1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 [PF_MCTP] = "PF_MCTP", 216 }; 217 218 /* 219 * The protocol list. Each protocol is registered in here. 220 */ 221 222 static DEFINE_SPINLOCK(net_family_lock); 223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 224 225 /* 226 * Support routines. 227 * Move socket addresses back and forth across the kernel/user 228 * divide and look after the messy bits. 229 */ 230 231 /** 232 * move_addr_to_kernel - copy a socket address into kernel space 233 * @uaddr: Address in user space 234 * @kaddr: Address in kernel space 235 * @ulen: Length in user space 236 * 237 * The address is copied into kernel space. If the provided address is 238 * too long an error code of -EINVAL is returned. If the copy gives 239 * invalid addresses -EFAULT is returned. On a success 0 is returned. 240 */ 241 242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 243 { 244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 245 return -EINVAL; 246 if (ulen == 0) 247 return 0; 248 if (copy_from_user(kaddr, uaddr, ulen)) 249 return -EFAULT; 250 return audit_sockaddr(ulen, kaddr); 251 } 252 253 /** 254 * move_addr_to_user - copy an address to user space 255 * @kaddr: kernel space address 256 * @klen: length of address in kernel 257 * @uaddr: user space address 258 * @ulen: pointer to user length field 259 * 260 * The value pointed to by ulen on entry is the buffer length available. 261 * This is overwritten with the buffer space used. -EINVAL is returned 262 * if an overlong buffer is specified or a negative buffer size. -EFAULT 263 * is returned if either the buffer or the length field are not 264 * accessible. 265 * After copying the data up to the limit the user specifies, the true 266 * length of the data is written over the length limit the user 267 * specified. Zero is returned for a success. 268 */ 269 270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 271 void __user *uaddr, int __user *ulen) 272 { 273 int err; 274 int len; 275 276 BUG_ON(klen > sizeof(struct sockaddr_storage)); 277 err = get_user(len, ulen); 278 if (err) 279 return err; 280 if (len > klen) 281 len = klen; 282 if (len < 0) 283 return -EINVAL; 284 if (len) { 285 if (audit_sockaddr(klen, kaddr)) 286 return -ENOMEM; 287 if (copy_to_user(uaddr, kaddr, len)) 288 return -EFAULT; 289 } 290 /* 291 * "fromlen shall refer to the value before truncation.." 292 * 1003.1g 293 */ 294 return __put_user(klen, ulen); 295 } 296 297 static struct kmem_cache *sock_inode_cachep __ro_after_init; 298 299 static struct inode *sock_alloc_inode(struct super_block *sb) 300 { 301 struct socket_alloc *ei; 302 303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 304 if (!ei) 305 return NULL; 306 init_waitqueue_head(&ei->socket.wq.wait); 307 ei->socket.wq.fasync_list = NULL; 308 ei->socket.wq.flags = 0; 309 310 ei->socket.state = SS_UNCONNECTED; 311 ei->socket.flags = 0; 312 ei->socket.ops = NULL; 313 ei->socket.sk = NULL; 314 ei->socket.file = NULL; 315 316 return &ei->vfs_inode; 317 } 318 319 static void sock_free_inode(struct inode *inode) 320 { 321 struct socket_alloc *ei; 322 323 ei = container_of(inode, struct socket_alloc, vfs_inode); 324 kmem_cache_free(sock_inode_cachep, ei); 325 } 326 327 static void init_once(void *foo) 328 { 329 struct socket_alloc *ei = (struct socket_alloc *)foo; 330 331 inode_init_once(&ei->vfs_inode); 332 } 333 334 static void init_inodecache(void) 335 { 336 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 337 sizeof(struct socket_alloc), 338 0, 339 (SLAB_HWCACHE_ALIGN | 340 SLAB_RECLAIM_ACCOUNT | 341 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 342 init_once); 343 BUG_ON(sock_inode_cachep == NULL); 344 } 345 346 static const struct super_operations sockfs_ops = { 347 .alloc_inode = sock_alloc_inode, 348 .free_inode = sock_free_inode, 349 .statfs = simple_statfs, 350 }; 351 352 /* 353 * sockfs_dname() is called from d_path(). 354 */ 355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 356 { 357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 358 d_inode(dentry)->i_ino); 359 } 360 361 static const struct dentry_operations sockfs_dentry_operations = { 362 .d_dname = sockfs_dname, 363 }; 364 365 static int sockfs_xattr_get(const struct xattr_handler *handler, 366 struct dentry *dentry, struct inode *inode, 367 const char *suffix, void *value, size_t size) 368 { 369 if (value) { 370 if (dentry->d_name.len + 1 > size) 371 return -ERANGE; 372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 373 } 374 return dentry->d_name.len + 1; 375 } 376 377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 380 381 static const struct xattr_handler sockfs_xattr_handler = { 382 .name = XATTR_NAME_SOCKPROTONAME, 383 .get = sockfs_xattr_get, 384 }; 385 386 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 387 struct user_namespace *mnt_userns, 388 struct dentry *dentry, struct inode *inode, 389 const char *suffix, const void *value, 390 size_t size, int flags) 391 { 392 /* Handled by LSM. */ 393 return -EAGAIN; 394 } 395 396 static const struct xattr_handler sockfs_security_xattr_handler = { 397 .prefix = XATTR_SECURITY_PREFIX, 398 .set = sockfs_security_xattr_set, 399 }; 400 401 static const struct xattr_handler *sockfs_xattr_handlers[] = { 402 &sockfs_xattr_handler, 403 &sockfs_security_xattr_handler, 404 NULL 405 }; 406 407 static int sockfs_init_fs_context(struct fs_context *fc) 408 { 409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 410 if (!ctx) 411 return -ENOMEM; 412 ctx->ops = &sockfs_ops; 413 ctx->dops = &sockfs_dentry_operations; 414 ctx->xattr = sockfs_xattr_handlers; 415 return 0; 416 } 417 418 static struct vfsmount *sock_mnt __read_mostly; 419 420 static struct file_system_type sock_fs_type = { 421 .name = "sockfs", 422 .init_fs_context = sockfs_init_fs_context, 423 .kill_sb = kill_anon_super, 424 }; 425 426 /* 427 * Obtains the first available file descriptor and sets it up for use. 428 * 429 * These functions create file structures and maps them to fd space 430 * of the current process. On success it returns file descriptor 431 * and file struct implicitly stored in sock->file. 432 * Note that another thread may close file descriptor before we return 433 * from this function. We use the fact that now we do not refer 434 * to socket after mapping. If one day we will need it, this 435 * function will increment ref. count on file by 1. 436 * 437 * In any case returned fd MAY BE not valid! 438 * This race condition is unavoidable 439 * with shared fd spaces, we cannot solve it inside kernel, 440 * but we take care of internal coherence yet. 441 */ 442 443 /** 444 * sock_alloc_file - Bind a &socket to a &file 445 * @sock: socket 446 * @flags: file status flags 447 * @dname: protocol name 448 * 449 * Returns the &file bound with @sock, implicitly storing it 450 * in sock->file. If dname is %NULL, sets to "". 451 * On failure the return is a ERR pointer (see linux/err.h). 452 * This function uses GFP_KERNEL internally. 453 */ 454 455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 456 { 457 struct file *file; 458 459 if (!dname) 460 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 461 462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 463 O_RDWR | (flags & O_NONBLOCK), 464 &socket_file_ops); 465 if (IS_ERR(file)) { 466 sock_release(sock); 467 return file; 468 } 469 470 sock->file = file; 471 file->private_data = sock; 472 stream_open(SOCK_INODE(sock), file); 473 return file; 474 } 475 EXPORT_SYMBOL(sock_alloc_file); 476 477 static int sock_map_fd(struct socket *sock, int flags) 478 { 479 struct file *newfile; 480 int fd = get_unused_fd_flags(flags); 481 if (unlikely(fd < 0)) { 482 sock_release(sock); 483 return fd; 484 } 485 486 newfile = sock_alloc_file(sock, flags, NULL); 487 if (!IS_ERR(newfile)) { 488 fd_install(fd, newfile); 489 return fd; 490 } 491 492 put_unused_fd(fd); 493 return PTR_ERR(newfile); 494 } 495 496 /** 497 * sock_from_file - Return the &socket bounded to @file. 498 * @file: file 499 * 500 * On failure returns %NULL. 501 */ 502 503 struct socket *sock_from_file(struct file *file) 504 { 505 if (file->f_op == &socket_file_ops) 506 return file->private_data; /* set in sock_map_fd */ 507 508 return NULL; 509 } 510 EXPORT_SYMBOL(sock_from_file); 511 512 /** 513 * sockfd_lookup - Go from a file number to its socket slot 514 * @fd: file handle 515 * @err: pointer to an error code return 516 * 517 * The file handle passed in is locked and the socket it is bound 518 * to is returned. If an error occurs the err pointer is overwritten 519 * with a negative errno code and NULL is returned. The function checks 520 * for both invalid handles and passing a handle which is not a socket. 521 * 522 * On a success the socket object pointer is returned. 523 */ 524 525 struct socket *sockfd_lookup(int fd, int *err) 526 { 527 struct file *file; 528 struct socket *sock; 529 530 file = fget(fd); 531 if (!file) { 532 *err = -EBADF; 533 return NULL; 534 } 535 536 sock = sock_from_file(file); 537 if (!sock) { 538 *err = -ENOTSOCK; 539 fput(file); 540 } 541 return sock; 542 } 543 EXPORT_SYMBOL(sockfd_lookup); 544 545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 546 { 547 struct fd f = fdget(fd); 548 struct socket *sock; 549 550 *err = -EBADF; 551 if (f.file) { 552 sock = sock_from_file(f.file); 553 if (likely(sock)) { 554 *fput_needed = f.flags & FDPUT_FPUT; 555 return sock; 556 } 557 *err = -ENOTSOCK; 558 fdput(f); 559 } 560 return NULL; 561 } 562 563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 564 size_t size) 565 { 566 ssize_t len; 567 ssize_t used = 0; 568 569 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 570 if (len < 0) 571 return len; 572 used += len; 573 if (buffer) { 574 if (size < used) 575 return -ERANGE; 576 buffer += len; 577 } 578 579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 585 buffer += len; 586 } 587 588 return used; 589 } 590 591 static int sockfs_setattr(struct user_namespace *mnt_userns, 592 struct dentry *dentry, struct iattr *iattr) 593 { 594 int err = simple_setattr(&init_user_ns, dentry, iattr); 595 596 if (!err && (iattr->ia_valid & ATTR_UID)) { 597 struct socket *sock = SOCKET_I(d_inode(dentry)); 598 599 if (sock->sk) 600 sock->sk->sk_uid = iattr->ia_uid; 601 else 602 err = -ENOENT; 603 } 604 605 return err; 606 } 607 608 static const struct inode_operations sockfs_inode_ops = { 609 .listxattr = sockfs_listxattr, 610 .setattr = sockfs_setattr, 611 }; 612 613 /** 614 * sock_alloc - allocate a socket 615 * 616 * Allocate a new inode and socket object. The two are bound together 617 * and initialised. The socket is then returned. If we are out of inodes 618 * NULL is returned. This functions uses GFP_KERNEL internally. 619 */ 620 621 struct socket *sock_alloc(void) 622 { 623 struct inode *inode; 624 struct socket *sock; 625 626 inode = new_inode_pseudo(sock_mnt->mnt_sb); 627 if (!inode) 628 return NULL; 629 630 sock = SOCKET_I(inode); 631 632 inode->i_ino = get_next_ino(); 633 inode->i_mode = S_IFSOCK | S_IRWXUGO; 634 inode->i_uid = current_fsuid(); 635 inode->i_gid = current_fsgid(); 636 inode->i_op = &sockfs_inode_ops; 637 638 return sock; 639 } 640 EXPORT_SYMBOL(sock_alloc); 641 642 static void __sock_release(struct socket *sock, struct inode *inode) 643 { 644 if (sock->ops) { 645 struct module *owner = sock->ops->owner; 646 647 if (inode) 648 inode_lock(inode); 649 sock->ops->release(sock); 650 sock->sk = NULL; 651 if (inode) 652 inode_unlock(inode); 653 sock->ops = NULL; 654 module_put(owner); 655 } 656 657 if (sock->wq.fasync_list) 658 pr_err("%s: fasync list not empty!\n", __func__); 659 660 if (!sock->file) { 661 iput(SOCK_INODE(sock)); 662 return; 663 } 664 sock->file = NULL; 665 } 666 667 /** 668 * sock_release - close a socket 669 * @sock: socket to close 670 * 671 * The socket is released from the protocol stack if it has a release 672 * callback, and the inode is then released if the socket is bound to 673 * an inode not a file. 674 */ 675 void sock_release(struct socket *sock) 676 { 677 __sock_release(sock, NULL); 678 } 679 EXPORT_SYMBOL(sock_release); 680 681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 682 { 683 u8 flags = *tx_flags; 684 685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 686 flags |= SKBTX_HW_TSTAMP; 687 688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 689 flags |= SKBTX_SW_TSTAMP; 690 691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 692 flags |= SKBTX_SCHED_TSTAMP; 693 694 *tx_flags = flags; 695 } 696 EXPORT_SYMBOL(__sock_tx_timestamp); 697 698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 699 size_t)); 700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 701 size_t)); 702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 703 { 704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 705 inet_sendmsg, sock, msg, 706 msg_data_left(msg)); 707 BUG_ON(ret == -EIOCBQUEUED); 708 return ret; 709 } 710 711 /** 712 * sock_sendmsg - send a message through @sock 713 * @sock: socket 714 * @msg: message to send 715 * 716 * Sends @msg through @sock, passing through LSM. 717 * Returns the number of bytes sent, or an error code. 718 */ 719 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 720 { 721 int err = security_socket_sendmsg(sock, msg, 722 msg_data_left(msg)); 723 724 return err ?: sock_sendmsg_nosec(sock, msg); 725 } 726 EXPORT_SYMBOL(sock_sendmsg); 727 728 /** 729 * kernel_sendmsg - send a message through @sock (kernel-space) 730 * @sock: socket 731 * @msg: message header 732 * @vec: kernel vec 733 * @num: vec array length 734 * @size: total message data size 735 * 736 * Builds the message data with @vec and sends it through @sock. 737 * Returns the number of bytes sent, or an error code. 738 */ 739 740 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 741 struct kvec *vec, size_t num, size_t size) 742 { 743 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 744 return sock_sendmsg(sock, msg); 745 } 746 EXPORT_SYMBOL(kernel_sendmsg); 747 748 /** 749 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 750 * @sk: sock 751 * @msg: message header 752 * @vec: output s/g array 753 * @num: output s/g array length 754 * @size: total message data size 755 * 756 * Builds the message data with @vec and sends it through @sock. 757 * Returns the number of bytes sent, or an error code. 758 * Caller must hold @sk. 759 */ 760 761 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 762 struct kvec *vec, size_t num, size_t size) 763 { 764 struct socket *sock = sk->sk_socket; 765 766 if (!sock->ops->sendmsg_locked) 767 return sock_no_sendmsg_locked(sk, msg, size); 768 769 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 770 771 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 772 } 773 EXPORT_SYMBOL(kernel_sendmsg_locked); 774 775 static bool skb_is_err_queue(const struct sk_buff *skb) 776 { 777 /* pkt_type of skbs enqueued on the error queue are set to 778 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 779 * in recvmsg, since skbs received on a local socket will never 780 * have a pkt_type of PACKET_OUTGOING. 781 */ 782 return skb->pkt_type == PACKET_OUTGOING; 783 } 784 785 /* On transmit, software and hardware timestamps are returned independently. 786 * As the two skb clones share the hardware timestamp, which may be updated 787 * before the software timestamp is received, a hardware TX timestamp may be 788 * returned only if there is no software TX timestamp. Ignore false software 789 * timestamps, which may be made in the __sock_recv_timestamp() call when the 790 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 791 * hardware timestamp. 792 */ 793 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 794 { 795 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 796 } 797 798 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 799 { 800 struct scm_ts_pktinfo ts_pktinfo; 801 struct net_device *orig_dev; 802 803 if (!skb_mac_header_was_set(skb)) 804 return; 805 806 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 807 808 rcu_read_lock(); 809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 810 if (orig_dev) 811 ts_pktinfo.if_index = orig_dev->ifindex; 812 rcu_read_unlock(); 813 814 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 815 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 816 sizeof(ts_pktinfo), &ts_pktinfo); 817 } 818 819 /* 820 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 821 */ 822 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 823 struct sk_buff *skb) 824 { 825 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 826 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 827 struct scm_timestamping_internal tss; 828 829 int empty = 1, false_tstamp = 0; 830 struct skb_shared_hwtstamps *shhwtstamps = 831 skb_hwtstamps(skb); 832 833 /* Race occurred between timestamp enabling and packet 834 receiving. Fill in the current time for now. */ 835 if (need_software_tstamp && skb->tstamp == 0) { 836 __net_timestamp(skb); 837 false_tstamp = 1; 838 } 839 840 if (need_software_tstamp) { 841 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 842 if (new_tstamp) { 843 struct __kernel_sock_timeval tv; 844 845 skb_get_new_timestamp(skb, &tv); 846 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 847 sizeof(tv), &tv); 848 } else { 849 struct __kernel_old_timeval tv; 850 851 skb_get_timestamp(skb, &tv); 852 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 853 sizeof(tv), &tv); 854 } 855 } else { 856 if (new_tstamp) { 857 struct __kernel_timespec ts; 858 859 skb_get_new_timestampns(skb, &ts); 860 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 861 sizeof(ts), &ts); 862 } else { 863 struct __kernel_old_timespec ts; 864 865 skb_get_timestampns(skb, &ts); 866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 867 sizeof(ts), &ts); 868 } 869 } 870 } 871 872 memset(&tss, 0, sizeof(tss)); 873 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 874 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 875 empty = 0; 876 if (shhwtstamps && 877 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 878 !skb_is_swtx_tstamp(skb, false_tstamp)) { 879 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 880 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 881 882 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 883 tss.ts + 2)) { 884 empty = 0; 885 886 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 887 !skb_is_err_queue(skb)) 888 put_ts_pktinfo(msg, skb); 889 } 890 } 891 if (!empty) { 892 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 893 put_cmsg_scm_timestamping64(msg, &tss); 894 else 895 put_cmsg_scm_timestamping(msg, &tss); 896 897 if (skb_is_err_queue(skb) && skb->len && 898 SKB_EXT_ERR(skb)->opt_stats) 899 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 900 skb->len, skb->data); 901 } 902 } 903 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 904 905 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 906 struct sk_buff *skb) 907 { 908 int ack; 909 910 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 911 return; 912 if (!skb->wifi_acked_valid) 913 return; 914 915 ack = skb->wifi_acked; 916 917 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 918 } 919 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 920 921 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 922 struct sk_buff *skb) 923 { 924 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 925 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 926 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 927 } 928 929 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 930 struct sk_buff *skb) 931 { 932 sock_recv_timestamp(msg, sk, skb); 933 sock_recv_drops(msg, sk, skb); 934 } 935 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 936 937 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 938 size_t, int)); 939 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 940 size_t, int)); 941 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 942 int flags) 943 { 944 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 945 inet_recvmsg, sock, msg, msg_data_left(msg), 946 flags); 947 } 948 949 /** 950 * sock_recvmsg - receive a message from @sock 951 * @sock: socket 952 * @msg: message to receive 953 * @flags: message flags 954 * 955 * Receives @msg from @sock, passing through LSM. Returns the total number 956 * of bytes received, or an error. 957 */ 958 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 959 { 960 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 961 962 return err ?: sock_recvmsg_nosec(sock, msg, flags); 963 } 964 EXPORT_SYMBOL(sock_recvmsg); 965 966 /** 967 * kernel_recvmsg - Receive a message from a socket (kernel space) 968 * @sock: The socket to receive the message from 969 * @msg: Received message 970 * @vec: Input s/g array for message data 971 * @num: Size of input s/g array 972 * @size: Number of bytes to read 973 * @flags: Message flags (MSG_DONTWAIT, etc...) 974 * 975 * On return the msg structure contains the scatter/gather array passed in the 976 * vec argument. The array is modified so that it consists of the unfilled 977 * portion of the original array. 978 * 979 * The returned value is the total number of bytes received, or an error. 980 */ 981 982 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 983 struct kvec *vec, size_t num, size_t size, int flags) 984 { 985 msg->msg_control_is_user = false; 986 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 987 return sock_recvmsg(sock, msg, flags); 988 } 989 EXPORT_SYMBOL(kernel_recvmsg); 990 991 static ssize_t sock_sendpage(struct file *file, struct page *page, 992 int offset, size_t size, loff_t *ppos, int more) 993 { 994 struct socket *sock; 995 int flags; 996 997 sock = file->private_data; 998 999 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1000 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1001 flags |= more; 1002 1003 return kernel_sendpage(sock, page, offset, size, flags); 1004 } 1005 1006 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1007 struct pipe_inode_info *pipe, size_t len, 1008 unsigned int flags) 1009 { 1010 struct socket *sock = file->private_data; 1011 1012 if (unlikely(!sock->ops->splice_read)) 1013 return generic_file_splice_read(file, ppos, pipe, len, flags); 1014 1015 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1016 } 1017 1018 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1019 { 1020 struct file *file = iocb->ki_filp; 1021 struct socket *sock = file->private_data; 1022 struct msghdr msg = {.msg_iter = *to, 1023 .msg_iocb = iocb}; 1024 ssize_t res; 1025 1026 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1027 msg.msg_flags = MSG_DONTWAIT; 1028 1029 if (iocb->ki_pos != 0) 1030 return -ESPIPE; 1031 1032 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1033 return 0; 1034 1035 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1036 *to = msg.msg_iter; 1037 return res; 1038 } 1039 1040 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1041 { 1042 struct file *file = iocb->ki_filp; 1043 struct socket *sock = file->private_data; 1044 struct msghdr msg = {.msg_iter = *from, 1045 .msg_iocb = iocb}; 1046 ssize_t res; 1047 1048 if (iocb->ki_pos != 0) 1049 return -ESPIPE; 1050 1051 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1052 msg.msg_flags = MSG_DONTWAIT; 1053 1054 if (sock->type == SOCK_SEQPACKET) 1055 msg.msg_flags |= MSG_EOR; 1056 1057 res = sock_sendmsg(sock, &msg); 1058 *from = msg.msg_iter; 1059 return res; 1060 } 1061 1062 /* 1063 * Atomic setting of ioctl hooks to avoid race 1064 * with module unload. 1065 */ 1066 1067 static DEFINE_MUTEX(br_ioctl_mutex); 1068 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1069 unsigned int cmd, struct ifreq *ifr, 1070 void __user *uarg); 1071 1072 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1073 unsigned int cmd, struct ifreq *ifr, 1074 void __user *uarg)) 1075 { 1076 mutex_lock(&br_ioctl_mutex); 1077 br_ioctl_hook = hook; 1078 mutex_unlock(&br_ioctl_mutex); 1079 } 1080 EXPORT_SYMBOL(brioctl_set); 1081 1082 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1083 struct ifreq *ifr, void __user *uarg) 1084 { 1085 int err = -ENOPKG; 1086 1087 if (!br_ioctl_hook) 1088 request_module("bridge"); 1089 1090 mutex_lock(&br_ioctl_mutex); 1091 if (br_ioctl_hook) 1092 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1093 mutex_unlock(&br_ioctl_mutex); 1094 1095 return err; 1096 } 1097 1098 static DEFINE_MUTEX(vlan_ioctl_mutex); 1099 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1100 1101 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1102 { 1103 mutex_lock(&vlan_ioctl_mutex); 1104 vlan_ioctl_hook = hook; 1105 mutex_unlock(&vlan_ioctl_mutex); 1106 } 1107 EXPORT_SYMBOL(vlan_ioctl_set); 1108 1109 static long sock_do_ioctl(struct net *net, struct socket *sock, 1110 unsigned int cmd, unsigned long arg) 1111 { 1112 struct ifreq ifr; 1113 bool need_copyout; 1114 int err; 1115 void __user *argp = (void __user *)arg; 1116 void __user *data; 1117 1118 err = sock->ops->ioctl(sock, cmd, arg); 1119 1120 /* 1121 * If this ioctl is unknown try to hand it down 1122 * to the NIC driver. 1123 */ 1124 if (err != -ENOIOCTLCMD) 1125 return err; 1126 1127 if (!is_socket_ioctl_cmd(cmd)) 1128 return -ENOTTY; 1129 1130 if (get_user_ifreq(&ifr, &data, argp)) 1131 return -EFAULT; 1132 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1133 if (!err && need_copyout) 1134 if (put_user_ifreq(&ifr, argp)) 1135 return -EFAULT; 1136 1137 return err; 1138 } 1139 1140 /* 1141 * With an ioctl, arg may well be a user mode pointer, but we don't know 1142 * what to do with it - that's up to the protocol still. 1143 */ 1144 1145 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1146 { 1147 struct socket *sock; 1148 struct sock *sk; 1149 void __user *argp = (void __user *)arg; 1150 int pid, err; 1151 struct net *net; 1152 1153 sock = file->private_data; 1154 sk = sock->sk; 1155 net = sock_net(sk); 1156 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1157 struct ifreq ifr; 1158 void __user *data; 1159 bool need_copyout; 1160 if (get_user_ifreq(&ifr, &data, argp)) 1161 return -EFAULT; 1162 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1163 if (!err && need_copyout) 1164 if (put_user_ifreq(&ifr, argp)) 1165 return -EFAULT; 1166 } else 1167 #ifdef CONFIG_WEXT_CORE 1168 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1169 err = wext_handle_ioctl(net, cmd, argp); 1170 } else 1171 #endif 1172 switch (cmd) { 1173 case FIOSETOWN: 1174 case SIOCSPGRP: 1175 err = -EFAULT; 1176 if (get_user(pid, (int __user *)argp)) 1177 break; 1178 err = f_setown(sock->file, pid, 1); 1179 break; 1180 case FIOGETOWN: 1181 case SIOCGPGRP: 1182 err = put_user(f_getown(sock->file), 1183 (int __user *)argp); 1184 break; 1185 case SIOCGIFBR: 1186 case SIOCSIFBR: 1187 case SIOCBRADDBR: 1188 case SIOCBRDELBR: 1189 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1190 break; 1191 case SIOCGIFVLAN: 1192 case SIOCSIFVLAN: 1193 err = -ENOPKG; 1194 if (!vlan_ioctl_hook) 1195 request_module("8021q"); 1196 1197 mutex_lock(&vlan_ioctl_mutex); 1198 if (vlan_ioctl_hook) 1199 err = vlan_ioctl_hook(net, argp); 1200 mutex_unlock(&vlan_ioctl_mutex); 1201 break; 1202 case SIOCGSKNS: 1203 err = -EPERM; 1204 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1205 break; 1206 1207 err = open_related_ns(&net->ns, get_net_ns); 1208 break; 1209 case SIOCGSTAMP_OLD: 1210 case SIOCGSTAMPNS_OLD: 1211 if (!sock->ops->gettstamp) { 1212 err = -ENOIOCTLCMD; 1213 break; 1214 } 1215 err = sock->ops->gettstamp(sock, argp, 1216 cmd == SIOCGSTAMP_OLD, 1217 !IS_ENABLED(CONFIG_64BIT)); 1218 break; 1219 case SIOCGSTAMP_NEW: 1220 case SIOCGSTAMPNS_NEW: 1221 if (!sock->ops->gettstamp) { 1222 err = -ENOIOCTLCMD; 1223 break; 1224 } 1225 err = sock->ops->gettstamp(sock, argp, 1226 cmd == SIOCGSTAMP_NEW, 1227 false); 1228 break; 1229 1230 case SIOCGIFCONF: 1231 err = dev_ifconf(net, argp); 1232 break; 1233 1234 default: 1235 err = sock_do_ioctl(net, sock, cmd, arg); 1236 break; 1237 } 1238 return err; 1239 } 1240 1241 /** 1242 * sock_create_lite - creates a socket 1243 * @family: protocol family (AF_INET, ...) 1244 * @type: communication type (SOCK_STREAM, ...) 1245 * @protocol: protocol (0, ...) 1246 * @res: new socket 1247 * 1248 * Creates a new socket and assigns it to @res, passing through LSM. 1249 * The new socket initialization is not complete, see kernel_accept(). 1250 * Returns 0 or an error. On failure @res is set to %NULL. 1251 * This function internally uses GFP_KERNEL. 1252 */ 1253 1254 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1255 { 1256 int err; 1257 struct socket *sock = NULL; 1258 1259 err = security_socket_create(family, type, protocol, 1); 1260 if (err) 1261 goto out; 1262 1263 sock = sock_alloc(); 1264 if (!sock) { 1265 err = -ENOMEM; 1266 goto out; 1267 } 1268 1269 sock->type = type; 1270 err = security_socket_post_create(sock, family, type, protocol, 1); 1271 if (err) 1272 goto out_release; 1273 1274 out: 1275 *res = sock; 1276 return err; 1277 out_release: 1278 sock_release(sock); 1279 sock = NULL; 1280 goto out; 1281 } 1282 EXPORT_SYMBOL(sock_create_lite); 1283 1284 /* No kernel lock held - perfect */ 1285 static __poll_t sock_poll(struct file *file, poll_table *wait) 1286 { 1287 struct socket *sock = file->private_data; 1288 __poll_t events = poll_requested_events(wait), flag = 0; 1289 1290 if (!sock->ops->poll) 1291 return 0; 1292 1293 if (sk_can_busy_loop(sock->sk)) { 1294 /* poll once if requested by the syscall */ 1295 if (events & POLL_BUSY_LOOP) 1296 sk_busy_loop(sock->sk, 1); 1297 1298 /* if this socket can poll_ll, tell the system call */ 1299 flag = POLL_BUSY_LOOP; 1300 } 1301 1302 return sock->ops->poll(file, sock, wait) | flag; 1303 } 1304 1305 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1306 { 1307 struct socket *sock = file->private_data; 1308 1309 return sock->ops->mmap(file, sock, vma); 1310 } 1311 1312 static int sock_close(struct inode *inode, struct file *filp) 1313 { 1314 __sock_release(SOCKET_I(inode), inode); 1315 return 0; 1316 } 1317 1318 /* 1319 * Update the socket async list 1320 * 1321 * Fasync_list locking strategy. 1322 * 1323 * 1. fasync_list is modified only under process context socket lock 1324 * i.e. under semaphore. 1325 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1326 * or under socket lock 1327 */ 1328 1329 static int sock_fasync(int fd, struct file *filp, int on) 1330 { 1331 struct socket *sock = filp->private_data; 1332 struct sock *sk = sock->sk; 1333 struct socket_wq *wq = &sock->wq; 1334 1335 if (sk == NULL) 1336 return -EINVAL; 1337 1338 lock_sock(sk); 1339 fasync_helper(fd, filp, on, &wq->fasync_list); 1340 1341 if (!wq->fasync_list) 1342 sock_reset_flag(sk, SOCK_FASYNC); 1343 else 1344 sock_set_flag(sk, SOCK_FASYNC); 1345 1346 release_sock(sk); 1347 return 0; 1348 } 1349 1350 /* This function may be called only under rcu_lock */ 1351 1352 int sock_wake_async(struct socket_wq *wq, int how, int band) 1353 { 1354 if (!wq || !wq->fasync_list) 1355 return -1; 1356 1357 switch (how) { 1358 case SOCK_WAKE_WAITD: 1359 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1360 break; 1361 goto call_kill; 1362 case SOCK_WAKE_SPACE: 1363 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1364 break; 1365 fallthrough; 1366 case SOCK_WAKE_IO: 1367 call_kill: 1368 kill_fasync(&wq->fasync_list, SIGIO, band); 1369 break; 1370 case SOCK_WAKE_URG: 1371 kill_fasync(&wq->fasync_list, SIGURG, band); 1372 } 1373 1374 return 0; 1375 } 1376 EXPORT_SYMBOL(sock_wake_async); 1377 1378 /** 1379 * __sock_create - creates a socket 1380 * @net: net namespace 1381 * @family: protocol family (AF_INET, ...) 1382 * @type: communication type (SOCK_STREAM, ...) 1383 * @protocol: protocol (0, ...) 1384 * @res: new socket 1385 * @kern: boolean for kernel space sockets 1386 * 1387 * Creates a new socket and assigns it to @res, passing through LSM. 1388 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1389 * be set to true if the socket resides in kernel space. 1390 * This function internally uses GFP_KERNEL. 1391 */ 1392 1393 int __sock_create(struct net *net, int family, int type, int protocol, 1394 struct socket **res, int kern) 1395 { 1396 int err; 1397 struct socket *sock; 1398 const struct net_proto_family *pf; 1399 1400 /* 1401 * Check protocol is in range 1402 */ 1403 if (family < 0 || family >= NPROTO) 1404 return -EAFNOSUPPORT; 1405 if (type < 0 || type >= SOCK_MAX) 1406 return -EINVAL; 1407 1408 /* Compatibility. 1409 1410 This uglymoron is moved from INET layer to here to avoid 1411 deadlock in module load. 1412 */ 1413 if (family == PF_INET && type == SOCK_PACKET) { 1414 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1415 current->comm); 1416 family = PF_PACKET; 1417 } 1418 1419 err = security_socket_create(family, type, protocol, kern); 1420 if (err) 1421 return err; 1422 1423 /* 1424 * Allocate the socket and allow the family to set things up. if 1425 * the protocol is 0, the family is instructed to select an appropriate 1426 * default. 1427 */ 1428 sock = sock_alloc(); 1429 if (!sock) { 1430 net_warn_ratelimited("socket: no more sockets\n"); 1431 return -ENFILE; /* Not exactly a match, but its the 1432 closest posix thing */ 1433 } 1434 1435 sock->type = type; 1436 1437 #ifdef CONFIG_MODULES 1438 /* Attempt to load a protocol module if the find failed. 1439 * 1440 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1441 * requested real, full-featured networking support upon configuration. 1442 * Otherwise module support will break! 1443 */ 1444 if (rcu_access_pointer(net_families[family]) == NULL) 1445 request_module("net-pf-%d", family); 1446 #endif 1447 1448 rcu_read_lock(); 1449 pf = rcu_dereference(net_families[family]); 1450 err = -EAFNOSUPPORT; 1451 if (!pf) 1452 goto out_release; 1453 1454 /* 1455 * We will call the ->create function, that possibly is in a loadable 1456 * module, so we have to bump that loadable module refcnt first. 1457 */ 1458 if (!try_module_get(pf->owner)) 1459 goto out_release; 1460 1461 /* Now protected by module ref count */ 1462 rcu_read_unlock(); 1463 1464 err = pf->create(net, sock, protocol, kern); 1465 if (err < 0) 1466 goto out_module_put; 1467 1468 /* 1469 * Now to bump the refcnt of the [loadable] module that owns this 1470 * socket at sock_release time we decrement its refcnt. 1471 */ 1472 if (!try_module_get(sock->ops->owner)) 1473 goto out_module_busy; 1474 1475 /* 1476 * Now that we're done with the ->create function, the [loadable] 1477 * module can have its refcnt decremented 1478 */ 1479 module_put(pf->owner); 1480 err = security_socket_post_create(sock, family, type, protocol, kern); 1481 if (err) 1482 goto out_sock_release; 1483 *res = sock; 1484 1485 return 0; 1486 1487 out_module_busy: 1488 err = -EAFNOSUPPORT; 1489 out_module_put: 1490 sock->ops = NULL; 1491 module_put(pf->owner); 1492 out_sock_release: 1493 sock_release(sock); 1494 return err; 1495 1496 out_release: 1497 rcu_read_unlock(); 1498 goto out_sock_release; 1499 } 1500 EXPORT_SYMBOL(__sock_create); 1501 1502 /** 1503 * sock_create - creates a socket 1504 * @family: protocol family (AF_INET, ...) 1505 * @type: communication type (SOCK_STREAM, ...) 1506 * @protocol: protocol (0, ...) 1507 * @res: new socket 1508 * 1509 * A wrapper around __sock_create(). 1510 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1511 */ 1512 1513 int sock_create(int family, int type, int protocol, struct socket **res) 1514 { 1515 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1516 } 1517 EXPORT_SYMBOL(sock_create); 1518 1519 /** 1520 * sock_create_kern - creates a socket (kernel space) 1521 * @net: net namespace 1522 * @family: protocol family (AF_INET, ...) 1523 * @type: communication type (SOCK_STREAM, ...) 1524 * @protocol: protocol (0, ...) 1525 * @res: new socket 1526 * 1527 * A wrapper around __sock_create(). 1528 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1529 */ 1530 1531 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1532 { 1533 return __sock_create(net, family, type, protocol, res, 1); 1534 } 1535 EXPORT_SYMBOL(sock_create_kern); 1536 1537 int __sys_socket(int family, int type, int protocol) 1538 { 1539 int retval; 1540 struct socket *sock; 1541 int flags; 1542 1543 /* Check the SOCK_* constants for consistency. */ 1544 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1545 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1546 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1547 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1548 1549 flags = type & ~SOCK_TYPE_MASK; 1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1551 return -EINVAL; 1552 type &= SOCK_TYPE_MASK; 1553 1554 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1555 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1556 1557 retval = sock_create(family, type, protocol, &sock); 1558 if (retval < 0) 1559 return retval; 1560 1561 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1562 } 1563 1564 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1565 { 1566 return __sys_socket(family, type, protocol); 1567 } 1568 1569 /* 1570 * Create a pair of connected sockets. 1571 */ 1572 1573 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1574 { 1575 struct socket *sock1, *sock2; 1576 int fd1, fd2, err; 1577 struct file *newfile1, *newfile2; 1578 int flags; 1579 1580 flags = type & ~SOCK_TYPE_MASK; 1581 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1582 return -EINVAL; 1583 type &= SOCK_TYPE_MASK; 1584 1585 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1586 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1587 1588 /* 1589 * reserve descriptors and make sure we won't fail 1590 * to return them to userland. 1591 */ 1592 fd1 = get_unused_fd_flags(flags); 1593 if (unlikely(fd1 < 0)) 1594 return fd1; 1595 1596 fd2 = get_unused_fd_flags(flags); 1597 if (unlikely(fd2 < 0)) { 1598 put_unused_fd(fd1); 1599 return fd2; 1600 } 1601 1602 err = put_user(fd1, &usockvec[0]); 1603 if (err) 1604 goto out; 1605 1606 err = put_user(fd2, &usockvec[1]); 1607 if (err) 1608 goto out; 1609 1610 /* 1611 * Obtain the first socket and check if the underlying protocol 1612 * supports the socketpair call. 1613 */ 1614 1615 err = sock_create(family, type, protocol, &sock1); 1616 if (unlikely(err < 0)) 1617 goto out; 1618 1619 err = sock_create(family, type, protocol, &sock2); 1620 if (unlikely(err < 0)) { 1621 sock_release(sock1); 1622 goto out; 1623 } 1624 1625 err = security_socket_socketpair(sock1, sock2); 1626 if (unlikely(err)) { 1627 sock_release(sock2); 1628 sock_release(sock1); 1629 goto out; 1630 } 1631 1632 err = sock1->ops->socketpair(sock1, sock2); 1633 if (unlikely(err < 0)) { 1634 sock_release(sock2); 1635 sock_release(sock1); 1636 goto out; 1637 } 1638 1639 newfile1 = sock_alloc_file(sock1, flags, NULL); 1640 if (IS_ERR(newfile1)) { 1641 err = PTR_ERR(newfile1); 1642 sock_release(sock2); 1643 goto out; 1644 } 1645 1646 newfile2 = sock_alloc_file(sock2, flags, NULL); 1647 if (IS_ERR(newfile2)) { 1648 err = PTR_ERR(newfile2); 1649 fput(newfile1); 1650 goto out; 1651 } 1652 1653 audit_fd_pair(fd1, fd2); 1654 1655 fd_install(fd1, newfile1); 1656 fd_install(fd2, newfile2); 1657 return 0; 1658 1659 out: 1660 put_unused_fd(fd2); 1661 put_unused_fd(fd1); 1662 return err; 1663 } 1664 1665 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1666 int __user *, usockvec) 1667 { 1668 return __sys_socketpair(family, type, protocol, usockvec); 1669 } 1670 1671 /* 1672 * Bind a name to a socket. Nothing much to do here since it's 1673 * the protocol's responsibility to handle the local address. 1674 * 1675 * We move the socket address to kernel space before we call 1676 * the protocol layer (having also checked the address is ok). 1677 */ 1678 1679 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1680 { 1681 struct socket *sock; 1682 struct sockaddr_storage address; 1683 int err, fput_needed; 1684 1685 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1686 if (sock) { 1687 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1688 if (!err) { 1689 err = security_socket_bind(sock, 1690 (struct sockaddr *)&address, 1691 addrlen); 1692 if (!err) 1693 err = sock->ops->bind(sock, 1694 (struct sockaddr *) 1695 &address, addrlen); 1696 } 1697 fput_light(sock->file, fput_needed); 1698 } 1699 return err; 1700 } 1701 1702 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1703 { 1704 return __sys_bind(fd, umyaddr, addrlen); 1705 } 1706 1707 /* 1708 * Perform a listen. Basically, we allow the protocol to do anything 1709 * necessary for a listen, and if that works, we mark the socket as 1710 * ready for listening. 1711 */ 1712 1713 int __sys_listen(int fd, int backlog) 1714 { 1715 struct socket *sock; 1716 int err, fput_needed; 1717 int somaxconn; 1718 1719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1720 if (sock) { 1721 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1722 if ((unsigned int)backlog > somaxconn) 1723 backlog = somaxconn; 1724 1725 err = security_socket_listen(sock, backlog); 1726 if (!err) 1727 err = sock->ops->listen(sock, backlog); 1728 1729 fput_light(sock->file, fput_needed); 1730 } 1731 return err; 1732 } 1733 1734 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1735 { 1736 return __sys_listen(fd, backlog); 1737 } 1738 1739 struct file *do_accept(struct file *file, unsigned file_flags, 1740 struct sockaddr __user *upeer_sockaddr, 1741 int __user *upeer_addrlen, int flags) 1742 { 1743 struct socket *sock, *newsock; 1744 struct file *newfile; 1745 int err, len; 1746 struct sockaddr_storage address; 1747 1748 sock = sock_from_file(file); 1749 if (!sock) 1750 return ERR_PTR(-ENOTSOCK); 1751 1752 newsock = sock_alloc(); 1753 if (!newsock) 1754 return ERR_PTR(-ENFILE); 1755 1756 newsock->type = sock->type; 1757 newsock->ops = sock->ops; 1758 1759 /* 1760 * We don't need try_module_get here, as the listening socket (sock) 1761 * has the protocol module (sock->ops->owner) held. 1762 */ 1763 __module_get(newsock->ops->owner); 1764 1765 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1766 if (IS_ERR(newfile)) 1767 return newfile; 1768 1769 err = security_socket_accept(sock, newsock); 1770 if (err) 1771 goto out_fd; 1772 1773 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1774 false); 1775 if (err < 0) 1776 goto out_fd; 1777 1778 if (upeer_sockaddr) { 1779 len = newsock->ops->getname(newsock, 1780 (struct sockaddr *)&address, 2); 1781 if (len < 0) { 1782 err = -ECONNABORTED; 1783 goto out_fd; 1784 } 1785 err = move_addr_to_user(&address, 1786 len, upeer_sockaddr, upeer_addrlen); 1787 if (err < 0) 1788 goto out_fd; 1789 } 1790 1791 /* File flags are not inherited via accept() unlike another OSes. */ 1792 return newfile; 1793 out_fd: 1794 fput(newfile); 1795 return ERR_PTR(err); 1796 } 1797 1798 int __sys_accept4_file(struct file *file, unsigned file_flags, 1799 struct sockaddr __user *upeer_sockaddr, 1800 int __user *upeer_addrlen, int flags, 1801 unsigned long nofile) 1802 { 1803 struct file *newfile; 1804 int newfd; 1805 1806 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1807 return -EINVAL; 1808 1809 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1810 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1811 1812 newfd = __get_unused_fd_flags(flags, nofile); 1813 if (unlikely(newfd < 0)) 1814 return newfd; 1815 1816 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen, 1817 flags); 1818 if (IS_ERR(newfile)) { 1819 put_unused_fd(newfd); 1820 return PTR_ERR(newfile); 1821 } 1822 fd_install(newfd, newfile); 1823 return newfd; 1824 } 1825 1826 /* 1827 * For accept, we attempt to create a new socket, set up the link 1828 * with the client, wake up the client, then return the new 1829 * connected fd. We collect the address of the connector in kernel 1830 * space and move it to user at the very end. This is unclean because 1831 * we open the socket then return an error. 1832 * 1833 * 1003.1g adds the ability to recvmsg() to query connection pending 1834 * status to recvmsg. We need to add that support in a way thats 1835 * clean when we restructure accept also. 1836 */ 1837 1838 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1839 int __user *upeer_addrlen, int flags) 1840 { 1841 int ret = -EBADF; 1842 struct fd f; 1843 1844 f = fdget(fd); 1845 if (f.file) { 1846 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1847 upeer_addrlen, flags, 1848 rlimit(RLIMIT_NOFILE)); 1849 fdput(f); 1850 } 1851 1852 return ret; 1853 } 1854 1855 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1856 int __user *, upeer_addrlen, int, flags) 1857 { 1858 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1859 } 1860 1861 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1862 int __user *, upeer_addrlen) 1863 { 1864 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1865 } 1866 1867 /* 1868 * Attempt to connect to a socket with the server address. The address 1869 * is in user space so we verify it is OK and move it to kernel space. 1870 * 1871 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1872 * break bindings 1873 * 1874 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1875 * other SEQPACKET protocols that take time to connect() as it doesn't 1876 * include the -EINPROGRESS status for such sockets. 1877 */ 1878 1879 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1880 int addrlen, int file_flags) 1881 { 1882 struct socket *sock; 1883 int err; 1884 1885 sock = sock_from_file(file); 1886 if (!sock) { 1887 err = -ENOTSOCK; 1888 goto out; 1889 } 1890 1891 err = 1892 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1893 if (err) 1894 goto out; 1895 1896 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1897 sock->file->f_flags | file_flags); 1898 out: 1899 return err; 1900 } 1901 1902 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1903 { 1904 int ret = -EBADF; 1905 struct fd f; 1906 1907 f = fdget(fd); 1908 if (f.file) { 1909 struct sockaddr_storage address; 1910 1911 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1912 if (!ret) 1913 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1914 fdput(f); 1915 } 1916 1917 return ret; 1918 } 1919 1920 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1921 int, addrlen) 1922 { 1923 return __sys_connect(fd, uservaddr, addrlen); 1924 } 1925 1926 /* 1927 * Get the local address ('name') of a socket object. Move the obtained 1928 * name to user space. 1929 */ 1930 1931 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1932 int __user *usockaddr_len) 1933 { 1934 struct socket *sock; 1935 struct sockaddr_storage address; 1936 int err, fput_needed; 1937 1938 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1939 if (!sock) 1940 goto out; 1941 1942 err = security_socket_getsockname(sock); 1943 if (err) 1944 goto out_put; 1945 1946 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1947 if (err < 0) 1948 goto out_put; 1949 /* "err" is actually length in this case */ 1950 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1951 1952 out_put: 1953 fput_light(sock->file, fput_needed); 1954 out: 1955 return err; 1956 } 1957 1958 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1959 int __user *, usockaddr_len) 1960 { 1961 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1962 } 1963 1964 /* 1965 * Get the remote address ('name') of a socket object. Move the obtained 1966 * name to user space. 1967 */ 1968 1969 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1970 int __user *usockaddr_len) 1971 { 1972 struct socket *sock; 1973 struct sockaddr_storage address; 1974 int err, fput_needed; 1975 1976 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1977 if (sock != NULL) { 1978 err = security_socket_getpeername(sock); 1979 if (err) { 1980 fput_light(sock->file, fput_needed); 1981 return err; 1982 } 1983 1984 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1985 if (err >= 0) 1986 /* "err" is actually length in this case */ 1987 err = move_addr_to_user(&address, err, usockaddr, 1988 usockaddr_len); 1989 fput_light(sock->file, fput_needed); 1990 } 1991 return err; 1992 } 1993 1994 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1995 int __user *, usockaddr_len) 1996 { 1997 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1998 } 1999 2000 /* 2001 * Send a datagram to a given address. We move the address into kernel 2002 * space and check the user space data area is readable before invoking 2003 * the protocol. 2004 */ 2005 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2006 struct sockaddr __user *addr, int addr_len) 2007 { 2008 struct socket *sock; 2009 struct sockaddr_storage address; 2010 int err; 2011 struct msghdr msg; 2012 struct iovec iov; 2013 int fput_needed; 2014 2015 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 2016 if (unlikely(err)) 2017 return err; 2018 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2019 if (!sock) 2020 goto out; 2021 2022 msg.msg_name = NULL; 2023 msg.msg_control = NULL; 2024 msg.msg_controllen = 0; 2025 msg.msg_namelen = 0; 2026 if (addr) { 2027 err = move_addr_to_kernel(addr, addr_len, &address); 2028 if (err < 0) 2029 goto out_put; 2030 msg.msg_name = (struct sockaddr *)&address; 2031 msg.msg_namelen = addr_len; 2032 } 2033 if (sock->file->f_flags & O_NONBLOCK) 2034 flags |= MSG_DONTWAIT; 2035 msg.msg_flags = flags; 2036 err = sock_sendmsg(sock, &msg); 2037 2038 out_put: 2039 fput_light(sock->file, fput_needed); 2040 out: 2041 return err; 2042 } 2043 2044 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2045 unsigned int, flags, struct sockaddr __user *, addr, 2046 int, addr_len) 2047 { 2048 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2049 } 2050 2051 /* 2052 * Send a datagram down a socket. 2053 */ 2054 2055 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2056 unsigned int, flags) 2057 { 2058 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2059 } 2060 2061 /* 2062 * Receive a frame from the socket and optionally record the address of the 2063 * sender. We verify the buffers are writable and if needed move the 2064 * sender address from kernel to user space. 2065 */ 2066 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2067 struct sockaddr __user *addr, int __user *addr_len) 2068 { 2069 struct socket *sock; 2070 struct iovec iov; 2071 struct msghdr msg; 2072 struct sockaddr_storage address; 2073 int err, err2; 2074 int fput_needed; 2075 2076 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2077 if (unlikely(err)) 2078 return err; 2079 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2080 if (!sock) 2081 goto out; 2082 2083 msg.msg_control = NULL; 2084 msg.msg_controllen = 0; 2085 /* Save some cycles and don't copy the address if not needed */ 2086 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2087 /* We assume all kernel code knows the size of sockaddr_storage */ 2088 msg.msg_namelen = 0; 2089 msg.msg_iocb = NULL; 2090 msg.msg_flags = 0; 2091 if (sock->file->f_flags & O_NONBLOCK) 2092 flags |= MSG_DONTWAIT; 2093 err = sock_recvmsg(sock, &msg, flags); 2094 2095 if (err >= 0 && addr != NULL) { 2096 err2 = move_addr_to_user(&address, 2097 msg.msg_namelen, addr, addr_len); 2098 if (err2 < 0) 2099 err = err2; 2100 } 2101 2102 fput_light(sock->file, fput_needed); 2103 out: 2104 return err; 2105 } 2106 2107 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2108 unsigned int, flags, struct sockaddr __user *, addr, 2109 int __user *, addr_len) 2110 { 2111 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2112 } 2113 2114 /* 2115 * Receive a datagram from a socket. 2116 */ 2117 2118 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2119 unsigned int, flags) 2120 { 2121 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2122 } 2123 2124 static bool sock_use_custom_sol_socket(const struct socket *sock) 2125 { 2126 const struct sock *sk = sock->sk; 2127 2128 /* Use sock->ops->setsockopt() for MPTCP */ 2129 return IS_ENABLED(CONFIG_MPTCP) && 2130 sk->sk_protocol == IPPROTO_MPTCP && 2131 sk->sk_type == SOCK_STREAM && 2132 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2133 } 2134 2135 /* 2136 * Set a socket option. Because we don't know the option lengths we have 2137 * to pass the user mode parameter for the protocols to sort out. 2138 */ 2139 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2140 int optlen) 2141 { 2142 sockptr_t optval = USER_SOCKPTR(user_optval); 2143 char *kernel_optval = NULL; 2144 int err, fput_needed; 2145 struct socket *sock; 2146 2147 if (optlen < 0) 2148 return -EINVAL; 2149 2150 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2151 if (!sock) 2152 return err; 2153 2154 err = security_socket_setsockopt(sock, level, optname); 2155 if (err) 2156 goto out_put; 2157 2158 if (!in_compat_syscall()) 2159 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2160 user_optval, &optlen, 2161 &kernel_optval); 2162 if (err < 0) 2163 goto out_put; 2164 if (err > 0) { 2165 err = 0; 2166 goto out_put; 2167 } 2168 2169 if (kernel_optval) 2170 optval = KERNEL_SOCKPTR(kernel_optval); 2171 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2172 err = sock_setsockopt(sock, level, optname, optval, optlen); 2173 else if (unlikely(!sock->ops->setsockopt)) 2174 err = -EOPNOTSUPP; 2175 else 2176 err = sock->ops->setsockopt(sock, level, optname, optval, 2177 optlen); 2178 kfree(kernel_optval); 2179 out_put: 2180 fput_light(sock->file, fput_needed); 2181 return err; 2182 } 2183 2184 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2185 char __user *, optval, int, optlen) 2186 { 2187 return __sys_setsockopt(fd, level, optname, optval, optlen); 2188 } 2189 2190 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2191 int optname)); 2192 2193 /* 2194 * Get a socket option. Because we don't know the option lengths we have 2195 * to pass a user mode parameter for the protocols to sort out. 2196 */ 2197 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2198 int __user *optlen) 2199 { 2200 int err, fput_needed; 2201 struct socket *sock; 2202 int max_optlen; 2203 2204 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2205 if (!sock) 2206 return err; 2207 2208 err = security_socket_getsockopt(sock, level, optname); 2209 if (err) 2210 goto out_put; 2211 2212 if (!in_compat_syscall()) 2213 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2214 2215 if (level == SOL_SOCKET) 2216 err = sock_getsockopt(sock, level, optname, optval, optlen); 2217 else if (unlikely(!sock->ops->getsockopt)) 2218 err = -EOPNOTSUPP; 2219 else 2220 err = sock->ops->getsockopt(sock, level, optname, optval, 2221 optlen); 2222 2223 if (!in_compat_syscall()) 2224 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2225 optval, optlen, max_optlen, 2226 err); 2227 out_put: 2228 fput_light(sock->file, fput_needed); 2229 return err; 2230 } 2231 2232 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2233 char __user *, optval, int __user *, optlen) 2234 { 2235 return __sys_getsockopt(fd, level, optname, optval, optlen); 2236 } 2237 2238 /* 2239 * Shutdown a socket. 2240 */ 2241 2242 int __sys_shutdown_sock(struct socket *sock, int how) 2243 { 2244 int err; 2245 2246 err = security_socket_shutdown(sock, how); 2247 if (!err) 2248 err = sock->ops->shutdown(sock, how); 2249 2250 return err; 2251 } 2252 2253 int __sys_shutdown(int fd, int how) 2254 { 2255 int err, fput_needed; 2256 struct socket *sock; 2257 2258 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2259 if (sock != NULL) { 2260 err = __sys_shutdown_sock(sock, how); 2261 fput_light(sock->file, fput_needed); 2262 } 2263 return err; 2264 } 2265 2266 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2267 { 2268 return __sys_shutdown(fd, how); 2269 } 2270 2271 /* A couple of helpful macros for getting the address of the 32/64 bit 2272 * fields which are the same type (int / unsigned) on our platforms. 2273 */ 2274 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2275 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2276 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2277 2278 struct used_address { 2279 struct sockaddr_storage name; 2280 unsigned int name_len; 2281 }; 2282 2283 int __copy_msghdr_from_user(struct msghdr *kmsg, 2284 struct user_msghdr __user *umsg, 2285 struct sockaddr __user **save_addr, 2286 struct iovec __user **uiov, size_t *nsegs) 2287 { 2288 struct user_msghdr msg; 2289 ssize_t err; 2290 2291 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2292 return -EFAULT; 2293 2294 kmsg->msg_control_is_user = true; 2295 kmsg->msg_control_user = msg.msg_control; 2296 kmsg->msg_controllen = msg.msg_controllen; 2297 kmsg->msg_flags = msg.msg_flags; 2298 2299 kmsg->msg_namelen = msg.msg_namelen; 2300 if (!msg.msg_name) 2301 kmsg->msg_namelen = 0; 2302 2303 if (kmsg->msg_namelen < 0) 2304 return -EINVAL; 2305 2306 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2307 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2308 2309 if (save_addr) 2310 *save_addr = msg.msg_name; 2311 2312 if (msg.msg_name && kmsg->msg_namelen) { 2313 if (!save_addr) { 2314 err = move_addr_to_kernel(msg.msg_name, 2315 kmsg->msg_namelen, 2316 kmsg->msg_name); 2317 if (err < 0) 2318 return err; 2319 } 2320 } else { 2321 kmsg->msg_name = NULL; 2322 kmsg->msg_namelen = 0; 2323 } 2324 2325 if (msg.msg_iovlen > UIO_MAXIOV) 2326 return -EMSGSIZE; 2327 2328 kmsg->msg_iocb = NULL; 2329 *uiov = msg.msg_iov; 2330 *nsegs = msg.msg_iovlen; 2331 return 0; 2332 } 2333 2334 static int copy_msghdr_from_user(struct msghdr *kmsg, 2335 struct user_msghdr __user *umsg, 2336 struct sockaddr __user **save_addr, 2337 struct iovec **iov) 2338 { 2339 struct user_msghdr msg; 2340 ssize_t err; 2341 2342 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2343 &msg.msg_iovlen); 2344 if (err) 2345 return err; 2346 2347 err = import_iovec(save_addr ? READ : WRITE, 2348 msg.msg_iov, msg.msg_iovlen, 2349 UIO_FASTIOV, iov, &kmsg->msg_iter); 2350 return err < 0 ? err : 0; 2351 } 2352 2353 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2354 unsigned int flags, struct used_address *used_address, 2355 unsigned int allowed_msghdr_flags) 2356 { 2357 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2358 __aligned(sizeof(__kernel_size_t)); 2359 /* 20 is size of ipv6_pktinfo */ 2360 unsigned char *ctl_buf = ctl; 2361 int ctl_len; 2362 ssize_t err; 2363 2364 err = -ENOBUFS; 2365 2366 if (msg_sys->msg_controllen > INT_MAX) 2367 goto out; 2368 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2369 ctl_len = msg_sys->msg_controllen; 2370 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2371 err = 2372 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2373 sizeof(ctl)); 2374 if (err) 2375 goto out; 2376 ctl_buf = msg_sys->msg_control; 2377 ctl_len = msg_sys->msg_controllen; 2378 } else if (ctl_len) { 2379 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2380 CMSG_ALIGN(sizeof(struct cmsghdr))); 2381 if (ctl_len > sizeof(ctl)) { 2382 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2383 if (ctl_buf == NULL) 2384 goto out; 2385 } 2386 err = -EFAULT; 2387 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2388 goto out_freectl; 2389 msg_sys->msg_control = ctl_buf; 2390 msg_sys->msg_control_is_user = false; 2391 } 2392 msg_sys->msg_flags = flags; 2393 2394 if (sock->file->f_flags & O_NONBLOCK) 2395 msg_sys->msg_flags |= MSG_DONTWAIT; 2396 /* 2397 * If this is sendmmsg() and current destination address is same as 2398 * previously succeeded address, omit asking LSM's decision. 2399 * used_address->name_len is initialized to UINT_MAX so that the first 2400 * destination address never matches. 2401 */ 2402 if (used_address && msg_sys->msg_name && 2403 used_address->name_len == msg_sys->msg_namelen && 2404 !memcmp(&used_address->name, msg_sys->msg_name, 2405 used_address->name_len)) { 2406 err = sock_sendmsg_nosec(sock, msg_sys); 2407 goto out_freectl; 2408 } 2409 err = sock_sendmsg(sock, msg_sys); 2410 /* 2411 * If this is sendmmsg() and sending to current destination address was 2412 * successful, remember it. 2413 */ 2414 if (used_address && err >= 0) { 2415 used_address->name_len = msg_sys->msg_namelen; 2416 if (msg_sys->msg_name) 2417 memcpy(&used_address->name, msg_sys->msg_name, 2418 used_address->name_len); 2419 } 2420 2421 out_freectl: 2422 if (ctl_buf != ctl) 2423 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2424 out: 2425 return err; 2426 } 2427 2428 int sendmsg_copy_msghdr(struct msghdr *msg, 2429 struct user_msghdr __user *umsg, unsigned flags, 2430 struct iovec **iov) 2431 { 2432 int err; 2433 2434 if (flags & MSG_CMSG_COMPAT) { 2435 struct compat_msghdr __user *msg_compat; 2436 2437 msg_compat = (struct compat_msghdr __user *) umsg; 2438 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2439 } else { 2440 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2441 } 2442 if (err < 0) 2443 return err; 2444 2445 return 0; 2446 } 2447 2448 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2449 struct msghdr *msg_sys, unsigned int flags, 2450 struct used_address *used_address, 2451 unsigned int allowed_msghdr_flags) 2452 { 2453 struct sockaddr_storage address; 2454 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2455 ssize_t err; 2456 2457 msg_sys->msg_name = &address; 2458 2459 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2460 if (err < 0) 2461 return err; 2462 2463 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2464 allowed_msghdr_flags); 2465 kfree(iov); 2466 return err; 2467 } 2468 2469 /* 2470 * BSD sendmsg interface 2471 */ 2472 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2473 unsigned int flags) 2474 { 2475 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2476 } 2477 2478 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2479 bool forbid_cmsg_compat) 2480 { 2481 int fput_needed, err; 2482 struct msghdr msg_sys; 2483 struct socket *sock; 2484 2485 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2486 return -EINVAL; 2487 2488 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2489 if (!sock) 2490 goto out; 2491 2492 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2493 2494 fput_light(sock->file, fput_needed); 2495 out: 2496 return err; 2497 } 2498 2499 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2500 { 2501 return __sys_sendmsg(fd, msg, flags, true); 2502 } 2503 2504 /* 2505 * Linux sendmmsg interface 2506 */ 2507 2508 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2509 unsigned int flags, bool forbid_cmsg_compat) 2510 { 2511 int fput_needed, err, datagrams; 2512 struct socket *sock; 2513 struct mmsghdr __user *entry; 2514 struct compat_mmsghdr __user *compat_entry; 2515 struct msghdr msg_sys; 2516 struct used_address used_address; 2517 unsigned int oflags = flags; 2518 2519 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2520 return -EINVAL; 2521 2522 if (vlen > UIO_MAXIOV) 2523 vlen = UIO_MAXIOV; 2524 2525 datagrams = 0; 2526 2527 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2528 if (!sock) 2529 return err; 2530 2531 used_address.name_len = UINT_MAX; 2532 entry = mmsg; 2533 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2534 err = 0; 2535 flags |= MSG_BATCH; 2536 2537 while (datagrams < vlen) { 2538 if (datagrams == vlen - 1) 2539 flags = oflags; 2540 2541 if (MSG_CMSG_COMPAT & flags) { 2542 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2543 &msg_sys, flags, &used_address, MSG_EOR); 2544 if (err < 0) 2545 break; 2546 err = __put_user(err, &compat_entry->msg_len); 2547 ++compat_entry; 2548 } else { 2549 err = ___sys_sendmsg(sock, 2550 (struct user_msghdr __user *)entry, 2551 &msg_sys, flags, &used_address, MSG_EOR); 2552 if (err < 0) 2553 break; 2554 err = put_user(err, &entry->msg_len); 2555 ++entry; 2556 } 2557 2558 if (err) 2559 break; 2560 ++datagrams; 2561 if (msg_data_left(&msg_sys)) 2562 break; 2563 cond_resched(); 2564 } 2565 2566 fput_light(sock->file, fput_needed); 2567 2568 /* We only return an error if no datagrams were able to be sent */ 2569 if (datagrams != 0) 2570 return datagrams; 2571 2572 return err; 2573 } 2574 2575 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2576 unsigned int, vlen, unsigned int, flags) 2577 { 2578 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2579 } 2580 2581 int recvmsg_copy_msghdr(struct msghdr *msg, 2582 struct user_msghdr __user *umsg, unsigned flags, 2583 struct sockaddr __user **uaddr, 2584 struct iovec **iov) 2585 { 2586 ssize_t err; 2587 2588 if (MSG_CMSG_COMPAT & flags) { 2589 struct compat_msghdr __user *msg_compat; 2590 2591 msg_compat = (struct compat_msghdr __user *) umsg; 2592 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2593 } else { 2594 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2595 } 2596 if (err < 0) 2597 return err; 2598 2599 return 0; 2600 } 2601 2602 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2603 struct user_msghdr __user *msg, 2604 struct sockaddr __user *uaddr, 2605 unsigned int flags, int nosec) 2606 { 2607 struct compat_msghdr __user *msg_compat = 2608 (struct compat_msghdr __user *) msg; 2609 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2610 struct sockaddr_storage addr; 2611 unsigned long cmsg_ptr; 2612 int len; 2613 ssize_t err; 2614 2615 msg_sys->msg_name = &addr; 2616 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2617 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2618 2619 /* We assume all kernel code knows the size of sockaddr_storage */ 2620 msg_sys->msg_namelen = 0; 2621 2622 if (sock->file->f_flags & O_NONBLOCK) 2623 flags |= MSG_DONTWAIT; 2624 2625 if (unlikely(nosec)) 2626 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2627 else 2628 err = sock_recvmsg(sock, msg_sys, flags); 2629 2630 if (err < 0) 2631 goto out; 2632 len = err; 2633 2634 if (uaddr != NULL) { 2635 err = move_addr_to_user(&addr, 2636 msg_sys->msg_namelen, uaddr, 2637 uaddr_len); 2638 if (err < 0) 2639 goto out; 2640 } 2641 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2642 COMPAT_FLAGS(msg)); 2643 if (err) 2644 goto out; 2645 if (MSG_CMSG_COMPAT & flags) 2646 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2647 &msg_compat->msg_controllen); 2648 else 2649 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2650 &msg->msg_controllen); 2651 if (err) 2652 goto out; 2653 err = len; 2654 out: 2655 return err; 2656 } 2657 2658 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2659 struct msghdr *msg_sys, unsigned int flags, int nosec) 2660 { 2661 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2662 /* user mode address pointers */ 2663 struct sockaddr __user *uaddr; 2664 ssize_t err; 2665 2666 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2667 if (err < 0) 2668 return err; 2669 2670 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2671 kfree(iov); 2672 return err; 2673 } 2674 2675 /* 2676 * BSD recvmsg interface 2677 */ 2678 2679 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2680 struct user_msghdr __user *umsg, 2681 struct sockaddr __user *uaddr, unsigned int flags) 2682 { 2683 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2684 } 2685 2686 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2687 bool forbid_cmsg_compat) 2688 { 2689 int fput_needed, err; 2690 struct msghdr msg_sys; 2691 struct socket *sock; 2692 2693 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2694 return -EINVAL; 2695 2696 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2697 if (!sock) 2698 goto out; 2699 2700 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2701 2702 fput_light(sock->file, fput_needed); 2703 out: 2704 return err; 2705 } 2706 2707 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2708 unsigned int, flags) 2709 { 2710 return __sys_recvmsg(fd, msg, flags, true); 2711 } 2712 2713 /* 2714 * Linux recvmmsg interface 2715 */ 2716 2717 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2718 unsigned int vlen, unsigned int flags, 2719 struct timespec64 *timeout) 2720 { 2721 int fput_needed, err, datagrams; 2722 struct socket *sock; 2723 struct mmsghdr __user *entry; 2724 struct compat_mmsghdr __user *compat_entry; 2725 struct msghdr msg_sys; 2726 struct timespec64 end_time; 2727 struct timespec64 timeout64; 2728 2729 if (timeout && 2730 poll_select_set_timeout(&end_time, timeout->tv_sec, 2731 timeout->tv_nsec)) 2732 return -EINVAL; 2733 2734 datagrams = 0; 2735 2736 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2737 if (!sock) 2738 return err; 2739 2740 if (likely(!(flags & MSG_ERRQUEUE))) { 2741 err = sock_error(sock->sk); 2742 if (err) { 2743 datagrams = err; 2744 goto out_put; 2745 } 2746 } 2747 2748 entry = mmsg; 2749 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2750 2751 while (datagrams < vlen) { 2752 /* 2753 * No need to ask LSM for more than the first datagram. 2754 */ 2755 if (MSG_CMSG_COMPAT & flags) { 2756 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2757 &msg_sys, flags & ~MSG_WAITFORONE, 2758 datagrams); 2759 if (err < 0) 2760 break; 2761 err = __put_user(err, &compat_entry->msg_len); 2762 ++compat_entry; 2763 } else { 2764 err = ___sys_recvmsg(sock, 2765 (struct user_msghdr __user *)entry, 2766 &msg_sys, flags & ~MSG_WAITFORONE, 2767 datagrams); 2768 if (err < 0) 2769 break; 2770 err = put_user(err, &entry->msg_len); 2771 ++entry; 2772 } 2773 2774 if (err) 2775 break; 2776 ++datagrams; 2777 2778 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2779 if (flags & MSG_WAITFORONE) 2780 flags |= MSG_DONTWAIT; 2781 2782 if (timeout) { 2783 ktime_get_ts64(&timeout64); 2784 *timeout = timespec64_sub(end_time, timeout64); 2785 if (timeout->tv_sec < 0) { 2786 timeout->tv_sec = timeout->tv_nsec = 0; 2787 break; 2788 } 2789 2790 /* Timeout, return less than vlen datagrams */ 2791 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2792 break; 2793 } 2794 2795 /* Out of band data, return right away */ 2796 if (msg_sys.msg_flags & MSG_OOB) 2797 break; 2798 cond_resched(); 2799 } 2800 2801 if (err == 0) 2802 goto out_put; 2803 2804 if (datagrams == 0) { 2805 datagrams = err; 2806 goto out_put; 2807 } 2808 2809 /* 2810 * We may return less entries than requested (vlen) if the 2811 * sock is non block and there aren't enough datagrams... 2812 */ 2813 if (err != -EAGAIN) { 2814 /* 2815 * ... or if recvmsg returns an error after we 2816 * received some datagrams, where we record the 2817 * error to return on the next call or if the 2818 * app asks about it using getsockopt(SO_ERROR). 2819 */ 2820 sock->sk->sk_err = -err; 2821 } 2822 out_put: 2823 fput_light(sock->file, fput_needed); 2824 2825 return datagrams; 2826 } 2827 2828 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2829 unsigned int vlen, unsigned int flags, 2830 struct __kernel_timespec __user *timeout, 2831 struct old_timespec32 __user *timeout32) 2832 { 2833 int datagrams; 2834 struct timespec64 timeout_sys; 2835 2836 if (timeout && get_timespec64(&timeout_sys, timeout)) 2837 return -EFAULT; 2838 2839 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2840 return -EFAULT; 2841 2842 if (!timeout && !timeout32) 2843 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2844 2845 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2846 2847 if (datagrams <= 0) 2848 return datagrams; 2849 2850 if (timeout && put_timespec64(&timeout_sys, timeout)) 2851 datagrams = -EFAULT; 2852 2853 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2854 datagrams = -EFAULT; 2855 2856 return datagrams; 2857 } 2858 2859 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2860 unsigned int, vlen, unsigned int, flags, 2861 struct __kernel_timespec __user *, timeout) 2862 { 2863 if (flags & MSG_CMSG_COMPAT) 2864 return -EINVAL; 2865 2866 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2867 } 2868 2869 #ifdef CONFIG_COMPAT_32BIT_TIME 2870 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2871 unsigned int, vlen, unsigned int, flags, 2872 struct old_timespec32 __user *, timeout) 2873 { 2874 if (flags & MSG_CMSG_COMPAT) 2875 return -EINVAL; 2876 2877 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2878 } 2879 #endif 2880 2881 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2882 /* Argument list sizes for sys_socketcall */ 2883 #define AL(x) ((x) * sizeof(unsigned long)) 2884 static const unsigned char nargs[21] = { 2885 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2886 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2887 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2888 AL(4), AL(5), AL(4) 2889 }; 2890 2891 #undef AL 2892 2893 /* 2894 * System call vectors. 2895 * 2896 * Argument checking cleaned up. Saved 20% in size. 2897 * This function doesn't need to set the kernel lock because 2898 * it is set by the callees. 2899 */ 2900 2901 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2902 { 2903 unsigned long a[AUDITSC_ARGS]; 2904 unsigned long a0, a1; 2905 int err; 2906 unsigned int len; 2907 2908 if (call < 1 || call > SYS_SENDMMSG) 2909 return -EINVAL; 2910 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2911 2912 len = nargs[call]; 2913 if (len > sizeof(a)) 2914 return -EINVAL; 2915 2916 /* copy_from_user should be SMP safe. */ 2917 if (copy_from_user(a, args, len)) 2918 return -EFAULT; 2919 2920 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2921 if (err) 2922 return err; 2923 2924 a0 = a[0]; 2925 a1 = a[1]; 2926 2927 switch (call) { 2928 case SYS_SOCKET: 2929 err = __sys_socket(a0, a1, a[2]); 2930 break; 2931 case SYS_BIND: 2932 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2933 break; 2934 case SYS_CONNECT: 2935 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2936 break; 2937 case SYS_LISTEN: 2938 err = __sys_listen(a0, a1); 2939 break; 2940 case SYS_ACCEPT: 2941 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2942 (int __user *)a[2], 0); 2943 break; 2944 case SYS_GETSOCKNAME: 2945 err = 2946 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2947 (int __user *)a[2]); 2948 break; 2949 case SYS_GETPEERNAME: 2950 err = 2951 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2952 (int __user *)a[2]); 2953 break; 2954 case SYS_SOCKETPAIR: 2955 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2956 break; 2957 case SYS_SEND: 2958 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2959 NULL, 0); 2960 break; 2961 case SYS_SENDTO: 2962 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2963 (struct sockaddr __user *)a[4], a[5]); 2964 break; 2965 case SYS_RECV: 2966 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2967 NULL, NULL); 2968 break; 2969 case SYS_RECVFROM: 2970 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2971 (struct sockaddr __user *)a[4], 2972 (int __user *)a[5]); 2973 break; 2974 case SYS_SHUTDOWN: 2975 err = __sys_shutdown(a0, a1); 2976 break; 2977 case SYS_SETSOCKOPT: 2978 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2979 a[4]); 2980 break; 2981 case SYS_GETSOCKOPT: 2982 err = 2983 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2984 (int __user *)a[4]); 2985 break; 2986 case SYS_SENDMSG: 2987 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2988 a[2], true); 2989 break; 2990 case SYS_SENDMMSG: 2991 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2992 a[3], true); 2993 break; 2994 case SYS_RECVMSG: 2995 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2996 a[2], true); 2997 break; 2998 case SYS_RECVMMSG: 2999 if (IS_ENABLED(CONFIG_64BIT)) 3000 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3001 a[2], a[3], 3002 (struct __kernel_timespec __user *)a[4], 3003 NULL); 3004 else 3005 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3006 a[2], a[3], NULL, 3007 (struct old_timespec32 __user *)a[4]); 3008 break; 3009 case SYS_ACCEPT4: 3010 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3011 (int __user *)a[2], a[3]); 3012 break; 3013 default: 3014 err = -EINVAL; 3015 break; 3016 } 3017 return err; 3018 } 3019 3020 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3021 3022 /** 3023 * sock_register - add a socket protocol handler 3024 * @ops: description of protocol 3025 * 3026 * This function is called by a protocol handler that wants to 3027 * advertise its address family, and have it linked into the 3028 * socket interface. The value ops->family corresponds to the 3029 * socket system call protocol family. 3030 */ 3031 int sock_register(const struct net_proto_family *ops) 3032 { 3033 int err; 3034 3035 if (ops->family >= NPROTO) { 3036 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3037 return -ENOBUFS; 3038 } 3039 3040 spin_lock(&net_family_lock); 3041 if (rcu_dereference_protected(net_families[ops->family], 3042 lockdep_is_held(&net_family_lock))) 3043 err = -EEXIST; 3044 else { 3045 rcu_assign_pointer(net_families[ops->family], ops); 3046 err = 0; 3047 } 3048 spin_unlock(&net_family_lock); 3049 3050 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3051 return err; 3052 } 3053 EXPORT_SYMBOL(sock_register); 3054 3055 /** 3056 * sock_unregister - remove a protocol handler 3057 * @family: protocol family to remove 3058 * 3059 * This function is called by a protocol handler that wants to 3060 * remove its address family, and have it unlinked from the 3061 * new socket creation. 3062 * 3063 * If protocol handler is a module, then it can use module reference 3064 * counts to protect against new references. If protocol handler is not 3065 * a module then it needs to provide its own protection in 3066 * the ops->create routine. 3067 */ 3068 void sock_unregister(int family) 3069 { 3070 BUG_ON(family < 0 || family >= NPROTO); 3071 3072 spin_lock(&net_family_lock); 3073 RCU_INIT_POINTER(net_families[family], NULL); 3074 spin_unlock(&net_family_lock); 3075 3076 synchronize_rcu(); 3077 3078 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3079 } 3080 EXPORT_SYMBOL(sock_unregister); 3081 3082 bool sock_is_registered(int family) 3083 { 3084 return family < NPROTO && rcu_access_pointer(net_families[family]); 3085 } 3086 3087 static int __init sock_init(void) 3088 { 3089 int err; 3090 /* 3091 * Initialize the network sysctl infrastructure. 3092 */ 3093 err = net_sysctl_init(); 3094 if (err) 3095 goto out; 3096 3097 /* 3098 * Initialize skbuff SLAB cache 3099 */ 3100 skb_init(); 3101 3102 /* 3103 * Initialize the protocols module. 3104 */ 3105 3106 init_inodecache(); 3107 3108 err = register_filesystem(&sock_fs_type); 3109 if (err) 3110 goto out; 3111 sock_mnt = kern_mount(&sock_fs_type); 3112 if (IS_ERR(sock_mnt)) { 3113 err = PTR_ERR(sock_mnt); 3114 goto out_mount; 3115 } 3116 3117 /* The real protocol initialization is performed in later initcalls. 3118 */ 3119 3120 #ifdef CONFIG_NETFILTER 3121 err = netfilter_init(); 3122 if (err) 3123 goto out; 3124 #endif 3125 3126 ptp_classifier_init(); 3127 3128 out: 3129 return err; 3130 3131 out_mount: 3132 unregister_filesystem(&sock_fs_type); 3133 goto out; 3134 } 3135 3136 core_initcall(sock_init); /* early initcall */ 3137 3138 #ifdef CONFIG_PROC_FS 3139 void socket_seq_show(struct seq_file *seq) 3140 { 3141 seq_printf(seq, "sockets: used %d\n", 3142 sock_inuse_get(seq->private)); 3143 } 3144 #endif /* CONFIG_PROC_FS */ 3145 3146 /* Handle the fact that while struct ifreq has the same *layout* on 3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3148 * which are handled elsewhere, it still has different *size* due to 3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3150 * resulting in struct ifreq being 32 and 40 bytes respectively). 3151 * As a result, if the struct happens to be at the end of a page and 3152 * the next page isn't readable/writable, we get a fault. To prevent 3153 * that, copy back and forth to the full size. 3154 */ 3155 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3156 { 3157 if (in_compat_syscall()) { 3158 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3159 3160 memset(ifr, 0, sizeof(*ifr)); 3161 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3162 return -EFAULT; 3163 3164 if (ifrdata) 3165 *ifrdata = compat_ptr(ifr32->ifr_data); 3166 3167 return 0; 3168 } 3169 3170 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3171 return -EFAULT; 3172 3173 if (ifrdata) 3174 *ifrdata = ifr->ifr_data; 3175 3176 return 0; 3177 } 3178 EXPORT_SYMBOL(get_user_ifreq); 3179 3180 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3181 { 3182 size_t size = sizeof(*ifr); 3183 3184 if (in_compat_syscall()) 3185 size = sizeof(struct compat_ifreq); 3186 3187 if (copy_to_user(arg, ifr, size)) 3188 return -EFAULT; 3189 3190 return 0; 3191 } 3192 EXPORT_SYMBOL(put_user_ifreq); 3193 3194 #ifdef CONFIG_COMPAT 3195 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3196 { 3197 compat_uptr_t uptr32; 3198 struct ifreq ifr; 3199 void __user *saved; 3200 int err; 3201 3202 if (get_user_ifreq(&ifr, NULL, uifr32)) 3203 return -EFAULT; 3204 3205 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3206 return -EFAULT; 3207 3208 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3209 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3210 3211 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3212 if (!err) { 3213 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3214 if (put_user_ifreq(&ifr, uifr32)) 3215 err = -EFAULT; 3216 } 3217 return err; 3218 } 3219 3220 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3221 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3222 struct compat_ifreq __user *u_ifreq32) 3223 { 3224 struct ifreq ifreq; 3225 void __user *data; 3226 3227 if (!is_socket_ioctl_cmd(cmd)) 3228 return -ENOTTY; 3229 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3230 return -EFAULT; 3231 ifreq.ifr_data = data; 3232 3233 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3234 } 3235 3236 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3237 * for some operations; this forces use of the newer bridge-utils that 3238 * use compatible ioctls 3239 */ 3240 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3241 { 3242 compat_ulong_t tmp; 3243 3244 if (get_user(tmp, argp)) 3245 return -EFAULT; 3246 if (tmp == BRCTL_GET_VERSION) 3247 return BRCTL_VERSION + 1; 3248 return -EINVAL; 3249 } 3250 3251 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3252 unsigned int cmd, unsigned long arg) 3253 { 3254 void __user *argp = compat_ptr(arg); 3255 struct sock *sk = sock->sk; 3256 struct net *net = sock_net(sk); 3257 3258 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3259 return sock_ioctl(file, cmd, (unsigned long)argp); 3260 3261 switch (cmd) { 3262 case SIOCSIFBR: 3263 case SIOCGIFBR: 3264 return old_bridge_ioctl(argp); 3265 case SIOCWANDEV: 3266 return compat_siocwandev(net, argp); 3267 case SIOCGSTAMP_OLD: 3268 case SIOCGSTAMPNS_OLD: 3269 if (!sock->ops->gettstamp) 3270 return -ENOIOCTLCMD; 3271 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3272 !COMPAT_USE_64BIT_TIME); 3273 3274 case SIOCETHTOOL: 3275 case SIOCBONDSLAVEINFOQUERY: 3276 case SIOCBONDINFOQUERY: 3277 case SIOCSHWTSTAMP: 3278 case SIOCGHWTSTAMP: 3279 return compat_ifr_data_ioctl(net, cmd, argp); 3280 3281 case FIOSETOWN: 3282 case SIOCSPGRP: 3283 case FIOGETOWN: 3284 case SIOCGPGRP: 3285 case SIOCBRADDBR: 3286 case SIOCBRDELBR: 3287 case SIOCGIFVLAN: 3288 case SIOCSIFVLAN: 3289 case SIOCGSKNS: 3290 case SIOCGSTAMP_NEW: 3291 case SIOCGSTAMPNS_NEW: 3292 case SIOCGIFCONF: 3293 return sock_ioctl(file, cmd, arg); 3294 3295 case SIOCGIFFLAGS: 3296 case SIOCSIFFLAGS: 3297 case SIOCGIFMAP: 3298 case SIOCSIFMAP: 3299 case SIOCGIFMETRIC: 3300 case SIOCSIFMETRIC: 3301 case SIOCGIFMTU: 3302 case SIOCSIFMTU: 3303 case SIOCGIFMEM: 3304 case SIOCSIFMEM: 3305 case SIOCGIFHWADDR: 3306 case SIOCSIFHWADDR: 3307 case SIOCADDMULTI: 3308 case SIOCDELMULTI: 3309 case SIOCGIFINDEX: 3310 case SIOCGIFADDR: 3311 case SIOCSIFADDR: 3312 case SIOCSIFHWBROADCAST: 3313 case SIOCDIFADDR: 3314 case SIOCGIFBRDADDR: 3315 case SIOCSIFBRDADDR: 3316 case SIOCGIFDSTADDR: 3317 case SIOCSIFDSTADDR: 3318 case SIOCGIFNETMASK: 3319 case SIOCSIFNETMASK: 3320 case SIOCSIFPFLAGS: 3321 case SIOCGIFPFLAGS: 3322 case SIOCGIFTXQLEN: 3323 case SIOCSIFTXQLEN: 3324 case SIOCBRADDIF: 3325 case SIOCBRDELIF: 3326 case SIOCGIFNAME: 3327 case SIOCSIFNAME: 3328 case SIOCGMIIPHY: 3329 case SIOCGMIIREG: 3330 case SIOCSMIIREG: 3331 case SIOCBONDENSLAVE: 3332 case SIOCBONDRELEASE: 3333 case SIOCBONDSETHWADDR: 3334 case SIOCBONDCHANGEACTIVE: 3335 case SIOCSARP: 3336 case SIOCGARP: 3337 case SIOCDARP: 3338 case SIOCOUTQ: 3339 case SIOCOUTQNSD: 3340 case SIOCATMARK: 3341 return sock_do_ioctl(net, sock, cmd, arg); 3342 } 3343 3344 return -ENOIOCTLCMD; 3345 } 3346 3347 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3348 unsigned long arg) 3349 { 3350 struct socket *sock = file->private_data; 3351 int ret = -ENOIOCTLCMD; 3352 struct sock *sk; 3353 struct net *net; 3354 3355 sk = sock->sk; 3356 net = sock_net(sk); 3357 3358 if (sock->ops->compat_ioctl) 3359 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3360 3361 if (ret == -ENOIOCTLCMD && 3362 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3363 ret = compat_wext_handle_ioctl(net, cmd, arg); 3364 3365 if (ret == -ENOIOCTLCMD) 3366 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3367 3368 return ret; 3369 } 3370 #endif 3371 3372 /** 3373 * kernel_bind - bind an address to a socket (kernel space) 3374 * @sock: socket 3375 * @addr: address 3376 * @addrlen: length of address 3377 * 3378 * Returns 0 or an error. 3379 */ 3380 3381 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3382 { 3383 return sock->ops->bind(sock, addr, addrlen); 3384 } 3385 EXPORT_SYMBOL(kernel_bind); 3386 3387 /** 3388 * kernel_listen - move socket to listening state (kernel space) 3389 * @sock: socket 3390 * @backlog: pending connections queue size 3391 * 3392 * Returns 0 or an error. 3393 */ 3394 3395 int kernel_listen(struct socket *sock, int backlog) 3396 { 3397 return sock->ops->listen(sock, backlog); 3398 } 3399 EXPORT_SYMBOL(kernel_listen); 3400 3401 /** 3402 * kernel_accept - accept a connection (kernel space) 3403 * @sock: listening socket 3404 * @newsock: new connected socket 3405 * @flags: flags 3406 * 3407 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3408 * If it fails, @newsock is guaranteed to be %NULL. 3409 * Returns 0 or an error. 3410 */ 3411 3412 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3413 { 3414 struct sock *sk = sock->sk; 3415 int err; 3416 3417 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3418 newsock); 3419 if (err < 0) 3420 goto done; 3421 3422 err = sock->ops->accept(sock, *newsock, flags, true); 3423 if (err < 0) { 3424 sock_release(*newsock); 3425 *newsock = NULL; 3426 goto done; 3427 } 3428 3429 (*newsock)->ops = sock->ops; 3430 __module_get((*newsock)->ops->owner); 3431 3432 done: 3433 return err; 3434 } 3435 EXPORT_SYMBOL(kernel_accept); 3436 3437 /** 3438 * kernel_connect - connect a socket (kernel space) 3439 * @sock: socket 3440 * @addr: address 3441 * @addrlen: address length 3442 * @flags: flags (O_NONBLOCK, ...) 3443 * 3444 * For datagram sockets, @addr is the address to which datagrams are sent 3445 * by default, and the only address from which datagrams are received. 3446 * For stream sockets, attempts to connect to @addr. 3447 * Returns 0 or an error code. 3448 */ 3449 3450 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3451 int flags) 3452 { 3453 return sock->ops->connect(sock, addr, addrlen, flags); 3454 } 3455 EXPORT_SYMBOL(kernel_connect); 3456 3457 /** 3458 * kernel_getsockname - get the address which the socket is bound (kernel space) 3459 * @sock: socket 3460 * @addr: address holder 3461 * 3462 * Fills the @addr pointer with the address which the socket is bound. 3463 * Returns 0 or an error code. 3464 */ 3465 3466 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3467 { 3468 return sock->ops->getname(sock, addr, 0); 3469 } 3470 EXPORT_SYMBOL(kernel_getsockname); 3471 3472 /** 3473 * kernel_getpeername - get the address which the socket is connected (kernel space) 3474 * @sock: socket 3475 * @addr: address holder 3476 * 3477 * Fills the @addr pointer with the address which the socket is connected. 3478 * Returns 0 or an error code. 3479 */ 3480 3481 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3482 { 3483 return sock->ops->getname(sock, addr, 1); 3484 } 3485 EXPORT_SYMBOL(kernel_getpeername); 3486 3487 /** 3488 * kernel_sendpage - send a &page through a socket (kernel space) 3489 * @sock: socket 3490 * @page: page 3491 * @offset: page offset 3492 * @size: total size in bytes 3493 * @flags: flags (MSG_DONTWAIT, ...) 3494 * 3495 * Returns the total amount sent in bytes or an error. 3496 */ 3497 3498 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3499 size_t size, int flags) 3500 { 3501 if (sock->ops->sendpage) { 3502 /* Warn in case the improper page to zero-copy send */ 3503 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3504 return sock->ops->sendpage(sock, page, offset, size, flags); 3505 } 3506 return sock_no_sendpage(sock, page, offset, size, flags); 3507 } 3508 EXPORT_SYMBOL(kernel_sendpage); 3509 3510 /** 3511 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3512 * @sk: sock 3513 * @page: page 3514 * @offset: page offset 3515 * @size: total size in bytes 3516 * @flags: flags (MSG_DONTWAIT, ...) 3517 * 3518 * Returns the total amount sent in bytes or an error. 3519 * Caller must hold @sk. 3520 */ 3521 3522 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3523 size_t size, int flags) 3524 { 3525 struct socket *sock = sk->sk_socket; 3526 3527 if (sock->ops->sendpage_locked) 3528 return sock->ops->sendpage_locked(sk, page, offset, size, 3529 flags); 3530 3531 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3532 } 3533 EXPORT_SYMBOL(kernel_sendpage_locked); 3534 3535 /** 3536 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3537 * @sock: socket 3538 * @how: connection part 3539 * 3540 * Returns 0 or an error. 3541 */ 3542 3543 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3544 { 3545 return sock->ops->shutdown(sock, how); 3546 } 3547 EXPORT_SYMBOL(kernel_sock_shutdown); 3548 3549 /** 3550 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3551 * @sk: socket 3552 * 3553 * This routine returns the IP overhead imposed by a socket i.e. 3554 * the length of the underlying IP header, depending on whether 3555 * this is an IPv4 or IPv6 socket and the length from IP options turned 3556 * on at the socket. Assumes that the caller has a lock on the socket. 3557 */ 3558 3559 u32 kernel_sock_ip_overhead(struct sock *sk) 3560 { 3561 struct inet_sock *inet; 3562 struct ip_options_rcu *opt; 3563 u32 overhead = 0; 3564 #if IS_ENABLED(CONFIG_IPV6) 3565 struct ipv6_pinfo *np; 3566 struct ipv6_txoptions *optv6 = NULL; 3567 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3568 3569 if (!sk) 3570 return overhead; 3571 3572 switch (sk->sk_family) { 3573 case AF_INET: 3574 inet = inet_sk(sk); 3575 overhead += sizeof(struct iphdr); 3576 opt = rcu_dereference_protected(inet->inet_opt, 3577 sock_owned_by_user(sk)); 3578 if (opt) 3579 overhead += opt->opt.optlen; 3580 return overhead; 3581 #if IS_ENABLED(CONFIG_IPV6) 3582 case AF_INET6: 3583 np = inet6_sk(sk); 3584 overhead += sizeof(struct ipv6hdr); 3585 if (np) 3586 optv6 = rcu_dereference_protected(np->opt, 3587 sock_owned_by_user(sk)); 3588 if (optv6) 3589 overhead += (optv6->opt_flen + optv6->opt_nflen); 3590 return overhead; 3591 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3592 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3593 return overhead; 3594 } 3595 } 3596 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3597