1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .uring_cmd = io_uring_cmd_sock, 164 .mmap = sock_mmap, 165 .release = sock_close, 166 .fasync = sock_fasync, 167 .splice_write = splice_to_socket, 168 .splice_read = sock_splice_read, 169 .splice_eof = sock_splice_eof, 170 .show_fdinfo = sock_show_fdinfo, 171 }; 172 173 static const char * const pf_family_names[] = { 174 [PF_UNSPEC] = "PF_UNSPEC", 175 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 176 [PF_INET] = "PF_INET", 177 [PF_AX25] = "PF_AX25", 178 [PF_IPX] = "PF_IPX", 179 [PF_APPLETALK] = "PF_APPLETALK", 180 [PF_NETROM] = "PF_NETROM", 181 [PF_BRIDGE] = "PF_BRIDGE", 182 [PF_ATMPVC] = "PF_ATMPVC", 183 [PF_X25] = "PF_X25", 184 [PF_INET6] = "PF_INET6", 185 [PF_ROSE] = "PF_ROSE", 186 [PF_DECnet] = "PF_DECnet", 187 [PF_NETBEUI] = "PF_NETBEUI", 188 [PF_SECURITY] = "PF_SECURITY", 189 [PF_KEY] = "PF_KEY", 190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 191 [PF_PACKET] = "PF_PACKET", 192 [PF_ASH] = "PF_ASH", 193 [PF_ECONET] = "PF_ECONET", 194 [PF_ATMSVC] = "PF_ATMSVC", 195 [PF_RDS] = "PF_RDS", 196 [PF_SNA] = "PF_SNA", 197 [PF_IRDA] = "PF_IRDA", 198 [PF_PPPOX] = "PF_PPPOX", 199 [PF_WANPIPE] = "PF_WANPIPE", 200 [PF_LLC] = "PF_LLC", 201 [PF_IB] = "PF_IB", 202 [PF_MPLS] = "PF_MPLS", 203 [PF_CAN] = "PF_CAN", 204 [PF_TIPC] = "PF_TIPC", 205 [PF_BLUETOOTH] = "PF_BLUETOOTH", 206 [PF_IUCV] = "PF_IUCV", 207 [PF_RXRPC] = "PF_RXRPC", 208 [PF_ISDN] = "PF_ISDN", 209 [PF_PHONET] = "PF_PHONET", 210 [PF_IEEE802154] = "PF_IEEE802154", 211 [PF_CAIF] = "PF_CAIF", 212 [PF_ALG] = "PF_ALG", 213 [PF_NFC] = "PF_NFC", 214 [PF_VSOCK] = "PF_VSOCK", 215 [PF_KCM] = "PF_KCM", 216 [PF_QIPCRTR] = "PF_QIPCRTR", 217 [PF_SMC] = "PF_SMC", 218 [PF_XDP] = "PF_XDP", 219 [PF_MCTP] = "PF_MCTP", 220 }; 221 222 /* 223 * The protocol list. Each protocol is registered in here. 224 */ 225 226 static DEFINE_SPINLOCK(net_family_lock); 227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 228 229 /* 230 * Support routines. 231 * Move socket addresses back and forth across the kernel/user 232 * divide and look after the messy bits. 233 */ 234 235 /** 236 * move_addr_to_kernel - copy a socket address into kernel space 237 * @uaddr: Address in user space 238 * @kaddr: Address in kernel space 239 * @ulen: Length in user space 240 * 241 * The address is copied into kernel space. If the provided address is 242 * too long an error code of -EINVAL is returned. If the copy gives 243 * invalid addresses -EFAULT is returned. On a success 0 is returned. 244 */ 245 246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 247 { 248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 249 return -EINVAL; 250 if (ulen == 0) 251 return 0; 252 if (copy_from_user(kaddr, uaddr, ulen)) 253 return -EFAULT; 254 return audit_sockaddr(ulen, kaddr); 255 } 256 257 /** 258 * move_addr_to_user - copy an address to user space 259 * @kaddr: kernel space address 260 * @klen: length of address in kernel 261 * @uaddr: user space address 262 * @ulen: pointer to user length field 263 * 264 * The value pointed to by ulen on entry is the buffer length available. 265 * This is overwritten with the buffer space used. -EINVAL is returned 266 * if an overlong buffer is specified or a negative buffer size. -EFAULT 267 * is returned if either the buffer or the length field are not 268 * accessible. 269 * After copying the data up to the limit the user specifies, the true 270 * length of the data is written over the length limit the user 271 * specified. Zero is returned for a success. 272 */ 273 274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 275 void __user *uaddr, int __user *ulen) 276 { 277 int err; 278 int len; 279 280 BUG_ON(klen > sizeof(struct sockaddr_storage)); 281 err = get_user(len, ulen); 282 if (err) 283 return err; 284 if (len > klen) 285 len = klen; 286 if (len < 0) 287 return -EINVAL; 288 if (len) { 289 if (audit_sockaddr(klen, kaddr)) 290 return -ENOMEM; 291 if (copy_to_user(uaddr, kaddr, len)) 292 return -EFAULT; 293 } 294 /* 295 * "fromlen shall refer to the value before truncation.." 296 * 1003.1g 297 */ 298 return __put_user(klen, ulen); 299 } 300 301 static struct kmem_cache *sock_inode_cachep __ro_after_init; 302 303 static struct inode *sock_alloc_inode(struct super_block *sb) 304 { 305 struct socket_alloc *ei; 306 307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 308 if (!ei) 309 return NULL; 310 init_waitqueue_head(&ei->socket.wq.wait); 311 ei->socket.wq.fasync_list = NULL; 312 ei->socket.wq.flags = 0; 313 314 ei->socket.state = SS_UNCONNECTED; 315 ei->socket.flags = 0; 316 ei->socket.ops = NULL; 317 ei->socket.sk = NULL; 318 ei->socket.file = NULL; 319 320 return &ei->vfs_inode; 321 } 322 323 static void sock_free_inode(struct inode *inode) 324 { 325 struct socket_alloc *ei; 326 327 ei = container_of(inode, struct socket_alloc, vfs_inode); 328 kmem_cache_free(sock_inode_cachep, ei); 329 } 330 331 static void init_once(void *foo) 332 { 333 struct socket_alloc *ei = (struct socket_alloc *)foo; 334 335 inode_init_once(&ei->vfs_inode); 336 } 337 338 static void init_inodecache(void) 339 { 340 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 341 sizeof(struct socket_alloc), 342 0, 343 (SLAB_HWCACHE_ALIGN | 344 SLAB_RECLAIM_ACCOUNT | 345 SLAB_ACCOUNT), 346 init_once); 347 BUG_ON(sock_inode_cachep == NULL); 348 } 349 350 static const struct super_operations sockfs_ops = { 351 .alloc_inode = sock_alloc_inode, 352 .free_inode = sock_free_inode, 353 .statfs = simple_statfs, 354 }; 355 356 /* 357 * sockfs_dname() is called from d_path(). 358 */ 359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 360 { 361 return dynamic_dname(buffer, buflen, "socket:[%lu]", 362 d_inode(dentry)->i_ino); 363 } 364 365 static const struct dentry_operations sockfs_dentry_operations = { 366 .d_dname = sockfs_dname, 367 }; 368 369 static int sockfs_xattr_get(const struct xattr_handler *handler, 370 struct dentry *dentry, struct inode *inode, 371 const char *suffix, void *value, size_t size) 372 { 373 if (value) { 374 if (dentry->d_name.len + 1 > size) 375 return -ERANGE; 376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 377 } 378 return dentry->d_name.len + 1; 379 } 380 381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 384 385 static const struct xattr_handler sockfs_xattr_handler = { 386 .name = XATTR_NAME_SOCKPROTONAME, 387 .get = sockfs_xattr_get, 388 }; 389 390 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 391 struct mnt_idmap *idmap, 392 struct dentry *dentry, struct inode *inode, 393 const char *suffix, const void *value, 394 size_t size, int flags) 395 { 396 /* Handled by LSM. */ 397 return -EAGAIN; 398 } 399 400 static const struct xattr_handler sockfs_security_xattr_handler = { 401 .prefix = XATTR_SECURITY_PREFIX, 402 .set = sockfs_security_xattr_set, 403 }; 404 405 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 406 &sockfs_xattr_handler, 407 &sockfs_security_xattr_handler, 408 NULL 409 }; 410 411 static int sockfs_init_fs_context(struct fs_context *fc) 412 { 413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 414 if (!ctx) 415 return -ENOMEM; 416 ctx->ops = &sockfs_ops; 417 ctx->dops = &sockfs_dentry_operations; 418 ctx->xattr = sockfs_xattr_handlers; 419 return 0; 420 } 421 422 static struct vfsmount *sock_mnt __read_mostly; 423 424 static struct file_system_type sock_fs_type = { 425 .name = "sockfs", 426 .init_fs_context = sockfs_init_fs_context, 427 .kill_sb = kill_anon_super, 428 }; 429 430 /* 431 * Obtains the first available file descriptor and sets it up for use. 432 * 433 * These functions create file structures and maps them to fd space 434 * of the current process. On success it returns file descriptor 435 * and file struct implicitly stored in sock->file. 436 * Note that another thread may close file descriptor before we return 437 * from this function. We use the fact that now we do not refer 438 * to socket after mapping. If one day we will need it, this 439 * function will increment ref. count on file by 1. 440 * 441 * In any case returned fd MAY BE not valid! 442 * This race condition is unavoidable 443 * with shared fd spaces, we cannot solve it inside kernel, 444 * but we take care of internal coherence yet. 445 */ 446 447 /** 448 * sock_alloc_file - Bind a &socket to a &file 449 * @sock: socket 450 * @flags: file status flags 451 * @dname: protocol name 452 * 453 * Returns the &file bound with @sock, implicitly storing it 454 * in sock->file. If dname is %NULL, sets to "". 455 * 456 * On failure @sock is released, and an ERR pointer is returned. 457 * 458 * This function uses GFP_KERNEL internally. 459 */ 460 461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 462 { 463 struct file *file; 464 465 if (!dname) 466 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 467 468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 469 O_RDWR | (flags & O_NONBLOCK), 470 &socket_file_ops); 471 if (IS_ERR(file)) { 472 sock_release(sock); 473 return file; 474 } 475 476 file->f_mode |= FMODE_NOWAIT; 477 sock->file = file; 478 file->private_data = sock; 479 stream_open(SOCK_INODE(sock), file); 480 return file; 481 } 482 EXPORT_SYMBOL(sock_alloc_file); 483 484 static int sock_map_fd(struct socket *sock, int flags) 485 { 486 struct file *newfile; 487 int fd = get_unused_fd_flags(flags); 488 if (unlikely(fd < 0)) { 489 sock_release(sock); 490 return fd; 491 } 492 493 newfile = sock_alloc_file(sock, flags, NULL); 494 if (!IS_ERR(newfile)) { 495 fd_install(fd, newfile); 496 return fd; 497 } 498 499 put_unused_fd(fd); 500 return PTR_ERR(newfile); 501 } 502 503 /** 504 * sock_from_file - Return the &socket bounded to @file. 505 * @file: file 506 * 507 * On failure returns %NULL. 508 */ 509 510 struct socket *sock_from_file(struct file *file) 511 { 512 if (likely(file->f_op == &socket_file_ops)) 513 return file->private_data; /* set in sock_alloc_file */ 514 515 return NULL; 516 } 517 EXPORT_SYMBOL(sock_from_file); 518 519 /** 520 * sockfd_lookup - Go from a file number to its socket slot 521 * @fd: file handle 522 * @err: pointer to an error code return 523 * 524 * The file handle passed in is locked and the socket it is bound 525 * to is returned. If an error occurs the err pointer is overwritten 526 * with a negative errno code and NULL is returned. The function checks 527 * for both invalid handles and passing a handle which is not a socket. 528 * 529 * On a success the socket object pointer is returned. 530 */ 531 532 struct socket *sockfd_lookup(int fd, int *err) 533 { 534 struct file *file; 535 struct socket *sock; 536 537 file = fget(fd); 538 if (!file) { 539 *err = -EBADF; 540 return NULL; 541 } 542 543 sock = sock_from_file(file); 544 if (!sock) { 545 *err = -ENOTSOCK; 546 fput(file); 547 } 548 return sock; 549 } 550 EXPORT_SYMBOL(sockfd_lookup); 551 552 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 553 size_t size) 554 { 555 ssize_t len; 556 ssize_t used = 0; 557 558 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 559 if (len < 0) 560 return len; 561 used += len; 562 if (buffer) { 563 if (size < used) 564 return -ERANGE; 565 buffer += len; 566 } 567 568 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 569 used += len; 570 if (buffer) { 571 if (size < used) 572 return -ERANGE; 573 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 574 buffer += len; 575 } 576 577 return used; 578 } 579 580 static int sockfs_setattr(struct mnt_idmap *idmap, 581 struct dentry *dentry, struct iattr *iattr) 582 { 583 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 584 585 if (!err && (iattr->ia_valid & ATTR_UID)) { 586 struct socket *sock = SOCKET_I(d_inode(dentry)); 587 588 if (sock->sk) 589 sock->sk->sk_uid = iattr->ia_uid; 590 else 591 err = -ENOENT; 592 } 593 594 return err; 595 } 596 597 static const struct inode_operations sockfs_inode_ops = { 598 .listxattr = sockfs_listxattr, 599 .setattr = sockfs_setattr, 600 }; 601 602 /** 603 * sock_alloc - allocate a socket 604 * 605 * Allocate a new inode and socket object. The two are bound together 606 * and initialised. The socket is then returned. If we are out of inodes 607 * NULL is returned. This functions uses GFP_KERNEL internally. 608 */ 609 610 struct socket *sock_alloc(void) 611 { 612 struct inode *inode; 613 struct socket *sock; 614 615 inode = new_inode_pseudo(sock_mnt->mnt_sb); 616 if (!inode) 617 return NULL; 618 619 sock = SOCKET_I(inode); 620 621 inode->i_ino = get_next_ino(); 622 inode->i_mode = S_IFSOCK | S_IRWXUGO; 623 inode->i_uid = current_fsuid(); 624 inode->i_gid = current_fsgid(); 625 inode->i_op = &sockfs_inode_ops; 626 627 return sock; 628 } 629 EXPORT_SYMBOL(sock_alloc); 630 631 static void __sock_release(struct socket *sock, struct inode *inode) 632 { 633 const struct proto_ops *ops = READ_ONCE(sock->ops); 634 635 if (ops) { 636 struct module *owner = ops->owner; 637 638 if (inode) 639 inode_lock(inode); 640 ops->release(sock); 641 sock->sk = NULL; 642 if (inode) 643 inode_unlock(inode); 644 sock->ops = NULL; 645 module_put(owner); 646 } 647 648 if (sock->wq.fasync_list) 649 pr_err("%s: fasync list not empty!\n", __func__); 650 651 if (!sock->file) { 652 iput(SOCK_INODE(sock)); 653 return; 654 } 655 sock->file = NULL; 656 } 657 658 /** 659 * sock_release - close a socket 660 * @sock: socket to close 661 * 662 * The socket is released from the protocol stack if it has a release 663 * callback, and the inode is then released if the socket is bound to 664 * an inode not a file. 665 */ 666 void sock_release(struct socket *sock) 667 { 668 __sock_release(sock, NULL); 669 } 670 EXPORT_SYMBOL(sock_release); 671 672 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 673 { 674 u8 flags = *tx_flags; 675 676 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 677 flags |= SKBTX_HW_TSTAMP; 678 679 /* PTP hardware clocks can provide a free running cycle counter 680 * as a time base for virtual clocks. Tell driver to use the 681 * free running cycle counter for timestamp if socket is bound 682 * to virtual clock. 683 */ 684 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 685 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 686 } 687 688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 689 flags |= SKBTX_SW_TSTAMP; 690 691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 692 flags |= SKBTX_SCHED_TSTAMP; 693 694 *tx_flags = flags; 695 } 696 EXPORT_SYMBOL(__sock_tx_timestamp); 697 698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 699 size_t)); 700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 701 size_t)); 702 703 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 704 int flags) 705 { 706 trace_sock_send_length(sk, ret, 0); 707 } 708 709 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 710 { 711 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 712 inet_sendmsg, sock, msg, 713 msg_data_left(msg)); 714 BUG_ON(ret == -EIOCBQUEUED); 715 716 if (trace_sock_send_length_enabled()) 717 call_trace_sock_send_length(sock->sk, ret, 0); 718 return ret; 719 } 720 721 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 722 { 723 int err = security_socket_sendmsg(sock, msg, 724 msg_data_left(msg)); 725 726 return err ?: sock_sendmsg_nosec(sock, msg); 727 } 728 729 /** 730 * sock_sendmsg - send a message through @sock 731 * @sock: socket 732 * @msg: message to send 733 * 734 * Sends @msg through @sock, passing through LSM. 735 * Returns the number of bytes sent, or an error code. 736 */ 737 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 738 { 739 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 740 struct sockaddr_storage address; 741 int save_len = msg->msg_namelen; 742 int ret; 743 744 if (msg->msg_name) { 745 memcpy(&address, msg->msg_name, msg->msg_namelen); 746 msg->msg_name = &address; 747 } 748 749 ret = __sock_sendmsg(sock, msg); 750 msg->msg_name = save_addr; 751 msg->msg_namelen = save_len; 752 753 return ret; 754 } 755 EXPORT_SYMBOL(sock_sendmsg); 756 757 /** 758 * kernel_sendmsg - send a message through @sock (kernel-space) 759 * @sock: socket 760 * @msg: message header 761 * @vec: kernel vec 762 * @num: vec array length 763 * @size: total message data size 764 * 765 * Builds the message data with @vec and sends it through @sock. 766 * Returns the number of bytes sent, or an error code. 767 */ 768 769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 770 struct kvec *vec, size_t num, size_t size) 771 { 772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 773 return sock_sendmsg(sock, msg); 774 } 775 EXPORT_SYMBOL(kernel_sendmsg); 776 777 /** 778 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 779 * @sk: sock 780 * @msg: message header 781 * @vec: output s/g array 782 * @num: output s/g array length 783 * @size: total message data size 784 * 785 * Builds the message data with @vec and sends it through @sock. 786 * Returns the number of bytes sent, or an error code. 787 * Caller must hold @sk. 788 */ 789 790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 791 struct kvec *vec, size_t num, size_t size) 792 { 793 struct socket *sock = sk->sk_socket; 794 const struct proto_ops *ops = READ_ONCE(sock->ops); 795 796 if (!ops->sendmsg_locked) 797 return sock_no_sendmsg_locked(sk, msg, size); 798 799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 800 801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 802 } 803 EXPORT_SYMBOL(kernel_sendmsg_locked); 804 805 static bool skb_is_err_queue(const struct sk_buff *skb) 806 { 807 /* pkt_type of skbs enqueued on the error queue are set to 808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 809 * in recvmsg, since skbs received on a local socket will never 810 * have a pkt_type of PACKET_OUTGOING. 811 */ 812 return skb->pkt_type == PACKET_OUTGOING; 813 } 814 815 /* On transmit, software and hardware timestamps are returned independently. 816 * As the two skb clones share the hardware timestamp, which may be updated 817 * before the software timestamp is received, a hardware TX timestamp may be 818 * returned only if there is no software TX timestamp. Ignore false software 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 821 * hardware timestamp. 822 */ 823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 824 { 825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 826 } 827 828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 829 { 830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 832 struct net_device *orig_dev; 833 ktime_t hwtstamp; 834 835 rcu_read_lock(); 836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 837 if (orig_dev) { 838 *if_index = orig_dev->ifindex; 839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 840 } else { 841 hwtstamp = shhwtstamps->hwtstamp; 842 } 843 rcu_read_unlock(); 844 845 return hwtstamp; 846 } 847 848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 849 int if_index) 850 { 851 struct scm_ts_pktinfo ts_pktinfo; 852 struct net_device *orig_dev; 853 854 if (!skb_mac_header_was_set(skb)) 855 return; 856 857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 858 859 if (!if_index) { 860 rcu_read_lock(); 861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 862 if (orig_dev) 863 if_index = orig_dev->ifindex; 864 rcu_read_unlock(); 865 } 866 ts_pktinfo.if_index = if_index; 867 868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 870 sizeof(ts_pktinfo), &ts_pktinfo); 871 } 872 873 /* 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 875 */ 876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 877 struct sk_buff *skb) 878 { 879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 881 struct scm_timestamping_internal tss; 882 int empty = 1, false_tstamp = 0; 883 struct skb_shared_hwtstamps *shhwtstamps = 884 skb_hwtstamps(skb); 885 int if_index; 886 ktime_t hwtstamp; 887 u32 tsflags; 888 889 /* Race occurred between timestamp enabling and packet 890 receiving. Fill in the current time for now. */ 891 if (need_software_tstamp && skb->tstamp == 0) { 892 __net_timestamp(skb); 893 false_tstamp = 1; 894 } 895 896 if (need_software_tstamp) { 897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 898 if (new_tstamp) { 899 struct __kernel_sock_timeval tv; 900 901 skb_get_new_timestamp(skb, &tv); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 903 sizeof(tv), &tv); 904 } else { 905 struct __kernel_old_timeval tv; 906 907 skb_get_timestamp(skb, &tv); 908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 909 sizeof(tv), &tv); 910 } 911 } else { 912 if (new_tstamp) { 913 struct __kernel_timespec ts; 914 915 skb_get_new_timestampns(skb, &ts); 916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 917 sizeof(ts), &ts); 918 } else { 919 struct __kernel_old_timespec ts; 920 921 skb_get_timestampns(skb, &ts); 922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 923 sizeof(ts), &ts); 924 } 925 } 926 } 927 928 memset(&tss, 0, sizeof(tss)); 929 tsflags = READ_ONCE(sk->sk_tsflags); 930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 931 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 932 skb_is_err_queue(skb) || 933 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 934 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 935 empty = 0; 936 if (shhwtstamps && 937 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 938 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 939 skb_is_err_queue(skb) || 940 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 941 !skb_is_swtx_tstamp(skb, false_tstamp)) { 942 if_index = 0; 943 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 944 hwtstamp = get_timestamp(sk, skb, &if_index); 945 else 946 hwtstamp = shhwtstamps->hwtstamp; 947 948 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 949 hwtstamp = ptp_convert_timestamp(&hwtstamp, 950 READ_ONCE(sk->sk_bind_phc)); 951 952 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 953 empty = 0; 954 955 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 956 !skb_is_err_queue(skb)) 957 put_ts_pktinfo(msg, skb, if_index); 958 } 959 } 960 if (!empty) { 961 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 962 put_cmsg_scm_timestamping64(msg, &tss); 963 else 964 put_cmsg_scm_timestamping(msg, &tss); 965 966 if (skb_is_err_queue(skb) && skb->len && 967 SKB_EXT_ERR(skb)->opt_stats) 968 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 969 skb->len, skb->data); 970 } 971 } 972 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 973 974 #ifdef CONFIG_WIRELESS 975 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 976 struct sk_buff *skb) 977 { 978 int ack; 979 980 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 981 return; 982 if (!skb->wifi_acked_valid) 983 return; 984 985 ack = skb->wifi_acked; 986 987 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 988 } 989 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 990 #endif 991 992 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 993 struct sk_buff *skb) 994 { 995 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 996 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 997 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 998 } 999 1000 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1001 struct sk_buff *skb) 1002 { 1003 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1004 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1005 __u32 mark = skb->mark; 1006 1007 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1008 } 1009 } 1010 1011 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1012 struct sk_buff *skb) 1013 { 1014 sock_recv_timestamp(msg, sk, skb); 1015 sock_recv_drops(msg, sk, skb); 1016 sock_recv_mark(msg, sk, skb); 1017 } 1018 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1019 1020 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1021 size_t, int)); 1022 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1023 size_t, int)); 1024 1025 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1026 { 1027 trace_sock_recv_length(sk, ret, flags); 1028 } 1029 1030 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1031 int flags) 1032 { 1033 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1034 inet6_recvmsg, 1035 inet_recvmsg, sock, msg, 1036 msg_data_left(msg), flags); 1037 if (trace_sock_recv_length_enabled()) 1038 call_trace_sock_recv_length(sock->sk, ret, flags); 1039 return ret; 1040 } 1041 1042 /** 1043 * sock_recvmsg - receive a message from @sock 1044 * @sock: socket 1045 * @msg: message to receive 1046 * @flags: message flags 1047 * 1048 * Receives @msg from @sock, passing through LSM. Returns the total number 1049 * of bytes received, or an error. 1050 */ 1051 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1052 { 1053 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1054 1055 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1056 } 1057 EXPORT_SYMBOL(sock_recvmsg); 1058 1059 /** 1060 * kernel_recvmsg - Receive a message from a socket (kernel space) 1061 * @sock: The socket to receive the message from 1062 * @msg: Received message 1063 * @vec: Input s/g array for message data 1064 * @num: Size of input s/g array 1065 * @size: Number of bytes to read 1066 * @flags: Message flags (MSG_DONTWAIT, etc...) 1067 * 1068 * On return the msg structure contains the scatter/gather array passed in the 1069 * vec argument. The array is modified so that it consists of the unfilled 1070 * portion of the original array. 1071 * 1072 * The returned value is the total number of bytes received, or an error. 1073 */ 1074 1075 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1076 struct kvec *vec, size_t num, size_t size, int flags) 1077 { 1078 msg->msg_control_is_user = false; 1079 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1080 return sock_recvmsg(sock, msg, flags); 1081 } 1082 EXPORT_SYMBOL(kernel_recvmsg); 1083 1084 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1085 struct pipe_inode_info *pipe, size_t len, 1086 unsigned int flags) 1087 { 1088 struct socket *sock = file->private_data; 1089 const struct proto_ops *ops; 1090 1091 ops = READ_ONCE(sock->ops); 1092 if (unlikely(!ops->splice_read)) 1093 return copy_splice_read(file, ppos, pipe, len, flags); 1094 1095 return ops->splice_read(sock, ppos, pipe, len, flags); 1096 } 1097 1098 static void sock_splice_eof(struct file *file) 1099 { 1100 struct socket *sock = file->private_data; 1101 const struct proto_ops *ops; 1102 1103 ops = READ_ONCE(sock->ops); 1104 if (ops->splice_eof) 1105 ops->splice_eof(sock); 1106 } 1107 1108 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1109 { 1110 struct file *file = iocb->ki_filp; 1111 struct socket *sock = file->private_data; 1112 struct msghdr msg = {.msg_iter = *to, 1113 .msg_iocb = iocb}; 1114 ssize_t res; 1115 1116 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1117 msg.msg_flags = MSG_DONTWAIT; 1118 1119 if (iocb->ki_pos != 0) 1120 return -ESPIPE; 1121 1122 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1123 return 0; 1124 1125 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1126 *to = msg.msg_iter; 1127 return res; 1128 } 1129 1130 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1131 { 1132 struct file *file = iocb->ki_filp; 1133 struct socket *sock = file->private_data; 1134 struct msghdr msg = {.msg_iter = *from, 1135 .msg_iocb = iocb}; 1136 ssize_t res; 1137 1138 if (iocb->ki_pos != 0) 1139 return -ESPIPE; 1140 1141 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1142 msg.msg_flags = MSG_DONTWAIT; 1143 1144 if (sock->type == SOCK_SEQPACKET) 1145 msg.msg_flags |= MSG_EOR; 1146 1147 res = __sock_sendmsg(sock, &msg); 1148 *from = msg.msg_iter; 1149 return res; 1150 } 1151 1152 /* 1153 * Atomic setting of ioctl hooks to avoid race 1154 * with module unload. 1155 */ 1156 1157 static DEFINE_MUTEX(br_ioctl_mutex); 1158 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1159 unsigned int cmd, struct ifreq *ifr, 1160 void __user *uarg); 1161 1162 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1163 unsigned int cmd, struct ifreq *ifr, 1164 void __user *uarg)) 1165 { 1166 mutex_lock(&br_ioctl_mutex); 1167 br_ioctl_hook = hook; 1168 mutex_unlock(&br_ioctl_mutex); 1169 } 1170 EXPORT_SYMBOL(brioctl_set); 1171 1172 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1173 struct ifreq *ifr, void __user *uarg) 1174 { 1175 int err = -ENOPKG; 1176 1177 if (!br_ioctl_hook) 1178 request_module("bridge"); 1179 1180 mutex_lock(&br_ioctl_mutex); 1181 if (br_ioctl_hook) 1182 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1183 mutex_unlock(&br_ioctl_mutex); 1184 1185 return err; 1186 } 1187 1188 static DEFINE_MUTEX(vlan_ioctl_mutex); 1189 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1190 1191 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1192 { 1193 mutex_lock(&vlan_ioctl_mutex); 1194 vlan_ioctl_hook = hook; 1195 mutex_unlock(&vlan_ioctl_mutex); 1196 } 1197 EXPORT_SYMBOL(vlan_ioctl_set); 1198 1199 static long sock_do_ioctl(struct net *net, struct socket *sock, 1200 unsigned int cmd, unsigned long arg) 1201 { 1202 const struct proto_ops *ops = READ_ONCE(sock->ops); 1203 struct ifreq ifr; 1204 bool need_copyout; 1205 int err; 1206 void __user *argp = (void __user *)arg; 1207 void __user *data; 1208 1209 err = ops->ioctl(sock, cmd, arg); 1210 1211 /* 1212 * If this ioctl is unknown try to hand it down 1213 * to the NIC driver. 1214 */ 1215 if (err != -ENOIOCTLCMD) 1216 return err; 1217 1218 if (!is_socket_ioctl_cmd(cmd)) 1219 return -ENOTTY; 1220 1221 if (get_user_ifreq(&ifr, &data, argp)) 1222 return -EFAULT; 1223 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1224 if (!err && need_copyout) 1225 if (put_user_ifreq(&ifr, argp)) 1226 return -EFAULT; 1227 1228 return err; 1229 } 1230 1231 /* 1232 * With an ioctl, arg may well be a user mode pointer, but we don't know 1233 * what to do with it - that's up to the protocol still. 1234 */ 1235 1236 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1237 { 1238 const struct proto_ops *ops; 1239 struct socket *sock; 1240 struct sock *sk; 1241 void __user *argp = (void __user *)arg; 1242 int pid, err; 1243 struct net *net; 1244 1245 sock = file->private_data; 1246 ops = READ_ONCE(sock->ops); 1247 sk = sock->sk; 1248 net = sock_net(sk); 1249 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1250 struct ifreq ifr; 1251 void __user *data; 1252 bool need_copyout; 1253 if (get_user_ifreq(&ifr, &data, argp)) 1254 return -EFAULT; 1255 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1256 if (!err && need_copyout) 1257 if (put_user_ifreq(&ifr, argp)) 1258 return -EFAULT; 1259 } else 1260 #ifdef CONFIG_WEXT_CORE 1261 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1262 err = wext_handle_ioctl(net, cmd, argp); 1263 } else 1264 #endif 1265 switch (cmd) { 1266 case FIOSETOWN: 1267 case SIOCSPGRP: 1268 err = -EFAULT; 1269 if (get_user(pid, (int __user *)argp)) 1270 break; 1271 err = f_setown(sock->file, pid, 1); 1272 break; 1273 case FIOGETOWN: 1274 case SIOCGPGRP: 1275 err = put_user(f_getown(sock->file), 1276 (int __user *)argp); 1277 break; 1278 case SIOCGIFBR: 1279 case SIOCSIFBR: 1280 case SIOCBRADDBR: 1281 case SIOCBRDELBR: 1282 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1283 break; 1284 case SIOCGIFVLAN: 1285 case SIOCSIFVLAN: 1286 err = -ENOPKG; 1287 if (!vlan_ioctl_hook) 1288 request_module("8021q"); 1289 1290 mutex_lock(&vlan_ioctl_mutex); 1291 if (vlan_ioctl_hook) 1292 err = vlan_ioctl_hook(net, argp); 1293 mutex_unlock(&vlan_ioctl_mutex); 1294 break; 1295 case SIOCGSKNS: 1296 err = -EPERM; 1297 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1298 break; 1299 1300 err = open_related_ns(&net->ns, get_net_ns); 1301 break; 1302 case SIOCGSTAMP_OLD: 1303 case SIOCGSTAMPNS_OLD: 1304 if (!ops->gettstamp) { 1305 err = -ENOIOCTLCMD; 1306 break; 1307 } 1308 err = ops->gettstamp(sock, argp, 1309 cmd == SIOCGSTAMP_OLD, 1310 !IS_ENABLED(CONFIG_64BIT)); 1311 break; 1312 case SIOCGSTAMP_NEW: 1313 case SIOCGSTAMPNS_NEW: 1314 if (!ops->gettstamp) { 1315 err = -ENOIOCTLCMD; 1316 break; 1317 } 1318 err = ops->gettstamp(sock, argp, 1319 cmd == SIOCGSTAMP_NEW, 1320 false); 1321 break; 1322 1323 case SIOCGIFCONF: 1324 err = dev_ifconf(net, argp); 1325 break; 1326 1327 default: 1328 err = sock_do_ioctl(net, sock, cmd, arg); 1329 break; 1330 } 1331 return err; 1332 } 1333 1334 /** 1335 * sock_create_lite - creates a socket 1336 * @family: protocol family (AF_INET, ...) 1337 * @type: communication type (SOCK_STREAM, ...) 1338 * @protocol: protocol (0, ...) 1339 * @res: new socket 1340 * 1341 * Creates a new socket and assigns it to @res, passing through LSM. 1342 * The new socket initialization is not complete, see kernel_accept(). 1343 * Returns 0 or an error. On failure @res is set to %NULL. 1344 * This function internally uses GFP_KERNEL. 1345 */ 1346 1347 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1348 { 1349 int err; 1350 struct socket *sock = NULL; 1351 1352 err = security_socket_create(family, type, protocol, 1); 1353 if (err) 1354 goto out; 1355 1356 sock = sock_alloc(); 1357 if (!sock) { 1358 err = -ENOMEM; 1359 goto out; 1360 } 1361 1362 sock->type = type; 1363 err = security_socket_post_create(sock, family, type, protocol, 1); 1364 if (err) 1365 goto out_release; 1366 1367 out: 1368 *res = sock; 1369 return err; 1370 out_release: 1371 sock_release(sock); 1372 sock = NULL; 1373 goto out; 1374 } 1375 EXPORT_SYMBOL(sock_create_lite); 1376 1377 /* No kernel lock held - perfect */ 1378 static __poll_t sock_poll(struct file *file, poll_table *wait) 1379 { 1380 struct socket *sock = file->private_data; 1381 const struct proto_ops *ops = READ_ONCE(sock->ops); 1382 __poll_t events = poll_requested_events(wait), flag = 0; 1383 1384 if (!ops->poll) 1385 return 0; 1386 1387 if (sk_can_busy_loop(sock->sk)) { 1388 /* poll once if requested by the syscall */ 1389 if (events & POLL_BUSY_LOOP) 1390 sk_busy_loop(sock->sk, 1); 1391 1392 /* if this socket can poll_ll, tell the system call */ 1393 flag = POLL_BUSY_LOOP; 1394 } 1395 1396 return ops->poll(file, sock, wait) | flag; 1397 } 1398 1399 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1400 { 1401 struct socket *sock = file->private_data; 1402 1403 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1404 } 1405 1406 static int sock_close(struct inode *inode, struct file *filp) 1407 { 1408 __sock_release(SOCKET_I(inode), inode); 1409 return 0; 1410 } 1411 1412 /* 1413 * Update the socket async list 1414 * 1415 * Fasync_list locking strategy. 1416 * 1417 * 1. fasync_list is modified only under process context socket lock 1418 * i.e. under semaphore. 1419 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1420 * or under socket lock 1421 */ 1422 1423 static int sock_fasync(int fd, struct file *filp, int on) 1424 { 1425 struct socket *sock = filp->private_data; 1426 struct sock *sk = sock->sk; 1427 struct socket_wq *wq = &sock->wq; 1428 1429 if (sk == NULL) 1430 return -EINVAL; 1431 1432 lock_sock(sk); 1433 fasync_helper(fd, filp, on, &wq->fasync_list); 1434 1435 if (!wq->fasync_list) 1436 sock_reset_flag(sk, SOCK_FASYNC); 1437 else 1438 sock_set_flag(sk, SOCK_FASYNC); 1439 1440 release_sock(sk); 1441 return 0; 1442 } 1443 1444 /* This function may be called only under rcu_lock */ 1445 1446 int sock_wake_async(struct socket_wq *wq, int how, int band) 1447 { 1448 if (!wq || !wq->fasync_list) 1449 return -1; 1450 1451 switch (how) { 1452 case SOCK_WAKE_WAITD: 1453 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1454 break; 1455 goto call_kill; 1456 case SOCK_WAKE_SPACE: 1457 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1458 break; 1459 fallthrough; 1460 case SOCK_WAKE_IO: 1461 call_kill: 1462 kill_fasync(&wq->fasync_list, SIGIO, band); 1463 break; 1464 case SOCK_WAKE_URG: 1465 kill_fasync(&wq->fasync_list, SIGURG, band); 1466 } 1467 1468 return 0; 1469 } 1470 EXPORT_SYMBOL(sock_wake_async); 1471 1472 /** 1473 * __sock_create - creates a socket 1474 * @net: net namespace 1475 * @family: protocol family (AF_INET, ...) 1476 * @type: communication type (SOCK_STREAM, ...) 1477 * @protocol: protocol (0, ...) 1478 * @res: new socket 1479 * @kern: boolean for kernel space sockets 1480 * 1481 * Creates a new socket and assigns it to @res, passing through LSM. 1482 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1483 * be set to true if the socket resides in kernel space. 1484 * This function internally uses GFP_KERNEL. 1485 */ 1486 1487 int __sock_create(struct net *net, int family, int type, int protocol, 1488 struct socket **res, int kern) 1489 { 1490 int err; 1491 struct socket *sock; 1492 const struct net_proto_family *pf; 1493 1494 /* 1495 * Check protocol is in range 1496 */ 1497 if (family < 0 || family >= NPROTO) 1498 return -EAFNOSUPPORT; 1499 if (type < 0 || type >= SOCK_MAX) 1500 return -EINVAL; 1501 1502 /* Compatibility. 1503 1504 This uglymoron is moved from INET layer to here to avoid 1505 deadlock in module load. 1506 */ 1507 if (family == PF_INET && type == SOCK_PACKET) { 1508 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1509 current->comm); 1510 family = PF_PACKET; 1511 } 1512 1513 err = security_socket_create(family, type, protocol, kern); 1514 if (err) 1515 return err; 1516 1517 /* 1518 * Allocate the socket and allow the family to set things up. if 1519 * the protocol is 0, the family is instructed to select an appropriate 1520 * default. 1521 */ 1522 sock = sock_alloc(); 1523 if (!sock) { 1524 net_warn_ratelimited("socket: no more sockets\n"); 1525 return -ENFILE; /* Not exactly a match, but its the 1526 closest posix thing */ 1527 } 1528 1529 sock->type = type; 1530 1531 #ifdef CONFIG_MODULES 1532 /* Attempt to load a protocol module if the find failed. 1533 * 1534 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1535 * requested real, full-featured networking support upon configuration. 1536 * Otherwise module support will break! 1537 */ 1538 if (rcu_access_pointer(net_families[family]) == NULL) 1539 request_module("net-pf-%d", family); 1540 #endif 1541 1542 rcu_read_lock(); 1543 pf = rcu_dereference(net_families[family]); 1544 err = -EAFNOSUPPORT; 1545 if (!pf) 1546 goto out_release; 1547 1548 /* 1549 * We will call the ->create function, that possibly is in a loadable 1550 * module, so we have to bump that loadable module refcnt first. 1551 */ 1552 if (!try_module_get(pf->owner)) 1553 goto out_release; 1554 1555 /* Now protected by module ref count */ 1556 rcu_read_unlock(); 1557 1558 err = pf->create(net, sock, protocol, kern); 1559 if (err < 0) { 1560 /* ->create should release the allocated sock->sk object on error 1561 * and make sure sock->sk is set to NULL to avoid use-after-free 1562 */ 1563 DEBUG_NET_WARN_ONCE(sock->sk, 1564 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1565 pf->create, family, type, protocol); 1566 goto out_module_put; 1567 } 1568 1569 /* 1570 * Now to bump the refcnt of the [loadable] module that owns this 1571 * socket at sock_release time we decrement its refcnt. 1572 */ 1573 if (!try_module_get(sock->ops->owner)) 1574 goto out_module_busy; 1575 1576 /* 1577 * Now that we're done with the ->create function, the [loadable] 1578 * module can have its refcnt decremented 1579 */ 1580 module_put(pf->owner); 1581 err = security_socket_post_create(sock, family, type, protocol, kern); 1582 if (err) 1583 goto out_sock_release; 1584 *res = sock; 1585 1586 return 0; 1587 1588 out_module_busy: 1589 err = -EAFNOSUPPORT; 1590 out_module_put: 1591 sock->ops = NULL; 1592 module_put(pf->owner); 1593 out_sock_release: 1594 sock_release(sock); 1595 return err; 1596 1597 out_release: 1598 rcu_read_unlock(); 1599 goto out_sock_release; 1600 } 1601 EXPORT_SYMBOL(__sock_create); 1602 1603 /** 1604 * sock_create - creates a socket 1605 * @family: protocol family (AF_INET, ...) 1606 * @type: communication type (SOCK_STREAM, ...) 1607 * @protocol: protocol (0, ...) 1608 * @res: new socket 1609 * 1610 * A wrapper around __sock_create(). 1611 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1612 */ 1613 1614 int sock_create(int family, int type, int protocol, struct socket **res) 1615 { 1616 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1617 } 1618 EXPORT_SYMBOL(sock_create); 1619 1620 /** 1621 * sock_create_kern - creates a socket (kernel space) 1622 * @net: net namespace 1623 * @family: protocol family (AF_INET, ...) 1624 * @type: communication type (SOCK_STREAM, ...) 1625 * @protocol: protocol (0, ...) 1626 * @res: new socket 1627 * 1628 * A wrapper around __sock_create(). 1629 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1630 */ 1631 1632 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1633 { 1634 return __sock_create(net, family, type, protocol, res, 1); 1635 } 1636 EXPORT_SYMBOL(sock_create_kern); 1637 1638 static struct socket *__sys_socket_create(int family, int type, int protocol) 1639 { 1640 struct socket *sock; 1641 int retval; 1642 1643 /* Check the SOCK_* constants for consistency. */ 1644 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1645 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1646 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1647 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1648 1649 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1650 return ERR_PTR(-EINVAL); 1651 type &= SOCK_TYPE_MASK; 1652 1653 retval = sock_create(family, type, protocol, &sock); 1654 if (retval < 0) 1655 return ERR_PTR(retval); 1656 1657 return sock; 1658 } 1659 1660 struct file *__sys_socket_file(int family, int type, int protocol) 1661 { 1662 struct socket *sock; 1663 int flags; 1664 1665 sock = __sys_socket_create(family, type, protocol); 1666 if (IS_ERR(sock)) 1667 return ERR_CAST(sock); 1668 1669 flags = type & ~SOCK_TYPE_MASK; 1670 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1671 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1672 1673 return sock_alloc_file(sock, flags, NULL); 1674 } 1675 1676 /* A hook for bpf progs to attach to and update socket protocol. 1677 * 1678 * A static noinline declaration here could cause the compiler to 1679 * optimize away the function. A global noinline declaration will 1680 * keep the definition, but may optimize away the callsite. 1681 * Therefore, __weak is needed to ensure that the call is still 1682 * emitted, by telling the compiler that we don't know what the 1683 * function might eventually be. 1684 */ 1685 1686 __bpf_hook_start(); 1687 1688 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1689 { 1690 return protocol; 1691 } 1692 1693 __bpf_hook_end(); 1694 1695 int __sys_socket(int family, int type, int protocol) 1696 { 1697 struct socket *sock; 1698 int flags; 1699 1700 sock = __sys_socket_create(family, type, 1701 update_socket_protocol(family, type, protocol)); 1702 if (IS_ERR(sock)) 1703 return PTR_ERR(sock); 1704 1705 flags = type & ~SOCK_TYPE_MASK; 1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1708 1709 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1710 } 1711 1712 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1713 { 1714 return __sys_socket(family, type, protocol); 1715 } 1716 1717 /* 1718 * Create a pair of connected sockets. 1719 */ 1720 1721 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1722 { 1723 struct socket *sock1, *sock2; 1724 int fd1, fd2, err; 1725 struct file *newfile1, *newfile2; 1726 int flags; 1727 1728 flags = type & ~SOCK_TYPE_MASK; 1729 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1730 return -EINVAL; 1731 type &= SOCK_TYPE_MASK; 1732 1733 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1734 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1735 1736 /* 1737 * reserve descriptors and make sure we won't fail 1738 * to return them to userland. 1739 */ 1740 fd1 = get_unused_fd_flags(flags); 1741 if (unlikely(fd1 < 0)) 1742 return fd1; 1743 1744 fd2 = get_unused_fd_flags(flags); 1745 if (unlikely(fd2 < 0)) { 1746 put_unused_fd(fd1); 1747 return fd2; 1748 } 1749 1750 err = put_user(fd1, &usockvec[0]); 1751 if (err) 1752 goto out; 1753 1754 err = put_user(fd2, &usockvec[1]); 1755 if (err) 1756 goto out; 1757 1758 /* 1759 * Obtain the first socket and check if the underlying protocol 1760 * supports the socketpair call. 1761 */ 1762 1763 err = sock_create(family, type, protocol, &sock1); 1764 if (unlikely(err < 0)) 1765 goto out; 1766 1767 err = sock_create(family, type, protocol, &sock2); 1768 if (unlikely(err < 0)) { 1769 sock_release(sock1); 1770 goto out; 1771 } 1772 1773 err = security_socket_socketpair(sock1, sock2); 1774 if (unlikely(err)) { 1775 sock_release(sock2); 1776 sock_release(sock1); 1777 goto out; 1778 } 1779 1780 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1781 if (unlikely(err < 0)) { 1782 sock_release(sock2); 1783 sock_release(sock1); 1784 goto out; 1785 } 1786 1787 newfile1 = sock_alloc_file(sock1, flags, NULL); 1788 if (IS_ERR(newfile1)) { 1789 err = PTR_ERR(newfile1); 1790 sock_release(sock2); 1791 goto out; 1792 } 1793 1794 newfile2 = sock_alloc_file(sock2, flags, NULL); 1795 if (IS_ERR(newfile2)) { 1796 err = PTR_ERR(newfile2); 1797 fput(newfile1); 1798 goto out; 1799 } 1800 1801 audit_fd_pair(fd1, fd2); 1802 1803 fd_install(fd1, newfile1); 1804 fd_install(fd2, newfile2); 1805 return 0; 1806 1807 out: 1808 put_unused_fd(fd2); 1809 put_unused_fd(fd1); 1810 return err; 1811 } 1812 1813 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1814 int __user *, usockvec) 1815 { 1816 return __sys_socketpair(family, type, protocol, usockvec); 1817 } 1818 1819 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1820 int addrlen) 1821 { 1822 int err; 1823 1824 err = security_socket_bind(sock, (struct sockaddr *)address, 1825 addrlen); 1826 if (!err) 1827 err = READ_ONCE(sock->ops)->bind(sock, 1828 (struct sockaddr *)address, 1829 addrlen); 1830 return err; 1831 } 1832 1833 /* 1834 * Bind a name to a socket. Nothing much to do here since it's 1835 * the protocol's responsibility to handle the local address. 1836 * 1837 * We move the socket address to kernel space before we call 1838 * the protocol layer (having also checked the address is ok). 1839 */ 1840 1841 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1842 { 1843 struct socket *sock; 1844 struct sockaddr_storage address; 1845 CLASS(fd, f)(fd); 1846 int err; 1847 1848 if (fd_empty(f)) 1849 return -EBADF; 1850 sock = sock_from_file(fd_file(f)); 1851 if (unlikely(!sock)) 1852 return -ENOTSOCK; 1853 1854 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1855 if (unlikely(err)) 1856 return err; 1857 1858 return __sys_bind_socket(sock, &address, addrlen); 1859 } 1860 1861 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1862 { 1863 return __sys_bind(fd, umyaddr, addrlen); 1864 } 1865 1866 /* 1867 * Perform a listen. Basically, we allow the protocol to do anything 1868 * necessary for a listen, and if that works, we mark the socket as 1869 * ready for listening. 1870 */ 1871 int __sys_listen_socket(struct socket *sock, int backlog) 1872 { 1873 int somaxconn, err; 1874 1875 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1876 if ((unsigned int)backlog > somaxconn) 1877 backlog = somaxconn; 1878 1879 err = security_socket_listen(sock, backlog); 1880 if (!err) 1881 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1882 return err; 1883 } 1884 1885 int __sys_listen(int fd, int backlog) 1886 { 1887 CLASS(fd, f)(fd); 1888 struct socket *sock; 1889 1890 if (fd_empty(f)) 1891 return -EBADF; 1892 sock = sock_from_file(fd_file(f)); 1893 if (unlikely(!sock)) 1894 return -ENOTSOCK; 1895 1896 return __sys_listen_socket(sock, backlog); 1897 } 1898 1899 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1900 { 1901 return __sys_listen(fd, backlog); 1902 } 1903 1904 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1905 struct sockaddr __user *upeer_sockaddr, 1906 int __user *upeer_addrlen, int flags) 1907 { 1908 struct socket *sock, *newsock; 1909 struct file *newfile; 1910 int err, len; 1911 struct sockaddr_storage address; 1912 const struct proto_ops *ops; 1913 1914 sock = sock_from_file(file); 1915 if (!sock) 1916 return ERR_PTR(-ENOTSOCK); 1917 1918 newsock = sock_alloc(); 1919 if (!newsock) 1920 return ERR_PTR(-ENFILE); 1921 ops = READ_ONCE(sock->ops); 1922 1923 newsock->type = sock->type; 1924 newsock->ops = ops; 1925 1926 /* 1927 * We don't need try_module_get here, as the listening socket (sock) 1928 * has the protocol module (sock->ops->owner) held. 1929 */ 1930 __module_get(ops->owner); 1931 1932 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1933 if (IS_ERR(newfile)) 1934 return newfile; 1935 1936 err = security_socket_accept(sock, newsock); 1937 if (err) 1938 goto out_fd; 1939 1940 arg->flags |= sock->file->f_flags; 1941 err = ops->accept(sock, newsock, arg); 1942 if (err < 0) 1943 goto out_fd; 1944 1945 if (upeer_sockaddr) { 1946 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1947 if (len < 0) { 1948 err = -ECONNABORTED; 1949 goto out_fd; 1950 } 1951 err = move_addr_to_user(&address, 1952 len, upeer_sockaddr, upeer_addrlen); 1953 if (err < 0) 1954 goto out_fd; 1955 } 1956 1957 /* File flags are not inherited via accept() unlike another OSes. */ 1958 return newfile; 1959 out_fd: 1960 fput(newfile); 1961 return ERR_PTR(err); 1962 } 1963 1964 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1965 int __user *upeer_addrlen, int flags) 1966 { 1967 struct proto_accept_arg arg = { }; 1968 struct file *newfile; 1969 int newfd; 1970 1971 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1972 return -EINVAL; 1973 1974 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1975 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1976 1977 newfd = get_unused_fd_flags(flags); 1978 if (unlikely(newfd < 0)) 1979 return newfd; 1980 1981 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1982 flags); 1983 if (IS_ERR(newfile)) { 1984 put_unused_fd(newfd); 1985 return PTR_ERR(newfile); 1986 } 1987 fd_install(newfd, newfile); 1988 return newfd; 1989 } 1990 1991 /* 1992 * For accept, we attempt to create a new socket, set up the link 1993 * with the client, wake up the client, then return the new 1994 * connected fd. We collect the address of the connector in kernel 1995 * space and move it to user at the very end. This is unclean because 1996 * we open the socket then return an error. 1997 * 1998 * 1003.1g adds the ability to recvmsg() to query connection pending 1999 * status to recvmsg. We need to add that support in a way thats 2000 * clean when we restructure accept also. 2001 */ 2002 2003 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2004 int __user *upeer_addrlen, int flags) 2005 { 2006 CLASS(fd, f)(fd); 2007 2008 if (fd_empty(f)) 2009 return -EBADF; 2010 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2011 upeer_addrlen, flags); 2012 } 2013 2014 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2015 int __user *, upeer_addrlen, int, flags) 2016 { 2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2018 } 2019 2020 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2021 int __user *, upeer_addrlen) 2022 { 2023 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2024 } 2025 2026 /* 2027 * Attempt to connect to a socket with the server address. The address 2028 * is in user space so we verify it is OK and move it to kernel space. 2029 * 2030 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2031 * break bindings 2032 * 2033 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2034 * other SEQPACKET protocols that take time to connect() as it doesn't 2035 * include the -EINPROGRESS status for such sockets. 2036 */ 2037 2038 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2039 int addrlen, int file_flags) 2040 { 2041 struct socket *sock; 2042 int err; 2043 2044 sock = sock_from_file(file); 2045 if (!sock) { 2046 err = -ENOTSOCK; 2047 goto out; 2048 } 2049 2050 err = 2051 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2052 if (err) 2053 goto out; 2054 2055 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2056 addrlen, sock->file->f_flags | file_flags); 2057 out: 2058 return err; 2059 } 2060 2061 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2062 { 2063 struct sockaddr_storage address; 2064 CLASS(fd, f)(fd); 2065 int ret; 2066 2067 if (fd_empty(f)) 2068 return -EBADF; 2069 2070 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2071 if (ret) 2072 return ret; 2073 2074 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2075 } 2076 2077 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2078 int, addrlen) 2079 { 2080 return __sys_connect(fd, uservaddr, addrlen); 2081 } 2082 2083 /* 2084 * Get the local address ('name') of a socket object. Move the obtained 2085 * name to user space. 2086 */ 2087 2088 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2089 int __user *usockaddr_len) 2090 { 2091 struct socket *sock; 2092 struct sockaddr_storage address; 2093 CLASS(fd, f)(fd); 2094 int err; 2095 2096 if (fd_empty(f)) 2097 return -EBADF; 2098 sock = sock_from_file(fd_file(f)); 2099 if (unlikely(!sock)) 2100 return -ENOTSOCK; 2101 2102 err = security_socket_getsockname(sock); 2103 if (err) 2104 return err; 2105 2106 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2107 if (err < 0) 2108 return err; 2109 2110 /* "err" is actually length in this case */ 2111 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2112 } 2113 2114 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2115 int __user *, usockaddr_len) 2116 { 2117 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2118 } 2119 2120 /* 2121 * Get the remote address ('name') of a socket object. Move the obtained 2122 * name to user space. 2123 */ 2124 2125 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2126 int __user *usockaddr_len) 2127 { 2128 struct socket *sock; 2129 struct sockaddr_storage address; 2130 CLASS(fd, f)(fd); 2131 int err; 2132 2133 if (fd_empty(f)) 2134 return -EBADF; 2135 sock = sock_from_file(fd_file(f)); 2136 if (unlikely(!sock)) 2137 return -ENOTSOCK; 2138 2139 err = security_socket_getpeername(sock); 2140 if (err) 2141 return err; 2142 2143 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2144 if (err < 0) 2145 return err; 2146 2147 /* "err" is actually length in this case */ 2148 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2149 } 2150 2151 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2152 int __user *, usockaddr_len) 2153 { 2154 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2155 } 2156 2157 /* 2158 * Send a datagram to a given address. We move the address into kernel 2159 * space and check the user space data area is readable before invoking 2160 * the protocol. 2161 */ 2162 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2163 struct sockaddr __user *addr, int addr_len) 2164 { 2165 struct socket *sock; 2166 struct sockaddr_storage address; 2167 int err; 2168 struct msghdr msg; 2169 2170 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2171 if (unlikely(err)) 2172 return err; 2173 2174 CLASS(fd, f)(fd); 2175 if (fd_empty(f)) 2176 return -EBADF; 2177 sock = sock_from_file(fd_file(f)); 2178 if (unlikely(!sock)) 2179 return -ENOTSOCK; 2180 2181 msg.msg_name = NULL; 2182 msg.msg_control = NULL; 2183 msg.msg_controllen = 0; 2184 msg.msg_namelen = 0; 2185 msg.msg_ubuf = NULL; 2186 if (addr) { 2187 err = move_addr_to_kernel(addr, addr_len, &address); 2188 if (err < 0) 2189 return err; 2190 msg.msg_name = (struct sockaddr *)&address; 2191 msg.msg_namelen = addr_len; 2192 } 2193 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2194 if (sock->file->f_flags & O_NONBLOCK) 2195 flags |= MSG_DONTWAIT; 2196 msg.msg_flags = flags; 2197 return __sock_sendmsg(sock, &msg); 2198 } 2199 2200 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2201 unsigned int, flags, struct sockaddr __user *, addr, 2202 int, addr_len) 2203 { 2204 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2205 } 2206 2207 /* 2208 * Send a datagram down a socket. 2209 */ 2210 2211 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2212 unsigned int, flags) 2213 { 2214 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2215 } 2216 2217 /* 2218 * Receive a frame from the socket and optionally record the address of the 2219 * sender. We verify the buffers are writable and if needed move the 2220 * sender address from kernel to user space. 2221 */ 2222 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2223 struct sockaddr __user *addr, int __user *addr_len) 2224 { 2225 struct sockaddr_storage address; 2226 struct msghdr msg = { 2227 /* Save some cycles and don't copy the address if not needed */ 2228 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2229 }; 2230 struct socket *sock; 2231 int err, err2; 2232 2233 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2234 if (unlikely(err)) 2235 return err; 2236 2237 CLASS(fd, f)(fd); 2238 2239 if (fd_empty(f)) 2240 return -EBADF; 2241 sock = sock_from_file(fd_file(f)); 2242 if (unlikely(!sock)) 2243 return -ENOTSOCK; 2244 2245 if (sock->file->f_flags & O_NONBLOCK) 2246 flags |= MSG_DONTWAIT; 2247 err = sock_recvmsg(sock, &msg, flags); 2248 2249 if (err >= 0 && addr != NULL) { 2250 err2 = move_addr_to_user(&address, 2251 msg.msg_namelen, addr, addr_len); 2252 if (err2 < 0) 2253 err = err2; 2254 } 2255 return err; 2256 } 2257 2258 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2259 unsigned int, flags, struct sockaddr __user *, addr, 2260 int __user *, addr_len) 2261 { 2262 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2263 } 2264 2265 /* 2266 * Receive a datagram from a socket. 2267 */ 2268 2269 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2270 unsigned int, flags) 2271 { 2272 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2273 } 2274 2275 static bool sock_use_custom_sol_socket(const struct socket *sock) 2276 { 2277 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2278 } 2279 2280 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2281 int optname, sockptr_t optval, int optlen) 2282 { 2283 const struct proto_ops *ops; 2284 char *kernel_optval = NULL; 2285 int err; 2286 2287 if (optlen < 0) 2288 return -EINVAL; 2289 2290 err = security_socket_setsockopt(sock, level, optname); 2291 if (err) 2292 goto out_put; 2293 2294 if (!compat) 2295 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2296 optval, &optlen, 2297 &kernel_optval); 2298 if (err < 0) 2299 goto out_put; 2300 if (err > 0) { 2301 err = 0; 2302 goto out_put; 2303 } 2304 2305 if (kernel_optval) 2306 optval = KERNEL_SOCKPTR(kernel_optval); 2307 ops = READ_ONCE(sock->ops); 2308 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2309 err = sock_setsockopt(sock, level, optname, optval, optlen); 2310 else if (unlikely(!ops->setsockopt)) 2311 err = -EOPNOTSUPP; 2312 else 2313 err = ops->setsockopt(sock, level, optname, optval, 2314 optlen); 2315 kfree(kernel_optval); 2316 out_put: 2317 return err; 2318 } 2319 EXPORT_SYMBOL(do_sock_setsockopt); 2320 2321 /* Set a socket option. Because we don't know the option lengths we have 2322 * to pass the user mode parameter for the protocols to sort out. 2323 */ 2324 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2325 int optlen) 2326 { 2327 sockptr_t optval = USER_SOCKPTR(user_optval); 2328 bool compat = in_compat_syscall(); 2329 struct socket *sock; 2330 CLASS(fd, f)(fd); 2331 2332 if (fd_empty(f)) 2333 return -EBADF; 2334 sock = sock_from_file(fd_file(f)); 2335 if (unlikely(!sock)) 2336 return -ENOTSOCK; 2337 2338 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2339 } 2340 2341 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2342 char __user *, optval, int, optlen) 2343 { 2344 return __sys_setsockopt(fd, level, optname, optval, optlen); 2345 } 2346 2347 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2348 int optname)); 2349 2350 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2351 int optname, sockptr_t optval, sockptr_t optlen) 2352 { 2353 int max_optlen __maybe_unused = 0; 2354 const struct proto_ops *ops; 2355 int err; 2356 2357 err = security_socket_getsockopt(sock, level, optname); 2358 if (err) 2359 return err; 2360 2361 if (!compat) 2362 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2363 2364 ops = READ_ONCE(sock->ops); 2365 if (level == SOL_SOCKET) { 2366 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2367 } else if (unlikely(!ops->getsockopt)) { 2368 err = -EOPNOTSUPP; 2369 } else { 2370 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2371 "Invalid argument type")) 2372 return -EOPNOTSUPP; 2373 2374 err = ops->getsockopt(sock, level, optname, optval.user, 2375 optlen.user); 2376 } 2377 2378 if (!compat) 2379 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2380 optval, optlen, max_optlen, 2381 err); 2382 2383 return err; 2384 } 2385 EXPORT_SYMBOL(do_sock_getsockopt); 2386 2387 /* 2388 * Get a socket option. Because we don't know the option lengths we have 2389 * to pass a user mode parameter for the protocols to sort out. 2390 */ 2391 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2392 int __user *optlen) 2393 { 2394 struct socket *sock; 2395 CLASS(fd, f)(fd); 2396 2397 if (fd_empty(f)) 2398 return -EBADF; 2399 sock = sock_from_file(fd_file(f)); 2400 if (unlikely(!sock)) 2401 return -ENOTSOCK; 2402 2403 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2404 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2405 } 2406 2407 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2408 char __user *, optval, int __user *, optlen) 2409 { 2410 return __sys_getsockopt(fd, level, optname, optval, optlen); 2411 } 2412 2413 /* 2414 * Shutdown a socket. 2415 */ 2416 2417 int __sys_shutdown_sock(struct socket *sock, int how) 2418 { 2419 int err; 2420 2421 err = security_socket_shutdown(sock, how); 2422 if (!err) 2423 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2424 2425 return err; 2426 } 2427 2428 int __sys_shutdown(int fd, int how) 2429 { 2430 struct socket *sock; 2431 CLASS(fd, f)(fd); 2432 2433 if (fd_empty(f)) 2434 return -EBADF; 2435 sock = sock_from_file(fd_file(f)); 2436 if (unlikely(!sock)) 2437 return -ENOTSOCK; 2438 2439 return __sys_shutdown_sock(sock, how); 2440 } 2441 2442 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2443 { 2444 return __sys_shutdown(fd, how); 2445 } 2446 2447 /* A couple of helpful macros for getting the address of the 32/64 bit 2448 * fields which are the same type (int / unsigned) on our platforms. 2449 */ 2450 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2451 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2452 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2453 2454 struct used_address { 2455 struct sockaddr_storage name; 2456 unsigned int name_len; 2457 }; 2458 2459 int __copy_msghdr(struct msghdr *kmsg, 2460 struct user_msghdr *msg, 2461 struct sockaddr __user **save_addr) 2462 { 2463 ssize_t err; 2464 2465 kmsg->msg_control_is_user = true; 2466 kmsg->msg_get_inq = 0; 2467 kmsg->msg_control_user = msg->msg_control; 2468 kmsg->msg_controllen = msg->msg_controllen; 2469 kmsg->msg_flags = msg->msg_flags; 2470 2471 kmsg->msg_namelen = msg->msg_namelen; 2472 if (!msg->msg_name) 2473 kmsg->msg_namelen = 0; 2474 2475 if (kmsg->msg_namelen < 0) 2476 return -EINVAL; 2477 2478 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2479 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2480 2481 if (save_addr) 2482 *save_addr = msg->msg_name; 2483 2484 if (msg->msg_name && kmsg->msg_namelen) { 2485 if (!save_addr) { 2486 err = move_addr_to_kernel(msg->msg_name, 2487 kmsg->msg_namelen, 2488 kmsg->msg_name); 2489 if (err < 0) 2490 return err; 2491 } 2492 } else { 2493 kmsg->msg_name = NULL; 2494 kmsg->msg_namelen = 0; 2495 } 2496 2497 if (msg->msg_iovlen > UIO_MAXIOV) 2498 return -EMSGSIZE; 2499 2500 kmsg->msg_iocb = NULL; 2501 kmsg->msg_ubuf = NULL; 2502 return 0; 2503 } 2504 2505 static int copy_msghdr_from_user(struct msghdr *kmsg, 2506 struct user_msghdr __user *umsg, 2507 struct sockaddr __user **save_addr, 2508 struct iovec **iov) 2509 { 2510 struct user_msghdr msg; 2511 ssize_t err; 2512 2513 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2514 return -EFAULT; 2515 2516 err = __copy_msghdr(kmsg, &msg, save_addr); 2517 if (err) 2518 return err; 2519 2520 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2521 msg.msg_iov, msg.msg_iovlen, 2522 UIO_FASTIOV, iov, &kmsg->msg_iter); 2523 return err < 0 ? err : 0; 2524 } 2525 2526 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2527 unsigned int flags, struct used_address *used_address, 2528 unsigned int allowed_msghdr_flags) 2529 { 2530 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2531 __aligned(sizeof(__kernel_size_t)); 2532 /* 20 is size of ipv6_pktinfo */ 2533 unsigned char *ctl_buf = ctl; 2534 int ctl_len; 2535 ssize_t err; 2536 2537 err = -ENOBUFS; 2538 2539 if (msg_sys->msg_controllen > INT_MAX) 2540 goto out; 2541 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2542 ctl_len = msg_sys->msg_controllen; 2543 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2544 err = 2545 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2546 sizeof(ctl)); 2547 if (err) 2548 goto out; 2549 ctl_buf = msg_sys->msg_control; 2550 ctl_len = msg_sys->msg_controllen; 2551 } else if (ctl_len) { 2552 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2553 CMSG_ALIGN(sizeof(struct cmsghdr))); 2554 if (ctl_len > sizeof(ctl)) { 2555 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2556 if (ctl_buf == NULL) 2557 goto out; 2558 } 2559 err = -EFAULT; 2560 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2561 goto out_freectl; 2562 msg_sys->msg_control = ctl_buf; 2563 msg_sys->msg_control_is_user = false; 2564 } 2565 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2566 msg_sys->msg_flags = flags; 2567 2568 if (sock->file->f_flags & O_NONBLOCK) 2569 msg_sys->msg_flags |= MSG_DONTWAIT; 2570 /* 2571 * If this is sendmmsg() and current destination address is same as 2572 * previously succeeded address, omit asking LSM's decision. 2573 * used_address->name_len is initialized to UINT_MAX so that the first 2574 * destination address never matches. 2575 */ 2576 if (used_address && msg_sys->msg_name && 2577 used_address->name_len == msg_sys->msg_namelen && 2578 !memcmp(&used_address->name, msg_sys->msg_name, 2579 used_address->name_len)) { 2580 err = sock_sendmsg_nosec(sock, msg_sys); 2581 goto out_freectl; 2582 } 2583 err = __sock_sendmsg(sock, msg_sys); 2584 /* 2585 * If this is sendmmsg() and sending to current destination address was 2586 * successful, remember it. 2587 */ 2588 if (used_address && err >= 0) { 2589 used_address->name_len = msg_sys->msg_namelen; 2590 if (msg_sys->msg_name) 2591 memcpy(&used_address->name, msg_sys->msg_name, 2592 used_address->name_len); 2593 } 2594 2595 out_freectl: 2596 if (ctl_buf != ctl) 2597 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2598 out: 2599 return err; 2600 } 2601 2602 static int sendmsg_copy_msghdr(struct msghdr *msg, 2603 struct user_msghdr __user *umsg, unsigned flags, 2604 struct iovec **iov) 2605 { 2606 int err; 2607 2608 if (flags & MSG_CMSG_COMPAT) { 2609 struct compat_msghdr __user *msg_compat; 2610 2611 msg_compat = (struct compat_msghdr __user *) umsg; 2612 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2613 } else { 2614 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2615 } 2616 if (err < 0) 2617 return err; 2618 2619 return 0; 2620 } 2621 2622 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2623 struct msghdr *msg_sys, unsigned int flags, 2624 struct used_address *used_address, 2625 unsigned int allowed_msghdr_flags) 2626 { 2627 struct sockaddr_storage address; 2628 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2629 ssize_t err; 2630 2631 msg_sys->msg_name = &address; 2632 2633 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2634 if (err < 0) 2635 return err; 2636 2637 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2638 allowed_msghdr_flags); 2639 kfree(iov); 2640 return err; 2641 } 2642 2643 /* 2644 * BSD sendmsg interface 2645 */ 2646 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2647 unsigned int flags) 2648 { 2649 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2650 } 2651 2652 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2653 bool forbid_cmsg_compat) 2654 { 2655 struct msghdr msg_sys; 2656 struct socket *sock; 2657 2658 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2659 return -EINVAL; 2660 2661 CLASS(fd, f)(fd); 2662 2663 if (fd_empty(f)) 2664 return -EBADF; 2665 sock = sock_from_file(fd_file(f)); 2666 if (unlikely(!sock)) 2667 return -ENOTSOCK; 2668 2669 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2670 } 2671 2672 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2673 { 2674 return __sys_sendmsg(fd, msg, flags, true); 2675 } 2676 2677 /* 2678 * Linux sendmmsg interface 2679 */ 2680 2681 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2682 unsigned int flags, bool forbid_cmsg_compat) 2683 { 2684 int err, datagrams; 2685 struct socket *sock; 2686 struct mmsghdr __user *entry; 2687 struct compat_mmsghdr __user *compat_entry; 2688 struct msghdr msg_sys; 2689 struct used_address used_address; 2690 unsigned int oflags = flags; 2691 2692 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2693 return -EINVAL; 2694 2695 if (vlen > UIO_MAXIOV) 2696 vlen = UIO_MAXIOV; 2697 2698 datagrams = 0; 2699 2700 CLASS(fd, f)(fd); 2701 2702 if (fd_empty(f)) 2703 return -EBADF; 2704 sock = sock_from_file(fd_file(f)); 2705 if (unlikely(!sock)) 2706 return -ENOTSOCK; 2707 2708 used_address.name_len = UINT_MAX; 2709 entry = mmsg; 2710 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2711 err = 0; 2712 flags |= MSG_BATCH; 2713 2714 while (datagrams < vlen) { 2715 if (datagrams == vlen - 1) 2716 flags = oflags; 2717 2718 if (MSG_CMSG_COMPAT & flags) { 2719 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2720 &msg_sys, flags, &used_address, MSG_EOR); 2721 if (err < 0) 2722 break; 2723 err = __put_user(err, &compat_entry->msg_len); 2724 ++compat_entry; 2725 } else { 2726 err = ___sys_sendmsg(sock, 2727 (struct user_msghdr __user *)entry, 2728 &msg_sys, flags, &used_address, MSG_EOR); 2729 if (err < 0) 2730 break; 2731 err = put_user(err, &entry->msg_len); 2732 ++entry; 2733 } 2734 2735 if (err) 2736 break; 2737 ++datagrams; 2738 if (msg_data_left(&msg_sys)) 2739 break; 2740 cond_resched(); 2741 } 2742 2743 /* We only return an error if no datagrams were able to be sent */ 2744 if (datagrams != 0) 2745 return datagrams; 2746 2747 return err; 2748 } 2749 2750 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2751 unsigned int, vlen, unsigned int, flags) 2752 { 2753 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2754 } 2755 2756 static int recvmsg_copy_msghdr(struct msghdr *msg, 2757 struct user_msghdr __user *umsg, unsigned flags, 2758 struct sockaddr __user **uaddr, 2759 struct iovec **iov) 2760 { 2761 ssize_t err; 2762 2763 if (MSG_CMSG_COMPAT & flags) { 2764 struct compat_msghdr __user *msg_compat; 2765 2766 msg_compat = (struct compat_msghdr __user *) umsg; 2767 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2768 } else { 2769 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2770 } 2771 if (err < 0) 2772 return err; 2773 2774 return 0; 2775 } 2776 2777 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2778 struct user_msghdr __user *msg, 2779 struct sockaddr __user *uaddr, 2780 unsigned int flags, int nosec) 2781 { 2782 struct compat_msghdr __user *msg_compat = 2783 (struct compat_msghdr __user *) msg; 2784 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2785 struct sockaddr_storage addr; 2786 unsigned long cmsg_ptr; 2787 int len; 2788 ssize_t err; 2789 2790 msg_sys->msg_name = &addr; 2791 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2792 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2793 2794 /* We assume all kernel code knows the size of sockaddr_storage */ 2795 msg_sys->msg_namelen = 0; 2796 2797 if (sock->file->f_flags & O_NONBLOCK) 2798 flags |= MSG_DONTWAIT; 2799 2800 if (unlikely(nosec)) 2801 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2802 else 2803 err = sock_recvmsg(sock, msg_sys, flags); 2804 2805 if (err < 0) 2806 goto out; 2807 len = err; 2808 2809 if (uaddr != NULL) { 2810 err = move_addr_to_user(&addr, 2811 msg_sys->msg_namelen, uaddr, 2812 uaddr_len); 2813 if (err < 0) 2814 goto out; 2815 } 2816 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2817 COMPAT_FLAGS(msg)); 2818 if (err) 2819 goto out; 2820 if (MSG_CMSG_COMPAT & flags) 2821 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2822 &msg_compat->msg_controllen); 2823 else 2824 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2825 &msg->msg_controllen); 2826 if (err) 2827 goto out; 2828 err = len; 2829 out: 2830 return err; 2831 } 2832 2833 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2834 struct msghdr *msg_sys, unsigned int flags, int nosec) 2835 { 2836 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2837 /* user mode address pointers */ 2838 struct sockaddr __user *uaddr; 2839 ssize_t err; 2840 2841 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2842 if (err < 0) 2843 return err; 2844 2845 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2846 kfree(iov); 2847 return err; 2848 } 2849 2850 /* 2851 * BSD recvmsg interface 2852 */ 2853 2854 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2855 struct user_msghdr __user *umsg, 2856 struct sockaddr __user *uaddr, unsigned int flags) 2857 { 2858 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2859 } 2860 2861 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2862 bool forbid_cmsg_compat) 2863 { 2864 struct msghdr msg_sys; 2865 struct socket *sock; 2866 2867 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2868 return -EINVAL; 2869 2870 CLASS(fd, f)(fd); 2871 2872 if (fd_empty(f)) 2873 return -EBADF; 2874 sock = sock_from_file(fd_file(f)); 2875 if (unlikely(!sock)) 2876 return -ENOTSOCK; 2877 2878 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2879 } 2880 2881 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2882 unsigned int, flags) 2883 { 2884 return __sys_recvmsg(fd, msg, flags, true); 2885 } 2886 2887 /* 2888 * Linux recvmmsg interface 2889 */ 2890 2891 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2892 unsigned int vlen, unsigned int flags, 2893 struct timespec64 *timeout) 2894 { 2895 int err = 0, datagrams; 2896 struct socket *sock; 2897 struct mmsghdr __user *entry; 2898 struct compat_mmsghdr __user *compat_entry; 2899 struct msghdr msg_sys; 2900 struct timespec64 end_time; 2901 struct timespec64 timeout64; 2902 2903 if (timeout && 2904 poll_select_set_timeout(&end_time, timeout->tv_sec, 2905 timeout->tv_nsec)) 2906 return -EINVAL; 2907 2908 datagrams = 0; 2909 2910 CLASS(fd, f)(fd); 2911 2912 if (fd_empty(f)) 2913 return -EBADF; 2914 sock = sock_from_file(fd_file(f)); 2915 if (unlikely(!sock)) 2916 return -ENOTSOCK; 2917 2918 if (likely(!(flags & MSG_ERRQUEUE))) { 2919 err = sock_error(sock->sk); 2920 if (err) 2921 return err; 2922 } 2923 2924 entry = mmsg; 2925 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2926 2927 while (datagrams < vlen) { 2928 /* 2929 * No need to ask LSM for more than the first datagram. 2930 */ 2931 if (MSG_CMSG_COMPAT & flags) { 2932 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2933 &msg_sys, flags & ~MSG_WAITFORONE, 2934 datagrams); 2935 if (err < 0) 2936 break; 2937 err = __put_user(err, &compat_entry->msg_len); 2938 ++compat_entry; 2939 } else { 2940 err = ___sys_recvmsg(sock, 2941 (struct user_msghdr __user *)entry, 2942 &msg_sys, flags & ~MSG_WAITFORONE, 2943 datagrams); 2944 if (err < 0) 2945 break; 2946 err = put_user(err, &entry->msg_len); 2947 ++entry; 2948 } 2949 2950 if (err) 2951 break; 2952 ++datagrams; 2953 2954 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2955 if (flags & MSG_WAITFORONE) 2956 flags |= MSG_DONTWAIT; 2957 2958 if (timeout) { 2959 ktime_get_ts64(&timeout64); 2960 *timeout = timespec64_sub(end_time, timeout64); 2961 if (timeout->tv_sec < 0) { 2962 timeout->tv_sec = timeout->tv_nsec = 0; 2963 break; 2964 } 2965 2966 /* Timeout, return less than vlen datagrams */ 2967 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2968 break; 2969 } 2970 2971 /* Out of band data, return right away */ 2972 if (msg_sys.msg_flags & MSG_OOB) 2973 break; 2974 cond_resched(); 2975 } 2976 2977 if (err == 0) 2978 return datagrams; 2979 2980 if (datagrams == 0) 2981 return err; 2982 2983 /* 2984 * We may return less entries than requested (vlen) if the 2985 * sock is non block and there aren't enough datagrams... 2986 */ 2987 if (err != -EAGAIN) { 2988 /* 2989 * ... or if recvmsg returns an error after we 2990 * received some datagrams, where we record the 2991 * error to return on the next call or if the 2992 * app asks about it using getsockopt(SO_ERROR). 2993 */ 2994 WRITE_ONCE(sock->sk->sk_err, -err); 2995 } 2996 return datagrams; 2997 } 2998 2999 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3000 unsigned int vlen, unsigned int flags, 3001 struct __kernel_timespec __user *timeout, 3002 struct old_timespec32 __user *timeout32) 3003 { 3004 int datagrams; 3005 struct timespec64 timeout_sys; 3006 3007 if (timeout && get_timespec64(&timeout_sys, timeout)) 3008 return -EFAULT; 3009 3010 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3011 return -EFAULT; 3012 3013 if (!timeout && !timeout32) 3014 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3015 3016 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3017 3018 if (datagrams <= 0) 3019 return datagrams; 3020 3021 if (timeout && put_timespec64(&timeout_sys, timeout)) 3022 datagrams = -EFAULT; 3023 3024 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3025 datagrams = -EFAULT; 3026 3027 return datagrams; 3028 } 3029 3030 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3031 unsigned int, vlen, unsigned int, flags, 3032 struct __kernel_timespec __user *, timeout) 3033 { 3034 if (flags & MSG_CMSG_COMPAT) 3035 return -EINVAL; 3036 3037 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3038 } 3039 3040 #ifdef CONFIG_COMPAT_32BIT_TIME 3041 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3042 unsigned int, vlen, unsigned int, flags, 3043 struct old_timespec32 __user *, timeout) 3044 { 3045 if (flags & MSG_CMSG_COMPAT) 3046 return -EINVAL; 3047 3048 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3049 } 3050 #endif 3051 3052 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3053 /* Argument list sizes for sys_socketcall */ 3054 #define AL(x) ((x) * sizeof(unsigned long)) 3055 static const unsigned char nargs[21] = { 3056 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3057 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3058 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3059 AL(4), AL(5), AL(4) 3060 }; 3061 3062 #undef AL 3063 3064 /* 3065 * System call vectors. 3066 * 3067 * Argument checking cleaned up. Saved 20% in size. 3068 * This function doesn't need to set the kernel lock because 3069 * it is set by the callees. 3070 */ 3071 3072 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3073 { 3074 unsigned long a[AUDITSC_ARGS]; 3075 unsigned long a0, a1; 3076 int err; 3077 unsigned int len; 3078 3079 if (call < 1 || call > SYS_SENDMMSG) 3080 return -EINVAL; 3081 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3082 3083 len = nargs[call]; 3084 if (len > sizeof(a)) 3085 return -EINVAL; 3086 3087 /* copy_from_user should be SMP safe. */ 3088 if (copy_from_user(a, args, len)) 3089 return -EFAULT; 3090 3091 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3092 if (err) 3093 return err; 3094 3095 a0 = a[0]; 3096 a1 = a[1]; 3097 3098 switch (call) { 3099 case SYS_SOCKET: 3100 err = __sys_socket(a0, a1, a[2]); 3101 break; 3102 case SYS_BIND: 3103 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3104 break; 3105 case SYS_CONNECT: 3106 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3107 break; 3108 case SYS_LISTEN: 3109 err = __sys_listen(a0, a1); 3110 break; 3111 case SYS_ACCEPT: 3112 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3113 (int __user *)a[2], 0); 3114 break; 3115 case SYS_GETSOCKNAME: 3116 err = 3117 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3118 (int __user *)a[2]); 3119 break; 3120 case SYS_GETPEERNAME: 3121 err = 3122 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3123 (int __user *)a[2]); 3124 break; 3125 case SYS_SOCKETPAIR: 3126 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3127 break; 3128 case SYS_SEND: 3129 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3130 NULL, 0); 3131 break; 3132 case SYS_SENDTO: 3133 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3134 (struct sockaddr __user *)a[4], a[5]); 3135 break; 3136 case SYS_RECV: 3137 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3138 NULL, NULL); 3139 break; 3140 case SYS_RECVFROM: 3141 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3142 (struct sockaddr __user *)a[4], 3143 (int __user *)a[5]); 3144 break; 3145 case SYS_SHUTDOWN: 3146 err = __sys_shutdown(a0, a1); 3147 break; 3148 case SYS_SETSOCKOPT: 3149 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3150 a[4]); 3151 break; 3152 case SYS_GETSOCKOPT: 3153 err = 3154 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3155 (int __user *)a[4]); 3156 break; 3157 case SYS_SENDMSG: 3158 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3159 a[2], true); 3160 break; 3161 case SYS_SENDMMSG: 3162 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3163 a[3], true); 3164 break; 3165 case SYS_RECVMSG: 3166 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3167 a[2], true); 3168 break; 3169 case SYS_RECVMMSG: 3170 if (IS_ENABLED(CONFIG_64BIT)) 3171 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3172 a[2], a[3], 3173 (struct __kernel_timespec __user *)a[4], 3174 NULL); 3175 else 3176 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3177 a[2], a[3], NULL, 3178 (struct old_timespec32 __user *)a[4]); 3179 break; 3180 case SYS_ACCEPT4: 3181 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3182 (int __user *)a[2], a[3]); 3183 break; 3184 default: 3185 err = -EINVAL; 3186 break; 3187 } 3188 return err; 3189 } 3190 3191 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3192 3193 /** 3194 * sock_register - add a socket protocol handler 3195 * @ops: description of protocol 3196 * 3197 * This function is called by a protocol handler that wants to 3198 * advertise its address family, and have it linked into the 3199 * socket interface. The value ops->family corresponds to the 3200 * socket system call protocol family. 3201 */ 3202 int sock_register(const struct net_proto_family *ops) 3203 { 3204 int err; 3205 3206 if (ops->family >= NPROTO) { 3207 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3208 return -ENOBUFS; 3209 } 3210 3211 spin_lock(&net_family_lock); 3212 if (rcu_dereference_protected(net_families[ops->family], 3213 lockdep_is_held(&net_family_lock))) 3214 err = -EEXIST; 3215 else { 3216 rcu_assign_pointer(net_families[ops->family], ops); 3217 err = 0; 3218 } 3219 spin_unlock(&net_family_lock); 3220 3221 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3222 return err; 3223 } 3224 EXPORT_SYMBOL(sock_register); 3225 3226 /** 3227 * sock_unregister - remove a protocol handler 3228 * @family: protocol family to remove 3229 * 3230 * This function is called by a protocol handler that wants to 3231 * remove its address family, and have it unlinked from the 3232 * new socket creation. 3233 * 3234 * If protocol handler is a module, then it can use module reference 3235 * counts to protect against new references. If protocol handler is not 3236 * a module then it needs to provide its own protection in 3237 * the ops->create routine. 3238 */ 3239 void sock_unregister(int family) 3240 { 3241 BUG_ON(family < 0 || family >= NPROTO); 3242 3243 spin_lock(&net_family_lock); 3244 RCU_INIT_POINTER(net_families[family], NULL); 3245 spin_unlock(&net_family_lock); 3246 3247 synchronize_rcu(); 3248 3249 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3250 } 3251 EXPORT_SYMBOL(sock_unregister); 3252 3253 bool sock_is_registered(int family) 3254 { 3255 return family < NPROTO && rcu_access_pointer(net_families[family]); 3256 } 3257 3258 static int __init sock_init(void) 3259 { 3260 int err; 3261 /* 3262 * Initialize the network sysctl infrastructure. 3263 */ 3264 err = net_sysctl_init(); 3265 if (err) 3266 goto out; 3267 3268 /* 3269 * Initialize skbuff SLAB cache 3270 */ 3271 skb_init(); 3272 3273 /* 3274 * Initialize the protocols module. 3275 */ 3276 3277 init_inodecache(); 3278 3279 err = register_filesystem(&sock_fs_type); 3280 if (err) 3281 goto out; 3282 sock_mnt = kern_mount(&sock_fs_type); 3283 if (IS_ERR(sock_mnt)) { 3284 err = PTR_ERR(sock_mnt); 3285 goto out_mount; 3286 } 3287 3288 /* The real protocol initialization is performed in later initcalls. 3289 */ 3290 3291 #ifdef CONFIG_NETFILTER 3292 err = netfilter_init(); 3293 if (err) 3294 goto out; 3295 #endif 3296 3297 ptp_classifier_init(); 3298 3299 out: 3300 return err; 3301 3302 out_mount: 3303 unregister_filesystem(&sock_fs_type); 3304 goto out; 3305 } 3306 3307 core_initcall(sock_init); /* early initcall */ 3308 3309 #ifdef CONFIG_PROC_FS 3310 void socket_seq_show(struct seq_file *seq) 3311 { 3312 seq_printf(seq, "sockets: used %d\n", 3313 sock_inuse_get(seq->private)); 3314 } 3315 #endif /* CONFIG_PROC_FS */ 3316 3317 /* Handle the fact that while struct ifreq has the same *layout* on 3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3319 * which are handled elsewhere, it still has different *size* due to 3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3321 * resulting in struct ifreq being 32 and 40 bytes respectively). 3322 * As a result, if the struct happens to be at the end of a page and 3323 * the next page isn't readable/writable, we get a fault. To prevent 3324 * that, copy back and forth to the full size. 3325 */ 3326 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3327 { 3328 if (in_compat_syscall()) { 3329 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3330 3331 memset(ifr, 0, sizeof(*ifr)); 3332 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3333 return -EFAULT; 3334 3335 if (ifrdata) 3336 *ifrdata = compat_ptr(ifr32->ifr_data); 3337 3338 return 0; 3339 } 3340 3341 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3342 return -EFAULT; 3343 3344 if (ifrdata) 3345 *ifrdata = ifr->ifr_data; 3346 3347 return 0; 3348 } 3349 EXPORT_SYMBOL(get_user_ifreq); 3350 3351 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3352 { 3353 size_t size = sizeof(*ifr); 3354 3355 if (in_compat_syscall()) 3356 size = sizeof(struct compat_ifreq); 3357 3358 if (copy_to_user(arg, ifr, size)) 3359 return -EFAULT; 3360 3361 return 0; 3362 } 3363 EXPORT_SYMBOL(put_user_ifreq); 3364 3365 #ifdef CONFIG_COMPAT 3366 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3367 { 3368 compat_uptr_t uptr32; 3369 struct ifreq ifr; 3370 void __user *saved; 3371 int err; 3372 3373 if (get_user_ifreq(&ifr, NULL, uifr32)) 3374 return -EFAULT; 3375 3376 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3377 return -EFAULT; 3378 3379 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3380 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3381 3382 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3383 if (!err) { 3384 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3385 if (put_user_ifreq(&ifr, uifr32)) 3386 err = -EFAULT; 3387 } 3388 return err; 3389 } 3390 3391 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3392 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3393 struct compat_ifreq __user *u_ifreq32) 3394 { 3395 struct ifreq ifreq; 3396 void __user *data; 3397 3398 if (!is_socket_ioctl_cmd(cmd)) 3399 return -ENOTTY; 3400 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3401 return -EFAULT; 3402 ifreq.ifr_data = data; 3403 3404 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3405 } 3406 3407 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3408 unsigned int cmd, unsigned long arg) 3409 { 3410 void __user *argp = compat_ptr(arg); 3411 struct sock *sk = sock->sk; 3412 struct net *net = sock_net(sk); 3413 const struct proto_ops *ops; 3414 3415 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3416 return sock_ioctl(file, cmd, (unsigned long)argp); 3417 3418 switch (cmd) { 3419 case SIOCWANDEV: 3420 return compat_siocwandev(net, argp); 3421 case SIOCGSTAMP_OLD: 3422 case SIOCGSTAMPNS_OLD: 3423 ops = READ_ONCE(sock->ops); 3424 if (!ops->gettstamp) 3425 return -ENOIOCTLCMD; 3426 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3427 !COMPAT_USE_64BIT_TIME); 3428 3429 case SIOCETHTOOL: 3430 case SIOCBONDSLAVEINFOQUERY: 3431 case SIOCBONDINFOQUERY: 3432 case SIOCSHWTSTAMP: 3433 case SIOCGHWTSTAMP: 3434 return compat_ifr_data_ioctl(net, cmd, argp); 3435 3436 case FIOSETOWN: 3437 case SIOCSPGRP: 3438 case FIOGETOWN: 3439 case SIOCGPGRP: 3440 case SIOCBRADDBR: 3441 case SIOCBRDELBR: 3442 case SIOCGIFVLAN: 3443 case SIOCSIFVLAN: 3444 case SIOCGSKNS: 3445 case SIOCGSTAMP_NEW: 3446 case SIOCGSTAMPNS_NEW: 3447 case SIOCGIFCONF: 3448 case SIOCSIFBR: 3449 case SIOCGIFBR: 3450 return sock_ioctl(file, cmd, arg); 3451 3452 case SIOCGIFFLAGS: 3453 case SIOCSIFFLAGS: 3454 case SIOCGIFMAP: 3455 case SIOCSIFMAP: 3456 case SIOCGIFMETRIC: 3457 case SIOCSIFMETRIC: 3458 case SIOCGIFMTU: 3459 case SIOCSIFMTU: 3460 case SIOCGIFMEM: 3461 case SIOCSIFMEM: 3462 case SIOCGIFHWADDR: 3463 case SIOCSIFHWADDR: 3464 case SIOCADDMULTI: 3465 case SIOCDELMULTI: 3466 case SIOCGIFINDEX: 3467 case SIOCGIFADDR: 3468 case SIOCSIFADDR: 3469 case SIOCSIFHWBROADCAST: 3470 case SIOCDIFADDR: 3471 case SIOCGIFBRDADDR: 3472 case SIOCSIFBRDADDR: 3473 case SIOCGIFDSTADDR: 3474 case SIOCSIFDSTADDR: 3475 case SIOCGIFNETMASK: 3476 case SIOCSIFNETMASK: 3477 case SIOCSIFPFLAGS: 3478 case SIOCGIFPFLAGS: 3479 case SIOCGIFTXQLEN: 3480 case SIOCSIFTXQLEN: 3481 case SIOCBRADDIF: 3482 case SIOCBRDELIF: 3483 case SIOCGIFNAME: 3484 case SIOCSIFNAME: 3485 case SIOCGMIIPHY: 3486 case SIOCGMIIREG: 3487 case SIOCSMIIREG: 3488 case SIOCBONDENSLAVE: 3489 case SIOCBONDRELEASE: 3490 case SIOCBONDSETHWADDR: 3491 case SIOCBONDCHANGEACTIVE: 3492 case SIOCSARP: 3493 case SIOCGARP: 3494 case SIOCDARP: 3495 case SIOCOUTQ: 3496 case SIOCOUTQNSD: 3497 case SIOCATMARK: 3498 return sock_do_ioctl(net, sock, cmd, arg); 3499 } 3500 3501 return -ENOIOCTLCMD; 3502 } 3503 3504 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3505 unsigned long arg) 3506 { 3507 struct socket *sock = file->private_data; 3508 const struct proto_ops *ops = READ_ONCE(sock->ops); 3509 int ret = -ENOIOCTLCMD; 3510 struct sock *sk; 3511 struct net *net; 3512 3513 sk = sock->sk; 3514 net = sock_net(sk); 3515 3516 if (ops->compat_ioctl) 3517 ret = ops->compat_ioctl(sock, cmd, arg); 3518 3519 if (ret == -ENOIOCTLCMD && 3520 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3521 ret = compat_wext_handle_ioctl(net, cmd, arg); 3522 3523 if (ret == -ENOIOCTLCMD) 3524 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3525 3526 return ret; 3527 } 3528 #endif 3529 3530 /** 3531 * kernel_bind - bind an address to a socket (kernel space) 3532 * @sock: socket 3533 * @addr: address 3534 * @addrlen: length of address 3535 * 3536 * Returns 0 or an error. 3537 */ 3538 3539 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3540 { 3541 struct sockaddr_storage address; 3542 3543 memcpy(&address, addr, addrlen); 3544 3545 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3546 addrlen); 3547 } 3548 EXPORT_SYMBOL(kernel_bind); 3549 3550 /** 3551 * kernel_listen - move socket to listening state (kernel space) 3552 * @sock: socket 3553 * @backlog: pending connections queue size 3554 * 3555 * Returns 0 or an error. 3556 */ 3557 3558 int kernel_listen(struct socket *sock, int backlog) 3559 { 3560 return READ_ONCE(sock->ops)->listen(sock, backlog); 3561 } 3562 EXPORT_SYMBOL(kernel_listen); 3563 3564 /** 3565 * kernel_accept - accept a connection (kernel space) 3566 * @sock: listening socket 3567 * @newsock: new connected socket 3568 * @flags: flags 3569 * 3570 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3571 * If it fails, @newsock is guaranteed to be %NULL. 3572 * Returns 0 or an error. 3573 */ 3574 3575 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3576 { 3577 struct sock *sk = sock->sk; 3578 const struct proto_ops *ops = READ_ONCE(sock->ops); 3579 struct proto_accept_arg arg = { 3580 .flags = flags, 3581 .kern = true, 3582 }; 3583 int err; 3584 3585 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3586 newsock); 3587 if (err < 0) 3588 goto done; 3589 3590 err = ops->accept(sock, *newsock, &arg); 3591 if (err < 0) { 3592 sock_release(*newsock); 3593 *newsock = NULL; 3594 goto done; 3595 } 3596 3597 (*newsock)->ops = ops; 3598 __module_get(ops->owner); 3599 3600 done: 3601 return err; 3602 } 3603 EXPORT_SYMBOL(kernel_accept); 3604 3605 /** 3606 * kernel_connect - connect a socket (kernel space) 3607 * @sock: socket 3608 * @addr: address 3609 * @addrlen: address length 3610 * @flags: flags (O_NONBLOCK, ...) 3611 * 3612 * For datagram sockets, @addr is the address to which datagrams are sent 3613 * by default, and the only address from which datagrams are received. 3614 * For stream sockets, attempts to connect to @addr. 3615 * Returns 0 or an error code. 3616 */ 3617 3618 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3619 int flags) 3620 { 3621 struct sockaddr_storage address; 3622 3623 memcpy(&address, addr, addrlen); 3624 3625 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3626 addrlen, flags); 3627 } 3628 EXPORT_SYMBOL(kernel_connect); 3629 3630 /** 3631 * kernel_getsockname - get the address which the socket is bound (kernel space) 3632 * @sock: socket 3633 * @addr: address holder 3634 * 3635 * Fills the @addr pointer with the address which the socket is bound. 3636 * Returns the length of the address in bytes or an error code. 3637 */ 3638 3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3640 { 3641 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3642 } 3643 EXPORT_SYMBOL(kernel_getsockname); 3644 3645 /** 3646 * kernel_getpeername - get the address which the socket is connected (kernel space) 3647 * @sock: socket 3648 * @addr: address holder 3649 * 3650 * Fills the @addr pointer with the address which the socket is connected. 3651 * Returns the length of the address in bytes or an error code. 3652 */ 3653 3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3655 { 3656 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3657 } 3658 EXPORT_SYMBOL(kernel_getpeername); 3659 3660 /** 3661 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3662 * @sock: socket 3663 * @how: connection part 3664 * 3665 * Returns 0 or an error. 3666 */ 3667 3668 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3669 { 3670 return READ_ONCE(sock->ops)->shutdown(sock, how); 3671 } 3672 EXPORT_SYMBOL(kernel_sock_shutdown); 3673 3674 /** 3675 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3676 * @sk: socket 3677 * 3678 * This routine returns the IP overhead imposed by a socket i.e. 3679 * the length of the underlying IP header, depending on whether 3680 * this is an IPv4 or IPv6 socket and the length from IP options turned 3681 * on at the socket. Assumes that the caller has a lock on the socket. 3682 */ 3683 3684 u32 kernel_sock_ip_overhead(struct sock *sk) 3685 { 3686 struct inet_sock *inet; 3687 struct ip_options_rcu *opt; 3688 u32 overhead = 0; 3689 #if IS_ENABLED(CONFIG_IPV6) 3690 struct ipv6_pinfo *np; 3691 struct ipv6_txoptions *optv6 = NULL; 3692 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3693 3694 if (!sk) 3695 return overhead; 3696 3697 switch (sk->sk_family) { 3698 case AF_INET: 3699 inet = inet_sk(sk); 3700 overhead += sizeof(struct iphdr); 3701 opt = rcu_dereference_protected(inet->inet_opt, 3702 sock_owned_by_user(sk)); 3703 if (opt) 3704 overhead += opt->opt.optlen; 3705 return overhead; 3706 #if IS_ENABLED(CONFIG_IPV6) 3707 case AF_INET6: 3708 np = inet6_sk(sk); 3709 overhead += sizeof(struct ipv6hdr); 3710 if (np) 3711 optv6 = rcu_dereference_protected(np->opt, 3712 sock_owned_by_user(sk)); 3713 if (optv6) 3714 overhead += (optv6->opt_flen + optv6->opt_nflen); 3715 return overhead; 3716 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3717 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3718 return overhead; 3719 } 3720 } 3721 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3722