xref: /linux/net/socket.c (revision 663a917475530feff868a4f2bda286ea4171f420)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.read_iter =	sock_read_iter,
157 	.write_iter =	sock_write_iter,
158 	.poll =		sock_poll,
159 	.unlocked_ioctl = sock_ioctl,
160 #ifdef CONFIG_COMPAT
161 	.compat_ioctl = compat_sock_ioctl,
162 #endif
163 	.uring_cmd =    io_uring_cmd_sock,
164 	.mmap =		sock_mmap,
165 	.release =	sock_close,
166 	.fasync =	sock_fasync,
167 	.splice_write = splice_to_socket,
168 	.splice_read =	sock_splice_read,
169 	.splice_eof =	sock_splice_eof,
170 	.show_fdinfo =	sock_show_fdinfo,
171 };
172 
173 static const char * const pf_family_names[] = {
174 	[PF_UNSPEC]	= "PF_UNSPEC",
175 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
176 	[PF_INET]	= "PF_INET",
177 	[PF_AX25]	= "PF_AX25",
178 	[PF_IPX]	= "PF_IPX",
179 	[PF_APPLETALK]	= "PF_APPLETALK",
180 	[PF_NETROM]	= "PF_NETROM",
181 	[PF_BRIDGE]	= "PF_BRIDGE",
182 	[PF_ATMPVC]	= "PF_ATMPVC",
183 	[PF_X25]	= "PF_X25",
184 	[PF_INET6]	= "PF_INET6",
185 	[PF_ROSE]	= "PF_ROSE",
186 	[PF_DECnet]	= "PF_DECnet",
187 	[PF_NETBEUI]	= "PF_NETBEUI",
188 	[PF_SECURITY]	= "PF_SECURITY",
189 	[PF_KEY]	= "PF_KEY",
190 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
191 	[PF_PACKET]	= "PF_PACKET",
192 	[PF_ASH]	= "PF_ASH",
193 	[PF_ECONET]	= "PF_ECONET",
194 	[PF_ATMSVC]	= "PF_ATMSVC",
195 	[PF_RDS]	= "PF_RDS",
196 	[PF_SNA]	= "PF_SNA",
197 	[PF_IRDA]	= "PF_IRDA",
198 	[PF_PPPOX]	= "PF_PPPOX",
199 	[PF_WANPIPE]	= "PF_WANPIPE",
200 	[PF_LLC]	= "PF_LLC",
201 	[PF_IB]		= "PF_IB",
202 	[PF_MPLS]	= "PF_MPLS",
203 	[PF_CAN]	= "PF_CAN",
204 	[PF_TIPC]	= "PF_TIPC",
205 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
206 	[PF_IUCV]	= "PF_IUCV",
207 	[PF_RXRPC]	= "PF_RXRPC",
208 	[PF_ISDN]	= "PF_ISDN",
209 	[PF_PHONET]	= "PF_PHONET",
210 	[PF_IEEE802154]	= "PF_IEEE802154",
211 	[PF_CAIF]	= "PF_CAIF",
212 	[PF_ALG]	= "PF_ALG",
213 	[PF_NFC]	= "PF_NFC",
214 	[PF_VSOCK]	= "PF_VSOCK",
215 	[PF_KCM]	= "PF_KCM",
216 	[PF_QIPCRTR]	= "PF_QIPCRTR",
217 	[PF_SMC]	= "PF_SMC",
218 	[PF_XDP]	= "PF_XDP",
219 	[PF_MCTP]	= "PF_MCTP",
220 };
221 
222 /*
223  *	The protocol list. Each protocol is registered in here.
224  */
225 
226 static DEFINE_SPINLOCK(net_family_lock);
227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228 
229 /*
230  * Support routines.
231  * Move socket addresses back and forth across the kernel/user
232  * divide and look after the messy bits.
233  */
234 
235 /**
236  *	move_addr_to_kernel	-	copy a socket address into kernel space
237  *	@uaddr: Address in user space
238  *	@kaddr: Address in kernel space
239  *	@ulen: Length in user space
240  *
241  *	The address is copied into kernel space. If the provided address is
242  *	too long an error code of -EINVAL is returned. If the copy gives
243  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
244  */
245 
246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247 {
248 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 		return -EINVAL;
250 	if (ulen == 0)
251 		return 0;
252 	if (copy_from_user(kaddr, uaddr, ulen))
253 		return -EFAULT;
254 	return audit_sockaddr(ulen, kaddr);
255 }
256 
257 /**
258  *	move_addr_to_user	-	copy an address to user space
259  *	@kaddr: kernel space address
260  *	@klen: length of address in kernel
261  *	@uaddr: user space address
262  *	@ulen: pointer to user length field
263  *
264  *	The value pointed to by ulen on entry is the buffer length available.
265  *	This is overwritten with the buffer space used. -EINVAL is returned
266  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
267  *	is returned if either the buffer or the length field are not
268  *	accessible.
269  *	After copying the data up to the limit the user specifies, the true
270  *	length of the data is written over the length limit the user
271  *	specified. Zero is returned for a success.
272  */
273 
274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 			     void __user *uaddr, int __user *ulen)
276 {
277 	int err;
278 	int len;
279 
280 	BUG_ON(klen > sizeof(struct sockaddr_storage));
281 	err = get_user(len, ulen);
282 	if (err)
283 		return err;
284 	if (len > klen)
285 		len = klen;
286 	if (len < 0)
287 		return -EINVAL;
288 	if (len) {
289 		if (audit_sockaddr(klen, kaddr))
290 			return -ENOMEM;
291 		if (copy_to_user(uaddr, kaddr, len))
292 			return -EFAULT;
293 	}
294 	/*
295 	 *      "fromlen shall refer to the value before truncation.."
296 	 *                      1003.1g
297 	 */
298 	return __put_user(klen, ulen);
299 }
300 
301 static struct kmem_cache *sock_inode_cachep __ro_after_init;
302 
303 static struct inode *sock_alloc_inode(struct super_block *sb)
304 {
305 	struct socket_alloc *ei;
306 
307 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 	if (!ei)
309 		return NULL;
310 	init_waitqueue_head(&ei->socket.wq.wait);
311 	ei->socket.wq.fasync_list = NULL;
312 	ei->socket.wq.flags = 0;
313 
314 	ei->socket.state = SS_UNCONNECTED;
315 	ei->socket.flags = 0;
316 	ei->socket.ops = NULL;
317 	ei->socket.sk = NULL;
318 	ei->socket.file = NULL;
319 
320 	return &ei->vfs_inode;
321 }
322 
323 static void sock_free_inode(struct inode *inode)
324 {
325 	struct socket_alloc *ei;
326 
327 	ei = container_of(inode, struct socket_alloc, vfs_inode);
328 	kmem_cache_free(sock_inode_cachep, ei);
329 }
330 
331 static void init_once(void *foo)
332 {
333 	struct socket_alloc *ei = (struct socket_alloc *)foo;
334 
335 	inode_init_once(&ei->vfs_inode);
336 }
337 
338 static void init_inodecache(void)
339 {
340 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 					      sizeof(struct socket_alloc),
342 					      0,
343 					      (SLAB_HWCACHE_ALIGN |
344 					       SLAB_RECLAIM_ACCOUNT |
345 					       SLAB_ACCOUNT),
346 					      init_once);
347 	BUG_ON(sock_inode_cachep == NULL);
348 }
349 
350 static const struct super_operations sockfs_ops = {
351 	.alloc_inode	= sock_alloc_inode,
352 	.free_inode	= sock_free_inode,
353 	.statfs		= simple_statfs,
354 };
355 
356 /*
357  * sockfs_dname() is called from d_path().
358  */
359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360 {
361 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 				d_inode(dentry)->i_ino);
363 }
364 
365 static const struct dentry_operations sockfs_dentry_operations = {
366 	.d_dname  = sockfs_dname,
367 };
368 
369 static int sockfs_xattr_get(const struct xattr_handler *handler,
370 			    struct dentry *dentry, struct inode *inode,
371 			    const char *suffix, void *value, size_t size)
372 {
373 	if (value) {
374 		if (dentry->d_name.len + 1 > size)
375 			return -ERANGE;
376 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 	}
378 	return dentry->d_name.len + 1;
379 }
380 
381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384 
385 static const struct xattr_handler sockfs_xattr_handler = {
386 	.name = XATTR_NAME_SOCKPROTONAME,
387 	.get = sockfs_xattr_get,
388 };
389 
390 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 				     struct mnt_idmap *idmap,
392 				     struct dentry *dentry, struct inode *inode,
393 				     const char *suffix, const void *value,
394 				     size_t size, int flags)
395 {
396 	/* Handled by LSM. */
397 	return -EAGAIN;
398 }
399 
400 static const struct xattr_handler sockfs_security_xattr_handler = {
401 	.prefix = XATTR_SECURITY_PREFIX,
402 	.set = sockfs_security_xattr_set,
403 };
404 
405 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 	&sockfs_xattr_handler,
407 	&sockfs_security_xattr_handler,
408 	NULL
409 };
410 
411 static int sockfs_init_fs_context(struct fs_context *fc)
412 {
413 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 	if (!ctx)
415 		return -ENOMEM;
416 	ctx->ops = &sockfs_ops;
417 	ctx->dops = &sockfs_dentry_operations;
418 	ctx->xattr = sockfs_xattr_handlers;
419 	return 0;
420 }
421 
422 static struct vfsmount *sock_mnt __read_mostly;
423 
424 static struct file_system_type sock_fs_type = {
425 	.name =		"sockfs",
426 	.init_fs_context = sockfs_init_fs_context,
427 	.kill_sb =	kill_anon_super,
428 };
429 
430 /*
431  *	Obtains the first available file descriptor and sets it up for use.
432  *
433  *	These functions create file structures and maps them to fd space
434  *	of the current process. On success it returns file descriptor
435  *	and file struct implicitly stored in sock->file.
436  *	Note that another thread may close file descriptor before we return
437  *	from this function. We use the fact that now we do not refer
438  *	to socket after mapping. If one day we will need it, this
439  *	function will increment ref. count on file by 1.
440  *
441  *	In any case returned fd MAY BE not valid!
442  *	This race condition is unavoidable
443  *	with shared fd spaces, we cannot solve it inside kernel,
444  *	but we take care of internal coherence yet.
445  */
446 
447 /**
448  *	sock_alloc_file - Bind a &socket to a &file
449  *	@sock: socket
450  *	@flags: file status flags
451  *	@dname: protocol name
452  *
453  *	Returns the &file bound with @sock, implicitly storing it
454  *	in sock->file. If dname is %NULL, sets to "".
455  *
456  *	On failure @sock is released, and an ERR pointer is returned.
457  *
458  *	This function uses GFP_KERNEL internally.
459  */
460 
461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462 {
463 	struct file *file;
464 
465 	if (!dname)
466 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467 
468 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 				O_RDWR | (flags & O_NONBLOCK),
470 				&socket_file_ops);
471 	if (IS_ERR(file)) {
472 		sock_release(sock);
473 		return file;
474 	}
475 
476 	file->f_mode |= FMODE_NOWAIT;
477 	sock->file = file;
478 	file->private_data = sock;
479 	stream_open(SOCK_INODE(sock), file);
480 	return file;
481 }
482 EXPORT_SYMBOL(sock_alloc_file);
483 
484 static int sock_map_fd(struct socket *sock, int flags)
485 {
486 	struct file *newfile;
487 	int fd = get_unused_fd_flags(flags);
488 	if (unlikely(fd < 0)) {
489 		sock_release(sock);
490 		return fd;
491 	}
492 
493 	newfile = sock_alloc_file(sock, flags, NULL);
494 	if (!IS_ERR(newfile)) {
495 		fd_install(fd, newfile);
496 		return fd;
497 	}
498 
499 	put_unused_fd(fd);
500 	return PTR_ERR(newfile);
501 }
502 
503 /**
504  *	sock_from_file - Return the &socket bounded to @file.
505  *	@file: file
506  *
507  *	On failure returns %NULL.
508  */
509 
510 struct socket *sock_from_file(struct file *file)
511 {
512 	if (likely(file->f_op == &socket_file_ops))
513 		return file->private_data;	/* set in sock_alloc_file */
514 
515 	return NULL;
516 }
517 EXPORT_SYMBOL(sock_from_file);
518 
519 /**
520  *	sockfd_lookup - Go from a file number to its socket slot
521  *	@fd: file handle
522  *	@err: pointer to an error code return
523  *
524  *	The file handle passed in is locked and the socket it is bound
525  *	to is returned. If an error occurs the err pointer is overwritten
526  *	with a negative errno code and NULL is returned. The function checks
527  *	for both invalid handles and passing a handle which is not a socket.
528  *
529  *	On a success the socket object pointer is returned.
530  */
531 
532 struct socket *sockfd_lookup(int fd, int *err)
533 {
534 	struct file *file;
535 	struct socket *sock;
536 
537 	file = fget(fd);
538 	if (!file) {
539 		*err = -EBADF;
540 		return NULL;
541 	}
542 
543 	sock = sock_from_file(file);
544 	if (!sock) {
545 		*err = -ENOTSOCK;
546 		fput(file);
547 	}
548 	return sock;
549 }
550 EXPORT_SYMBOL(sockfd_lookup);
551 
552 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
553 				size_t size)
554 {
555 	ssize_t len;
556 	ssize_t used = 0;
557 
558 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
559 	if (len < 0)
560 		return len;
561 	used += len;
562 	if (buffer) {
563 		if (size < used)
564 			return -ERANGE;
565 		buffer += len;
566 	}
567 
568 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
569 	used += len;
570 	if (buffer) {
571 		if (size < used)
572 			return -ERANGE;
573 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
574 		buffer += len;
575 	}
576 
577 	return used;
578 }
579 
580 static int sockfs_setattr(struct mnt_idmap *idmap,
581 			  struct dentry *dentry, struct iattr *iattr)
582 {
583 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
584 
585 	if (!err && (iattr->ia_valid & ATTR_UID)) {
586 		struct socket *sock = SOCKET_I(d_inode(dentry));
587 
588 		if (sock->sk)
589 			sock->sk->sk_uid = iattr->ia_uid;
590 		else
591 			err = -ENOENT;
592 	}
593 
594 	return err;
595 }
596 
597 static const struct inode_operations sockfs_inode_ops = {
598 	.listxattr = sockfs_listxattr,
599 	.setattr = sockfs_setattr,
600 };
601 
602 /**
603  *	sock_alloc - allocate a socket
604  *
605  *	Allocate a new inode and socket object. The two are bound together
606  *	and initialised. The socket is then returned. If we are out of inodes
607  *	NULL is returned. This functions uses GFP_KERNEL internally.
608  */
609 
610 struct socket *sock_alloc(void)
611 {
612 	struct inode *inode;
613 	struct socket *sock;
614 
615 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
616 	if (!inode)
617 		return NULL;
618 
619 	sock = SOCKET_I(inode);
620 
621 	inode->i_ino = get_next_ino();
622 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
623 	inode->i_uid = current_fsuid();
624 	inode->i_gid = current_fsgid();
625 	inode->i_op = &sockfs_inode_ops;
626 
627 	return sock;
628 }
629 EXPORT_SYMBOL(sock_alloc);
630 
631 static void __sock_release(struct socket *sock, struct inode *inode)
632 {
633 	const struct proto_ops *ops = READ_ONCE(sock->ops);
634 
635 	if (ops) {
636 		struct module *owner = ops->owner;
637 
638 		if (inode)
639 			inode_lock(inode);
640 		ops->release(sock);
641 		sock->sk = NULL;
642 		if (inode)
643 			inode_unlock(inode);
644 		sock->ops = NULL;
645 		module_put(owner);
646 	}
647 
648 	if (sock->wq.fasync_list)
649 		pr_err("%s: fasync list not empty!\n", __func__);
650 
651 	if (!sock->file) {
652 		iput(SOCK_INODE(sock));
653 		return;
654 	}
655 	sock->file = NULL;
656 }
657 
658 /**
659  *	sock_release - close a socket
660  *	@sock: socket to close
661  *
662  *	The socket is released from the protocol stack if it has a release
663  *	callback, and the inode is then released if the socket is bound to
664  *	an inode not a file.
665  */
666 void sock_release(struct socket *sock)
667 {
668 	__sock_release(sock, NULL);
669 }
670 EXPORT_SYMBOL(sock_release);
671 
672 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
673 {
674 	u8 flags = *tx_flags;
675 
676 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
677 		flags |= SKBTX_HW_TSTAMP;
678 
679 		/* PTP hardware clocks can provide a free running cycle counter
680 		 * as a time base for virtual clocks. Tell driver to use the
681 		 * free running cycle counter for timestamp if socket is bound
682 		 * to virtual clock.
683 		 */
684 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
685 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
686 	}
687 
688 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 		flags |= SKBTX_SW_TSTAMP;
690 
691 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 		flags |= SKBTX_SCHED_TSTAMP;
693 
694 	*tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697 
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 					   size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 					    size_t));
702 
703 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
704 						 int flags)
705 {
706 	trace_sock_send_length(sk, ret, 0);
707 }
708 
709 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
710 {
711 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
712 				     inet_sendmsg, sock, msg,
713 				     msg_data_left(msg));
714 	BUG_ON(ret == -EIOCBQUEUED);
715 
716 	if (trace_sock_send_length_enabled())
717 		call_trace_sock_send_length(sock->sk, ret, 0);
718 	return ret;
719 }
720 
721 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
722 {
723 	int err = security_socket_sendmsg(sock, msg,
724 					  msg_data_left(msg));
725 
726 	return err ?: sock_sendmsg_nosec(sock, msg);
727 }
728 
729 /**
730  *	sock_sendmsg - send a message through @sock
731  *	@sock: socket
732  *	@msg: message to send
733  *
734  *	Sends @msg through @sock, passing through LSM.
735  *	Returns the number of bytes sent, or an error code.
736  */
737 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
740 	struct sockaddr_storage address;
741 	int save_len = msg->msg_namelen;
742 	int ret;
743 
744 	if (msg->msg_name) {
745 		memcpy(&address, msg->msg_name, msg->msg_namelen);
746 		msg->msg_name = &address;
747 	}
748 
749 	ret = __sock_sendmsg(sock, msg);
750 	msg->msg_name = save_addr;
751 	msg->msg_namelen = save_len;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL(sock_sendmsg);
756 
757 /**
758  *	kernel_sendmsg - send a message through @sock (kernel-space)
759  *	@sock: socket
760  *	@msg: message header
761  *	@vec: kernel vec
762  *	@num: vec array length
763  *	@size: total message data size
764  *
765  *	Builds the message data with @vec and sends it through @sock.
766  *	Returns the number of bytes sent, or an error code.
767  */
768 
769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 		   struct kvec *vec, size_t num, size_t size)
771 {
772 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 	return sock_sendmsg(sock, msg);
774 }
775 EXPORT_SYMBOL(kernel_sendmsg);
776 
777 /**
778  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
779  *	@sk: sock
780  *	@msg: message header
781  *	@vec: output s/g array
782  *	@num: output s/g array length
783  *	@size: total message data size
784  *
785  *	Builds the message data with @vec and sends it through @sock.
786  *	Returns the number of bytes sent, or an error code.
787  *	Caller must hold @sk.
788  */
789 
790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 			  struct kvec *vec, size_t num, size_t size)
792 {
793 	struct socket *sock = sk->sk_socket;
794 	const struct proto_ops *ops = READ_ONCE(sock->ops);
795 
796 	if (!ops->sendmsg_locked)
797 		return sock_no_sendmsg_locked(sk, msg, size);
798 
799 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800 
801 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802 }
803 EXPORT_SYMBOL(kernel_sendmsg_locked);
804 
805 static bool skb_is_err_queue(const struct sk_buff *skb)
806 {
807 	/* pkt_type of skbs enqueued on the error queue are set to
808 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 	 * in recvmsg, since skbs received on a local socket will never
810 	 * have a pkt_type of PACKET_OUTGOING.
811 	 */
812 	return skb->pkt_type == PACKET_OUTGOING;
813 }
814 
815 /* On transmit, software and hardware timestamps are returned independently.
816  * As the two skb clones share the hardware timestamp, which may be updated
817  * before the software timestamp is received, a hardware TX timestamp may be
818  * returned only if there is no software TX timestamp. Ignore false software
819  * timestamps, which may be made in the __sock_recv_timestamp() call when the
820  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821  * hardware timestamp.
822  */
823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824 {
825 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826 }
827 
828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829 {
830 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 	struct net_device *orig_dev;
833 	ktime_t hwtstamp;
834 
835 	rcu_read_lock();
836 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 	if (orig_dev) {
838 		*if_index = orig_dev->ifindex;
839 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 	} else {
841 		hwtstamp = shhwtstamps->hwtstamp;
842 	}
843 	rcu_read_unlock();
844 
845 	return hwtstamp;
846 }
847 
848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 			   int if_index)
850 {
851 	struct scm_ts_pktinfo ts_pktinfo;
852 	struct net_device *orig_dev;
853 
854 	if (!skb_mac_header_was_set(skb))
855 		return;
856 
857 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858 
859 	if (!if_index) {
860 		rcu_read_lock();
861 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 		if (orig_dev)
863 			if_index = orig_dev->ifindex;
864 		rcu_read_unlock();
865 	}
866 	ts_pktinfo.if_index = if_index;
867 
868 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 		 sizeof(ts_pktinfo), &ts_pktinfo);
871 }
872 
873 /*
874  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875  */
876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 	struct sk_buff *skb)
878 {
879 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 	struct scm_timestamping_internal tss;
882 	int empty = 1, false_tstamp = 0;
883 	struct skb_shared_hwtstamps *shhwtstamps =
884 		skb_hwtstamps(skb);
885 	int if_index;
886 	ktime_t hwtstamp;
887 	u32 tsflags;
888 
889 	/* Race occurred between timestamp enabling and packet
890 	   receiving.  Fill in the current time for now. */
891 	if (need_software_tstamp && skb->tstamp == 0) {
892 		__net_timestamp(skb);
893 		false_tstamp = 1;
894 	}
895 
896 	if (need_software_tstamp) {
897 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 			if (new_tstamp) {
899 				struct __kernel_sock_timeval tv;
900 
901 				skb_get_new_timestamp(skb, &tv);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 					 sizeof(tv), &tv);
904 			} else {
905 				struct __kernel_old_timeval tv;
906 
907 				skb_get_timestamp(skb, &tv);
908 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 					 sizeof(tv), &tv);
910 			}
911 		} else {
912 			if (new_tstamp) {
913 				struct __kernel_timespec ts;
914 
915 				skb_get_new_timestampns(skb, &ts);
916 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 					 sizeof(ts), &ts);
918 			} else {
919 				struct __kernel_old_timespec ts;
920 
921 				skb_get_timestampns(skb, &ts);
922 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 					 sizeof(ts), &ts);
924 			}
925 		}
926 	}
927 
928 	memset(&tss, 0, sizeof(tss));
929 	tsflags = READ_ONCE(sk->sk_tsflags);
930 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
931 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
932 	      skb_is_err_queue(skb) ||
933 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
934 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
935 		empty = 0;
936 	if (shhwtstamps &&
937 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
938 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
939 	      skb_is_err_queue(skb) ||
940 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
941 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
942 		if_index = 0;
943 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
944 			hwtstamp = get_timestamp(sk, skb, &if_index);
945 		else
946 			hwtstamp = shhwtstamps->hwtstamp;
947 
948 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
949 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
950 							 READ_ONCE(sk->sk_bind_phc));
951 
952 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
953 			empty = 0;
954 
955 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
956 			    !skb_is_err_queue(skb))
957 				put_ts_pktinfo(msg, skb, if_index);
958 		}
959 	}
960 	if (!empty) {
961 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
962 			put_cmsg_scm_timestamping64(msg, &tss);
963 		else
964 			put_cmsg_scm_timestamping(msg, &tss);
965 
966 		if (skb_is_err_queue(skb) && skb->len &&
967 		    SKB_EXT_ERR(skb)->opt_stats)
968 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
969 				 skb->len, skb->data);
970 	}
971 }
972 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
973 
974 #ifdef CONFIG_WIRELESS
975 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
976 	struct sk_buff *skb)
977 {
978 	int ack;
979 
980 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
981 		return;
982 	if (!skb->wifi_acked_valid)
983 		return;
984 
985 	ack = skb->wifi_acked;
986 
987 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
988 }
989 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
990 #endif
991 
992 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
993 				   struct sk_buff *skb)
994 {
995 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
996 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
997 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
998 }
999 
1000 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001 			   struct sk_buff *skb)
1002 {
1003 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005 		__u32 mark = skb->mark;
1006 
1007 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008 	}
1009 }
1010 
1011 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012 		       struct sk_buff *skb)
1013 {
1014 	sock_recv_timestamp(msg, sk, skb);
1015 	sock_recv_drops(msg, sk, skb);
1016 	sock_recv_mark(msg, sk, skb);
1017 }
1018 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1019 
1020 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021 					   size_t, int));
1022 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023 					    size_t, int));
1024 
1025 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1026 {
1027 	trace_sock_recv_length(sk, ret, flags);
1028 }
1029 
1030 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031 				     int flags)
1032 {
1033 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034 				     inet6_recvmsg,
1035 				     inet_recvmsg, sock, msg,
1036 				     msg_data_left(msg), flags);
1037 	if (trace_sock_recv_length_enabled())
1038 		call_trace_sock_recv_length(sock->sk, ret, flags);
1039 	return ret;
1040 }
1041 
1042 /**
1043  *	sock_recvmsg - receive a message from @sock
1044  *	@sock: socket
1045  *	@msg: message to receive
1046  *	@flags: message flags
1047  *
1048  *	Receives @msg from @sock, passing through LSM. Returns the total number
1049  *	of bytes received, or an error.
1050  */
1051 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052 {
1053 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1054 
1055 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1056 }
1057 EXPORT_SYMBOL(sock_recvmsg);
1058 
1059 /**
1060  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1061  *	@sock: The socket to receive the message from
1062  *	@msg: Received message
1063  *	@vec: Input s/g array for message data
1064  *	@num: Size of input s/g array
1065  *	@size: Number of bytes to read
1066  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1067  *
1068  *	On return the msg structure contains the scatter/gather array passed in the
1069  *	vec argument. The array is modified so that it consists of the unfilled
1070  *	portion of the original array.
1071  *
1072  *	The returned value is the total number of bytes received, or an error.
1073  */
1074 
1075 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076 		   struct kvec *vec, size_t num, size_t size, int flags)
1077 {
1078 	msg->msg_control_is_user = false;
1079 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080 	return sock_recvmsg(sock, msg, flags);
1081 }
1082 EXPORT_SYMBOL(kernel_recvmsg);
1083 
1084 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085 				struct pipe_inode_info *pipe, size_t len,
1086 				unsigned int flags)
1087 {
1088 	struct socket *sock = file->private_data;
1089 	const struct proto_ops *ops;
1090 
1091 	ops = READ_ONCE(sock->ops);
1092 	if (unlikely(!ops->splice_read))
1093 		return copy_splice_read(file, ppos, pipe, len, flags);
1094 
1095 	return ops->splice_read(sock, ppos, pipe, len, flags);
1096 }
1097 
1098 static void sock_splice_eof(struct file *file)
1099 {
1100 	struct socket *sock = file->private_data;
1101 	const struct proto_ops *ops;
1102 
1103 	ops = READ_ONCE(sock->ops);
1104 	if (ops->splice_eof)
1105 		ops->splice_eof(sock);
1106 }
1107 
1108 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1109 {
1110 	struct file *file = iocb->ki_filp;
1111 	struct socket *sock = file->private_data;
1112 	struct msghdr msg = {.msg_iter = *to,
1113 			     .msg_iocb = iocb};
1114 	ssize_t res;
1115 
1116 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117 		msg.msg_flags = MSG_DONTWAIT;
1118 
1119 	if (iocb->ki_pos != 0)
1120 		return -ESPIPE;
1121 
1122 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1123 		return 0;
1124 
1125 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126 	*to = msg.msg_iter;
1127 	return res;
1128 }
1129 
1130 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1131 {
1132 	struct file *file = iocb->ki_filp;
1133 	struct socket *sock = file->private_data;
1134 	struct msghdr msg = {.msg_iter = *from,
1135 			     .msg_iocb = iocb};
1136 	ssize_t res;
1137 
1138 	if (iocb->ki_pos != 0)
1139 		return -ESPIPE;
1140 
1141 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142 		msg.msg_flags = MSG_DONTWAIT;
1143 
1144 	if (sock->type == SOCK_SEQPACKET)
1145 		msg.msg_flags |= MSG_EOR;
1146 
1147 	res = __sock_sendmsg(sock, &msg);
1148 	*from = msg.msg_iter;
1149 	return res;
1150 }
1151 
1152 /*
1153  * Atomic setting of ioctl hooks to avoid race
1154  * with module unload.
1155  */
1156 
1157 static DEFINE_MUTEX(br_ioctl_mutex);
1158 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159 			    unsigned int cmd, struct ifreq *ifr,
1160 			    void __user *uarg);
1161 
1162 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163 			     unsigned int cmd, struct ifreq *ifr,
1164 			     void __user *uarg))
1165 {
1166 	mutex_lock(&br_ioctl_mutex);
1167 	br_ioctl_hook = hook;
1168 	mutex_unlock(&br_ioctl_mutex);
1169 }
1170 EXPORT_SYMBOL(brioctl_set);
1171 
1172 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173 		  struct ifreq *ifr, void __user *uarg)
1174 {
1175 	int err = -ENOPKG;
1176 
1177 	if (!br_ioctl_hook)
1178 		request_module("bridge");
1179 
1180 	mutex_lock(&br_ioctl_mutex);
1181 	if (br_ioctl_hook)
1182 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183 	mutex_unlock(&br_ioctl_mutex);
1184 
1185 	return err;
1186 }
1187 
1188 static DEFINE_MUTEX(vlan_ioctl_mutex);
1189 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190 
1191 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192 {
1193 	mutex_lock(&vlan_ioctl_mutex);
1194 	vlan_ioctl_hook = hook;
1195 	mutex_unlock(&vlan_ioctl_mutex);
1196 }
1197 EXPORT_SYMBOL(vlan_ioctl_set);
1198 
1199 static long sock_do_ioctl(struct net *net, struct socket *sock,
1200 			  unsigned int cmd, unsigned long arg)
1201 {
1202 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1203 	struct ifreq ifr;
1204 	bool need_copyout;
1205 	int err;
1206 	void __user *argp = (void __user *)arg;
1207 	void __user *data;
1208 
1209 	err = ops->ioctl(sock, cmd, arg);
1210 
1211 	/*
1212 	 * If this ioctl is unknown try to hand it down
1213 	 * to the NIC driver.
1214 	 */
1215 	if (err != -ENOIOCTLCMD)
1216 		return err;
1217 
1218 	if (!is_socket_ioctl_cmd(cmd))
1219 		return -ENOTTY;
1220 
1221 	if (get_user_ifreq(&ifr, &data, argp))
1222 		return -EFAULT;
1223 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224 	if (!err && need_copyout)
1225 		if (put_user_ifreq(&ifr, argp))
1226 			return -EFAULT;
1227 
1228 	return err;
1229 }
1230 
1231 /*
1232  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1233  *	what to do with it - that's up to the protocol still.
1234  */
1235 
1236 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237 {
1238 	const struct proto_ops  *ops;
1239 	struct socket *sock;
1240 	struct sock *sk;
1241 	void __user *argp = (void __user *)arg;
1242 	int pid, err;
1243 	struct net *net;
1244 
1245 	sock = file->private_data;
1246 	ops = READ_ONCE(sock->ops);
1247 	sk = sock->sk;
1248 	net = sock_net(sk);
1249 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250 		struct ifreq ifr;
1251 		void __user *data;
1252 		bool need_copyout;
1253 		if (get_user_ifreq(&ifr, &data, argp))
1254 			return -EFAULT;
1255 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 		if (!err && need_copyout)
1257 			if (put_user_ifreq(&ifr, argp))
1258 				return -EFAULT;
1259 	} else
1260 #ifdef CONFIG_WEXT_CORE
1261 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262 		err = wext_handle_ioctl(net, cmd, argp);
1263 	} else
1264 #endif
1265 		switch (cmd) {
1266 		case FIOSETOWN:
1267 		case SIOCSPGRP:
1268 			err = -EFAULT;
1269 			if (get_user(pid, (int __user *)argp))
1270 				break;
1271 			err = f_setown(sock->file, pid, 1);
1272 			break;
1273 		case FIOGETOWN:
1274 		case SIOCGPGRP:
1275 			err = put_user(f_getown(sock->file),
1276 				       (int __user *)argp);
1277 			break;
1278 		case SIOCGIFBR:
1279 		case SIOCSIFBR:
1280 		case SIOCBRADDBR:
1281 		case SIOCBRDELBR:
1282 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1283 			break;
1284 		case SIOCGIFVLAN:
1285 		case SIOCSIFVLAN:
1286 			err = -ENOPKG;
1287 			if (!vlan_ioctl_hook)
1288 				request_module("8021q");
1289 
1290 			mutex_lock(&vlan_ioctl_mutex);
1291 			if (vlan_ioctl_hook)
1292 				err = vlan_ioctl_hook(net, argp);
1293 			mutex_unlock(&vlan_ioctl_mutex);
1294 			break;
1295 		case SIOCGSKNS:
1296 			err = -EPERM;
1297 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298 				break;
1299 
1300 			err = open_related_ns(&net->ns, get_net_ns);
1301 			break;
1302 		case SIOCGSTAMP_OLD:
1303 		case SIOCGSTAMPNS_OLD:
1304 			if (!ops->gettstamp) {
1305 				err = -ENOIOCTLCMD;
1306 				break;
1307 			}
1308 			err = ops->gettstamp(sock, argp,
1309 					     cmd == SIOCGSTAMP_OLD,
1310 					     !IS_ENABLED(CONFIG_64BIT));
1311 			break;
1312 		case SIOCGSTAMP_NEW:
1313 		case SIOCGSTAMPNS_NEW:
1314 			if (!ops->gettstamp) {
1315 				err = -ENOIOCTLCMD;
1316 				break;
1317 			}
1318 			err = ops->gettstamp(sock, argp,
1319 					     cmd == SIOCGSTAMP_NEW,
1320 					     false);
1321 			break;
1322 
1323 		case SIOCGIFCONF:
1324 			err = dev_ifconf(net, argp);
1325 			break;
1326 
1327 		default:
1328 			err = sock_do_ioctl(net, sock, cmd, arg);
1329 			break;
1330 		}
1331 	return err;
1332 }
1333 
1334 /**
1335  *	sock_create_lite - creates a socket
1336  *	@family: protocol family (AF_INET, ...)
1337  *	@type: communication type (SOCK_STREAM, ...)
1338  *	@protocol: protocol (0, ...)
1339  *	@res: new socket
1340  *
1341  *	Creates a new socket and assigns it to @res, passing through LSM.
1342  *	The new socket initialization is not complete, see kernel_accept().
1343  *	Returns 0 or an error. On failure @res is set to %NULL.
1344  *	This function internally uses GFP_KERNEL.
1345  */
1346 
1347 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348 {
1349 	int err;
1350 	struct socket *sock = NULL;
1351 
1352 	err = security_socket_create(family, type, protocol, 1);
1353 	if (err)
1354 		goto out;
1355 
1356 	sock = sock_alloc();
1357 	if (!sock) {
1358 		err = -ENOMEM;
1359 		goto out;
1360 	}
1361 
1362 	sock->type = type;
1363 	err = security_socket_post_create(sock, family, type, protocol, 1);
1364 	if (err)
1365 		goto out_release;
1366 
1367 out:
1368 	*res = sock;
1369 	return err;
1370 out_release:
1371 	sock_release(sock);
1372 	sock = NULL;
1373 	goto out;
1374 }
1375 EXPORT_SYMBOL(sock_create_lite);
1376 
1377 /* No kernel lock held - perfect */
1378 static __poll_t sock_poll(struct file *file, poll_table *wait)
1379 {
1380 	struct socket *sock = file->private_data;
1381 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1382 	__poll_t events = poll_requested_events(wait), flag = 0;
1383 
1384 	if (!ops->poll)
1385 		return 0;
1386 
1387 	if (sk_can_busy_loop(sock->sk)) {
1388 		/* poll once if requested by the syscall */
1389 		if (events & POLL_BUSY_LOOP)
1390 			sk_busy_loop(sock->sk, 1);
1391 
1392 		/* if this socket can poll_ll, tell the system call */
1393 		flag = POLL_BUSY_LOOP;
1394 	}
1395 
1396 	return ops->poll(file, sock, wait) | flag;
1397 }
1398 
1399 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400 {
1401 	struct socket *sock = file->private_data;
1402 
1403 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404 }
1405 
1406 static int sock_close(struct inode *inode, struct file *filp)
1407 {
1408 	__sock_release(SOCKET_I(inode), inode);
1409 	return 0;
1410 }
1411 
1412 /*
1413  *	Update the socket async list
1414  *
1415  *	Fasync_list locking strategy.
1416  *
1417  *	1. fasync_list is modified only under process context socket lock
1418  *	   i.e. under semaphore.
1419  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420  *	   or under socket lock
1421  */
1422 
1423 static int sock_fasync(int fd, struct file *filp, int on)
1424 {
1425 	struct socket *sock = filp->private_data;
1426 	struct sock *sk = sock->sk;
1427 	struct socket_wq *wq = &sock->wq;
1428 
1429 	if (sk == NULL)
1430 		return -EINVAL;
1431 
1432 	lock_sock(sk);
1433 	fasync_helper(fd, filp, on, &wq->fasync_list);
1434 
1435 	if (!wq->fasync_list)
1436 		sock_reset_flag(sk, SOCK_FASYNC);
1437 	else
1438 		sock_set_flag(sk, SOCK_FASYNC);
1439 
1440 	release_sock(sk);
1441 	return 0;
1442 }
1443 
1444 /* This function may be called only under rcu_lock */
1445 
1446 int sock_wake_async(struct socket_wq *wq, int how, int band)
1447 {
1448 	if (!wq || !wq->fasync_list)
1449 		return -1;
1450 
1451 	switch (how) {
1452 	case SOCK_WAKE_WAITD:
1453 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454 			break;
1455 		goto call_kill;
1456 	case SOCK_WAKE_SPACE:
1457 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458 			break;
1459 		fallthrough;
1460 	case SOCK_WAKE_IO:
1461 call_kill:
1462 		kill_fasync(&wq->fasync_list, SIGIO, band);
1463 		break;
1464 	case SOCK_WAKE_URG:
1465 		kill_fasync(&wq->fasync_list, SIGURG, band);
1466 	}
1467 
1468 	return 0;
1469 }
1470 EXPORT_SYMBOL(sock_wake_async);
1471 
1472 /**
1473  *	__sock_create - creates a socket
1474  *	@net: net namespace
1475  *	@family: protocol family (AF_INET, ...)
1476  *	@type: communication type (SOCK_STREAM, ...)
1477  *	@protocol: protocol (0, ...)
1478  *	@res: new socket
1479  *	@kern: boolean for kernel space sockets
1480  *
1481  *	Creates a new socket and assigns it to @res, passing through LSM.
1482  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483  *	be set to true if the socket resides in kernel space.
1484  *	This function internally uses GFP_KERNEL.
1485  */
1486 
1487 int __sock_create(struct net *net, int family, int type, int protocol,
1488 			 struct socket **res, int kern)
1489 {
1490 	int err;
1491 	struct socket *sock;
1492 	const struct net_proto_family *pf;
1493 
1494 	/*
1495 	 *      Check protocol is in range
1496 	 */
1497 	if (family < 0 || family >= NPROTO)
1498 		return -EAFNOSUPPORT;
1499 	if (type < 0 || type >= SOCK_MAX)
1500 		return -EINVAL;
1501 
1502 	/* Compatibility.
1503 
1504 	   This uglymoron is moved from INET layer to here to avoid
1505 	   deadlock in module load.
1506 	 */
1507 	if (family == PF_INET && type == SOCK_PACKET) {
1508 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509 			     current->comm);
1510 		family = PF_PACKET;
1511 	}
1512 
1513 	err = security_socket_create(family, type, protocol, kern);
1514 	if (err)
1515 		return err;
1516 
1517 	/*
1518 	 *	Allocate the socket and allow the family to set things up. if
1519 	 *	the protocol is 0, the family is instructed to select an appropriate
1520 	 *	default.
1521 	 */
1522 	sock = sock_alloc();
1523 	if (!sock) {
1524 		net_warn_ratelimited("socket: no more sockets\n");
1525 		return -ENFILE;	/* Not exactly a match, but its the
1526 				   closest posix thing */
1527 	}
1528 
1529 	sock->type = type;
1530 
1531 #ifdef CONFIG_MODULES
1532 	/* Attempt to load a protocol module if the find failed.
1533 	 *
1534 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535 	 * requested real, full-featured networking support upon configuration.
1536 	 * Otherwise module support will break!
1537 	 */
1538 	if (rcu_access_pointer(net_families[family]) == NULL)
1539 		request_module("net-pf-%d", family);
1540 #endif
1541 
1542 	rcu_read_lock();
1543 	pf = rcu_dereference(net_families[family]);
1544 	err = -EAFNOSUPPORT;
1545 	if (!pf)
1546 		goto out_release;
1547 
1548 	/*
1549 	 * We will call the ->create function, that possibly is in a loadable
1550 	 * module, so we have to bump that loadable module refcnt first.
1551 	 */
1552 	if (!try_module_get(pf->owner))
1553 		goto out_release;
1554 
1555 	/* Now protected by module ref count */
1556 	rcu_read_unlock();
1557 
1558 	err = pf->create(net, sock, protocol, kern);
1559 	if (err < 0) {
1560 		/* ->create should release the allocated sock->sk object on error
1561 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1562 		 */
1563 		DEBUG_NET_WARN_ONCE(sock->sk,
1564 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565 				    pf->create, family, type, protocol);
1566 		goto out_module_put;
1567 	}
1568 
1569 	/*
1570 	 * Now to bump the refcnt of the [loadable] module that owns this
1571 	 * socket at sock_release time we decrement its refcnt.
1572 	 */
1573 	if (!try_module_get(sock->ops->owner))
1574 		goto out_module_busy;
1575 
1576 	/*
1577 	 * Now that we're done with the ->create function, the [loadable]
1578 	 * module can have its refcnt decremented
1579 	 */
1580 	module_put(pf->owner);
1581 	err = security_socket_post_create(sock, family, type, protocol, kern);
1582 	if (err)
1583 		goto out_sock_release;
1584 	*res = sock;
1585 
1586 	return 0;
1587 
1588 out_module_busy:
1589 	err = -EAFNOSUPPORT;
1590 out_module_put:
1591 	sock->ops = NULL;
1592 	module_put(pf->owner);
1593 out_sock_release:
1594 	sock_release(sock);
1595 	return err;
1596 
1597 out_release:
1598 	rcu_read_unlock();
1599 	goto out_sock_release;
1600 }
1601 EXPORT_SYMBOL(__sock_create);
1602 
1603 /**
1604  *	sock_create - creates a socket
1605  *	@family: protocol family (AF_INET, ...)
1606  *	@type: communication type (SOCK_STREAM, ...)
1607  *	@protocol: protocol (0, ...)
1608  *	@res: new socket
1609  *
1610  *	A wrapper around __sock_create().
1611  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1612  */
1613 
1614 int sock_create(int family, int type, int protocol, struct socket **res)
1615 {
1616 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1617 }
1618 EXPORT_SYMBOL(sock_create);
1619 
1620 /**
1621  *	sock_create_kern - creates a socket (kernel space)
1622  *	@net: net namespace
1623  *	@family: protocol family (AF_INET, ...)
1624  *	@type: communication type (SOCK_STREAM, ...)
1625  *	@protocol: protocol (0, ...)
1626  *	@res: new socket
1627  *
1628  *	A wrapper around __sock_create().
1629  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1630  */
1631 
1632 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1633 {
1634 	return __sock_create(net, family, type, protocol, res, 1);
1635 }
1636 EXPORT_SYMBOL(sock_create_kern);
1637 
1638 static struct socket *__sys_socket_create(int family, int type, int protocol)
1639 {
1640 	struct socket *sock;
1641 	int retval;
1642 
1643 	/* Check the SOCK_* constants for consistency.  */
1644 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1648 
1649 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650 		return ERR_PTR(-EINVAL);
1651 	type &= SOCK_TYPE_MASK;
1652 
1653 	retval = sock_create(family, type, protocol, &sock);
1654 	if (retval < 0)
1655 		return ERR_PTR(retval);
1656 
1657 	return sock;
1658 }
1659 
1660 struct file *__sys_socket_file(int family, int type, int protocol)
1661 {
1662 	struct socket *sock;
1663 	int flags;
1664 
1665 	sock = __sys_socket_create(family, type, protocol);
1666 	if (IS_ERR(sock))
1667 		return ERR_CAST(sock);
1668 
1669 	flags = type & ~SOCK_TYPE_MASK;
1670 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672 
1673 	return sock_alloc_file(sock, flags, NULL);
1674 }
1675 
1676 /*	A hook for bpf progs to attach to and update socket protocol.
1677  *
1678  *	A static noinline declaration here could cause the compiler to
1679  *	optimize away the function. A global noinline declaration will
1680  *	keep the definition, but may optimize away the callsite.
1681  *	Therefore, __weak is needed to ensure that the call is still
1682  *	emitted, by telling the compiler that we don't know what the
1683  *	function might eventually be.
1684  */
1685 
1686 __bpf_hook_start();
1687 
1688 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1689 {
1690 	return protocol;
1691 }
1692 
1693 __bpf_hook_end();
1694 
1695 int __sys_socket(int family, int type, int protocol)
1696 {
1697 	struct socket *sock;
1698 	int flags;
1699 
1700 	sock = __sys_socket_create(family, type,
1701 				   update_socket_protocol(family, type, protocol));
1702 	if (IS_ERR(sock))
1703 		return PTR_ERR(sock);
1704 
1705 	flags = type & ~SOCK_TYPE_MASK;
1706 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708 
1709 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1710 }
1711 
1712 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1713 {
1714 	return __sys_socket(family, type, protocol);
1715 }
1716 
1717 /*
1718  *	Create a pair of connected sockets.
1719  */
1720 
1721 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1722 {
1723 	struct socket *sock1, *sock2;
1724 	int fd1, fd2, err;
1725 	struct file *newfile1, *newfile2;
1726 	int flags;
1727 
1728 	flags = type & ~SOCK_TYPE_MASK;
1729 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730 		return -EINVAL;
1731 	type &= SOCK_TYPE_MASK;
1732 
1733 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735 
1736 	/*
1737 	 * reserve descriptors and make sure we won't fail
1738 	 * to return them to userland.
1739 	 */
1740 	fd1 = get_unused_fd_flags(flags);
1741 	if (unlikely(fd1 < 0))
1742 		return fd1;
1743 
1744 	fd2 = get_unused_fd_flags(flags);
1745 	if (unlikely(fd2 < 0)) {
1746 		put_unused_fd(fd1);
1747 		return fd2;
1748 	}
1749 
1750 	err = put_user(fd1, &usockvec[0]);
1751 	if (err)
1752 		goto out;
1753 
1754 	err = put_user(fd2, &usockvec[1]);
1755 	if (err)
1756 		goto out;
1757 
1758 	/*
1759 	 * Obtain the first socket and check if the underlying protocol
1760 	 * supports the socketpair call.
1761 	 */
1762 
1763 	err = sock_create(family, type, protocol, &sock1);
1764 	if (unlikely(err < 0))
1765 		goto out;
1766 
1767 	err = sock_create(family, type, protocol, &sock2);
1768 	if (unlikely(err < 0)) {
1769 		sock_release(sock1);
1770 		goto out;
1771 	}
1772 
1773 	err = security_socket_socketpair(sock1, sock2);
1774 	if (unlikely(err)) {
1775 		sock_release(sock2);
1776 		sock_release(sock1);
1777 		goto out;
1778 	}
1779 
1780 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781 	if (unlikely(err < 0)) {
1782 		sock_release(sock2);
1783 		sock_release(sock1);
1784 		goto out;
1785 	}
1786 
1787 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1788 	if (IS_ERR(newfile1)) {
1789 		err = PTR_ERR(newfile1);
1790 		sock_release(sock2);
1791 		goto out;
1792 	}
1793 
1794 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1795 	if (IS_ERR(newfile2)) {
1796 		err = PTR_ERR(newfile2);
1797 		fput(newfile1);
1798 		goto out;
1799 	}
1800 
1801 	audit_fd_pair(fd1, fd2);
1802 
1803 	fd_install(fd1, newfile1);
1804 	fd_install(fd2, newfile2);
1805 	return 0;
1806 
1807 out:
1808 	put_unused_fd(fd2);
1809 	put_unused_fd(fd1);
1810 	return err;
1811 }
1812 
1813 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814 		int __user *, usockvec)
1815 {
1816 	return __sys_socketpair(family, type, protocol, usockvec);
1817 }
1818 
1819 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820 		      int addrlen)
1821 {
1822 	int err;
1823 
1824 	err = security_socket_bind(sock, (struct sockaddr *)address,
1825 				   addrlen);
1826 	if (!err)
1827 		err = READ_ONCE(sock->ops)->bind(sock,
1828 						 (struct sockaddr *)address,
1829 						 addrlen);
1830 	return err;
1831 }
1832 
1833 /*
1834  *	Bind a name to a socket. Nothing much to do here since it's
1835  *	the protocol's responsibility to handle the local address.
1836  *
1837  *	We move the socket address to kernel space before we call
1838  *	the protocol layer (having also checked the address is ok).
1839  */
1840 
1841 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1842 {
1843 	struct socket *sock;
1844 	struct sockaddr_storage address;
1845 	CLASS(fd, f)(fd);
1846 	int err;
1847 
1848 	if (fd_empty(f))
1849 		return -EBADF;
1850 	sock = sock_from_file(fd_file(f));
1851 	if (unlikely(!sock))
1852 		return -ENOTSOCK;
1853 
1854 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855 	if (unlikely(err))
1856 		return err;
1857 
1858 	return __sys_bind_socket(sock, &address, addrlen);
1859 }
1860 
1861 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1862 {
1863 	return __sys_bind(fd, umyaddr, addrlen);
1864 }
1865 
1866 /*
1867  *	Perform a listen. Basically, we allow the protocol to do anything
1868  *	necessary for a listen, and if that works, we mark the socket as
1869  *	ready for listening.
1870  */
1871 int __sys_listen_socket(struct socket *sock, int backlog)
1872 {
1873 	int somaxconn, err;
1874 
1875 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876 	if ((unsigned int)backlog > somaxconn)
1877 		backlog = somaxconn;
1878 
1879 	err = security_socket_listen(sock, backlog);
1880 	if (!err)
1881 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882 	return err;
1883 }
1884 
1885 int __sys_listen(int fd, int backlog)
1886 {
1887 	CLASS(fd, f)(fd);
1888 	struct socket *sock;
1889 
1890 	if (fd_empty(f))
1891 		return -EBADF;
1892 	sock = sock_from_file(fd_file(f));
1893 	if (unlikely(!sock))
1894 		return -ENOTSOCK;
1895 
1896 	return __sys_listen_socket(sock, backlog);
1897 }
1898 
1899 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1900 {
1901 	return __sys_listen(fd, backlog);
1902 }
1903 
1904 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905 		       struct sockaddr __user *upeer_sockaddr,
1906 		       int __user *upeer_addrlen, int flags)
1907 {
1908 	struct socket *sock, *newsock;
1909 	struct file *newfile;
1910 	int err, len;
1911 	struct sockaddr_storage address;
1912 	const struct proto_ops *ops;
1913 
1914 	sock = sock_from_file(file);
1915 	if (!sock)
1916 		return ERR_PTR(-ENOTSOCK);
1917 
1918 	newsock = sock_alloc();
1919 	if (!newsock)
1920 		return ERR_PTR(-ENFILE);
1921 	ops = READ_ONCE(sock->ops);
1922 
1923 	newsock->type = sock->type;
1924 	newsock->ops = ops;
1925 
1926 	/*
1927 	 * We don't need try_module_get here, as the listening socket (sock)
1928 	 * has the protocol module (sock->ops->owner) held.
1929 	 */
1930 	__module_get(ops->owner);
1931 
1932 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933 	if (IS_ERR(newfile))
1934 		return newfile;
1935 
1936 	err = security_socket_accept(sock, newsock);
1937 	if (err)
1938 		goto out_fd;
1939 
1940 	arg->flags |= sock->file->f_flags;
1941 	err = ops->accept(sock, newsock, arg);
1942 	if (err < 0)
1943 		goto out_fd;
1944 
1945 	if (upeer_sockaddr) {
1946 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947 		if (len < 0) {
1948 			err = -ECONNABORTED;
1949 			goto out_fd;
1950 		}
1951 		err = move_addr_to_user(&address,
1952 					len, upeer_sockaddr, upeer_addrlen);
1953 		if (err < 0)
1954 			goto out_fd;
1955 	}
1956 
1957 	/* File flags are not inherited via accept() unlike another OSes. */
1958 	return newfile;
1959 out_fd:
1960 	fput(newfile);
1961 	return ERR_PTR(err);
1962 }
1963 
1964 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965 			      int __user *upeer_addrlen, int flags)
1966 {
1967 	struct proto_accept_arg arg = { };
1968 	struct file *newfile;
1969 	int newfd;
1970 
1971 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972 		return -EINVAL;
1973 
1974 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1976 
1977 	newfd = get_unused_fd_flags(flags);
1978 	if (unlikely(newfd < 0))
1979 		return newfd;
1980 
1981 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982 			    flags);
1983 	if (IS_ERR(newfile)) {
1984 		put_unused_fd(newfd);
1985 		return PTR_ERR(newfile);
1986 	}
1987 	fd_install(newfd, newfile);
1988 	return newfd;
1989 }
1990 
1991 /*
1992  *	For accept, we attempt to create a new socket, set up the link
1993  *	with the client, wake up the client, then return the new
1994  *	connected fd. We collect the address of the connector in kernel
1995  *	space and move it to user at the very end. This is unclean because
1996  *	we open the socket then return an error.
1997  *
1998  *	1003.1g adds the ability to recvmsg() to query connection pending
1999  *	status to recvmsg. We need to add that support in a way thats
2000  *	clean when we restructure accept also.
2001  */
2002 
2003 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004 		  int __user *upeer_addrlen, int flags)
2005 {
2006 	CLASS(fd, f)(fd);
2007 
2008 	if (fd_empty(f))
2009 		return -EBADF;
2010 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011 					 upeer_addrlen, flags);
2012 }
2013 
2014 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015 		int __user *, upeer_addrlen, int, flags)
2016 {
2017 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2018 }
2019 
2020 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 		int __user *, upeer_addrlen)
2022 {
2023 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024 }
2025 
2026 /*
2027  *	Attempt to connect to a socket with the server address.  The address
2028  *	is in user space so we verify it is OK and move it to kernel space.
2029  *
2030  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031  *	break bindings
2032  *
2033  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034  *	other SEQPACKET protocols that take time to connect() as it doesn't
2035  *	include the -EINPROGRESS status for such sockets.
2036  */
2037 
2038 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039 		       int addrlen, int file_flags)
2040 {
2041 	struct socket *sock;
2042 	int err;
2043 
2044 	sock = sock_from_file(file);
2045 	if (!sock) {
2046 		err = -ENOTSOCK;
2047 		goto out;
2048 	}
2049 
2050 	err =
2051 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052 	if (err)
2053 		goto out;
2054 
2055 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056 				addrlen, sock->file->f_flags | file_flags);
2057 out:
2058 	return err;
2059 }
2060 
2061 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062 {
2063 	struct sockaddr_storage address;
2064 	CLASS(fd, f)(fd);
2065 	int ret;
2066 
2067 	if (fd_empty(f))
2068 		return -EBADF;
2069 
2070 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071 	if (ret)
2072 		return ret;
2073 
2074 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2075 }
2076 
2077 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078 		int, addrlen)
2079 {
2080 	return __sys_connect(fd, uservaddr, addrlen);
2081 }
2082 
2083 /*
2084  *	Get the local address ('name') of a socket object. Move the obtained
2085  *	name to user space.
2086  */
2087 
2088 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089 		      int __user *usockaddr_len)
2090 {
2091 	struct socket *sock;
2092 	struct sockaddr_storage address;
2093 	CLASS(fd, f)(fd);
2094 	int err;
2095 
2096 	if (fd_empty(f))
2097 		return -EBADF;
2098 	sock = sock_from_file(fd_file(f));
2099 	if (unlikely(!sock))
2100 		return -ENOTSOCK;
2101 
2102 	err = security_socket_getsockname(sock);
2103 	if (err)
2104 		return err;
2105 
2106 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107 	if (err < 0)
2108 		return err;
2109 
2110 	/* "err" is actually length in this case */
2111 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112 }
2113 
2114 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115 		int __user *, usockaddr_len)
2116 {
2117 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118 }
2119 
2120 /*
2121  *	Get the remote address ('name') of a socket object. Move the obtained
2122  *	name to user space.
2123  */
2124 
2125 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126 		      int __user *usockaddr_len)
2127 {
2128 	struct socket *sock;
2129 	struct sockaddr_storage address;
2130 	CLASS(fd, f)(fd);
2131 	int err;
2132 
2133 	if (fd_empty(f))
2134 		return -EBADF;
2135 	sock = sock_from_file(fd_file(f));
2136 	if (unlikely(!sock))
2137 		return -ENOTSOCK;
2138 
2139 	err = security_socket_getpeername(sock);
2140 	if (err)
2141 		return err;
2142 
2143 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144 	if (err < 0)
2145 		return err;
2146 
2147 	/* "err" is actually length in this case */
2148 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2149 }
2150 
2151 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152 		int __user *, usockaddr_len)
2153 {
2154 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2155 }
2156 
2157 /*
2158  *	Send a datagram to a given address. We move the address into kernel
2159  *	space and check the user space data area is readable before invoking
2160  *	the protocol.
2161  */
2162 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163 		 struct sockaddr __user *addr,  int addr_len)
2164 {
2165 	struct socket *sock;
2166 	struct sockaddr_storage address;
2167 	int err;
2168 	struct msghdr msg;
2169 
2170 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171 	if (unlikely(err))
2172 		return err;
2173 
2174 	CLASS(fd, f)(fd);
2175 	if (fd_empty(f))
2176 		return -EBADF;
2177 	sock = sock_from_file(fd_file(f));
2178 	if (unlikely(!sock))
2179 		return -ENOTSOCK;
2180 
2181 	msg.msg_name = NULL;
2182 	msg.msg_control = NULL;
2183 	msg.msg_controllen = 0;
2184 	msg.msg_namelen = 0;
2185 	msg.msg_ubuf = NULL;
2186 	if (addr) {
2187 		err = move_addr_to_kernel(addr, addr_len, &address);
2188 		if (err < 0)
2189 			return err;
2190 		msg.msg_name = (struct sockaddr *)&address;
2191 		msg.msg_namelen = addr_len;
2192 	}
2193 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194 	if (sock->file->f_flags & O_NONBLOCK)
2195 		flags |= MSG_DONTWAIT;
2196 	msg.msg_flags = flags;
2197 	return __sock_sendmsg(sock, &msg);
2198 }
2199 
2200 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201 		unsigned int, flags, struct sockaddr __user *, addr,
2202 		int, addr_len)
2203 {
2204 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205 }
2206 
2207 /*
2208  *	Send a datagram down a socket.
2209  */
2210 
2211 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212 		unsigned int, flags)
2213 {
2214 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215 }
2216 
2217 /*
2218  *	Receive a frame from the socket and optionally record the address of the
2219  *	sender. We verify the buffers are writable and if needed move the
2220  *	sender address from kernel to user space.
2221  */
2222 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223 		   struct sockaddr __user *addr, int __user *addr_len)
2224 {
2225 	struct sockaddr_storage address;
2226 	struct msghdr msg = {
2227 		/* Save some cycles and don't copy the address if not needed */
2228 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2229 	};
2230 	struct socket *sock;
2231 	int err, err2;
2232 
2233 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234 	if (unlikely(err))
2235 		return err;
2236 
2237 	CLASS(fd, f)(fd);
2238 
2239 	if (fd_empty(f))
2240 		return -EBADF;
2241 	sock = sock_from_file(fd_file(f));
2242 	if (unlikely(!sock))
2243 		return -ENOTSOCK;
2244 
2245 	if (sock->file->f_flags & O_NONBLOCK)
2246 		flags |= MSG_DONTWAIT;
2247 	err = sock_recvmsg(sock, &msg, flags);
2248 
2249 	if (err >= 0 && addr != NULL) {
2250 		err2 = move_addr_to_user(&address,
2251 					 msg.msg_namelen, addr, addr_len);
2252 		if (err2 < 0)
2253 			err = err2;
2254 	}
2255 	return err;
2256 }
2257 
2258 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259 		unsigned int, flags, struct sockaddr __user *, addr,
2260 		int __user *, addr_len)
2261 {
2262 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263 }
2264 
2265 /*
2266  *	Receive a datagram from a socket.
2267  */
2268 
2269 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270 		unsigned int, flags)
2271 {
2272 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273 }
2274 
2275 static bool sock_use_custom_sol_socket(const struct socket *sock)
2276 {
2277 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278 }
2279 
2280 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281 		       int optname, sockptr_t optval, int optlen)
2282 {
2283 	const struct proto_ops *ops;
2284 	char *kernel_optval = NULL;
2285 	int err;
2286 
2287 	if (optlen < 0)
2288 		return -EINVAL;
2289 
2290 	err = security_socket_setsockopt(sock, level, optname);
2291 	if (err)
2292 		goto out_put;
2293 
2294 	if (!compat)
2295 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296 						     optval, &optlen,
2297 						     &kernel_optval);
2298 	if (err < 0)
2299 		goto out_put;
2300 	if (err > 0) {
2301 		err = 0;
2302 		goto out_put;
2303 	}
2304 
2305 	if (kernel_optval)
2306 		optval = KERNEL_SOCKPTR(kernel_optval);
2307 	ops = READ_ONCE(sock->ops);
2308 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2310 	else if (unlikely(!ops->setsockopt))
2311 		err = -EOPNOTSUPP;
2312 	else
2313 		err = ops->setsockopt(sock, level, optname, optval,
2314 					    optlen);
2315 	kfree(kernel_optval);
2316 out_put:
2317 	return err;
2318 }
2319 EXPORT_SYMBOL(do_sock_setsockopt);
2320 
2321 /* Set a socket option. Because we don't know the option lengths we have
2322  * to pass the user mode parameter for the protocols to sort out.
2323  */
2324 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325 		     int optlen)
2326 {
2327 	sockptr_t optval = USER_SOCKPTR(user_optval);
2328 	bool compat = in_compat_syscall();
2329 	struct socket *sock;
2330 	CLASS(fd, f)(fd);
2331 
2332 	if (fd_empty(f))
2333 		return -EBADF;
2334 	sock = sock_from_file(fd_file(f));
2335 	if (unlikely(!sock))
2336 		return -ENOTSOCK;
2337 
2338 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339 }
2340 
2341 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342 		char __user *, optval, int, optlen)
2343 {
2344 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2345 }
2346 
2347 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348 							 int optname));
2349 
2350 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351 		       int optname, sockptr_t optval, sockptr_t optlen)
2352 {
2353 	int max_optlen __maybe_unused = 0;
2354 	const struct proto_ops *ops;
2355 	int err;
2356 
2357 	err = security_socket_getsockopt(sock, level, optname);
2358 	if (err)
2359 		return err;
2360 
2361 	if (!compat)
2362 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363 
2364 	ops = READ_ONCE(sock->ops);
2365 	if (level == SOL_SOCKET) {
2366 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367 	} else if (unlikely(!ops->getsockopt)) {
2368 		err = -EOPNOTSUPP;
2369 	} else {
2370 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371 			      "Invalid argument type"))
2372 			return -EOPNOTSUPP;
2373 
2374 		err = ops->getsockopt(sock, level, optname, optval.user,
2375 				      optlen.user);
2376 	}
2377 
2378 	if (!compat)
2379 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380 						     optval, optlen, max_optlen,
2381 						     err);
2382 
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(do_sock_getsockopt);
2386 
2387 /*
2388  *	Get a socket option. Because we don't know the option lengths we have
2389  *	to pass a user mode parameter for the protocols to sort out.
2390  */
2391 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392 		int __user *optlen)
2393 {
2394 	struct socket *sock;
2395 	CLASS(fd, f)(fd);
2396 
2397 	if (fd_empty(f))
2398 		return -EBADF;
2399 	sock = sock_from_file(fd_file(f));
2400 	if (unlikely(!sock))
2401 		return -ENOTSOCK;
2402 
2403 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405 }
2406 
2407 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408 		char __user *, optval, int __user *, optlen)
2409 {
2410 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2411 }
2412 
2413 /*
2414  *	Shutdown a socket.
2415  */
2416 
2417 int __sys_shutdown_sock(struct socket *sock, int how)
2418 {
2419 	int err;
2420 
2421 	err = security_socket_shutdown(sock, how);
2422 	if (!err)
2423 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424 
2425 	return err;
2426 }
2427 
2428 int __sys_shutdown(int fd, int how)
2429 {
2430 	struct socket *sock;
2431 	CLASS(fd, f)(fd);
2432 
2433 	if (fd_empty(f))
2434 		return -EBADF;
2435 	sock = sock_from_file(fd_file(f));
2436 	if (unlikely(!sock))
2437 		return -ENOTSOCK;
2438 
2439 	return __sys_shutdown_sock(sock, how);
2440 }
2441 
2442 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443 {
2444 	return __sys_shutdown(fd, how);
2445 }
2446 
2447 /* A couple of helpful macros for getting the address of the 32/64 bit
2448  * fields which are the same type (int / unsigned) on our platforms.
2449  */
2450 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2452 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2453 
2454 struct used_address {
2455 	struct sockaddr_storage name;
2456 	unsigned int name_len;
2457 };
2458 
2459 int __copy_msghdr(struct msghdr *kmsg,
2460 		  struct user_msghdr *msg,
2461 		  struct sockaddr __user **save_addr)
2462 {
2463 	ssize_t err;
2464 
2465 	kmsg->msg_control_is_user = true;
2466 	kmsg->msg_get_inq = 0;
2467 	kmsg->msg_control_user = msg->msg_control;
2468 	kmsg->msg_controllen = msg->msg_controllen;
2469 	kmsg->msg_flags = msg->msg_flags;
2470 
2471 	kmsg->msg_namelen = msg->msg_namelen;
2472 	if (!msg->msg_name)
2473 		kmsg->msg_namelen = 0;
2474 
2475 	if (kmsg->msg_namelen < 0)
2476 		return -EINVAL;
2477 
2478 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480 
2481 	if (save_addr)
2482 		*save_addr = msg->msg_name;
2483 
2484 	if (msg->msg_name && kmsg->msg_namelen) {
2485 		if (!save_addr) {
2486 			err = move_addr_to_kernel(msg->msg_name,
2487 						  kmsg->msg_namelen,
2488 						  kmsg->msg_name);
2489 			if (err < 0)
2490 				return err;
2491 		}
2492 	} else {
2493 		kmsg->msg_name = NULL;
2494 		kmsg->msg_namelen = 0;
2495 	}
2496 
2497 	if (msg->msg_iovlen > UIO_MAXIOV)
2498 		return -EMSGSIZE;
2499 
2500 	kmsg->msg_iocb = NULL;
2501 	kmsg->msg_ubuf = NULL;
2502 	return 0;
2503 }
2504 
2505 static int copy_msghdr_from_user(struct msghdr *kmsg,
2506 				 struct user_msghdr __user *umsg,
2507 				 struct sockaddr __user **save_addr,
2508 				 struct iovec **iov)
2509 {
2510 	struct user_msghdr msg;
2511 	ssize_t err;
2512 
2513 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514 		return -EFAULT;
2515 
2516 	err = __copy_msghdr(kmsg, &msg, save_addr);
2517 	if (err)
2518 		return err;
2519 
2520 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521 			    msg.msg_iov, msg.msg_iovlen,
2522 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2523 	return err < 0 ? err : 0;
2524 }
2525 
2526 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527 			   unsigned int flags, struct used_address *used_address,
2528 			   unsigned int allowed_msghdr_flags)
2529 {
2530 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531 				__aligned(sizeof(__kernel_size_t));
2532 	/* 20 is size of ipv6_pktinfo */
2533 	unsigned char *ctl_buf = ctl;
2534 	int ctl_len;
2535 	ssize_t err;
2536 
2537 	err = -ENOBUFS;
2538 
2539 	if (msg_sys->msg_controllen > INT_MAX)
2540 		goto out;
2541 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542 	ctl_len = msg_sys->msg_controllen;
2543 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544 		err =
2545 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546 						     sizeof(ctl));
2547 		if (err)
2548 			goto out;
2549 		ctl_buf = msg_sys->msg_control;
2550 		ctl_len = msg_sys->msg_controllen;
2551 	} else if (ctl_len) {
2552 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2554 		if (ctl_len > sizeof(ctl)) {
2555 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556 			if (ctl_buf == NULL)
2557 				goto out;
2558 		}
2559 		err = -EFAULT;
2560 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2561 			goto out_freectl;
2562 		msg_sys->msg_control = ctl_buf;
2563 		msg_sys->msg_control_is_user = false;
2564 	}
2565 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566 	msg_sys->msg_flags = flags;
2567 
2568 	if (sock->file->f_flags & O_NONBLOCK)
2569 		msg_sys->msg_flags |= MSG_DONTWAIT;
2570 	/*
2571 	 * If this is sendmmsg() and current destination address is same as
2572 	 * previously succeeded address, omit asking LSM's decision.
2573 	 * used_address->name_len is initialized to UINT_MAX so that the first
2574 	 * destination address never matches.
2575 	 */
2576 	if (used_address && msg_sys->msg_name &&
2577 	    used_address->name_len == msg_sys->msg_namelen &&
2578 	    !memcmp(&used_address->name, msg_sys->msg_name,
2579 		    used_address->name_len)) {
2580 		err = sock_sendmsg_nosec(sock, msg_sys);
2581 		goto out_freectl;
2582 	}
2583 	err = __sock_sendmsg(sock, msg_sys);
2584 	/*
2585 	 * If this is sendmmsg() and sending to current destination address was
2586 	 * successful, remember it.
2587 	 */
2588 	if (used_address && err >= 0) {
2589 		used_address->name_len = msg_sys->msg_namelen;
2590 		if (msg_sys->msg_name)
2591 			memcpy(&used_address->name, msg_sys->msg_name,
2592 			       used_address->name_len);
2593 	}
2594 
2595 out_freectl:
2596 	if (ctl_buf != ctl)
2597 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598 out:
2599 	return err;
2600 }
2601 
2602 static int sendmsg_copy_msghdr(struct msghdr *msg,
2603 			       struct user_msghdr __user *umsg, unsigned flags,
2604 			       struct iovec **iov)
2605 {
2606 	int err;
2607 
2608 	if (flags & MSG_CMSG_COMPAT) {
2609 		struct compat_msghdr __user *msg_compat;
2610 
2611 		msg_compat = (struct compat_msghdr __user *) umsg;
2612 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613 	} else {
2614 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615 	}
2616 	if (err < 0)
2617 		return err;
2618 
2619 	return 0;
2620 }
2621 
2622 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623 			 struct msghdr *msg_sys, unsigned int flags,
2624 			 struct used_address *used_address,
2625 			 unsigned int allowed_msghdr_flags)
2626 {
2627 	struct sockaddr_storage address;
2628 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 	ssize_t err;
2630 
2631 	msg_sys->msg_name = &address;
2632 
2633 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634 	if (err < 0)
2635 		return err;
2636 
2637 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638 				allowed_msghdr_flags);
2639 	kfree(iov);
2640 	return err;
2641 }
2642 
2643 /*
2644  *	BSD sendmsg interface
2645  */
2646 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647 			unsigned int flags)
2648 {
2649 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650 }
2651 
2652 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653 		   bool forbid_cmsg_compat)
2654 {
2655 	struct msghdr msg_sys;
2656 	struct socket *sock;
2657 
2658 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659 		return -EINVAL;
2660 
2661 	CLASS(fd, f)(fd);
2662 
2663 	if (fd_empty(f))
2664 		return -EBADF;
2665 	sock = sock_from_file(fd_file(f));
2666 	if (unlikely(!sock))
2667 		return -ENOTSOCK;
2668 
2669 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2670 }
2671 
2672 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673 {
2674 	return __sys_sendmsg(fd, msg, flags, true);
2675 }
2676 
2677 /*
2678  *	Linux sendmmsg interface
2679  */
2680 
2681 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682 		   unsigned int flags, bool forbid_cmsg_compat)
2683 {
2684 	int err, datagrams;
2685 	struct socket *sock;
2686 	struct mmsghdr __user *entry;
2687 	struct compat_mmsghdr __user *compat_entry;
2688 	struct msghdr msg_sys;
2689 	struct used_address used_address;
2690 	unsigned int oflags = flags;
2691 
2692 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 		return -EINVAL;
2694 
2695 	if (vlen > UIO_MAXIOV)
2696 		vlen = UIO_MAXIOV;
2697 
2698 	datagrams = 0;
2699 
2700 	CLASS(fd, f)(fd);
2701 
2702 	if (fd_empty(f))
2703 		return -EBADF;
2704 	sock = sock_from_file(fd_file(f));
2705 	if (unlikely(!sock))
2706 		return -ENOTSOCK;
2707 
2708 	used_address.name_len = UINT_MAX;
2709 	entry = mmsg;
2710 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 	err = 0;
2712 	flags |= MSG_BATCH;
2713 
2714 	while (datagrams < vlen) {
2715 		if (datagrams == vlen - 1)
2716 			flags = oflags;
2717 
2718 		if (MSG_CMSG_COMPAT & flags) {
2719 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720 					     &msg_sys, flags, &used_address, MSG_EOR);
2721 			if (err < 0)
2722 				break;
2723 			err = __put_user(err, &compat_entry->msg_len);
2724 			++compat_entry;
2725 		} else {
2726 			err = ___sys_sendmsg(sock,
2727 					     (struct user_msghdr __user *)entry,
2728 					     &msg_sys, flags, &used_address, MSG_EOR);
2729 			if (err < 0)
2730 				break;
2731 			err = put_user(err, &entry->msg_len);
2732 			++entry;
2733 		}
2734 
2735 		if (err)
2736 			break;
2737 		++datagrams;
2738 		if (msg_data_left(&msg_sys))
2739 			break;
2740 		cond_resched();
2741 	}
2742 
2743 	/* We only return an error if no datagrams were able to be sent */
2744 	if (datagrams != 0)
2745 		return datagrams;
2746 
2747 	return err;
2748 }
2749 
2750 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 		unsigned int, vlen, unsigned int, flags)
2752 {
2753 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2754 }
2755 
2756 static int recvmsg_copy_msghdr(struct msghdr *msg,
2757 			       struct user_msghdr __user *umsg, unsigned flags,
2758 			       struct sockaddr __user **uaddr,
2759 			       struct iovec **iov)
2760 {
2761 	ssize_t err;
2762 
2763 	if (MSG_CMSG_COMPAT & flags) {
2764 		struct compat_msghdr __user *msg_compat;
2765 
2766 		msg_compat = (struct compat_msghdr __user *) umsg;
2767 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 	} else {
2769 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770 	}
2771 	if (err < 0)
2772 		return err;
2773 
2774 	return 0;
2775 }
2776 
2777 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 			   struct user_msghdr __user *msg,
2779 			   struct sockaddr __user *uaddr,
2780 			   unsigned int flags, int nosec)
2781 {
2782 	struct compat_msghdr __user *msg_compat =
2783 					(struct compat_msghdr __user *) msg;
2784 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 	struct sockaddr_storage addr;
2786 	unsigned long cmsg_ptr;
2787 	int len;
2788 	ssize_t err;
2789 
2790 	msg_sys->msg_name = &addr;
2791 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793 
2794 	/* We assume all kernel code knows the size of sockaddr_storage */
2795 	msg_sys->msg_namelen = 0;
2796 
2797 	if (sock->file->f_flags & O_NONBLOCK)
2798 		flags |= MSG_DONTWAIT;
2799 
2800 	if (unlikely(nosec))
2801 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 	else
2803 		err = sock_recvmsg(sock, msg_sys, flags);
2804 
2805 	if (err < 0)
2806 		goto out;
2807 	len = err;
2808 
2809 	if (uaddr != NULL) {
2810 		err = move_addr_to_user(&addr,
2811 					msg_sys->msg_namelen, uaddr,
2812 					uaddr_len);
2813 		if (err < 0)
2814 			goto out;
2815 	}
2816 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 			 COMPAT_FLAGS(msg));
2818 	if (err)
2819 		goto out;
2820 	if (MSG_CMSG_COMPAT & flags)
2821 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 				 &msg_compat->msg_controllen);
2823 	else
2824 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 				 &msg->msg_controllen);
2826 	if (err)
2827 		goto out;
2828 	err = len;
2829 out:
2830 	return err;
2831 }
2832 
2833 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835 {
2836 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 	/* user mode address pointers */
2838 	struct sockaddr __user *uaddr;
2839 	ssize_t err;
2840 
2841 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 	if (err < 0)
2843 		return err;
2844 
2845 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 	kfree(iov);
2847 	return err;
2848 }
2849 
2850 /*
2851  *	BSD recvmsg interface
2852  */
2853 
2854 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 			struct user_msghdr __user *umsg,
2856 			struct sockaddr __user *uaddr, unsigned int flags)
2857 {
2858 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859 }
2860 
2861 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 		   bool forbid_cmsg_compat)
2863 {
2864 	struct msghdr msg_sys;
2865 	struct socket *sock;
2866 
2867 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868 		return -EINVAL;
2869 
2870 	CLASS(fd, f)(fd);
2871 
2872 	if (fd_empty(f))
2873 		return -EBADF;
2874 	sock = sock_from_file(fd_file(f));
2875 	if (unlikely(!sock))
2876 		return -ENOTSOCK;
2877 
2878 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2879 }
2880 
2881 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882 		unsigned int, flags)
2883 {
2884 	return __sys_recvmsg(fd, msg, flags, true);
2885 }
2886 
2887 /*
2888  *     Linux recvmmsg interface
2889  */
2890 
2891 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892 			  unsigned int vlen, unsigned int flags,
2893 			  struct timespec64 *timeout)
2894 {
2895 	int err = 0, datagrams;
2896 	struct socket *sock;
2897 	struct mmsghdr __user *entry;
2898 	struct compat_mmsghdr __user *compat_entry;
2899 	struct msghdr msg_sys;
2900 	struct timespec64 end_time;
2901 	struct timespec64 timeout64;
2902 
2903 	if (timeout &&
2904 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2905 				    timeout->tv_nsec))
2906 		return -EINVAL;
2907 
2908 	datagrams = 0;
2909 
2910 	CLASS(fd, f)(fd);
2911 
2912 	if (fd_empty(f))
2913 		return -EBADF;
2914 	sock = sock_from_file(fd_file(f));
2915 	if (unlikely(!sock))
2916 		return -ENOTSOCK;
2917 
2918 	if (likely(!(flags & MSG_ERRQUEUE))) {
2919 		err = sock_error(sock->sk);
2920 		if (err)
2921 			return err;
2922 	}
2923 
2924 	entry = mmsg;
2925 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926 
2927 	while (datagrams < vlen) {
2928 		/*
2929 		 * No need to ask LSM for more than the first datagram.
2930 		 */
2931 		if (MSG_CMSG_COMPAT & flags) {
2932 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933 					     &msg_sys, flags & ~MSG_WAITFORONE,
2934 					     datagrams);
2935 			if (err < 0)
2936 				break;
2937 			err = __put_user(err, &compat_entry->msg_len);
2938 			++compat_entry;
2939 		} else {
2940 			err = ___sys_recvmsg(sock,
2941 					     (struct user_msghdr __user *)entry,
2942 					     &msg_sys, flags & ~MSG_WAITFORONE,
2943 					     datagrams);
2944 			if (err < 0)
2945 				break;
2946 			err = put_user(err, &entry->msg_len);
2947 			++entry;
2948 		}
2949 
2950 		if (err)
2951 			break;
2952 		++datagrams;
2953 
2954 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955 		if (flags & MSG_WAITFORONE)
2956 			flags |= MSG_DONTWAIT;
2957 
2958 		if (timeout) {
2959 			ktime_get_ts64(&timeout64);
2960 			*timeout = timespec64_sub(end_time, timeout64);
2961 			if (timeout->tv_sec < 0) {
2962 				timeout->tv_sec = timeout->tv_nsec = 0;
2963 				break;
2964 			}
2965 
2966 			/* Timeout, return less than vlen datagrams */
2967 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968 				break;
2969 		}
2970 
2971 		/* Out of band data, return right away */
2972 		if (msg_sys.msg_flags & MSG_OOB)
2973 			break;
2974 		cond_resched();
2975 	}
2976 
2977 	if (err == 0)
2978 		return datagrams;
2979 
2980 	if (datagrams == 0)
2981 		return err;
2982 
2983 	/*
2984 	 * We may return less entries than requested (vlen) if the
2985 	 * sock is non block and there aren't enough datagrams...
2986 	 */
2987 	if (err != -EAGAIN) {
2988 		/*
2989 		 * ... or  if recvmsg returns an error after we
2990 		 * received some datagrams, where we record the
2991 		 * error to return on the next call or if the
2992 		 * app asks about it using getsockopt(SO_ERROR).
2993 		 */
2994 		WRITE_ONCE(sock->sk->sk_err, -err);
2995 	}
2996 	return datagrams;
2997 }
2998 
2999 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000 		   unsigned int vlen, unsigned int flags,
3001 		   struct __kernel_timespec __user *timeout,
3002 		   struct old_timespec32 __user *timeout32)
3003 {
3004 	int datagrams;
3005 	struct timespec64 timeout_sys;
3006 
3007 	if (timeout && get_timespec64(&timeout_sys, timeout))
3008 		return -EFAULT;
3009 
3010 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011 		return -EFAULT;
3012 
3013 	if (!timeout && !timeout32)
3014 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015 
3016 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3017 
3018 	if (datagrams <= 0)
3019 		return datagrams;
3020 
3021 	if (timeout && put_timespec64(&timeout_sys, timeout))
3022 		datagrams = -EFAULT;
3023 
3024 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025 		datagrams = -EFAULT;
3026 
3027 	return datagrams;
3028 }
3029 
3030 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031 		unsigned int, vlen, unsigned int, flags,
3032 		struct __kernel_timespec __user *, timeout)
3033 {
3034 	if (flags & MSG_CMSG_COMPAT)
3035 		return -EINVAL;
3036 
3037 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038 }
3039 
3040 #ifdef CONFIG_COMPAT_32BIT_TIME
3041 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042 		unsigned int, vlen, unsigned int, flags,
3043 		struct old_timespec32 __user *, timeout)
3044 {
3045 	if (flags & MSG_CMSG_COMPAT)
3046 		return -EINVAL;
3047 
3048 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3049 }
3050 #endif
3051 
3052 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3053 /* Argument list sizes for sys_socketcall */
3054 #define AL(x) ((x) * sizeof(unsigned long))
3055 static const unsigned char nargs[21] = {
3056 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059 	AL(4), AL(5), AL(4)
3060 };
3061 
3062 #undef AL
3063 
3064 /*
3065  *	System call vectors.
3066  *
3067  *	Argument checking cleaned up. Saved 20% in size.
3068  *  This function doesn't need to set the kernel lock because
3069  *  it is set by the callees.
3070  */
3071 
3072 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073 {
3074 	unsigned long a[AUDITSC_ARGS];
3075 	unsigned long a0, a1;
3076 	int err;
3077 	unsigned int len;
3078 
3079 	if (call < 1 || call > SYS_SENDMMSG)
3080 		return -EINVAL;
3081 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082 
3083 	len = nargs[call];
3084 	if (len > sizeof(a))
3085 		return -EINVAL;
3086 
3087 	/* copy_from_user should be SMP safe. */
3088 	if (copy_from_user(a, args, len))
3089 		return -EFAULT;
3090 
3091 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092 	if (err)
3093 		return err;
3094 
3095 	a0 = a[0];
3096 	a1 = a[1];
3097 
3098 	switch (call) {
3099 	case SYS_SOCKET:
3100 		err = __sys_socket(a0, a1, a[2]);
3101 		break;
3102 	case SYS_BIND:
3103 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104 		break;
3105 	case SYS_CONNECT:
3106 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107 		break;
3108 	case SYS_LISTEN:
3109 		err = __sys_listen(a0, a1);
3110 		break;
3111 	case SYS_ACCEPT:
3112 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113 				    (int __user *)a[2], 0);
3114 		break;
3115 	case SYS_GETSOCKNAME:
3116 		err =
3117 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118 				      (int __user *)a[2]);
3119 		break;
3120 	case SYS_GETPEERNAME:
3121 		err =
3122 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123 				      (int __user *)a[2]);
3124 		break;
3125 	case SYS_SOCKETPAIR:
3126 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127 		break;
3128 	case SYS_SEND:
3129 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130 				   NULL, 0);
3131 		break;
3132 	case SYS_SENDTO:
3133 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 				   (struct sockaddr __user *)a[4], a[5]);
3135 		break;
3136 	case SYS_RECV:
3137 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138 				     NULL, NULL);
3139 		break;
3140 	case SYS_RECVFROM:
3141 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 				     (struct sockaddr __user *)a[4],
3143 				     (int __user *)a[5]);
3144 		break;
3145 	case SYS_SHUTDOWN:
3146 		err = __sys_shutdown(a0, a1);
3147 		break;
3148 	case SYS_SETSOCKOPT:
3149 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150 				       a[4]);
3151 		break;
3152 	case SYS_GETSOCKOPT:
3153 		err =
3154 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155 				     (int __user *)a[4]);
3156 		break;
3157 	case SYS_SENDMSG:
3158 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159 				    a[2], true);
3160 		break;
3161 	case SYS_SENDMMSG:
3162 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163 				     a[3], true);
3164 		break;
3165 	case SYS_RECVMSG:
3166 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167 				    a[2], true);
3168 		break;
3169 	case SYS_RECVMMSG:
3170 		if (IS_ENABLED(CONFIG_64BIT))
3171 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172 					     a[2], a[3],
3173 					     (struct __kernel_timespec __user *)a[4],
3174 					     NULL);
3175 		else
3176 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177 					     a[2], a[3], NULL,
3178 					     (struct old_timespec32 __user *)a[4]);
3179 		break;
3180 	case SYS_ACCEPT4:
3181 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182 				    (int __user *)a[2], a[3]);
3183 		break;
3184 	default:
3185 		err = -EINVAL;
3186 		break;
3187 	}
3188 	return err;
3189 }
3190 
3191 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3192 
3193 /**
3194  *	sock_register - add a socket protocol handler
3195  *	@ops: description of protocol
3196  *
3197  *	This function is called by a protocol handler that wants to
3198  *	advertise its address family, and have it linked into the
3199  *	socket interface. The value ops->family corresponds to the
3200  *	socket system call protocol family.
3201  */
3202 int sock_register(const struct net_proto_family *ops)
3203 {
3204 	int err;
3205 
3206 	if (ops->family >= NPROTO) {
3207 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208 		return -ENOBUFS;
3209 	}
3210 
3211 	spin_lock(&net_family_lock);
3212 	if (rcu_dereference_protected(net_families[ops->family],
3213 				      lockdep_is_held(&net_family_lock)))
3214 		err = -EEXIST;
3215 	else {
3216 		rcu_assign_pointer(net_families[ops->family], ops);
3217 		err = 0;
3218 	}
3219 	spin_unlock(&net_family_lock);
3220 
3221 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222 	return err;
3223 }
3224 EXPORT_SYMBOL(sock_register);
3225 
3226 /**
3227  *	sock_unregister - remove a protocol handler
3228  *	@family: protocol family to remove
3229  *
3230  *	This function is called by a protocol handler that wants to
3231  *	remove its address family, and have it unlinked from the
3232  *	new socket creation.
3233  *
3234  *	If protocol handler is a module, then it can use module reference
3235  *	counts to protect against new references. If protocol handler is not
3236  *	a module then it needs to provide its own protection in
3237  *	the ops->create routine.
3238  */
3239 void sock_unregister(int family)
3240 {
3241 	BUG_ON(family < 0 || family >= NPROTO);
3242 
3243 	spin_lock(&net_family_lock);
3244 	RCU_INIT_POINTER(net_families[family], NULL);
3245 	spin_unlock(&net_family_lock);
3246 
3247 	synchronize_rcu();
3248 
3249 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250 }
3251 EXPORT_SYMBOL(sock_unregister);
3252 
3253 bool sock_is_registered(int family)
3254 {
3255 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3256 }
3257 
3258 static int __init sock_init(void)
3259 {
3260 	int err;
3261 	/*
3262 	 *      Initialize the network sysctl infrastructure.
3263 	 */
3264 	err = net_sysctl_init();
3265 	if (err)
3266 		goto out;
3267 
3268 	/*
3269 	 *      Initialize skbuff SLAB cache
3270 	 */
3271 	skb_init();
3272 
3273 	/*
3274 	 *      Initialize the protocols module.
3275 	 */
3276 
3277 	init_inodecache();
3278 
3279 	err = register_filesystem(&sock_fs_type);
3280 	if (err)
3281 		goto out;
3282 	sock_mnt = kern_mount(&sock_fs_type);
3283 	if (IS_ERR(sock_mnt)) {
3284 		err = PTR_ERR(sock_mnt);
3285 		goto out_mount;
3286 	}
3287 
3288 	/* The real protocol initialization is performed in later initcalls.
3289 	 */
3290 
3291 #ifdef CONFIG_NETFILTER
3292 	err = netfilter_init();
3293 	if (err)
3294 		goto out;
3295 #endif
3296 
3297 	ptp_classifier_init();
3298 
3299 out:
3300 	return err;
3301 
3302 out_mount:
3303 	unregister_filesystem(&sock_fs_type);
3304 	goto out;
3305 }
3306 
3307 core_initcall(sock_init);	/* early initcall */
3308 
3309 #ifdef CONFIG_PROC_FS
3310 void socket_seq_show(struct seq_file *seq)
3311 {
3312 	seq_printf(seq, "sockets: used %d\n",
3313 		   sock_inuse_get(seq->private));
3314 }
3315 #endif				/* CONFIG_PROC_FS */
3316 
3317 /* Handle the fact that while struct ifreq has the same *layout* on
3318  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319  * which are handled elsewhere, it still has different *size* due to
3320  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321  * resulting in struct ifreq being 32 and 40 bytes respectively).
3322  * As a result, if the struct happens to be at the end of a page and
3323  * the next page isn't readable/writable, we get a fault. To prevent
3324  * that, copy back and forth to the full size.
3325  */
3326 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327 {
3328 	if (in_compat_syscall()) {
3329 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3330 
3331 		memset(ifr, 0, sizeof(*ifr));
3332 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333 			return -EFAULT;
3334 
3335 		if (ifrdata)
3336 			*ifrdata = compat_ptr(ifr32->ifr_data);
3337 
3338 		return 0;
3339 	}
3340 
3341 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342 		return -EFAULT;
3343 
3344 	if (ifrdata)
3345 		*ifrdata = ifr->ifr_data;
3346 
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL(get_user_ifreq);
3350 
3351 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352 {
3353 	size_t size = sizeof(*ifr);
3354 
3355 	if (in_compat_syscall())
3356 		size = sizeof(struct compat_ifreq);
3357 
3358 	if (copy_to_user(arg, ifr, size))
3359 		return -EFAULT;
3360 
3361 	return 0;
3362 }
3363 EXPORT_SYMBOL(put_user_ifreq);
3364 
3365 #ifdef CONFIG_COMPAT
3366 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367 {
3368 	compat_uptr_t uptr32;
3369 	struct ifreq ifr;
3370 	void __user *saved;
3371 	int err;
3372 
3373 	if (get_user_ifreq(&ifr, NULL, uifr32))
3374 		return -EFAULT;
3375 
3376 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377 		return -EFAULT;
3378 
3379 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381 
3382 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383 	if (!err) {
3384 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385 		if (put_user_ifreq(&ifr, uifr32))
3386 			err = -EFAULT;
3387 	}
3388 	return err;
3389 }
3390 
3391 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393 				 struct compat_ifreq __user *u_ifreq32)
3394 {
3395 	struct ifreq ifreq;
3396 	void __user *data;
3397 
3398 	if (!is_socket_ioctl_cmd(cmd))
3399 		return -ENOTTY;
3400 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3401 		return -EFAULT;
3402 	ifreq.ifr_data = data;
3403 
3404 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3405 }
3406 
3407 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408 			 unsigned int cmd, unsigned long arg)
3409 {
3410 	void __user *argp = compat_ptr(arg);
3411 	struct sock *sk = sock->sk;
3412 	struct net *net = sock_net(sk);
3413 	const struct proto_ops *ops;
3414 
3415 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 		return sock_ioctl(file, cmd, (unsigned long)argp);
3417 
3418 	switch (cmd) {
3419 	case SIOCWANDEV:
3420 		return compat_siocwandev(net, argp);
3421 	case SIOCGSTAMP_OLD:
3422 	case SIOCGSTAMPNS_OLD:
3423 		ops = READ_ONCE(sock->ops);
3424 		if (!ops->gettstamp)
3425 			return -ENOIOCTLCMD;
3426 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427 				      !COMPAT_USE_64BIT_TIME);
3428 
3429 	case SIOCETHTOOL:
3430 	case SIOCBONDSLAVEINFOQUERY:
3431 	case SIOCBONDINFOQUERY:
3432 	case SIOCSHWTSTAMP:
3433 	case SIOCGHWTSTAMP:
3434 		return compat_ifr_data_ioctl(net, cmd, argp);
3435 
3436 	case FIOSETOWN:
3437 	case SIOCSPGRP:
3438 	case FIOGETOWN:
3439 	case SIOCGPGRP:
3440 	case SIOCBRADDBR:
3441 	case SIOCBRDELBR:
3442 	case SIOCGIFVLAN:
3443 	case SIOCSIFVLAN:
3444 	case SIOCGSKNS:
3445 	case SIOCGSTAMP_NEW:
3446 	case SIOCGSTAMPNS_NEW:
3447 	case SIOCGIFCONF:
3448 	case SIOCSIFBR:
3449 	case SIOCGIFBR:
3450 		return sock_ioctl(file, cmd, arg);
3451 
3452 	case SIOCGIFFLAGS:
3453 	case SIOCSIFFLAGS:
3454 	case SIOCGIFMAP:
3455 	case SIOCSIFMAP:
3456 	case SIOCGIFMETRIC:
3457 	case SIOCSIFMETRIC:
3458 	case SIOCGIFMTU:
3459 	case SIOCSIFMTU:
3460 	case SIOCGIFMEM:
3461 	case SIOCSIFMEM:
3462 	case SIOCGIFHWADDR:
3463 	case SIOCSIFHWADDR:
3464 	case SIOCADDMULTI:
3465 	case SIOCDELMULTI:
3466 	case SIOCGIFINDEX:
3467 	case SIOCGIFADDR:
3468 	case SIOCSIFADDR:
3469 	case SIOCSIFHWBROADCAST:
3470 	case SIOCDIFADDR:
3471 	case SIOCGIFBRDADDR:
3472 	case SIOCSIFBRDADDR:
3473 	case SIOCGIFDSTADDR:
3474 	case SIOCSIFDSTADDR:
3475 	case SIOCGIFNETMASK:
3476 	case SIOCSIFNETMASK:
3477 	case SIOCSIFPFLAGS:
3478 	case SIOCGIFPFLAGS:
3479 	case SIOCGIFTXQLEN:
3480 	case SIOCSIFTXQLEN:
3481 	case SIOCBRADDIF:
3482 	case SIOCBRDELIF:
3483 	case SIOCGIFNAME:
3484 	case SIOCSIFNAME:
3485 	case SIOCGMIIPHY:
3486 	case SIOCGMIIREG:
3487 	case SIOCSMIIREG:
3488 	case SIOCBONDENSLAVE:
3489 	case SIOCBONDRELEASE:
3490 	case SIOCBONDSETHWADDR:
3491 	case SIOCBONDCHANGEACTIVE:
3492 	case SIOCSARP:
3493 	case SIOCGARP:
3494 	case SIOCDARP:
3495 	case SIOCOUTQ:
3496 	case SIOCOUTQNSD:
3497 	case SIOCATMARK:
3498 		return sock_do_ioctl(net, sock, cmd, arg);
3499 	}
3500 
3501 	return -ENOIOCTLCMD;
3502 }
3503 
3504 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505 			      unsigned long arg)
3506 {
3507 	struct socket *sock = file->private_data;
3508 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3509 	int ret = -ENOIOCTLCMD;
3510 	struct sock *sk;
3511 	struct net *net;
3512 
3513 	sk = sock->sk;
3514 	net = sock_net(sk);
3515 
3516 	if (ops->compat_ioctl)
3517 		ret = ops->compat_ioctl(sock, cmd, arg);
3518 
3519 	if (ret == -ENOIOCTLCMD &&
3520 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3522 
3523 	if (ret == -ENOIOCTLCMD)
3524 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525 
3526 	return ret;
3527 }
3528 #endif
3529 
3530 /**
3531  *	kernel_bind - bind an address to a socket (kernel space)
3532  *	@sock: socket
3533  *	@addr: address
3534  *	@addrlen: length of address
3535  *
3536  *	Returns 0 or an error.
3537  */
3538 
3539 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3540 {
3541 	struct sockaddr_storage address;
3542 
3543 	memcpy(&address, addr, addrlen);
3544 
3545 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546 					  addrlen);
3547 }
3548 EXPORT_SYMBOL(kernel_bind);
3549 
3550 /**
3551  *	kernel_listen - move socket to listening state (kernel space)
3552  *	@sock: socket
3553  *	@backlog: pending connections queue size
3554  *
3555  *	Returns 0 or an error.
3556  */
3557 
3558 int kernel_listen(struct socket *sock, int backlog)
3559 {
3560 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3561 }
3562 EXPORT_SYMBOL(kernel_listen);
3563 
3564 /**
3565  *	kernel_accept - accept a connection (kernel space)
3566  *	@sock: listening socket
3567  *	@newsock: new connected socket
3568  *	@flags: flags
3569  *
3570  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571  *	If it fails, @newsock is guaranteed to be %NULL.
3572  *	Returns 0 or an error.
3573  */
3574 
3575 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576 {
3577 	struct sock *sk = sock->sk;
3578 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3579 	struct proto_accept_arg arg = {
3580 		.flags = flags,
3581 		.kern = true,
3582 	};
3583 	int err;
3584 
3585 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 			       newsock);
3587 	if (err < 0)
3588 		goto done;
3589 
3590 	err = ops->accept(sock, *newsock, &arg);
3591 	if (err < 0) {
3592 		sock_release(*newsock);
3593 		*newsock = NULL;
3594 		goto done;
3595 	}
3596 
3597 	(*newsock)->ops = ops;
3598 	__module_get(ops->owner);
3599 
3600 done:
3601 	return err;
3602 }
3603 EXPORT_SYMBOL(kernel_accept);
3604 
3605 /**
3606  *	kernel_connect - connect a socket (kernel space)
3607  *	@sock: socket
3608  *	@addr: address
3609  *	@addrlen: address length
3610  *	@flags: flags (O_NONBLOCK, ...)
3611  *
3612  *	For datagram sockets, @addr is the address to which datagrams are sent
3613  *	by default, and the only address from which datagrams are received.
3614  *	For stream sockets, attempts to connect to @addr.
3615  *	Returns 0 or an error code.
3616  */
3617 
3618 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619 		   int flags)
3620 {
3621 	struct sockaddr_storage address;
3622 
3623 	memcpy(&address, addr, addrlen);
3624 
3625 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626 					     addrlen, flags);
3627 }
3628 EXPORT_SYMBOL(kernel_connect);
3629 
3630 /**
3631  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632  *	@sock: socket
3633  *	@addr: address holder
3634  *
3635  * 	Fills the @addr pointer with the address which the socket is bound.
3636  *	Returns the length of the address in bytes or an error code.
3637  */
3638 
3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640 {
3641 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642 }
3643 EXPORT_SYMBOL(kernel_getsockname);
3644 
3645 /**
3646  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647  *	@sock: socket
3648  *	@addr: address holder
3649  *
3650  * 	Fills the @addr pointer with the address which the socket is connected.
3651  *	Returns the length of the address in bytes or an error code.
3652  */
3653 
3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655 {
3656 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657 }
3658 EXPORT_SYMBOL(kernel_getpeername);
3659 
3660 /**
3661  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662  *	@sock: socket
3663  *	@how: connection part
3664  *
3665  *	Returns 0 or an error.
3666  */
3667 
3668 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669 {
3670 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3671 }
3672 EXPORT_SYMBOL(kernel_sock_shutdown);
3673 
3674 /**
3675  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676  *	@sk: socket
3677  *
3678  *	This routine returns the IP overhead imposed by a socket i.e.
3679  *	the length of the underlying IP header, depending on whether
3680  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681  *	on at the socket. Assumes that the caller has a lock on the socket.
3682  */
3683 
3684 u32 kernel_sock_ip_overhead(struct sock *sk)
3685 {
3686 	struct inet_sock *inet;
3687 	struct ip_options_rcu *opt;
3688 	u32 overhead = 0;
3689 #if IS_ENABLED(CONFIG_IPV6)
3690 	struct ipv6_pinfo *np;
3691 	struct ipv6_txoptions *optv6 = NULL;
3692 #endif /* IS_ENABLED(CONFIG_IPV6) */
3693 
3694 	if (!sk)
3695 		return overhead;
3696 
3697 	switch (sk->sk_family) {
3698 	case AF_INET:
3699 		inet = inet_sk(sk);
3700 		overhead += sizeof(struct iphdr);
3701 		opt = rcu_dereference_protected(inet->inet_opt,
3702 						sock_owned_by_user(sk));
3703 		if (opt)
3704 			overhead += opt->opt.optlen;
3705 		return overhead;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 	case AF_INET6:
3708 		np = inet6_sk(sk);
3709 		overhead += sizeof(struct ipv6hdr);
3710 		if (np)
3711 			optv6 = rcu_dereference_protected(np->opt,
3712 							  sock_owned_by_user(sk));
3713 		if (optv6)
3714 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 		return overhead;
3716 #endif /* IS_ENABLED(CONFIG_IPV6) */
3717 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 		return overhead;
3719 	}
3720 }
3721 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3722