xref: /linux/net/socket.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96 
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 			 unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 			  unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 			      struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 			      unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_sendpage(struct file *file, struct page *page,
114 			     int offset, size_t size, loff_t *ppos, int more);
115 
116 /*
117  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
118  *	in the operation structures but are done directly via the socketcall() multiplexor.
119  */
120 
121 static const struct file_operations socket_file_ops = {
122 	.owner =	THIS_MODULE,
123 	.llseek =	no_llseek,
124 	.aio_read =	sock_aio_read,
125 	.aio_write =	sock_aio_write,
126 	.poll =		sock_poll,
127 	.unlocked_ioctl = sock_ioctl,
128 #ifdef CONFIG_COMPAT
129 	.compat_ioctl = compat_sock_ioctl,
130 #endif
131 	.mmap =		sock_mmap,
132 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
133 	.release =	sock_close,
134 	.fasync =	sock_fasync,
135 	.sendpage =	sock_sendpage,
136 	.splice_write = generic_splice_sendpage,
137 };
138 
139 /*
140  *	The protocol list. Each protocol is registered in here.
141  */
142 
143 static DEFINE_SPINLOCK(net_family_lock);
144 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
145 
146 /*
147  *	Statistics counters of the socket lists
148  */
149 
150 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
151 
152 /*
153  * Support routines.
154  * Move socket addresses back and forth across the kernel/user
155  * divide and look after the messy bits.
156  */
157 
158 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
159 					   16 for IP, 16 for IPX,
160 					   24 for IPv6,
161 					   about 80 for AX.25
162 					   must be at least one bigger than
163 					   the AF_UNIX size (see net/unix/af_unix.c
164 					   :unix_mkname()).
165 					 */
166 
167 /**
168  *	move_addr_to_kernel	-	copy a socket address into kernel space
169  *	@uaddr: Address in user space
170  *	@kaddr: Address in kernel space
171  *	@ulen: Length in user space
172  *
173  *	The address is copied into kernel space. If the provided address is
174  *	too long an error code of -EINVAL is returned. If the copy gives
175  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
176  */
177 
178 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 {
180 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
181 		return -EINVAL;
182 	if (ulen == 0)
183 		return 0;
184 	if (copy_from_user(kaddr, uaddr, ulen))
185 		return -EFAULT;
186 	return audit_sockaddr(ulen, kaddr);
187 }
188 
189 /**
190  *	move_addr_to_user	-	copy an address to user space
191  *	@kaddr: kernel space address
192  *	@klen: length of address in kernel
193  *	@uaddr: user space address
194  *	@ulen: pointer to user length field
195  *
196  *	The value pointed to by ulen on entry is the buffer length available.
197  *	This is overwritten with the buffer space used. -EINVAL is returned
198  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
199  *	is returned if either the buffer or the length field are not
200  *	accessible.
201  *	After copying the data up to the limit the user specifies, the true
202  *	length of the data is written over the length limit the user
203  *	specified. Zero is returned for a success.
204  */
205 
206 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
207 		      int __user *ulen)
208 {
209 	int err;
210 	int len;
211 
212 	err = get_user(len, ulen);
213 	if (err)
214 		return err;
215 	if (len > klen)
216 		len = klen;
217 	if (len < 0 || len > MAX_SOCK_ADDR)
218 		return -EINVAL;
219 	if (len) {
220 		if (audit_sockaddr(klen, kaddr))
221 			return -ENOMEM;
222 		if (copy_to_user(uaddr, kaddr, len))
223 			return -EFAULT;
224 	}
225 	/*
226 	 *      "fromlen shall refer to the value before truncation.."
227 	 *                      1003.1g
228 	 */
229 	return __put_user(klen, ulen);
230 }
231 
232 #define SOCKFS_MAGIC 0x534F434B
233 
234 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 
236 static struct inode *sock_alloc_inode(struct super_block *sb)
237 {
238 	struct socket_alloc *ei;
239 
240 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
241 	if (!ei)
242 		return NULL;
243 	init_waitqueue_head(&ei->socket.wait);
244 
245 	ei->socket.fasync_list = NULL;
246 	ei->socket.state = SS_UNCONNECTED;
247 	ei->socket.flags = 0;
248 	ei->socket.ops = NULL;
249 	ei->socket.sk = NULL;
250 	ei->socket.file = NULL;
251 
252 	return &ei->vfs_inode;
253 }
254 
255 static void sock_destroy_inode(struct inode *inode)
256 {
257 	kmem_cache_free(sock_inode_cachep,
258 			container_of(inode, struct socket_alloc, vfs_inode));
259 }
260 
261 static void init_once(struct kmem_cache *cachep, void *foo)
262 {
263 	struct socket_alloc *ei = (struct socket_alloc *)foo;
264 
265 	inode_init_once(&ei->vfs_inode);
266 }
267 
268 static int init_inodecache(void)
269 {
270 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
271 					      sizeof(struct socket_alloc),
272 					      0,
273 					      (SLAB_HWCACHE_ALIGN |
274 					       SLAB_RECLAIM_ACCOUNT |
275 					       SLAB_MEM_SPREAD),
276 					      init_once);
277 	if (sock_inode_cachep == NULL)
278 		return -ENOMEM;
279 	return 0;
280 }
281 
282 static struct super_operations sockfs_ops = {
283 	.alloc_inode =	sock_alloc_inode,
284 	.destroy_inode =sock_destroy_inode,
285 	.statfs =	simple_statfs,
286 };
287 
288 static int sockfs_get_sb(struct file_system_type *fs_type,
289 			 int flags, const char *dev_name, void *data,
290 			 struct vfsmount *mnt)
291 {
292 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
293 			     mnt);
294 }
295 
296 static struct vfsmount *sock_mnt __read_mostly;
297 
298 static struct file_system_type sock_fs_type = {
299 	.name =		"sockfs",
300 	.get_sb =	sockfs_get_sb,
301 	.kill_sb =	kill_anon_super,
302 };
303 
304 static int sockfs_delete_dentry(struct dentry *dentry)
305 {
306 	/*
307 	 * At creation time, we pretended this dentry was hashed
308 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
309 	 * At delete time, we restore the truth : not hashed.
310 	 * (so that dput() can proceed correctly)
311 	 */
312 	dentry->d_flags |= DCACHE_UNHASHED;
313 	return 0;
314 }
315 
316 /*
317  * sockfs_dname() is called from d_path().
318  */
319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320 {
321 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 				dentry->d_inode->i_ino);
323 }
324 
325 static struct dentry_operations sockfs_dentry_operations = {
326 	.d_delete = sockfs_delete_dentry,
327 	.d_dname  = sockfs_dname,
328 };
329 
330 /*
331  *	Obtains the first available file descriptor and sets it up for use.
332  *
333  *	These functions create file structures and maps them to fd space
334  *	of the current process. On success it returns file descriptor
335  *	and file struct implicitly stored in sock->file.
336  *	Note that another thread may close file descriptor before we return
337  *	from this function. We use the fact that now we do not refer
338  *	to socket after mapping. If one day we will need it, this
339  *	function will increment ref. count on file by 1.
340  *
341  *	In any case returned fd MAY BE not valid!
342  *	This race condition is unavoidable
343  *	with shared fd spaces, we cannot solve it inside kernel,
344  *	but we take care of internal coherence yet.
345  */
346 
347 static int sock_alloc_fd(struct file **filep)
348 {
349 	int fd;
350 
351 	fd = get_unused_fd();
352 	if (likely(fd >= 0)) {
353 		struct file *file = get_empty_filp();
354 
355 		*filep = file;
356 		if (unlikely(!file)) {
357 			put_unused_fd(fd);
358 			return -ENFILE;
359 		}
360 	} else
361 		*filep = NULL;
362 	return fd;
363 }
364 
365 static int sock_attach_fd(struct socket *sock, struct file *file)
366 {
367 	struct dentry *dentry;
368 	struct qstr name = { .name = "" };
369 
370 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
371 	if (unlikely(!dentry))
372 		return -ENOMEM;
373 
374 	dentry->d_op = &sockfs_dentry_operations;
375 	/*
376 	 * We dont want to push this dentry into global dentry hash table.
377 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
378 	 * This permits a working /proc/$pid/fd/XXX on sockets
379 	 */
380 	dentry->d_flags &= ~DCACHE_UNHASHED;
381 	d_instantiate(dentry, SOCK_INODE(sock));
382 
383 	sock->file = file;
384 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
385 		  &socket_file_ops);
386 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
387 	file->f_flags = O_RDWR;
388 	file->f_pos = 0;
389 	file->private_data = sock;
390 
391 	return 0;
392 }
393 
394 int sock_map_fd(struct socket *sock)
395 {
396 	struct file *newfile;
397 	int fd = sock_alloc_fd(&newfile);
398 
399 	if (likely(fd >= 0)) {
400 		int err = sock_attach_fd(sock, newfile);
401 
402 		if (unlikely(err < 0)) {
403 			put_filp(newfile);
404 			put_unused_fd(fd);
405 			return err;
406 		}
407 		fd_install(fd, newfile);
408 	}
409 	return fd;
410 }
411 
412 static struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 
421 /**
422  *	sockfd_lookup	- 	Go from a file number to its socket slot
423  *	@fd: file handle
424  *	@err: pointer to an error code return
425  *
426  *	The file handle passed in is locked and the socket it is bound
427  *	too is returned. If an error occurs the err pointer is overwritten
428  *	with a negative errno code and NULL is returned. The function checks
429  *	for both invalid handles and passing a handle which is not a socket.
430  *
431  *	On a success the socket object pointer is returned.
432  */
433 
434 struct socket *sockfd_lookup(int fd, int *err)
435 {
436 	struct file *file;
437 	struct socket *sock;
438 
439 	file = fget(fd);
440 	if (!file) {
441 		*err = -EBADF;
442 		return NULL;
443 	}
444 
445 	sock = sock_from_file(file, err);
446 	if (!sock)
447 		fput(file);
448 	return sock;
449 }
450 
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 	struct file *file;
454 	struct socket *sock;
455 
456 	*err = -EBADF;
457 	file = fget_light(fd, fput_needed);
458 	if (file) {
459 		sock = sock_from_file(file, err);
460 		if (sock)
461 			return sock;
462 		fput_light(file, *fput_needed);
463 	}
464 	return NULL;
465 }
466 
467 /**
468  *	sock_alloc	-	allocate a socket
469  *
470  *	Allocate a new inode and socket object. The two are bound together
471  *	and initialised. The socket is then returned. If we are out of inodes
472  *	NULL is returned.
473  */
474 
475 static struct socket *sock_alloc(void)
476 {
477 	struct inode *inode;
478 	struct socket *sock;
479 
480 	inode = new_inode(sock_mnt->mnt_sb);
481 	if (!inode)
482 		return NULL;
483 
484 	sock = SOCKET_I(inode);
485 
486 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
487 	inode->i_uid = current->fsuid;
488 	inode->i_gid = current->fsgid;
489 
490 	get_cpu_var(sockets_in_use)++;
491 	put_cpu_var(sockets_in_use);
492 	return sock;
493 }
494 
495 /*
496  *	In theory you can't get an open on this inode, but /proc provides
497  *	a back door. Remember to keep it shut otherwise you'll let the
498  *	creepy crawlies in.
499  */
500 
501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 {
503 	return -ENXIO;
504 }
505 
506 const struct file_operations bad_sock_fops = {
507 	.owner = THIS_MODULE,
508 	.open = sock_no_open,
509 };
510 
511 /**
512  *	sock_release	-	close a socket
513  *	@sock: socket to close
514  *
515  *	The socket is released from the protocol stack if it has a release
516  *	callback, and the inode is then released if the socket is bound to
517  *	an inode not a file.
518  */
519 
520 void sock_release(struct socket *sock)
521 {
522 	if (sock->ops) {
523 		struct module *owner = sock->ops->owner;
524 
525 		sock->ops->release(sock);
526 		sock->ops = NULL;
527 		module_put(owner);
528 	}
529 
530 	if (sock->fasync_list)
531 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
532 
533 	get_cpu_var(sockets_in_use)--;
534 	put_cpu_var(sockets_in_use);
535 	if (!sock->file) {
536 		iput(SOCK_INODE(sock));
537 		return;
538 	}
539 	sock->file = NULL;
540 }
541 
542 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
543 				 struct msghdr *msg, size_t size)
544 {
545 	struct sock_iocb *si = kiocb_to_siocb(iocb);
546 	int err;
547 
548 	si->sock = sock;
549 	si->scm = NULL;
550 	si->msg = msg;
551 	si->size = size;
552 
553 	err = security_socket_sendmsg(sock, msg, size);
554 	if (err)
555 		return err;
556 
557 	return sock->ops->sendmsg(iocb, sock, msg, size);
558 }
559 
560 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
561 {
562 	struct kiocb iocb;
563 	struct sock_iocb siocb;
564 	int ret;
565 
566 	init_sync_kiocb(&iocb, NULL);
567 	iocb.private = &siocb;
568 	ret = __sock_sendmsg(&iocb, sock, msg, size);
569 	if (-EIOCBQUEUED == ret)
570 		ret = wait_on_sync_kiocb(&iocb);
571 	return ret;
572 }
573 
574 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
575 		   struct kvec *vec, size_t num, size_t size)
576 {
577 	mm_segment_t oldfs = get_fs();
578 	int result;
579 
580 	set_fs(KERNEL_DS);
581 	/*
582 	 * the following is safe, since for compiler definitions of kvec and
583 	 * iovec are identical, yielding the same in-core layout and alignment
584 	 */
585 	msg->msg_iov = (struct iovec *)vec;
586 	msg->msg_iovlen = num;
587 	result = sock_sendmsg(sock, msg, size);
588 	set_fs(oldfs);
589 	return result;
590 }
591 
592 /*
593  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
594  */
595 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
596 	struct sk_buff *skb)
597 {
598 	ktime_t kt = skb->tstamp;
599 
600 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
601 		struct timeval tv;
602 		/* Race occurred between timestamp enabling and packet
603 		   receiving.  Fill in the current time for now. */
604 		if (kt.tv64 == 0)
605 			kt = ktime_get_real();
606 		skb->tstamp = kt;
607 		tv = ktime_to_timeval(kt);
608 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
609 	} else {
610 		struct timespec ts;
611 		/* Race occurred between timestamp enabling and packet
612 		   receiving.  Fill in the current time for now. */
613 		if (kt.tv64 == 0)
614 			kt = ktime_get_real();
615 		skb->tstamp = kt;
616 		ts = ktime_to_timespec(kt);
617 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
618 	}
619 }
620 
621 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
622 
623 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
624 				 struct msghdr *msg, size_t size, int flags)
625 {
626 	int err;
627 	struct sock_iocb *si = kiocb_to_siocb(iocb);
628 
629 	si->sock = sock;
630 	si->scm = NULL;
631 	si->msg = msg;
632 	si->size = size;
633 	si->flags = flags;
634 
635 	err = security_socket_recvmsg(sock, msg, size, flags);
636 	if (err)
637 		return err;
638 
639 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
640 }
641 
642 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
643 		 size_t size, int flags)
644 {
645 	struct kiocb iocb;
646 	struct sock_iocb siocb;
647 	int ret;
648 
649 	init_sync_kiocb(&iocb, NULL);
650 	iocb.private = &siocb;
651 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
652 	if (-EIOCBQUEUED == ret)
653 		ret = wait_on_sync_kiocb(&iocb);
654 	return ret;
655 }
656 
657 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
658 		   struct kvec *vec, size_t num, size_t size, int flags)
659 {
660 	mm_segment_t oldfs = get_fs();
661 	int result;
662 
663 	set_fs(KERNEL_DS);
664 	/*
665 	 * the following is safe, since for compiler definitions of kvec and
666 	 * iovec are identical, yielding the same in-core layout and alignment
667 	 */
668 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
669 	result = sock_recvmsg(sock, msg, size, flags);
670 	set_fs(oldfs);
671 	return result;
672 }
673 
674 static void sock_aio_dtor(struct kiocb *iocb)
675 {
676 	kfree(iocb->private);
677 }
678 
679 static ssize_t sock_sendpage(struct file *file, struct page *page,
680 			     int offset, size_t size, loff_t *ppos, int more)
681 {
682 	struct socket *sock;
683 	int flags;
684 
685 	sock = file->private_data;
686 
687 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
688 	if (more)
689 		flags |= MSG_MORE;
690 
691 	return sock->ops->sendpage(sock, page, offset, size, flags);
692 }
693 
694 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
695 					 struct sock_iocb *siocb)
696 {
697 	if (!is_sync_kiocb(iocb)) {
698 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
699 		if (!siocb)
700 			return NULL;
701 		iocb->ki_dtor = sock_aio_dtor;
702 	}
703 
704 	siocb->kiocb = iocb;
705 	iocb->private = siocb;
706 	return siocb;
707 }
708 
709 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
710 		struct file *file, const struct iovec *iov,
711 		unsigned long nr_segs)
712 {
713 	struct socket *sock = file->private_data;
714 	size_t size = 0;
715 	int i;
716 
717 	for (i = 0; i < nr_segs; i++)
718 		size += iov[i].iov_len;
719 
720 	msg->msg_name = NULL;
721 	msg->msg_namelen = 0;
722 	msg->msg_control = NULL;
723 	msg->msg_controllen = 0;
724 	msg->msg_iov = (struct iovec *)iov;
725 	msg->msg_iovlen = nr_segs;
726 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
727 
728 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
729 }
730 
731 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
732 				unsigned long nr_segs, loff_t pos)
733 {
734 	struct sock_iocb siocb, *x;
735 
736 	if (pos != 0)
737 		return -ESPIPE;
738 
739 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
740 		return 0;
741 
742 
743 	x = alloc_sock_iocb(iocb, &siocb);
744 	if (!x)
745 		return -ENOMEM;
746 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
747 }
748 
749 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
750 			struct file *file, const struct iovec *iov,
751 			unsigned long nr_segs)
752 {
753 	struct socket *sock = file->private_data;
754 	size_t size = 0;
755 	int i;
756 
757 	for (i = 0; i < nr_segs; i++)
758 		size += iov[i].iov_len;
759 
760 	msg->msg_name = NULL;
761 	msg->msg_namelen = 0;
762 	msg->msg_control = NULL;
763 	msg->msg_controllen = 0;
764 	msg->msg_iov = (struct iovec *)iov;
765 	msg->msg_iovlen = nr_segs;
766 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 	if (sock->type == SOCK_SEQPACKET)
768 		msg->msg_flags |= MSG_EOR;
769 
770 	return __sock_sendmsg(iocb, sock, msg, size);
771 }
772 
773 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
774 			  unsigned long nr_segs, loff_t pos)
775 {
776 	struct sock_iocb siocb, *x;
777 
778 	if (pos != 0)
779 		return -ESPIPE;
780 
781 	x = alloc_sock_iocb(iocb, &siocb);
782 	if (!x)
783 		return -ENOMEM;
784 
785 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
786 }
787 
788 /*
789  * Atomic setting of ioctl hooks to avoid race
790  * with module unload.
791  */
792 
793 static DEFINE_MUTEX(br_ioctl_mutex);
794 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
795 
796 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
797 {
798 	mutex_lock(&br_ioctl_mutex);
799 	br_ioctl_hook = hook;
800 	mutex_unlock(&br_ioctl_mutex);
801 }
802 
803 EXPORT_SYMBOL(brioctl_set);
804 
805 static DEFINE_MUTEX(vlan_ioctl_mutex);
806 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
807 
808 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
809 {
810 	mutex_lock(&vlan_ioctl_mutex);
811 	vlan_ioctl_hook = hook;
812 	mutex_unlock(&vlan_ioctl_mutex);
813 }
814 
815 EXPORT_SYMBOL(vlan_ioctl_set);
816 
817 static DEFINE_MUTEX(dlci_ioctl_mutex);
818 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
819 
820 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
821 {
822 	mutex_lock(&dlci_ioctl_mutex);
823 	dlci_ioctl_hook = hook;
824 	mutex_unlock(&dlci_ioctl_mutex);
825 }
826 
827 EXPORT_SYMBOL(dlci_ioctl_set);
828 
829 /*
830  *	With an ioctl, arg may well be a user mode pointer, but we don't know
831  *	what to do with it - that's up to the protocol still.
832  */
833 
834 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
835 {
836 	struct socket *sock;
837 	struct sock *sk;
838 	void __user *argp = (void __user *)arg;
839 	int pid, err;
840 	struct net *net;
841 
842 	sock = file->private_data;
843 	sk = sock->sk;
844 	net = sk->sk_net;
845 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
846 		err = dev_ioctl(net, cmd, argp);
847 	} else
848 #ifdef CONFIG_WIRELESS_EXT
849 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
850 		err = dev_ioctl(net, cmd, argp);
851 	} else
852 #endif				/* CONFIG_WIRELESS_EXT */
853 		switch (cmd) {
854 		case FIOSETOWN:
855 		case SIOCSPGRP:
856 			err = -EFAULT;
857 			if (get_user(pid, (int __user *)argp))
858 				break;
859 			err = f_setown(sock->file, pid, 1);
860 			break;
861 		case FIOGETOWN:
862 		case SIOCGPGRP:
863 			err = put_user(f_getown(sock->file),
864 				       (int __user *)argp);
865 			break;
866 		case SIOCGIFBR:
867 		case SIOCSIFBR:
868 		case SIOCBRADDBR:
869 		case SIOCBRDELBR:
870 			err = -ENOPKG;
871 			if (!br_ioctl_hook)
872 				request_module("bridge");
873 
874 			mutex_lock(&br_ioctl_mutex);
875 			if (br_ioctl_hook)
876 				err = br_ioctl_hook(net, cmd, argp);
877 			mutex_unlock(&br_ioctl_mutex);
878 			break;
879 		case SIOCGIFVLAN:
880 		case SIOCSIFVLAN:
881 			err = -ENOPKG;
882 			if (!vlan_ioctl_hook)
883 				request_module("8021q");
884 
885 			mutex_lock(&vlan_ioctl_mutex);
886 			if (vlan_ioctl_hook)
887 				err = vlan_ioctl_hook(net, argp);
888 			mutex_unlock(&vlan_ioctl_mutex);
889 			break;
890 		case SIOCADDDLCI:
891 		case SIOCDELDLCI:
892 			err = -ENOPKG;
893 			if (!dlci_ioctl_hook)
894 				request_module("dlci");
895 
896 			if (dlci_ioctl_hook) {
897 				mutex_lock(&dlci_ioctl_mutex);
898 				err = dlci_ioctl_hook(cmd, argp);
899 				mutex_unlock(&dlci_ioctl_mutex);
900 			}
901 			break;
902 		default:
903 			err = sock->ops->ioctl(sock, cmd, arg);
904 
905 			/*
906 			 * If this ioctl is unknown try to hand it down
907 			 * to the NIC driver.
908 			 */
909 			if (err == -ENOIOCTLCMD)
910 				err = dev_ioctl(net, cmd, argp);
911 			break;
912 		}
913 	return err;
914 }
915 
916 int sock_create_lite(int family, int type, int protocol, struct socket **res)
917 {
918 	int err;
919 	struct socket *sock = NULL;
920 
921 	err = security_socket_create(family, type, protocol, 1);
922 	if (err)
923 		goto out;
924 
925 	sock = sock_alloc();
926 	if (!sock) {
927 		err = -ENOMEM;
928 		goto out;
929 	}
930 
931 	sock->type = type;
932 	err = security_socket_post_create(sock, family, type, protocol, 1);
933 	if (err)
934 		goto out_release;
935 
936 out:
937 	*res = sock;
938 	return err;
939 out_release:
940 	sock_release(sock);
941 	sock = NULL;
942 	goto out;
943 }
944 
945 /* No kernel lock held - perfect */
946 static unsigned int sock_poll(struct file *file, poll_table *wait)
947 {
948 	struct socket *sock;
949 
950 	/*
951 	 *      We can't return errors to poll, so it's either yes or no.
952 	 */
953 	sock = file->private_data;
954 	return sock->ops->poll(file, sock, wait);
955 }
956 
957 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
958 {
959 	struct socket *sock = file->private_data;
960 
961 	return sock->ops->mmap(file, sock, vma);
962 }
963 
964 static int sock_close(struct inode *inode, struct file *filp)
965 {
966 	/*
967 	 *      It was possible the inode is NULL we were
968 	 *      closing an unfinished socket.
969 	 */
970 
971 	if (!inode) {
972 		printk(KERN_DEBUG "sock_close: NULL inode\n");
973 		return 0;
974 	}
975 	sock_fasync(-1, filp, 0);
976 	sock_release(SOCKET_I(inode));
977 	return 0;
978 }
979 
980 /*
981  *	Update the socket async list
982  *
983  *	Fasync_list locking strategy.
984  *
985  *	1. fasync_list is modified only under process context socket lock
986  *	   i.e. under semaphore.
987  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
988  *	   or under socket lock.
989  *	3. fasync_list can be used from softirq context, so that
990  *	   modification under socket lock have to be enhanced with
991  *	   write_lock_bh(&sk->sk_callback_lock).
992  *							--ANK (990710)
993  */
994 
995 static int sock_fasync(int fd, struct file *filp, int on)
996 {
997 	struct fasync_struct *fa, *fna = NULL, **prev;
998 	struct socket *sock;
999 	struct sock *sk;
1000 
1001 	if (on) {
1002 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1003 		if (fna == NULL)
1004 			return -ENOMEM;
1005 	}
1006 
1007 	sock = filp->private_data;
1008 
1009 	sk = sock->sk;
1010 	if (sk == NULL) {
1011 		kfree(fna);
1012 		return -EINVAL;
1013 	}
1014 
1015 	lock_sock(sk);
1016 
1017 	prev = &(sock->fasync_list);
1018 
1019 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1020 		if (fa->fa_file == filp)
1021 			break;
1022 
1023 	if (on) {
1024 		if (fa != NULL) {
1025 			write_lock_bh(&sk->sk_callback_lock);
1026 			fa->fa_fd = fd;
1027 			write_unlock_bh(&sk->sk_callback_lock);
1028 
1029 			kfree(fna);
1030 			goto out;
1031 		}
1032 		fna->fa_file = filp;
1033 		fna->fa_fd = fd;
1034 		fna->magic = FASYNC_MAGIC;
1035 		fna->fa_next = sock->fasync_list;
1036 		write_lock_bh(&sk->sk_callback_lock);
1037 		sock->fasync_list = fna;
1038 		write_unlock_bh(&sk->sk_callback_lock);
1039 	} else {
1040 		if (fa != NULL) {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			*prev = fa->fa_next;
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 			kfree(fa);
1045 		}
1046 	}
1047 
1048 out:
1049 	release_sock(sock->sk);
1050 	return 0;
1051 }
1052 
1053 /* This function may be called only under socket lock or callback_lock */
1054 
1055 int sock_wake_async(struct socket *sock, int how, int band)
1056 {
1057 	if (!sock || !sock->fasync_list)
1058 		return -1;
1059 	switch (how) {
1060 	case 1:
1061 
1062 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1063 			break;
1064 		goto call_kill;
1065 	case 2:
1066 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1067 			break;
1068 		/* fall through */
1069 	case 0:
1070 call_kill:
1071 		__kill_fasync(sock->fasync_list, SIGIO, band);
1072 		break;
1073 	case 3:
1074 		__kill_fasync(sock->fasync_list, SIGURG, band);
1075 	}
1076 	return 0;
1077 }
1078 
1079 static int __sock_create(struct net *net, int family, int type, int protocol,
1080 			 struct socket **res, int kern)
1081 {
1082 	int err;
1083 	struct socket *sock;
1084 	const struct net_proto_family *pf;
1085 
1086 	/*
1087 	 *      Check protocol is in range
1088 	 */
1089 	if (family < 0 || family >= NPROTO)
1090 		return -EAFNOSUPPORT;
1091 	if (type < 0 || type >= SOCK_MAX)
1092 		return -EINVAL;
1093 
1094 	/* Compatibility.
1095 
1096 	   This uglymoron is moved from INET layer to here to avoid
1097 	   deadlock in module load.
1098 	 */
1099 	if (family == PF_INET && type == SOCK_PACKET) {
1100 		static int warned;
1101 		if (!warned) {
1102 			warned = 1;
1103 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1104 			       current->comm);
1105 		}
1106 		family = PF_PACKET;
1107 	}
1108 
1109 	err = security_socket_create(family, type, protocol, kern);
1110 	if (err)
1111 		return err;
1112 
1113 	/*
1114 	 *	Allocate the socket and allow the family to set things up. if
1115 	 *	the protocol is 0, the family is instructed to select an appropriate
1116 	 *	default.
1117 	 */
1118 	sock = sock_alloc();
1119 	if (!sock) {
1120 		if (net_ratelimit())
1121 			printk(KERN_WARNING "socket: no more sockets\n");
1122 		return -ENFILE;	/* Not exactly a match, but its the
1123 				   closest posix thing */
1124 	}
1125 
1126 	sock->type = type;
1127 
1128 #if defined(CONFIG_KMOD)
1129 	/* Attempt to load a protocol module if the find failed.
1130 	 *
1131 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1132 	 * requested real, full-featured networking support upon configuration.
1133 	 * Otherwise module support will break!
1134 	 */
1135 	if (net_families[family] == NULL)
1136 		request_module("net-pf-%d", family);
1137 #endif
1138 
1139 	rcu_read_lock();
1140 	pf = rcu_dereference(net_families[family]);
1141 	err = -EAFNOSUPPORT;
1142 	if (!pf)
1143 		goto out_release;
1144 
1145 	/*
1146 	 * We will call the ->create function, that possibly is in a loadable
1147 	 * module, so we have to bump that loadable module refcnt first.
1148 	 */
1149 	if (!try_module_get(pf->owner))
1150 		goto out_release;
1151 
1152 	/* Now protected by module ref count */
1153 	rcu_read_unlock();
1154 
1155 	err = pf->create(net, sock, protocol);
1156 	if (err < 0)
1157 		goto out_module_put;
1158 
1159 	/*
1160 	 * Now to bump the refcnt of the [loadable] module that owns this
1161 	 * socket at sock_release time we decrement its refcnt.
1162 	 */
1163 	if (!try_module_get(sock->ops->owner))
1164 		goto out_module_busy;
1165 
1166 	/*
1167 	 * Now that we're done with the ->create function, the [loadable]
1168 	 * module can have its refcnt decremented
1169 	 */
1170 	module_put(pf->owner);
1171 	err = security_socket_post_create(sock, family, type, protocol, kern);
1172 	if (err)
1173 		goto out_sock_release;
1174 	*res = sock;
1175 
1176 	return 0;
1177 
1178 out_module_busy:
1179 	err = -EAFNOSUPPORT;
1180 out_module_put:
1181 	sock->ops = NULL;
1182 	module_put(pf->owner);
1183 out_sock_release:
1184 	sock_release(sock);
1185 	return err;
1186 
1187 out_release:
1188 	rcu_read_unlock();
1189 	goto out_sock_release;
1190 }
1191 
1192 int sock_create(int family, int type, int protocol, struct socket **res)
1193 {
1194 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1195 }
1196 
1197 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1198 {
1199 	return __sock_create(&init_net, family, type, protocol, res, 1);
1200 }
1201 
1202 asmlinkage long sys_socket(int family, int type, int protocol)
1203 {
1204 	int retval;
1205 	struct socket *sock;
1206 
1207 	retval = sock_create(family, type, protocol, &sock);
1208 	if (retval < 0)
1209 		goto out;
1210 
1211 	retval = sock_map_fd(sock);
1212 	if (retval < 0)
1213 		goto out_release;
1214 
1215 out:
1216 	/* It may be already another descriptor 8) Not kernel problem. */
1217 	return retval;
1218 
1219 out_release:
1220 	sock_release(sock);
1221 	return retval;
1222 }
1223 
1224 /*
1225  *	Create a pair of connected sockets.
1226  */
1227 
1228 asmlinkage long sys_socketpair(int family, int type, int protocol,
1229 			       int __user *usockvec)
1230 {
1231 	struct socket *sock1, *sock2;
1232 	int fd1, fd2, err;
1233 	struct file *newfile1, *newfile2;
1234 
1235 	/*
1236 	 * Obtain the first socket and check if the underlying protocol
1237 	 * supports the socketpair call.
1238 	 */
1239 
1240 	err = sock_create(family, type, protocol, &sock1);
1241 	if (err < 0)
1242 		goto out;
1243 
1244 	err = sock_create(family, type, protocol, &sock2);
1245 	if (err < 0)
1246 		goto out_release_1;
1247 
1248 	err = sock1->ops->socketpair(sock1, sock2);
1249 	if (err < 0)
1250 		goto out_release_both;
1251 
1252 	fd1 = sock_alloc_fd(&newfile1);
1253 	if (unlikely(fd1 < 0)) {
1254 		err = fd1;
1255 		goto out_release_both;
1256 	}
1257 
1258 	fd2 = sock_alloc_fd(&newfile2);
1259 	if (unlikely(fd2 < 0)) {
1260 		err = fd2;
1261 		put_filp(newfile1);
1262 		put_unused_fd(fd1);
1263 		goto out_release_both;
1264 	}
1265 
1266 	err = sock_attach_fd(sock1, newfile1);
1267 	if (unlikely(err < 0)) {
1268 		goto out_fd2;
1269 	}
1270 
1271 	err = sock_attach_fd(sock2, newfile2);
1272 	if (unlikely(err < 0)) {
1273 		fput(newfile1);
1274 		goto out_fd1;
1275 	}
1276 
1277 	err = audit_fd_pair(fd1, fd2);
1278 	if (err < 0) {
1279 		fput(newfile1);
1280 		fput(newfile2);
1281 		goto out_fd;
1282 	}
1283 
1284 	fd_install(fd1, newfile1);
1285 	fd_install(fd2, newfile2);
1286 	/* fd1 and fd2 may be already another descriptors.
1287 	 * Not kernel problem.
1288 	 */
1289 
1290 	err = put_user(fd1, &usockvec[0]);
1291 	if (!err)
1292 		err = put_user(fd2, &usockvec[1]);
1293 	if (!err)
1294 		return 0;
1295 
1296 	sys_close(fd2);
1297 	sys_close(fd1);
1298 	return err;
1299 
1300 out_release_both:
1301 	sock_release(sock2);
1302 out_release_1:
1303 	sock_release(sock1);
1304 out:
1305 	return err;
1306 
1307 out_fd2:
1308 	put_filp(newfile1);
1309 	sock_release(sock1);
1310 out_fd1:
1311 	put_filp(newfile2);
1312 	sock_release(sock2);
1313 out_fd:
1314 	put_unused_fd(fd1);
1315 	put_unused_fd(fd2);
1316 	goto out;
1317 }
1318 
1319 /*
1320  *	Bind a name to a socket. Nothing much to do here since it's
1321  *	the protocol's responsibility to handle the local address.
1322  *
1323  *	We move the socket address to kernel space before we call
1324  *	the protocol layer (having also checked the address is ok).
1325  */
1326 
1327 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1328 {
1329 	struct socket *sock;
1330 	char address[MAX_SOCK_ADDR];
1331 	int err, fput_needed;
1332 
1333 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1334 	if (sock) {
1335 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1336 		if (err >= 0) {
1337 			err = security_socket_bind(sock,
1338 						   (struct sockaddr *)address,
1339 						   addrlen);
1340 			if (!err)
1341 				err = sock->ops->bind(sock,
1342 						      (struct sockaddr *)
1343 						      address, addrlen);
1344 		}
1345 		fput_light(sock->file, fput_needed);
1346 	}
1347 	return err;
1348 }
1349 
1350 /*
1351  *	Perform a listen. Basically, we allow the protocol to do anything
1352  *	necessary for a listen, and if that works, we mark the socket as
1353  *	ready for listening.
1354  */
1355 
1356 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1357 
1358 asmlinkage long sys_listen(int fd, int backlog)
1359 {
1360 	struct socket *sock;
1361 	int err, fput_needed;
1362 
1363 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1364 	if (sock) {
1365 		if ((unsigned)backlog > sysctl_somaxconn)
1366 			backlog = sysctl_somaxconn;
1367 
1368 		err = security_socket_listen(sock, backlog);
1369 		if (!err)
1370 			err = sock->ops->listen(sock, backlog);
1371 
1372 		fput_light(sock->file, fput_needed);
1373 	}
1374 	return err;
1375 }
1376 
1377 /*
1378  *	For accept, we attempt to create a new socket, set up the link
1379  *	with the client, wake up the client, then return the new
1380  *	connected fd. We collect the address of the connector in kernel
1381  *	space and move it to user at the very end. This is unclean because
1382  *	we open the socket then return an error.
1383  *
1384  *	1003.1g adds the ability to recvmsg() to query connection pending
1385  *	status to recvmsg. We need to add that support in a way thats
1386  *	clean when we restucture accept also.
1387  */
1388 
1389 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1390 			   int __user *upeer_addrlen)
1391 {
1392 	struct socket *sock, *newsock;
1393 	struct file *newfile;
1394 	int err, len, newfd, fput_needed;
1395 	char address[MAX_SOCK_ADDR];
1396 
1397 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 	if (!sock)
1399 		goto out;
1400 
1401 	err = -ENFILE;
1402 	if (!(newsock = sock_alloc()))
1403 		goto out_put;
1404 
1405 	newsock->type = sock->type;
1406 	newsock->ops = sock->ops;
1407 
1408 	/*
1409 	 * We don't need try_module_get here, as the listening socket (sock)
1410 	 * has the protocol module (sock->ops->owner) held.
1411 	 */
1412 	__module_get(newsock->ops->owner);
1413 
1414 	newfd = sock_alloc_fd(&newfile);
1415 	if (unlikely(newfd < 0)) {
1416 		err = newfd;
1417 		sock_release(newsock);
1418 		goto out_put;
1419 	}
1420 
1421 	err = sock_attach_fd(newsock, newfile);
1422 	if (err < 0)
1423 		goto out_fd_simple;
1424 
1425 	err = security_socket_accept(sock, newsock);
1426 	if (err)
1427 		goto out_fd;
1428 
1429 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1430 	if (err < 0)
1431 		goto out_fd;
1432 
1433 	if (upeer_sockaddr) {
1434 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1435 					  &len, 2) < 0) {
1436 			err = -ECONNABORTED;
1437 			goto out_fd;
1438 		}
1439 		err = move_addr_to_user(address, len, upeer_sockaddr,
1440 					upeer_addrlen);
1441 		if (err < 0)
1442 			goto out_fd;
1443 	}
1444 
1445 	/* File flags are not inherited via accept() unlike another OSes. */
1446 
1447 	fd_install(newfd, newfile);
1448 	err = newfd;
1449 
1450 	security_socket_post_accept(sock, newsock);
1451 
1452 out_put:
1453 	fput_light(sock->file, fput_needed);
1454 out:
1455 	return err;
1456 out_fd_simple:
1457 	sock_release(newsock);
1458 	put_filp(newfile);
1459 	put_unused_fd(newfd);
1460 	goto out_put;
1461 out_fd:
1462 	fput(newfile);
1463 	put_unused_fd(newfd);
1464 	goto out_put;
1465 }
1466 
1467 /*
1468  *	Attempt to connect to a socket with the server address.  The address
1469  *	is in user space so we verify it is OK and move it to kernel space.
1470  *
1471  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1472  *	break bindings
1473  *
1474  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1475  *	other SEQPACKET protocols that take time to connect() as it doesn't
1476  *	include the -EINPROGRESS status for such sockets.
1477  */
1478 
1479 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1480 			    int addrlen)
1481 {
1482 	struct socket *sock;
1483 	char address[MAX_SOCK_ADDR];
1484 	int err, fput_needed;
1485 
1486 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1487 	if (!sock)
1488 		goto out;
1489 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1490 	if (err < 0)
1491 		goto out_put;
1492 
1493 	err =
1494 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1495 	if (err)
1496 		goto out_put;
1497 
1498 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1499 				 sock->file->f_flags);
1500 out_put:
1501 	fput_light(sock->file, fput_needed);
1502 out:
1503 	return err;
1504 }
1505 
1506 /*
1507  *	Get the local address ('name') of a socket object. Move the obtained
1508  *	name to user space.
1509  */
1510 
1511 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1512 				int __user *usockaddr_len)
1513 {
1514 	struct socket *sock;
1515 	char address[MAX_SOCK_ADDR];
1516 	int len, err, fput_needed;
1517 
1518 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519 	if (!sock)
1520 		goto out;
1521 
1522 	err = security_socket_getsockname(sock);
1523 	if (err)
1524 		goto out_put;
1525 
1526 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1527 	if (err)
1528 		goto out_put;
1529 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1530 
1531 out_put:
1532 	fput_light(sock->file, fput_needed);
1533 out:
1534 	return err;
1535 }
1536 
1537 /*
1538  *	Get the remote address ('name') of a socket object. Move the obtained
1539  *	name to user space.
1540  */
1541 
1542 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1543 				int __user *usockaddr_len)
1544 {
1545 	struct socket *sock;
1546 	char address[MAX_SOCK_ADDR];
1547 	int len, err, fput_needed;
1548 
1549 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 	if (sock != NULL) {
1551 		err = security_socket_getpeername(sock);
1552 		if (err) {
1553 			fput_light(sock->file, fput_needed);
1554 			return err;
1555 		}
1556 
1557 		err =
1558 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1559 				       1);
1560 		if (!err)
1561 			err = move_addr_to_user(address, len, usockaddr,
1562 						usockaddr_len);
1563 		fput_light(sock->file, fput_needed);
1564 	}
1565 	return err;
1566 }
1567 
1568 /*
1569  *	Send a datagram to a given address. We move the address into kernel
1570  *	space and check the user space data area is readable before invoking
1571  *	the protocol.
1572  */
1573 
1574 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1575 			   unsigned flags, struct sockaddr __user *addr,
1576 			   int addr_len)
1577 {
1578 	struct socket *sock;
1579 	char address[MAX_SOCK_ADDR];
1580 	int err;
1581 	struct msghdr msg;
1582 	struct iovec iov;
1583 	int fput_needed;
1584 	struct file *sock_file;
1585 
1586 	sock_file = fget_light(fd, &fput_needed);
1587 	err = -EBADF;
1588 	if (!sock_file)
1589 		goto out;
1590 
1591 	sock = sock_from_file(sock_file, &err);
1592 	if (!sock)
1593 		goto out_put;
1594 	iov.iov_base = buff;
1595 	iov.iov_len = len;
1596 	msg.msg_name = NULL;
1597 	msg.msg_iov = &iov;
1598 	msg.msg_iovlen = 1;
1599 	msg.msg_control = NULL;
1600 	msg.msg_controllen = 0;
1601 	msg.msg_namelen = 0;
1602 	if (addr) {
1603 		err = move_addr_to_kernel(addr, addr_len, address);
1604 		if (err < 0)
1605 			goto out_put;
1606 		msg.msg_name = address;
1607 		msg.msg_namelen = addr_len;
1608 	}
1609 	if (sock->file->f_flags & O_NONBLOCK)
1610 		flags |= MSG_DONTWAIT;
1611 	msg.msg_flags = flags;
1612 	err = sock_sendmsg(sock, &msg, len);
1613 
1614 out_put:
1615 	fput_light(sock_file, fput_needed);
1616 out:
1617 	return err;
1618 }
1619 
1620 /*
1621  *	Send a datagram down a socket.
1622  */
1623 
1624 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1625 {
1626 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1627 }
1628 
1629 /*
1630  *	Receive a frame from the socket and optionally record the address of the
1631  *	sender. We verify the buffers are writable and if needed move the
1632  *	sender address from kernel to user space.
1633  */
1634 
1635 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1636 			     unsigned flags, struct sockaddr __user *addr,
1637 			     int __user *addr_len)
1638 {
1639 	struct socket *sock;
1640 	struct iovec iov;
1641 	struct msghdr msg;
1642 	char address[MAX_SOCK_ADDR];
1643 	int err, err2;
1644 	struct file *sock_file;
1645 	int fput_needed;
1646 
1647 	sock_file = fget_light(fd, &fput_needed);
1648 	err = -EBADF;
1649 	if (!sock_file)
1650 		goto out;
1651 
1652 	sock = sock_from_file(sock_file, &err);
1653 	if (!sock)
1654 		goto out_put;
1655 
1656 	msg.msg_control = NULL;
1657 	msg.msg_controllen = 0;
1658 	msg.msg_iovlen = 1;
1659 	msg.msg_iov = &iov;
1660 	iov.iov_len = size;
1661 	iov.iov_base = ubuf;
1662 	msg.msg_name = address;
1663 	msg.msg_namelen = MAX_SOCK_ADDR;
1664 	if (sock->file->f_flags & O_NONBLOCK)
1665 		flags |= MSG_DONTWAIT;
1666 	err = sock_recvmsg(sock, &msg, size, flags);
1667 
1668 	if (err >= 0 && addr != NULL) {
1669 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1670 		if (err2 < 0)
1671 			err = err2;
1672 	}
1673 out_put:
1674 	fput_light(sock_file, fput_needed);
1675 out:
1676 	return err;
1677 }
1678 
1679 /*
1680  *	Receive a datagram from a socket.
1681  */
1682 
1683 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1684 			 unsigned flags)
1685 {
1686 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1687 }
1688 
1689 /*
1690  *	Set a socket option. Because we don't know the option lengths we have
1691  *	to pass the user mode parameter for the protocols to sort out.
1692  */
1693 
1694 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1695 			       char __user *optval, int optlen)
1696 {
1697 	int err, fput_needed;
1698 	struct socket *sock;
1699 
1700 	if (optlen < 0)
1701 		return -EINVAL;
1702 
1703 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1704 	if (sock != NULL) {
1705 		err = security_socket_setsockopt(sock, level, optname);
1706 		if (err)
1707 			goto out_put;
1708 
1709 		if (level == SOL_SOCKET)
1710 			err =
1711 			    sock_setsockopt(sock, level, optname, optval,
1712 					    optlen);
1713 		else
1714 			err =
1715 			    sock->ops->setsockopt(sock, level, optname, optval,
1716 						  optlen);
1717 out_put:
1718 		fput_light(sock->file, fput_needed);
1719 	}
1720 	return err;
1721 }
1722 
1723 /*
1724  *	Get a socket option. Because we don't know the option lengths we have
1725  *	to pass a user mode parameter for the protocols to sort out.
1726  */
1727 
1728 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1729 			       char __user *optval, int __user *optlen)
1730 {
1731 	int err, fput_needed;
1732 	struct socket *sock;
1733 
1734 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 	if (sock != NULL) {
1736 		err = security_socket_getsockopt(sock, level, optname);
1737 		if (err)
1738 			goto out_put;
1739 
1740 		if (level == SOL_SOCKET)
1741 			err =
1742 			    sock_getsockopt(sock, level, optname, optval,
1743 					    optlen);
1744 		else
1745 			err =
1746 			    sock->ops->getsockopt(sock, level, optname, optval,
1747 						  optlen);
1748 out_put:
1749 		fput_light(sock->file, fput_needed);
1750 	}
1751 	return err;
1752 }
1753 
1754 /*
1755  *	Shutdown a socket.
1756  */
1757 
1758 asmlinkage long sys_shutdown(int fd, int how)
1759 {
1760 	int err, fput_needed;
1761 	struct socket *sock;
1762 
1763 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764 	if (sock != NULL) {
1765 		err = security_socket_shutdown(sock, how);
1766 		if (!err)
1767 			err = sock->ops->shutdown(sock, how);
1768 		fput_light(sock->file, fput_needed);
1769 	}
1770 	return err;
1771 }
1772 
1773 /* A couple of helpful macros for getting the address of the 32/64 bit
1774  * fields which are the same type (int / unsigned) on our platforms.
1775  */
1776 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1777 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1778 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1779 
1780 /*
1781  *	BSD sendmsg interface
1782  */
1783 
1784 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1785 {
1786 	struct compat_msghdr __user *msg_compat =
1787 	    (struct compat_msghdr __user *)msg;
1788 	struct socket *sock;
1789 	char address[MAX_SOCK_ADDR];
1790 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1791 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1792 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1793 	/* 20 is size of ipv6_pktinfo */
1794 	unsigned char *ctl_buf = ctl;
1795 	struct msghdr msg_sys;
1796 	int err, ctl_len, iov_size, total_len;
1797 	int fput_needed;
1798 
1799 	err = -EFAULT;
1800 	if (MSG_CMSG_COMPAT & flags) {
1801 		if (get_compat_msghdr(&msg_sys, msg_compat))
1802 			return -EFAULT;
1803 	}
1804 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1805 		return -EFAULT;
1806 
1807 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808 	if (!sock)
1809 		goto out;
1810 
1811 	/* do not move before msg_sys is valid */
1812 	err = -EMSGSIZE;
1813 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1814 		goto out_put;
1815 
1816 	/* Check whether to allocate the iovec area */
1817 	err = -ENOMEM;
1818 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1819 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1820 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1821 		if (!iov)
1822 			goto out_put;
1823 	}
1824 
1825 	/* This will also move the address data into kernel space */
1826 	if (MSG_CMSG_COMPAT & flags) {
1827 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1828 	} else
1829 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1830 	if (err < 0)
1831 		goto out_freeiov;
1832 	total_len = err;
1833 
1834 	err = -ENOBUFS;
1835 
1836 	if (msg_sys.msg_controllen > INT_MAX)
1837 		goto out_freeiov;
1838 	ctl_len = msg_sys.msg_controllen;
1839 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1840 		err =
1841 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1842 						     sizeof(ctl));
1843 		if (err)
1844 			goto out_freeiov;
1845 		ctl_buf = msg_sys.msg_control;
1846 		ctl_len = msg_sys.msg_controllen;
1847 	} else if (ctl_len) {
1848 		if (ctl_len > sizeof(ctl)) {
1849 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1850 			if (ctl_buf == NULL)
1851 				goto out_freeiov;
1852 		}
1853 		err = -EFAULT;
1854 		/*
1855 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1856 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1857 		 * checking falls down on this.
1858 		 */
1859 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1860 				   ctl_len))
1861 			goto out_freectl;
1862 		msg_sys.msg_control = ctl_buf;
1863 	}
1864 	msg_sys.msg_flags = flags;
1865 
1866 	if (sock->file->f_flags & O_NONBLOCK)
1867 		msg_sys.msg_flags |= MSG_DONTWAIT;
1868 	err = sock_sendmsg(sock, &msg_sys, total_len);
1869 
1870 out_freectl:
1871 	if (ctl_buf != ctl)
1872 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1873 out_freeiov:
1874 	if (iov != iovstack)
1875 		sock_kfree_s(sock->sk, iov, iov_size);
1876 out_put:
1877 	fput_light(sock->file, fput_needed);
1878 out:
1879 	return err;
1880 }
1881 
1882 /*
1883  *	BSD recvmsg interface
1884  */
1885 
1886 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1887 			    unsigned int flags)
1888 {
1889 	struct compat_msghdr __user *msg_compat =
1890 	    (struct compat_msghdr __user *)msg;
1891 	struct socket *sock;
1892 	struct iovec iovstack[UIO_FASTIOV];
1893 	struct iovec *iov = iovstack;
1894 	struct msghdr msg_sys;
1895 	unsigned long cmsg_ptr;
1896 	int err, iov_size, total_len, len;
1897 	int fput_needed;
1898 
1899 	/* kernel mode address */
1900 	char addr[MAX_SOCK_ADDR];
1901 
1902 	/* user mode address pointers */
1903 	struct sockaddr __user *uaddr;
1904 	int __user *uaddr_len;
1905 
1906 	if (MSG_CMSG_COMPAT & flags) {
1907 		if (get_compat_msghdr(&msg_sys, msg_compat))
1908 			return -EFAULT;
1909 	}
1910 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1911 		return -EFAULT;
1912 
1913 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914 	if (!sock)
1915 		goto out;
1916 
1917 	err = -EMSGSIZE;
1918 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1919 		goto out_put;
1920 
1921 	/* Check whether to allocate the iovec area */
1922 	err = -ENOMEM;
1923 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1924 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1925 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1926 		if (!iov)
1927 			goto out_put;
1928 	}
1929 
1930 	/*
1931 	 *      Save the user-mode address (verify_iovec will change the
1932 	 *      kernel msghdr to use the kernel address space)
1933 	 */
1934 
1935 	uaddr = (__force void __user *)msg_sys.msg_name;
1936 	uaddr_len = COMPAT_NAMELEN(msg);
1937 	if (MSG_CMSG_COMPAT & flags) {
1938 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1939 	} else
1940 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1941 	if (err < 0)
1942 		goto out_freeiov;
1943 	total_len = err;
1944 
1945 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1946 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1947 
1948 	if (sock->file->f_flags & O_NONBLOCK)
1949 		flags |= MSG_DONTWAIT;
1950 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1951 	if (err < 0)
1952 		goto out_freeiov;
1953 	len = err;
1954 
1955 	if (uaddr != NULL) {
1956 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1957 					uaddr_len);
1958 		if (err < 0)
1959 			goto out_freeiov;
1960 	}
1961 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1962 			 COMPAT_FLAGS(msg));
1963 	if (err)
1964 		goto out_freeiov;
1965 	if (MSG_CMSG_COMPAT & flags)
1966 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1967 				 &msg_compat->msg_controllen);
1968 	else
1969 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1970 				 &msg->msg_controllen);
1971 	if (err)
1972 		goto out_freeiov;
1973 	err = len;
1974 
1975 out_freeiov:
1976 	if (iov != iovstack)
1977 		sock_kfree_s(sock->sk, iov, iov_size);
1978 out_put:
1979 	fput_light(sock->file, fput_needed);
1980 out:
1981 	return err;
1982 }
1983 
1984 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1985 
1986 /* Argument list sizes for sys_socketcall */
1987 #define AL(x) ((x) * sizeof(unsigned long))
1988 static const unsigned char nargs[18]={
1989 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1990 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1991 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1992 };
1993 
1994 #undef AL
1995 
1996 /*
1997  *	System call vectors.
1998  *
1999  *	Argument checking cleaned up. Saved 20% in size.
2000  *  This function doesn't need to set the kernel lock because
2001  *  it is set by the callees.
2002  */
2003 
2004 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2005 {
2006 	unsigned long a[6];
2007 	unsigned long a0, a1;
2008 	int err;
2009 
2010 	if (call < 1 || call > SYS_RECVMSG)
2011 		return -EINVAL;
2012 
2013 	/* copy_from_user should be SMP safe. */
2014 	if (copy_from_user(a, args, nargs[call]))
2015 		return -EFAULT;
2016 
2017 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2018 	if (err)
2019 		return err;
2020 
2021 	a0 = a[0];
2022 	a1 = a[1];
2023 
2024 	switch (call) {
2025 	case SYS_SOCKET:
2026 		err = sys_socket(a0, a1, a[2]);
2027 		break;
2028 	case SYS_BIND:
2029 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2030 		break;
2031 	case SYS_CONNECT:
2032 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2033 		break;
2034 	case SYS_LISTEN:
2035 		err = sys_listen(a0, a1);
2036 		break;
2037 	case SYS_ACCEPT:
2038 		err =
2039 		    sys_accept(a0, (struct sockaddr __user *)a1,
2040 			       (int __user *)a[2]);
2041 		break;
2042 	case SYS_GETSOCKNAME:
2043 		err =
2044 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2045 				    (int __user *)a[2]);
2046 		break;
2047 	case SYS_GETPEERNAME:
2048 		err =
2049 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2050 				    (int __user *)a[2]);
2051 		break;
2052 	case SYS_SOCKETPAIR:
2053 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2054 		break;
2055 	case SYS_SEND:
2056 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2057 		break;
2058 	case SYS_SENDTO:
2059 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2060 				 (struct sockaddr __user *)a[4], a[5]);
2061 		break;
2062 	case SYS_RECV:
2063 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2064 		break;
2065 	case SYS_RECVFROM:
2066 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2067 				   (struct sockaddr __user *)a[4],
2068 				   (int __user *)a[5]);
2069 		break;
2070 	case SYS_SHUTDOWN:
2071 		err = sys_shutdown(a0, a1);
2072 		break;
2073 	case SYS_SETSOCKOPT:
2074 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2075 		break;
2076 	case SYS_GETSOCKOPT:
2077 		err =
2078 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2079 				   (int __user *)a[4]);
2080 		break;
2081 	case SYS_SENDMSG:
2082 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2083 		break;
2084 	case SYS_RECVMSG:
2085 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2086 		break;
2087 	default:
2088 		err = -EINVAL;
2089 		break;
2090 	}
2091 	return err;
2092 }
2093 
2094 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2095 
2096 /**
2097  *	sock_register - add a socket protocol handler
2098  *	@ops: description of protocol
2099  *
2100  *	This function is called by a protocol handler that wants to
2101  *	advertise its address family, and have it linked into the
2102  *	socket interface. The value ops->family coresponds to the
2103  *	socket system call protocol family.
2104  */
2105 int sock_register(const struct net_proto_family *ops)
2106 {
2107 	int err;
2108 
2109 	if (ops->family >= NPROTO) {
2110 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2111 		       NPROTO);
2112 		return -ENOBUFS;
2113 	}
2114 
2115 	spin_lock(&net_family_lock);
2116 	if (net_families[ops->family])
2117 		err = -EEXIST;
2118 	else {
2119 		net_families[ops->family] = ops;
2120 		err = 0;
2121 	}
2122 	spin_unlock(&net_family_lock);
2123 
2124 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2125 	return err;
2126 }
2127 
2128 /**
2129  *	sock_unregister - remove a protocol handler
2130  *	@family: protocol family to remove
2131  *
2132  *	This function is called by a protocol handler that wants to
2133  *	remove its address family, and have it unlinked from the
2134  *	new socket creation.
2135  *
2136  *	If protocol handler is a module, then it can use module reference
2137  *	counts to protect against new references. If protocol handler is not
2138  *	a module then it needs to provide its own protection in
2139  *	the ops->create routine.
2140  */
2141 void sock_unregister(int family)
2142 {
2143 	BUG_ON(family < 0 || family >= NPROTO);
2144 
2145 	spin_lock(&net_family_lock);
2146 	net_families[family] = NULL;
2147 	spin_unlock(&net_family_lock);
2148 
2149 	synchronize_rcu();
2150 
2151 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2152 }
2153 
2154 static int __init sock_init(void)
2155 {
2156 	/*
2157 	 *      Initialize sock SLAB cache.
2158 	 */
2159 
2160 	sk_init();
2161 
2162 	/*
2163 	 *      Initialize skbuff SLAB cache
2164 	 */
2165 	skb_init();
2166 
2167 	/*
2168 	 *      Initialize the protocols module.
2169 	 */
2170 
2171 	init_inodecache();
2172 	register_filesystem(&sock_fs_type);
2173 	sock_mnt = kern_mount(&sock_fs_type);
2174 
2175 	/* The real protocol initialization is performed in later initcalls.
2176 	 */
2177 
2178 #ifdef CONFIG_NETFILTER
2179 	netfilter_init();
2180 #endif
2181 
2182 	return 0;
2183 }
2184 
2185 core_initcall(sock_init);	/* early initcall */
2186 
2187 #ifdef CONFIG_PROC_FS
2188 void socket_seq_show(struct seq_file *seq)
2189 {
2190 	int cpu;
2191 	int counter = 0;
2192 
2193 	for_each_possible_cpu(cpu)
2194 	    counter += per_cpu(sockets_in_use, cpu);
2195 
2196 	/* It can be negative, by the way. 8) */
2197 	if (counter < 0)
2198 		counter = 0;
2199 
2200 	seq_printf(seq, "sockets: used %d\n", counter);
2201 }
2202 #endif				/* CONFIG_PROC_FS */
2203 
2204 #ifdef CONFIG_COMPAT
2205 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2206 			      unsigned long arg)
2207 {
2208 	struct socket *sock = file->private_data;
2209 	int ret = -ENOIOCTLCMD;
2210 
2211 	if (sock->ops->compat_ioctl)
2212 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2213 
2214 	return ret;
2215 }
2216 #endif
2217 
2218 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2219 {
2220 	return sock->ops->bind(sock, addr, addrlen);
2221 }
2222 
2223 int kernel_listen(struct socket *sock, int backlog)
2224 {
2225 	return sock->ops->listen(sock, backlog);
2226 }
2227 
2228 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2229 {
2230 	struct sock *sk = sock->sk;
2231 	int err;
2232 
2233 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2234 			       newsock);
2235 	if (err < 0)
2236 		goto done;
2237 
2238 	err = sock->ops->accept(sock, *newsock, flags);
2239 	if (err < 0) {
2240 		sock_release(*newsock);
2241 		*newsock = NULL;
2242 		goto done;
2243 	}
2244 
2245 	(*newsock)->ops = sock->ops;
2246 
2247 done:
2248 	return err;
2249 }
2250 
2251 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2252 		   int flags)
2253 {
2254 	return sock->ops->connect(sock, addr, addrlen, flags);
2255 }
2256 
2257 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2258 			 int *addrlen)
2259 {
2260 	return sock->ops->getname(sock, addr, addrlen, 0);
2261 }
2262 
2263 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2264 			 int *addrlen)
2265 {
2266 	return sock->ops->getname(sock, addr, addrlen, 1);
2267 }
2268 
2269 int kernel_getsockopt(struct socket *sock, int level, int optname,
2270 			char *optval, int *optlen)
2271 {
2272 	mm_segment_t oldfs = get_fs();
2273 	int err;
2274 
2275 	set_fs(KERNEL_DS);
2276 	if (level == SOL_SOCKET)
2277 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2278 	else
2279 		err = sock->ops->getsockopt(sock, level, optname, optval,
2280 					    optlen);
2281 	set_fs(oldfs);
2282 	return err;
2283 }
2284 
2285 int kernel_setsockopt(struct socket *sock, int level, int optname,
2286 			char *optval, int optlen)
2287 {
2288 	mm_segment_t oldfs = get_fs();
2289 	int err;
2290 
2291 	set_fs(KERNEL_DS);
2292 	if (level == SOL_SOCKET)
2293 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2294 	else
2295 		err = sock->ops->setsockopt(sock, level, optname, optval,
2296 					    optlen);
2297 	set_fs(oldfs);
2298 	return err;
2299 }
2300 
2301 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2302 		    size_t size, int flags)
2303 {
2304 	if (sock->ops->sendpage)
2305 		return sock->ops->sendpage(sock, page, offset, size, flags);
2306 
2307 	return sock_no_sendpage(sock, page, offset, size, flags);
2308 }
2309 
2310 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2311 {
2312 	mm_segment_t oldfs = get_fs();
2313 	int err;
2314 
2315 	set_fs(KERNEL_DS);
2316 	err = sock->ops->ioctl(sock, cmd, arg);
2317 	set_fs(oldfs);
2318 
2319 	return err;
2320 }
2321 
2322 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2323 {
2324 	return sock->ops->shutdown(sock, how);
2325 }
2326 
2327 /* ABI emulation layers need these two */
2328 EXPORT_SYMBOL(move_addr_to_kernel);
2329 EXPORT_SYMBOL(move_addr_to_user);
2330 EXPORT_SYMBOL(sock_create);
2331 EXPORT_SYMBOL(sock_create_kern);
2332 EXPORT_SYMBOL(sock_create_lite);
2333 EXPORT_SYMBOL(sock_map_fd);
2334 EXPORT_SYMBOL(sock_recvmsg);
2335 EXPORT_SYMBOL(sock_register);
2336 EXPORT_SYMBOL(sock_release);
2337 EXPORT_SYMBOL(sock_sendmsg);
2338 EXPORT_SYMBOL(sock_unregister);
2339 EXPORT_SYMBOL(sock_wake_async);
2340 EXPORT_SYMBOL(sockfd_lookup);
2341 EXPORT_SYMBOL(kernel_sendmsg);
2342 EXPORT_SYMBOL(kernel_recvmsg);
2343 EXPORT_SYMBOL(kernel_bind);
2344 EXPORT_SYMBOL(kernel_listen);
2345 EXPORT_SYMBOL(kernel_accept);
2346 EXPORT_SYMBOL(kernel_connect);
2347 EXPORT_SYMBOL(kernel_getsockname);
2348 EXPORT_SYMBOL(kernel_getpeername);
2349 EXPORT_SYMBOL(kernel_getsockopt);
2350 EXPORT_SYMBOL(kernel_setsockopt);
2351 EXPORT_SYMBOL(kernel_sendpage);
2352 EXPORT_SYMBOL(kernel_sock_ioctl);
2353 EXPORT_SYMBOL(kernel_sock_shutdown);
2354