xref: /linux/net/socket.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 	int fd;
355 
356 	fd = get_unused_fd_flags(flags);
357 	if (unlikely(fd < 0))
358 		return fd;
359 
360 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 	if (unlikely(!path.dentry)) {
362 		put_unused_fd(fd);
363 		return -ENOMEM;
364 	}
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(!file)) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		put_unused_fd(fd);
377 		return -ENFILE;
378 	}
379 
380 	sock->file = file;
381 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 	file->f_pos = 0;
383 	file->private_data = sock;
384 
385 	*f = file;
386 	return fd;
387 }
388 
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 	struct file *newfile;
392 	int fd = sock_alloc_file(sock, &newfile, flags);
393 
394 	if (likely(fd >= 0))
395 		fd_install(fd, newfile);
396 
397 	return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400 
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 	if (file->f_op == &socket_file_ops)
404 		return file->private_data;	/* set in sock_map_fd */
405 
406 	*err = -ENOTSOCK;
407 	return NULL;
408 }
409 
410 /**
411  *	sockfd_lookup - Go from a file number to its socket slot
412  *	@fd: file handle
413  *	@err: pointer to an error code return
414  *
415  *	The file handle passed in is locked and the socket it is bound
416  *	too is returned. If an error occurs the err pointer is overwritten
417  *	with a negative errno code and NULL is returned. The function checks
418  *	for both invalid handles and passing a handle which is not a socket.
419  *
420  *	On a success the socket object pointer is returned.
421  */
422 
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 	struct file *file;
426 	struct socket *sock;
427 
428 	file = fget(fd);
429 	if (!file) {
430 		*err = -EBADF;
431 		return NULL;
432 	}
433 
434 	sock = sock_from_file(file, err);
435 	if (!sock)
436 		fput(file);
437 	return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440 
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 	struct file *file;
444 	struct socket *sock;
445 
446 	*err = -EBADF;
447 	file = fget_light(fd, fput_needed);
448 	if (file) {
449 		sock = sock_from_file(file, err);
450 		if (sock)
451 			return sock;
452 		fput_light(file, *fput_needed);
453 	}
454 	return NULL;
455 }
456 
457 /**
458  *	sock_alloc	-	allocate a socket
459  *
460  *	Allocate a new inode and socket object. The two are bound together
461  *	and initialised. The socket is then returned. If we are out of inodes
462  *	NULL is returned.
463  */
464 
465 static struct socket *sock_alloc(void)
466 {
467 	struct inode *inode;
468 	struct socket *sock;
469 
470 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 	if (!inode)
472 		return NULL;
473 
474 	sock = SOCKET_I(inode);
475 
476 	kmemcheck_annotate_bitfield(sock, type);
477 	inode->i_ino = get_next_ino();
478 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 	inode->i_uid = current_fsuid();
480 	inode->i_gid = current_fsgid();
481 
482 	percpu_add(sockets_in_use, 1);
483 	return sock;
484 }
485 
486 /*
487  *	In theory you can't get an open on this inode, but /proc provides
488  *	a back door. Remember to keep it shut otherwise you'll let the
489  *	creepy crawlies in.
490  */
491 
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 	return -ENXIO;
495 }
496 
497 const struct file_operations bad_sock_fops = {
498 	.owner = THIS_MODULE,
499 	.open = sock_no_open,
500 	.llseek = noop_llseek,
501 };
502 
503 /**
504  *	sock_release	-	close a socket
505  *	@sock: socket to close
506  *
507  *	The socket is released from the protocol stack if it has a release
508  *	callback, and the inode is then released if the socket is bound to
509  *	an inode not a file.
510  */
511 
512 void sock_release(struct socket *sock)
513 {
514 	if (sock->ops) {
515 		struct module *owner = sock->ops->owner;
516 
517 		sock->ops->release(sock);
518 		sock->ops = NULL;
519 		module_put(owner);
520 	}
521 
522 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
524 
525 	percpu_sub(sockets_in_use, 1);
526 	if (!sock->file) {
527 		iput(SOCK_INODE(sock));
528 		return;
529 	}
530 	sock->file = NULL;
531 }
532 EXPORT_SYMBOL(sock_release);
533 
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
535 {
536 	*tx_flags = 0;
537 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 		*tx_flags |= SKBTX_HW_TSTAMP;
539 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 		*tx_flags |= SKBTX_SW_TSTAMP;
541 	return 0;
542 }
543 EXPORT_SYMBOL(sock_tx_timestamp);
544 
545 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
546 				       struct msghdr *msg, size_t size)
547 {
548 	struct sock_iocb *si = kiocb_to_siocb(iocb);
549 
550 	sock_update_classid(sock->sk);
551 
552 	si->sock = sock;
553 	si->scm = NULL;
554 	si->msg = msg;
555 	si->size = size;
556 
557 	return sock->ops->sendmsg(iocb, sock, msg, size);
558 }
559 
560 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
561 				 struct msghdr *msg, size_t size)
562 {
563 	int err = security_socket_sendmsg(sock, msg, size);
564 
565 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
566 }
567 
568 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
569 {
570 	struct kiocb iocb;
571 	struct sock_iocb siocb;
572 	int ret;
573 
574 	init_sync_kiocb(&iocb, NULL);
575 	iocb.private = &siocb;
576 	ret = __sock_sendmsg(&iocb, sock, msg, size);
577 	if (-EIOCBQUEUED == ret)
578 		ret = wait_on_sync_kiocb(&iocb);
579 	return ret;
580 }
581 EXPORT_SYMBOL(sock_sendmsg);
582 
583 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
584 {
585 	struct kiocb iocb;
586 	struct sock_iocb siocb;
587 	int ret;
588 
589 	init_sync_kiocb(&iocb, NULL);
590 	iocb.private = &siocb;
591 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
592 	if (-EIOCBQUEUED == ret)
593 		ret = wait_on_sync_kiocb(&iocb);
594 	return ret;
595 }
596 
597 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
598 		   struct kvec *vec, size_t num, size_t size)
599 {
600 	mm_segment_t oldfs = get_fs();
601 	int result;
602 
603 	set_fs(KERNEL_DS);
604 	/*
605 	 * the following is safe, since for compiler definitions of kvec and
606 	 * iovec are identical, yielding the same in-core layout and alignment
607 	 */
608 	msg->msg_iov = (struct iovec *)vec;
609 	msg->msg_iovlen = num;
610 	result = sock_sendmsg(sock, msg, size);
611 	set_fs(oldfs);
612 	return result;
613 }
614 EXPORT_SYMBOL(kernel_sendmsg);
615 
616 static int ktime2ts(ktime_t kt, struct timespec *ts)
617 {
618 	if (kt.tv64) {
619 		*ts = ktime_to_timespec(kt);
620 		return 1;
621 	} else {
622 		return 0;
623 	}
624 }
625 
626 /*
627  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
628  */
629 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
630 	struct sk_buff *skb)
631 {
632 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
633 	struct timespec ts[3];
634 	int empty = 1;
635 	struct skb_shared_hwtstamps *shhwtstamps =
636 		skb_hwtstamps(skb);
637 
638 	/* Race occurred between timestamp enabling and packet
639 	   receiving.  Fill in the current time for now. */
640 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
641 		__net_timestamp(skb);
642 
643 	if (need_software_tstamp) {
644 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
645 			struct timeval tv;
646 			skb_get_timestamp(skb, &tv);
647 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
648 				 sizeof(tv), &tv);
649 		} else {
650 			skb_get_timestampns(skb, &ts[0]);
651 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
652 				 sizeof(ts[0]), &ts[0]);
653 		}
654 	}
655 
656 
657 	memset(ts, 0, sizeof(ts));
658 	if (skb->tstamp.tv64 &&
659 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
660 		skb_get_timestampns(skb, ts + 0);
661 		empty = 0;
662 	}
663 	if (shhwtstamps) {
664 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
665 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
666 			empty = 0;
667 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
668 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
669 			empty = 0;
670 	}
671 	if (!empty)
672 		put_cmsg(msg, SOL_SOCKET,
673 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
674 }
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676 
677 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
678 				   struct sk_buff *skb)
679 {
680 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
681 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
682 			sizeof(__u32), &skb->dropcount);
683 }
684 
685 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
686 	struct sk_buff *skb)
687 {
688 	sock_recv_timestamp(msg, sk, skb);
689 	sock_recv_drops(msg, sk, skb);
690 }
691 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
692 
693 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
694 				       struct msghdr *msg, size_t size, int flags)
695 {
696 	struct sock_iocb *si = kiocb_to_siocb(iocb);
697 
698 	sock_update_classid(sock->sk);
699 
700 	si->sock = sock;
701 	si->scm = NULL;
702 	si->msg = msg;
703 	si->size = size;
704 	si->flags = flags;
705 
706 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
707 }
708 
709 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
710 				 struct msghdr *msg, size_t size, int flags)
711 {
712 	int err = security_socket_recvmsg(sock, msg, size, flags);
713 
714 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
715 }
716 
717 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
718 		 size_t size, int flags)
719 {
720 	struct kiocb iocb;
721 	struct sock_iocb siocb;
722 	int ret;
723 
724 	init_sync_kiocb(&iocb, NULL);
725 	iocb.private = &siocb;
726 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
727 	if (-EIOCBQUEUED == ret)
728 		ret = wait_on_sync_kiocb(&iocb);
729 	return ret;
730 }
731 EXPORT_SYMBOL(sock_recvmsg);
732 
733 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
734 			      size_t size, int flags)
735 {
736 	struct kiocb iocb;
737 	struct sock_iocb siocb;
738 	int ret;
739 
740 	init_sync_kiocb(&iocb, NULL);
741 	iocb.private = &siocb;
742 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
743 	if (-EIOCBQUEUED == ret)
744 		ret = wait_on_sync_kiocb(&iocb);
745 	return ret;
746 }
747 
748 /**
749  * kernel_recvmsg - Receive a message from a socket (kernel space)
750  * @sock:       The socket to receive the message from
751  * @msg:        Received message
752  * @vec:        Input s/g array for message data
753  * @num:        Size of input s/g array
754  * @size:       Number of bytes to read
755  * @flags:      Message flags (MSG_DONTWAIT, etc...)
756  *
757  * On return the msg structure contains the scatter/gather array passed in the
758  * vec argument. The array is modified so that it consists of the unfilled
759  * portion of the original array.
760  *
761  * The returned value is the total number of bytes received, or an error.
762  */
763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
764 		   struct kvec *vec, size_t num, size_t size, int flags)
765 {
766 	mm_segment_t oldfs = get_fs();
767 	int result;
768 
769 	set_fs(KERNEL_DS);
770 	/*
771 	 * the following is safe, since for compiler definitions of kvec and
772 	 * iovec are identical, yielding the same in-core layout and alignment
773 	 */
774 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
775 	result = sock_recvmsg(sock, msg, size, flags);
776 	set_fs(oldfs);
777 	return result;
778 }
779 EXPORT_SYMBOL(kernel_recvmsg);
780 
781 static void sock_aio_dtor(struct kiocb *iocb)
782 {
783 	kfree(iocb->private);
784 }
785 
786 static ssize_t sock_sendpage(struct file *file, struct page *page,
787 			     int offset, size_t size, loff_t *ppos, int more)
788 {
789 	struct socket *sock;
790 	int flags;
791 
792 	sock = file->private_data;
793 
794 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
795 	if (more)
796 		flags |= MSG_MORE;
797 
798 	return kernel_sendpage(sock, page, offset, size, flags);
799 }
800 
801 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
802 				struct pipe_inode_info *pipe, size_t len,
803 				unsigned int flags)
804 {
805 	struct socket *sock = file->private_data;
806 
807 	if (unlikely(!sock->ops->splice_read))
808 		return -EINVAL;
809 
810 	sock_update_classid(sock->sk);
811 
812 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
813 }
814 
815 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
816 					 struct sock_iocb *siocb)
817 {
818 	if (!is_sync_kiocb(iocb)) {
819 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
820 		if (!siocb)
821 			return NULL;
822 		iocb->ki_dtor = sock_aio_dtor;
823 	}
824 
825 	siocb->kiocb = iocb;
826 	iocb->private = siocb;
827 	return siocb;
828 }
829 
830 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
831 		struct file *file, const struct iovec *iov,
832 		unsigned long nr_segs)
833 {
834 	struct socket *sock = file->private_data;
835 	size_t size = 0;
836 	int i;
837 
838 	for (i = 0; i < nr_segs; i++)
839 		size += iov[i].iov_len;
840 
841 	msg->msg_name = NULL;
842 	msg->msg_namelen = 0;
843 	msg->msg_control = NULL;
844 	msg->msg_controllen = 0;
845 	msg->msg_iov = (struct iovec *)iov;
846 	msg->msg_iovlen = nr_segs;
847 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
848 
849 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
850 }
851 
852 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
853 				unsigned long nr_segs, loff_t pos)
854 {
855 	struct sock_iocb siocb, *x;
856 
857 	if (pos != 0)
858 		return -ESPIPE;
859 
860 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
861 		return 0;
862 
863 
864 	x = alloc_sock_iocb(iocb, &siocb);
865 	if (!x)
866 		return -ENOMEM;
867 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
868 }
869 
870 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
871 			struct file *file, const struct iovec *iov,
872 			unsigned long nr_segs)
873 {
874 	struct socket *sock = file->private_data;
875 	size_t size = 0;
876 	int i;
877 
878 	for (i = 0; i < nr_segs; i++)
879 		size += iov[i].iov_len;
880 
881 	msg->msg_name = NULL;
882 	msg->msg_namelen = 0;
883 	msg->msg_control = NULL;
884 	msg->msg_controllen = 0;
885 	msg->msg_iov = (struct iovec *)iov;
886 	msg->msg_iovlen = nr_segs;
887 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
888 	if (sock->type == SOCK_SEQPACKET)
889 		msg->msg_flags |= MSG_EOR;
890 
891 	return __sock_sendmsg(iocb, sock, msg, size);
892 }
893 
894 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
895 			  unsigned long nr_segs, loff_t pos)
896 {
897 	struct sock_iocb siocb, *x;
898 
899 	if (pos != 0)
900 		return -ESPIPE;
901 
902 	x = alloc_sock_iocb(iocb, &siocb);
903 	if (!x)
904 		return -ENOMEM;
905 
906 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
907 }
908 
909 /*
910  * Atomic setting of ioctl hooks to avoid race
911  * with module unload.
912  */
913 
914 static DEFINE_MUTEX(br_ioctl_mutex);
915 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
916 
917 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
918 {
919 	mutex_lock(&br_ioctl_mutex);
920 	br_ioctl_hook = hook;
921 	mutex_unlock(&br_ioctl_mutex);
922 }
923 EXPORT_SYMBOL(brioctl_set);
924 
925 static DEFINE_MUTEX(vlan_ioctl_mutex);
926 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
927 
928 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
929 {
930 	mutex_lock(&vlan_ioctl_mutex);
931 	vlan_ioctl_hook = hook;
932 	mutex_unlock(&vlan_ioctl_mutex);
933 }
934 EXPORT_SYMBOL(vlan_ioctl_set);
935 
936 static DEFINE_MUTEX(dlci_ioctl_mutex);
937 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
938 
939 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
940 {
941 	mutex_lock(&dlci_ioctl_mutex);
942 	dlci_ioctl_hook = hook;
943 	mutex_unlock(&dlci_ioctl_mutex);
944 }
945 EXPORT_SYMBOL(dlci_ioctl_set);
946 
947 static long sock_do_ioctl(struct net *net, struct socket *sock,
948 				 unsigned int cmd, unsigned long arg)
949 {
950 	int err;
951 	void __user *argp = (void __user *)arg;
952 
953 	err = sock->ops->ioctl(sock, cmd, arg);
954 
955 	/*
956 	 * If this ioctl is unknown try to hand it down
957 	 * to the NIC driver.
958 	 */
959 	if (err == -ENOIOCTLCMD)
960 		err = dev_ioctl(net, cmd, argp);
961 
962 	return err;
963 }
964 
965 /*
966  *	With an ioctl, arg may well be a user mode pointer, but we don't know
967  *	what to do with it - that's up to the protocol still.
968  */
969 
970 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
971 {
972 	struct socket *sock;
973 	struct sock *sk;
974 	void __user *argp = (void __user *)arg;
975 	int pid, err;
976 	struct net *net;
977 
978 	sock = file->private_data;
979 	sk = sock->sk;
980 	net = sock_net(sk);
981 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
982 		err = dev_ioctl(net, cmd, argp);
983 	} else
984 #ifdef CONFIG_WEXT_CORE
985 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
986 		err = dev_ioctl(net, cmd, argp);
987 	} else
988 #endif
989 		switch (cmd) {
990 		case FIOSETOWN:
991 		case SIOCSPGRP:
992 			err = -EFAULT;
993 			if (get_user(pid, (int __user *)argp))
994 				break;
995 			err = f_setown(sock->file, pid, 1);
996 			break;
997 		case FIOGETOWN:
998 		case SIOCGPGRP:
999 			err = put_user(f_getown(sock->file),
1000 				       (int __user *)argp);
1001 			break;
1002 		case SIOCGIFBR:
1003 		case SIOCSIFBR:
1004 		case SIOCBRADDBR:
1005 		case SIOCBRDELBR:
1006 			err = -ENOPKG;
1007 			if (!br_ioctl_hook)
1008 				request_module("bridge");
1009 
1010 			mutex_lock(&br_ioctl_mutex);
1011 			if (br_ioctl_hook)
1012 				err = br_ioctl_hook(net, cmd, argp);
1013 			mutex_unlock(&br_ioctl_mutex);
1014 			break;
1015 		case SIOCGIFVLAN:
1016 		case SIOCSIFVLAN:
1017 			err = -ENOPKG;
1018 			if (!vlan_ioctl_hook)
1019 				request_module("8021q");
1020 
1021 			mutex_lock(&vlan_ioctl_mutex);
1022 			if (vlan_ioctl_hook)
1023 				err = vlan_ioctl_hook(net, argp);
1024 			mutex_unlock(&vlan_ioctl_mutex);
1025 			break;
1026 		case SIOCADDDLCI:
1027 		case SIOCDELDLCI:
1028 			err = -ENOPKG;
1029 			if (!dlci_ioctl_hook)
1030 				request_module("dlci");
1031 
1032 			mutex_lock(&dlci_ioctl_mutex);
1033 			if (dlci_ioctl_hook)
1034 				err = dlci_ioctl_hook(cmd, argp);
1035 			mutex_unlock(&dlci_ioctl_mutex);
1036 			break;
1037 		default:
1038 			err = sock_do_ioctl(net, sock, cmd, arg);
1039 			break;
1040 		}
1041 	return err;
1042 }
1043 
1044 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1045 {
1046 	int err;
1047 	struct socket *sock = NULL;
1048 
1049 	err = security_socket_create(family, type, protocol, 1);
1050 	if (err)
1051 		goto out;
1052 
1053 	sock = sock_alloc();
1054 	if (!sock) {
1055 		err = -ENOMEM;
1056 		goto out;
1057 	}
1058 
1059 	sock->type = type;
1060 	err = security_socket_post_create(sock, family, type, protocol, 1);
1061 	if (err)
1062 		goto out_release;
1063 
1064 out:
1065 	*res = sock;
1066 	return err;
1067 out_release:
1068 	sock_release(sock);
1069 	sock = NULL;
1070 	goto out;
1071 }
1072 EXPORT_SYMBOL(sock_create_lite);
1073 
1074 /* No kernel lock held - perfect */
1075 static unsigned int sock_poll(struct file *file, poll_table *wait)
1076 {
1077 	struct socket *sock;
1078 
1079 	/*
1080 	 *      We can't return errors to poll, so it's either yes or no.
1081 	 */
1082 	sock = file->private_data;
1083 	return sock->ops->poll(file, sock, wait);
1084 }
1085 
1086 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1087 {
1088 	struct socket *sock = file->private_data;
1089 
1090 	return sock->ops->mmap(file, sock, vma);
1091 }
1092 
1093 static int sock_close(struct inode *inode, struct file *filp)
1094 {
1095 	/*
1096 	 *      It was possible the inode is NULL we were
1097 	 *      closing an unfinished socket.
1098 	 */
1099 
1100 	if (!inode) {
1101 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1102 		return 0;
1103 	}
1104 	sock_release(SOCKET_I(inode));
1105 	return 0;
1106 }
1107 
1108 /*
1109  *	Update the socket async list
1110  *
1111  *	Fasync_list locking strategy.
1112  *
1113  *	1. fasync_list is modified only under process context socket lock
1114  *	   i.e. under semaphore.
1115  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1116  *	   or under socket lock
1117  */
1118 
1119 static int sock_fasync(int fd, struct file *filp, int on)
1120 {
1121 	struct socket *sock = filp->private_data;
1122 	struct sock *sk = sock->sk;
1123 	struct socket_wq *wq;
1124 
1125 	if (sk == NULL)
1126 		return -EINVAL;
1127 
1128 	lock_sock(sk);
1129 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1130 	fasync_helper(fd, filp, on, &wq->fasync_list);
1131 
1132 	if (!wq->fasync_list)
1133 		sock_reset_flag(sk, SOCK_FASYNC);
1134 	else
1135 		sock_set_flag(sk, SOCK_FASYNC);
1136 
1137 	release_sock(sk);
1138 	return 0;
1139 }
1140 
1141 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1142 
1143 int sock_wake_async(struct socket *sock, int how, int band)
1144 {
1145 	struct socket_wq *wq;
1146 
1147 	if (!sock)
1148 		return -1;
1149 	rcu_read_lock();
1150 	wq = rcu_dereference(sock->wq);
1151 	if (!wq || !wq->fasync_list) {
1152 		rcu_read_unlock();
1153 		return -1;
1154 	}
1155 	switch (how) {
1156 	case SOCK_WAKE_WAITD:
1157 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1158 			break;
1159 		goto call_kill;
1160 	case SOCK_WAKE_SPACE:
1161 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1162 			break;
1163 		/* fall through */
1164 	case SOCK_WAKE_IO:
1165 call_kill:
1166 		kill_fasync(&wq->fasync_list, SIGIO, band);
1167 		break;
1168 	case SOCK_WAKE_URG:
1169 		kill_fasync(&wq->fasync_list, SIGURG, band);
1170 	}
1171 	rcu_read_unlock();
1172 	return 0;
1173 }
1174 EXPORT_SYMBOL(sock_wake_async);
1175 
1176 int __sock_create(struct net *net, int family, int type, int protocol,
1177 			 struct socket **res, int kern)
1178 {
1179 	int err;
1180 	struct socket *sock;
1181 	const struct net_proto_family *pf;
1182 
1183 	/*
1184 	 *      Check protocol is in range
1185 	 */
1186 	if (family < 0 || family >= NPROTO)
1187 		return -EAFNOSUPPORT;
1188 	if (type < 0 || type >= SOCK_MAX)
1189 		return -EINVAL;
1190 
1191 	/* Compatibility.
1192 
1193 	   This uglymoron is moved from INET layer to here to avoid
1194 	   deadlock in module load.
1195 	 */
1196 	if (family == PF_INET && type == SOCK_PACKET) {
1197 		static int warned;
1198 		if (!warned) {
1199 			warned = 1;
1200 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1201 			       current->comm);
1202 		}
1203 		family = PF_PACKET;
1204 	}
1205 
1206 	err = security_socket_create(family, type, protocol, kern);
1207 	if (err)
1208 		return err;
1209 
1210 	/*
1211 	 *	Allocate the socket and allow the family to set things up. if
1212 	 *	the protocol is 0, the family is instructed to select an appropriate
1213 	 *	default.
1214 	 */
1215 	sock = sock_alloc();
1216 	if (!sock) {
1217 		if (net_ratelimit())
1218 			printk(KERN_WARNING "socket: no more sockets\n");
1219 		return -ENFILE;	/* Not exactly a match, but its the
1220 				   closest posix thing */
1221 	}
1222 
1223 	sock->type = type;
1224 
1225 #ifdef CONFIG_MODULES
1226 	/* Attempt to load a protocol module if the find failed.
1227 	 *
1228 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1229 	 * requested real, full-featured networking support upon configuration.
1230 	 * Otherwise module support will break!
1231 	 */
1232 	if (rcu_access_pointer(net_families[family]) == NULL)
1233 		request_module("net-pf-%d", family);
1234 #endif
1235 
1236 	rcu_read_lock();
1237 	pf = rcu_dereference(net_families[family]);
1238 	err = -EAFNOSUPPORT;
1239 	if (!pf)
1240 		goto out_release;
1241 
1242 	/*
1243 	 * We will call the ->create function, that possibly is in a loadable
1244 	 * module, so we have to bump that loadable module refcnt first.
1245 	 */
1246 	if (!try_module_get(pf->owner))
1247 		goto out_release;
1248 
1249 	/* Now protected by module ref count */
1250 	rcu_read_unlock();
1251 
1252 	err = pf->create(net, sock, protocol, kern);
1253 	if (err < 0)
1254 		goto out_module_put;
1255 
1256 	/*
1257 	 * Now to bump the refcnt of the [loadable] module that owns this
1258 	 * socket at sock_release time we decrement its refcnt.
1259 	 */
1260 	if (!try_module_get(sock->ops->owner))
1261 		goto out_module_busy;
1262 
1263 	/*
1264 	 * Now that we're done with the ->create function, the [loadable]
1265 	 * module can have its refcnt decremented
1266 	 */
1267 	module_put(pf->owner);
1268 	err = security_socket_post_create(sock, family, type, protocol, kern);
1269 	if (err)
1270 		goto out_sock_release;
1271 	*res = sock;
1272 
1273 	return 0;
1274 
1275 out_module_busy:
1276 	err = -EAFNOSUPPORT;
1277 out_module_put:
1278 	sock->ops = NULL;
1279 	module_put(pf->owner);
1280 out_sock_release:
1281 	sock_release(sock);
1282 	return err;
1283 
1284 out_release:
1285 	rcu_read_unlock();
1286 	goto out_sock_release;
1287 }
1288 EXPORT_SYMBOL(__sock_create);
1289 
1290 int sock_create(int family, int type, int protocol, struct socket **res)
1291 {
1292 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1293 }
1294 EXPORT_SYMBOL(sock_create);
1295 
1296 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1297 {
1298 	return __sock_create(&init_net, family, type, protocol, res, 1);
1299 }
1300 EXPORT_SYMBOL(sock_create_kern);
1301 
1302 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1303 {
1304 	int retval;
1305 	struct socket *sock;
1306 	int flags;
1307 
1308 	/* Check the SOCK_* constants for consistency.  */
1309 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1310 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1311 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1312 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1313 
1314 	flags = type & ~SOCK_TYPE_MASK;
1315 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1316 		return -EINVAL;
1317 	type &= SOCK_TYPE_MASK;
1318 
1319 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1320 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1321 
1322 	retval = sock_create(family, type, protocol, &sock);
1323 	if (retval < 0)
1324 		goto out;
1325 
1326 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1327 	if (retval < 0)
1328 		goto out_release;
1329 
1330 out:
1331 	/* It may be already another descriptor 8) Not kernel problem. */
1332 	return retval;
1333 
1334 out_release:
1335 	sock_release(sock);
1336 	return retval;
1337 }
1338 
1339 /*
1340  *	Create a pair of connected sockets.
1341  */
1342 
1343 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1344 		int __user *, usockvec)
1345 {
1346 	struct socket *sock1, *sock2;
1347 	int fd1, fd2, err;
1348 	struct file *newfile1, *newfile2;
1349 	int flags;
1350 
1351 	flags = type & ~SOCK_TYPE_MASK;
1352 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1353 		return -EINVAL;
1354 	type &= SOCK_TYPE_MASK;
1355 
1356 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1357 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1358 
1359 	/*
1360 	 * Obtain the first socket and check if the underlying protocol
1361 	 * supports the socketpair call.
1362 	 */
1363 
1364 	err = sock_create(family, type, protocol, &sock1);
1365 	if (err < 0)
1366 		goto out;
1367 
1368 	err = sock_create(family, type, protocol, &sock2);
1369 	if (err < 0)
1370 		goto out_release_1;
1371 
1372 	err = sock1->ops->socketpair(sock1, sock2);
1373 	if (err < 0)
1374 		goto out_release_both;
1375 
1376 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1377 	if (unlikely(fd1 < 0)) {
1378 		err = fd1;
1379 		goto out_release_both;
1380 	}
1381 
1382 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1383 	if (unlikely(fd2 < 0)) {
1384 		err = fd2;
1385 		fput(newfile1);
1386 		put_unused_fd(fd1);
1387 		sock_release(sock2);
1388 		goto out;
1389 	}
1390 
1391 	audit_fd_pair(fd1, fd2);
1392 	fd_install(fd1, newfile1);
1393 	fd_install(fd2, newfile2);
1394 	/* fd1 and fd2 may be already another descriptors.
1395 	 * Not kernel problem.
1396 	 */
1397 
1398 	err = put_user(fd1, &usockvec[0]);
1399 	if (!err)
1400 		err = put_user(fd2, &usockvec[1]);
1401 	if (!err)
1402 		return 0;
1403 
1404 	sys_close(fd2);
1405 	sys_close(fd1);
1406 	return err;
1407 
1408 out_release_both:
1409 	sock_release(sock2);
1410 out_release_1:
1411 	sock_release(sock1);
1412 out:
1413 	return err;
1414 }
1415 
1416 /*
1417  *	Bind a name to a socket. Nothing much to do here since it's
1418  *	the protocol's responsibility to handle the local address.
1419  *
1420  *	We move the socket address to kernel space before we call
1421  *	the protocol layer (having also checked the address is ok).
1422  */
1423 
1424 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1425 {
1426 	struct socket *sock;
1427 	struct sockaddr_storage address;
1428 	int err, fput_needed;
1429 
1430 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1431 	if (sock) {
1432 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1433 		if (err >= 0) {
1434 			err = security_socket_bind(sock,
1435 						   (struct sockaddr *)&address,
1436 						   addrlen);
1437 			if (!err)
1438 				err = sock->ops->bind(sock,
1439 						      (struct sockaddr *)
1440 						      &address, addrlen);
1441 		}
1442 		fput_light(sock->file, fput_needed);
1443 	}
1444 	return err;
1445 }
1446 
1447 /*
1448  *	Perform a listen. Basically, we allow the protocol to do anything
1449  *	necessary for a listen, and if that works, we mark the socket as
1450  *	ready for listening.
1451  */
1452 
1453 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1454 {
1455 	struct socket *sock;
1456 	int err, fput_needed;
1457 	int somaxconn;
1458 
1459 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1460 	if (sock) {
1461 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1462 		if ((unsigned)backlog > somaxconn)
1463 			backlog = somaxconn;
1464 
1465 		err = security_socket_listen(sock, backlog);
1466 		if (!err)
1467 			err = sock->ops->listen(sock, backlog);
1468 
1469 		fput_light(sock->file, fput_needed);
1470 	}
1471 	return err;
1472 }
1473 
1474 /*
1475  *	For accept, we attempt to create a new socket, set up the link
1476  *	with the client, wake up the client, then return the new
1477  *	connected fd. We collect the address of the connector in kernel
1478  *	space and move it to user at the very end. This is unclean because
1479  *	we open the socket then return an error.
1480  *
1481  *	1003.1g adds the ability to recvmsg() to query connection pending
1482  *	status to recvmsg. We need to add that support in a way thats
1483  *	clean when we restucture accept also.
1484  */
1485 
1486 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1487 		int __user *, upeer_addrlen, int, flags)
1488 {
1489 	struct socket *sock, *newsock;
1490 	struct file *newfile;
1491 	int err, len, newfd, fput_needed;
1492 	struct sockaddr_storage address;
1493 
1494 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1495 		return -EINVAL;
1496 
1497 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1498 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1499 
1500 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1501 	if (!sock)
1502 		goto out;
1503 
1504 	err = -ENFILE;
1505 	newsock = sock_alloc();
1506 	if (!newsock)
1507 		goto out_put;
1508 
1509 	newsock->type = sock->type;
1510 	newsock->ops = sock->ops;
1511 
1512 	/*
1513 	 * We don't need try_module_get here, as the listening socket (sock)
1514 	 * has the protocol module (sock->ops->owner) held.
1515 	 */
1516 	__module_get(newsock->ops->owner);
1517 
1518 	newfd = sock_alloc_file(newsock, &newfile, flags);
1519 	if (unlikely(newfd < 0)) {
1520 		err = newfd;
1521 		sock_release(newsock);
1522 		goto out_put;
1523 	}
1524 
1525 	err = security_socket_accept(sock, newsock);
1526 	if (err)
1527 		goto out_fd;
1528 
1529 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1530 	if (err < 0)
1531 		goto out_fd;
1532 
1533 	if (upeer_sockaddr) {
1534 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1535 					  &len, 2) < 0) {
1536 			err = -ECONNABORTED;
1537 			goto out_fd;
1538 		}
1539 		err = move_addr_to_user((struct sockaddr *)&address,
1540 					len, upeer_sockaddr, upeer_addrlen);
1541 		if (err < 0)
1542 			goto out_fd;
1543 	}
1544 
1545 	/* File flags are not inherited via accept() unlike another OSes. */
1546 
1547 	fd_install(newfd, newfile);
1548 	err = newfd;
1549 
1550 out_put:
1551 	fput_light(sock->file, fput_needed);
1552 out:
1553 	return err;
1554 out_fd:
1555 	fput(newfile);
1556 	put_unused_fd(newfd);
1557 	goto out_put;
1558 }
1559 
1560 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1561 		int __user *, upeer_addrlen)
1562 {
1563 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1564 }
1565 
1566 /*
1567  *	Attempt to connect to a socket with the server address.  The address
1568  *	is in user space so we verify it is OK and move it to kernel space.
1569  *
1570  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1571  *	break bindings
1572  *
1573  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1574  *	other SEQPACKET protocols that take time to connect() as it doesn't
1575  *	include the -EINPROGRESS status for such sockets.
1576  */
1577 
1578 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1579 		int, addrlen)
1580 {
1581 	struct socket *sock;
1582 	struct sockaddr_storage address;
1583 	int err, fput_needed;
1584 
1585 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1586 	if (!sock)
1587 		goto out;
1588 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1589 	if (err < 0)
1590 		goto out_put;
1591 
1592 	err =
1593 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1594 	if (err)
1595 		goto out_put;
1596 
1597 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1598 				 sock->file->f_flags);
1599 out_put:
1600 	fput_light(sock->file, fput_needed);
1601 out:
1602 	return err;
1603 }
1604 
1605 /*
1606  *	Get the local address ('name') of a socket object. Move the obtained
1607  *	name to user space.
1608  */
1609 
1610 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1611 		int __user *, usockaddr_len)
1612 {
1613 	struct socket *sock;
1614 	struct sockaddr_storage address;
1615 	int len, err, fput_needed;
1616 
1617 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618 	if (!sock)
1619 		goto out;
1620 
1621 	err = security_socket_getsockname(sock);
1622 	if (err)
1623 		goto out_put;
1624 
1625 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1626 	if (err)
1627 		goto out_put;
1628 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1629 
1630 out_put:
1631 	fput_light(sock->file, fput_needed);
1632 out:
1633 	return err;
1634 }
1635 
1636 /*
1637  *	Get the remote address ('name') of a socket object. Move the obtained
1638  *	name to user space.
1639  */
1640 
1641 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1642 		int __user *, usockaddr_len)
1643 {
1644 	struct socket *sock;
1645 	struct sockaddr_storage address;
1646 	int len, err, fput_needed;
1647 
1648 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 	if (sock != NULL) {
1650 		err = security_socket_getpeername(sock);
1651 		if (err) {
1652 			fput_light(sock->file, fput_needed);
1653 			return err;
1654 		}
1655 
1656 		err =
1657 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1658 				       1);
1659 		if (!err)
1660 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1661 						usockaddr_len);
1662 		fput_light(sock->file, fput_needed);
1663 	}
1664 	return err;
1665 }
1666 
1667 /*
1668  *	Send a datagram to a given address. We move the address into kernel
1669  *	space and check the user space data area is readable before invoking
1670  *	the protocol.
1671  */
1672 
1673 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1674 		unsigned, flags, struct sockaddr __user *, addr,
1675 		int, addr_len)
1676 {
1677 	struct socket *sock;
1678 	struct sockaddr_storage address;
1679 	int err;
1680 	struct msghdr msg;
1681 	struct iovec iov;
1682 	int fput_needed;
1683 
1684 	if (len > INT_MAX)
1685 		len = INT_MAX;
1686 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 	if (!sock)
1688 		goto out;
1689 
1690 	iov.iov_base = buff;
1691 	iov.iov_len = len;
1692 	msg.msg_name = NULL;
1693 	msg.msg_iov = &iov;
1694 	msg.msg_iovlen = 1;
1695 	msg.msg_control = NULL;
1696 	msg.msg_controllen = 0;
1697 	msg.msg_namelen = 0;
1698 	if (addr) {
1699 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1700 		if (err < 0)
1701 			goto out_put;
1702 		msg.msg_name = (struct sockaddr *)&address;
1703 		msg.msg_namelen = addr_len;
1704 	}
1705 	if (sock->file->f_flags & O_NONBLOCK)
1706 		flags |= MSG_DONTWAIT;
1707 	msg.msg_flags = flags;
1708 	err = sock_sendmsg(sock, &msg, len);
1709 
1710 out_put:
1711 	fput_light(sock->file, fput_needed);
1712 out:
1713 	return err;
1714 }
1715 
1716 /*
1717  *	Send a datagram down a socket.
1718  */
1719 
1720 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1721 		unsigned, flags)
1722 {
1723 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1724 }
1725 
1726 /*
1727  *	Receive a frame from the socket and optionally record the address of the
1728  *	sender. We verify the buffers are writable and if needed move the
1729  *	sender address from kernel to user space.
1730  */
1731 
1732 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1733 		unsigned, flags, struct sockaddr __user *, addr,
1734 		int __user *, addr_len)
1735 {
1736 	struct socket *sock;
1737 	struct iovec iov;
1738 	struct msghdr msg;
1739 	struct sockaddr_storage address;
1740 	int err, err2;
1741 	int fput_needed;
1742 
1743 	if (size > INT_MAX)
1744 		size = INT_MAX;
1745 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 	if (!sock)
1747 		goto out;
1748 
1749 	msg.msg_control = NULL;
1750 	msg.msg_controllen = 0;
1751 	msg.msg_iovlen = 1;
1752 	msg.msg_iov = &iov;
1753 	iov.iov_len = size;
1754 	iov.iov_base = ubuf;
1755 	msg.msg_name = (struct sockaddr *)&address;
1756 	msg.msg_namelen = sizeof(address);
1757 	if (sock->file->f_flags & O_NONBLOCK)
1758 		flags |= MSG_DONTWAIT;
1759 	err = sock_recvmsg(sock, &msg, size, flags);
1760 
1761 	if (err >= 0 && addr != NULL) {
1762 		err2 = move_addr_to_user((struct sockaddr *)&address,
1763 					 msg.msg_namelen, addr, addr_len);
1764 		if (err2 < 0)
1765 			err = err2;
1766 	}
1767 
1768 	fput_light(sock->file, fput_needed);
1769 out:
1770 	return err;
1771 }
1772 
1773 /*
1774  *	Receive a datagram from a socket.
1775  */
1776 
1777 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1778 			 unsigned flags)
1779 {
1780 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1781 }
1782 
1783 /*
1784  *	Set a socket option. Because we don't know the option lengths we have
1785  *	to pass the user mode parameter for the protocols to sort out.
1786  */
1787 
1788 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1789 		char __user *, optval, int, optlen)
1790 {
1791 	int err, fput_needed;
1792 	struct socket *sock;
1793 
1794 	if (optlen < 0)
1795 		return -EINVAL;
1796 
1797 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798 	if (sock != NULL) {
1799 		err = security_socket_setsockopt(sock, level, optname);
1800 		if (err)
1801 			goto out_put;
1802 
1803 		if (level == SOL_SOCKET)
1804 			err =
1805 			    sock_setsockopt(sock, level, optname, optval,
1806 					    optlen);
1807 		else
1808 			err =
1809 			    sock->ops->setsockopt(sock, level, optname, optval,
1810 						  optlen);
1811 out_put:
1812 		fput_light(sock->file, fput_needed);
1813 	}
1814 	return err;
1815 }
1816 
1817 /*
1818  *	Get a socket option. Because we don't know the option lengths we have
1819  *	to pass a user mode parameter for the protocols to sort out.
1820  */
1821 
1822 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1823 		char __user *, optval, int __user *, optlen)
1824 {
1825 	int err, fput_needed;
1826 	struct socket *sock;
1827 
1828 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 	if (sock != NULL) {
1830 		err = security_socket_getsockopt(sock, level, optname);
1831 		if (err)
1832 			goto out_put;
1833 
1834 		if (level == SOL_SOCKET)
1835 			err =
1836 			    sock_getsockopt(sock, level, optname, optval,
1837 					    optlen);
1838 		else
1839 			err =
1840 			    sock->ops->getsockopt(sock, level, optname, optval,
1841 						  optlen);
1842 out_put:
1843 		fput_light(sock->file, fput_needed);
1844 	}
1845 	return err;
1846 }
1847 
1848 /*
1849  *	Shutdown a socket.
1850  */
1851 
1852 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1853 {
1854 	int err, fput_needed;
1855 	struct socket *sock;
1856 
1857 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 	if (sock != NULL) {
1859 		err = security_socket_shutdown(sock, how);
1860 		if (!err)
1861 			err = sock->ops->shutdown(sock, how);
1862 		fput_light(sock->file, fput_needed);
1863 	}
1864 	return err;
1865 }
1866 
1867 /* A couple of helpful macros for getting the address of the 32/64 bit
1868  * fields which are the same type (int / unsigned) on our platforms.
1869  */
1870 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1871 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1872 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1873 
1874 struct used_address {
1875 	struct sockaddr_storage name;
1876 	unsigned int name_len;
1877 };
1878 
1879 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1880 			 struct msghdr *msg_sys, unsigned flags,
1881 			 struct used_address *used_address)
1882 {
1883 	struct compat_msghdr __user *msg_compat =
1884 	    (struct compat_msghdr __user *)msg;
1885 	struct sockaddr_storage address;
1886 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1887 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1888 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1889 	/* 20 is size of ipv6_pktinfo */
1890 	unsigned char *ctl_buf = ctl;
1891 	int err, ctl_len, iov_size, total_len;
1892 
1893 	err = -EFAULT;
1894 	if (MSG_CMSG_COMPAT & flags) {
1895 		if (get_compat_msghdr(msg_sys, msg_compat))
1896 			return -EFAULT;
1897 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1898 		return -EFAULT;
1899 
1900 	/* do not move before msg_sys is valid */
1901 	err = -EMSGSIZE;
1902 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1903 		goto out;
1904 
1905 	/* Check whether to allocate the iovec area */
1906 	err = -ENOMEM;
1907 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1908 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1909 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1910 		if (!iov)
1911 			goto out;
1912 	}
1913 
1914 	/* This will also move the address data into kernel space */
1915 	if (MSG_CMSG_COMPAT & flags) {
1916 		err = verify_compat_iovec(msg_sys, iov,
1917 					  (struct sockaddr *)&address,
1918 					  VERIFY_READ);
1919 	} else
1920 		err = verify_iovec(msg_sys, iov,
1921 				   (struct sockaddr *)&address,
1922 				   VERIFY_READ);
1923 	if (err < 0)
1924 		goto out_freeiov;
1925 	total_len = err;
1926 
1927 	err = -ENOBUFS;
1928 
1929 	if (msg_sys->msg_controllen > INT_MAX)
1930 		goto out_freeiov;
1931 	ctl_len = msg_sys->msg_controllen;
1932 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1933 		err =
1934 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1935 						     sizeof(ctl));
1936 		if (err)
1937 			goto out_freeiov;
1938 		ctl_buf = msg_sys->msg_control;
1939 		ctl_len = msg_sys->msg_controllen;
1940 	} else if (ctl_len) {
1941 		if (ctl_len > sizeof(ctl)) {
1942 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1943 			if (ctl_buf == NULL)
1944 				goto out_freeiov;
1945 		}
1946 		err = -EFAULT;
1947 		/*
1948 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1949 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1950 		 * checking falls down on this.
1951 		 */
1952 		if (copy_from_user(ctl_buf,
1953 				   (void __user __force *)msg_sys->msg_control,
1954 				   ctl_len))
1955 			goto out_freectl;
1956 		msg_sys->msg_control = ctl_buf;
1957 	}
1958 	msg_sys->msg_flags = flags;
1959 
1960 	if (sock->file->f_flags & O_NONBLOCK)
1961 		msg_sys->msg_flags |= MSG_DONTWAIT;
1962 	/*
1963 	 * If this is sendmmsg() and current destination address is same as
1964 	 * previously succeeded address, omit asking LSM's decision.
1965 	 * used_address->name_len is initialized to UINT_MAX so that the first
1966 	 * destination address never matches.
1967 	 */
1968 	if (used_address && msg_sys->msg_name &&
1969 	    used_address->name_len == msg_sys->msg_namelen &&
1970 	    !memcmp(&used_address->name, msg_sys->msg_name,
1971 		    used_address->name_len)) {
1972 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1973 		goto out_freectl;
1974 	}
1975 	err = sock_sendmsg(sock, msg_sys, total_len);
1976 	/*
1977 	 * If this is sendmmsg() and sending to current destination address was
1978 	 * successful, remember it.
1979 	 */
1980 	if (used_address && err >= 0) {
1981 		used_address->name_len = msg_sys->msg_namelen;
1982 		if (msg_sys->msg_name)
1983 			memcpy(&used_address->name, msg_sys->msg_name,
1984 			       used_address->name_len);
1985 	}
1986 
1987 out_freectl:
1988 	if (ctl_buf != ctl)
1989 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1990 out_freeiov:
1991 	if (iov != iovstack)
1992 		sock_kfree_s(sock->sk, iov, iov_size);
1993 out:
1994 	return err;
1995 }
1996 
1997 /*
1998  *	BSD sendmsg interface
1999  */
2000 
2001 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2002 {
2003 	int fput_needed, err;
2004 	struct msghdr msg_sys;
2005 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2006 
2007 	if (!sock)
2008 		goto out;
2009 
2010 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2011 
2012 	fput_light(sock->file, fput_needed);
2013 out:
2014 	return err;
2015 }
2016 
2017 /*
2018  *	Linux sendmmsg interface
2019  */
2020 
2021 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2022 		   unsigned int flags)
2023 {
2024 	int fput_needed, err, datagrams;
2025 	struct socket *sock;
2026 	struct mmsghdr __user *entry;
2027 	struct compat_mmsghdr __user *compat_entry;
2028 	struct msghdr msg_sys;
2029 	struct used_address used_address;
2030 
2031 	if (vlen > UIO_MAXIOV)
2032 		vlen = UIO_MAXIOV;
2033 
2034 	datagrams = 0;
2035 
2036 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2037 	if (!sock)
2038 		return err;
2039 
2040 	used_address.name_len = UINT_MAX;
2041 	entry = mmsg;
2042 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2043 	err = 0;
2044 
2045 	while (datagrams < vlen) {
2046 		if (MSG_CMSG_COMPAT & flags) {
2047 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2048 					    &msg_sys, flags, &used_address);
2049 			if (err < 0)
2050 				break;
2051 			err = __put_user(err, &compat_entry->msg_len);
2052 			++compat_entry;
2053 		} else {
2054 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2055 					    &msg_sys, flags, &used_address);
2056 			if (err < 0)
2057 				break;
2058 			err = put_user(err, &entry->msg_len);
2059 			++entry;
2060 		}
2061 
2062 		if (err)
2063 			break;
2064 		++datagrams;
2065 	}
2066 
2067 	fput_light(sock->file, fput_needed);
2068 
2069 	/* We only return an error if no datagrams were able to be sent */
2070 	if (datagrams != 0)
2071 		return datagrams;
2072 
2073 	return err;
2074 }
2075 
2076 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2077 		unsigned int, vlen, unsigned int, flags)
2078 {
2079 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2080 }
2081 
2082 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2083 			 struct msghdr *msg_sys, unsigned flags, int nosec)
2084 {
2085 	struct compat_msghdr __user *msg_compat =
2086 	    (struct compat_msghdr __user *)msg;
2087 	struct iovec iovstack[UIO_FASTIOV];
2088 	struct iovec *iov = iovstack;
2089 	unsigned long cmsg_ptr;
2090 	int err, iov_size, total_len, len;
2091 
2092 	/* kernel mode address */
2093 	struct sockaddr_storage addr;
2094 
2095 	/* user mode address pointers */
2096 	struct sockaddr __user *uaddr;
2097 	int __user *uaddr_len;
2098 
2099 	if (MSG_CMSG_COMPAT & flags) {
2100 		if (get_compat_msghdr(msg_sys, msg_compat))
2101 			return -EFAULT;
2102 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2103 		return -EFAULT;
2104 
2105 	err = -EMSGSIZE;
2106 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
2107 		goto out;
2108 
2109 	/* Check whether to allocate the iovec area */
2110 	err = -ENOMEM;
2111 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2112 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2113 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2114 		if (!iov)
2115 			goto out;
2116 	}
2117 
2118 	/*
2119 	 *      Save the user-mode address (verify_iovec will change the
2120 	 *      kernel msghdr to use the kernel address space)
2121 	 */
2122 
2123 	uaddr = (__force void __user *)msg_sys->msg_name;
2124 	uaddr_len = COMPAT_NAMELEN(msg);
2125 	if (MSG_CMSG_COMPAT & flags) {
2126 		err = verify_compat_iovec(msg_sys, iov,
2127 					  (struct sockaddr *)&addr,
2128 					  VERIFY_WRITE);
2129 	} else
2130 		err = verify_iovec(msg_sys, iov,
2131 				   (struct sockaddr *)&addr,
2132 				   VERIFY_WRITE);
2133 	if (err < 0)
2134 		goto out_freeiov;
2135 	total_len = err;
2136 
2137 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2138 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2139 
2140 	if (sock->file->f_flags & O_NONBLOCK)
2141 		flags |= MSG_DONTWAIT;
2142 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2143 							  total_len, flags);
2144 	if (err < 0)
2145 		goto out_freeiov;
2146 	len = err;
2147 
2148 	if (uaddr != NULL) {
2149 		err = move_addr_to_user((struct sockaddr *)&addr,
2150 					msg_sys->msg_namelen, uaddr,
2151 					uaddr_len);
2152 		if (err < 0)
2153 			goto out_freeiov;
2154 	}
2155 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2156 			 COMPAT_FLAGS(msg));
2157 	if (err)
2158 		goto out_freeiov;
2159 	if (MSG_CMSG_COMPAT & flags)
2160 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2161 				 &msg_compat->msg_controllen);
2162 	else
2163 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2164 				 &msg->msg_controllen);
2165 	if (err)
2166 		goto out_freeiov;
2167 	err = len;
2168 
2169 out_freeiov:
2170 	if (iov != iovstack)
2171 		sock_kfree_s(sock->sk, iov, iov_size);
2172 out:
2173 	return err;
2174 }
2175 
2176 /*
2177  *	BSD recvmsg interface
2178  */
2179 
2180 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2181 		unsigned int, flags)
2182 {
2183 	int fput_needed, err;
2184 	struct msghdr msg_sys;
2185 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 
2187 	if (!sock)
2188 		goto out;
2189 
2190 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2191 
2192 	fput_light(sock->file, fput_needed);
2193 out:
2194 	return err;
2195 }
2196 
2197 /*
2198  *     Linux recvmmsg interface
2199  */
2200 
2201 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2202 		   unsigned int flags, struct timespec *timeout)
2203 {
2204 	int fput_needed, err, datagrams;
2205 	struct socket *sock;
2206 	struct mmsghdr __user *entry;
2207 	struct compat_mmsghdr __user *compat_entry;
2208 	struct msghdr msg_sys;
2209 	struct timespec end_time;
2210 
2211 	if (timeout &&
2212 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2213 				    timeout->tv_nsec))
2214 		return -EINVAL;
2215 
2216 	datagrams = 0;
2217 
2218 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2219 	if (!sock)
2220 		return err;
2221 
2222 	err = sock_error(sock->sk);
2223 	if (err)
2224 		goto out_put;
2225 
2226 	entry = mmsg;
2227 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2228 
2229 	while (datagrams < vlen) {
2230 		/*
2231 		 * No need to ask LSM for more than the first datagram.
2232 		 */
2233 		if (MSG_CMSG_COMPAT & flags) {
2234 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2235 					    &msg_sys, flags & ~MSG_WAITFORONE,
2236 					    datagrams);
2237 			if (err < 0)
2238 				break;
2239 			err = __put_user(err, &compat_entry->msg_len);
2240 			++compat_entry;
2241 		} else {
2242 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2243 					    &msg_sys, flags & ~MSG_WAITFORONE,
2244 					    datagrams);
2245 			if (err < 0)
2246 				break;
2247 			err = put_user(err, &entry->msg_len);
2248 			++entry;
2249 		}
2250 
2251 		if (err)
2252 			break;
2253 		++datagrams;
2254 
2255 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2256 		if (flags & MSG_WAITFORONE)
2257 			flags |= MSG_DONTWAIT;
2258 
2259 		if (timeout) {
2260 			ktime_get_ts(timeout);
2261 			*timeout = timespec_sub(end_time, *timeout);
2262 			if (timeout->tv_sec < 0) {
2263 				timeout->tv_sec = timeout->tv_nsec = 0;
2264 				break;
2265 			}
2266 
2267 			/* Timeout, return less than vlen datagrams */
2268 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2269 				break;
2270 		}
2271 
2272 		/* Out of band data, return right away */
2273 		if (msg_sys.msg_flags & MSG_OOB)
2274 			break;
2275 	}
2276 
2277 out_put:
2278 	fput_light(sock->file, fput_needed);
2279 
2280 	if (err == 0)
2281 		return datagrams;
2282 
2283 	if (datagrams != 0) {
2284 		/*
2285 		 * We may return less entries than requested (vlen) if the
2286 		 * sock is non block and there aren't enough datagrams...
2287 		 */
2288 		if (err != -EAGAIN) {
2289 			/*
2290 			 * ... or  if recvmsg returns an error after we
2291 			 * received some datagrams, where we record the
2292 			 * error to return on the next call or if the
2293 			 * app asks about it using getsockopt(SO_ERROR).
2294 			 */
2295 			sock->sk->sk_err = -err;
2296 		}
2297 
2298 		return datagrams;
2299 	}
2300 
2301 	return err;
2302 }
2303 
2304 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2305 		unsigned int, vlen, unsigned int, flags,
2306 		struct timespec __user *, timeout)
2307 {
2308 	int datagrams;
2309 	struct timespec timeout_sys;
2310 
2311 	if (!timeout)
2312 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2313 
2314 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2315 		return -EFAULT;
2316 
2317 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2318 
2319 	if (datagrams > 0 &&
2320 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2321 		datagrams = -EFAULT;
2322 
2323 	return datagrams;
2324 }
2325 
2326 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2327 /* Argument list sizes for sys_socketcall */
2328 #define AL(x) ((x) * sizeof(unsigned long))
2329 static const unsigned char nargs[21] = {
2330 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2331 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2332 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2333 	AL(4), AL(5), AL(4)
2334 };
2335 
2336 #undef AL
2337 
2338 /*
2339  *	System call vectors.
2340  *
2341  *	Argument checking cleaned up. Saved 20% in size.
2342  *  This function doesn't need to set the kernel lock because
2343  *  it is set by the callees.
2344  */
2345 
2346 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2347 {
2348 	unsigned long a[6];
2349 	unsigned long a0, a1;
2350 	int err;
2351 	unsigned int len;
2352 
2353 	if (call < 1 || call > SYS_SENDMMSG)
2354 		return -EINVAL;
2355 
2356 	len = nargs[call];
2357 	if (len > sizeof(a))
2358 		return -EINVAL;
2359 
2360 	/* copy_from_user should be SMP safe. */
2361 	if (copy_from_user(a, args, len))
2362 		return -EFAULT;
2363 
2364 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2365 
2366 	a0 = a[0];
2367 	a1 = a[1];
2368 
2369 	switch (call) {
2370 	case SYS_SOCKET:
2371 		err = sys_socket(a0, a1, a[2]);
2372 		break;
2373 	case SYS_BIND:
2374 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2375 		break;
2376 	case SYS_CONNECT:
2377 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2378 		break;
2379 	case SYS_LISTEN:
2380 		err = sys_listen(a0, a1);
2381 		break;
2382 	case SYS_ACCEPT:
2383 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2384 				  (int __user *)a[2], 0);
2385 		break;
2386 	case SYS_GETSOCKNAME:
2387 		err =
2388 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2389 				    (int __user *)a[2]);
2390 		break;
2391 	case SYS_GETPEERNAME:
2392 		err =
2393 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2394 				    (int __user *)a[2]);
2395 		break;
2396 	case SYS_SOCKETPAIR:
2397 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2398 		break;
2399 	case SYS_SEND:
2400 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2401 		break;
2402 	case SYS_SENDTO:
2403 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2404 				 (struct sockaddr __user *)a[4], a[5]);
2405 		break;
2406 	case SYS_RECV:
2407 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2408 		break;
2409 	case SYS_RECVFROM:
2410 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2411 				   (struct sockaddr __user *)a[4],
2412 				   (int __user *)a[5]);
2413 		break;
2414 	case SYS_SHUTDOWN:
2415 		err = sys_shutdown(a0, a1);
2416 		break;
2417 	case SYS_SETSOCKOPT:
2418 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2419 		break;
2420 	case SYS_GETSOCKOPT:
2421 		err =
2422 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2423 				   (int __user *)a[4]);
2424 		break;
2425 	case SYS_SENDMSG:
2426 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2427 		break;
2428 	case SYS_SENDMMSG:
2429 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2430 		break;
2431 	case SYS_RECVMSG:
2432 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2433 		break;
2434 	case SYS_RECVMMSG:
2435 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2436 				   (struct timespec __user *)a[4]);
2437 		break;
2438 	case SYS_ACCEPT4:
2439 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2440 				  (int __user *)a[2], a[3]);
2441 		break;
2442 	default:
2443 		err = -EINVAL;
2444 		break;
2445 	}
2446 	return err;
2447 }
2448 
2449 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2450 
2451 /**
2452  *	sock_register - add a socket protocol handler
2453  *	@ops: description of protocol
2454  *
2455  *	This function is called by a protocol handler that wants to
2456  *	advertise its address family, and have it linked into the
2457  *	socket interface. The value ops->family coresponds to the
2458  *	socket system call protocol family.
2459  */
2460 int sock_register(const struct net_proto_family *ops)
2461 {
2462 	int err;
2463 
2464 	if (ops->family >= NPROTO) {
2465 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2466 		       NPROTO);
2467 		return -ENOBUFS;
2468 	}
2469 
2470 	spin_lock(&net_family_lock);
2471 	if (rcu_dereference_protected(net_families[ops->family],
2472 				      lockdep_is_held(&net_family_lock)))
2473 		err = -EEXIST;
2474 	else {
2475 		rcu_assign_pointer(net_families[ops->family], ops);
2476 		err = 0;
2477 	}
2478 	spin_unlock(&net_family_lock);
2479 
2480 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2481 	return err;
2482 }
2483 EXPORT_SYMBOL(sock_register);
2484 
2485 /**
2486  *	sock_unregister - remove a protocol handler
2487  *	@family: protocol family to remove
2488  *
2489  *	This function is called by a protocol handler that wants to
2490  *	remove its address family, and have it unlinked from the
2491  *	new socket creation.
2492  *
2493  *	If protocol handler is a module, then it can use module reference
2494  *	counts to protect against new references. If protocol handler is not
2495  *	a module then it needs to provide its own protection in
2496  *	the ops->create routine.
2497  */
2498 void sock_unregister(int family)
2499 {
2500 	BUG_ON(family < 0 || family >= NPROTO);
2501 
2502 	spin_lock(&net_family_lock);
2503 	rcu_assign_pointer(net_families[family], NULL);
2504 	spin_unlock(&net_family_lock);
2505 
2506 	synchronize_rcu();
2507 
2508 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2509 }
2510 EXPORT_SYMBOL(sock_unregister);
2511 
2512 static int __init sock_init(void)
2513 {
2514 	int err;
2515 
2516 	/*
2517 	 *      Initialize sock SLAB cache.
2518 	 */
2519 
2520 	sk_init();
2521 
2522 	/*
2523 	 *      Initialize skbuff SLAB cache
2524 	 */
2525 	skb_init();
2526 
2527 	/*
2528 	 *      Initialize the protocols module.
2529 	 */
2530 
2531 	init_inodecache();
2532 
2533 	err = register_filesystem(&sock_fs_type);
2534 	if (err)
2535 		goto out_fs;
2536 	sock_mnt = kern_mount(&sock_fs_type);
2537 	if (IS_ERR(sock_mnt)) {
2538 		err = PTR_ERR(sock_mnt);
2539 		goto out_mount;
2540 	}
2541 
2542 	/* The real protocol initialization is performed in later initcalls.
2543 	 */
2544 
2545 #ifdef CONFIG_NETFILTER
2546 	netfilter_init();
2547 #endif
2548 
2549 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2550 	skb_timestamping_init();
2551 #endif
2552 
2553 out:
2554 	return err;
2555 
2556 out_mount:
2557 	unregister_filesystem(&sock_fs_type);
2558 out_fs:
2559 	goto out;
2560 }
2561 
2562 core_initcall(sock_init);	/* early initcall */
2563 
2564 #ifdef CONFIG_PROC_FS
2565 void socket_seq_show(struct seq_file *seq)
2566 {
2567 	int cpu;
2568 	int counter = 0;
2569 
2570 	for_each_possible_cpu(cpu)
2571 	    counter += per_cpu(sockets_in_use, cpu);
2572 
2573 	/* It can be negative, by the way. 8) */
2574 	if (counter < 0)
2575 		counter = 0;
2576 
2577 	seq_printf(seq, "sockets: used %d\n", counter);
2578 }
2579 #endif				/* CONFIG_PROC_FS */
2580 
2581 #ifdef CONFIG_COMPAT
2582 static int do_siocgstamp(struct net *net, struct socket *sock,
2583 			 unsigned int cmd, struct compat_timeval __user *up)
2584 {
2585 	mm_segment_t old_fs = get_fs();
2586 	struct timeval ktv;
2587 	int err;
2588 
2589 	set_fs(KERNEL_DS);
2590 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2591 	set_fs(old_fs);
2592 	if (!err) {
2593 		err = put_user(ktv.tv_sec, &up->tv_sec);
2594 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2595 	}
2596 	return err;
2597 }
2598 
2599 static int do_siocgstampns(struct net *net, struct socket *sock,
2600 			 unsigned int cmd, struct compat_timespec __user *up)
2601 {
2602 	mm_segment_t old_fs = get_fs();
2603 	struct timespec kts;
2604 	int err;
2605 
2606 	set_fs(KERNEL_DS);
2607 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2608 	set_fs(old_fs);
2609 	if (!err) {
2610 		err = put_user(kts.tv_sec, &up->tv_sec);
2611 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2612 	}
2613 	return err;
2614 }
2615 
2616 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2617 {
2618 	struct ifreq __user *uifr;
2619 	int err;
2620 
2621 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2622 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2623 		return -EFAULT;
2624 
2625 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2626 	if (err)
2627 		return err;
2628 
2629 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2630 		return -EFAULT;
2631 
2632 	return 0;
2633 }
2634 
2635 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2636 {
2637 	struct compat_ifconf ifc32;
2638 	struct ifconf ifc;
2639 	struct ifconf __user *uifc;
2640 	struct compat_ifreq __user *ifr32;
2641 	struct ifreq __user *ifr;
2642 	unsigned int i, j;
2643 	int err;
2644 
2645 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2646 		return -EFAULT;
2647 
2648 	if (ifc32.ifcbuf == 0) {
2649 		ifc32.ifc_len = 0;
2650 		ifc.ifc_len = 0;
2651 		ifc.ifc_req = NULL;
2652 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2653 	} else {
2654 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2655 			sizeof(struct ifreq);
2656 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2657 		ifc.ifc_len = len;
2658 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2659 		ifr32 = compat_ptr(ifc32.ifcbuf);
2660 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2661 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2662 				return -EFAULT;
2663 			ifr++;
2664 			ifr32++;
2665 		}
2666 	}
2667 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2668 		return -EFAULT;
2669 
2670 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2671 	if (err)
2672 		return err;
2673 
2674 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2675 		return -EFAULT;
2676 
2677 	ifr = ifc.ifc_req;
2678 	ifr32 = compat_ptr(ifc32.ifcbuf);
2679 	for (i = 0, j = 0;
2680 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2681 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2682 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2683 			return -EFAULT;
2684 		ifr32++;
2685 		ifr++;
2686 	}
2687 
2688 	if (ifc32.ifcbuf == 0) {
2689 		/* Translate from 64-bit structure multiple to
2690 		 * a 32-bit one.
2691 		 */
2692 		i = ifc.ifc_len;
2693 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2694 		ifc32.ifc_len = i;
2695 	} else {
2696 		ifc32.ifc_len = i;
2697 	}
2698 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2699 		return -EFAULT;
2700 
2701 	return 0;
2702 }
2703 
2704 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2705 {
2706 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2707 	bool convert_in = false, convert_out = false;
2708 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2709 	struct ethtool_rxnfc __user *rxnfc;
2710 	struct ifreq __user *ifr;
2711 	u32 rule_cnt = 0, actual_rule_cnt;
2712 	u32 ethcmd;
2713 	u32 data;
2714 	int ret;
2715 
2716 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2717 		return -EFAULT;
2718 
2719 	compat_rxnfc = compat_ptr(data);
2720 
2721 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2722 		return -EFAULT;
2723 
2724 	/* Most ethtool structures are defined without padding.
2725 	 * Unfortunately struct ethtool_rxnfc is an exception.
2726 	 */
2727 	switch (ethcmd) {
2728 	default:
2729 		break;
2730 	case ETHTOOL_GRXCLSRLALL:
2731 		/* Buffer size is variable */
2732 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2733 			return -EFAULT;
2734 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2735 			return -ENOMEM;
2736 		buf_size += rule_cnt * sizeof(u32);
2737 		/* fall through */
2738 	case ETHTOOL_GRXRINGS:
2739 	case ETHTOOL_GRXCLSRLCNT:
2740 	case ETHTOOL_GRXCLSRULE:
2741 		convert_out = true;
2742 		/* fall through */
2743 	case ETHTOOL_SRXCLSRLDEL:
2744 	case ETHTOOL_SRXCLSRLINS:
2745 		buf_size += sizeof(struct ethtool_rxnfc);
2746 		convert_in = true;
2747 		break;
2748 	}
2749 
2750 	ifr = compat_alloc_user_space(buf_size);
2751 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2752 
2753 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2754 		return -EFAULT;
2755 
2756 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2757 		     &ifr->ifr_ifru.ifru_data))
2758 		return -EFAULT;
2759 
2760 	if (convert_in) {
2761 		/* We expect there to be holes between fs.m_ext and
2762 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2763 		 */
2764 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2765 			     sizeof(compat_rxnfc->fs.m_ext) !=
2766 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2767 			     sizeof(rxnfc->fs.m_ext));
2768 		BUILD_BUG_ON(
2769 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2770 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2771 			offsetof(struct ethtool_rxnfc, fs.location) -
2772 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2773 
2774 		if (copy_in_user(rxnfc, compat_rxnfc,
2775 				 (void *)(&rxnfc->fs.m_ext + 1) -
2776 				 (void *)rxnfc) ||
2777 		    copy_in_user(&rxnfc->fs.ring_cookie,
2778 				 &compat_rxnfc->fs.ring_cookie,
2779 				 (void *)(&rxnfc->fs.location + 1) -
2780 				 (void *)&rxnfc->fs.ring_cookie) ||
2781 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2782 				 sizeof(rxnfc->rule_cnt)))
2783 			return -EFAULT;
2784 	}
2785 
2786 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2787 	if (ret)
2788 		return ret;
2789 
2790 	if (convert_out) {
2791 		if (copy_in_user(compat_rxnfc, rxnfc,
2792 				 (const void *)(&rxnfc->fs.m_ext + 1) -
2793 				 (const void *)rxnfc) ||
2794 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2795 				 &rxnfc->fs.ring_cookie,
2796 				 (const void *)(&rxnfc->fs.location + 1) -
2797 				 (const void *)&rxnfc->fs.ring_cookie) ||
2798 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2799 				 sizeof(rxnfc->rule_cnt)))
2800 			return -EFAULT;
2801 
2802 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2803 			/* As an optimisation, we only copy the actual
2804 			 * number of rules that the underlying
2805 			 * function returned.  Since Mallory might
2806 			 * change the rule count in user memory, we
2807 			 * check that it is less than the rule count
2808 			 * originally given (as the user buffer size),
2809 			 * which has been range-checked.
2810 			 */
2811 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2812 				return -EFAULT;
2813 			if (actual_rule_cnt < rule_cnt)
2814 				rule_cnt = actual_rule_cnt;
2815 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2816 					 &rxnfc->rule_locs[0],
2817 					 rule_cnt * sizeof(u32)))
2818 				return -EFAULT;
2819 		}
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2826 {
2827 	void __user *uptr;
2828 	compat_uptr_t uptr32;
2829 	struct ifreq __user *uifr;
2830 
2831 	uifr = compat_alloc_user_space(sizeof(*uifr));
2832 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2833 		return -EFAULT;
2834 
2835 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2836 		return -EFAULT;
2837 
2838 	uptr = compat_ptr(uptr32);
2839 
2840 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2841 		return -EFAULT;
2842 
2843 	return dev_ioctl(net, SIOCWANDEV, uifr);
2844 }
2845 
2846 static int bond_ioctl(struct net *net, unsigned int cmd,
2847 			 struct compat_ifreq __user *ifr32)
2848 {
2849 	struct ifreq kifr;
2850 	struct ifreq __user *uifr;
2851 	mm_segment_t old_fs;
2852 	int err;
2853 	u32 data;
2854 	void __user *datap;
2855 
2856 	switch (cmd) {
2857 	case SIOCBONDENSLAVE:
2858 	case SIOCBONDRELEASE:
2859 	case SIOCBONDSETHWADDR:
2860 	case SIOCBONDCHANGEACTIVE:
2861 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2862 			return -EFAULT;
2863 
2864 		old_fs = get_fs();
2865 		set_fs(KERNEL_DS);
2866 		err = dev_ioctl(net, cmd,
2867 				(struct ifreq __user __force *) &kifr);
2868 		set_fs(old_fs);
2869 
2870 		return err;
2871 	case SIOCBONDSLAVEINFOQUERY:
2872 	case SIOCBONDINFOQUERY:
2873 		uifr = compat_alloc_user_space(sizeof(*uifr));
2874 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2875 			return -EFAULT;
2876 
2877 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2878 			return -EFAULT;
2879 
2880 		datap = compat_ptr(data);
2881 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2882 			return -EFAULT;
2883 
2884 		return dev_ioctl(net, cmd, uifr);
2885 	default:
2886 		return -EINVAL;
2887 	}
2888 }
2889 
2890 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2891 				 struct compat_ifreq __user *u_ifreq32)
2892 {
2893 	struct ifreq __user *u_ifreq64;
2894 	char tmp_buf[IFNAMSIZ];
2895 	void __user *data64;
2896 	u32 data32;
2897 
2898 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899 			   IFNAMSIZ))
2900 		return -EFAULT;
2901 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902 		return -EFAULT;
2903 	data64 = compat_ptr(data32);
2904 
2905 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906 
2907 	/* Don't check these user accesses, just let that get trapped
2908 	 * in the ioctl handler instead.
2909 	 */
2910 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2911 			 IFNAMSIZ))
2912 		return -EFAULT;
2913 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2914 		return -EFAULT;
2915 
2916 	return dev_ioctl(net, cmd, u_ifreq64);
2917 }
2918 
2919 static int dev_ifsioc(struct net *net, struct socket *sock,
2920 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2921 {
2922 	struct ifreq __user *uifr;
2923 	int err;
2924 
2925 	uifr = compat_alloc_user_space(sizeof(*uifr));
2926 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2927 		return -EFAULT;
2928 
2929 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2930 
2931 	if (!err) {
2932 		switch (cmd) {
2933 		case SIOCGIFFLAGS:
2934 		case SIOCGIFMETRIC:
2935 		case SIOCGIFMTU:
2936 		case SIOCGIFMEM:
2937 		case SIOCGIFHWADDR:
2938 		case SIOCGIFINDEX:
2939 		case SIOCGIFADDR:
2940 		case SIOCGIFBRDADDR:
2941 		case SIOCGIFDSTADDR:
2942 		case SIOCGIFNETMASK:
2943 		case SIOCGIFPFLAGS:
2944 		case SIOCGIFTXQLEN:
2945 		case SIOCGMIIPHY:
2946 		case SIOCGMIIREG:
2947 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2948 				err = -EFAULT;
2949 			break;
2950 		}
2951 	}
2952 	return err;
2953 }
2954 
2955 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2956 			struct compat_ifreq __user *uifr32)
2957 {
2958 	struct ifreq ifr;
2959 	struct compat_ifmap __user *uifmap32;
2960 	mm_segment_t old_fs;
2961 	int err;
2962 
2963 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2964 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2965 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2966 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2967 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2968 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2969 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2970 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2971 	if (err)
2972 		return -EFAULT;
2973 
2974 	old_fs = get_fs();
2975 	set_fs(KERNEL_DS);
2976 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2977 	set_fs(old_fs);
2978 
2979 	if (cmd == SIOCGIFMAP && !err) {
2980 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2981 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2982 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2983 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2984 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2985 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2986 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2987 		if (err)
2988 			err = -EFAULT;
2989 	}
2990 	return err;
2991 }
2992 
2993 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2994 {
2995 	void __user *uptr;
2996 	compat_uptr_t uptr32;
2997 	struct ifreq __user *uifr;
2998 
2999 	uifr = compat_alloc_user_space(sizeof(*uifr));
3000 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3001 		return -EFAULT;
3002 
3003 	if (get_user(uptr32, &uifr32->ifr_data))
3004 		return -EFAULT;
3005 
3006 	uptr = compat_ptr(uptr32);
3007 
3008 	if (put_user(uptr, &uifr->ifr_data))
3009 		return -EFAULT;
3010 
3011 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3012 }
3013 
3014 struct rtentry32 {
3015 	u32		rt_pad1;
3016 	struct sockaddr rt_dst;         /* target address               */
3017 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3018 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3019 	unsigned short	rt_flags;
3020 	short		rt_pad2;
3021 	u32		rt_pad3;
3022 	unsigned char	rt_tos;
3023 	unsigned char	rt_class;
3024 	short		rt_pad4;
3025 	short		rt_metric;      /* +1 for binary compatibility! */
3026 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3027 	u32		rt_mtu;         /* per route MTU/Window         */
3028 	u32		rt_window;      /* Window clamping              */
3029 	unsigned short  rt_irtt;        /* Initial RTT                  */
3030 };
3031 
3032 struct in6_rtmsg32 {
3033 	struct in6_addr		rtmsg_dst;
3034 	struct in6_addr		rtmsg_src;
3035 	struct in6_addr		rtmsg_gateway;
3036 	u32			rtmsg_type;
3037 	u16			rtmsg_dst_len;
3038 	u16			rtmsg_src_len;
3039 	u32			rtmsg_metric;
3040 	u32			rtmsg_info;
3041 	u32			rtmsg_flags;
3042 	s32			rtmsg_ifindex;
3043 };
3044 
3045 static int routing_ioctl(struct net *net, struct socket *sock,
3046 			 unsigned int cmd, void __user *argp)
3047 {
3048 	int ret;
3049 	void *r = NULL;
3050 	struct in6_rtmsg r6;
3051 	struct rtentry r4;
3052 	char devname[16];
3053 	u32 rtdev;
3054 	mm_segment_t old_fs = get_fs();
3055 
3056 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3057 		struct in6_rtmsg32 __user *ur6 = argp;
3058 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3059 			3 * sizeof(struct in6_addr));
3060 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3061 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3062 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3063 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3064 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3065 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3066 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3067 
3068 		r = (void *) &r6;
3069 	} else { /* ipv4 */
3070 		struct rtentry32 __user *ur4 = argp;
3071 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3072 					3 * sizeof(struct sockaddr));
3073 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3074 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3075 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3076 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3077 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3078 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3079 		if (rtdev) {
3080 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3081 			r4.rt_dev = (char __user __force *)devname;
3082 			devname[15] = 0;
3083 		} else
3084 			r4.rt_dev = NULL;
3085 
3086 		r = (void *) &r4;
3087 	}
3088 
3089 	if (ret) {
3090 		ret = -EFAULT;
3091 		goto out;
3092 	}
3093 
3094 	set_fs(KERNEL_DS);
3095 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3096 	set_fs(old_fs);
3097 
3098 out:
3099 	return ret;
3100 }
3101 
3102 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3103  * for some operations; this forces use of the newer bridge-utils that
3104  * use compatible ioctls
3105  */
3106 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3107 {
3108 	compat_ulong_t tmp;
3109 
3110 	if (get_user(tmp, argp))
3111 		return -EFAULT;
3112 	if (tmp == BRCTL_GET_VERSION)
3113 		return BRCTL_VERSION + 1;
3114 	return -EINVAL;
3115 }
3116 
3117 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3118 			 unsigned int cmd, unsigned long arg)
3119 {
3120 	void __user *argp = compat_ptr(arg);
3121 	struct sock *sk = sock->sk;
3122 	struct net *net = sock_net(sk);
3123 
3124 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3125 		return siocdevprivate_ioctl(net, cmd, argp);
3126 
3127 	switch (cmd) {
3128 	case SIOCSIFBR:
3129 	case SIOCGIFBR:
3130 		return old_bridge_ioctl(argp);
3131 	case SIOCGIFNAME:
3132 		return dev_ifname32(net, argp);
3133 	case SIOCGIFCONF:
3134 		return dev_ifconf(net, argp);
3135 	case SIOCETHTOOL:
3136 		return ethtool_ioctl(net, argp);
3137 	case SIOCWANDEV:
3138 		return compat_siocwandev(net, argp);
3139 	case SIOCGIFMAP:
3140 	case SIOCSIFMAP:
3141 		return compat_sioc_ifmap(net, cmd, argp);
3142 	case SIOCBONDENSLAVE:
3143 	case SIOCBONDRELEASE:
3144 	case SIOCBONDSETHWADDR:
3145 	case SIOCBONDSLAVEINFOQUERY:
3146 	case SIOCBONDINFOQUERY:
3147 	case SIOCBONDCHANGEACTIVE:
3148 		return bond_ioctl(net, cmd, argp);
3149 	case SIOCADDRT:
3150 	case SIOCDELRT:
3151 		return routing_ioctl(net, sock, cmd, argp);
3152 	case SIOCGSTAMP:
3153 		return do_siocgstamp(net, sock, cmd, argp);
3154 	case SIOCGSTAMPNS:
3155 		return do_siocgstampns(net, sock, cmd, argp);
3156 	case SIOCSHWTSTAMP:
3157 		return compat_siocshwtstamp(net, argp);
3158 
3159 	case FIOSETOWN:
3160 	case SIOCSPGRP:
3161 	case FIOGETOWN:
3162 	case SIOCGPGRP:
3163 	case SIOCBRADDBR:
3164 	case SIOCBRDELBR:
3165 	case SIOCGIFVLAN:
3166 	case SIOCSIFVLAN:
3167 	case SIOCADDDLCI:
3168 	case SIOCDELDLCI:
3169 		return sock_ioctl(file, cmd, arg);
3170 
3171 	case SIOCGIFFLAGS:
3172 	case SIOCSIFFLAGS:
3173 	case SIOCGIFMETRIC:
3174 	case SIOCSIFMETRIC:
3175 	case SIOCGIFMTU:
3176 	case SIOCSIFMTU:
3177 	case SIOCGIFMEM:
3178 	case SIOCSIFMEM:
3179 	case SIOCGIFHWADDR:
3180 	case SIOCSIFHWADDR:
3181 	case SIOCADDMULTI:
3182 	case SIOCDELMULTI:
3183 	case SIOCGIFINDEX:
3184 	case SIOCGIFADDR:
3185 	case SIOCSIFADDR:
3186 	case SIOCSIFHWBROADCAST:
3187 	case SIOCDIFADDR:
3188 	case SIOCGIFBRDADDR:
3189 	case SIOCSIFBRDADDR:
3190 	case SIOCGIFDSTADDR:
3191 	case SIOCSIFDSTADDR:
3192 	case SIOCGIFNETMASK:
3193 	case SIOCSIFNETMASK:
3194 	case SIOCSIFPFLAGS:
3195 	case SIOCGIFPFLAGS:
3196 	case SIOCGIFTXQLEN:
3197 	case SIOCSIFTXQLEN:
3198 	case SIOCBRADDIF:
3199 	case SIOCBRDELIF:
3200 	case SIOCSIFNAME:
3201 	case SIOCGMIIPHY:
3202 	case SIOCGMIIREG:
3203 	case SIOCSMIIREG:
3204 		return dev_ifsioc(net, sock, cmd, argp);
3205 
3206 	case SIOCSARP:
3207 	case SIOCGARP:
3208 	case SIOCDARP:
3209 	case SIOCATMARK:
3210 		return sock_do_ioctl(net, sock, cmd, arg);
3211 	}
3212 
3213 	/* Prevent warning from compat_sys_ioctl, these always
3214 	 * result in -EINVAL in the native case anyway. */
3215 	switch (cmd) {
3216 	case SIOCRTMSG:
3217 	case SIOCGIFCOUNT:
3218 	case SIOCSRARP:
3219 	case SIOCGRARP:
3220 	case SIOCDRARP:
3221 	case SIOCSIFLINK:
3222 	case SIOCGIFSLAVE:
3223 	case SIOCSIFSLAVE:
3224 		return -EINVAL;
3225 	}
3226 
3227 	return -ENOIOCTLCMD;
3228 }
3229 
3230 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3231 			      unsigned long arg)
3232 {
3233 	struct socket *sock = file->private_data;
3234 	int ret = -ENOIOCTLCMD;
3235 	struct sock *sk;
3236 	struct net *net;
3237 
3238 	sk = sock->sk;
3239 	net = sock_net(sk);
3240 
3241 	if (sock->ops->compat_ioctl)
3242 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243 
3244 	if (ret == -ENOIOCTLCMD &&
3245 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3247 
3248 	if (ret == -ENOIOCTLCMD)
3249 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250 
3251 	return ret;
3252 }
3253 #endif
3254 
3255 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256 {
3257 	return sock->ops->bind(sock, addr, addrlen);
3258 }
3259 EXPORT_SYMBOL(kernel_bind);
3260 
3261 int kernel_listen(struct socket *sock, int backlog)
3262 {
3263 	return sock->ops->listen(sock, backlog);
3264 }
3265 EXPORT_SYMBOL(kernel_listen);
3266 
3267 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268 {
3269 	struct sock *sk = sock->sk;
3270 	int err;
3271 
3272 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273 			       newsock);
3274 	if (err < 0)
3275 		goto done;
3276 
3277 	err = sock->ops->accept(sock, *newsock, flags);
3278 	if (err < 0) {
3279 		sock_release(*newsock);
3280 		*newsock = NULL;
3281 		goto done;
3282 	}
3283 
3284 	(*newsock)->ops = sock->ops;
3285 	__module_get((*newsock)->ops->owner);
3286 
3287 done:
3288 	return err;
3289 }
3290 EXPORT_SYMBOL(kernel_accept);
3291 
3292 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293 		   int flags)
3294 {
3295 	return sock->ops->connect(sock, addr, addrlen, flags);
3296 }
3297 EXPORT_SYMBOL(kernel_connect);
3298 
3299 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300 			 int *addrlen)
3301 {
3302 	return sock->ops->getname(sock, addr, addrlen, 0);
3303 }
3304 EXPORT_SYMBOL(kernel_getsockname);
3305 
3306 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307 			 int *addrlen)
3308 {
3309 	return sock->ops->getname(sock, addr, addrlen, 1);
3310 }
3311 EXPORT_SYMBOL(kernel_getpeername);
3312 
3313 int kernel_getsockopt(struct socket *sock, int level, int optname,
3314 			char *optval, int *optlen)
3315 {
3316 	mm_segment_t oldfs = get_fs();
3317 	char __user *uoptval;
3318 	int __user *uoptlen;
3319 	int err;
3320 
3321 	uoptval = (char __user __force *) optval;
3322 	uoptlen = (int __user __force *) optlen;
3323 
3324 	set_fs(KERNEL_DS);
3325 	if (level == SOL_SOCKET)
3326 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327 	else
3328 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329 					    uoptlen);
3330 	set_fs(oldfs);
3331 	return err;
3332 }
3333 EXPORT_SYMBOL(kernel_getsockopt);
3334 
3335 int kernel_setsockopt(struct socket *sock, int level, int optname,
3336 			char *optval, unsigned int optlen)
3337 {
3338 	mm_segment_t oldfs = get_fs();
3339 	char __user *uoptval;
3340 	int err;
3341 
3342 	uoptval = (char __user __force *) optval;
3343 
3344 	set_fs(KERNEL_DS);
3345 	if (level == SOL_SOCKET)
3346 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347 	else
3348 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349 					    optlen);
3350 	set_fs(oldfs);
3351 	return err;
3352 }
3353 EXPORT_SYMBOL(kernel_setsockopt);
3354 
3355 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356 		    size_t size, int flags)
3357 {
3358 	sock_update_classid(sock->sk);
3359 
3360 	if (sock->ops->sendpage)
3361 		return sock->ops->sendpage(sock, page, offset, size, flags);
3362 
3363 	return sock_no_sendpage(sock, page, offset, size, flags);
3364 }
3365 EXPORT_SYMBOL(kernel_sendpage);
3366 
3367 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368 {
3369 	mm_segment_t oldfs = get_fs();
3370 	int err;
3371 
3372 	set_fs(KERNEL_DS);
3373 	err = sock->ops->ioctl(sock, cmd, arg);
3374 	set_fs(oldfs);
3375 
3376 	return err;
3377 }
3378 EXPORT_SYMBOL(kernel_sock_ioctl);
3379 
3380 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381 {
3382 	return sock->ops->shutdown(sock, how);
3383 }
3384 EXPORT_SYMBOL(kernel_sock_shutdown);
3385