xref: /linux/net/socket.c (revision 616eb7bf325fbf25df2b5046536b50fe896d4ab6)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * NET		An implementation of the SOCKET network access protocol.
4   *
5   * Version:	@(#)socket.c	1.1.93	18/02/95
6   *
7   * Authors:	Orest Zborowski, <obz@Kodak.COM>
8   *		Ross Biro
9   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10   *
11   * Fixes:
12   *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13   *					shutdown()
14   *		Alan Cox	:	verify_area() fixes
15   *		Alan Cox	:	Removed DDI
16   *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17   *		Alan Cox	:	Moved a load of checks to the very
18   *					top level.
19   *		Alan Cox	:	Move address structures to/from user
20   *					mode above the protocol layers.
21   *		Rob Janssen	:	Allow 0 length sends.
22   *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23   *					tty drivers).
24   *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25   *		Jeff Uphoff	:	Made max number of sockets command-line
26   *					configurable.
27   *		Matti Aarnio	:	Made the number of sockets dynamic,
28   *					to be allocated when needed, and mr.
29   *					Uphoff's max is used as max to be
30   *					allowed to allocate.
31   *		Linus		:	Argh. removed all the socket allocation
32   *					altogether: it's in the inode now.
33   *		Alan Cox	:	Made sock_alloc()/sock_release() public
34   *					for NetROM and future kernel nfsd type
35   *					stuff.
36   *		Alan Cox	:	sendmsg/recvmsg basics.
37   *		Tom Dyas	:	Export net symbols.
38   *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39   *		Alan Cox	:	Added thread locking to sys_* calls
40   *					for sockets. May have errors at the
41   *					moment.
42   *		Kevin Buhr	:	Fixed the dumb errors in the above.
43   *		Andi Kleen	:	Some small cleanups, optimizations,
44   *					and fixed a copy_from_user() bug.
45   *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46   *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47   *					protocol-independent
48   *
49   *	This module is effectively the top level interface to the BSD socket
50   *	paradigm.
51   *
52   *	Based upon Swansea University Computer Society NET3.039
53   */
54  
55  #include <linux/bpf-cgroup.h>
56  #include <linux/ethtool.h>
57  #include <linux/mm.h>
58  #include <linux/socket.h>
59  #include <linux/file.h>
60  #include <linux/net.h>
61  #include <linux/interrupt.h>
62  #include <linux/thread_info.h>
63  #include <linux/rcupdate.h>
64  #include <linux/netdevice.h>
65  #include <linux/proc_fs.h>
66  #include <linux/seq_file.h>
67  #include <linux/mutex.h>
68  #include <linux/if_bridge.h>
69  #include <linux/if_vlan.h>
70  #include <linux/ptp_classify.h>
71  #include <linux/init.h>
72  #include <linux/poll.h>
73  #include <linux/cache.h>
74  #include <linux/module.h>
75  #include <linux/highmem.h>
76  #include <linux/mount.h>
77  #include <linux/pseudo_fs.h>
78  #include <linux/security.h>
79  #include <linux/syscalls.h>
80  #include <linux/compat.h>
81  #include <linux/kmod.h>
82  #include <linux/audit.h>
83  #include <linux/wireless.h>
84  #include <linux/nsproxy.h>
85  #include <linux/magic.h>
86  #include <linux/slab.h>
87  #include <linux/xattr.h>
88  #include <linux/nospec.h>
89  #include <linux/indirect_call_wrapper.h>
90  
91  #include <linux/uaccess.h>
92  #include <asm/unistd.h>
93  
94  #include <net/compat.h>
95  #include <net/wext.h>
96  #include <net/cls_cgroup.h>
97  
98  #include <net/sock.h>
99  #include <linux/netfilter.h>
100  
101  #include <linux/if_tun.h>
102  #include <linux/ipv6_route.h>
103  #include <linux/route.h>
104  #include <linux/termios.h>
105  #include <linux/sockios.h>
106  #include <net/busy_poll.h>
107  #include <linux/errqueue.h>
108  #include <linux/ptp_clock_kernel.h>
109  
110  #ifdef CONFIG_NET_RX_BUSY_POLL
111  unsigned int sysctl_net_busy_read __read_mostly;
112  unsigned int sysctl_net_busy_poll __read_mostly;
113  #endif
114  
115  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117  static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118  
119  static int sock_close(struct inode *inode, struct file *file);
120  static __poll_t sock_poll(struct file *file,
121  			      struct poll_table_struct *wait);
122  static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123  #ifdef CONFIG_COMPAT
124  static long compat_sock_ioctl(struct file *file,
125  			      unsigned int cmd, unsigned long arg);
126  #endif
127  static int sock_fasync(int fd, struct file *filp, int on);
128  static ssize_t sock_sendpage(struct file *file, struct page *page,
129  			     int offset, size_t size, loff_t *ppos, int more);
130  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131  				struct pipe_inode_info *pipe, size_t len,
132  				unsigned int flags);
133  
134  #ifdef CONFIG_PROC_FS
135  static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136  {
137  	struct socket *sock = f->private_data;
138  
139  	if (sock->ops->show_fdinfo)
140  		sock->ops->show_fdinfo(m, sock);
141  }
142  #else
143  #define sock_show_fdinfo NULL
144  #endif
145  
146  /*
147   *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148   *	in the operation structures but are done directly via the socketcall() multiplexor.
149   */
150  
151  static const struct file_operations socket_file_ops = {
152  	.owner =	THIS_MODULE,
153  	.llseek =	no_llseek,
154  	.read_iter =	sock_read_iter,
155  	.write_iter =	sock_write_iter,
156  	.poll =		sock_poll,
157  	.unlocked_ioctl = sock_ioctl,
158  #ifdef CONFIG_COMPAT
159  	.compat_ioctl = compat_sock_ioctl,
160  #endif
161  	.mmap =		sock_mmap,
162  	.release =	sock_close,
163  	.fasync =	sock_fasync,
164  	.sendpage =	sock_sendpage,
165  	.splice_write = generic_splice_sendpage,
166  	.splice_read =	sock_splice_read,
167  	.show_fdinfo =	sock_show_fdinfo,
168  };
169  
170  static const char * const pf_family_names[] = {
171  	[PF_UNSPEC]	= "PF_UNSPEC",
172  	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
173  	[PF_INET]	= "PF_INET",
174  	[PF_AX25]	= "PF_AX25",
175  	[PF_IPX]	= "PF_IPX",
176  	[PF_APPLETALK]	= "PF_APPLETALK",
177  	[PF_NETROM]	= "PF_NETROM",
178  	[PF_BRIDGE]	= "PF_BRIDGE",
179  	[PF_ATMPVC]	= "PF_ATMPVC",
180  	[PF_X25]	= "PF_X25",
181  	[PF_INET6]	= "PF_INET6",
182  	[PF_ROSE]	= "PF_ROSE",
183  	[PF_DECnet]	= "PF_DECnet",
184  	[PF_NETBEUI]	= "PF_NETBEUI",
185  	[PF_SECURITY]	= "PF_SECURITY",
186  	[PF_KEY]	= "PF_KEY",
187  	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
188  	[PF_PACKET]	= "PF_PACKET",
189  	[PF_ASH]	= "PF_ASH",
190  	[PF_ECONET]	= "PF_ECONET",
191  	[PF_ATMSVC]	= "PF_ATMSVC",
192  	[PF_RDS]	= "PF_RDS",
193  	[PF_SNA]	= "PF_SNA",
194  	[PF_IRDA]	= "PF_IRDA",
195  	[PF_PPPOX]	= "PF_PPPOX",
196  	[PF_WANPIPE]	= "PF_WANPIPE",
197  	[PF_LLC]	= "PF_LLC",
198  	[PF_IB]		= "PF_IB",
199  	[PF_MPLS]	= "PF_MPLS",
200  	[PF_CAN]	= "PF_CAN",
201  	[PF_TIPC]	= "PF_TIPC",
202  	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
203  	[PF_IUCV]	= "PF_IUCV",
204  	[PF_RXRPC]	= "PF_RXRPC",
205  	[PF_ISDN]	= "PF_ISDN",
206  	[PF_PHONET]	= "PF_PHONET",
207  	[PF_IEEE802154]	= "PF_IEEE802154",
208  	[PF_CAIF]	= "PF_CAIF",
209  	[PF_ALG]	= "PF_ALG",
210  	[PF_NFC]	= "PF_NFC",
211  	[PF_VSOCK]	= "PF_VSOCK",
212  	[PF_KCM]	= "PF_KCM",
213  	[PF_QIPCRTR]	= "PF_QIPCRTR",
214  	[PF_SMC]	= "PF_SMC",
215  	[PF_XDP]	= "PF_XDP",
216  	[PF_MCTP]	= "PF_MCTP",
217  };
218  
219  /*
220   *	The protocol list. Each protocol is registered in here.
221   */
222  
223  static DEFINE_SPINLOCK(net_family_lock);
224  static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225  
226  /*
227   * Support routines.
228   * Move socket addresses back and forth across the kernel/user
229   * divide and look after the messy bits.
230   */
231  
232  /**
233   *	move_addr_to_kernel	-	copy a socket address into kernel space
234   *	@uaddr: Address in user space
235   *	@kaddr: Address in kernel space
236   *	@ulen: Length in user space
237   *
238   *	The address is copied into kernel space. If the provided address is
239   *	too long an error code of -EINVAL is returned. If the copy gives
240   *	invalid addresses -EFAULT is returned. On a success 0 is returned.
241   */
242  
243  int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244  {
245  	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246  		return -EINVAL;
247  	if (ulen == 0)
248  		return 0;
249  	if (copy_from_user(kaddr, uaddr, ulen))
250  		return -EFAULT;
251  	return audit_sockaddr(ulen, kaddr);
252  }
253  
254  /**
255   *	move_addr_to_user	-	copy an address to user space
256   *	@kaddr: kernel space address
257   *	@klen: length of address in kernel
258   *	@uaddr: user space address
259   *	@ulen: pointer to user length field
260   *
261   *	The value pointed to by ulen on entry is the buffer length available.
262   *	This is overwritten with the buffer space used. -EINVAL is returned
263   *	if an overlong buffer is specified or a negative buffer size. -EFAULT
264   *	is returned if either the buffer or the length field are not
265   *	accessible.
266   *	After copying the data up to the limit the user specifies, the true
267   *	length of the data is written over the length limit the user
268   *	specified. Zero is returned for a success.
269   */
270  
271  static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272  			     void __user *uaddr, int __user *ulen)
273  {
274  	int err;
275  	int len;
276  
277  	BUG_ON(klen > sizeof(struct sockaddr_storage));
278  	err = get_user(len, ulen);
279  	if (err)
280  		return err;
281  	if (len > klen)
282  		len = klen;
283  	if (len < 0)
284  		return -EINVAL;
285  	if (len) {
286  		if (audit_sockaddr(klen, kaddr))
287  			return -ENOMEM;
288  		if (copy_to_user(uaddr, kaddr, len))
289  			return -EFAULT;
290  	}
291  	/*
292  	 *      "fromlen shall refer to the value before truncation.."
293  	 *                      1003.1g
294  	 */
295  	return __put_user(klen, ulen);
296  }
297  
298  static struct kmem_cache *sock_inode_cachep __ro_after_init;
299  
300  static struct inode *sock_alloc_inode(struct super_block *sb)
301  {
302  	struct socket_alloc *ei;
303  
304  	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305  	if (!ei)
306  		return NULL;
307  	init_waitqueue_head(&ei->socket.wq.wait);
308  	ei->socket.wq.fasync_list = NULL;
309  	ei->socket.wq.flags = 0;
310  
311  	ei->socket.state = SS_UNCONNECTED;
312  	ei->socket.flags = 0;
313  	ei->socket.ops = NULL;
314  	ei->socket.sk = NULL;
315  	ei->socket.file = NULL;
316  
317  	return &ei->vfs_inode;
318  }
319  
320  static void sock_free_inode(struct inode *inode)
321  {
322  	struct socket_alloc *ei;
323  
324  	ei = container_of(inode, struct socket_alloc, vfs_inode);
325  	kmem_cache_free(sock_inode_cachep, ei);
326  }
327  
328  static void init_once(void *foo)
329  {
330  	struct socket_alloc *ei = (struct socket_alloc *)foo;
331  
332  	inode_init_once(&ei->vfs_inode);
333  }
334  
335  static void init_inodecache(void)
336  {
337  	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338  					      sizeof(struct socket_alloc),
339  					      0,
340  					      (SLAB_HWCACHE_ALIGN |
341  					       SLAB_RECLAIM_ACCOUNT |
342  					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343  					      init_once);
344  	BUG_ON(sock_inode_cachep == NULL);
345  }
346  
347  static const struct super_operations sockfs_ops = {
348  	.alloc_inode	= sock_alloc_inode,
349  	.free_inode	= sock_free_inode,
350  	.statfs		= simple_statfs,
351  };
352  
353  /*
354   * sockfs_dname() is called from d_path().
355   */
356  static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357  {
358  	return dynamic_dname(buffer, buflen, "socket:[%lu]",
359  				d_inode(dentry)->i_ino);
360  }
361  
362  static const struct dentry_operations sockfs_dentry_operations = {
363  	.d_dname  = sockfs_dname,
364  };
365  
366  static int sockfs_xattr_get(const struct xattr_handler *handler,
367  			    struct dentry *dentry, struct inode *inode,
368  			    const char *suffix, void *value, size_t size)
369  {
370  	if (value) {
371  		if (dentry->d_name.len + 1 > size)
372  			return -ERANGE;
373  		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374  	}
375  	return dentry->d_name.len + 1;
376  }
377  
378  #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379  #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380  #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381  
382  static const struct xattr_handler sockfs_xattr_handler = {
383  	.name = XATTR_NAME_SOCKPROTONAME,
384  	.get = sockfs_xattr_get,
385  };
386  
387  static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388  				     struct user_namespace *mnt_userns,
389  				     struct dentry *dentry, struct inode *inode,
390  				     const char *suffix, const void *value,
391  				     size_t size, int flags)
392  {
393  	/* Handled by LSM. */
394  	return -EAGAIN;
395  }
396  
397  static const struct xattr_handler sockfs_security_xattr_handler = {
398  	.prefix = XATTR_SECURITY_PREFIX,
399  	.set = sockfs_security_xattr_set,
400  };
401  
402  static const struct xattr_handler *sockfs_xattr_handlers[] = {
403  	&sockfs_xattr_handler,
404  	&sockfs_security_xattr_handler,
405  	NULL
406  };
407  
408  static int sockfs_init_fs_context(struct fs_context *fc)
409  {
410  	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411  	if (!ctx)
412  		return -ENOMEM;
413  	ctx->ops = &sockfs_ops;
414  	ctx->dops = &sockfs_dentry_operations;
415  	ctx->xattr = sockfs_xattr_handlers;
416  	return 0;
417  }
418  
419  static struct vfsmount *sock_mnt __read_mostly;
420  
421  static struct file_system_type sock_fs_type = {
422  	.name =		"sockfs",
423  	.init_fs_context = sockfs_init_fs_context,
424  	.kill_sb =	kill_anon_super,
425  };
426  
427  /*
428   *	Obtains the first available file descriptor and sets it up for use.
429   *
430   *	These functions create file structures and maps them to fd space
431   *	of the current process. On success it returns file descriptor
432   *	and file struct implicitly stored in sock->file.
433   *	Note that another thread may close file descriptor before we return
434   *	from this function. We use the fact that now we do not refer
435   *	to socket after mapping. If one day we will need it, this
436   *	function will increment ref. count on file by 1.
437   *
438   *	In any case returned fd MAY BE not valid!
439   *	This race condition is unavoidable
440   *	with shared fd spaces, we cannot solve it inside kernel,
441   *	but we take care of internal coherence yet.
442   */
443  
444  /**
445   *	sock_alloc_file - Bind a &socket to a &file
446   *	@sock: socket
447   *	@flags: file status flags
448   *	@dname: protocol name
449   *
450   *	Returns the &file bound with @sock, implicitly storing it
451   *	in sock->file. If dname is %NULL, sets to "".
452   *	On failure the return is a ERR pointer (see linux/err.h).
453   *	This function uses GFP_KERNEL internally.
454   */
455  
456  struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457  {
458  	struct file *file;
459  
460  	if (!dname)
461  		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462  
463  	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464  				O_RDWR | (flags & O_NONBLOCK),
465  				&socket_file_ops);
466  	if (IS_ERR(file)) {
467  		sock_release(sock);
468  		return file;
469  	}
470  
471  	sock->file = file;
472  	file->private_data = sock;
473  	stream_open(SOCK_INODE(sock), file);
474  	return file;
475  }
476  EXPORT_SYMBOL(sock_alloc_file);
477  
478  static int sock_map_fd(struct socket *sock, int flags)
479  {
480  	struct file *newfile;
481  	int fd = get_unused_fd_flags(flags);
482  	if (unlikely(fd < 0)) {
483  		sock_release(sock);
484  		return fd;
485  	}
486  
487  	newfile = sock_alloc_file(sock, flags, NULL);
488  	if (!IS_ERR(newfile)) {
489  		fd_install(fd, newfile);
490  		return fd;
491  	}
492  
493  	put_unused_fd(fd);
494  	return PTR_ERR(newfile);
495  }
496  
497  /**
498   *	sock_from_file - Return the &socket bounded to @file.
499   *	@file: file
500   *
501   *	On failure returns %NULL.
502   */
503  
504  struct socket *sock_from_file(struct file *file)
505  {
506  	if (file->f_op == &socket_file_ops)
507  		return file->private_data;	/* set in sock_alloc_file */
508  
509  	return NULL;
510  }
511  EXPORT_SYMBOL(sock_from_file);
512  
513  /**
514   *	sockfd_lookup - Go from a file number to its socket slot
515   *	@fd: file handle
516   *	@err: pointer to an error code return
517   *
518   *	The file handle passed in is locked and the socket it is bound
519   *	to is returned. If an error occurs the err pointer is overwritten
520   *	with a negative errno code and NULL is returned. The function checks
521   *	for both invalid handles and passing a handle which is not a socket.
522   *
523   *	On a success the socket object pointer is returned.
524   */
525  
526  struct socket *sockfd_lookup(int fd, int *err)
527  {
528  	struct file *file;
529  	struct socket *sock;
530  
531  	file = fget(fd);
532  	if (!file) {
533  		*err = -EBADF;
534  		return NULL;
535  	}
536  
537  	sock = sock_from_file(file);
538  	if (!sock) {
539  		*err = -ENOTSOCK;
540  		fput(file);
541  	}
542  	return sock;
543  }
544  EXPORT_SYMBOL(sockfd_lookup);
545  
546  static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547  {
548  	struct fd f = fdget(fd);
549  	struct socket *sock;
550  
551  	*err = -EBADF;
552  	if (f.file) {
553  		sock = sock_from_file(f.file);
554  		if (likely(sock)) {
555  			*fput_needed = f.flags & FDPUT_FPUT;
556  			return sock;
557  		}
558  		*err = -ENOTSOCK;
559  		fdput(f);
560  	}
561  	return NULL;
562  }
563  
564  static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565  				size_t size)
566  {
567  	ssize_t len;
568  	ssize_t used = 0;
569  
570  	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571  	if (len < 0)
572  		return len;
573  	used += len;
574  	if (buffer) {
575  		if (size < used)
576  			return -ERANGE;
577  		buffer += len;
578  	}
579  
580  	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581  	used += len;
582  	if (buffer) {
583  		if (size < used)
584  			return -ERANGE;
585  		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586  		buffer += len;
587  	}
588  
589  	return used;
590  }
591  
592  static int sockfs_setattr(struct user_namespace *mnt_userns,
593  			  struct dentry *dentry, struct iattr *iattr)
594  {
595  	int err = simple_setattr(&init_user_ns, dentry, iattr);
596  
597  	if (!err && (iattr->ia_valid & ATTR_UID)) {
598  		struct socket *sock = SOCKET_I(d_inode(dentry));
599  
600  		if (sock->sk)
601  			sock->sk->sk_uid = iattr->ia_uid;
602  		else
603  			err = -ENOENT;
604  	}
605  
606  	return err;
607  }
608  
609  static const struct inode_operations sockfs_inode_ops = {
610  	.listxattr = sockfs_listxattr,
611  	.setattr = sockfs_setattr,
612  };
613  
614  /**
615   *	sock_alloc - allocate a socket
616   *
617   *	Allocate a new inode and socket object. The two are bound together
618   *	and initialised. The socket is then returned. If we are out of inodes
619   *	NULL is returned. This functions uses GFP_KERNEL internally.
620   */
621  
622  struct socket *sock_alloc(void)
623  {
624  	struct inode *inode;
625  	struct socket *sock;
626  
627  	inode = new_inode_pseudo(sock_mnt->mnt_sb);
628  	if (!inode)
629  		return NULL;
630  
631  	sock = SOCKET_I(inode);
632  
633  	inode->i_ino = get_next_ino();
634  	inode->i_mode = S_IFSOCK | S_IRWXUGO;
635  	inode->i_uid = current_fsuid();
636  	inode->i_gid = current_fsgid();
637  	inode->i_op = &sockfs_inode_ops;
638  
639  	return sock;
640  }
641  EXPORT_SYMBOL(sock_alloc);
642  
643  static void __sock_release(struct socket *sock, struct inode *inode)
644  {
645  	if (sock->ops) {
646  		struct module *owner = sock->ops->owner;
647  
648  		if (inode)
649  			inode_lock(inode);
650  		sock->ops->release(sock);
651  		sock->sk = NULL;
652  		if (inode)
653  			inode_unlock(inode);
654  		sock->ops = NULL;
655  		module_put(owner);
656  	}
657  
658  	if (sock->wq.fasync_list)
659  		pr_err("%s: fasync list not empty!\n", __func__);
660  
661  	if (!sock->file) {
662  		iput(SOCK_INODE(sock));
663  		return;
664  	}
665  	sock->file = NULL;
666  }
667  
668  /**
669   *	sock_release - close a socket
670   *	@sock: socket to close
671   *
672   *	The socket is released from the protocol stack if it has a release
673   *	callback, and the inode is then released if the socket is bound to
674   *	an inode not a file.
675   */
676  void sock_release(struct socket *sock)
677  {
678  	__sock_release(sock, NULL);
679  }
680  EXPORT_SYMBOL(sock_release);
681  
682  void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683  {
684  	u8 flags = *tx_flags;
685  
686  	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687  		flags |= SKBTX_HW_TSTAMP;
688  
689  		/* PTP hardware clocks can provide a free running cycle counter
690  		 * as a time base for virtual clocks. Tell driver to use the
691  		 * free running cycle counter for timestamp if socket is bound
692  		 * to virtual clock.
693  		 */
694  		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695  			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696  	}
697  
698  	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699  		flags |= SKBTX_SW_TSTAMP;
700  
701  	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702  		flags |= SKBTX_SCHED_TSTAMP;
703  
704  	*tx_flags = flags;
705  }
706  EXPORT_SYMBOL(__sock_tx_timestamp);
707  
708  INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709  					   size_t));
710  INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711  					    size_t));
712  static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713  {
714  	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715  				     inet_sendmsg, sock, msg,
716  				     msg_data_left(msg));
717  	BUG_ON(ret == -EIOCBQUEUED);
718  	return ret;
719  }
720  
721  /**
722   *	sock_sendmsg - send a message through @sock
723   *	@sock: socket
724   *	@msg: message to send
725   *
726   *	Sends @msg through @sock, passing through LSM.
727   *	Returns the number of bytes sent, or an error code.
728   */
729  int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730  {
731  	int err = security_socket_sendmsg(sock, msg,
732  					  msg_data_left(msg));
733  
734  	return err ?: sock_sendmsg_nosec(sock, msg);
735  }
736  EXPORT_SYMBOL(sock_sendmsg);
737  
738  /**
739   *	kernel_sendmsg - send a message through @sock (kernel-space)
740   *	@sock: socket
741   *	@msg: message header
742   *	@vec: kernel vec
743   *	@num: vec array length
744   *	@size: total message data size
745   *
746   *	Builds the message data with @vec and sends it through @sock.
747   *	Returns the number of bytes sent, or an error code.
748   */
749  
750  int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751  		   struct kvec *vec, size_t num, size_t size)
752  {
753  	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
754  	return sock_sendmsg(sock, msg);
755  }
756  EXPORT_SYMBOL(kernel_sendmsg);
757  
758  /**
759   *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
760   *	@sk: sock
761   *	@msg: message header
762   *	@vec: output s/g array
763   *	@num: output s/g array length
764   *	@size: total message data size
765   *
766   *	Builds the message data with @vec and sends it through @sock.
767   *	Returns the number of bytes sent, or an error code.
768   *	Caller must hold @sk.
769   */
770  
771  int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772  			  struct kvec *vec, size_t num, size_t size)
773  {
774  	struct socket *sock = sk->sk_socket;
775  
776  	if (!sock->ops->sendmsg_locked)
777  		return sock_no_sendmsg_locked(sk, msg, size);
778  
779  	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
780  
781  	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782  }
783  EXPORT_SYMBOL(kernel_sendmsg_locked);
784  
785  static bool skb_is_err_queue(const struct sk_buff *skb)
786  {
787  	/* pkt_type of skbs enqueued on the error queue are set to
788  	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789  	 * in recvmsg, since skbs received on a local socket will never
790  	 * have a pkt_type of PACKET_OUTGOING.
791  	 */
792  	return skb->pkt_type == PACKET_OUTGOING;
793  }
794  
795  /* On transmit, software and hardware timestamps are returned independently.
796   * As the two skb clones share the hardware timestamp, which may be updated
797   * before the software timestamp is received, a hardware TX timestamp may be
798   * returned only if there is no software TX timestamp. Ignore false software
799   * timestamps, which may be made in the __sock_recv_timestamp() call when the
800   * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801   * hardware timestamp.
802   */
803  static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804  {
805  	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806  }
807  
808  static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
809  {
810  	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811  	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812  	struct net_device *orig_dev;
813  	ktime_t hwtstamp;
814  
815  	rcu_read_lock();
816  	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
817  	if (orig_dev) {
818  		*if_index = orig_dev->ifindex;
819  		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
820  	} else {
821  		hwtstamp = shhwtstamps->hwtstamp;
822  	}
823  	rcu_read_unlock();
824  
825  	return hwtstamp;
826  }
827  
828  static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
829  			   int if_index)
830  {
831  	struct scm_ts_pktinfo ts_pktinfo;
832  	struct net_device *orig_dev;
833  
834  	if (!skb_mac_header_was_set(skb))
835  		return;
836  
837  	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
838  
839  	if (!if_index) {
840  		rcu_read_lock();
841  		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
842  		if (orig_dev)
843  			if_index = orig_dev->ifindex;
844  		rcu_read_unlock();
845  	}
846  	ts_pktinfo.if_index = if_index;
847  
848  	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849  	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850  		 sizeof(ts_pktinfo), &ts_pktinfo);
851  }
852  
853  /*
854   * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
855   */
856  void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
857  	struct sk_buff *skb)
858  {
859  	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860  	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861  	struct scm_timestamping_internal tss;
862  
863  	int empty = 1, false_tstamp = 0;
864  	struct skb_shared_hwtstamps *shhwtstamps =
865  		skb_hwtstamps(skb);
866  	int if_index;
867  	ktime_t hwtstamp;
868  
869  	/* Race occurred between timestamp enabling and packet
870  	   receiving.  Fill in the current time for now. */
871  	if (need_software_tstamp && skb->tstamp == 0) {
872  		__net_timestamp(skb);
873  		false_tstamp = 1;
874  	}
875  
876  	if (need_software_tstamp) {
877  		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
878  			if (new_tstamp) {
879  				struct __kernel_sock_timeval tv;
880  
881  				skb_get_new_timestamp(skb, &tv);
882  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
883  					 sizeof(tv), &tv);
884  			} else {
885  				struct __kernel_old_timeval tv;
886  
887  				skb_get_timestamp(skb, &tv);
888  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
889  					 sizeof(tv), &tv);
890  			}
891  		} else {
892  			if (new_tstamp) {
893  				struct __kernel_timespec ts;
894  
895  				skb_get_new_timestampns(skb, &ts);
896  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
897  					 sizeof(ts), &ts);
898  			} else {
899  				struct __kernel_old_timespec ts;
900  
901  				skb_get_timestampns(skb, &ts);
902  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
903  					 sizeof(ts), &ts);
904  			}
905  		}
906  	}
907  
908  	memset(&tss, 0, sizeof(tss));
909  	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910  	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
911  		empty = 0;
912  	if (shhwtstamps &&
913  	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914  	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
915  		if_index = 0;
916  		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917  			hwtstamp = get_timestamp(sk, skb, &if_index);
918  		else
919  			hwtstamp = shhwtstamps->hwtstamp;
920  
921  		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922  			hwtstamp = ptp_convert_timestamp(&hwtstamp,
923  							 sk->sk_bind_phc);
924  
925  		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926  			empty = 0;
927  
928  			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929  			    !skb_is_err_queue(skb))
930  				put_ts_pktinfo(msg, skb, if_index);
931  		}
932  	}
933  	if (!empty) {
934  		if (sock_flag(sk, SOCK_TSTAMP_NEW))
935  			put_cmsg_scm_timestamping64(msg, &tss);
936  		else
937  			put_cmsg_scm_timestamping(msg, &tss);
938  
939  		if (skb_is_err_queue(skb) && skb->len &&
940  		    SKB_EXT_ERR(skb)->opt_stats)
941  			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942  				 skb->len, skb->data);
943  	}
944  }
945  EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946  
947  void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
948  	struct sk_buff *skb)
949  {
950  	int ack;
951  
952  	if (!sock_flag(sk, SOCK_WIFI_STATUS))
953  		return;
954  	if (!skb->wifi_acked_valid)
955  		return;
956  
957  	ack = skb->wifi_acked;
958  
959  	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
960  }
961  EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
962  
963  static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
964  				   struct sk_buff *skb)
965  {
966  	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967  		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968  			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
969  }
970  
971  static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
972  			   struct sk_buff *skb)
973  {
974  	if (sock_flag(sk, SOCK_RCVMARK) && skb)
975  		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
976  			 &skb->mark);
977  }
978  
979  void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
980  		       struct sk_buff *skb)
981  {
982  	sock_recv_timestamp(msg, sk, skb);
983  	sock_recv_drops(msg, sk, skb);
984  	sock_recv_mark(msg, sk, skb);
985  }
986  EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
987  
988  INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
989  					   size_t, int));
990  INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
991  					    size_t, int));
992  static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
993  				     int flags)
994  {
995  	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
996  				  inet_recvmsg, sock, msg, msg_data_left(msg),
997  				  flags);
998  }
999  
1000  /**
1001   *	sock_recvmsg - receive a message from @sock
1002   *	@sock: socket
1003   *	@msg: message to receive
1004   *	@flags: message flags
1005   *
1006   *	Receives @msg from @sock, passing through LSM. Returns the total number
1007   *	of bytes received, or an error.
1008   */
1009  int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1010  {
1011  	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1012  
1013  	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1014  }
1015  EXPORT_SYMBOL(sock_recvmsg);
1016  
1017  /**
1018   *	kernel_recvmsg - Receive a message from a socket (kernel space)
1019   *	@sock: The socket to receive the message from
1020   *	@msg: Received message
1021   *	@vec: Input s/g array for message data
1022   *	@num: Size of input s/g array
1023   *	@size: Number of bytes to read
1024   *	@flags: Message flags (MSG_DONTWAIT, etc...)
1025   *
1026   *	On return the msg structure contains the scatter/gather array passed in the
1027   *	vec argument. The array is modified so that it consists of the unfilled
1028   *	portion of the original array.
1029   *
1030   *	The returned value is the total number of bytes received, or an error.
1031   */
1032  
1033  int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1034  		   struct kvec *vec, size_t num, size_t size, int flags)
1035  {
1036  	msg->msg_control_is_user = false;
1037  	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1038  	return sock_recvmsg(sock, msg, flags);
1039  }
1040  EXPORT_SYMBOL(kernel_recvmsg);
1041  
1042  static ssize_t sock_sendpage(struct file *file, struct page *page,
1043  			     int offset, size_t size, loff_t *ppos, int more)
1044  {
1045  	struct socket *sock;
1046  	int flags;
1047  
1048  	sock = file->private_data;
1049  
1050  	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1051  	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1052  	flags |= more;
1053  
1054  	return kernel_sendpage(sock, page, offset, size, flags);
1055  }
1056  
1057  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1058  				struct pipe_inode_info *pipe, size_t len,
1059  				unsigned int flags)
1060  {
1061  	struct socket *sock = file->private_data;
1062  
1063  	if (unlikely(!sock->ops->splice_read))
1064  		return generic_file_splice_read(file, ppos, pipe, len, flags);
1065  
1066  	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1067  }
1068  
1069  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1070  {
1071  	struct file *file = iocb->ki_filp;
1072  	struct socket *sock = file->private_data;
1073  	struct msghdr msg = {.msg_iter = *to,
1074  			     .msg_iocb = iocb};
1075  	ssize_t res;
1076  
1077  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1078  		msg.msg_flags = MSG_DONTWAIT;
1079  
1080  	if (iocb->ki_pos != 0)
1081  		return -ESPIPE;
1082  
1083  	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1084  		return 0;
1085  
1086  	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1087  	*to = msg.msg_iter;
1088  	return res;
1089  }
1090  
1091  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1092  {
1093  	struct file *file = iocb->ki_filp;
1094  	struct socket *sock = file->private_data;
1095  	struct msghdr msg = {.msg_iter = *from,
1096  			     .msg_iocb = iocb};
1097  	ssize_t res;
1098  
1099  	if (iocb->ki_pos != 0)
1100  		return -ESPIPE;
1101  
1102  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103  		msg.msg_flags = MSG_DONTWAIT;
1104  
1105  	if (sock->type == SOCK_SEQPACKET)
1106  		msg.msg_flags |= MSG_EOR;
1107  
1108  	res = sock_sendmsg(sock, &msg);
1109  	*from = msg.msg_iter;
1110  	return res;
1111  }
1112  
1113  /*
1114   * Atomic setting of ioctl hooks to avoid race
1115   * with module unload.
1116   */
1117  
1118  static DEFINE_MUTEX(br_ioctl_mutex);
1119  static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1120  			    unsigned int cmd, struct ifreq *ifr,
1121  			    void __user *uarg);
1122  
1123  void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1124  			     unsigned int cmd, struct ifreq *ifr,
1125  			     void __user *uarg))
1126  {
1127  	mutex_lock(&br_ioctl_mutex);
1128  	br_ioctl_hook = hook;
1129  	mutex_unlock(&br_ioctl_mutex);
1130  }
1131  EXPORT_SYMBOL(brioctl_set);
1132  
1133  int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1134  		  struct ifreq *ifr, void __user *uarg)
1135  {
1136  	int err = -ENOPKG;
1137  
1138  	if (!br_ioctl_hook)
1139  		request_module("bridge");
1140  
1141  	mutex_lock(&br_ioctl_mutex);
1142  	if (br_ioctl_hook)
1143  		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1144  	mutex_unlock(&br_ioctl_mutex);
1145  
1146  	return err;
1147  }
1148  
1149  static DEFINE_MUTEX(vlan_ioctl_mutex);
1150  static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1151  
1152  void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1153  {
1154  	mutex_lock(&vlan_ioctl_mutex);
1155  	vlan_ioctl_hook = hook;
1156  	mutex_unlock(&vlan_ioctl_mutex);
1157  }
1158  EXPORT_SYMBOL(vlan_ioctl_set);
1159  
1160  static long sock_do_ioctl(struct net *net, struct socket *sock,
1161  			  unsigned int cmd, unsigned long arg)
1162  {
1163  	struct ifreq ifr;
1164  	bool need_copyout;
1165  	int err;
1166  	void __user *argp = (void __user *)arg;
1167  	void __user *data;
1168  
1169  	err = sock->ops->ioctl(sock, cmd, arg);
1170  
1171  	/*
1172  	 * If this ioctl is unknown try to hand it down
1173  	 * to the NIC driver.
1174  	 */
1175  	if (err != -ENOIOCTLCMD)
1176  		return err;
1177  
1178  	if (!is_socket_ioctl_cmd(cmd))
1179  		return -ENOTTY;
1180  
1181  	if (get_user_ifreq(&ifr, &data, argp))
1182  		return -EFAULT;
1183  	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1184  	if (!err && need_copyout)
1185  		if (put_user_ifreq(&ifr, argp))
1186  			return -EFAULT;
1187  
1188  	return err;
1189  }
1190  
1191  /*
1192   *	With an ioctl, arg may well be a user mode pointer, but we don't know
1193   *	what to do with it - that's up to the protocol still.
1194   */
1195  
1196  static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1197  {
1198  	struct socket *sock;
1199  	struct sock *sk;
1200  	void __user *argp = (void __user *)arg;
1201  	int pid, err;
1202  	struct net *net;
1203  
1204  	sock = file->private_data;
1205  	sk = sock->sk;
1206  	net = sock_net(sk);
1207  	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1208  		struct ifreq ifr;
1209  		void __user *data;
1210  		bool need_copyout;
1211  		if (get_user_ifreq(&ifr, &data, argp))
1212  			return -EFAULT;
1213  		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214  		if (!err && need_copyout)
1215  			if (put_user_ifreq(&ifr, argp))
1216  				return -EFAULT;
1217  	} else
1218  #ifdef CONFIG_WEXT_CORE
1219  	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1220  		err = wext_handle_ioctl(net, cmd, argp);
1221  	} else
1222  #endif
1223  		switch (cmd) {
1224  		case FIOSETOWN:
1225  		case SIOCSPGRP:
1226  			err = -EFAULT;
1227  			if (get_user(pid, (int __user *)argp))
1228  				break;
1229  			err = f_setown(sock->file, pid, 1);
1230  			break;
1231  		case FIOGETOWN:
1232  		case SIOCGPGRP:
1233  			err = put_user(f_getown(sock->file),
1234  				       (int __user *)argp);
1235  			break;
1236  		case SIOCGIFBR:
1237  		case SIOCSIFBR:
1238  		case SIOCBRADDBR:
1239  		case SIOCBRDELBR:
1240  			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1241  			break;
1242  		case SIOCGIFVLAN:
1243  		case SIOCSIFVLAN:
1244  			err = -ENOPKG;
1245  			if (!vlan_ioctl_hook)
1246  				request_module("8021q");
1247  
1248  			mutex_lock(&vlan_ioctl_mutex);
1249  			if (vlan_ioctl_hook)
1250  				err = vlan_ioctl_hook(net, argp);
1251  			mutex_unlock(&vlan_ioctl_mutex);
1252  			break;
1253  		case SIOCGSKNS:
1254  			err = -EPERM;
1255  			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1256  				break;
1257  
1258  			err = open_related_ns(&net->ns, get_net_ns);
1259  			break;
1260  		case SIOCGSTAMP_OLD:
1261  		case SIOCGSTAMPNS_OLD:
1262  			if (!sock->ops->gettstamp) {
1263  				err = -ENOIOCTLCMD;
1264  				break;
1265  			}
1266  			err = sock->ops->gettstamp(sock, argp,
1267  						   cmd == SIOCGSTAMP_OLD,
1268  						   !IS_ENABLED(CONFIG_64BIT));
1269  			break;
1270  		case SIOCGSTAMP_NEW:
1271  		case SIOCGSTAMPNS_NEW:
1272  			if (!sock->ops->gettstamp) {
1273  				err = -ENOIOCTLCMD;
1274  				break;
1275  			}
1276  			err = sock->ops->gettstamp(sock, argp,
1277  						   cmd == SIOCGSTAMP_NEW,
1278  						   false);
1279  			break;
1280  
1281  		case SIOCGIFCONF:
1282  			err = dev_ifconf(net, argp);
1283  			break;
1284  
1285  		default:
1286  			err = sock_do_ioctl(net, sock, cmd, arg);
1287  			break;
1288  		}
1289  	return err;
1290  }
1291  
1292  /**
1293   *	sock_create_lite - creates a socket
1294   *	@family: protocol family (AF_INET, ...)
1295   *	@type: communication type (SOCK_STREAM, ...)
1296   *	@protocol: protocol (0, ...)
1297   *	@res: new socket
1298   *
1299   *	Creates a new socket and assigns it to @res, passing through LSM.
1300   *	The new socket initialization is not complete, see kernel_accept().
1301   *	Returns 0 or an error. On failure @res is set to %NULL.
1302   *	This function internally uses GFP_KERNEL.
1303   */
1304  
1305  int sock_create_lite(int family, int type, int protocol, struct socket **res)
1306  {
1307  	int err;
1308  	struct socket *sock = NULL;
1309  
1310  	err = security_socket_create(family, type, protocol, 1);
1311  	if (err)
1312  		goto out;
1313  
1314  	sock = sock_alloc();
1315  	if (!sock) {
1316  		err = -ENOMEM;
1317  		goto out;
1318  	}
1319  
1320  	sock->type = type;
1321  	err = security_socket_post_create(sock, family, type, protocol, 1);
1322  	if (err)
1323  		goto out_release;
1324  
1325  out:
1326  	*res = sock;
1327  	return err;
1328  out_release:
1329  	sock_release(sock);
1330  	sock = NULL;
1331  	goto out;
1332  }
1333  EXPORT_SYMBOL(sock_create_lite);
1334  
1335  /* No kernel lock held - perfect */
1336  static __poll_t sock_poll(struct file *file, poll_table *wait)
1337  {
1338  	struct socket *sock = file->private_data;
1339  	__poll_t events = poll_requested_events(wait), flag = 0;
1340  
1341  	if (!sock->ops->poll)
1342  		return 0;
1343  
1344  	if (sk_can_busy_loop(sock->sk)) {
1345  		/* poll once if requested by the syscall */
1346  		if (events & POLL_BUSY_LOOP)
1347  			sk_busy_loop(sock->sk, 1);
1348  
1349  		/* if this socket can poll_ll, tell the system call */
1350  		flag = POLL_BUSY_LOOP;
1351  	}
1352  
1353  	return sock->ops->poll(file, sock, wait) | flag;
1354  }
1355  
1356  static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1357  {
1358  	struct socket *sock = file->private_data;
1359  
1360  	return sock->ops->mmap(file, sock, vma);
1361  }
1362  
1363  static int sock_close(struct inode *inode, struct file *filp)
1364  {
1365  	__sock_release(SOCKET_I(inode), inode);
1366  	return 0;
1367  }
1368  
1369  /*
1370   *	Update the socket async list
1371   *
1372   *	Fasync_list locking strategy.
1373   *
1374   *	1. fasync_list is modified only under process context socket lock
1375   *	   i.e. under semaphore.
1376   *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1377   *	   or under socket lock
1378   */
1379  
1380  static int sock_fasync(int fd, struct file *filp, int on)
1381  {
1382  	struct socket *sock = filp->private_data;
1383  	struct sock *sk = sock->sk;
1384  	struct socket_wq *wq = &sock->wq;
1385  
1386  	if (sk == NULL)
1387  		return -EINVAL;
1388  
1389  	lock_sock(sk);
1390  	fasync_helper(fd, filp, on, &wq->fasync_list);
1391  
1392  	if (!wq->fasync_list)
1393  		sock_reset_flag(sk, SOCK_FASYNC);
1394  	else
1395  		sock_set_flag(sk, SOCK_FASYNC);
1396  
1397  	release_sock(sk);
1398  	return 0;
1399  }
1400  
1401  /* This function may be called only under rcu_lock */
1402  
1403  int sock_wake_async(struct socket_wq *wq, int how, int band)
1404  {
1405  	if (!wq || !wq->fasync_list)
1406  		return -1;
1407  
1408  	switch (how) {
1409  	case SOCK_WAKE_WAITD:
1410  		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1411  			break;
1412  		goto call_kill;
1413  	case SOCK_WAKE_SPACE:
1414  		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1415  			break;
1416  		fallthrough;
1417  	case SOCK_WAKE_IO:
1418  call_kill:
1419  		kill_fasync(&wq->fasync_list, SIGIO, band);
1420  		break;
1421  	case SOCK_WAKE_URG:
1422  		kill_fasync(&wq->fasync_list, SIGURG, band);
1423  	}
1424  
1425  	return 0;
1426  }
1427  EXPORT_SYMBOL(sock_wake_async);
1428  
1429  /**
1430   *	__sock_create - creates a socket
1431   *	@net: net namespace
1432   *	@family: protocol family (AF_INET, ...)
1433   *	@type: communication type (SOCK_STREAM, ...)
1434   *	@protocol: protocol (0, ...)
1435   *	@res: new socket
1436   *	@kern: boolean for kernel space sockets
1437   *
1438   *	Creates a new socket and assigns it to @res, passing through LSM.
1439   *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1440   *	be set to true if the socket resides in kernel space.
1441   *	This function internally uses GFP_KERNEL.
1442   */
1443  
1444  int __sock_create(struct net *net, int family, int type, int protocol,
1445  			 struct socket **res, int kern)
1446  {
1447  	int err;
1448  	struct socket *sock;
1449  	const struct net_proto_family *pf;
1450  
1451  	/*
1452  	 *      Check protocol is in range
1453  	 */
1454  	if (family < 0 || family >= NPROTO)
1455  		return -EAFNOSUPPORT;
1456  	if (type < 0 || type >= SOCK_MAX)
1457  		return -EINVAL;
1458  
1459  	/* Compatibility.
1460  
1461  	   This uglymoron is moved from INET layer to here to avoid
1462  	   deadlock in module load.
1463  	 */
1464  	if (family == PF_INET && type == SOCK_PACKET) {
1465  		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1466  			     current->comm);
1467  		family = PF_PACKET;
1468  	}
1469  
1470  	err = security_socket_create(family, type, protocol, kern);
1471  	if (err)
1472  		return err;
1473  
1474  	/*
1475  	 *	Allocate the socket and allow the family to set things up. if
1476  	 *	the protocol is 0, the family is instructed to select an appropriate
1477  	 *	default.
1478  	 */
1479  	sock = sock_alloc();
1480  	if (!sock) {
1481  		net_warn_ratelimited("socket: no more sockets\n");
1482  		return -ENFILE;	/* Not exactly a match, but its the
1483  				   closest posix thing */
1484  	}
1485  
1486  	sock->type = type;
1487  
1488  #ifdef CONFIG_MODULES
1489  	/* Attempt to load a protocol module if the find failed.
1490  	 *
1491  	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1492  	 * requested real, full-featured networking support upon configuration.
1493  	 * Otherwise module support will break!
1494  	 */
1495  	if (rcu_access_pointer(net_families[family]) == NULL)
1496  		request_module("net-pf-%d", family);
1497  #endif
1498  
1499  	rcu_read_lock();
1500  	pf = rcu_dereference(net_families[family]);
1501  	err = -EAFNOSUPPORT;
1502  	if (!pf)
1503  		goto out_release;
1504  
1505  	/*
1506  	 * We will call the ->create function, that possibly is in a loadable
1507  	 * module, so we have to bump that loadable module refcnt first.
1508  	 */
1509  	if (!try_module_get(pf->owner))
1510  		goto out_release;
1511  
1512  	/* Now protected by module ref count */
1513  	rcu_read_unlock();
1514  
1515  	err = pf->create(net, sock, protocol, kern);
1516  	if (err < 0)
1517  		goto out_module_put;
1518  
1519  	/*
1520  	 * Now to bump the refcnt of the [loadable] module that owns this
1521  	 * socket at sock_release time we decrement its refcnt.
1522  	 */
1523  	if (!try_module_get(sock->ops->owner))
1524  		goto out_module_busy;
1525  
1526  	/*
1527  	 * Now that we're done with the ->create function, the [loadable]
1528  	 * module can have its refcnt decremented
1529  	 */
1530  	module_put(pf->owner);
1531  	err = security_socket_post_create(sock, family, type, protocol, kern);
1532  	if (err)
1533  		goto out_sock_release;
1534  	*res = sock;
1535  
1536  	return 0;
1537  
1538  out_module_busy:
1539  	err = -EAFNOSUPPORT;
1540  out_module_put:
1541  	sock->ops = NULL;
1542  	module_put(pf->owner);
1543  out_sock_release:
1544  	sock_release(sock);
1545  	return err;
1546  
1547  out_release:
1548  	rcu_read_unlock();
1549  	goto out_sock_release;
1550  }
1551  EXPORT_SYMBOL(__sock_create);
1552  
1553  /**
1554   *	sock_create - creates a socket
1555   *	@family: protocol family (AF_INET, ...)
1556   *	@type: communication type (SOCK_STREAM, ...)
1557   *	@protocol: protocol (0, ...)
1558   *	@res: new socket
1559   *
1560   *	A wrapper around __sock_create().
1561   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1562   */
1563  
1564  int sock_create(int family, int type, int protocol, struct socket **res)
1565  {
1566  	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1567  }
1568  EXPORT_SYMBOL(sock_create);
1569  
1570  /**
1571   *	sock_create_kern - creates a socket (kernel space)
1572   *	@net: net namespace
1573   *	@family: protocol family (AF_INET, ...)
1574   *	@type: communication type (SOCK_STREAM, ...)
1575   *	@protocol: protocol (0, ...)
1576   *	@res: new socket
1577   *
1578   *	A wrapper around __sock_create().
1579   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1580   */
1581  
1582  int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1583  {
1584  	return __sock_create(net, family, type, protocol, res, 1);
1585  }
1586  EXPORT_SYMBOL(sock_create_kern);
1587  
1588  static struct socket *__sys_socket_create(int family, int type, int protocol)
1589  {
1590  	struct socket *sock;
1591  	int retval;
1592  
1593  	/* Check the SOCK_* constants for consistency.  */
1594  	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1595  	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1596  	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1597  	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1598  
1599  	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600  		return ERR_PTR(-EINVAL);
1601  	type &= SOCK_TYPE_MASK;
1602  
1603  	retval = sock_create(family, type, protocol, &sock);
1604  	if (retval < 0)
1605  		return ERR_PTR(retval);
1606  
1607  	return sock;
1608  }
1609  
1610  struct file *__sys_socket_file(int family, int type, int protocol)
1611  {
1612  	struct socket *sock;
1613  	struct file *file;
1614  	int flags;
1615  
1616  	sock = __sys_socket_create(family, type, protocol);
1617  	if (IS_ERR(sock))
1618  		return ERR_CAST(sock);
1619  
1620  	flags = type & ~SOCK_TYPE_MASK;
1621  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1623  
1624  	file = sock_alloc_file(sock, flags, NULL);
1625  	if (IS_ERR(file))
1626  		sock_release(sock);
1627  
1628  	return file;
1629  }
1630  
1631  int __sys_socket(int family, int type, int protocol)
1632  {
1633  	struct socket *sock;
1634  	int flags;
1635  
1636  	sock = __sys_socket_create(family, type, protocol);
1637  	if (IS_ERR(sock))
1638  		return PTR_ERR(sock);
1639  
1640  	flags = type & ~SOCK_TYPE_MASK;
1641  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643  
1644  	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1645  }
1646  
1647  SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1648  {
1649  	return __sys_socket(family, type, protocol);
1650  }
1651  
1652  /*
1653   *	Create a pair of connected sockets.
1654   */
1655  
1656  int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1657  {
1658  	struct socket *sock1, *sock2;
1659  	int fd1, fd2, err;
1660  	struct file *newfile1, *newfile2;
1661  	int flags;
1662  
1663  	flags = type & ~SOCK_TYPE_MASK;
1664  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1665  		return -EINVAL;
1666  	type &= SOCK_TYPE_MASK;
1667  
1668  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670  
1671  	/*
1672  	 * reserve descriptors and make sure we won't fail
1673  	 * to return them to userland.
1674  	 */
1675  	fd1 = get_unused_fd_flags(flags);
1676  	if (unlikely(fd1 < 0))
1677  		return fd1;
1678  
1679  	fd2 = get_unused_fd_flags(flags);
1680  	if (unlikely(fd2 < 0)) {
1681  		put_unused_fd(fd1);
1682  		return fd2;
1683  	}
1684  
1685  	err = put_user(fd1, &usockvec[0]);
1686  	if (err)
1687  		goto out;
1688  
1689  	err = put_user(fd2, &usockvec[1]);
1690  	if (err)
1691  		goto out;
1692  
1693  	/*
1694  	 * Obtain the first socket and check if the underlying protocol
1695  	 * supports the socketpair call.
1696  	 */
1697  
1698  	err = sock_create(family, type, protocol, &sock1);
1699  	if (unlikely(err < 0))
1700  		goto out;
1701  
1702  	err = sock_create(family, type, protocol, &sock2);
1703  	if (unlikely(err < 0)) {
1704  		sock_release(sock1);
1705  		goto out;
1706  	}
1707  
1708  	err = security_socket_socketpair(sock1, sock2);
1709  	if (unlikely(err)) {
1710  		sock_release(sock2);
1711  		sock_release(sock1);
1712  		goto out;
1713  	}
1714  
1715  	err = sock1->ops->socketpair(sock1, sock2);
1716  	if (unlikely(err < 0)) {
1717  		sock_release(sock2);
1718  		sock_release(sock1);
1719  		goto out;
1720  	}
1721  
1722  	newfile1 = sock_alloc_file(sock1, flags, NULL);
1723  	if (IS_ERR(newfile1)) {
1724  		err = PTR_ERR(newfile1);
1725  		sock_release(sock2);
1726  		goto out;
1727  	}
1728  
1729  	newfile2 = sock_alloc_file(sock2, flags, NULL);
1730  	if (IS_ERR(newfile2)) {
1731  		err = PTR_ERR(newfile2);
1732  		fput(newfile1);
1733  		goto out;
1734  	}
1735  
1736  	audit_fd_pair(fd1, fd2);
1737  
1738  	fd_install(fd1, newfile1);
1739  	fd_install(fd2, newfile2);
1740  	return 0;
1741  
1742  out:
1743  	put_unused_fd(fd2);
1744  	put_unused_fd(fd1);
1745  	return err;
1746  }
1747  
1748  SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1749  		int __user *, usockvec)
1750  {
1751  	return __sys_socketpair(family, type, protocol, usockvec);
1752  }
1753  
1754  /*
1755   *	Bind a name to a socket. Nothing much to do here since it's
1756   *	the protocol's responsibility to handle the local address.
1757   *
1758   *	We move the socket address to kernel space before we call
1759   *	the protocol layer (having also checked the address is ok).
1760   */
1761  
1762  int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1763  {
1764  	struct socket *sock;
1765  	struct sockaddr_storage address;
1766  	int err, fput_needed;
1767  
1768  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769  	if (sock) {
1770  		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1771  		if (!err) {
1772  			err = security_socket_bind(sock,
1773  						   (struct sockaddr *)&address,
1774  						   addrlen);
1775  			if (!err)
1776  				err = sock->ops->bind(sock,
1777  						      (struct sockaddr *)
1778  						      &address, addrlen);
1779  		}
1780  		fput_light(sock->file, fput_needed);
1781  	}
1782  	return err;
1783  }
1784  
1785  SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1786  {
1787  	return __sys_bind(fd, umyaddr, addrlen);
1788  }
1789  
1790  /*
1791   *	Perform a listen. Basically, we allow the protocol to do anything
1792   *	necessary for a listen, and if that works, we mark the socket as
1793   *	ready for listening.
1794   */
1795  
1796  int __sys_listen(int fd, int backlog)
1797  {
1798  	struct socket *sock;
1799  	int err, fput_needed;
1800  	int somaxconn;
1801  
1802  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803  	if (sock) {
1804  		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1805  		if ((unsigned int)backlog > somaxconn)
1806  			backlog = somaxconn;
1807  
1808  		err = security_socket_listen(sock, backlog);
1809  		if (!err)
1810  			err = sock->ops->listen(sock, backlog);
1811  
1812  		fput_light(sock->file, fput_needed);
1813  	}
1814  	return err;
1815  }
1816  
1817  SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1818  {
1819  	return __sys_listen(fd, backlog);
1820  }
1821  
1822  struct file *do_accept(struct file *file, unsigned file_flags,
1823  		       struct sockaddr __user *upeer_sockaddr,
1824  		       int __user *upeer_addrlen, int flags)
1825  {
1826  	struct socket *sock, *newsock;
1827  	struct file *newfile;
1828  	int err, len;
1829  	struct sockaddr_storage address;
1830  
1831  	sock = sock_from_file(file);
1832  	if (!sock)
1833  		return ERR_PTR(-ENOTSOCK);
1834  
1835  	newsock = sock_alloc();
1836  	if (!newsock)
1837  		return ERR_PTR(-ENFILE);
1838  
1839  	newsock->type = sock->type;
1840  	newsock->ops = sock->ops;
1841  
1842  	/*
1843  	 * We don't need try_module_get here, as the listening socket (sock)
1844  	 * has the protocol module (sock->ops->owner) held.
1845  	 */
1846  	__module_get(newsock->ops->owner);
1847  
1848  	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1849  	if (IS_ERR(newfile))
1850  		return newfile;
1851  
1852  	err = security_socket_accept(sock, newsock);
1853  	if (err)
1854  		goto out_fd;
1855  
1856  	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1857  					false);
1858  	if (err < 0)
1859  		goto out_fd;
1860  
1861  	if (upeer_sockaddr) {
1862  		len = newsock->ops->getname(newsock,
1863  					(struct sockaddr *)&address, 2);
1864  		if (len < 0) {
1865  			err = -ECONNABORTED;
1866  			goto out_fd;
1867  		}
1868  		err = move_addr_to_user(&address,
1869  					len, upeer_sockaddr, upeer_addrlen);
1870  		if (err < 0)
1871  			goto out_fd;
1872  	}
1873  
1874  	/* File flags are not inherited via accept() unlike another OSes. */
1875  	return newfile;
1876  out_fd:
1877  	fput(newfile);
1878  	return ERR_PTR(err);
1879  }
1880  
1881  static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1882  			      int __user *upeer_addrlen, int flags)
1883  {
1884  	struct file *newfile;
1885  	int newfd;
1886  
1887  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1888  		return -EINVAL;
1889  
1890  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1891  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1892  
1893  	newfd = get_unused_fd_flags(flags);
1894  	if (unlikely(newfd < 0))
1895  		return newfd;
1896  
1897  	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1898  			    flags);
1899  	if (IS_ERR(newfile)) {
1900  		put_unused_fd(newfd);
1901  		return PTR_ERR(newfile);
1902  	}
1903  	fd_install(newfd, newfile);
1904  	return newfd;
1905  }
1906  
1907  /*
1908   *	For accept, we attempt to create a new socket, set up the link
1909   *	with the client, wake up the client, then return the new
1910   *	connected fd. We collect the address of the connector in kernel
1911   *	space and move it to user at the very end. This is unclean because
1912   *	we open the socket then return an error.
1913   *
1914   *	1003.1g adds the ability to recvmsg() to query connection pending
1915   *	status to recvmsg. We need to add that support in a way thats
1916   *	clean when we restructure accept also.
1917   */
1918  
1919  int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1920  		  int __user *upeer_addrlen, int flags)
1921  {
1922  	int ret = -EBADF;
1923  	struct fd f;
1924  
1925  	f = fdget(fd);
1926  	if (f.file) {
1927  		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1928  					 upeer_addrlen, flags);
1929  		fdput(f);
1930  	}
1931  
1932  	return ret;
1933  }
1934  
1935  SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1936  		int __user *, upeer_addrlen, int, flags)
1937  {
1938  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1939  }
1940  
1941  SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1942  		int __user *, upeer_addrlen)
1943  {
1944  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1945  }
1946  
1947  /*
1948   *	Attempt to connect to a socket with the server address.  The address
1949   *	is in user space so we verify it is OK and move it to kernel space.
1950   *
1951   *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1952   *	break bindings
1953   *
1954   *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1955   *	other SEQPACKET protocols that take time to connect() as it doesn't
1956   *	include the -EINPROGRESS status for such sockets.
1957   */
1958  
1959  int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1960  		       int addrlen, int file_flags)
1961  {
1962  	struct socket *sock;
1963  	int err;
1964  
1965  	sock = sock_from_file(file);
1966  	if (!sock) {
1967  		err = -ENOTSOCK;
1968  		goto out;
1969  	}
1970  
1971  	err =
1972  	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1973  	if (err)
1974  		goto out;
1975  
1976  	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1977  				 sock->file->f_flags | file_flags);
1978  out:
1979  	return err;
1980  }
1981  
1982  int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1983  {
1984  	int ret = -EBADF;
1985  	struct fd f;
1986  
1987  	f = fdget(fd);
1988  	if (f.file) {
1989  		struct sockaddr_storage address;
1990  
1991  		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1992  		if (!ret)
1993  			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1994  		fdput(f);
1995  	}
1996  
1997  	return ret;
1998  }
1999  
2000  SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2001  		int, addrlen)
2002  {
2003  	return __sys_connect(fd, uservaddr, addrlen);
2004  }
2005  
2006  /*
2007   *	Get the local address ('name') of a socket object. Move the obtained
2008   *	name to user space.
2009   */
2010  
2011  int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2012  		      int __user *usockaddr_len)
2013  {
2014  	struct socket *sock;
2015  	struct sockaddr_storage address;
2016  	int err, fput_needed;
2017  
2018  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019  	if (!sock)
2020  		goto out;
2021  
2022  	err = security_socket_getsockname(sock);
2023  	if (err)
2024  		goto out_put;
2025  
2026  	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2027  	if (err < 0)
2028  		goto out_put;
2029  	/* "err" is actually length in this case */
2030  	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2031  
2032  out_put:
2033  	fput_light(sock->file, fput_needed);
2034  out:
2035  	return err;
2036  }
2037  
2038  SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2039  		int __user *, usockaddr_len)
2040  {
2041  	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2042  }
2043  
2044  /*
2045   *	Get the remote address ('name') of a socket object. Move the obtained
2046   *	name to user space.
2047   */
2048  
2049  int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2050  		      int __user *usockaddr_len)
2051  {
2052  	struct socket *sock;
2053  	struct sockaddr_storage address;
2054  	int err, fput_needed;
2055  
2056  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057  	if (sock != NULL) {
2058  		err = security_socket_getpeername(sock);
2059  		if (err) {
2060  			fput_light(sock->file, fput_needed);
2061  			return err;
2062  		}
2063  
2064  		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2065  		if (err >= 0)
2066  			/* "err" is actually length in this case */
2067  			err = move_addr_to_user(&address, err, usockaddr,
2068  						usockaddr_len);
2069  		fput_light(sock->file, fput_needed);
2070  	}
2071  	return err;
2072  }
2073  
2074  SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2075  		int __user *, usockaddr_len)
2076  {
2077  	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2078  }
2079  
2080  /*
2081   *	Send a datagram to a given address. We move the address into kernel
2082   *	space and check the user space data area is readable before invoking
2083   *	the protocol.
2084   */
2085  int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2086  		 struct sockaddr __user *addr,  int addr_len)
2087  {
2088  	struct socket *sock;
2089  	struct sockaddr_storage address;
2090  	int err;
2091  	struct msghdr msg;
2092  	struct iovec iov;
2093  	int fput_needed;
2094  
2095  	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2096  	if (unlikely(err))
2097  		return err;
2098  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2099  	if (!sock)
2100  		goto out;
2101  
2102  	msg.msg_name = NULL;
2103  	msg.msg_control = NULL;
2104  	msg.msg_controllen = 0;
2105  	msg.msg_namelen = 0;
2106  	msg.msg_ubuf = NULL;
2107  	if (addr) {
2108  		err = move_addr_to_kernel(addr, addr_len, &address);
2109  		if (err < 0)
2110  			goto out_put;
2111  		msg.msg_name = (struct sockaddr *)&address;
2112  		msg.msg_namelen = addr_len;
2113  	}
2114  	if (sock->file->f_flags & O_NONBLOCK)
2115  		flags |= MSG_DONTWAIT;
2116  	msg.msg_flags = flags;
2117  	err = sock_sendmsg(sock, &msg);
2118  
2119  out_put:
2120  	fput_light(sock->file, fput_needed);
2121  out:
2122  	return err;
2123  }
2124  
2125  SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2126  		unsigned int, flags, struct sockaddr __user *, addr,
2127  		int, addr_len)
2128  {
2129  	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2130  }
2131  
2132  /*
2133   *	Send a datagram down a socket.
2134   */
2135  
2136  SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2137  		unsigned int, flags)
2138  {
2139  	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2140  }
2141  
2142  /*
2143   *	Receive a frame from the socket and optionally record the address of the
2144   *	sender. We verify the buffers are writable and if needed move the
2145   *	sender address from kernel to user space.
2146   */
2147  int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2148  		   struct sockaddr __user *addr, int __user *addr_len)
2149  {
2150  	struct sockaddr_storage address;
2151  	struct msghdr msg = {
2152  		/* Save some cycles and don't copy the address if not needed */
2153  		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2154  	};
2155  	struct socket *sock;
2156  	struct iovec iov;
2157  	int err, err2;
2158  	int fput_needed;
2159  
2160  	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2161  	if (unlikely(err))
2162  		return err;
2163  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164  	if (!sock)
2165  		goto out;
2166  
2167  	if (sock->file->f_flags & O_NONBLOCK)
2168  		flags |= MSG_DONTWAIT;
2169  	err = sock_recvmsg(sock, &msg, flags);
2170  
2171  	if (err >= 0 && addr != NULL) {
2172  		err2 = move_addr_to_user(&address,
2173  					 msg.msg_namelen, addr, addr_len);
2174  		if (err2 < 0)
2175  			err = err2;
2176  	}
2177  
2178  	fput_light(sock->file, fput_needed);
2179  out:
2180  	return err;
2181  }
2182  
2183  SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2184  		unsigned int, flags, struct sockaddr __user *, addr,
2185  		int __user *, addr_len)
2186  {
2187  	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2188  }
2189  
2190  /*
2191   *	Receive a datagram from a socket.
2192   */
2193  
2194  SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2195  		unsigned int, flags)
2196  {
2197  	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2198  }
2199  
2200  static bool sock_use_custom_sol_socket(const struct socket *sock)
2201  {
2202  	const struct sock *sk = sock->sk;
2203  
2204  	/* Use sock->ops->setsockopt() for MPTCP */
2205  	return IS_ENABLED(CONFIG_MPTCP) &&
2206  	       sk->sk_protocol == IPPROTO_MPTCP &&
2207  	       sk->sk_type == SOCK_STREAM &&
2208  	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2209  }
2210  
2211  /*
2212   *	Set a socket option. Because we don't know the option lengths we have
2213   *	to pass the user mode parameter for the protocols to sort out.
2214   */
2215  int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2216  		int optlen)
2217  {
2218  	sockptr_t optval = USER_SOCKPTR(user_optval);
2219  	char *kernel_optval = NULL;
2220  	int err, fput_needed;
2221  	struct socket *sock;
2222  
2223  	if (optlen < 0)
2224  		return -EINVAL;
2225  
2226  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227  	if (!sock)
2228  		return err;
2229  
2230  	err = security_socket_setsockopt(sock, level, optname);
2231  	if (err)
2232  		goto out_put;
2233  
2234  	if (!in_compat_syscall())
2235  		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2236  						     user_optval, &optlen,
2237  						     &kernel_optval);
2238  	if (err < 0)
2239  		goto out_put;
2240  	if (err > 0) {
2241  		err = 0;
2242  		goto out_put;
2243  	}
2244  
2245  	if (kernel_optval)
2246  		optval = KERNEL_SOCKPTR(kernel_optval);
2247  	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2248  		err = sock_setsockopt(sock, level, optname, optval, optlen);
2249  	else if (unlikely(!sock->ops->setsockopt))
2250  		err = -EOPNOTSUPP;
2251  	else
2252  		err = sock->ops->setsockopt(sock, level, optname, optval,
2253  					    optlen);
2254  	kfree(kernel_optval);
2255  out_put:
2256  	fput_light(sock->file, fput_needed);
2257  	return err;
2258  }
2259  
2260  SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2261  		char __user *, optval, int, optlen)
2262  {
2263  	return __sys_setsockopt(fd, level, optname, optval, optlen);
2264  }
2265  
2266  INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2267  							 int optname));
2268  
2269  /*
2270   *	Get a socket option. Because we don't know the option lengths we have
2271   *	to pass a user mode parameter for the protocols to sort out.
2272   */
2273  int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2274  		int __user *optlen)
2275  {
2276  	int err, fput_needed;
2277  	struct socket *sock;
2278  	int max_optlen;
2279  
2280  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281  	if (!sock)
2282  		return err;
2283  
2284  	err = security_socket_getsockopt(sock, level, optname);
2285  	if (err)
2286  		goto out_put;
2287  
2288  	if (!in_compat_syscall())
2289  		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2290  
2291  	if (level == SOL_SOCKET)
2292  		err = sock_getsockopt(sock, level, optname, optval, optlen);
2293  	else if (unlikely(!sock->ops->getsockopt))
2294  		err = -EOPNOTSUPP;
2295  	else
2296  		err = sock->ops->getsockopt(sock, level, optname, optval,
2297  					    optlen);
2298  
2299  	if (!in_compat_syscall())
2300  		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2301  						     optval, optlen, max_optlen,
2302  						     err);
2303  out_put:
2304  	fput_light(sock->file, fput_needed);
2305  	return err;
2306  }
2307  
2308  SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2309  		char __user *, optval, int __user *, optlen)
2310  {
2311  	return __sys_getsockopt(fd, level, optname, optval, optlen);
2312  }
2313  
2314  /*
2315   *	Shutdown a socket.
2316   */
2317  
2318  int __sys_shutdown_sock(struct socket *sock, int how)
2319  {
2320  	int err;
2321  
2322  	err = security_socket_shutdown(sock, how);
2323  	if (!err)
2324  		err = sock->ops->shutdown(sock, how);
2325  
2326  	return err;
2327  }
2328  
2329  int __sys_shutdown(int fd, int how)
2330  {
2331  	int err, fput_needed;
2332  	struct socket *sock;
2333  
2334  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2335  	if (sock != NULL) {
2336  		err = __sys_shutdown_sock(sock, how);
2337  		fput_light(sock->file, fput_needed);
2338  	}
2339  	return err;
2340  }
2341  
2342  SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2343  {
2344  	return __sys_shutdown(fd, how);
2345  }
2346  
2347  /* A couple of helpful macros for getting the address of the 32/64 bit
2348   * fields which are the same type (int / unsigned) on our platforms.
2349   */
2350  #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2351  #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2352  #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2353  
2354  struct used_address {
2355  	struct sockaddr_storage name;
2356  	unsigned int name_len;
2357  };
2358  
2359  int __copy_msghdr(struct msghdr *kmsg,
2360  		  struct user_msghdr *msg,
2361  		  struct sockaddr __user **save_addr)
2362  {
2363  	ssize_t err;
2364  
2365  	kmsg->msg_control_is_user = true;
2366  	kmsg->msg_get_inq = 0;
2367  	kmsg->msg_control_user = msg->msg_control;
2368  	kmsg->msg_controllen = msg->msg_controllen;
2369  	kmsg->msg_flags = msg->msg_flags;
2370  
2371  	kmsg->msg_namelen = msg->msg_namelen;
2372  	if (!msg->msg_name)
2373  		kmsg->msg_namelen = 0;
2374  
2375  	if (kmsg->msg_namelen < 0)
2376  		return -EINVAL;
2377  
2378  	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2379  		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2380  
2381  	if (save_addr)
2382  		*save_addr = msg->msg_name;
2383  
2384  	if (msg->msg_name && kmsg->msg_namelen) {
2385  		if (!save_addr) {
2386  			err = move_addr_to_kernel(msg->msg_name,
2387  						  kmsg->msg_namelen,
2388  						  kmsg->msg_name);
2389  			if (err < 0)
2390  				return err;
2391  		}
2392  	} else {
2393  		kmsg->msg_name = NULL;
2394  		kmsg->msg_namelen = 0;
2395  	}
2396  
2397  	if (msg->msg_iovlen > UIO_MAXIOV)
2398  		return -EMSGSIZE;
2399  
2400  	kmsg->msg_iocb = NULL;
2401  	kmsg->msg_ubuf = NULL;
2402  	return 0;
2403  }
2404  
2405  static int copy_msghdr_from_user(struct msghdr *kmsg,
2406  				 struct user_msghdr __user *umsg,
2407  				 struct sockaddr __user **save_addr,
2408  				 struct iovec **iov)
2409  {
2410  	struct user_msghdr msg;
2411  	ssize_t err;
2412  
2413  	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2414  		return -EFAULT;
2415  
2416  	err = __copy_msghdr(kmsg, &msg, save_addr);
2417  	if (err)
2418  		return err;
2419  
2420  	err = import_iovec(save_addr ? READ : WRITE,
2421  			    msg.msg_iov, msg.msg_iovlen,
2422  			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2423  	return err < 0 ? err : 0;
2424  }
2425  
2426  static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2427  			   unsigned int flags, struct used_address *used_address,
2428  			   unsigned int allowed_msghdr_flags)
2429  {
2430  	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2431  				__aligned(sizeof(__kernel_size_t));
2432  	/* 20 is size of ipv6_pktinfo */
2433  	unsigned char *ctl_buf = ctl;
2434  	int ctl_len;
2435  	ssize_t err;
2436  
2437  	err = -ENOBUFS;
2438  
2439  	if (msg_sys->msg_controllen > INT_MAX)
2440  		goto out;
2441  	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2442  	ctl_len = msg_sys->msg_controllen;
2443  	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2444  		err =
2445  		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2446  						     sizeof(ctl));
2447  		if (err)
2448  			goto out;
2449  		ctl_buf = msg_sys->msg_control;
2450  		ctl_len = msg_sys->msg_controllen;
2451  	} else if (ctl_len) {
2452  		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2453  			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2454  		if (ctl_len > sizeof(ctl)) {
2455  			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2456  			if (ctl_buf == NULL)
2457  				goto out;
2458  		}
2459  		err = -EFAULT;
2460  		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2461  			goto out_freectl;
2462  		msg_sys->msg_control = ctl_buf;
2463  		msg_sys->msg_control_is_user = false;
2464  	}
2465  	msg_sys->msg_flags = flags;
2466  
2467  	if (sock->file->f_flags & O_NONBLOCK)
2468  		msg_sys->msg_flags |= MSG_DONTWAIT;
2469  	/*
2470  	 * If this is sendmmsg() and current destination address is same as
2471  	 * previously succeeded address, omit asking LSM's decision.
2472  	 * used_address->name_len is initialized to UINT_MAX so that the first
2473  	 * destination address never matches.
2474  	 */
2475  	if (used_address && msg_sys->msg_name &&
2476  	    used_address->name_len == msg_sys->msg_namelen &&
2477  	    !memcmp(&used_address->name, msg_sys->msg_name,
2478  		    used_address->name_len)) {
2479  		err = sock_sendmsg_nosec(sock, msg_sys);
2480  		goto out_freectl;
2481  	}
2482  	err = sock_sendmsg(sock, msg_sys);
2483  	/*
2484  	 * If this is sendmmsg() and sending to current destination address was
2485  	 * successful, remember it.
2486  	 */
2487  	if (used_address && err >= 0) {
2488  		used_address->name_len = msg_sys->msg_namelen;
2489  		if (msg_sys->msg_name)
2490  			memcpy(&used_address->name, msg_sys->msg_name,
2491  			       used_address->name_len);
2492  	}
2493  
2494  out_freectl:
2495  	if (ctl_buf != ctl)
2496  		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2497  out:
2498  	return err;
2499  }
2500  
2501  int sendmsg_copy_msghdr(struct msghdr *msg,
2502  			struct user_msghdr __user *umsg, unsigned flags,
2503  			struct iovec **iov)
2504  {
2505  	int err;
2506  
2507  	if (flags & MSG_CMSG_COMPAT) {
2508  		struct compat_msghdr __user *msg_compat;
2509  
2510  		msg_compat = (struct compat_msghdr __user *) umsg;
2511  		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2512  	} else {
2513  		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2514  	}
2515  	if (err < 0)
2516  		return err;
2517  
2518  	return 0;
2519  }
2520  
2521  static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2522  			 struct msghdr *msg_sys, unsigned int flags,
2523  			 struct used_address *used_address,
2524  			 unsigned int allowed_msghdr_flags)
2525  {
2526  	struct sockaddr_storage address;
2527  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2528  	ssize_t err;
2529  
2530  	msg_sys->msg_name = &address;
2531  
2532  	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2533  	if (err < 0)
2534  		return err;
2535  
2536  	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2537  				allowed_msghdr_flags);
2538  	kfree(iov);
2539  	return err;
2540  }
2541  
2542  /*
2543   *	BSD sendmsg interface
2544   */
2545  long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2546  			unsigned int flags)
2547  {
2548  	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2549  }
2550  
2551  long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2552  		   bool forbid_cmsg_compat)
2553  {
2554  	int fput_needed, err;
2555  	struct msghdr msg_sys;
2556  	struct socket *sock;
2557  
2558  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2559  		return -EINVAL;
2560  
2561  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2562  	if (!sock)
2563  		goto out;
2564  
2565  	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2566  
2567  	fput_light(sock->file, fput_needed);
2568  out:
2569  	return err;
2570  }
2571  
2572  SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2573  {
2574  	return __sys_sendmsg(fd, msg, flags, true);
2575  }
2576  
2577  /*
2578   *	Linux sendmmsg interface
2579   */
2580  
2581  int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2582  		   unsigned int flags, bool forbid_cmsg_compat)
2583  {
2584  	int fput_needed, err, datagrams;
2585  	struct socket *sock;
2586  	struct mmsghdr __user *entry;
2587  	struct compat_mmsghdr __user *compat_entry;
2588  	struct msghdr msg_sys;
2589  	struct used_address used_address;
2590  	unsigned int oflags = flags;
2591  
2592  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2593  		return -EINVAL;
2594  
2595  	if (vlen > UIO_MAXIOV)
2596  		vlen = UIO_MAXIOV;
2597  
2598  	datagrams = 0;
2599  
2600  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2601  	if (!sock)
2602  		return err;
2603  
2604  	used_address.name_len = UINT_MAX;
2605  	entry = mmsg;
2606  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2607  	err = 0;
2608  	flags |= MSG_BATCH;
2609  
2610  	while (datagrams < vlen) {
2611  		if (datagrams == vlen - 1)
2612  			flags = oflags;
2613  
2614  		if (MSG_CMSG_COMPAT & flags) {
2615  			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2616  					     &msg_sys, flags, &used_address, MSG_EOR);
2617  			if (err < 0)
2618  				break;
2619  			err = __put_user(err, &compat_entry->msg_len);
2620  			++compat_entry;
2621  		} else {
2622  			err = ___sys_sendmsg(sock,
2623  					     (struct user_msghdr __user *)entry,
2624  					     &msg_sys, flags, &used_address, MSG_EOR);
2625  			if (err < 0)
2626  				break;
2627  			err = put_user(err, &entry->msg_len);
2628  			++entry;
2629  		}
2630  
2631  		if (err)
2632  			break;
2633  		++datagrams;
2634  		if (msg_data_left(&msg_sys))
2635  			break;
2636  		cond_resched();
2637  	}
2638  
2639  	fput_light(sock->file, fput_needed);
2640  
2641  	/* We only return an error if no datagrams were able to be sent */
2642  	if (datagrams != 0)
2643  		return datagrams;
2644  
2645  	return err;
2646  }
2647  
2648  SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2649  		unsigned int, vlen, unsigned int, flags)
2650  {
2651  	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2652  }
2653  
2654  int recvmsg_copy_msghdr(struct msghdr *msg,
2655  			struct user_msghdr __user *umsg, unsigned flags,
2656  			struct sockaddr __user **uaddr,
2657  			struct iovec **iov)
2658  {
2659  	ssize_t err;
2660  
2661  	if (MSG_CMSG_COMPAT & flags) {
2662  		struct compat_msghdr __user *msg_compat;
2663  
2664  		msg_compat = (struct compat_msghdr __user *) umsg;
2665  		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2666  	} else {
2667  		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2668  	}
2669  	if (err < 0)
2670  		return err;
2671  
2672  	return 0;
2673  }
2674  
2675  static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2676  			   struct user_msghdr __user *msg,
2677  			   struct sockaddr __user *uaddr,
2678  			   unsigned int flags, int nosec)
2679  {
2680  	struct compat_msghdr __user *msg_compat =
2681  					(struct compat_msghdr __user *) msg;
2682  	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2683  	struct sockaddr_storage addr;
2684  	unsigned long cmsg_ptr;
2685  	int len;
2686  	ssize_t err;
2687  
2688  	msg_sys->msg_name = &addr;
2689  	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2690  	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2691  
2692  	/* We assume all kernel code knows the size of sockaddr_storage */
2693  	msg_sys->msg_namelen = 0;
2694  
2695  	if (sock->file->f_flags & O_NONBLOCK)
2696  		flags |= MSG_DONTWAIT;
2697  
2698  	if (unlikely(nosec))
2699  		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2700  	else
2701  		err = sock_recvmsg(sock, msg_sys, flags);
2702  
2703  	if (err < 0)
2704  		goto out;
2705  	len = err;
2706  
2707  	if (uaddr != NULL) {
2708  		err = move_addr_to_user(&addr,
2709  					msg_sys->msg_namelen, uaddr,
2710  					uaddr_len);
2711  		if (err < 0)
2712  			goto out;
2713  	}
2714  	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2715  			 COMPAT_FLAGS(msg));
2716  	if (err)
2717  		goto out;
2718  	if (MSG_CMSG_COMPAT & flags)
2719  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720  				 &msg_compat->msg_controllen);
2721  	else
2722  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2723  				 &msg->msg_controllen);
2724  	if (err)
2725  		goto out;
2726  	err = len;
2727  out:
2728  	return err;
2729  }
2730  
2731  static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2732  			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2733  {
2734  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2735  	/* user mode address pointers */
2736  	struct sockaddr __user *uaddr;
2737  	ssize_t err;
2738  
2739  	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2740  	if (err < 0)
2741  		return err;
2742  
2743  	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2744  	kfree(iov);
2745  	return err;
2746  }
2747  
2748  /*
2749   *	BSD recvmsg interface
2750   */
2751  
2752  long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2753  			struct user_msghdr __user *umsg,
2754  			struct sockaddr __user *uaddr, unsigned int flags)
2755  {
2756  	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2757  }
2758  
2759  long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2760  		   bool forbid_cmsg_compat)
2761  {
2762  	int fput_needed, err;
2763  	struct msghdr msg_sys;
2764  	struct socket *sock;
2765  
2766  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2767  		return -EINVAL;
2768  
2769  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2770  	if (!sock)
2771  		goto out;
2772  
2773  	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2774  
2775  	fput_light(sock->file, fput_needed);
2776  out:
2777  	return err;
2778  }
2779  
2780  SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2781  		unsigned int, flags)
2782  {
2783  	return __sys_recvmsg(fd, msg, flags, true);
2784  }
2785  
2786  /*
2787   *     Linux recvmmsg interface
2788   */
2789  
2790  static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2791  			  unsigned int vlen, unsigned int flags,
2792  			  struct timespec64 *timeout)
2793  {
2794  	int fput_needed, err, datagrams;
2795  	struct socket *sock;
2796  	struct mmsghdr __user *entry;
2797  	struct compat_mmsghdr __user *compat_entry;
2798  	struct msghdr msg_sys;
2799  	struct timespec64 end_time;
2800  	struct timespec64 timeout64;
2801  
2802  	if (timeout &&
2803  	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2804  				    timeout->tv_nsec))
2805  		return -EINVAL;
2806  
2807  	datagrams = 0;
2808  
2809  	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2810  	if (!sock)
2811  		return err;
2812  
2813  	if (likely(!(flags & MSG_ERRQUEUE))) {
2814  		err = sock_error(sock->sk);
2815  		if (err) {
2816  			datagrams = err;
2817  			goto out_put;
2818  		}
2819  	}
2820  
2821  	entry = mmsg;
2822  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2823  
2824  	while (datagrams < vlen) {
2825  		/*
2826  		 * No need to ask LSM for more than the first datagram.
2827  		 */
2828  		if (MSG_CMSG_COMPAT & flags) {
2829  			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2830  					     &msg_sys, flags & ~MSG_WAITFORONE,
2831  					     datagrams);
2832  			if (err < 0)
2833  				break;
2834  			err = __put_user(err, &compat_entry->msg_len);
2835  			++compat_entry;
2836  		} else {
2837  			err = ___sys_recvmsg(sock,
2838  					     (struct user_msghdr __user *)entry,
2839  					     &msg_sys, flags & ~MSG_WAITFORONE,
2840  					     datagrams);
2841  			if (err < 0)
2842  				break;
2843  			err = put_user(err, &entry->msg_len);
2844  			++entry;
2845  		}
2846  
2847  		if (err)
2848  			break;
2849  		++datagrams;
2850  
2851  		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2852  		if (flags & MSG_WAITFORONE)
2853  			flags |= MSG_DONTWAIT;
2854  
2855  		if (timeout) {
2856  			ktime_get_ts64(&timeout64);
2857  			*timeout = timespec64_sub(end_time, timeout64);
2858  			if (timeout->tv_sec < 0) {
2859  				timeout->tv_sec = timeout->tv_nsec = 0;
2860  				break;
2861  			}
2862  
2863  			/* Timeout, return less than vlen datagrams */
2864  			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2865  				break;
2866  		}
2867  
2868  		/* Out of band data, return right away */
2869  		if (msg_sys.msg_flags & MSG_OOB)
2870  			break;
2871  		cond_resched();
2872  	}
2873  
2874  	if (err == 0)
2875  		goto out_put;
2876  
2877  	if (datagrams == 0) {
2878  		datagrams = err;
2879  		goto out_put;
2880  	}
2881  
2882  	/*
2883  	 * We may return less entries than requested (vlen) if the
2884  	 * sock is non block and there aren't enough datagrams...
2885  	 */
2886  	if (err != -EAGAIN) {
2887  		/*
2888  		 * ... or  if recvmsg returns an error after we
2889  		 * received some datagrams, where we record the
2890  		 * error to return on the next call or if the
2891  		 * app asks about it using getsockopt(SO_ERROR).
2892  		 */
2893  		sock->sk->sk_err = -err;
2894  	}
2895  out_put:
2896  	fput_light(sock->file, fput_needed);
2897  
2898  	return datagrams;
2899  }
2900  
2901  int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2902  		   unsigned int vlen, unsigned int flags,
2903  		   struct __kernel_timespec __user *timeout,
2904  		   struct old_timespec32 __user *timeout32)
2905  {
2906  	int datagrams;
2907  	struct timespec64 timeout_sys;
2908  
2909  	if (timeout && get_timespec64(&timeout_sys, timeout))
2910  		return -EFAULT;
2911  
2912  	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2913  		return -EFAULT;
2914  
2915  	if (!timeout && !timeout32)
2916  		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2917  
2918  	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2919  
2920  	if (datagrams <= 0)
2921  		return datagrams;
2922  
2923  	if (timeout && put_timespec64(&timeout_sys, timeout))
2924  		datagrams = -EFAULT;
2925  
2926  	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2927  		datagrams = -EFAULT;
2928  
2929  	return datagrams;
2930  }
2931  
2932  SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2933  		unsigned int, vlen, unsigned int, flags,
2934  		struct __kernel_timespec __user *, timeout)
2935  {
2936  	if (flags & MSG_CMSG_COMPAT)
2937  		return -EINVAL;
2938  
2939  	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2940  }
2941  
2942  #ifdef CONFIG_COMPAT_32BIT_TIME
2943  SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2944  		unsigned int, vlen, unsigned int, flags,
2945  		struct old_timespec32 __user *, timeout)
2946  {
2947  	if (flags & MSG_CMSG_COMPAT)
2948  		return -EINVAL;
2949  
2950  	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2951  }
2952  #endif
2953  
2954  #ifdef __ARCH_WANT_SYS_SOCKETCALL
2955  /* Argument list sizes for sys_socketcall */
2956  #define AL(x) ((x) * sizeof(unsigned long))
2957  static const unsigned char nargs[21] = {
2958  	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2959  	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2960  	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2961  	AL(4), AL(5), AL(4)
2962  };
2963  
2964  #undef AL
2965  
2966  /*
2967   *	System call vectors.
2968   *
2969   *	Argument checking cleaned up. Saved 20% in size.
2970   *  This function doesn't need to set the kernel lock because
2971   *  it is set by the callees.
2972   */
2973  
2974  SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2975  {
2976  	unsigned long a[AUDITSC_ARGS];
2977  	unsigned long a0, a1;
2978  	int err;
2979  	unsigned int len;
2980  
2981  	if (call < 1 || call > SYS_SENDMMSG)
2982  		return -EINVAL;
2983  	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2984  
2985  	len = nargs[call];
2986  	if (len > sizeof(a))
2987  		return -EINVAL;
2988  
2989  	/* copy_from_user should be SMP safe. */
2990  	if (copy_from_user(a, args, len))
2991  		return -EFAULT;
2992  
2993  	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2994  	if (err)
2995  		return err;
2996  
2997  	a0 = a[0];
2998  	a1 = a[1];
2999  
3000  	switch (call) {
3001  	case SYS_SOCKET:
3002  		err = __sys_socket(a0, a1, a[2]);
3003  		break;
3004  	case SYS_BIND:
3005  		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3006  		break;
3007  	case SYS_CONNECT:
3008  		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3009  		break;
3010  	case SYS_LISTEN:
3011  		err = __sys_listen(a0, a1);
3012  		break;
3013  	case SYS_ACCEPT:
3014  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3015  				    (int __user *)a[2], 0);
3016  		break;
3017  	case SYS_GETSOCKNAME:
3018  		err =
3019  		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3020  				      (int __user *)a[2]);
3021  		break;
3022  	case SYS_GETPEERNAME:
3023  		err =
3024  		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3025  				      (int __user *)a[2]);
3026  		break;
3027  	case SYS_SOCKETPAIR:
3028  		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3029  		break;
3030  	case SYS_SEND:
3031  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3032  				   NULL, 0);
3033  		break;
3034  	case SYS_SENDTO:
3035  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3036  				   (struct sockaddr __user *)a[4], a[5]);
3037  		break;
3038  	case SYS_RECV:
3039  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3040  				     NULL, NULL);
3041  		break;
3042  	case SYS_RECVFROM:
3043  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3044  				     (struct sockaddr __user *)a[4],
3045  				     (int __user *)a[5]);
3046  		break;
3047  	case SYS_SHUTDOWN:
3048  		err = __sys_shutdown(a0, a1);
3049  		break;
3050  	case SYS_SETSOCKOPT:
3051  		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3052  				       a[4]);
3053  		break;
3054  	case SYS_GETSOCKOPT:
3055  		err =
3056  		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3057  				     (int __user *)a[4]);
3058  		break;
3059  	case SYS_SENDMSG:
3060  		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3061  				    a[2], true);
3062  		break;
3063  	case SYS_SENDMMSG:
3064  		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3065  				     a[3], true);
3066  		break;
3067  	case SYS_RECVMSG:
3068  		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3069  				    a[2], true);
3070  		break;
3071  	case SYS_RECVMMSG:
3072  		if (IS_ENABLED(CONFIG_64BIT))
3073  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3074  					     a[2], a[3],
3075  					     (struct __kernel_timespec __user *)a[4],
3076  					     NULL);
3077  		else
3078  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3079  					     a[2], a[3], NULL,
3080  					     (struct old_timespec32 __user *)a[4]);
3081  		break;
3082  	case SYS_ACCEPT4:
3083  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3084  				    (int __user *)a[2], a[3]);
3085  		break;
3086  	default:
3087  		err = -EINVAL;
3088  		break;
3089  	}
3090  	return err;
3091  }
3092  
3093  #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3094  
3095  /**
3096   *	sock_register - add a socket protocol handler
3097   *	@ops: description of protocol
3098   *
3099   *	This function is called by a protocol handler that wants to
3100   *	advertise its address family, and have it linked into the
3101   *	socket interface. The value ops->family corresponds to the
3102   *	socket system call protocol family.
3103   */
3104  int sock_register(const struct net_proto_family *ops)
3105  {
3106  	int err;
3107  
3108  	if (ops->family >= NPROTO) {
3109  		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3110  		return -ENOBUFS;
3111  	}
3112  
3113  	spin_lock(&net_family_lock);
3114  	if (rcu_dereference_protected(net_families[ops->family],
3115  				      lockdep_is_held(&net_family_lock)))
3116  		err = -EEXIST;
3117  	else {
3118  		rcu_assign_pointer(net_families[ops->family], ops);
3119  		err = 0;
3120  	}
3121  	spin_unlock(&net_family_lock);
3122  
3123  	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3124  	return err;
3125  }
3126  EXPORT_SYMBOL(sock_register);
3127  
3128  /**
3129   *	sock_unregister - remove a protocol handler
3130   *	@family: protocol family to remove
3131   *
3132   *	This function is called by a protocol handler that wants to
3133   *	remove its address family, and have it unlinked from the
3134   *	new socket creation.
3135   *
3136   *	If protocol handler is a module, then it can use module reference
3137   *	counts to protect against new references. If protocol handler is not
3138   *	a module then it needs to provide its own protection in
3139   *	the ops->create routine.
3140   */
3141  void sock_unregister(int family)
3142  {
3143  	BUG_ON(family < 0 || family >= NPROTO);
3144  
3145  	spin_lock(&net_family_lock);
3146  	RCU_INIT_POINTER(net_families[family], NULL);
3147  	spin_unlock(&net_family_lock);
3148  
3149  	synchronize_rcu();
3150  
3151  	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3152  }
3153  EXPORT_SYMBOL(sock_unregister);
3154  
3155  bool sock_is_registered(int family)
3156  {
3157  	return family < NPROTO && rcu_access_pointer(net_families[family]);
3158  }
3159  
3160  static int __init sock_init(void)
3161  {
3162  	int err;
3163  	/*
3164  	 *      Initialize the network sysctl infrastructure.
3165  	 */
3166  	err = net_sysctl_init();
3167  	if (err)
3168  		goto out;
3169  
3170  	/*
3171  	 *      Initialize skbuff SLAB cache
3172  	 */
3173  	skb_init();
3174  
3175  	/*
3176  	 *      Initialize the protocols module.
3177  	 */
3178  
3179  	init_inodecache();
3180  
3181  	err = register_filesystem(&sock_fs_type);
3182  	if (err)
3183  		goto out;
3184  	sock_mnt = kern_mount(&sock_fs_type);
3185  	if (IS_ERR(sock_mnt)) {
3186  		err = PTR_ERR(sock_mnt);
3187  		goto out_mount;
3188  	}
3189  
3190  	/* The real protocol initialization is performed in later initcalls.
3191  	 */
3192  
3193  #ifdef CONFIG_NETFILTER
3194  	err = netfilter_init();
3195  	if (err)
3196  		goto out;
3197  #endif
3198  
3199  	ptp_classifier_init();
3200  
3201  out:
3202  	return err;
3203  
3204  out_mount:
3205  	unregister_filesystem(&sock_fs_type);
3206  	goto out;
3207  }
3208  
3209  core_initcall(sock_init);	/* early initcall */
3210  
3211  #ifdef CONFIG_PROC_FS
3212  void socket_seq_show(struct seq_file *seq)
3213  {
3214  	seq_printf(seq, "sockets: used %d\n",
3215  		   sock_inuse_get(seq->private));
3216  }
3217  #endif				/* CONFIG_PROC_FS */
3218  
3219  /* Handle the fact that while struct ifreq has the same *layout* on
3220   * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3221   * which are handled elsewhere, it still has different *size* due to
3222   * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3223   * resulting in struct ifreq being 32 and 40 bytes respectively).
3224   * As a result, if the struct happens to be at the end of a page and
3225   * the next page isn't readable/writable, we get a fault. To prevent
3226   * that, copy back and forth to the full size.
3227   */
3228  int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3229  {
3230  	if (in_compat_syscall()) {
3231  		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3232  
3233  		memset(ifr, 0, sizeof(*ifr));
3234  		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3235  			return -EFAULT;
3236  
3237  		if (ifrdata)
3238  			*ifrdata = compat_ptr(ifr32->ifr_data);
3239  
3240  		return 0;
3241  	}
3242  
3243  	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3244  		return -EFAULT;
3245  
3246  	if (ifrdata)
3247  		*ifrdata = ifr->ifr_data;
3248  
3249  	return 0;
3250  }
3251  EXPORT_SYMBOL(get_user_ifreq);
3252  
3253  int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3254  {
3255  	size_t size = sizeof(*ifr);
3256  
3257  	if (in_compat_syscall())
3258  		size = sizeof(struct compat_ifreq);
3259  
3260  	if (copy_to_user(arg, ifr, size))
3261  		return -EFAULT;
3262  
3263  	return 0;
3264  }
3265  EXPORT_SYMBOL(put_user_ifreq);
3266  
3267  #ifdef CONFIG_COMPAT
3268  static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3269  {
3270  	compat_uptr_t uptr32;
3271  	struct ifreq ifr;
3272  	void __user *saved;
3273  	int err;
3274  
3275  	if (get_user_ifreq(&ifr, NULL, uifr32))
3276  		return -EFAULT;
3277  
3278  	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3279  		return -EFAULT;
3280  
3281  	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3282  	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3283  
3284  	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3285  	if (!err) {
3286  		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3287  		if (put_user_ifreq(&ifr, uifr32))
3288  			err = -EFAULT;
3289  	}
3290  	return err;
3291  }
3292  
3293  /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3294  static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3295  				 struct compat_ifreq __user *u_ifreq32)
3296  {
3297  	struct ifreq ifreq;
3298  	void __user *data;
3299  
3300  	if (!is_socket_ioctl_cmd(cmd))
3301  		return -ENOTTY;
3302  	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3303  		return -EFAULT;
3304  	ifreq.ifr_data = data;
3305  
3306  	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3307  }
3308  
3309  static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3310  			 unsigned int cmd, unsigned long arg)
3311  {
3312  	void __user *argp = compat_ptr(arg);
3313  	struct sock *sk = sock->sk;
3314  	struct net *net = sock_net(sk);
3315  
3316  	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3317  		return sock_ioctl(file, cmd, (unsigned long)argp);
3318  
3319  	switch (cmd) {
3320  	case SIOCWANDEV:
3321  		return compat_siocwandev(net, argp);
3322  	case SIOCGSTAMP_OLD:
3323  	case SIOCGSTAMPNS_OLD:
3324  		if (!sock->ops->gettstamp)
3325  			return -ENOIOCTLCMD;
3326  		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3327  					    !COMPAT_USE_64BIT_TIME);
3328  
3329  	case SIOCETHTOOL:
3330  	case SIOCBONDSLAVEINFOQUERY:
3331  	case SIOCBONDINFOQUERY:
3332  	case SIOCSHWTSTAMP:
3333  	case SIOCGHWTSTAMP:
3334  		return compat_ifr_data_ioctl(net, cmd, argp);
3335  
3336  	case FIOSETOWN:
3337  	case SIOCSPGRP:
3338  	case FIOGETOWN:
3339  	case SIOCGPGRP:
3340  	case SIOCBRADDBR:
3341  	case SIOCBRDELBR:
3342  	case SIOCGIFVLAN:
3343  	case SIOCSIFVLAN:
3344  	case SIOCGSKNS:
3345  	case SIOCGSTAMP_NEW:
3346  	case SIOCGSTAMPNS_NEW:
3347  	case SIOCGIFCONF:
3348  	case SIOCSIFBR:
3349  	case SIOCGIFBR:
3350  		return sock_ioctl(file, cmd, arg);
3351  
3352  	case SIOCGIFFLAGS:
3353  	case SIOCSIFFLAGS:
3354  	case SIOCGIFMAP:
3355  	case SIOCSIFMAP:
3356  	case SIOCGIFMETRIC:
3357  	case SIOCSIFMETRIC:
3358  	case SIOCGIFMTU:
3359  	case SIOCSIFMTU:
3360  	case SIOCGIFMEM:
3361  	case SIOCSIFMEM:
3362  	case SIOCGIFHWADDR:
3363  	case SIOCSIFHWADDR:
3364  	case SIOCADDMULTI:
3365  	case SIOCDELMULTI:
3366  	case SIOCGIFINDEX:
3367  	case SIOCGIFADDR:
3368  	case SIOCSIFADDR:
3369  	case SIOCSIFHWBROADCAST:
3370  	case SIOCDIFADDR:
3371  	case SIOCGIFBRDADDR:
3372  	case SIOCSIFBRDADDR:
3373  	case SIOCGIFDSTADDR:
3374  	case SIOCSIFDSTADDR:
3375  	case SIOCGIFNETMASK:
3376  	case SIOCSIFNETMASK:
3377  	case SIOCSIFPFLAGS:
3378  	case SIOCGIFPFLAGS:
3379  	case SIOCGIFTXQLEN:
3380  	case SIOCSIFTXQLEN:
3381  	case SIOCBRADDIF:
3382  	case SIOCBRDELIF:
3383  	case SIOCGIFNAME:
3384  	case SIOCSIFNAME:
3385  	case SIOCGMIIPHY:
3386  	case SIOCGMIIREG:
3387  	case SIOCSMIIREG:
3388  	case SIOCBONDENSLAVE:
3389  	case SIOCBONDRELEASE:
3390  	case SIOCBONDSETHWADDR:
3391  	case SIOCBONDCHANGEACTIVE:
3392  	case SIOCSARP:
3393  	case SIOCGARP:
3394  	case SIOCDARP:
3395  	case SIOCOUTQ:
3396  	case SIOCOUTQNSD:
3397  	case SIOCATMARK:
3398  		return sock_do_ioctl(net, sock, cmd, arg);
3399  	}
3400  
3401  	return -ENOIOCTLCMD;
3402  }
3403  
3404  static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3405  			      unsigned long arg)
3406  {
3407  	struct socket *sock = file->private_data;
3408  	int ret = -ENOIOCTLCMD;
3409  	struct sock *sk;
3410  	struct net *net;
3411  
3412  	sk = sock->sk;
3413  	net = sock_net(sk);
3414  
3415  	if (sock->ops->compat_ioctl)
3416  		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3417  
3418  	if (ret == -ENOIOCTLCMD &&
3419  	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3420  		ret = compat_wext_handle_ioctl(net, cmd, arg);
3421  
3422  	if (ret == -ENOIOCTLCMD)
3423  		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3424  
3425  	return ret;
3426  }
3427  #endif
3428  
3429  /**
3430   *	kernel_bind - bind an address to a socket (kernel space)
3431   *	@sock: socket
3432   *	@addr: address
3433   *	@addrlen: length of address
3434   *
3435   *	Returns 0 or an error.
3436   */
3437  
3438  int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3439  {
3440  	return sock->ops->bind(sock, addr, addrlen);
3441  }
3442  EXPORT_SYMBOL(kernel_bind);
3443  
3444  /**
3445   *	kernel_listen - move socket to listening state (kernel space)
3446   *	@sock: socket
3447   *	@backlog: pending connections queue size
3448   *
3449   *	Returns 0 or an error.
3450   */
3451  
3452  int kernel_listen(struct socket *sock, int backlog)
3453  {
3454  	return sock->ops->listen(sock, backlog);
3455  }
3456  EXPORT_SYMBOL(kernel_listen);
3457  
3458  /**
3459   *	kernel_accept - accept a connection (kernel space)
3460   *	@sock: listening socket
3461   *	@newsock: new connected socket
3462   *	@flags: flags
3463   *
3464   *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3465   *	If it fails, @newsock is guaranteed to be %NULL.
3466   *	Returns 0 or an error.
3467   */
3468  
3469  int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3470  {
3471  	struct sock *sk = sock->sk;
3472  	int err;
3473  
3474  	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3475  			       newsock);
3476  	if (err < 0)
3477  		goto done;
3478  
3479  	err = sock->ops->accept(sock, *newsock, flags, true);
3480  	if (err < 0) {
3481  		sock_release(*newsock);
3482  		*newsock = NULL;
3483  		goto done;
3484  	}
3485  
3486  	(*newsock)->ops = sock->ops;
3487  	__module_get((*newsock)->ops->owner);
3488  
3489  done:
3490  	return err;
3491  }
3492  EXPORT_SYMBOL(kernel_accept);
3493  
3494  /**
3495   *	kernel_connect - connect a socket (kernel space)
3496   *	@sock: socket
3497   *	@addr: address
3498   *	@addrlen: address length
3499   *	@flags: flags (O_NONBLOCK, ...)
3500   *
3501   *	For datagram sockets, @addr is the address to which datagrams are sent
3502   *	by default, and the only address from which datagrams are received.
3503   *	For stream sockets, attempts to connect to @addr.
3504   *	Returns 0 or an error code.
3505   */
3506  
3507  int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3508  		   int flags)
3509  {
3510  	return sock->ops->connect(sock, addr, addrlen, flags);
3511  }
3512  EXPORT_SYMBOL(kernel_connect);
3513  
3514  /**
3515   *	kernel_getsockname - get the address which the socket is bound (kernel space)
3516   *	@sock: socket
3517   *	@addr: address holder
3518   *
3519   * 	Fills the @addr pointer with the address which the socket is bound.
3520   *	Returns the length of the address in bytes or an error code.
3521   */
3522  
3523  int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3524  {
3525  	return sock->ops->getname(sock, addr, 0);
3526  }
3527  EXPORT_SYMBOL(kernel_getsockname);
3528  
3529  /**
3530   *	kernel_getpeername - get the address which the socket is connected (kernel space)
3531   *	@sock: socket
3532   *	@addr: address holder
3533   *
3534   * 	Fills the @addr pointer with the address which the socket is connected.
3535   *	Returns the length of the address in bytes or an error code.
3536   */
3537  
3538  int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3539  {
3540  	return sock->ops->getname(sock, addr, 1);
3541  }
3542  EXPORT_SYMBOL(kernel_getpeername);
3543  
3544  /**
3545   *	kernel_sendpage - send a &page through a socket (kernel space)
3546   *	@sock: socket
3547   *	@page: page
3548   *	@offset: page offset
3549   *	@size: total size in bytes
3550   *	@flags: flags (MSG_DONTWAIT, ...)
3551   *
3552   *	Returns the total amount sent in bytes or an error.
3553   */
3554  
3555  int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3556  		    size_t size, int flags)
3557  {
3558  	if (sock->ops->sendpage) {
3559  		/* Warn in case the improper page to zero-copy send */
3560  		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3561  		return sock->ops->sendpage(sock, page, offset, size, flags);
3562  	}
3563  	return sock_no_sendpage(sock, page, offset, size, flags);
3564  }
3565  EXPORT_SYMBOL(kernel_sendpage);
3566  
3567  /**
3568   *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3569   *	@sk: sock
3570   *	@page: page
3571   *	@offset: page offset
3572   *	@size: total size in bytes
3573   *	@flags: flags (MSG_DONTWAIT, ...)
3574   *
3575   *	Returns the total amount sent in bytes or an error.
3576   *	Caller must hold @sk.
3577   */
3578  
3579  int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3580  			   size_t size, int flags)
3581  {
3582  	struct socket *sock = sk->sk_socket;
3583  
3584  	if (sock->ops->sendpage_locked)
3585  		return sock->ops->sendpage_locked(sk, page, offset, size,
3586  						  flags);
3587  
3588  	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3589  }
3590  EXPORT_SYMBOL(kernel_sendpage_locked);
3591  
3592  /**
3593   *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3594   *	@sock: socket
3595   *	@how: connection part
3596   *
3597   *	Returns 0 or an error.
3598   */
3599  
3600  int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3601  {
3602  	return sock->ops->shutdown(sock, how);
3603  }
3604  EXPORT_SYMBOL(kernel_sock_shutdown);
3605  
3606  /**
3607   *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3608   *	@sk: socket
3609   *
3610   *	This routine returns the IP overhead imposed by a socket i.e.
3611   *	the length of the underlying IP header, depending on whether
3612   *	this is an IPv4 or IPv6 socket and the length from IP options turned
3613   *	on at the socket. Assumes that the caller has a lock on the socket.
3614   */
3615  
3616  u32 kernel_sock_ip_overhead(struct sock *sk)
3617  {
3618  	struct inet_sock *inet;
3619  	struct ip_options_rcu *opt;
3620  	u32 overhead = 0;
3621  #if IS_ENABLED(CONFIG_IPV6)
3622  	struct ipv6_pinfo *np;
3623  	struct ipv6_txoptions *optv6 = NULL;
3624  #endif /* IS_ENABLED(CONFIG_IPV6) */
3625  
3626  	if (!sk)
3627  		return overhead;
3628  
3629  	switch (sk->sk_family) {
3630  	case AF_INET:
3631  		inet = inet_sk(sk);
3632  		overhead += sizeof(struct iphdr);
3633  		opt = rcu_dereference_protected(inet->inet_opt,
3634  						sock_owned_by_user(sk));
3635  		if (opt)
3636  			overhead += opt->opt.optlen;
3637  		return overhead;
3638  #if IS_ENABLED(CONFIG_IPV6)
3639  	case AF_INET6:
3640  		np = inet6_sk(sk);
3641  		overhead += sizeof(struct ipv6hdr);
3642  		if (np)
3643  			optv6 = rcu_dereference_protected(np->opt,
3644  							  sock_owned_by_user(sk));
3645  		if (optv6)
3646  			overhead += (optv6->opt_flen + optv6->opt_nflen);
3647  		return overhead;
3648  #endif /* IS_ENABLED(CONFIG_IPV6) */
3649  	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3650  		return overhead;
3651  	}
3652  }
3653  EXPORT_SYMBOL(kernel_sock_ip_overhead);
3654