1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 355 if (dname) { 356 name.name = dname; 357 name.len = strlen(name.name); 358 } else if (sock->sk) { 359 name.name = sock->sk->sk_prot_creator->name; 360 name.len = strlen(name.name); 361 } 362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 363 if (unlikely(!path.dentry)) 364 return ERR_PTR(-ENOMEM); 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(IS_ERR(file))) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 return file; 377 } 378 379 sock->file = file; 380 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 381 file->private_data = sock; 382 return file; 383 } 384 EXPORT_SYMBOL(sock_alloc_file); 385 386 static int sock_map_fd(struct socket *sock, int flags) 387 { 388 struct file *newfile; 389 int fd = get_unused_fd_flags(flags); 390 if (unlikely(fd < 0)) 391 return fd; 392 393 newfile = sock_alloc_file(sock, flags, NULL); 394 if (likely(!IS_ERR(newfile))) { 395 fd_install(fd, newfile); 396 return fd; 397 } 398 399 put_unused_fd(fd); 400 return PTR_ERR(newfile); 401 } 402 403 struct socket *sock_from_file(struct file *file, int *err) 404 { 405 if (file->f_op == &socket_file_ops) 406 return file->private_data; /* set in sock_map_fd */ 407 408 *err = -ENOTSOCK; 409 return NULL; 410 } 411 EXPORT_SYMBOL(sock_from_file); 412 413 /** 414 * sockfd_lookup - Go from a file number to its socket slot 415 * @fd: file handle 416 * @err: pointer to an error code return 417 * 418 * The file handle passed in is locked and the socket it is bound 419 * too is returned. If an error occurs the err pointer is overwritten 420 * with a negative errno code and NULL is returned. The function checks 421 * for both invalid handles and passing a handle which is not a socket. 422 * 423 * On a success the socket object pointer is returned. 424 */ 425 426 struct socket *sockfd_lookup(int fd, int *err) 427 { 428 struct file *file; 429 struct socket *sock; 430 431 file = fget(fd); 432 if (!file) { 433 *err = -EBADF; 434 return NULL; 435 } 436 437 sock = sock_from_file(file, err); 438 if (!sock) 439 fput(file); 440 return sock; 441 } 442 EXPORT_SYMBOL(sockfd_lookup); 443 444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 445 { 446 struct file *file; 447 struct socket *sock; 448 449 *err = -EBADF; 450 file = fget_light(fd, fput_needed); 451 if (file) { 452 sock = sock_from_file(file, err); 453 if (sock) 454 return sock; 455 fput_light(file, *fput_needed); 456 } 457 return NULL; 458 } 459 460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 463 static ssize_t sockfs_getxattr(struct dentry *dentry, 464 const char *name, void *value, size_t size) 465 { 466 const char *proto_name; 467 size_t proto_size; 468 int error; 469 470 error = -ENODATA; 471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 472 proto_name = dentry->d_name.name; 473 proto_size = strlen(proto_name); 474 475 if (value) { 476 error = -ERANGE; 477 if (proto_size + 1 > size) 478 goto out; 479 480 strncpy(value, proto_name, proto_size + 1); 481 } 482 error = proto_size + 1; 483 } 484 485 out: 486 return error; 487 } 488 489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 490 size_t size) 491 { 492 ssize_t len; 493 ssize_t used = 0; 494 495 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 496 if (len < 0) 497 return len; 498 used += len; 499 if (buffer) { 500 if (size < used) 501 return -ERANGE; 502 buffer += len; 503 } 504 505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 506 used += len; 507 if (buffer) { 508 if (size < used) 509 return -ERANGE; 510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 511 buffer += len; 512 } 513 514 return used; 515 } 516 517 static const struct inode_operations sockfs_inode_ops = { 518 .getxattr = sockfs_getxattr, 519 .listxattr = sockfs_listxattr, 520 }; 521 522 /** 523 * sock_alloc - allocate a socket 524 * 525 * Allocate a new inode and socket object. The two are bound together 526 * and initialised. The socket is then returned. If we are out of inodes 527 * NULL is returned. 528 */ 529 530 static struct socket *sock_alloc(void) 531 { 532 struct inode *inode; 533 struct socket *sock; 534 535 inode = new_inode_pseudo(sock_mnt->mnt_sb); 536 if (!inode) 537 return NULL; 538 539 sock = SOCKET_I(inode); 540 541 kmemcheck_annotate_bitfield(sock, type); 542 inode->i_ino = get_next_ino(); 543 inode->i_mode = S_IFSOCK | S_IRWXUGO; 544 inode->i_uid = current_fsuid(); 545 inode->i_gid = current_fsgid(); 546 inode->i_op = &sockfs_inode_ops; 547 548 this_cpu_add(sockets_in_use, 1); 549 return sock; 550 } 551 552 /* 553 * In theory you can't get an open on this inode, but /proc provides 554 * a back door. Remember to keep it shut otherwise you'll let the 555 * creepy crawlies in. 556 */ 557 558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 559 { 560 return -ENXIO; 561 } 562 563 const struct file_operations bad_sock_fops = { 564 .owner = THIS_MODULE, 565 .open = sock_no_open, 566 .llseek = noop_llseek, 567 }; 568 569 /** 570 * sock_release - close a socket 571 * @sock: socket to close 572 * 573 * The socket is released from the protocol stack if it has a release 574 * callback, and the inode is then released if the socket is bound to 575 * an inode not a file. 576 */ 577 578 void sock_release(struct socket *sock) 579 { 580 if (sock->ops) { 581 struct module *owner = sock->ops->owner; 582 583 sock->ops->release(sock); 584 sock->ops = NULL; 585 module_put(owner); 586 } 587 588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 589 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 590 591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 592 return; 593 594 this_cpu_sub(sockets_in_use, 1); 595 if (!sock->file) { 596 iput(SOCK_INODE(sock)); 597 return; 598 } 599 sock->file = NULL; 600 } 601 EXPORT_SYMBOL(sock_release); 602 603 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 604 { 605 *tx_flags = 0; 606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 607 *tx_flags |= SKBTX_HW_TSTAMP; 608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 609 *tx_flags |= SKBTX_SW_TSTAMP; 610 if (sock_flag(sk, SOCK_WIFI_STATUS)) 611 *tx_flags |= SKBTX_WIFI_STATUS; 612 return 0; 613 } 614 EXPORT_SYMBOL(sock_tx_timestamp); 615 616 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 617 struct msghdr *msg, size_t size) 618 { 619 struct sock_iocb *si = kiocb_to_siocb(iocb); 620 621 si->sock = sock; 622 si->scm = NULL; 623 si->msg = msg; 624 si->size = size; 625 626 return sock->ops->sendmsg(iocb, sock, msg, size); 627 } 628 629 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 630 struct msghdr *msg, size_t size) 631 { 632 int err = security_socket_sendmsg(sock, msg, size); 633 634 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 635 } 636 637 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 638 { 639 struct kiocb iocb; 640 struct sock_iocb siocb; 641 int ret; 642 643 init_sync_kiocb(&iocb, NULL); 644 iocb.private = &siocb; 645 ret = __sock_sendmsg(&iocb, sock, msg, size); 646 if (-EIOCBQUEUED == ret) 647 ret = wait_on_sync_kiocb(&iocb); 648 return ret; 649 } 650 EXPORT_SYMBOL(sock_sendmsg); 651 652 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 653 { 654 struct kiocb iocb; 655 struct sock_iocb siocb; 656 int ret; 657 658 init_sync_kiocb(&iocb, NULL); 659 iocb.private = &siocb; 660 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 661 if (-EIOCBQUEUED == ret) 662 ret = wait_on_sync_kiocb(&iocb); 663 return ret; 664 } 665 666 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 667 struct kvec *vec, size_t num, size_t size) 668 { 669 mm_segment_t oldfs = get_fs(); 670 int result; 671 672 set_fs(KERNEL_DS); 673 /* 674 * the following is safe, since for compiler definitions of kvec and 675 * iovec are identical, yielding the same in-core layout and alignment 676 */ 677 msg->msg_iov = (struct iovec *)vec; 678 msg->msg_iovlen = num; 679 result = sock_sendmsg(sock, msg, size); 680 set_fs(oldfs); 681 return result; 682 } 683 EXPORT_SYMBOL(kernel_sendmsg); 684 685 static int ktime2ts(ktime_t kt, struct timespec *ts) 686 { 687 if (kt.tv64) { 688 *ts = ktime_to_timespec(kt); 689 return 1; 690 } else { 691 return 0; 692 } 693 } 694 695 /* 696 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 697 */ 698 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 699 struct sk_buff *skb) 700 { 701 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 702 struct timespec ts[3]; 703 int empty = 1; 704 struct skb_shared_hwtstamps *shhwtstamps = 705 skb_hwtstamps(skb); 706 707 /* Race occurred between timestamp enabling and packet 708 receiving. Fill in the current time for now. */ 709 if (need_software_tstamp && skb->tstamp.tv64 == 0) 710 __net_timestamp(skb); 711 712 if (need_software_tstamp) { 713 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 714 struct timeval tv; 715 skb_get_timestamp(skb, &tv); 716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 717 sizeof(tv), &tv); 718 } else { 719 skb_get_timestampns(skb, &ts[0]); 720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 721 sizeof(ts[0]), &ts[0]); 722 } 723 } 724 725 726 memset(ts, 0, sizeof(ts)); 727 if (skb->tstamp.tv64 && 728 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 729 skb_get_timestampns(skb, ts + 0); 730 empty = 0; 731 } 732 if (shhwtstamps) { 733 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 734 ktime2ts(shhwtstamps->syststamp, ts + 1)) 735 empty = 0; 736 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 737 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 738 empty = 0; 739 } 740 if (!empty) 741 put_cmsg(msg, SOL_SOCKET, 742 SCM_TIMESTAMPING, sizeof(ts), &ts); 743 } 744 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 745 746 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 747 struct sk_buff *skb) 748 { 749 int ack; 750 751 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 752 return; 753 if (!skb->wifi_acked_valid) 754 return; 755 756 ack = skb->wifi_acked; 757 758 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 759 } 760 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 761 762 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 763 struct sk_buff *skb) 764 { 765 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 766 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 767 sizeof(__u32), &skb->dropcount); 768 } 769 770 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 771 struct sk_buff *skb) 772 { 773 sock_recv_timestamp(msg, sk, skb); 774 sock_recv_drops(msg, sk, skb); 775 } 776 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 777 778 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 779 struct msghdr *msg, size_t size, int flags) 780 { 781 struct sock_iocb *si = kiocb_to_siocb(iocb); 782 783 si->sock = sock; 784 si->scm = NULL; 785 si->msg = msg; 786 si->size = size; 787 si->flags = flags; 788 789 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 790 } 791 792 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 793 struct msghdr *msg, size_t size, int flags) 794 { 795 int err = security_socket_recvmsg(sock, msg, size, flags); 796 797 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 798 } 799 800 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 801 size_t size, int flags) 802 { 803 struct kiocb iocb; 804 struct sock_iocb siocb; 805 int ret; 806 807 init_sync_kiocb(&iocb, NULL); 808 iocb.private = &siocb; 809 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 810 if (-EIOCBQUEUED == ret) 811 ret = wait_on_sync_kiocb(&iocb); 812 return ret; 813 } 814 EXPORT_SYMBOL(sock_recvmsg); 815 816 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 817 size_t size, int flags) 818 { 819 struct kiocb iocb; 820 struct sock_iocb siocb; 821 int ret; 822 823 init_sync_kiocb(&iocb, NULL); 824 iocb.private = &siocb; 825 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 826 if (-EIOCBQUEUED == ret) 827 ret = wait_on_sync_kiocb(&iocb); 828 return ret; 829 } 830 831 /** 832 * kernel_recvmsg - Receive a message from a socket (kernel space) 833 * @sock: The socket to receive the message from 834 * @msg: Received message 835 * @vec: Input s/g array for message data 836 * @num: Size of input s/g array 837 * @size: Number of bytes to read 838 * @flags: Message flags (MSG_DONTWAIT, etc...) 839 * 840 * On return the msg structure contains the scatter/gather array passed in the 841 * vec argument. The array is modified so that it consists of the unfilled 842 * portion of the original array. 843 * 844 * The returned value is the total number of bytes received, or an error. 845 */ 846 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 847 struct kvec *vec, size_t num, size_t size, int flags) 848 { 849 mm_segment_t oldfs = get_fs(); 850 int result; 851 852 set_fs(KERNEL_DS); 853 /* 854 * the following is safe, since for compiler definitions of kvec and 855 * iovec are identical, yielding the same in-core layout and alignment 856 */ 857 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 858 result = sock_recvmsg(sock, msg, size, flags); 859 set_fs(oldfs); 860 return result; 861 } 862 EXPORT_SYMBOL(kernel_recvmsg); 863 864 static void sock_aio_dtor(struct kiocb *iocb) 865 { 866 kfree(iocb->private); 867 } 868 869 static ssize_t sock_sendpage(struct file *file, struct page *page, 870 int offset, size_t size, loff_t *ppos, int more) 871 { 872 struct socket *sock; 873 int flags; 874 875 sock = file->private_data; 876 877 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 878 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 879 flags |= more; 880 881 return kernel_sendpage(sock, page, offset, size, flags); 882 } 883 884 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 885 struct pipe_inode_info *pipe, size_t len, 886 unsigned int flags) 887 { 888 struct socket *sock = file->private_data; 889 890 if (unlikely(!sock->ops->splice_read)) 891 return -EINVAL; 892 893 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 894 } 895 896 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 897 struct sock_iocb *siocb) 898 { 899 if (!is_sync_kiocb(iocb)) { 900 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 901 if (!siocb) 902 return NULL; 903 iocb->ki_dtor = sock_aio_dtor; 904 } 905 906 siocb->kiocb = iocb; 907 iocb->private = siocb; 908 return siocb; 909 } 910 911 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 912 struct file *file, const struct iovec *iov, 913 unsigned long nr_segs) 914 { 915 struct socket *sock = file->private_data; 916 size_t size = 0; 917 int i; 918 919 for (i = 0; i < nr_segs; i++) 920 size += iov[i].iov_len; 921 922 msg->msg_name = NULL; 923 msg->msg_namelen = 0; 924 msg->msg_control = NULL; 925 msg->msg_controllen = 0; 926 msg->msg_iov = (struct iovec *)iov; 927 msg->msg_iovlen = nr_segs; 928 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 929 930 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 931 } 932 933 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 934 unsigned long nr_segs, loff_t pos) 935 { 936 struct sock_iocb siocb, *x; 937 938 if (pos != 0) 939 return -ESPIPE; 940 941 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 942 return 0; 943 944 945 x = alloc_sock_iocb(iocb, &siocb); 946 if (!x) 947 return -ENOMEM; 948 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 949 } 950 951 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 952 struct file *file, const struct iovec *iov, 953 unsigned long nr_segs) 954 { 955 struct socket *sock = file->private_data; 956 size_t size = 0; 957 int i; 958 959 for (i = 0; i < nr_segs; i++) 960 size += iov[i].iov_len; 961 962 msg->msg_name = NULL; 963 msg->msg_namelen = 0; 964 msg->msg_control = NULL; 965 msg->msg_controllen = 0; 966 msg->msg_iov = (struct iovec *)iov; 967 msg->msg_iovlen = nr_segs; 968 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 969 if (sock->type == SOCK_SEQPACKET) 970 msg->msg_flags |= MSG_EOR; 971 972 return __sock_sendmsg(iocb, sock, msg, size); 973 } 974 975 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 976 unsigned long nr_segs, loff_t pos) 977 { 978 struct sock_iocb siocb, *x; 979 980 if (pos != 0) 981 return -ESPIPE; 982 983 x = alloc_sock_iocb(iocb, &siocb); 984 if (!x) 985 return -ENOMEM; 986 987 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 988 } 989 990 /* 991 * Atomic setting of ioctl hooks to avoid race 992 * with module unload. 993 */ 994 995 static DEFINE_MUTEX(br_ioctl_mutex); 996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 997 998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 999 { 1000 mutex_lock(&br_ioctl_mutex); 1001 br_ioctl_hook = hook; 1002 mutex_unlock(&br_ioctl_mutex); 1003 } 1004 EXPORT_SYMBOL(brioctl_set); 1005 1006 static DEFINE_MUTEX(vlan_ioctl_mutex); 1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1008 1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1010 { 1011 mutex_lock(&vlan_ioctl_mutex); 1012 vlan_ioctl_hook = hook; 1013 mutex_unlock(&vlan_ioctl_mutex); 1014 } 1015 EXPORT_SYMBOL(vlan_ioctl_set); 1016 1017 static DEFINE_MUTEX(dlci_ioctl_mutex); 1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1019 1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1021 { 1022 mutex_lock(&dlci_ioctl_mutex); 1023 dlci_ioctl_hook = hook; 1024 mutex_unlock(&dlci_ioctl_mutex); 1025 } 1026 EXPORT_SYMBOL(dlci_ioctl_set); 1027 1028 static long sock_do_ioctl(struct net *net, struct socket *sock, 1029 unsigned int cmd, unsigned long arg) 1030 { 1031 int err; 1032 void __user *argp = (void __user *)arg; 1033 1034 err = sock->ops->ioctl(sock, cmd, arg); 1035 1036 /* 1037 * If this ioctl is unknown try to hand it down 1038 * to the NIC driver. 1039 */ 1040 if (err == -ENOIOCTLCMD) 1041 err = dev_ioctl(net, cmd, argp); 1042 1043 return err; 1044 } 1045 1046 /* 1047 * With an ioctl, arg may well be a user mode pointer, but we don't know 1048 * what to do with it - that's up to the protocol still. 1049 */ 1050 1051 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1052 { 1053 struct socket *sock; 1054 struct sock *sk; 1055 void __user *argp = (void __user *)arg; 1056 int pid, err; 1057 struct net *net; 1058 1059 sock = file->private_data; 1060 sk = sock->sk; 1061 net = sock_net(sk); 1062 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1063 err = dev_ioctl(net, cmd, argp); 1064 } else 1065 #ifdef CONFIG_WEXT_CORE 1066 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1067 err = dev_ioctl(net, cmd, argp); 1068 } else 1069 #endif 1070 switch (cmd) { 1071 case FIOSETOWN: 1072 case SIOCSPGRP: 1073 err = -EFAULT; 1074 if (get_user(pid, (int __user *)argp)) 1075 break; 1076 err = f_setown(sock->file, pid, 1); 1077 break; 1078 case FIOGETOWN: 1079 case SIOCGPGRP: 1080 err = put_user(f_getown(sock->file), 1081 (int __user *)argp); 1082 break; 1083 case SIOCGIFBR: 1084 case SIOCSIFBR: 1085 case SIOCBRADDBR: 1086 case SIOCBRDELBR: 1087 err = -ENOPKG; 1088 if (!br_ioctl_hook) 1089 request_module("bridge"); 1090 1091 mutex_lock(&br_ioctl_mutex); 1092 if (br_ioctl_hook) 1093 err = br_ioctl_hook(net, cmd, argp); 1094 mutex_unlock(&br_ioctl_mutex); 1095 break; 1096 case SIOCGIFVLAN: 1097 case SIOCSIFVLAN: 1098 err = -ENOPKG; 1099 if (!vlan_ioctl_hook) 1100 request_module("8021q"); 1101 1102 mutex_lock(&vlan_ioctl_mutex); 1103 if (vlan_ioctl_hook) 1104 err = vlan_ioctl_hook(net, argp); 1105 mutex_unlock(&vlan_ioctl_mutex); 1106 break; 1107 case SIOCADDDLCI: 1108 case SIOCDELDLCI: 1109 err = -ENOPKG; 1110 if (!dlci_ioctl_hook) 1111 request_module("dlci"); 1112 1113 mutex_lock(&dlci_ioctl_mutex); 1114 if (dlci_ioctl_hook) 1115 err = dlci_ioctl_hook(cmd, argp); 1116 mutex_unlock(&dlci_ioctl_mutex); 1117 break; 1118 default: 1119 err = sock_do_ioctl(net, sock, cmd, arg); 1120 break; 1121 } 1122 return err; 1123 } 1124 1125 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1126 { 1127 int err; 1128 struct socket *sock = NULL; 1129 1130 err = security_socket_create(family, type, protocol, 1); 1131 if (err) 1132 goto out; 1133 1134 sock = sock_alloc(); 1135 if (!sock) { 1136 err = -ENOMEM; 1137 goto out; 1138 } 1139 1140 sock->type = type; 1141 err = security_socket_post_create(sock, family, type, protocol, 1); 1142 if (err) 1143 goto out_release; 1144 1145 out: 1146 *res = sock; 1147 return err; 1148 out_release: 1149 sock_release(sock); 1150 sock = NULL; 1151 goto out; 1152 } 1153 EXPORT_SYMBOL(sock_create_lite); 1154 1155 /* No kernel lock held - perfect */ 1156 static unsigned int sock_poll(struct file *file, poll_table *wait) 1157 { 1158 struct socket *sock; 1159 1160 /* 1161 * We can't return errors to poll, so it's either yes or no. 1162 */ 1163 sock = file->private_data; 1164 return sock->ops->poll(file, sock, wait); 1165 } 1166 1167 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1168 { 1169 struct socket *sock = file->private_data; 1170 1171 return sock->ops->mmap(file, sock, vma); 1172 } 1173 1174 static int sock_close(struct inode *inode, struct file *filp) 1175 { 1176 sock_release(SOCKET_I(inode)); 1177 return 0; 1178 } 1179 1180 /* 1181 * Update the socket async list 1182 * 1183 * Fasync_list locking strategy. 1184 * 1185 * 1. fasync_list is modified only under process context socket lock 1186 * i.e. under semaphore. 1187 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1188 * or under socket lock 1189 */ 1190 1191 static int sock_fasync(int fd, struct file *filp, int on) 1192 { 1193 struct socket *sock = filp->private_data; 1194 struct sock *sk = sock->sk; 1195 struct socket_wq *wq; 1196 1197 if (sk == NULL) 1198 return -EINVAL; 1199 1200 lock_sock(sk); 1201 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1202 fasync_helper(fd, filp, on, &wq->fasync_list); 1203 1204 if (!wq->fasync_list) 1205 sock_reset_flag(sk, SOCK_FASYNC); 1206 else 1207 sock_set_flag(sk, SOCK_FASYNC); 1208 1209 release_sock(sk); 1210 return 0; 1211 } 1212 1213 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1214 1215 int sock_wake_async(struct socket *sock, int how, int band) 1216 { 1217 struct socket_wq *wq; 1218 1219 if (!sock) 1220 return -1; 1221 rcu_read_lock(); 1222 wq = rcu_dereference(sock->wq); 1223 if (!wq || !wq->fasync_list) { 1224 rcu_read_unlock(); 1225 return -1; 1226 } 1227 switch (how) { 1228 case SOCK_WAKE_WAITD: 1229 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1230 break; 1231 goto call_kill; 1232 case SOCK_WAKE_SPACE: 1233 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1234 break; 1235 /* fall through */ 1236 case SOCK_WAKE_IO: 1237 call_kill: 1238 kill_fasync(&wq->fasync_list, SIGIO, band); 1239 break; 1240 case SOCK_WAKE_URG: 1241 kill_fasync(&wq->fasync_list, SIGURG, band); 1242 } 1243 rcu_read_unlock(); 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(sock_wake_async); 1247 1248 int __sock_create(struct net *net, int family, int type, int protocol, 1249 struct socket **res, int kern) 1250 { 1251 int err; 1252 struct socket *sock; 1253 const struct net_proto_family *pf; 1254 1255 /* 1256 * Check protocol is in range 1257 */ 1258 if (family < 0 || family >= NPROTO) 1259 return -EAFNOSUPPORT; 1260 if (type < 0 || type >= SOCK_MAX) 1261 return -EINVAL; 1262 1263 /* Compatibility. 1264 1265 This uglymoron is moved from INET layer to here to avoid 1266 deadlock in module load. 1267 */ 1268 if (family == PF_INET && type == SOCK_PACKET) { 1269 static int warned; 1270 if (!warned) { 1271 warned = 1; 1272 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1273 current->comm); 1274 } 1275 family = PF_PACKET; 1276 } 1277 1278 err = security_socket_create(family, type, protocol, kern); 1279 if (err) 1280 return err; 1281 1282 /* 1283 * Allocate the socket and allow the family to set things up. if 1284 * the protocol is 0, the family is instructed to select an appropriate 1285 * default. 1286 */ 1287 sock = sock_alloc(); 1288 if (!sock) { 1289 net_warn_ratelimited("socket: no more sockets\n"); 1290 return -ENFILE; /* Not exactly a match, but its the 1291 closest posix thing */ 1292 } 1293 1294 sock->type = type; 1295 1296 #ifdef CONFIG_MODULES 1297 /* Attempt to load a protocol module if the find failed. 1298 * 1299 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1300 * requested real, full-featured networking support upon configuration. 1301 * Otherwise module support will break! 1302 */ 1303 if (rcu_access_pointer(net_families[family]) == NULL) 1304 request_module("net-pf-%d", family); 1305 #endif 1306 1307 rcu_read_lock(); 1308 pf = rcu_dereference(net_families[family]); 1309 err = -EAFNOSUPPORT; 1310 if (!pf) 1311 goto out_release; 1312 1313 /* 1314 * We will call the ->create function, that possibly is in a loadable 1315 * module, so we have to bump that loadable module refcnt first. 1316 */ 1317 if (!try_module_get(pf->owner)) 1318 goto out_release; 1319 1320 /* Now protected by module ref count */ 1321 rcu_read_unlock(); 1322 1323 err = pf->create(net, sock, protocol, kern); 1324 if (err < 0) 1325 goto out_module_put; 1326 1327 /* 1328 * Now to bump the refcnt of the [loadable] module that owns this 1329 * socket at sock_release time we decrement its refcnt. 1330 */ 1331 if (!try_module_get(sock->ops->owner)) 1332 goto out_module_busy; 1333 1334 /* 1335 * Now that we're done with the ->create function, the [loadable] 1336 * module can have its refcnt decremented 1337 */ 1338 module_put(pf->owner); 1339 err = security_socket_post_create(sock, family, type, protocol, kern); 1340 if (err) 1341 goto out_sock_release; 1342 *res = sock; 1343 1344 return 0; 1345 1346 out_module_busy: 1347 err = -EAFNOSUPPORT; 1348 out_module_put: 1349 sock->ops = NULL; 1350 module_put(pf->owner); 1351 out_sock_release: 1352 sock_release(sock); 1353 return err; 1354 1355 out_release: 1356 rcu_read_unlock(); 1357 goto out_sock_release; 1358 } 1359 EXPORT_SYMBOL(__sock_create); 1360 1361 int sock_create(int family, int type, int protocol, struct socket **res) 1362 { 1363 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1364 } 1365 EXPORT_SYMBOL(sock_create); 1366 1367 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1368 { 1369 return __sock_create(&init_net, family, type, protocol, res, 1); 1370 } 1371 EXPORT_SYMBOL(sock_create_kern); 1372 1373 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1374 { 1375 int retval; 1376 struct socket *sock; 1377 int flags; 1378 1379 /* Check the SOCK_* constants for consistency. */ 1380 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1381 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1382 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1383 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1384 1385 flags = type & ~SOCK_TYPE_MASK; 1386 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1387 return -EINVAL; 1388 type &= SOCK_TYPE_MASK; 1389 1390 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1391 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1392 1393 retval = sock_create(family, type, protocol, &sock); 1394 if (retval < 0) 1395 goto out; 1396 1397 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1398 if (retval < 0) 1399 goto out_release; 1400 1401 out: 1402 /* It may be already another descriptor 8) Not kernel problem. */ 1403 return retval; 1404 1405 out_release: 1406 sock_release(sock); 1407 return retval; 1408 } 1409 1410 /* 1411 * Create a pair of connected sockets. 1412 */ 1413 1414 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1415 int __user *, usockvec) 1416 { 1417 struct socket *sock1, *sock2; 1418 int fd1, fd2, err; 1419 struct file *newfile1, *newfile2; 1420 int flags; 1421 1422 flags = type & ~SOCK_TYPE_MASK; 1423 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1424 return -EINVAL; 1425 type &= SOCK_TYPE_MASK; 1426 1427 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1428 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1429 1430 /* 1431 * Obtain the first socket and check if the underlying protocol 1432 * supports the socketpair call. 1433 */ 1434 1435 err = sock_create(family, type, protocol, &sock1); 1436 if (err < 0) 1437 goto out; 1438 1439 err = sock_create(family, type, protocol, &sock2); 1440 if (err < 0) 1441 goto out_release_1; 1442 1443 err = sock1->ops->socketpair(sock1, sock2); 1444 if (err < 0) 1445 goto out_release_both; 1446 1447 fd1 = get_unused_fd_flags(flags); 1448 if (unlikely(fd1 < 0)) { 1449 err = fd1; 1450 goto out_release_both; 1451 } 1452 fd2 = get_unused_fd_flags(flags); 1453 if (unlikely(fd2 < 0)) { 1454 err = fd2; 1455 put_unused_fd(fd1); 1456 goto out_release_both; 1457 } 1458 1459 newfile1 = sock_alloc_file(sock1, flags, NULL); 1460 if (unlikely(IS_ERR(newfile1))) { 1461 err = PTR_ERR(newfile1); 1462 put_unused_fd(fd1); 1463 put_unused_fd(fd2); 1464 goto out_release_both; 1465 } 1466 1467 newfile2 = sock_alloc_file(sock2, flags, NULL); 1468 if (IS_ERR(newfile2)) { 1469 err = PTR_ERR(newfile2); 1470 fput(newfile1); 1471 put_unused_fd(fd1); 1472 put_unused_fd(fd2); 1473 sock_release(sock2); 1474 goto out; 1475 } 1476 1477 audit_fd_pair(fd1, fd2); 1478 fd_install(fd1, newfile1); 1479 fd_install(fd2, newfile2); 1480 /* fd1 and fd2 may be already another descriptors. 1481 * Not kernel problem. 1482 */ 1483 1484 err = put_user(fd1, &usockvec[0]); 1485 if (!err) 1486 err = put_user(fd2, &usockvec[1]); 1487 if (!err) 1488 return 0; 1489 1490 sys_close(fd2); 1491 sys_close(fd1); 1492 return err; 1493 1494 out_release_both: 1495 sock_release(sock2); 1496 out_release_1: 1497 sock_release(sock1); 1498 out: 1499 return err; 1500 } 1501 1502 /* 1503 * Bind a name to a socket. Nothing much to do here since it's 1504 * the protocol's responsibility to handle the local address. 1505 * 1506 * We move the socket address to kernel space before we call 1507 * the protocol layer (having also checked the address is ok). 1508 */ 1509 1510 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1511 { 1512 struct socket *sock; 1513 struct sockaddr_storage address; 1514 int err, fput_needed; 1515 1516 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1517 if (sock) { 1518 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1519 if (err >= 0) { 1520 err = security_socket_bind(sock, 1521 (struct sockaddr *)&address, 1522 addrlen); 1523 if (!err) 1524 err = sock->ops->bind(sock, 1525 (struct sockaddr *) 1526 &address, addrlen); 1527 } 1528 fput_light(sock->file, fput_needed); 1529 } 1530 return err; 1531 } 1532 1533 /* 1534 * Perform a listen. Basically, we allow the protocol to do anything 1535 * necessary for a listen, and if that works, we mark the socket as 1536 * ready for listening. 1537 */ 1538 1539 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1540 { 1541 struct socket *sock; 1542 int err, fput_needed; 1543 int somaxconn; 1544 1545 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1546 if (sock) { 1547 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1548 if ((unsigned int)backlog > somaxconn) 1549 backlog = somaxconn; 1550 1551 err = security_socket_listen(sock, backlog); 1552 if (!err) 1553 err = sock->ops->listen(sock, backlog); 1554 1555 fput_light(sock->file, fput_needed); 1556 } 1557 return err; 1558 } 1559 1560 /* 1561 * For accept, we attempt to create a new socket, set up the link 1562 * with the client, wake up the client, then return the new 1563 * connected fd. We collect the address of the connector in kernel 1564 * space and move it to user at the very end. This is unclean because 1565 * we open the socket then return an error. 1566 * 1567 * 1003.1g adds the ability to recvmsg() to query connection pending 1568 * status to recvmsg. We need to add that support in a way thats 1569 * clean when we restucture accept also. 1570 */ 1571 1572 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1573 int __user *, upeer_addrlen, int, flags) 1574 { 1575 struct socket *sock, *newsock; 1576 struct file *newfile; 1577 int err, len, newfd, fput_needed; 1578 struct sockaddr_storage address; 1579 1580 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1581 return -EINVAL; 1582 1583 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1584 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1585 1586 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1587 if (!sock) 1588 goto out; 1589 1590 err = -ENFILE; 1591 newsock = sock_alloc(); 1592 if (!newsock) 1593 goto out_put; 1594 1595 newsock->type = sock->type; 1596 newsock->ops = sock->ops; 1597 1598 /* 1599 * We don't need try_module_get here, as the listening socket (sock) 1600 * has the protocol module (sock->ops->owner) held. 1601 */ 1602 __module_get(newsock->ops->owner); 1603 1604 newfd = get_unused_fd_flags(flags); 1605 if (unlikely(newfd < 0)) { 1606 err = newfd; 1607 sock_release(newsock); 1608 goto out_put; 1609 } 1610 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1611 if (unlikely(IS_ERR(newfile))) { 1612 err = PTR_ERR(newfile); 1613 put_unused_fd(newfd); 1614 sock_release(newsock); 1615 goto out_put; 1616 } 1617 1618 err = security_socket_accept(sock, newsock); 1619 if (err) 1620 goto out_fd; 1621 1622 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1623 if (err < 0) 1624 goto out_fd; 1625 1626 if (upeer_sockaddr) { 1627 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1628 &len, 2) < 0) { 1629 err = -ECONNABORTED; 1630 goto out_fd; 1631 } 1632 err = move_addr_to_user(&address, 1633 len, upeer_sockaddr, upeer_addrlen); 1634 if (err < 0) 1635 goto out_fd; 1636 } 1637 1638 /* File flags are not inherited via accept() unlike another OSes. */ 1639 1640 fd_install(newfd, newfile); 1641 err = newfd; 1642 1643 out_put: 1644 fput_light(sock->file, fput_needed); 1645 out: 1646 return err; 1647 out_fd: 1648 fput(newfile); 1649 put_unused_fd(newfd); 1650 goto out_put; 1651 } 1652 1653 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1654 int __user *, upeer_addrlen) 1655 { 1656 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1657 } 1658 1659 /* 1660 * Attempt to connect to a socket with the server address. The address 1661 * is in user space so we verify it is OK and move it to kernel space. 1662 * 1663 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1664 * break bindings 1665 * 1666 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1667 * other SEQPACKET protocols that take time to connect() as it doesn't 1668 * include the -EINPROGRESS status for such sockets. 1669 */ 1670 1671 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1672 int, addrlen) 1673 { 1674 struct socket *sock; 1675 struct sockaddr_storage address; 1676 int err, fput_needed; 1677 1678 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1679 if (!sock) 1680 goto out; 1681 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1682 if (err < 0) 1683 goto out_put; 1684 1685 err = 1686 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1687 if (err) 1688 goto out_put; 1689 1690 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1691 sock->file->f_flags); 1692 out_put: 1693 fput_light(sock->file, fput_needed); 1694 out: 1695 return err; 1696 } 1697 1698 /* 1699 * Get the local address ('name') of a socket object. Move the obtained 1700 * name to user space. 1701 */ 1702 1703 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1704 int __user *, usockaddr_len) 1705 { 1706 struct socket *sock; 1707 struct sockaddr_storage address; 1708 int len, err, fput_needed; 1709 1710 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1711 if (!sock) 1712 goto out; 1713 1714 err = security_socket_getsockname(sock); 1715 if (err) 1716 goto out_put; 1717 1718 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1719 if (err) 1720 goto out_put; 1721 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1722 1723 out_put: 1724 fput_light(sock->file, fput_needed); 1725 out: 1726 return err; 1727 } 1728 1729 /* 1730 * Get the remote address ('name') of a socket object. Move the obtained 1731 * name to user space. 1732 */ 1733 1734 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1735 int __user *, usockaddr_len) 1736 { 1737 struct socket *sock; 1738 struct sockaddr_storage address; 1739 int len, err, fput_needed; 1740 1741 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1742 if (sock != NULL) { 1743 err = security_socket_getpeername(sock); 1744 if (err) { 1745 fput_light(sock->file, fput_needed); 1746 return err; 1747 } 1748 1749 err = 1750 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1751 1); 1752 if (!err) 1753 err = move_addr_to_user(&address, len, usockaddr, 1754 usockaddr_len); 1755 fput_light(sock->file, fput_needed); 1756 } 1757 return err; 1758 } 1759 1760 /* 1761 * Send a datagram to a given address. We move the address into kernel 1762 * space and check the user space data area is readable before invoking 1763 * the protocol. 1764 */ 1765 1766 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1767 unsigned int, flags, struct sockaddr __user *, addr, 1768 int, addr_len) 1769 { 1770 struct socket *sock; 1771 struct sockaddr_storage address; 1772 int err; 1773 struct msghdr msg; 1774 struct iovec iov; 1775 int fput_needed; 1776 1777 if (len > INT_MAX) 1778 len = INT_MAX; 1779 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1780 if (!sock) 1781 goto out; 1782 1783 iov.iov_base = buff; 1784 iov.iov_len = len; 1785 msg.msg_name = NULL; 1786 msg.msg_iov = &iov; 1787 msg.msg_iovlen = 1; 1788 msg.msg_control = NULL; 1789 msg.msg_controllen = 0; 1790 msg.msg_namelen = 0; 1791 if (addr) { 1792 err = move_addr_to_kernel(addr, addr_len, &address); 1793 if (err < 0) 1794 goto out_put; 1795 msg.msg_name = (struct sockaddr *)&address; 1796 msg.msg_namelen = addr_len; 1797 } 1798 if (sock->file->f_flags & O_NONBLOCK) 1799 flags |= MSG_DONTWAIT; 1800 msg.msg_flags = flags; 1801 err = sock_sendmsg(sock, &msg, len); 1802 1803 out_put: 1804 fput_light(sock->file, fput_needed); 1805 out: 1806 return err; 1807 } 1808 1809 /* 1810 * Send a datagram down a socket. 1811 */ 1812 1813 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1814 unsigned int, flags) 1815 { 1816 return sys_sendto(fd, buff, len, flags, NULL, 0); 1817 } 1818 1819 /* 1820 * Receive a frame from the socket and optionally record the address of the 1821 * sender. We verify the buffers are writable and if needed move the 1822 * sender address from kernel to user space. 1823 */ 1824 1825 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1826 unsigned int, flags, struct sockaddr __user *, addr, 1827 int __user *, addr_len) 1828 { 1829 struct socket *sock; 1830 struct iovec iov; 1831 struct msghdr msg; 1832 struct sockaddr_storage address; 1833 int err, err2; 1834 int fput_needed; 1835 1836 if (size > INT_MAX) 1837 size = INT_MAX; 1838 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1839 if (!sock) 1840 goto out; 1841 1842 msg.msg_control = NULL; 1843 msg.msg_controllen = 0; 1844 msg.msg_iovlen = 1; 1845 msg.msg_iov = &iov; 1846 iov.iov_len = size; 1847 iov.iov_base = ubuf; 1848 msg.msg_name = (struct sockaddr *)&address; 1849 msg.msg_namelen = sizeof(address); 1850 if (sock->file->f_flags & O_NONBLOCK) 1851 flags |= MSG_DONTWAIT; 1852 err = sock_recvmsg(sock, &msg, size, flags); 1853 1854 if (err >= 0 && addr != NULL) { 1855 err2 = move_addr_to_user(&address, 1856 msg.msg_namelen, addr, addr_len); 1857 if (err2 < 0) 1858 err = err2; 1859 } 1860 1861 fput_light(sock->file, fput_needed); 1862 out: 1863 return err; 1864 } 1865 1866 /* 1867 * Receive a datagram from a socket. 1868 */ 1869 1870 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1871 unsigned int flags) 1872 { 1873 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1874 } 1875 1876 /* 1877 * Set a socket option. Because we don't know the option lengths we have 1878 * to pass the user mode parameter for the protocols to sort out. 1879 */ 1880 1881 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1882 char __user *, optval, int, optlen) 1883 { 1884 int err, fput_needed; 1885 struct socket *sock; 1886 1887 if (optlen < 0) 1888 return -EINVAL; 1889 1890 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1891 if (sock != NULL) { 1892 err = security_socket_setsockopt(sock, level, optname); 1893 if (err) 1894 goto out_put; 1895 1896 if (level == SOL_SOCKET) 1897 err = 1898 sock_setsockopt(sock, level, optname, optval, 1899 optlen); 1900 else 1901 err = 1902 sock->ops->setsockopt(sock, level, optname, optval, 1903 optlen); 1904 out_put: 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 /* 1911 * Get a socket option. Because we don't know the option lengths we have 1912 * to pass a user mode parameter for the protocols to sort out. 1913 */ 1914 1915 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1916 char __user *, optval, int __user *, optlen) 1917 { 1918 int err, fput_needed; 1919 struct socket *sock; 1920 1921 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1922 if (sock != NULL) { 1923 err = security_socket_getsockopt(sock, level, optname); 1924 if (err) 1925 goto out_put; 1926 1927 if (level == SOL_SOCKET) 1928 err = 1929 sock_getsockopt(sock, level, optname, optval, 1930 optlen); 1931 else 1932 err = 1933 sock->ops->getsockopt(sock, level, optname, optval, 1934 optlen); 1935 out_put: 1936 fput_light(sock->file, fput_needed); 1937 } 1938 return err; 1939 } 1940 1941 /* 1942 * Shutdown a socket. 1943 */ 1944 1945 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1946 { 1947 int err, fput_needed; 1948 struct socket *sock; 1949 1950 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1951 if (sock != NULL) { 1952 err = security_socket_shutdown(sock, how); 1953 if (!err) 1954 err = sock->ops->shutdown(sock, how); 1955 fput_light(sock->file, fput_needed); 1956 } 1957 return err; 1958 } 1959 1960 /* A couple of helpful macros for getting the address of the 32/64 bit 1961 * fields which are the same type (int / unsigned) on our platforms. 1962 */ 1963 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1964 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1965 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1966 1967 struct used_address { 1968 struct sockaddr_storage name; 1969 unsigned int name_len; 1970 }; 1971 1972 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1973 struct msghdr *msg_sys, unsigned int flags, 1974 struct used_address *used_address) 1975 { 1976 struct compat_msghdr __user *msg_compat = 1977 (struct compat_msghdr __user *)msg; 1978 struct sockaddr_storage address; 1979 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1980 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1981 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1982 /* 20 is size of ipv6_pktinfo */ 1983 unsigned char *ctl_buf = ctl; 1984 int err, ctl_len, total_len; 1985 1986 err = -EFAULT; 1987 if (MSG_CMSG_COMPAT & flags) { 1988 if (get_compat_msghdr(msg_sys, msg_compat)) 1989 return -EFAULT; 1990 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1991 return -EFAULT; 1992 1993 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1994 err = -EMSGSIZE; 1995 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1996 goto out; 1997 err = -ENOMEM; 1998 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 1999 GFP_KERNEL); 2000 if (!iov) 2001 goto out; 2002 } 2003 2004 /* This will also move the address data into kernel space */ 2005 if (MSG_CMSG_COMPAT & flags) { 2006 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2007 } else 2008 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2009 if (err < 0) 2010 goto out_freeiov; 2011 total_len = err; 2012 2013 err = -ENOBUFS; 2014 2015 if (msg_sys->msg_controllen > INT_MAX) 2016 goto out_freeiov; 2017 ctl_len = msg_sys->msg_controllen; 2018 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2019 err = 2020 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2021 sizeof(ctl)); 2022 if (err) 2023 goto out_freeiov; 2024 ctl_buf = msg_sys->msg_control; 2025 ctl_len = msg_sys->msg_controllen; 2026 } else if (ctl_len) { 2027 if (ctl_len > sizeof(ctl)) { 2028 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2029 if (ctl_buf == NULL) 2030 goto out_freeiov; 2031 } 2032 err = -EFAULT; 2033 /* 2034 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2035 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2036 * checking falls down on this. 2037 */ 2038 if (copy_from_user(ctl_buf, 2039 (void __user __force *)msg_sys->msg_control, 2040 ctl_len)) 2041 goto out_freectl; 2042 msg_sys->msg_control = ctl_buf; 2043 } 2044 msg_sys->msg_flags = flags; 2045 2046 if (sock->file->f_flags & O_NONBLOCK) 2047 msg_sys->msg_flags |= MSG_DONTWAIT; 2048 /* 2049 * If this is sendmmsg() and current destination address is same as 2050 * previously succeeded address, omit asking LSM's decision. 2051 * used_address->name_len is initialized to UINT_MAX so that the first 2052 * destination address never matches. 2053 */ 2054 if (used_address && msg_sys->msg_name && 2055 used_address->name_len == msg_sys->msg_namelen && 2056 !memcmp(&used_address->name, msg_sys->msg_name, 2057 used_address->name_len)) { 2058 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2059 goto out_freectl; 2060 } 2061 err = sock_sendmsg(sock, msg_sys, total_len); 2062 /* 2063 * If this is sendmmsg() and sending to current destination address was 2064 * successful, remember it. 2065 */ 2066 if (used_address && err >= 0) { 2067 used_address->name_len = msg_sys->msg_namelen; 2068 if (msg_sys->msg_name) 2069 memcpy(&used_address->name, msg_sys->msg_name, 2070 used_address->name_len); 2071 } 2072 2073 out_freectl: 2074 if (ctl_buf != ctl) 2075 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2076 out_freeiov: 2077 if (iov != iovstack) 2078 kfree(iov); 2079 out: 2080 return err; 2081 } 2082 2083 /* 2084 * BSD sendmsg interface 2085 */ 2086 2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2088 { 2089 int fput_needed, err; 2090 struct msghdr msg_sys; 2091 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2092 2093 if (!sock) 2094 goto out; 2095 2096 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2097 2098 fput_light(sock->file, fput_needed); 2099 out: 2100 return err; 2101 } 2102 2103 /* 2104 * Linux sendmmsg interface 2105 */ 2106 2107 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2108 unsigned int flags) 2109 { 2110 int fput_needed, err, datagrams; 2111 struct socket *sock; 2112 struct mmsghdr __user *entry; 2113 struct compat_mmsghdr __user *compat_entry; 2114 struct msghdr msg_sys; 2115 struct used_address used_address; 2116 2117 if (vlen > UIO_MAXIOV) 2118 vlen = UIO_MAXIOV; 2119 2120 datagrams = 0; 2121 2122 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2123 if (!sock) 2124 return err; 2125 2126 used_address.name_len = UINT_MAX; 2127 entry = mmsg; 2128 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2129 err = 0; 2130 2131 while (datagrams < vlen) { 2132 if (MSG_CMSG_COMPAT & flags) { 2133 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2134 &msg_sys, flags, &used_address); 2135 if (err < 0) 2136 break; 2137 err = __put_user(err, &compat_entry->msg_len); 2138 ++compat_entry; 2139 } else { 2140 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2141 &msg_sys, flags, &used_address); 2142 if (err < 0) 2143 break; 2144 err = put_user(err, &entry->msg_len); 2145 ++entry; 2146 } 2147 2148 if (err) 2149 break; 2150 ++datagrams; 2151 } 2152 2153 fput_light(sock->file, fput_needed); 2154 2155 /* We only return an error if no datagrams were able to be sent */ 2156 if (datagrams != 0) 2157 return datagrams; 2158 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2163 unsigned int, vlen, unsigned int, flags) 2164 { 2165 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2166 } 2167 2168 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2169 struct msghdr *msg_sys, unsigned int flags, int nosec) 2170 { 2171 struct compat_msghdr __user *msg_compat = 2172 (struct compat_msghdr __user *)msg; 2173 struct iovec iovstack[UIO_FASTIOV]; 2174 struct iovec *iov = iovstack; 2175 unsigned long cmsg_ptr; 2176 int err, total_len, len; 2177 2178 /* kernel mode address */ 2179 struct sockaddr_storage addr; 2180 2181 /* user mode address pointers */ 2182 struct sockaddr __user *uaddr; 2183 int __user *uaddr_len; 2184 2185 if (MSG_CMSG_COMPAT & flags) { 2186 if (get_compat_msghdr(msg_sys, msg_compat)) 2187 return -EFAULT; 2188 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2189 return -EFAULT; 2190 2191 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2192 err = -EMSGSIZE; 2193 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2194 goto out; 2195 err = -ENOMEM; 2196 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2197 GFP_KERNEL); 2198 if (!iov) 2199 goto out; 2200 } 2201 2202 /* 2203 * Save the user-mode address (verify_iovec will change the 2204 * kernel msghdr to use the kernel address space) 2205 */ 2206 2207 uaddr = (__force void __user *)msg_sys->msg_name; 2208 uaddr_len = COMPAT_NAMELEN(msg); 2209 if (MSG_CMSG_COMPAT & flags) { 2210 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2211 } else 2212 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2213 if (err < 0) 2214 goto out_freeiov; 2215 total_len = err; 2216 2217 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2218 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2219 2220 if (sock->file->f_flags & O_NONBLOCK) 2221 flags |= MSG_DONTWAIT; 2222 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2223 total_len, flags); 2224 if (err < 0) 2225 goto out_freeiov; 2226 len = err; 2227 2228 if (uaddr != NULL) { 2229 err = move_addr_to_user(&addr, 2230 msg_sys->msg_namelen, uaddr, 2231 uaddr_len); 2232 if (err < 0) 2233 goto out_freeiov; 2234 } 2235 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2236 COMPAT_FLAGS(msg)); 2237 if (err) 2238 goto out_freeiov; 2239 if (MSG_CMSG_COMPAT & flags) 2240 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2241 &msg_compat->msg_controllen); 2242 else 2243 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2244 &msg->msg_controllen); 2245 if (err) 2246 goto out_freeiov; 2247 err = len; 2248 2249 out_freeiov: 2250 if (iov != iovstack) 2251 kfree(iov); 2252 out: 2253 return err; 2254 } 2255 2256 /* 2257 * BSD recvmsg interface 2258 */ 2259 2260 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2261 unsigned int, flags) 2262 { 2263 int fput_needed, err; 2264 struct msghdr msg_sys; 2265 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2266 2267 if (!sock) 2268 goto out; 2269 2270 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2271 2272 fput_light(sock->file, fput_needed); 2273 out: 2274 return err; 2275 } 2276 2277 /* 2278 * Linux recvmmsg interface 2279 */ 2280 2281 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2282 unsigned int flags, struct timespec *timeout) 2283 { 2284 int fput_needed, err, datagrams; 2285 struct socket *sock; 2286 struct mmsghdr __user *entry; 2287 struct compat_mmsghdr __user *compat_entry; 2288 struct msghdr msg_sys; 2289 struct timespec end_time; 2290 2291 if (timeout && 2292 poll_select_set_timeout(&end_time, timeout->tv_sec, 2293 timeout->tv_nsec)) 2294 return -EINVAL; 2295 2296 datagrams = 0; 2297 2298 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2299 if (!sock) 2300 return err; 2301 2302 err = sock_error(sock->sk); 2303 if (err) 2304 goto out_put; 2305 2306 entry = mmsg; 2307 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2308 2309 while (datagrams < vlen) { 2310 /* 2311 * No need to ask LSM for more than the first datagram. 2312 */ 2313 if (MSG_CMSG_COMPAT & flags) { 2314 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2315 &msg_sys, flags & ~MSG_WAITFORONE, 2316 datagrams); 2317 if (err < 0) 2318 break; 2319 err = __put_user(err, &compat_entry->msg_len); 2320 ++compat_entry; 2321 } else { 2322 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2323 &msg_sys, flags & ~MSG_WAITFORONE, 2324 datagrams); 2325 if (err < 0) 2326 break; 2327 err = put_user(err, &entry->msg_len); 2328 ++entry; 2329 } 2330 2331 if (err) 2332 break; 2333 ++datagrams; 2334 2335 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2336 if (flags & MSG_WAITFORONE) 2337 flags |= MSG_DONTWAIT; 2338 2339 if (timeout) { 2340 ktime_get_ts(timeout); 2341 *timeout = timespec_sub(end_time, *timeout); 2342 if (timeout->tv_sec < 0) { 2343 timeout->tv_sec = timeout->tv_nsec = 0; 2344 break; 2345 } 2346 2347 /* Timeout, return less than vlen datagrams */ 2348 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2349 break; 2350 } 2351 2352 /* Out of band data, return right away */ 2353 if (msg_sys.msg_flags & MSG_OOB) 2354 break; 2355 } 2356 2357 out_put: 2358 fput_light(sock->file, fput_needed); 2359 2360 if (err == 0) 2361 return datagrams; 2362 2363 if (datagrams != 0) { 2364 /* 2365 * We may return less entries than requested (vlen) if the 2366 * sock is non block and there aren't enough datagrams... 2367 */ 2368 if (err != -EAGAIN) { 2369 /* 2370 * ... or if recvmsg returns an error after we 2371 * received some datagrams, where we record the 2372 * error to return on the next call or if the 2373 * app asks about it using getsockopt(SO_ERROR). 2374 */ 2375 sock->sk->sk_err = -err; 2376 } 2377 2378 return datagrams; 2379 } 2380 2381 return err; 2382 } 2383 2384 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2385 unsigned int, vlen, unsigned int, flags, 2386 struct timespec __user *, timeout) 2387 { 2388 int datagrams; 2389 struct timespec timeout_sys; 2390 2391 if (!timeout) 2392 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2393 2394 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2395 return -EFAULT; 2396 2397 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2398 2399 if (datagrams > 0 && 2400 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2401 datagrams = -EFAULT; 2402 2403 return datagrams; 2404 } 2405 2406 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2407 /* Argument list sizes for sys_socketcall */ 2408 #define AL(x) ((x) * sizeof(unsigned long)) 2409 static const unsigned char nargs[21] = { 2410 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2411 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2412 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2413 AL(4), AL(5), AL(4) 2414 }; 2415 2416 #undef AL 2417 2418 /* 2419 * System call vectors. 2420 * 2421 * Argument checking cleaned up. Saved 20% in size. 2422 * This function doesn't need to set the kernel lock because 2423 * it is set by the callees. 2424 */ 2425 2426 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2427 { 2428 unsigned long a[6]; 2429 unsigned long a0, a1; 2430 int err; 2431 unsigned int len; 2432 2433 if (call < 1 || call > SYS_SENDMMSG) 2434 return -EINVAL; 2435 2436 len = nargs[call]; 2437 if (len > sizeof(a)) 2438 return -EINVAL; 2439 2440 /* copy_from_user should be SMP safe. */ 2441 if (copy_from_user(a, args, len)) 2442 return -EFAULT; 2443 2444 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2445 2446 a0 = a[0]; 2447 a1 = a[1]; 2448 2449 switch (call) { 2450 case SYS_SOCKET: 2451 err = sys_socket(a0, a1, a[2]); 2452 break; 2453 case SYS_BIND: 2454 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2455 break; 2456 case SYS_CONNECT: 2457 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2458 break; 2459 case SYS_LISTEN: 2460 err = sys_listen(a0, a1); 2461 break; 2462 case SYS_ACCEPT: 2463 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2464 (int __user *)a[2], 0); 2465 break; 2466 case SYS_GETSOCKNAME: 2467 err = 2468 sys_getsockname(a0, (struct sockaddr __user *)a1, 2469 (int __user *)a[2]); 2470 break; 2471 case SYS_GETPEERNAME: 2472 err = 2473 sys_getpeername(a0, (struct sockaddr __user *)a1, 2474 (int __user *)a[2]); 2475 break; 2476 case SYS_SOCKETPAIR: 2477 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2478 break; 2479 case SYS_SEND: 2480 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2481 break; 2482 case SYS_SENDTO: 2483 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2484 (struct sockaddr __user *)a[4], a[5]); 2485 break; 2486 case SYS_RECV: 2487 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2488 break; 2489 case SYS_RECVFROM: 2490 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2491 (struct sockaddr __user *)a[4], 2492 (int __user *)a[5]); 2493 break; 2494 case SYS_SHUTDOWN: 2495 err = sys_shutdown(a0, a1); 2496 break; 2497 case SYS_SETSOCKOPT: 2498 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2499 break; 2500 case SYS_GETSOCKOPT: 2501 err = 2502 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2503 (int __user *)a[4]); 2504 break; 2505 case SYS_SENDMSG: 2506 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2507 break; 2508 case SYS_SENDMMSG: 2509 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2510 break; 2511 case SYS_RECVMSG: 2512 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2513 break; 2514 case SYS_RECVMMSG: 2515 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2516 (struct timespec __user *)a[4]); 2517 break; 2518 case SYS_ACCEPT4: 2519 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2520 (int __user *)a[2], a[3]); 2521 break; 2522 default: 2523 err = -EINVAL; 2524 break; 2525 } 2526 return err; 2527 } 2528 2529 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2530 2531 /** 2532 * sock_register - add a socket protocol handler 2533 * @ops: description of protocol 2534 * 2535 * This function is called by a protocol handler that wants to 2536 * advertise its address family, and have it linked into the 2537 * socket interface. The value ops->family coresponds to the 2538 * socket system call protocol family. 2539 */ 2540 int sock_register(const struct net_proto_family *ops) 2541 { 2542 int err; 2543 2544 if (ops->family >= NPROTO) { 2545 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2546 NPROTO); 2547 return -ENOBUFS; 2548 } 2549 2550 spin_lock(&net_family_lock); 2551 if (rcu_dereference_protected(net_families[ops->family], 2552 lockdep_is_held(&net_family_lock))) 2553 err = -EEXIST; 2554 else { 2555 rcu_assign_pointer(net_families[ops->family], ops); 2556 err = 0; 2557 } 2558 spin_unlock(&net_family_lock); 2559 2560 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2561 return err; 2562 } 2563 EXPORT_SYMBOL(sock_register); 2564 2565 /** 2566 * sock_unregister - remove a protocol handler 2567 * @family: protocol family to remove 2568 * 2569 * This function is called by a protocol handler that wants to 2570 * remove its address family, and have it unlinked from the 2571 * new socket creation. 2572 * 2573 * If protocol handler is a module, then it can use module reference 2574 * counts to protect against new references. If protocol handler is not 2575 * a module then it needs to provide its own protection in 2576 * the ops->create routine. 2577 */ 2578 void sock_unregister(int family) 2579 { 2580 BUG_ON(family < 0 || family >= NPROTO); 2581 2582 spin_lock(&net_family_lock); 2583 RCU_INIT_POINTER(net_families[family], NULL); 2584 spin_unlock(&net_family_lock); 2585 2586 synchronize_rcu(); 2587 2588 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2589 } 2590 EXPORT_SYMBOL(sock_unregister); 2591 2592 static int __init sock_init(void) 2593 { 2594 int err; 2595 /* 2596 * Initialize the network sysctl infrastructure. 2597 */ 2598 err = net_sysctl_init(); 2599 if (err) 2600 goto out; 2601 2602 /* 2603 * Initialize skbuff SLAB cache 2604 */ 2605 skb_init(); 2606 2607 /* 2608 * Initialize the protocols module. 2609 */ 2610 2611 init_inodecache(); 2612 2613 err = register_filesystem(&sock_fs_type); 2614 if (err) 2615 goto out_fs; 2616 sock_mnt = kern_mount(&sock_fs_type); 2617 if (IS_ERR(sock_mnt)) { 2618 err = PTR_ERR(sock_mnt); 2619 goto out_mount; 2620 } 2621 2622 /* The real protocol initialization is performed in later initcalls. 2623 */ 2624 2625 #ifdef CONFIG_NETFILTER 2626 netfilter_init(); 2627 #endif 2628 2629 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2630 skb_timestamping_init(); 2631 #endif 2632 2633 out: 2634 return err; 2635 2636 out_mount: 2637 unregister_filesystem(&sock_fs_type); 2638 out_fs: 2639 goto out; 2640 } 2641 2642 core_initcall(sock_init); /* early initcall */ 2643 2644 #ifdef CONFIG_PROC_FS 2645 void socket_seq_show(struct seq_file *seq) 2646 { 2647 int cpu; 2648 int counter = 0; 2649 2650 for_each_possible_cpu(cpu) 2651 counter += per_cpu(sockets_in_use, cpu); 2652 2653 /* It can be negative, by the way. 8) */ 2654 if (counter < 0) 2655 counter = 0; 2656 2657 seq_printf(seq, "sockets: used %d\n", counter); 2658 } 2659 #endif /* CONFIG_PROC_FS */ 2660 2661 #ifdef CONFIG_COMPAT 2662 static int do_siocgstamp(struct net *net, struct socket *sock, 2663 unsigned int cmd, void __user *up) 2664 { 2665 mm_segment_t old_fs = get_fs(); 2666 struct timeval ktv; 2667 int err; 2668 2669 set_fs(KERNEL_DS); 2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2671 set_fs(old_fs); 2672 if (!err) 2673 err = compat_put_timeval(&ktv, up); 2674 2675 return err; 2676 } 2677 2678 static int do_siocgstampns(struct net *net, struct socket *sock, 2679 unsigned int cmd, void __user *up) 2680 { 2681 mm_segment_t old_fs = get_fs(); 2682 struct timespec kts; 2683 int err; 2684 2685 set_fs(KERNEL_DS); 2686 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2687 set_fs(old_fs); 2688 if (!err) 2689 err = compat_put_timespec(&kts, up); 2690 2691 return err; 2692 } 2693 2694 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2695 { 2696 struct ifreq __user *uifr; 2697 int err; 2698 2699 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2700 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2701 return -EFAULT; 2702 2703 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2704 if (err) 2705 return err; 2706 2707 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2708 return -EFAULT; 2709 2710 return 0; 2711 } 2712 2713 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2714 { 2715 struct compat_ifconf ifc32; 2716 struct ifconf ifc; 2717 struct ifconf __user *uifc; 2718 struct compat_ifreq __user *ifr32; 2719 struct ifreq __user *ifr; 2720 unsigned int i, j; 2721 int err; 2722 2723 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2724 return -EFAULT; 2725 2726 memset(&ifc, 0, sizeof(ifc)); 2727 if (ifc32.ifcbuf == 0) { 2728 ifc32.ifc_len = 0; 2729 ifc.ifc_len = 0; 2730 ifc.ifc_req = NULL; 2731 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2732 } else { 2733 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2734 sizeof(struct ifreq); 2735 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2736 ifc.ifc_len = len; 2737 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2738 ifr32 = compat_ptr(ifc32.ifcbuf); 2739 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2740 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2741 return -EFAULT; 2742 ifr++; 2743 ifr32++; 2744 } 2745 } 2746 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2747 return -EFAULT; 2748 2749 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2750 if (err) 2751 return err; 2752 2753 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2754 return -EFAULT; 2755 2756 ifr = ifc.ifc_req; 2757 ifr32 = compat_ptr(ifc32.ifcbuf); 2758 for (i = 0, j = 0; 2759 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2760 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2761 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2762 return -EFAULT; 2763 ifr32++; 2764 ifr++; 2765 } 2766 2767 if (ifc32.ifcbuf == 0) { 2768 /* Translate from 64-bit structure multiple to 2769 * a 32-bit one. 2770 */ 2771 i = ifc.ifc_len; 2772 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2773 ifc32.ifc_len = i; 2774 } else { 2775 ifc32.ifc_len = i; 2776 } 2777 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2778 return -EFAULT; 2779 2780 return 0; 2781 } 2782 2783 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2784 { 2785 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2786 bool convert_in = false, convert_out = false; 2787 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2788 struct ethtool_rxnfc __user *rxnfc; 2789 struct ifreq __user *ifr; 2790 u32 rule_cnt = 0, actual_rule_cnt; 2791 u32 ethcmd; 2792 u32 data; 2793 int ret; 2794 2795 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2796 return -EFAULT; 2797 2798 compat_rxnfc = compat_ptr(data); 2799 2800 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2801 return -EFAULT; 2802 2803 /* Most ethtool structures are defined without padding. 2804 * Unfortunately struct ethtool_rxnfc is an exception. 2805 */ 2806 switch (ethcmd) { 2807 default: 2808 break; 2809 case ETHTOOL_GRXCLSRLALL: 2810 /* Buffer size is variable */ 2811 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2812 return -EFAULT; 2813 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2814 return -ENOMEM; 2815 buf_size += rule_cnt * sizeof(u32); 2816 /* fall through */ 2817 case ETHTOOL_GRXRINGS: 2818 case ETHTOOL_GRXCLSRLCNT: 2819 case ETHTOOL_GRXCLSRULE: 2820 case ETHTOOL_SRXCLSRLINS: 2821 convert_out = true; 2822 /* fall through */ 2823 case ETHTOOL_SRXCLSRLDEL: 2824 buf_size += sizeof(struct ethtool_rxnfc); 2825 convert_in = true; 2826 break; 2827 } 2828 2829 ifr = compat_alloc_user_space(buf_size); 2830 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2831 2832 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2833 return -EFAULT; 2834 2835 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2836 &ifr->ifr_ifru.ifru_data)) 2837 return -EFAULT; 2838 2839 if (convert_in) { 2840 /* We expect there to be holes between fs.m_ext and 2841 * fs.ring_cookie and at the end of fs, but nowhere else. 2842 */ 2843 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2844 sizeof(compat_rxnfc->fs.m_ext) != 2845 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2846 sizeof(rxnfc->fs.m_ext)); 2847 BUILD_BUG_ON( 2848 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2849 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2850 offsetof(struct ethtool_rxnfc, fs.location) - 2851 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2852 2853 if (copy_in_user(rxnfc, compat_rxnfc, 2854 (void __user *)(&rxnfc->fs.m_ext + 1) - 2855 (void __user *)rxnfc) || 2856 copy_in_user(&rxnfc->fs.ring_cookie, 2857 &compat_rxnfc->fs.ring_cookie, 2858 (void __user *)(&rxnfc->fs.location + 1) - 2859 (void __user *)&rxnfc->fs.ring_cookie) || 2860 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2861 sizeof(rxnfc->rule_cnt))) 2862 return -EFAULT; 2863 } 2864 2865 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2866 if (ret) 2867 return ret; 2868 2869 if (convert_out) { 2870 if (copy_in_user(compat_rxnfc, rxnfc, 2871 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2872 (const void __user *)rxnfc) || 2873 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2874 &rxnfc->fs.ring_cookie, 2875 (const void __user *)(&rxnfc->fs.location + 1) - 2876 (const void __user *)&rxnfc->fs.ring_cookie) || 2877 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2878 sizeof(rxnfc->rule_cnt))) 2879 return -EFAULT; 2880 2881 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2882 /* As an optimisation, we only copy the actual 2883 * number of rules that the underlying 2884 * function returned. Since Mallory might 2885 * change the rule count in user memory, we 2886 * check that it is less than the rule count 2887 * originally given (as the user buffer size), 2888 * which has been range-checked. 2889 */ 2890 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2891 return -EFAULT; 2892 if (actual_rule_cnt < rule_cnt) 2893 rule_cnt = actual_rule_cnt; 2894 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2895 &rxnfc->rule_locs[0], 2896 rule_cnt * sizeof(u32))) 2897 return -EFAULT; 2898 } 2899 } 2900 2901 return 0; 2902 } 2903 2904 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2905 { 2906 void __user *uptr; 2907 compat_uptr_t uptr32; 2908 struct ifreq __user *uifr; 2909 2910 uifr = compat_alloc_user_space(sizeof(*uifr)); 2911 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2912 return -EFAULT; 2913 2914 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2915 return -EFAULT; 2916 2917 uptr = compat_ptr(uptr32); 2918 2919 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2920 return -EFAULT; 2921 2922 return dev_ioctl(net, SIOCWANDEV, uifr); 2923 } 2924 2925 static int bond_ioctl(struct net *net, unsigned int cmd, 2926 struct compat_ifreq __user *ifr32) 2927 { 2928 struct ifreq kifr; 2929 struct ifreq __user *uifr; 2930 mm_segment_t old_fs; 2931 int err; 2932 u32 data; 2933 void __user *datap; 2934 2935 switch (cmd) { 2936 case SIOCBONDENSLAVE: 2937 case SIOCBONDRELEASE: 2938 case SIOCBONDSETHWADDR: 2939 case SIOCBONDCHANGEACTIVE: 2940 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2941 return -EFAULT; 2942 2943 old_fs = get_fs(); 2944 set_fs(KERNEL_DS); 2945 err = dev_ioctl(net, cmd, 2946 (struct ifreq __user __force *) &kifr); 2947 set_fs(old_fs); 2948 2949 return err; 2950 case SIOCBONDSLAVEINFOQUERY: 2951 case SIOCBONDINFOQUERY: 2952 uifr = compat_alloc_user_space(sizeof(*uifr)); 2953 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2954 return -EFAULT; 2955 2956 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2957 return -EFAULT; 2958 2959 datap = compat_ptr(data); 2960 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2961 return -EFAULT; 2962 2963 return dev_ioctl(net, cmd, uifr); 2964 default: 2965 return -ENOIOCTLCMD; 2966 } 2967 } 2968 2969 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2970 struct compat_ifreq __user *u_ifreq32) 2971 { 2972 struct ifreq __user *u_ifreq64; 2973 char tmp_buf[IFNAMSIZ]; 2974 void __user *data64; 2975 u32 data32; 2976 2977 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2978 IFNAMSIZ)) 2979 return -EFAULT; 2980 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2981 return -EFAULT; 2982 data64 = compat_ptr(data32); 2983 2984 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2985 2986 /* Don't check these user accesses, just let that get trapped 2987 * in the ioctl handler instead. 2988 */ 2989 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2990 IFNAMSIZ)) 2991 return -EFAULT; 2992 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2993 return -EFAULT; 2994 2995 return dev_ioctl(net, cmd, u_ifreq64); 2996 } 2997 2998 static int dev_ifsioc(struct net *net, struct socket *sock, 2999 unsigned int cmd, struct compat_ifreq __user *uifr32) 3000 { 3001 struct ifreq __user *uifr; 3002 int err; 3003 3004 uifr = compat_alloc_user_space(sizeof(*uifr)); 3005 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3006 return -EFAULT; 3007 3008 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3009 3010 if (!err) { 3011 switch (cmd) { 3012 case SIOCGIFFLAGS: 3013 case SIOCGIFMETRIC: 3014 case SIOCGIFMTU: 3015 case SIOCGIFMEM: 3016 case SIOCGIFHWADDR: 3017 case SIOCGIFINDEX: 3018 case SIOCGIFADDR: 3019 case SIOCGIFBRDADDR: 3020 case SIOCGIFDSTADDR: 3021 case SIOCGIFNETMASK: 3022 case SIOCGIFPFLAGS: 3023 case SIOCGIFTXQLEN: 3024 case SIOCGMIIPHY: 3025 case SIOCGMIIREG: 3026 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3027 err = -EFAULT; 3028 break; 3029 } 3030 } 3031 return err; 3032 } 3033 3034 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3035 struct compat_ifreq __user *uifr32) 3036 { 3037 struct ifreq ifr; 3038 struct compat_ifmap __user *uifmap32; 3039 mm_segment_t old_fs; 3040 int err; 3041 3042 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3043 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3044 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3045 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3046 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3047 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3048 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3049 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3050 if (err) 3051 return -EFAULT; 3052 3053 old_fs = get_fs(); 3054 set_fs(KERNEL_DS); 3055 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3056 set_fs(old_fs); 3057 3058 if (cmd == SIOCGIFMAP && !err) { 3059 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3060 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3061 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3062 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3063 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3064 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3065 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3066 if (err) 3067 err = -EFAULT; 3068 } 3069 return err; 3070 } 3071 3072 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3073 { 3074 void __user *uptr; 3075 compat_uptr_t uptr32; 3076 struct ifreq __user *uifr; 3077 3078 uifr = compat_alloc_user_space(sizeof(*uifr)); 3079 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3080 return -EFAULT; 3081 3082 if (get_user(uptr32, &uifr32->ifr_data)) 3083 return -EFAULT; 3084 3085 uptr = compat_ptr(uptr32); 3086 3087 if (put_user(uptr, &uifr->ifr_data)) 3088 return -EFAULT; 3089 3090 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3091 } 3092 3093 struct rtentry32 { 3094 u32 rt_pad1; 3095 struct sockaddr rt_dst; /* target address */ 3096 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3097 struct sockaddr rt_genmask; /* target network mask (IP) */ 3098 unsigned short rt_flags; 3099 short rt_pad2; 3100 u32 rt_pad3; 3101 unsigned char rt_tos; 3102 unsigned char rt_class; 3103 short rt_pad4; 3104 short rt_metric; /* +1 for binary compatibility! */ 3105 /* char * */ u32 rt_dev; /* forcing the device at add */ 3106 u32 rt_mtu; /* per route MTU/Window */ 3107 u32 rt_window; /* Window clamping */ 3108 unsigned short rt_irtt; /* Initial RTT */ 3109 }; 3110 3111 struct in6_rtmsg32 { 3112 struct in6_addr rtmsg_dst; 3113 struct in6_addr rtmsg_src; 3114 struct in6_addr rtmsg_gateway; 3115 u32 rtmsg_type; 3116 u16 rtmsg_dst_len; 3117 u16 rtmsg_src_len; 3118 u32 rtmsg_metric; 3119 u32 rtmsg_info; 3120 u32 rtmsg_flags; 3121 s32 rtmsg_ifindex; 3122 }; 3123 3124 static int routing_ioctl(struct net *net, struct socket *sock, 3125 unsigned int cmd, void __user *argp) 3126 { 3127 int ret; 3128 void *r = NULL; 3129 struct in6_rtmsg r6; 3130 struct rtentry r4; 3131 char devname[16]; 3132 u32 rtdev; 3133 mm_segment_t old_fs = get_fs(); 3134 3135 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3136 struct in6_rtmsg32 __user *ur6 = argp; 3137 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3138 3 * sizeof(struct in6_addr)); 3139 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3140 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3141 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3142 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3143 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3144 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3145 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3146 3147 r = (void *) &r6; 3148 } else { /* ipv4 */ 3149 struct rtentry32 __user *ur4 = argp; 3150 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3151 3 * sizeof(struct sockaddr)); 3152 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3153 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3154 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3155 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3156 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3157 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3158 if (rtdev) { 3159 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3160 r4.rt_dev = (char __user __force *)devname; 3161 devname[15] = 0; 3162 } else 3163 r4.rt_dev = NULL; 3164 3165 r = (void *) &r4; 3166 } 3167 3168 if (ret) { 3169 ret = -EFAULT; 3170 goto out; 3171 } 3172 3173 set_fs(KERNEL_DS); 3174 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3175 set_fs(old_fs); 3176 3177 out: 3178 return ret; 3179 } 3180 3181 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3182 * for some operations; this forces use of the newer bridge-utils that 3183 * use compatible ioctls 3184 */ 3185 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3186 { 3187 compat_ulong_t tmp; 3188 3189 if (get_user(tmp, argp)) 3190 return -EFAULT; 3191 if (tmp == BRCTL_GET_VERSION) 3192 return BRCTL_VERSION + 1; 3193 return -EINVAL; 3194 } 3195 3196 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3197 unsigned int cmd, unsigned long arg) 3198 { 3199 void __user *argp = compat_ptr(arg); 3200 struct sock *sk = sock->sk; 3201 struct net *net = sock_net(sk); 3202 3203 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3204 return siocdevprivate_ioctl(net, cmd, argp); 3205 3206 switch (cmd) { 3207 case SIOCSIFBR: 3208 case SIOCGIFBR: 3209 return old_bridge_ioctl(argp); 3210 case SIOCGIFNAME: 3211 return dev_ifname32(net, argp); 3212 case SIOCGIFCONF: 3213 return dev_ifconf(net, argp); 3214 case SIOCETHTOOL: 3215 return ethtool_ioctl(net, argp); 3216 case SIOCWANDEV: 3217 return compat_siocwandev(net, argp); 3218 case SIOCGIFMAP: 3219 case SIOCSIFMAP: 3220 return compat_sioc_ifmap(net, cmd, argp); 3221 case SIOCBONDENSLAVE: 3222 case SIOCBONDRELEASE: 3223 case SIOCBONDSETHWADDR: 3224 case SIOCBONDSLAVEINFOQUERY: 3225 case SIOCBONDINFOQUERY: 3226 case SIOCBONDCHANGEACTIVE: 3227 return bond_ioctl(net, cmd, argp); 3228 case SIOCADDRT: 3229 case SIOCDELRT: 3230 return routing_ioctl(net, sock, cmd, argp); 3231 case SIOCGSTAMP: 3232 return do_siocgstamp(net, sock, cmd, argp); 3233 case SIOCGSTAMPNS: 3234 return do_siocgstampns(net, sock, cmd, argp); 3235 case SIOCSHWTSTAMP: 3236 return compat_siocshwtstamp(net, argp); 3237 3238 case FIOSETOWN: 3239 case SIOCSPGRP: 3240 case FIOGETOWN: 3241 case SIOCGPGRP: 3242 case SIOCBRADDBR: 3243 case SIOCBRDELBR: 3244 case SIOCGIFVLAN: 3245 case SIOCSIFVLAN: 3246 case SIOCADDDLCI: 3247 case SIOCDELDLCI: 3248 return sock_ioctl(file, cmd, arg); 3249 3250 case SIOCGIFFLAGS: 3251 case SIOCSIFFLAGS: 3252 case SIOCGIFMETRIC: 3253 case SIOCSIFMETRIC: 3254 case SIOCGIFMTU: 3255 case SIOCSIFMTU: 3256 case SIOCGIFMEM: 3257 case SIOCSIFMEM: 3258 case SIOCGIFHWADDR: 3259 case SIOCSIFHWADDR: 3260 case SIOCADDMULTI: 3261 case SIOCDELMULTI: 3262 case SIOCGIFINDEX: 3263 case SIOCGIFADDR: 3264 case SIOCSIFADDR: 3265 case SIOCSIFHWBROADCAST: 3266 case SIOCDIFADDR: 3267 case SIOCGIFBRDADDR: 3268 case SIOCSIFBRDADDR: 3269 case SIOCGIFDSTADDR: 3270 case SIOCSIFDSTADDR: 3271 case SIOCGIFNETMASK: 3272 case SIOCSIFNETMASK: 3273 case SIOCSIFPFLAGS: 3274 case SIOCGIFPFLAGS: 3275 case SIOCGIFTXQLEN: 3276 case SIOCSIFTXQLEN: 3277 case SIOCBRADDIF: 3278 case SIOCBRDELIF: 3279 case SIOCSIFNAME: 3280 case SIOCGMIIPHY: 3281 case SIOCGMIIREG: 3282 case SIOCSMIIREG: 3283 return dev_ifsioc(net, sock, cmd, argp); 3284 3285 case SIOCSARP: 3286 case SIOCGARP: 3287 case SIOCDARP: 3288 case SIOCATMARK: 3289 return sock_do_ioctl(net, sock, cmd, arg); 3290 } 3291 3292 return -ENOIOCTLCMD; 3293 } 3294 3295 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3296 unsigned long arg) 3297 { 3298 struct socket *sock = file->private_data; 3299 int ret = -ENOIOCTLCMD; 3300 struct sock *sk; 3301 struct net *net; 3302 3303 sk = sock->sk; 3304 net = sock_net(sk); 3305 3306 if (sock->ops->compat_ioctl) 3307 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3308 3309 if (ret == -ENOIOCTLCMD && 3310 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3311 ret = compat_wext_handle_ioctl(net, cmd, arg); 3312 3313 if (ret == -ENOIOCTLCMD) 3314 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3315 3316 return ret; 3317 } 3318 #endif 3319 3320 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3321 { 3322 return sock->ops->bind(sock, addr, addrlen); 3323 } 3324 EXPORT_SYMBOL(kernel_bind); 3325 3326 int kernel_listen(struct socket *sock, int backlog) 3327 { 3328 return sock->ops->listen(sock, backlog); 3329 } 3330 EXPORT_SYMBOL(kernel_listen); 3331 3332 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3333 { 3334 struct sock *sk = sock->sk; 3335 int err; 3336 3337 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3338 newsock); 3339 if (err < 0) 3340 goto done; 3341 3342 err = sock->ops->accept(sock, *newsock, flags); 3343 if (err < 0) { 3344 sock_release(*newsock); 3345 *newsock = NULL; 3346 goto done; 3347 } 3348 3349 (*newsock)->ops = sock->ops; 3350 __module_get((*newsock)->ops->owner); 3351 3352 done: 3353 return err; 3354 } 3355 EXPORT_SYMBOL(kernel_accept); 3356 3357 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3358 int flags) 3359 { 3360 return sock->ops->connect(sock, addr, addrlen, flags); 3361 } 3362 EXPORT_SYMBOL(kernel_connect); 3363 3364 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3365 int *addrlen) 3366 { 3367 return sock->ops->getname(sock, addr, addrlen, 0); 3368 } 3369 EXPORT_SYMBOL(kernel_getsockname); 3370 3371 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3372 int *addrlen) 3373 { 3374 return sock->ops->getname(sock, addr, addrlen, 1); 3375 } 3376 EXPORT_SYMBOL(kernel_getpeername); 3377 3378 int kernel_getsockopt(struct socket *sock, int level, int optname, 3379 char *optval, int *optlen) 3380 { 3381 mm_segment_t oldfs = get_fs(); 3382 char __user *uoptval; 3383 int __user *uoptlen; 3384 int err; 3385 3386 uoptval = (char __user __force *) optval; 3387 uoptlen = (int __user __force *) optlen; 3388 3389 set_fs(KERNEL_DS); 3390 if (level == SOL_SOCKET) 3391 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3392 else 3393 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3394 uoptlen); 3395 set_fs(oldfs); 3396 return err; 3397 } 3398 EXPORT_SYMBOL(kernel_getsockopt); 3399 3400 int kernel_setsockopt(struct socket *sock, int level, int optname, 3401 char *optval, unsigned int optlen) 3402 { 3403 mm_segment_t oldfs = get_fs(); 3404 char __user *uoptval; 3405 int err; 3406 3407 uoptval = (char __user __force *) optval; 3408 3409 set_fs(KERNEL_DS); 3410 if (level == SOL_SOCKET) 3411 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3412 else 3413 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3414 optlen); 3415 set_fs(oldfs); 3416 return err; 3417 } 3418 EXPORT_SYMBOL(kernel_setsockopt); 3419 3420 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3421 size_t size, int flags) 3422 { 3423 if (sock->ops->sendpage) 3424 return sock->ops->sendpage(sock, page, offset, size, flags); 3425 3426 return sock_no_sendpage(sock, page, offset, size, flags); 3427 } 3428 EXPORT_SYMBOL(kernel_sendpage); 3429 3430 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3431 { 3432 mm_segment_t oldfs = get_fs(); 3433 int err; 3434 3435 set_fs(KERNEL_DS); 3436 err = sock->ops->ioctl(sock, cmd, arg); 3437 set_fs(oldfs); 3438 3439 return err; 3440 } 3441 EXPORT_SYMBOL(kernel_sock_ioctl); 3442 3443 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3444 { 3445 return sock->ops->shutdown(sock, how); 3446 } 3447 EXPORT_SYMBOL(kernel_sock_shutdown); 3448