inode *inode, struct file *filp)
1445 {
1446 	__sock_release(SOCKET_I(inode), inode);
1447 	return 0;
1448 }
1449 
1450 /*
1451  *	Update the socket async list
1452  *
1453  *	Fasync_list locking strategy.
1454  *
1455  *	1. fasync_list is modified only under process context socket lock
1456  *	   i.e. under semaphore.
1457  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1458  *	   or under socket lock
1459  */
1460 
1461 static int sock_fasync(int fd, struct file *filp, int on)
1462 {
1463 	struct socket *sock = filp->private_data;
1464 	struct sock *sk = sock->sk;
1465 	struct socket_wq *wq = &sock->wq;
1466 
1467 	if (sk == NULL)
1468 		return -EINVAL;
1469 
1470 	lock_sock(sk);
1471 	fasync_helper(fd, filp, on, &wq->fasync_list);
1472 
1473 	if (!wq->fasync_list)
1474 		sock_reset_flag(sk, SOCK_FASYNC);
1475 	else
1476 		sock_set_flag(sk, SOCK_FASYNC);
1477 
1478 	release_sock(sk);
1479 	return 0;
1480 }
1481 
1482 /* This function may be called only under rcu_lock */
1483 
1484 int sock_wake_async(struct socket_wq *wq, int how, int band)
1485 {
1486 	if (!wq || !wq->fasync_list)
1487 		return -1;
1488 
1489 	switch (how) {
1490 	case SOCK_WAKE_WAITD:
1491 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1492 			break;
1493 		goto call_kill;
1494 	case SOCK_WAKE_SPACE:
1495 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1496 			break;
1497 		fallthrough;
1498 	case SOCK_WAKE_IO:
1499 call_kill:
1500 		kill_fasync(&wq->fasync_list, SIGIO, band);
1501 		break;
1502 	case SOCK_WAKE_URG:
1503 		kill_fasync(&wq->fasync_list, SIGURG, band);
1504 	}
1505 
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(sock_wake_async);
1509 
1510 /**
1511  *	__sock_create - creates a socket
1512  *	@net: net namespace
1513  *	@family: protocol family (AF_INET, ...)
1514  *	@type: communication type (SOCK_STREAM, ...)
1515  *	@protocol: protocol (0, ...)
1516  *	@res: new socket
1517  *	@kern: boolean for kernel space sockets
1518  *
1519  *	Creates a new socket and assigns it to @res, passing through LSM.
1520  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1521  *	be set to true if the socket resides in kernel space.
1522  *	This function internally uses GFP_KERNEL.
1523  */
1524 
1525 int __sock_create(struct net *net, int family, int type, int protocol,
1526 			 struct socket **res, int kern)
1527 {
1528 	int err;
1529 	struct socket *sock;
1530 	const struct net_proto_family *pf;
1531 
1532 	/*
1533 	 *      Check protocol is in range
1534 	 */
1535 	if (family < 0 || family >= NPROTO)
1536 		return -EAFNOSUPPORT;
1537 	if (type < 0 || type >= SOCK_MAX)
1538 		return -EINVAL;
1539 
1540 	/* Compatibility.
1541 
1542 	   This uglymoron is moved from INET layer to here to avoid
1543 	   deadlock in module load.
1544 	 */
1545 	if (family == PF_INET && type == SOCK_PACKET) {
1546 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1547 			     current->comm);
1548 		family = PF_PACKET;
1549 	}
1550 
1551 	err = security_socket_create(family, type, protocol, kern);
1552 	if (err)
1553 		return err;
1554 
1555 	/*
1556 	 *	Allocate the socket and allow the family to set things up. if
1557 	 *	the protocol is 0, the family is instructed to select an appropriate
1558 	 *	default.
1559 	 */
1560 	sock = sock_alloc();
1561 	if (!sock) {
1562 		net_warn_ratelimited("socket: no more sockets\n");
1563 		return -ENFILE;	/* Not exactly a match, but its the
1564 				   closest posix thing */
1565 	}
1566 
1567 	sock->type = type;
1568 
1569 #ifdef CONFIG_MODULES
1570 	/* Attempt to load a protocol module if the find failed.
1571 	 *
1572 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1573 	 * requested real, full-featured networking support upon configuration.
1574 	 * Otherwise module support will break!
1575 	 */
1576 	if (rcu_access_pointer(net_families[family]) == NULL)
1577 		request_module("net-pf-%d", family);
1578 #endif
1579 
1580 	rcu_read_lock();
1581 	pf = rcu_dereference(net_families[family]);
1582 	err = -EAFNOSUPPORT;
1583 	if (!pf)
1584 		goto out_release;
1585 
1586 	/*
1587 	 * We will call the ->create function, that possibly is in a loadable
1588 	 * module, so we have to bump that loadable module refcnt first.
1589 	 */
1590 	if (!try_module_get(pf->owner))
1591 		goto out_release;
1592 
1593 	/* Now protected by module ref count */
1594 	rcu_read_unlock();
1595 
1596 	err = pf->create(net, sock, protocol, kern);
1597 	if (err < 0) {
1598 		/* ->create should release the allocated sock->sk object on error
1599 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1600 		 */
1601 		DEBUG_NET_WARN_ONCE(sock->sk,
1602 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1603 				    pf->create, family, type, protocol);
1604 		goto out_module_put;
1605 	}
1606 
1607 	/*
1608 	 * Now to bump the refcnt of the [loadable] module that owns this
1609 	 * socket at sock_release time we decrement its refcnt.
1610 	 */
1611 	if (!try_module_get(sock->ops->owner))
1612 		goto out_module_busy;
1613 
1614 	/*
1615 	 * Now that we're done with the ->create function, the [loadable]
1616 	 * module can have its refcnt decremented
1617 	 */
1618 	module_put(pf->owner);
1619 	err = security_socket_post_create(sock, family, type, protocol, kern);
1620 	if (err)
1621 		goto out_sock_release;
1622 	*res = sock;
1623 
1624 	return 0;
1625 
1626 out_module_busy:
1627 	err = -EAFNOSUPPORT;
1628 out_module_put:
1629 	sock->ops = NULL;
1630 	module_put(pf->owner);
1631 out_sock_release:
1632 	sock_release(sock);
1633 	return err;
1634 
1635 out_release:
1636 	rcu_read_unlock();
1637 	goto out_sock_release;
1638 }
1639 EXPORT_SYMBOL(__sock_create);
1640 
1641 /**
1642  *	sock_create - creates a socket
1643  *	@family: protocol family (AF_INET, ...)
1644  *	@type: communication type (SOCK_STREAM, ...)
1645  *	@protocol: protocol (0, ...)
1646  *	@res: new socket
1647  *
1648  *	A wrapper around __sock_create().
1649  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1650  */
1651 
1652 int sock_create(int family, int type, int protocol, struct socket **res)
1653 {
1654 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1655 }
1656 EXPORT_SYMBOL(sock_create);
1657 
1658 /**
1659  *	sock_create_kern - creates a socket (kernel space)
1660  *	@net: net namespace
1661  *	@family: protocol family (AF_INET, ...)
1662  *	@type: communication type (SOCK_STREAM, ...)
1663  *	@protocol: protocol (0, ...)
1664  *	@res: new socket
1665  *
1666  *	A wrapper around __sock_create().
1667  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1668  */
1669 
1670 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1671 {
1672 	return __sock_create(net, family, type, protocol, res, 1);
1673 }
1674 EXPORT_SYMBOL(sock_create_kern);
1675 
1676 static struct socket *__sys_socket_create(int family, int type, int protocol)
1677 {
1678 	struct socket *sock;
1679 	int retval;
1680 
1681 	/* Check the SOCK_* constants for consistency.  */
1682 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1683 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1684 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1685 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1686 
1687 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1688 		return ERR_PTR(-EINVAL);
1689 	type &= SOCK_TYPE_MASK;
1690 
1691 	retval = sock_create(family, type, protocol, &sock);
1692 	if (retval < 0)
1693 		return ERR_PTR(retval);
1694 
1695 	return sock;
1696 }
1697 
1698 struct file *__sys_socket_file(int family, int type, int protocol)
1699 {
1700 	struct socket *sock;
1701 	int flags;
1702 
1703 	sock = __sys_socket_create(family, type, protocol);
1704 	if (IS_ERR(sock))
1705 		return ERR_CAST(sock);
1706 
1707 	flags = type & ~SOCK_TYPE_MASK;
1708 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1709 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1710 
1711 	return sock_alloc_file(sock, flags, NULL);
1712 }
1713 
1714 /*	A hook for bpf progs to attach to and update socket protocol.
1715  *
1716  *	A static noinline declaration here could cause the compiler to
1717  *	optimize away the function. A global noinline declaration will
1718  *	keep the definition, but may optimize away the callsite.
1719  *	Therefore, __weak is needed to ensure that the call is still
1720  *	emitted, by telling the compiler that we don't know what the
1721  *	function might eventually be.
1722  */
1723 
1724 __bpf_hook_start();
1725 
1726 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1727 {
1728 	return protocol;
1729 }
1730 
1731 __bpf_hook_end();
1732 
1733 int __sys_socket(int family, int type, int protocol)
1734 {
1735 	struct socket *sock;
1736 	int flags;
1737 
1738 	sock = __sys_socket_create(family, type,
1739 				   update_socket_protocol(family, type, protocol));
1740 	if (IS_ERR(sock))
1741 		return PTR_ERR(sock);
1742 
1743 	flags = type & ~SOCK_TYPE_MASK;
1744 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1745 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1746 
1747 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1748 }
1749 
1750 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1751 {
1752 	return __sys_socket(family, type, protocol);
1753 }
1754 
1755 /*
1756  *	Create a pair of connected sockets.
1757  */
1758 
1759 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1760 {
1761 	struct socket *sock1, *sock2;
1762 	int fd1, fd2, err;
1763 	struct file *newfile1, *newfile2;
1764 	int flags;
1765 
1766 	flags = type & ~SOCK_TYPE_MASK;
1767 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1768 		return -EINVAL;
1769 	type &= SOCK_TYPE_MASK;
1770 
1771 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1772 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1773 
1774 	/*
1775 	 * reserve descriptors and make sure we won't fail
1776 	 * to return them to userland.
1777 	 */
1778 	fd1 = get_unused_fd_flags(flags);
1779 	if (unlikely(fd1 < 0))
1780 		return fd1;
1781 
1782 	fd2 = get_unused_fd_flags(flags);
1783 	if (unlikely(fd2 < 0)) {
1784 		put_unused_fd(fd1);
1785 		return fd2;
1786 	}
1787 
1788 	err = put_user(fd1, &usockvec[0]);
1789 	if (err)
1790 		goto out;
1791 
1792 	err = put_user(fd2, &usockvec[1]);
1793 	if (err)
1794 		goto out;
1795 
1796 	/*
1797 	 * Obtain the first socket and check if the underlying protocol
1798 	 * supports the socketpair call.
1799 	 */
1800 
1801 	err = sock_create(family, type, protocol, &sock1);
1802 	if (unlikely(err < 0))
1803 		goto out;
1804 
1805 	err = sock_create(family, type, protocol, &sock2);
1806 	if (unlikely(err < 0)) {
1807 		sock_release(sock1);
1808 		goto out;
1809 	}
1810 
1811 	err = security_socket_socketpair(sock1, sock2);
1812 	if (unlikely(err)) {
1813 		sock_release(sock2);
1814 		sock_release(sock1);
1815 		goto out;
1816 	}
1817 
1818 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1819 	if (unlikely(err < 0)) {
1820 		sock_release(sock2);
1821 		sock_release(sock1);
1822 		goto out;
1823 	}
1824 
1825 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1826 	if (IS_ERR(newfile1)) {
1827 		err = PTR_ERR(newfile1);
1828 		sock_release(sock2);
1829 		goto out;
1830 	}
1831 
1832 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1833 	if (IS_ERR(newfile2)) {
1834 		err = PTR_ERR(newfile2);
1835 		fput(newfile1);
1836 		goto out;
1837 	}
1838 
1839 	audit_fd_pair(fd1, fd2);
1840 
1841 	fd_install(fd1, newfile1);
1842 	fd_install(fd2, newfile2);
1843 	return 0;
1844 
1845 out:
1846 	put_unused_fd(fd2);
1847 	put_unused_fd(fd1);
1848 	return err;
1849 }
1850 
1851 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1852 		int __user *, usockvec)
1853 {
1854 	return __sys_socketpair(family, type, protocol, usockvec);
1855 }
1856 
1857 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1858 		      int addrlen)
1859 {
1860 	int err;
1861 
1862 	err = security_socket_bind(sock, (struct sockaddr *)address,
1863 				   addrlen);
1864 	if (!err)
1865 		err = READ_ONCE(sock->ops)->bind(sock,
1866 						 (struct sockaddr_unsized *)address,
1867 						 addrlen);
1868 	return err;
1869 }
1870 
1871 /*
1872  *	Bind a name to a socket. Nothing much to do here since it's
1873  *	the protocol's responsibility to handle the local address.
1874  *
1875  *	We move the socket address to kernel space before we call
1876  *	the protocol layer (having also checked the address is ok).
1877  */
1878 
1879 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1880 {
1881 	struct socket *sock;
1882 	struct sockaddr_storage address;
1883 	CLASS(fd, f)(fd);
1884 	int err;
1885 
1886 	if (fd_empty(f))
1887 		return -EBADF;
1888 	sock = sock_from_file(fd_file(f));
1889 	if (unlikely(!sock))
1890 		return -ENOTSOCK;
1891 
1892 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1893 	if (unlikely(err))
1894 		return err;
1895 
1896 	return __sys_bind_socket(sock, &address, addrlen);
1897 }
1898 
1899 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1900 {
1901 	return __sys_bind(fd, umyaddr, addrlen);
1902 }
1903 
1904 /*
1905  *	Perform a listen. Basically, we allow the protocol to do anything
1906  *	necessary for a listen, and if that works, we mark the socket as
1907  *	ready for listening.
1908  */
1909 int __sys_listen_socket(struct socket *sock, int backlog)
1910 {
1911 	int somaxconn, err;
1912 
1913 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1914 	if ((unsigned int)backlog > somaxconn)
1915 		backlog = somaxconn;
1916 
1917 	err = security_socket_listen(sock, backlog);
1918 	if (!err)
1919 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1920 	return err;
1921 }
1922 
1923 int __sys_listen(int fd, int backlog)
1924 {
1925 	CLASS(fd, f)(fd);
1926 	struct socket *sock;
1927 
1928 	if (fd_empty(f))
1929 		return -EBADF;
1930 	sock = sock_from_file(fd_file(f));
1931 	if (unlikely(!sock))
1932 		return -ENOTSOCK;
1933 
1934 	return __sys_listen_socket(sock, backlog);
1935 }
1936 
1937 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1938 {
1939 	return __sys_listen(fd, backlog);
1940 }
1941 
1942 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1943 		       struct sockaddr __user *upeer_sockaddr,
1944 		       int __user *upeer_addrlen, int flags)
1945 {
1946 	struct socket *sock, *newsock;
1947 	struct file *newfile;
1948 	int err, len;
1949 	struct sockaddr_storage address;
1950 	const struct proto_ops *ops;
1951 
1952 	sock = sock_from_file(file);
1953 	if (!sock)
1954 		return ERR_PTR(-ENOTSOCK);
1955 
1956 	newsock = sock_alloc();
1957 	if (!newsock)
1958 		return ERR_PTR(-ENFILE);
1959 	ops = READ_ONCE(sock->ops);
1960 
1961 	newsock->type = sock->type;
1962 	newsock->ops = ops;
1963 
1964 	/*
1965 	 * We don't need try_module_get here, as the listening socket (sock)
1966 	 * has the protocol module (sock->ops->owner) held.
1967 	 */
1968 	__module_get(ops->owner);
1969 
1970 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1971 	if (IS_ERR(newfile))
1972 		return newfile;
1973 
1974 	err = security_socket_accept(sock, newsock);
1975 	if (err)
1976 		goto out_fd;
1977 
1978 	arg->flags |= sock->file->f_flags;
1979 	err = ops->accept(sock, newsock, arg);
1980 	if (err < 0)
1981 		goto out_fd;
1982 
1983 	if (upeer_sockaddr) {
1984 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1985 		if (len < 0) {
1986 			err = -ECONNABORTED;
1987 			goto out_fd;
1988 		}
1989 		err = move_addr_to_user(&address,
1990 					len, upeer_sockaddr, upeer_addrlen);
1991 		if (err < 0)
1992 			goto out_fd;
1993 	}
1994 
1995 	/* File flags are not inherited via accept() unlike another OSes. */
1996 	return newfile;
1997 out_fd:
1998 	fput(newfile);
1999 	return ERR_PTR(err);
2000 }
2001 
2002 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2003 			      int __user *upeer_addrlen, int flags)
2004 {
2005 	struct proto_accept_arg arg = { };
2006 
2007 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2008 		return -EINVAL;
2009 
2010 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2011 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2012 
2013 	return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags));
2014 }
2015 
2016 /*
2017  *	For accept, we attempt to create a new socket, set up the link
2018  *	with the client, wake up the client, then return the new
2019  *	connected fd. We collect the address of the connector in kernel
2020  *	space and move it to user at the very end. This is unclean because
2021  *	we open the socket then return an error.
2022  *
2023  *	1003.1g adds the ability to recvmsg() to query connection pending
2024  *	status to recvmsg. We need to add that support in a way thats
2025  *	clean when we restructure accept also.
2026  */
2027 
2028 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2029 		  int __user *upeer_addrlen, int flags)
2030 {
2031 	CLASS(fd, f)(fd);
2032 
2033 	if (fd_empty(f))
2034 		return -EBADF;
2035 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2036 					 upeer_addrlen, flags);
2037 }
2038 
2039 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2040 		int __user *, upeer_addrlen, int, flags)
2041 {
2042 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2043 }
2044 
2045 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2046 		int __user *, upeer_addrlen)
2047 {
2048 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2049 }
2050 
2051 /*
2052  *	Attempt to connect to a socket with the server address.  The address
2053  *	is in user space so we verify it is OK and move it to kernel space.
2054  *
2055  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2056  *	break bindings
2057  *
2058  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2059  *	other SEQPACKET protocols that take time to connect() as it doesn't
2060  *	include the -EINPROGRESS status for such sockets.
2061  */
2062 
2063 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2064 		       int addrlen, int file_flags)
2065 {
2066 	struct socket *sock;
2067 	int err;
2068 
2069 	sock = sock_from_file(file);
2070 	if (!sock) {
2071 		err = -ENOTSOCK;
2072 		goto out;
2073 	}
2074 
2075 	err =
2076 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2077 	if (err)
2078 		goto out;
2079 
2080 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)address,
2081 					    addrlen, sock->file->f_flags | file_flags);
2082 out:
2083 	return err;
2084 }
2085 
2086 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2087 {
2088 	struct sockaddr_storage address;
2089 	CLASS(fd, f)(fd);
2090 	int ret;
2091 
2092 	if (fd_empty(f))
2093 		return -EBADF;
2094 
2095 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2096 	if (ret)
2097 		return ret;
2098 
2099 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2100 }
2101 
2102 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2103 		int, addrlen)
2104 {
2105 	return __sys_connect(fd, uservaddr, addrlen);
2106 }
2107 
2108 int do_getsockname(struct socket *sock, int peer,
2109 		   struct sockaddr __user *usockaddr, int __user *usockaddr_len)
2110 {
2111 	struct sockaddr_storage address;
2112 	int err;
2113 
2114 	if (peer)
2115 		err = security_socket_getpeername(sock);
2116 	else
2117 		err = security_socket_getsockname(sock);
2118 	if (err)
2119 		return err;
2120 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, peer);
2121 	if (err < 0)
2122 		return err;
2123 	/* "err" is actually length in this case */
2124 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2125 }
2126 
2127 /*
2128  *	Get the remote or local address ('name') of a socket object. Move the
2129  *	obtained name to user space.
2130  */
2131 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2132 		      int __user *usockaddr_len, int peer)
2133 {
2134 	struct socket *sock;
2135 	CLASS(fd, f)(fd);
2136 
2137 	if (fd_empty(f))
2138 		return -EBADF;
2139 	sock = sock_from_file(fd_file(f));
2140 	if (unlikely(!sock))
2141 		return -ENOTSOCK;
2142 	return do_getsockname(sock, peer, usockaddr, usockaddr_len);
2143 }
2144 
2145 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2146 		int __user *, usockaddr_len)
2147 {
2148 	return __sys_getsockname(fd, usockaddr, usockaddr_len, 0);
2149 }
2150 
2151 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152 		int __user *, usockaddr_len)
2153 {
2154 	return __sys_getsockname(fd, usockaddr, usockaddr_len, 1);
2155 }
2156 
2157 /*
2158  *	Send a datagram to a given address. We move the address into kernel
2159  *	space and check the user space data area is readable before invoking
2160  *	the protocol.
2161  */
2162 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163 		 struct sockaddr __user *addr,  int addr_len)
2164 {
2165 	struct socket *sock;
2166 	struct sockaddr_storage address;
2167 	int err;
2168 	struct msghdr msg;
2169 
2170 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171 	if (unlikely(err))
2172 		return err;
2173 
2174 	CLASS(fd, f)(fd);
2175 	if (fd_empty(f))
2176 		return -EBADF;
2177 	sock = sock_from_file(fd_file(f));
2178 	if (unlikely(!sock))
2179 		return -ENOTSOCK;
2180 
2181 	msg.msg_name = NULL;
2182 	msg.msg_control = NULL;
2183 	msg.msg_controllen = 0;
2184 	msg.msg_namelen = 0;
2185 	msg.msg_ubuf = NULL;
2186 	if (addr) {
2187 		err = move_addr_to_kernel(addr, addr_len, &address);
2188 		if (err < 0)
2189 			return err;
2190 		msg.msg_name = (struct sockaddr *)&address;
2191 		msg.msg_namelen = addr_len;
2192 	}
2193 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194 	if (sock->file->f_flags & O_NONBLOCK)
2195 		flags |= MSG_DONTWAIT;
2196 	msg.msg_flags = flags;
2197 	return __sock_sendmsg(sock, &msg);
2198 }
2199 
2200 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201 		unsigned int, flags, struct sockaddr __user *, addr,
2202 		int, addr_len)
2203 {
2204 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205 }
2206 
2207 /*
2208  *	Send a datagram down a socket.
2209  */
2210 
2211 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212 		unsigned int, flags)
2213 {
2214 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215 }
2216 
2217 /*
2218  *	Receive a frame from the socket and optionally record the address of the
2219  *	sender. We verify the buffers are writable and if needed move the
2220  *	sender address from kernel to user space.
2221  */
2222 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223 		   struct sockaddr __user *addr, int __user *addr_len)
2224 {
2225 	struct sockaddr_storage address;
2226 	struct msghdr msg = {
2227 		/* Save some cycles and don't copy the address if not needed */
2228 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2229 	};
2230 	struct socket *sock;
2231 	int err, err2;
2232 
2233 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234 	if (unlikely(err))
2235 		return err;
2236 
2237 	CLASS(fd, f)(fd);
2238 
2239 	if (fd_empty(f))
2240 		return -EBADF;
2241 	sock = sock_from_file(fd_file(f));
2242 	if (unlikely(!sock))
2243 		return -ENOTSOCK;
2244 
2245 	if (sock->file->f_flags & O_NONBLOCK)
2246 		flags |= MSG_DONTWAIT;
2247 	err = sock_recvmsg(sock, &msg, flags);
2248 
2249 	if (err >= 0 && addr != NULL) {
2250 		err2 = move_addr_to_user(&address,
2251 					 msg.msg_namelen, addr, addr_len);
2252 		if (err2 < 0)
2253 			err = err2;
2254 	}
2255 	return err;
2256 }
2257 
2258 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259 		unsigned int, flags, struct sockaddr __user *, addr,
2260 		int __user *, addr_len)
2261 {
2262 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263 }
2264 
2265 /*
2266  *	Receive a datagram from a socket.
2267  */
2268 
2269 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270 		unsigned int, flags)
2271 {
2272 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273 }
2274 
2275 static bool sock_use_custom_sol_socket(const struct socket *sock)
2276 {
2277 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278 }
2279 
2280 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281 		       int optname, sockptr_t optval, int optlen)
2282 {
2283 	const struct proto_ops *ops;
2284 	char *kernel_optval = NULL;
2285 	int err;
2286 
2287 	if (optlen < 0)
2288 		return -EINVAL;
2289 
2290 	err = security_socket_setsockopt(sock, level, optname);
2291 	if (err)
2292 		goto out_put;
2293 
2294 	if (!compat)
2295 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296 						     optval, &optlen,
2297 						     &kernel_optval);
2298 	if (err < 0)
2299 		goto out_put;
2300 	if (err > 0) {
2301 		err = 0;
2302 		goto out_put;
2303 	}
2304 
2305 	if (kernel_optval)
2306 		optval = KERNEL_SOCKPTR(kernel_optval);
2307 	ops = READ_ONCE(sock->ops);
2308 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2310 	else if (unlikely(!ops->setsockopt))
2311 		err = -EOPNOTSUPP;
2312 	else
2313 		err = ops->setsockopt(sock, level, optname, optval,
2314 					    optlen);
2315 	kfree(kernel_optval);
2316 out_put:
2317 	return err;
2318 }
2319 EXPORT_SYMBOL(do_sock_setsockopt);
2320 
2321 /* Set a socket option. Because we don't know the option lengths we have
2322  * to pass the user mode parameter for the protocols to sort out.
2323  */
2324 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325 		     int optlen)
2326 {
2327 	sockptr_t optval = USER_SOCKPTR(user_optval);
2328 	bool compat = in_compat_syscall();
2329 	struct socket *sock;
2330 	CLASS(fd, f)(fd);
2331 
2332 	if (fd_empty(f))
2333 		return -EBADF;
2334 	sock = sock_from_file(fd_file(f));
2335 	if (unlikely(!sock))
2336 		return -ENOTSOCK;
2337 
2338 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339 }
2340 
2341 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342 		char __user *, optval, int, optlen)
2343 {
2344 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2345 }
2346 
2347 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348 							 int optname));
2349 
2350 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351 		       int optname, sockptr_t optval, sockptr_t optlen)
2352 {
2353 	int max_optlen __maybe_unused = 0;
2354 	const struct proto_ops *ops;
2355 	int err;
2356 
2357 	err = security_socket_getsockopt(sock, level, optname);
2358 	if (err)
2359 		return err;
2360 
2361 	if (!compat)
2362 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363 
2364 	ops = READ_ONCE(sock->ops);
2365 	if (level == SOL_SOCKET) {
2366 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367 	} else if (unlikely(!ops->getsockopt)) {
2368 		err = -EOPNOTSUPP;
2369 	} else {
2370 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371 			      "Invalid argument type"))
2372 			return -EOPNOTSUPP;
2373 
2374 		err = ops->getsockopt(sock, level, optname, optval.user,
2375 				      optlen.user);
2376 	}
2377 
2378 	if (!compat)
2379 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380 						     optval, optlen, max_optlen,
2381 						     err);
2382 
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(do_sock_getsockopt);
2386 
2387 /*
2388  *	Get a socket option. Because we don't know the option lengths we have
2389  *	to pass a user mode parameter for the protocols to sort out.
2390  */
2391 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392 		int __user *optlen)
2393 {
2394 	struct socket *sock;
2395 	CLASS(fd, f)(fd);
2396 
2397 	if (fd_empty(f))
2398 		return -EBADF;
2399 	sock = sock_from_file(fd_file(f));
2400 	if (unlikely(!sock))
2401 		return -ENOTSOCK;
2402 
2403 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405 }
2406 
2407 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408 		char __user *, optval, int __user *, optlen)
2409 {
2410 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2411 }
2412 
2413 /*
2414  *	Shutdown a socket.
2415  */
2416 
2417 int __sys_shutdown_sock(struct socket *sock, int how)
2418 {
2419 	int err;
2420 
2421 	err = security_socket_shutdown(sock, how);
2422 	if (!err)
2423 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424 
2425 	return err;
2426 }
2427 
2428 int __sys_shutdown(int fd, int how)
2429 {
2430 	struct socket *sock;
2431 	CLASS(fd, f)(fd);
2432 
2433 	if (fd_empty(f))
2434 		return -EBADF;
2435 	sock = sock_from_file(fd_file(f));
2436 	if (unlikely(!sock))
2437 		return -ENOTSOCK;
2438 
2439 	return __sys_shutdown_sock(sock, how);
2440 }
2441 
2442 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443 {
2444 	return __sys_shutdown(fd, how);
2445 }
2446 
2447 /* A couple of helpful macros for getting the address of the 32/64 bit
2448  * fields which are the same type (int / unsigned) on our platforms.
2449  */
2450 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2452 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2453 
2454 struct used_address {
2455 	struct sockaddr_storage name;
2456 	unsigned int name_len;
2457 };
2458 
2459 int __copy_msghdr(struct msghdr *kmsg,
2460 		  struct user_msghdr *msg,
2461 		  struct sockaddr __user **save_addr)
2462 {
2463 	ssize_t err;
2464 
2465 	kmsg->msg_control_is_user = true;
2466 	kmsg->msg_get_inq = 0;
2467 	kmsg->msg_control_user = msg->msg_control;
2468 	kmsg->msg_controllen = msg->msg_controllen;
2469 	kmsg->msg_flags = msg->msg_flags;
2470 
2471 	kmsg->msg_namelen = msg->msg_namelen;
2472 	if (!msg->msg_name)
2473 		kmsg->msg_namelen = 0;
2474 
2475 	if (kmsg->msg_namelen < 0)
2476 		return -EINVAL;
2477 
2478 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480 
2481 	if (save_addr)
2482 		*save_addr = msg->msg_name;
2483 
2484 	if (msg->msg_name && kmsg->msg_namelen) {
2485 		if (!save_addr) {
2486 			err = move_addr_to_kernel(msg->msg_name,
2487 						  kmsg->msg_namelen,
2488 						  kmsg->msg_name);
2489 			if (err < 0)
2490 				return err;
2491 		}
2492 	} else {
2493 		kmsg->msg_name = NULL;
2494 		kmsg->msg_namelen = 0;
2495 	}
2496 
2497 	if (msg->msg_iovlen > UIO_MAXIOV)
2498 		return -EMSGSIZE;
2499 
2500 	kmsg->msg_iocb = NULL;
2501 	kmsg->msg_ubuf = NULL;
2502 	return 0;
2503 }
2504 
2505 static int copy_msghdr_from_user(struct msghdr *kmsg,
2506 				 struct user_msghdr __user *umsg,
2507 				 struct sockaddr __user **save_addr,
2508 				 struct iovec **iov)
2509 {
2510 	struct user_msghdr msg;
2511 	ssize_t err;
2512 
2513 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514 		return -EFAULT;
2515 
2516 	err = __copy_msghdr(kmsg, &msg, save_addr);
2517 	if (err)
2518 		return err;
2519 
2520 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521 			    msg.msg_iov, msg.msg_iovlen,
2522 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2523 	return err < 0 ? err : 0;
2524 }
2525 
2526 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527 			   unsigned int flags, struct used_address *used_address,
2528 			   unsigned int allowed_msghdr_flags)
2529 {
2530 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531 				__aligned(sizeof(__kernel_size_t));
2532 	/* 20 is size of ipv6_pktinfo */
2533 	unsigned char *ctl_buf = ctl;
2534 	int ctl_len;
2535 	ssize_t err;
2536 
2537 	err = -ENOBUFS;
2538 
2539 	if (msg_sys->msg_controllen > INT_MAX)
2540 		goto out;
2541 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542 	ctl_len = msg_sys->msg_controllen;
2543 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544 		err =
2545 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546 						     sizeof(ctl));
2547 		if (err)
2548 			goto out;
2549 		ctl_buf = msg_sys->msg_control;
2550 		ctl_len = msg_sys->msg_controllen;
2551 	} else if (ctl_len) {
2552 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2554 		if (ctl_len > sizeof(ctl)) {
2555 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556 			if (ctl_buf == NULL)
2557 				goto out;
2558 		}
2559 		err = -EFAULT;
2560 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2561 			goto out_freectl;
2562 		msg_sys->msg_control = ctl_buf;
2563 		msg_sys->msg_control_is_user = false;
2564 	}
2565 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566 	msg_sys->msg_flags = flags;
2567 
2568 	if (sock->file->f_flags & O_NONBLOCK)
2569 		msg_sys->msg_flags |= MSG_DONTWAIT;
2570 	/*
2571 	 * If this is sendmmsg() and current destination address is same as
2572 	 * previously succeeded address, omit asking LSM's decision.
2573 	 * used_address->name_len is initialized to UINT_MAX so that the first
2574 	 * destination address never matches.
2575 	 */
2576 	if (used_address && msg_sys->msg_name &&
2577 	    used_address->name_len == msg_sys->msg_namelen &&
2578 	    !memcmp(&used_address->name, msg_sys->msg_name,
2579 		    used_address->name_len)) {
2580 		err = sock_sendmsg_nosec(sock, msg_sys);
2581 		goto out_freectl;
2582 	}
2583 	err = __sock_sendmsg(sock, msg_sys);
2584 	/*
2585 	 * If this is sendmmsg() and sending to current destination address was
2586 	 * successful, remember it.
2587 	 */
2588 	if (used_address && err >= 0) {
2589 		used_address->name_len = msg_sys->msg_namelen;
2590 		if (msg_sys->msg_name)
2591 			memcpy(&used_address->name, msg_sys->msg_name,
2592 			       used_address->name_len);
2593 	}
2594 
2595 out_freectl:
2596 	if (ctl_buf != ctl)
2597 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598 out:
2599 	return err;
2600 }
2601 
2602 static int sendmsg_copy_msghdr(struct msghdr *msg,
2603 			       struct user_msghdr __user *umsg, unsigned flags,
2604 			       struct iovec **iov)
2605 {
2606 	int err;
2607 
2608 	if (flags & MSG_CMSG_COMPAT) {
2609 		struct compat_msghdr __user *msg_compat;
2610 
2611 		msg_compat = (struct compat_msghdr __user *) umsg;
2612 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613 	} else {
2614 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615 	}
2616 	if (err < 0)
2617 		return err;
2618 
2619 	return 0;
2620 }
2621 
2622 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623 			 struct msghdr *msg_sys, unsigned int flags,
2624 			 struct used_address *used_address,
2625 			 unsigned int allowed_msghdr_flags)
2626 {
2627 	struct sockaddr_storage address;
2628 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 	ssize_t err;
2630 
2631 	msg_sys->msg_name = &address;
2632 
2633 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634 	if (err < 0)
2635 		return err;
2636 
2637 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638 				allowed_msghdr_flags);
2639 	kfree(iov);
2640 	return err;
2641 }
2642 
2643 /*
2644  *	BSD sendmsg interface
2645  */
2646 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647 			unsigned int flags)
2648 {
2649 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650 }
2651 
2652 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653 		   bool forbid_cmsg_compat)
2654 {
2655 	struct msghdr msg_sys;
2656 	struct socket *sock;
2657 
2658 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659 		return -EINVAL;
2660 
2661 	CLASS(fd, f)(fd);
2662 
2663 	if (fd_empty(f))
2664 		return -EBADF;
2665 	sock = sock_from_file(fd_file(f));
2666 	if (unlikely(!sock))
2667 		return -ENOTSOCK;
2668 
2669 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2670 }
2671 
2672 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673 {
2674 	return __sys_sendmsg(fd, msg, flags, true);
2675 }
2676 
2677 /*
2678  *	Linux sendmmsg interface
2679  */
2680 
2681 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682 		   unsigned int flags, bool forbid_cmsg_compat)
2683 {
2684 	int err, datagrams;
2685 	struct socket *sock;
2686 	struct mmsghdr __user *entry;
2687 	struct compat_mmsghdr __user *compat_entry;
2688 	struct msghdr msg_sys;
2689 	struct used_address used_address;
2690 	unsigned int oflags = flags;
2691 
2692 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 		return -EINVAL;
2694 
2695 	if (vlen > UIO_MAXIOV)
2696 		vlen = UIO_MAXIOV;
2697 
2698 	datagrams = 0;
2699 
2700 	CLASS(fd, f)(fd);
2701 
2702 	if (fd_empty(f))
2703 		return -EBADF;
2704 	sock = sock_from_file(fd_file(f));
2705 	if (unlikely(!sock))
2706 		return -ENOTSOCK;
2707 
2708 	used_address.name_len = UINT_MAX;
2709 	entry = mmsg;
2710 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 	err = 0;
2712 	flags |= MSG_BATCH;
2713 
2714 	while (datagrams < vlen) {
2715 		if (datagrams == vlen - 1)
2716 			flags = oflags;
2717 
2718 		if (MSG_CMSG_COMPAT & flags) {
2719 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720 					     &msg_sys, flags, &used_address, MSG_EOR);
2721 			if (err < 0)
2722 				break;
2723 			err = __put_user(err, &compat_entry->msg_len);
2724 			++compat_entry;
2725 		} else {
2726 			err = ___sys_sendmsg(sock,
2727 					     (struct user_msghdr __user *)entry,
2728 					     &msg_sys, flags, &used_address, MSG_EOR);
2729 			if (err < 0)
2730 				break;
2731 			err = put_user(err, &entry->msg_len);
2732 			++entry;
2733 		}
2734 
2735 		if (err)
2736 			break;
2737 		++datagrams;
2738 		if (msg_data_left(&msg_sys))
2739 			break;
2740 		cond_resched();
2741 	}
2742 
2743 	/* We only return an error if no datagrams were able to be sent */
2744 	if (datagrams != 0)
2745 		return datagrams;
2746 
2747 	return err;
2748 }
2749 
2750 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 		unsigned int, vlen, unsigned int, flags)
2752 {
2753 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2754 }
2755 
2756 static int recvmsg_copy_msghdr(struct msghdr *msg,
2757 			       struct user_msghdr __user *umsg, unsigned flags,
2758 			       struct sockaddr __user **uaddr,
2759 			       struct iovec **iov)
2760 {
2761 	ssize_t err;
2762 
2763 	if (MSG_CMSG_COMPAT & flags) {
2764 		struct compat_msghdr __user *msg_compat;
2765 
2766 		msg_compat = (struct compat_msghdr __user *) umsg;
2767 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 	} else {
2769 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770 	}
2771 	if (err < 0)
2772 		return err;
2773 
2774 	return 0;
2775 }
2776 
2777 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 			   struct user_msghdr __user *msg,
2779 			   struct sockaddr __user *uaddr,
2780 			   unsigned int flags, int nosec)
2781 {
2782 	struct compat_msghdr __user *msg_compat =
2783 					(struct compat_msghdr __user *) msg;
2784 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 	struct sockaddr_storage addr;
2786 	unsigned long cmsg_ptr;
2787 	int len;
2788 	ssize_t err;
2789 
2790 	msg_sys->msg_name = &addr;
2791 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793 
2794 	/* We assume all kernel code knows the size of sockaddr_storage */
2795 	msg_sys->msg_namelen = 0;
2796 
2797 	if (sock->file->f_flags & O_NONBLOCK)
2798 		flags |= MSG_DONTWAIT;
2799 
2800 	if (unlikely(nosec))
2801 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 	else
2803 		err = sock_recvmsg(sock, msg_sys, flags);
2804 
2805 	if (err < 0)
2806 		goto out;
2807 	len = err;
2808 
2809 	if (uaddr != NULL) {
2810 		err = move_addr_to_user(&addr,
2811 					msg_sys->msg_namelen, uaddr,
2812 					uaddr_len);
2813 		if (err < 0)
2814 			goto out;
2815 	}
2816 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 			 COMPAT_FLAGS(msg));
2818 	if (err)
2819 		goto out;
2820 	if (MSG_CMSG_COMPAT & flags)
2821 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 				 &msg_compat->msg_controllen);
2823 	else
2824 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 				 &msg->msg_controllen);
2826 	if (err)
2827 		goto out;
2828 	err = len;
2829 out:
2830 	return err;
2831 }
2832 
2833 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835 {
2836 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 	/* user mode address pointers */
2838 	struct sockaddr __user *uaddr;
2839 	ssize_t err;
2840 
2841 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 	if (err < 0)
2843 		return err;
2844 
2845 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 	kfree(iov);
2847 	return err;
2848 }
2849 
2850 /*
2851  *	BSD recvmsg interface
2852  */
2853 
2854 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 			struct user_msghdr __user *umsg,
2856 			struct sockaddr __user *uaddr, unsigned int flags)
2857 {
2858 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859 }
2860 
2861 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 		   bool forbid_cmsg_compat)
2863 {
2864 	struct msghdr msg_sys;
2865 	struct socket *sock;
2866 
2867 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868 		return -EINVAL;
2869 
2870 	CLASS(fd, f)(fd);
2871 
2872 	if (fd_empty(f))
2873 		return -EBADF;
2874 	sock = sock_from_file(fd_file(f));
2875 	if (unlikely(!sock))
2876 		return -ENOTSOCK;
2877 
2878 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2879 }
2880 
2881 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882 		unsigned int, flags)
2883 {
2884 	return __sys_recvmsg(fd, msg, flags, true);
2885 }
2886 
2887 /*
2888  *     Linux recvmmsg interface
2889  */
2890 
2891 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892 			  unsigned int vlen, unsigned int flags,
2893 			  struct timespec64 *timeout)
2894 {
2895 	int err = 0, datagrams;
2896 	struct socket *sock;
2897 	struct mmsghdr __user *entry;
2898 	struct compat_mmsghdr __user *compat_entry;
2899 	struct msghdr msg_sys;
2900 	struct timespec64 end_time;
2901 	struct timespec64 timeout64;
2902 
2903 	if (timeout &&
2904 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2905 				    timeout->tv_nsec))
2906 		return -EINVAL;
2907 
2908 	datagrams = 0;
2909 
2910 	CLASS(fd, f)(fd);
2911 
2912 	if (fd_empty(f))
2913 		return -EBADF;
2914 	sock = sock_from_file(fd_file(f));
2915 	if (unlikely(!sock))
2916 		return -ENOTSOCK;
2917 
2918 	if (likely(!(flags & MSG_ERRQUEUE))) {
2919 		err = sock_error(sock->sk);
2920 		if (err)
2921 			return err;
2922 	}
2923 
2924 	entry = mmsg;
2925 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926 
2927 	while (datagrams < vlen) {
2928 		/*
2929 		 * No need to ask LSM for more than the first datagram.
2930 		 */
2931 		if (MSG_CMSG_COMPAT & flags) {
2932 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933 					     &msg_sys, flags & ~MSG_WAITFORONE,
2934 					     datagrams);
2935 			if (err < 0)
2936 				break;
2937 			err = __put_user(err, &compat_entry->msg_len);
2938 			++compat_entry;
2939 		} else {
2940 			err = ___sys_recvmsg(sock,
2941 					     (struct user_msghdr __user *)entry,
2942 					     &msg_sys, flags & ~MSG_WAITFORONE,
2943 					     datagrams);
2944 			if (err < 0)
2945 				break;
2946 			err = put_user(err, &entry->msg_len);
2947 			++entry;
2948 		}
2949 
2950 		if (err)
2951 			break;
2952 		++datagrams;
2953 
2954 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955 		if (flags & MSG_WAITFORONE)
2956 			flags |= MSG_DONTWAIT;
2957 
2958 		if (timeout) {
2959 			ktime_get_ts64(&timeout64);
2960 			*timeout = timespec64_sub(end_time, timeout64);
2961 			if (timeout->tv_sec < 0) {
2962 				timeout->tv_sec = timeout->tv_nsec = 0;
2963 				break;
2964 			}
2965 
2966 			/* Timeout, return less than vlen datagrams */
2967 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968 				break;
2969 		}
2970 
2971 		/* Out of band data, return right away */
2972 		if (msg_sys.msg_flags & MSG_OOB)
2973 			break;
2974 		cond_resched();
2975 	}
2976 
2977 	if (err == 0)
2978 		return datagrams;
2979 
2980 	if (datagrams == 0)
2981 		return err;
2982 
2983 	/*
2984 	 * We may return less entries than requested (vlen) if the
2985 	 * sock is non block and there aren't enough datagrams...
2986 	 */
2987 	if (err != -EAGAIN) {
2988 		/*
2989 		 * ... or  if recvmsg returns an error after we
2990 		 * received some datagrams, where we record the
2991 		 * error to return on the next call or if the
2992 		 * app asks about it using getsockopt(SO_ERROR).
2993 		 */
2994 		WRITE_ONCE(sock->sk->sk_err, -err);
2995 	}
2996 	return datagrams;
2997 }
2998 
2999 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000 		   unsigned int vlen, unsigned int flags,
3001 		   struct __kernel_timespec __user *timeout,
3002 		   struct old_timespec32 __user *timeout32)
3003 {
3004 	int datagrams;
3005 	struct timespec64 timeout_sys;
3006 
3007 	if (timeout && get_timespec64(&timeout_sys, timeout))
3008 		return -EFAULT;
3009 
3010 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011 		return -EFAULT;
3012 
3013 	if (!timeout && !timeout32)
3014 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015 
3016 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3017 
3018 	if (datagrams <= 0)
3019 		return datagrams;
3020 
3021 	if (timeout && put_timespec64(&timeout_sys, timeout))
3022 		datagrams = -EFAULT;
3023 
3024 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025 		datagrams = -EFAULT;
3026 
3027 	return datagrams;
3028 }
3029 
3030 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031 		unsigned int, vlen, unsigned int, flags,
3032 		struct __kernel_timespec __user *, timeout)
3033 {
3034 	if (flags & MSG_CMSG_COMPAT)
3035 		return -EINVAL;
3036 
3037 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038 }
3039 
3040 #ifdef CONFIG_COMPAT_32BIT_TIME
3041 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042 		unsigned int, vlen, unsigned int, flags,
3043 		struct old_timespec32 __user *, timeout)
3044 {
3045 	if (flags & MSG_CMSG_COMPAT)
3046 		return -EINVAL;
3047 
3048 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3049 }
3050 #endif
3051 
3052 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3053 /* Argument list sizes for sys_socketcall */
3054 #define AL(x) ((x) * sizeof(unsigned long))
3055 static const unsigned char nargs[21] = {
3056 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059 	AL(4), AL(5), AL(4)
3060 };
3061 
3062 #undef AL
3063 
3064 /*
3065  *	System call vectors.
3066  *
3067  *	Argument checking cleaned up. Saved 20% in size.
3068  *  This function doesn't need to set the kernel lock because
3069  *  it is set by the callees.
3070  */
3071 
3072 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073 {
3074 	unsigned long a[AUDITSC_ARGS];
3075 	unsigned long a0, a1;
3076 	int err;
3077 	unsigned int len;
3078 
3079 	if (call < 1 || call > SYS_SENDMMSG)
3080 		return -EINVAL;
3081 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082 
3083 	len = nargs[call];
3084 	if (len > sizeof(a))
3085 		return -EINVAL;
3086 
3087 	/* copy_from_user should be SMP safe. */
3088 	if (copy_from_user(a, args, len))
3089 		return -EFAULT;
3090 
3091 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092 	if (err)
3093 		return err;
3094 
3095 	a0 = a[0];
3096 	a1 = a[1];
3097 
3098 	switch (call) {
3099 	case SYS_SOCKET:
3100 		err = __sys_socket(a0, a1, a[2]);
3101 		break;
3102 	case SYS_BIND:
3103 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104 		break;
3105 	case SYS_CONNECT:
3106 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107 		break;
3108 	case SYS_LISTEN:
3109 		err = __sys_listen(a0, a1);
3110 		break;
3111 	case SYS_ACCEPT:
3112 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113 				    (int __user *)a[2], 0);
3114 		break;
3115 	case SYS_GETSOCKNAME:
3116 		err =
3117 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118 				      (int __user *)a[2], 0);
3119 		break;
3120 	case SYS_GETPEERNAME:
3121 		err =
3122 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3123 				      (int __user *)a[2], 1);
3124 		break;
3125 	case SYS_SOCKETPAIR:
3126 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127 		break;
3128 	case SYS_SEND:
3129 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130 				   NULL, 0);
3131 		break;
3132 	case SYS_SENDTO:
3133 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 				   (struct sockaddr __user *)a[4], a[5]);
3135 		break;
3136 	case SYS_RECV:
3137 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138 				     NULL, NULL);
3139 		break;
3140 	case SYS_RECVFROM:
3141 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 				     (struct sockaddr __user *)a[4],
3143 				     (int __user *)a[5]);
3144 		break;
3145 	case SYS_SHUTDOWN:
3146 		err = __sys_shutdown(a0, a1);
3147 		break;
3148 	case SYS_SETSOCKOPT:
3149 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150 				       a[4]);
3151 		break;
3152 	case SYS_GETSOCKOPT:
3153 		err =
3154 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155 				     (int __user *)a[4]);
3156 		break;
3157 	case SYS_SENDMSG:
3158 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159 				    a[2], true);
3160 		break;
3161 	case SYS_SENDMMSG:
3162 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163 				     a[3], true);
3164 		break;
3165 	case SYS_RECVMSG:
3166 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167 				    a[2], true);
3168 		break;
3169 	case SYS_RECVMMSG:
3170 		if (IS_ENABLED(CONFIG_64BIT))
3171 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172 					     a[2], a[3],
3173 					     (struct __kernel_timespec __user *)a[4],
3174 					     NULL);
3175 		else
3176 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177 					     a[2], a[3], NULL,
3178 					     (struct old_timespec32 __user *)a[4]);
3179 		break;
3180 	case SYS_ACCEPT4:
3181 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182 				    (int __user *)a[2], a[3]);
3183 		break;
3184 	default:
3185 		err = -EINVAL;
3186 		break;
3187 	}
3188 	return err;
3189 }
3190 
3191 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3192 
3193 /**
3194  *	sock_register - add a socket protocol handler
3195  *	@ops: description of protocol
3196  *
3197  *	This function is called by a protocol handler that wants to
3198  *	advertise its address family, and have it linked into the
3199  *	socket interface. The value ops->family corresponds to the
3200  *	socket system call protocol family.
3201  */
3202 int sock_register(const struct net_proto_family *ops)
3203 {
3204 	int err;
3205 
3206 	if (ops->family >= NPROTO) {
3207 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208 		return -ENOBUFS;
3209 	}
3210 
3211 	spin_lock(&net_family_lock);
3212 	if (rcu_dereference_protected(net_families[ops->family],
3213 				      lockdep_is_held(&net_family_lock)))
3214 		err = -EEXIST;
3215 	else {
3216 		rcu_assign_pointer(net_families[ops->family], ops);
3217 		err = 0;
3218 	}
3219 	spin_unlock(&net_family_lock);
3220 
3221 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222 	return err;
3223 }
3224 EXPORT_SYMBOL(sock_register);
3225 
3226 /**
3227  *	sock_unregister - remove a protocol handler
3228  *	@family: protocol family to remove
3229  *
3230  *	This function is called by a protocol handler that wants to
3231  *	remove its address family, and have it unlinked from the
3232  *	new socket creation.
3233  *
3234  *	If protocol handler is a module, then it can use module reference
3235  *	counts to protect against new references. If protocol handler is not
3236  *	a module then it needs to provide its own protection in
3237  *	the ops->create routine.
3238  */
3239 void sock_unregister(int family)
3240 {
3241 	BUG_ON(family < 0 || family >= NPROTO);
3242 
3243 	spin_lock(&net_family_lock);
3244 	RCU_INIT_POINTER(net_families[family], NULL);
3245 	spin_unlock(&net_family_lock);
3246 
3247 	synchronize_rcu();
3248 
3249 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250 }
3251 EXPORT_SYMBOL(sock_unregister);
3252 
3253 bool sock_is_registered(int family)
3254 {
3255 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3256 }
3257 
3258 static int __init sock_init(void)
3259 {
3260 	int err;
3261 	/*
3262 	 *      Initialize the network sysctl infrastructure.
3263 	 */
3264 	err = net_sysctl_init();
3265 	if (err)
3266 		goto out;
3267 
3268 	/*
3269 	 *      Initialize skbuff SLAB cache
3270 	 */
3271 	skb_init();
3272 
3273 	/*
3274 	 *      Initialize the protocols module.
3275 	 */
3276 
3277 	init_inodecache();
3278 
3279 	err = register_filesystem(&sock_fs_type);
3280 	if (err)
3281 		goto out;
3282 	sock_mnt = kern_mount(&sock_fs_type);
3283 	if (IS_ERR(sock_mnt)) {
3284 		err = PTR_ERR(sock_mnt);
3285 		goto out_mount;
3286 	}
3287 
3288 	/* The real protocol initialization is performed in later initcalls.
3289 	 */
3290 
3291 #ifdef CONFIG_NETFILTER
3292 	err = netfilter_init();
3293 	if (err)
3294 		goto out;
3295 #endif
3296 
3297 	ptp_classifier_init();
3298 
3299 out:
3300 	return err;
3301 
3302 out_mount:
3303 	unregister_filesystem(&sock_fs_type);
3304 	goto out;
3305 }
3306 
3307 core_initcall(sock_init);	/* early initcall */
3308 
3309 #ifdef CONFIG_PROC_FS
3310 void socket_seq_show(struct seq_file *seq)
3311 {
3312 	seq_printf(seq, "sockets: used %d\n",
3313 		   sock_inuse_get(seq->private));
3314 }
3315 #endif				/* CONFIG_PROC_FS */
3316 
3317 /* Handle the fact that while struct ifreq has the same *layout* on
3318  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319  * which are handled elsewhere, it still has different *size* due to
3320  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321  * resulting in struct ifreq being 32 and 40 bytes respectively).
3322  * As a result, if the struct happens to be at the end of a page and
3323  * the next page isn't readable/writable, we get a fault. To prevent
3324  * that, copy back and forth to the full size.
3325  */
3326 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327 {
3328 	if (in_compat_syscall()) {
3329 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3330 
3331 		memset(ifr, 0, sizeof(*ifr));
3332 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333 			return -EFAULT;
3334 
3335 		if (ifrdata)
3336 			*ifrdata = compat_ptr(ifr32->ifr_data);
3337 
3338 		return 0;
3339 	}
3340 
3341 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342 		return -EFAULT;
3343 
3344 	if (ifrdata)
3345 		*ifrdata = ifr->ifr_data;
3346 
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL(get_user_ifreq);
3350 
3351 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352 {
3353 	size_t size = sizeof(*ifr);
3354 
3355 	if (in_compat_syscall())
3356 		size = sizeof(struct compat_ifreq);
3357 
3358 	if (copy_to_user(arg, ifr, size))
3359 		return -EFAULT;
3360 
3361 	return 0;
3362 }
3363 EXPORT_SYMBOL(put_user_ifreq);
3364 
3365 #ifdef CONFIG_COMPAT
3366 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367 {
3368 	compat_uptr_t uptr32;
3369 	struct ifreq ifr;
3370 	void __user *saved;
3371 	int err;
3372 
3373 	if (get_user_ifreq(&ifr, NULL, uifr32))
3374 		return -EFAULT;
3375 
3376 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377 		return -EFAULT;
3378 
3379 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381 
3382 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383 	if (!err) {
3384 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385 		if (put_user_ifreq(&ifr, uifr32))
3386 			err = -EFAULT;
3387 	}
3388 	return err;
3389 }
3390 
3391 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393 				 struct compat_ifreq __user *u_ifreq32)
3394 {
3395 	struct ifreq ifreq;
3396 	void __user *data;
3397 
3398 	if (!is_socket_ioctl_cmd(cmd))
3399 		return -ENOTTY;
3400 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3401 		return -EFAULT;
3402 	ifreq.ifr_data = data;
3403 
3404 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3405 }
3406 
3407 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408 			 unsigned int cmd, unsigned long arg)
3409 {
3410 	void __user *argp = compat_ptr(arg);
3411 	struct sock *sk = sock->sk;
3412 	struct net *net = sock_net(sk);
3413 	const struct proto_ops *ops;
3414 
3415 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 		return sock_ioctl(file, cmd, (unsigned long)argp);
3417 
3418 	switch (cmd) {
3419 	case SIOCWANDEV:
3420 		return compat_siocwandev(net, argp);
3421 	case SIOCGSTAMP_OLD:
3422 	case SIOCGSTAMPNS_OLD:
3423 		ops = READ_ONCE(sock->ops);
3424 		if (!ops->gettstamp)
3425 			return -ENOIOCTLCMD;
3426 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427 				      !COMPAT_USE_64BIT_TIME);
3428 
3429 	case SIOCETHTOOL:
3430 	case SIOCBONDSLAVEINFOQUERY:
3431 	case SIOCBONDINFOQUERY:
3432 	case SIOCSHWTSTAMP:
3433 	case SIOCGHWTSTAMP:
3434 		return compat_ifr_data_ioctl(net, cmd, argp);
3435 
3436 	case FIOSETOWN:
3437 	case SIOCSPGRP:
3438 	case FIOGETOWN:
3439 	case SIOCGPGRP:
3440 	case SIOCBRADDBR:
3441 	case SIOCBRDELBR:
3442 	case SIOCBRADDIF:
3443 	case SIOCBRDELIF:
3444 	case SIOCGIFVLAN:
3445 	case SIOCSIFVLAN:
3446 	case SIOCGSKNS:
3447 	case SIOCGSTAMP_NEW:
3448 	case SIOCGSTAMPNS_NEW:
3449 	case SIOCGIFCONF:
3450 	case SIOCSIFBR:
3451 	case SIOCGIFBR:
3452 		return sock_ioctl(file, cmd, arg);
3453 
3454 	case SIOCGIFFLAGS:
3455 	case SIOCSIFFLAGS:
3456 	case SIOCGIFMAP:
3457 	case SIOCSIFMAP:
3458 	case SIOCGIFMETRIC:
3459 	case SIOCSIFMETRIC:
3460 	case SIOCGIFMTU:
3461 	case SIOCSIFMTU:
3462 	case SIOCGIFMEM:
3463 	case SIOCSIFMEM:
3464 	case SIOCGIFHWADDR:
3465 	case SIOCSIFHWADDR:
3466 	case SIOCADDMULTI:
3467 	case SIOCDELMULTI:
3468 	case SIOCGIFINDEX:
3469 	case SIOCGIFADDR:
3470 	case SIOCSIFADDR:
3471 	case SIOCSIFHWBROADCAST:
3472 	case SIOCDIFADDR:
3473 	case SIOCGIFBRDADDR:
3474 	case SIOCSIFBRDADDR:
3475 	case SIOCGIFDSTADDR:
3476 	case SIOCSIFDSTADDR:
3477 	case SIOCGIFNETMASK:
3478 	case SIOCSIFNETMASK:
3479 	case SIOCSIFPFLAGS:
3480 	case SIOCGIFPFLAGS:
3481 	case SIOCGIFTXQLEN:
3482 	case SIOCSIFTXQLEN:
3483 	case SIOCGIFNAME:
3484 	case SIOCSIFNAME:
3485 	case SIOCGMIIPHY:
3486 	case SIOCGMIIREG:
3487 	case SIOCSMIIREG:
3488 	case SIOCBONDENSLAVE:
3489 	case SIOCBONDRELEASE:
3490 	case SIOCBONDSETHWADDR:
3491 	case SIOCBONDCHANGEACTIVE:
3492 	case SIOCSARP:
3493 	case SIOCGARP:
3494 	case SIOCDARP:
3495 	case SIOCOUTQ:
3496 	case SIOCOUTQNSD:
3497 	case SIOCATMARK:
3498 		return sock_do_ioctl(net, sock, cmd, arg);
3499 	}
3500 
3501 	return -ENOIOCTLCMD;
3502 }
3503 
3504 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505 			      unsigned long arg)
3506 {
3507 	struct socket *sock = file->private_data;
3508 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3509 	int ret = -ENOIOCTLCMD;
3510 	struct sock *sk;
3511 	struct net *net;
3512 
3513 	sk = sock->sk;
3514 	net = sock_net(sk);
3515 
3516 	if (ops->compat_ioctl)
3517 		ret = ops->compat_ioctl(sock, cmd, arg);
3518 
3519 	if (ret == -ENOIOCTLCMD &&
3520 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3522 
3523 	if (ret == -ENOIOCTLCMD)
3524 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525 
3526 	return ret;
3527 }
3528 #endif
3529 
3530 /**
3531  *	kernel_bind - bind an address to a socket (kernel space)
3532  *	@sock: socket
3533  *	@addr: address
3534  *	@addrlen: length of address
3535  *
3536  *	Returns 0 or an error.
3537  */
3538 
3539 int kernel_bind(struct socket *sock, struct sockaddr_unsized *addr, int addrlen)
3540 {
3541 	struct sockaddr_storage address;
3542 
3543 	memcpy(&address, addr, addrlen);
3544 
3545 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr_unsized *)&address,
3546 					  addrlen);
3547 }
3548 EXPORT_SYMBOL(kernel_bind);
3549 
3550 /**
3551  *	kernel_listen - move socket to listening state (kernel space)
3552  *	@sock: socket
3553  *	@backlog: pending connections queue size
3554  *
3555  *	Returns 0 or an error.
3556  */
3557 
3558 int kernel_listen(struct socket *sock, int backlog)
3559 {
3560 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3561 }
3562 EXPORT_SYMBOL(kernel_listen);
3563 
3564 /**
3565  *	kernel_accept - accept a connection (kernel space)
3566  *	@sock: listening socket
3567  *	@newsock: new connected socket
3568  *	@flags: flags
3569  *
3570  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571  *	If it fails, @newsock is guaranteed to be %NULL.
3572  *	Returns 0 or an error.
3573  */
3574 
3575 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576 {
3577 	struct sock *sk = sock->sk;
3578 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3579 	struct proto_accept_arg arg = {
3580 		.flags = flags,
3581 		.kern = true,
3582 	};
3583 	int err;
3584 
3585 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 			       newsock);
3587 	if (err < 0)
3588 		goto done;
3589 
3590 	err = ops->accept(sock, *newsock, &arg);
3591 	if (err < 0) {
3592 		sock_release(*newsock);
3593 		*newsock = NULL;
3594 		goto done;
3595 	}
3596 
3597 	(*newsock)->ops = ops;
3598 	__module_get(ops->owner);
3599 
3600 done:
3601 	return err;
3602 }
3603 EXPORT_SYMBOL(kernel_accept);
3604 
3605 /**
3606  *	kernel_connect - connect a socket (kernel space)
3607  *	@sock: socket
3608  *	@addr: address
3609  *	@addrlen: address length
3610  *	@flags: flags (O_NONBLOCK, ...)
3611  *
3612  *	For datagram sockets, @addr is the address to which datagrams are sent
3613  *	by default, and the only address from which datagrams are received.
3614  *	For stream sockets, attempts to connect to @addr.
3615  *	Returns 0 or an error code.
3616  */
3617 
3618 int kernel_connect(struct socket *sock, struct sockaddr_unsized *addr, int addrlen,
3619 		   int flags)
3620 {
3621 	struct sockaddr_storage address;
3622 
3623 	memcpy(&address, addr, addrlen);
3624 
3625 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)&address,
3626 					     addrlen, flags);
3627 }
3628 EXPORT_SYMBOL(kernel_connect);
3629 
3630 /**
3631  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632  *	@sock: socket
3633  *	@addr: address holder
3634  *
3635  * 	Fills the @addr pointer with the address which the socket is bound.
3636  *	Returns the length of the address in bytes or an error code.
3637  */
3638 
3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640 {
3641 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642 }
3643 EXPORT_SYMBOL(kernel_getsockname);
3644 
3645 /**
3646  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647  *	@sock: socket
3648  *	@addr: address holder
3649  *
3650  * 	Fills the @addr pointer with the address which the socket is connected.
3651  *	Returns the length of the address in bytes or an error code.
3652  */
3653 
3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655 {
3656 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657 }
3658 EXPORT_SYMBOL(kernel_getpeername);
3659 
3660 /**
3661  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662  *	@sock: socket
3663  *	@how: connection part
3664  *
3665  *	Returns 0 or an error.
3666  */
3667 
3668 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669 {
3670 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3671 }
3672 EXPORT_SYMBOL(kernel_sock_shutdown);
3673 
3674 /**
3675  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676  *	@sk: socket
3677  *
3678  *	This routine returns the IP overhead imposed by a socket i.e.
3679  *	the length of the underlying IP header, depending on whether
3680  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681  *	on at the socket. Assumes that the caller has a lock on the socket.
3682  */
3683 
3684 u32 kernel_sock_ip_overhead(struct sock *sk)
3685 {
3686 	struct inet_sock *inet;
3687 	struct ip_options_rcu *opt;
3688 	u32 overhead = 0;
3689 #if IS_ENABLED(CONFIG_IPV6)
3690 	struct ipv6_pinfo *np;
3691 	struct ipv6_txoptions *optv6 = NULL;
3692 #endif /* IS_ENABLED(CONFIG_IPV6) */
3693 
3694 	if (!sk)
3695 		return overhead;
3696 
3697 	switch (sk->sk_family) {
3698 	case AF_INET:
3699 		inet = inet_sk(sk);
3700 		overhead += sizeof(struct iphdr);
3701 		opt = rcu_dereference_protected(inet->inet_opt,
3702 						sock_owned_by_user(sk));
3703 		if (opt)
3704 			overhead += opt->opt.optlen;
3705 		return overhead;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 	case AF_INET6:
3708 		np = inet6_sk(sk);
3709 		overhead += sizeof(struct ipv6hdr);
3710 		if (np)
3711 			optv6 = rcu_dereference_protected(np->opt,
3712 							  sock_owned_by_user(sk));
3713 		if (optv6)
3714 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 		return overhead;
3716 #endif /* IS_ENABLED(CONFIG_IPV6) */
3717 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 		return overhead;
3719 	}
3720 }
3721 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3722