1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .uring_cmd = io_uring_cmd_sock, 164 .mmap = sock_mmap, 165 .release = sock_close, 166 .fasync = sock_fasync, 167 .splice_write = splice_to_socket, 168 .splice_read = sock_splice_read, 169 .splice_eof = sock_splice_eof, 170 .show_fdinfo = sock_show_fdinfo, 171 }; 172 173 static const char * const pf_family_names[] = { 174 [PF_UNSPEC] = "PF_UNSPEC", 175 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 176 [PF_INET] = "PF_INET", 177 [PF_AX25] = "PF_AX25", 178 [PF_IPX] = "PF_IPX", 179 [PF_APPLETALK] = "PF_APPLETALK", 180 [PF_NETROM] = "PF_NETROM", 181 [PF_BRIDGE] = "PF_BRIDGE", 182 [PF_ATMPVC] = "PF_ATMPVC", 183 [PF_X25] = "PF_X25", 184 [PF_INET6] = "PF_INET6", 185 [PF_ROSE] = "PF_ROSE", 186 [PF_DECnet] = "PF_DECnet", 187 [PF_NETBEUI] = "PF_NETBEUI", 188 [PF_SECURITY] = "PF_SECURITY", 189 [PF_KEY] = "PF_KEY", 190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 191 [PF_PACKET] = "PF_PACKET", 192 [PF_ASH] = "PF_ASH", 193 [PF_ECONET] = "PF_ECONET", 194 [PF_ATMSVC] = "PF_ATMSVC", 195 [PF_RDS] = "PF_RDS", 196 [PF_SNA] = "PF_SNA", 197 [PF_IRDA] = "PF_IRDA", 198 [PF_PPPOX] = "PF_PPPOX", 199 [PF_WANPIPE] = "PF_WANPIPE", 200 [PF_LLC] = "PF_LLC", 201 [PF_IB] = "PF_IB", 202 [PF_MPLS] = "PF_MPLS", 203 [PF_CAN] = "PF_CAN", 204 [PF_TIPC] = "PF_TIPC", 205 [PF_BLUETOOTH] = "PF_BLUETOOTH", 206 [PF_IUCV] = "PF_IUCV", 207 [PF_RXRPC] = "PF_RXRPC", 208 [PF_ISDN] = "PF_ISDN", 209 [PF_PHONET] = "PF_PHONET", 210 [PF_IEEE802154] = "PF_IEEE802154", 211 [PF_CAIF] = "PF_CAIF", 212 [PF_ALG] = "PF_ALG", 213 [PF_NFC] = "PF_NFC", 214 [PF_VSOCK] = "PF_VSOCK", 215 [PF_KCM] = "PF_KCM", 216 [PF_QIPCRTR] = "PF_QIPCRTR", 217 [PF_SMC] = "PF_SMC", 218 [PF_XDP] = "PF_XDP", 219 [PF_MCTP] = "PF_MCTP", 220 }; 221 222 /* 223 * The protocol list. Each protocol is registered in here. 224 */ 225 226 static DEFINE_SPINLOCK(net_family_lock); 227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 228 229 /* 230 * Support routines. 231 * Move socket addresses back and forth across the kernel/user 232 * divide and look after the messy bits. 233 */ 234 235 /** 236 * move_addr_to_kernel - copy a socket address into kernel space 237 * @uaddr: Address in user space 238 * @kaddr: Address in kernel space 239 * @ulen: Length in user space 240 * 241 * The address is copied into kernel space. If the provided address is 242 * too long an error code of -EINVAL is returned. If the copy gives 243 * invalid addresses -EFAULT is returned. On a success 0 is returned. 244 */ 245 246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 247 { 248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 249 return -EINVAL; 250 if (ulen == 0) 251 return 0; 252 if (copy_from_user(kaddr, uaddr, ulen)) 253 return -EFAULT; 254 return audit_sockaddr(ulen, kaddr); 255 } 256 257 /** 258 * move_addr_to_user - copy an address to user space 259 * @kaddr: kernel space address 260 * @klen: length of address in kernel 261 * @uaddr: user space address 262 * @ulen: pointer to user length field 263 * 264 * The value pointed to by ulen on entry is the buffer length available. 265 * This is overwritten with the buffer space used. -EINVAL is returned 266 * if an overlong buffer is specified or a negative buffer size. -EFAULT 267 * is returned if either the buffer or the length field are not 268 * accessible. 269 * After copying the data up to the limit the user specifies, the true 270 * length of the data is written over the length limit the user 271 * specified. Zero is returned for a success. 272 */ 273 274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 275 void __user *uaddr, int __user *ulen) 276 { 277 int err; 278 int len; 279 280 BUG_ON(klen > sizeof(struct sockaddr_storage)); 281 err = get_user(len, ulen); 282 if (err) 283 return err; 284 if (len > klen) 285 len = klen; 286 if (len < 0) 287 return -EINVAL; 288 if (len) { 289 if (audit_sockaddr(klen, kaddr)) 290 return -ENOMEM; 291 if (copy_to_user(uaddr, kaddr, len)) 292 return -EFAULT; 293 } 294 /* 295 * "fromlen shall refer to the value before truncation.." 296 * 1003.1g 297 */ 298 return __put_user(klen, ulen); 299 } 300 301 static struct kmem_cache *sock_inode_cachep __ro_after_init; 302 303 static struct inode *sock_alloc_inode(struct super_block *sb) 304 { 305 struct socket_alloc *ei; 306 307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 308 if (!ei) 309 return NULL; 310 init_waitqueue_head(&ei->socket.wq.wait); 311 ei->socket.wq.fasync_list = NULL; 312 ei->socket.wq.flags = 0; 313 314 ei->socket.state = SS_UNCONNECTED; 315 ei->socket.flags = 0; 316 ei->socket.ops = NULL; 317 ei->socket.sk = NULL; 318 ei->socket.file = NULL; 319 320 return &ei->vfs_inode; 321 } 322 323 static void sock_free_inode(struct inode *inode) 324 { 325 struct socket_alloc *ei; 326 327 ei = container_of(inode, struct socket_alloc, vfs_inode); 328 kmem_cache_free(sock_inode_cachep, ei); 329 } 330 331 static void init_once(void *foo) 332 { 333 struct socket_alloc *ei = (struct socket_alloc *)foo; 334 335 inode_init_once(&ei->vfs_inode); 336 } 337 338 static void init_inodecache(void) 339 { 340 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 341 sizeof(struct socket_alloc), 342 0, 343 (SLAB_HWCACHE_ALIGN | 344 SLAB_RECLAIM_ACCOUNT | 345 SLAB_ACCOUNT), 346 init_once); 347 BUG_ON(sock_inode_cachep == NULL); 348 } 349 350 static const struct super_operations sockfs_ops = { 351 .alloc_inode = sock_alloc_inode, 352 .free_inode = sock_free_inode, 353 .statfs = simple_statfs, 354 }; 355 356 /* 357 * sockfs_dname() is called from d_path(). 358 */ 359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 360 { 361 return dynamic_dname(buffer, buflen, "socket:[%lu]", 362 d_inode(dentry)->i_ino); 363 } 364 365 static const struct dentry_operations sockfs_dentry_operations = { 366 .d_dname = sockfs_dname, 367 }; 368 369 static int sockfs_xattr_get(const struct xattr_handler *handler, 370 struct dentry *dentry, struct inode *inode, 371 const char *suffix, void *value, size_t size) 372 { 373 if (value) { 374 if (dentry->d_name.len + 1 > size) 375 return -ERANGE; 376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 377 } 378 return dentry->d_name.len + 1; 379 } 380 381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 384 385 static const struct xattr_handler sockfs_xattr_handler = { 386 .name = XATTR_NAME_SOCKPROTONAME, 387 .get = sockfs_xattr_get, 388 }; 389 390 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 391 struct mnt_idmap *idmap, 392 struct dentry *dentry, struct inode *inode, 393 const char *suffix, const void *value, 394 size_t size, int flags) 395 { 396 /* Handled by LSM. */ 397 return -EAGAIN; 398 } 399 400 static const struct xattr_handler sockfs_security_xattr_handler = { 401 .prefix = XATTR_SECURITY_PREFIX, 402 .set = sockfs_security_xattr_set, 403 }; 404 405 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 406 &sockfs_xattr_handler, 407 &sockfs_security_xattr_handler, 408 NULL 409 }; 410 411 static int sockfs_init_fs_context(struct fs_context *fc) 412 { 413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 414 if (!ctx) 415 return -ENOMEM; 416 ctx->ops = &sockfs_ops; 417 ctx->dops = &sockfs_dentry_operations; 418 ctx->xattr = sockfs_xattr_handlers; 419 return 0; 420 } 421 422 static struct vfsmount *sock_mnt __read_mostly; 423 424 static struct file_system_type sock_fs_type = { 425 .name = "sockfs", 426 .init_fs_context = sockfs_init_fs_context, 427 .kill_sb = kill_anon_super, 428 }; 429 430 /* 431 * Obtains the first available file descriptor and sets it up for use. 432 * 433 * These functions create file structures and maps them to fd space 434 * of the current process. On success it returns file descriptor 435 * and file struct implicitly stored in sock->file. 436 * Note that another thread may close file descriptor before we return 437 * from this function. We use the fact that now we do not refer 438 * to socket after mapping. If one day we will need it, this 439 * function will increment ref. count on file by 1. 440 * 441 * In any case returned fd MAY BE not valid! 442 * This race condition is unavoidable 443 * with shared fd spaces, we cannot solve it inside kernel, 444 * but we take care of internal coherence yet. 445 */ 446 447 /** 448 * sock_alloc_file - Bind a &socket to a &file 449 * @sock: socket 450 * @flags: file status flags 451 * @dname: protocol name 452 * 453 * Returns the &file bound with @sock, implicitly storing it 454 * in sock->file. If dname is %NULL, sets to "". 455 * 456 * On failure @sock is released, and an ERR pointer is returned. 457 * 458 * This function uses GFP_KERNEL internally. 459 */ 460 461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 462 { 463 struct file *file; 464 465 if (!dname) 466 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 467 468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 469 O_RDWR | (flags & O_NONBLOCK), 470 &socket_file_ops); 471 if (IS_ERR(file)) { 472 sock_release(sock); 473 return file; 474 } 475 476 file->f_mode |= FMODE_NOWAIT; 477 sock->file = file; 478 file->private_data = sock; 479 stream_open(SOCK_INODE(sock), file); 480 return file; 481 } 482 EXPORT_SYMBOL(sock_alloc_file); 483 484 static int sock_map_fd(struct socket *sock, int flags) 485 { 486 struct file *newfile; 487 int fd = get_unused_fd_flags(flags); 488 if (unlikely(fd < 0)) { 489 sock_release(sock); 490 return fd; 491 } 492 493 newfile = sock_alloc_file(sock, flags, NULL); 494 if (!IS_ERR(newfile)) { 495 fd_install(fd, newfile); 496 return fd; 497 } 498 499 put_unused_fd(fd); 500 return PTR_ERR(newfile); 501 } 502 503 /** 504 * sock_from_file - Return the &socket bounded to @file. 505 * @file: file 506 * 507 * On failure returns %NULL. 508 */ 509 510 struct socket *sock_from_file(struct file *file) 511 { 512 if (file->f_op == &socket_file_ops) 513 return file->private_data; /* set in sock_alloc_file */ 514 515 return NULL; 516 } 517 EXPORT_SYMBOL(sock_from_file); 518 519 /** 520 * sockfd_lookup - Go from a file number to its socket slot 521 * @fd: file handle 522 * @err: pointer to an error code return 523 * 524 * The file handle passed in is locked and the socket it is bound 525 * to is returned. If an error occurs the err pointer is overwritten 526 * with a negative errno code and NULL is returned. The function checks 527 * for both invalid handles and passing a handle which is not a socket. 528 * 529 * On a success the socket object pointer is returned. 530 */ 531 532 struct socket *sockfd_lookup(int fd, int *err) 533 { 534 struct file *file; 535 struct socket *sock; 536 537 file = fget(fd); 538 if (!file) { 539 *err = -EBADF; 540 return NULL; 541 } 542 543 sock = sock_from_file(file); 544 if (!sock) { 545 *err = -ENOTSOCK; 546 fput(file); 547 } 548 return sock; 549 } 550 EXPORT_SYMBOL(sockfd_lookup); 551 552 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 553 { 554 struct fd f = fdget(fd); 555 struct socket *sock; 556 557 *err = -EBADF; 558 if (fd_file(f)) { 559 sock = sock_from_file(fd_file(f)); 560 if (likely(sock)) { 561 *fput_needed = f.word & FDPUT_FPUT; 562 return sock; 563 } 564 *err = -ENOTSOCK; 565 fdput(f); 566 } 567 return NULL; 568 } 569 570 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 571 size_t size) 572 { 573 ssize_t len; 574 ssize_t used = 0; 575 576 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 577 if (len < 0) 578 return len; 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 buffer += len; 584 } 585 586 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 587 used += len; 588 if (buffer) { 589 if (size < used) 590 return -ERANGE; 591 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 592 buffer += len; 593 } 594 595 return used; 596 } 597 598 static int sockfs_setattr(struct mnt_idmap *idmap, 599 struct dentry *dentry, struct iattr *iattr) 600 { 601 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 602 603 if (!err && (iattr->ia_valid & ATTR_UID)) { 604 struct socket *sock = SOCKET_I(d_inode(dentry)); 605 606 if (sock->sk) 607 sock->sk->sk_uid = iattr->ia_uid; 608 else 609 err = -ENOENT; 610 } 611 612 return err; 613 } 614 615 static const struct inode_operations sockfs_inode_ops = { 616 .listxattr = sockfs_listxattr, 617 .setattr = sockfs_setattr, 618 }; 619 620 /** 621 * sock_alloc - allocate a socket 622 * 623 * Allocate a new inode and socket object. The two are bound together 624 * and initialised. The socket is then returned. If we are out of inodes 625 * NULL is returned. This functions uses GFP_KERNEL internally. 626 */ 627 628 struct socket *sock_alloc(void) 629 { 630 struct inode *inode; 631 struct socket *sock; 632 633 inode = new_inode_pseudo(sock_mnt->mnt_sb); 634 if (!inode) 635 return NULL; 636 637 sock = SOCKET_I(inode); 638 639 inode->i_ino = get_next_ino(); 640 inode->i_mode = S_IFSOCK | S_IRWXUGO; 641 inode->i_uid = current_fsuid(); 642 inode->i_gid = current_fsgid(); 643 inode->i_op = &sockfs_inode_ops; 644 645 return sock; 646 } 647 EXPORT_SYMBOL(sock_alloc); 648 649 static void __sock_release(struct socket *sock, struct inode *inode) 650 { 651 const struct proto_ops *ops = READ_ONCE(sock->ops); 652 653 if (ops) { 654 struct module *owner = ops->owner; 655 656 if (inode) 657 inode_lock(inode); 658 ops->release(sock); 659 sock->sk = NULL; 660 if (inode) 661 inode_unlock(inode); 662 sock->ops = NULL; 663 module_put(owner); 664 } 665 666 if (sock->wq.fasync_list) 667 pr_err("%s: fasync list not empty!\n", __func__); 668 669 if (!sock->file) { 670 iput(SOCK_INODE(sock)); 671 return; 672 } 673 sock->file = NULL; 674 } 675 676 /** 677 * sock_release - close a socket 678 * @sock: socket to close 679 * 680 * The socket is released from the protocol stack if it has a release 681 * callback, and the inode is then released if the socket is bound to 682 * an inode not a file. 683 */ 684 void sock_release(struct socket *sock) 685 { 686 __sock_release(sock, NULL); 687 } 688 EXPORT_SYMBOL(sock_release); 689 690 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 691 { 692 u8 flags = *tx_flags; 693 694 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 695 flags |= SKBTX_HW_TSTAMP; 696 697 /* PTP hardware clocks can provide a free running cycle counter 698 * as a time base for virtual clocks. Tell driver to use the 699 * free running cycle counter for timestamp if socket is bound 700 * to virtual clock. 701 */ 702 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 703 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 704 } 705 706 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 707 flags |= SKBTX_SW_TSTAMP; 708 709 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 710 flags |= SKBTX_SCHED_TSTAMP; 711 712 *tx_flags = flags; 713 } 714 EXPORT_SYMBOL(__sock_tx_timestamp); 715 716 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 717 size_t)); 718 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 719 size_t)); 720 721 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 722 int flags) 723 { 724 trace_sock_send_length(sk, ret, 0); 725 } 726 727 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 728 { 729 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 730 inet_sendmsg, sock, msg, 731 msg_data_left(msg)); 732 BUG_ON(ret == -EIOCBQUEUED); 733 734 if (trace_sock_send_length_enabled()) 735 call_trace_sock_send_length(sock->sk, ret, 0); 736 return ret; 737 } 738 739 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 740 { 741 int err = security_socket_sendmsg(sock, msg, 742 msg_data_left(msg)); 743 744 return err ?: sock_sendmsg_nosec(sock, msg); 745 } 746 747 /** 748 * sock_sendmsg - send a message through @sock 749 * @sock: socket 750 * @msg: message to send 751 * 752 * Sends @msg through @sock, passing through LSM. 753 * Returns the number of bytes sent, or an error code. 754 */ 755 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 756 { 757 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 758 struct sockaddr_storage address; 759 int save_len = msg->msg_namelen; 760 int ret; 761 762 if (msg->msg_name) { 763 memcpy(&address, msg->msg_name, msg->msg_namelen); 764 msg->msg_name = &address; 765 } 766 767 ret = __sock_sendmsg(sock, msg); 768 msg->msg_name = save_addr; 769 msg->msg_namelen = save_len; 770 771 return ret; 772 } 773 EXPORT_SYMBOL(sock_sendmsg); 774 775 /** 776 * kernel_sendmsg - send a message through @sock (kernel-space) 777 * @sock: socket 778 * @msg: message header 779 * @vec: kernel vec 780 * @num: vec array length 781 * @size: total message data size 782 * 783 * Builds the message data with @vec and sends it through @sock. 784 * Returns the number of bytes sent, or an error code. 785 */ 786 787 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 788 struct kvec *vec, size_t num, size_t size) 789 { 790 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 791 return sock_sendmsg(sock, msg); 792 } 793 EXPORT_SYMBOL(kernel_sendmsg); 794 795 /** 796 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 797 * @sk: sock 798 * @msg: message header 799 * @vec: output s/g array 800 * @num: output s/g array length 801 * @size: total message data size 802 * 803 * Builds the message data with @vec and sends it through @sock. 804 * Returns the number of bytes sent, or an error code. 805 * Caller must hold @sk. 806 */ 807 808 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 809 struct kvec *vec, size_t num, size_t size) 810 { 811 struct socket *sock = sk->sk_socket; 812 const struct proto_ops *ops = READ_ONCE(sock->ops); 813 814 if (!ops->sendmsg_locked) 815 return sock_no_sendmsg_locked(sk, msg, size); 816 817 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 818 819 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 820 } 821 EXPORT_SYMBOL(kernel_sendmsg_locked); 822 823 static bool skb_is_err_queue(const struct sk_buff *skb) 824 { 825 /* pkt_type of skbs enqueued on the error queue are set to 826 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 827 * in recvmsg, since skbs received on a local socket will never 828 * have a pkt_type of PACKET_OUTGOING. 829 */ 830 return skb->pkt_type == PACKET_OUTGOING; 831 } 832 833 /* On transmit, software and hardware timestamps are returned independently. 834 * As the two skb clones share the hardware timestamp, which may be updated 835 * before the software timestamp is received, a hardware TX timestamp may be 836 * returned only if there is no software TX timestamp. Ignore false software 837 * timestamps, which may be made in the __sock_recv_timestamp() call when the 838 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 839 * hardware timestamp. 840 */ 841 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 842 { 843 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 844 } 845 846 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 847 { 848 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 849 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 850 struct net_device *orig_dev; 851 ktime_t hwtstamp; 852 853 rcu_read_lock(); 854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 855 if (orig_dev) { 856 *if_index = orig_dev->ifindex; 857 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 858 } else { 859 hwtstamp = shhwtstamps->hwtstamp; 860 } 861 rcu_read_unlock(); 862 863 return hwtstamp; 864 } 865 866 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 867 int if_index) 868 { 869 struct scm_ts_pktinfo ts_pktinfo; 870 struct net_device *orig_dev; 871 872 if (!skb_mac_header_was_set(skb)) 873 return; 874 875 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 876 877 if (!if_index) { 878 rcu_read_lock(); 879 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 880 if (orig_dev) 881 if_index = orig_dev->ifindex; 882 rcu_read_unlock(); 883 } 884 ts_pktinfo.if_index = if_index; 885 886 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 887 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 888 sizeof(ts_pktinfo), &ts_pktinfo); 889 } 890 891 /* 892 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 893 */ 894 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 895 struct sk_buff *skb) 896 { 897 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 898 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 899 struct scm_timestamping_internal tss; 900 int empty = 1, false_tstamp = 0; 901 struct skb_shared_hwtstamps *shhwtstamps = 902 skb_hwtstamps(skb); 903 int if_index; 904 ktime_t hwtstamp; 905 u32 tsflags; 906 907 /* Race occurred between timestamp enabling and packet 908 receiving. Fill in the current time for now. */ 909 if (need_software_tstamp && skb->tstamp == 0) { 910 __net_timestamp(skb); 911 false_tstamp = 1; 912 } 913 914 if (need_software_tstamp) { 915 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 916 if (new_tstamp) { 917 struct __kernel_sock_timeval tv; 918 919 skb_get_new_timestamp(skb, &tv); 920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 921 sizeof(tv), &tv); 922 } else { 923 struct __kernel_old_timeval tv; 924 925 skb_get_timestamp(skb, &tv); 926 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 927 sizeof(tv), &tv); 928 } 929 } else { 930 if (new_tstamp) { 931 struct __kernel_timespec ts; 932 933 skb_get_new_timestampns(skb, &ts); 934 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 935 sizeof(ts), &ts); 936 } else { 937 struct __kernel_old_timespec ts; 938 939 skb_get_timestampns(skb, &ts); 940 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 941 sizeof(ts), &ts); 942 } 943 } 944 } 945 946 memset(&tss, 0, sizeof(tss)); 947 tsflags = READ_ONCE(sk->sk_tsflags); 948 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 949 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 950 skb_is_err_queue(skb) || 951 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 952 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 953 empty = 0; 954 if (shhwtstamps && 955 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 956 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 957 skb_is_err_queue(skb) || 958 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 959 !skb_is_swtx_tstamp(skb, false_tstamp)) { 960 if_index = 0; 961 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 962 hwtstamp = get_timestamp(sk, skb, &if_index); 963 else 964 hwtstamp = shhwtstamps->hwtstamp; 965 966 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 967 hwtstamp = ptp_convert_timestamp(&hwtstamp, 968 READ_ONCE(sk->sk_bind_phc)); 969 970 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 971 empty = 0; 972 973 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 974 !skb_is_err_queue(skb)) 975 put_ts_pktinfo(msg, skb, if_index); 976 } 977 } 978 if (!empty) { 979 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 980 put_cmsg_scm_timestamping64(msg, &tss); 981 else 982 put_cmsg_scm_timestamping(msg, &tss); 983 984 if (skb_is_err_queue(skb) && skb->len && 985 SKB_EXT_ERR(skb)->opt_stats) 986 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 987 skb->len, skb->data); 988 } 989 } 990 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 991 992 #ifdef CONFIG_WIRELESS 993 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 994 struct sk_buff *skb) 995 { 996 int ack; 997 998 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 999 return; 1000 if (!skb->wifi_acked_valid) 1001 return; 1002 1003 ack = skb->wifi_acked; 1004 1005 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1006 } 1007 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1008 #endif 1009 1010 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1011 struct sk_buff *skb) 1012 { 1013 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1014 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1015 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1016 } 1017 1018 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1019 struct sk_buff *skb) 1020 { 1021 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1022 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1023 __u32 mark = skb->mark; 1024 1025 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1026 } 1027 } 1028 1029 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1030 struct sk_buff *skb) 1031 { 1032 sock_recv_timestamp(msg, sk, skb); 1033 sock_recv_drops(msg, sk, skb); 1034 sock_recv_mark(msg, sk, skb); 1035 } 1036 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1037 1038 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1039 size_t, int)); 1040 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1041 size_t, int)); 1042 1043 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1044 { 1045 trace_sock_recv_length(sk, ret, flags); 1046 } 1047 1048 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1049 int flags) 1050 { 1051 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1052 inet6_recvmsg, 1053 inet_recvmsg, sock, msg, 1054 msg_data_left(msg), flags); 1055 if (trace_sock_recv_length_enabled()) 1056 call_trace_sock_recv_length(sock->sk, ret, flags); 1057 return ret; 1058 } 1059 1060 /** 1061 * sock_recvmsg - receive a message from @sock 1062 * @sock: socket 1063 * @msg: message to receive 1064 * @flags: message flags 1065 * 1066 * Receives @msg from @sock, passing through LSM. Returns the total number 1067 * of bytes received, or an error. 1068 */ 1069 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1070 { 1071 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1072 1073 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1074 } 1075 EXPORT_SYMBOL(sock_recvmsg); 1076 1077 /** 1078 * kernel_recvmsg - Receive a message from a socket (kernel space) 1079 * @sock: The socket to receive the message from 1080 * @msg: Received message 1081 * @vec: Input s/g array for message data 1082 * @num: Size of input s/g array 1083 * @size: Number of bytes to read 1084 * @flags: Message flags (MSG_DONTWAIT, etc...) 1085 * 1086 * On return the msg structure contains the scatter/gather array passed in the 1087 * vec argument. The array is modified so that it consists of the unfilled 1088 * portion of the original array. 1089 * 1090 * The returned value is the total number of bytes received, or an error. 1091 */ 1092 1093 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1094 struct kvec *vec, size_t num, size_t size, int flags) 1095 { 1096 msg->msg_control_is_user = false; 1097 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1098 return sock_recvmsg(sock, msg, flags); 1099 } 1100 EXPORT_SYMBOL(kernel_recvmsg); 1101 1102 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1103 struct pipe_inode_info *pipe, size_t len, 1104 unsigned int flags) 1105 { 1106 struct socket *sock = file->private_data; 1107 const struct proto_ops *ops; 1108 1109 ops = READ_ONCE(sock->ops); 1110 if (unlikely(!ops->splice_read)) 1111 return copy_splice_read(file, ppos, pipe, len, flags); 1112 1113 return ops->splice_read(sock, ppos, pipe, len, flags); 1114 } 1115 1116 static void sock_splice_eof(struct file *file) 1117 { 1118 struct socket *sock = file->private_data; 1119 const struct proto_ops *ops; 1120 1121 ops = READ_ONCE(sock->ops); 1122 if (ops->splice_eof) 1123 ops->splice_eof(sock); 1124 } 1125 1126 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1127 { 1128 struct file *file = iocb->ki_filp; 1129 struct socket *sock = file->private_data; 1130 struct msghdr msg = {.msg_iter = *to, 1131 .msg_iocb = iocb}; 1132 ssize_t res; 1133 1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1135 msg.msg_flags = MSG_DONTWAIT; 1136 1137 if (iocb->ki_pos != 0) 1138 return -ESPIPE; 1139 1140 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1141 return 0; 1142 1143 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1144 *to = msg.msg_iter; 1145 return res; 1146 } 1147 1148 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1149 { 1150 struct file *file = iocb->ki_filp; 1151 struct socket *sock = file->private_data; 1152 struct msghdr msg = {.msg_iter = *from, 1153 .msg_iocb = iocb}; 1154 ssize_t res; 1155 1156 if (iocb->ki_pos != 0) 1157 return -ESPIPE; 1158 1159 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1160 msg.msg_flags = MSG_DONTWAIT; 1161 1162 if (sock->type == SOCK_SEQPACKET) 1163 msg.msg_flags |= MSG_EOR; 1164 1165 res = __sock_sendmsg(sock, &msg); 1166 *from = msg.msg_iter; 1167 return res; 1168 } 1169 1170 /* 1171 * Atomic setting of ioctl hooks to avoid race 1172 * with module unload. 1173 */ 1174 1175 static DEFINE_MUTEX(br_ioctl_mutex); 1176 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1177 unsigned int cmd, struct ifreq *ifr, 1178 void __user *uarg); 1179 1180 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1181 unsigned int cmd, struct ifreq *ifr, 1182 void __user *uarg)) 1183 { 1184 mutex_lock(&br_ioctl_mutex); 1185 br_ioctl_hook = hook; 1186 mutex_unlock(&br_ioctl_mutex); 1187 } 1188 EXPORT_SYMBOL(brioctl_set); 1189 1190 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1191 struct ifreq *ifr, void __user *uarg) 1192 { 1193 int err = -ENOPKG; 1194 1195 if (!br_ioctl_hook) 1196 request_module("bridge"); 1197 1198 mutex_lock(&br_ioctl_mutex); 1199 if (br_ioctl_hook) 1200 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1201 mutex_unlock(&br_ioctl_mutex); 1202 1203 return err; 1204 } 1205 1206 static DEFINE_MUTEX(vlan_ioctl_mutex); 1207 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1208 1209 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1210 { 1211 mutex_lock(&vlan_ioctl_mutex); 1212 vlan_ioctl_hook = hook; 1213 mutex_unlock(&vlan_ioctl_mutex); 1214 } 1215 EXPORT_SYMBOL(vlan_ioctl_set); 1216 1217 static long sock_do_ioctl(struct net *net, struct socket *sock, 1218 unsigned int cmd, unsigned long arg) 1219 { 1220 const struct proto_ops *ops = READ_ONCE(sock->ops); 1221 struct ifreq ifr; 1222 bool need_copyout; 1223 int err; 1224 void __user *argp = (void __user *)arg; 1225 void __user *data; 1226 1227 err = ops->ioctl(sock, cmd, arg); 1228 1229 /* 1230 * If this ioctl is unknown try to hand it down 1231 * to the NIC driver. 1232 */ 1233 if (err != -ENOIOCTLCMD) 1234 return err; 1235 1236 if (!is_socket_ioctl_cmd(cmd)) 1237 return -ENOTTY; 1238 1239 if (get_user_ifreq(&ifr, &data, argp)) 1240 return -EFAULT; 1241 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1242 if (!err && need_copyout) 1243 if (put_user_ifreq(&ifr, argp)) 1244 return -EFAULT; 1245 1246 return err; 1247 } 1248 1249 /* 1250 * With an ioctl, arg may well be a user mode pointer, but we don't know 1251 * what to do with it - that's up to the protocol still. 1252 */ 1253 1254 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1255 { 1256 const struct proto_ops *ops; 1257 struct socket *sock; 1258 struct sock *sk; 1259 void __user *argp = (void __user *)arg; 1260 int pid, err; 1261 struct net *net; 1262 1263 sock = file->private_data; 1264 ops = READ_ONCE(sock->ops); 1265 sk = sock->sk; 1266 net = sock_net(sk); 1267 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1268 struct ifreq ifr; 1269 void __user *data; 1270 bool need_copyout; 1271 if (get_user_ifreq(&ifr, &data, argp)) 1272 return -EFAULT; 1273 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1274 if (!err && need_copyout) 1275 if (put_user_ifreq(&ifr, argp)) 1276 return -EFAULT; 1277 } else 1278 #ifdef CONFIG_WEXT_CORE 1279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1280 err = wext_handle_ioctl(net, cmd, argp); 1281 } else 1282 #endif 1283 switch (cmd) { 1284 case FIOSETOWN: 1285 case SIOCSPGRP: 1286 err = -EFAULT; 1287 if (get_user(pid, (int __user *)argp)) 1288 break; 1289 err = f_setown(sock->file, pid, 1); 1290 break; 1291 case FIOGETOWN: 1292 case SIOCGPGRP: 1293 err = put_user(f_getown(sock->file), 1294 (int __user *)argp); 1295 break; 1296 case SIOCGIFBR: 1297 case SIOCSIFBR: 1298 case SIOCBRADDBR: 1299 case SIOCBRDELBR: 1300 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1301 break; 1302 case SIOCGIFVLAN: 1303 case SIOCSIFVLAN: 1304 err = -ENOPKG; 1305 if (!vlan_ioctl_hook) 1306 request_module("8021q"); 1307 1308 mutex_lock(&vlan_ioctl_mutex); 1309 if (vlan_ioctl_hook) 1310 err = vlan_ioctl_hook(net, argp); 1311 mutex_unlock(&vlan_ioctl_mutex); 1312 break; 1313 case SIOCGSKNS: 1314 err = -EPERM; 1315 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1316 break; 1317 1318 err = open_related_ns(&net->ns, get_net_ns); 1319 break; 1320 case SIOCGSTAMP_OLD: 1321 case SIOCGSTAMPNS_OLD: 1322 if (!ops->gettstamp) { 1323 err = -ENOIOCTLCMD; 1324 break; 1325 } 1326 err = ops->gettstamp(sock, argp, 1327 cmd == SIOCGSTAMP_OLD, 1328 !IS_ENABLED(CONFIG_64BIT)); 1329 break; 1330 case SIOCGSTAMP_NEW: 1331 case SIOCGSTAMPNS_NEW: 1332 if (!ops->gettstamp) { 1333 err = -ENOIOCTLCMD; 1334 break; 1335 } 1336 err = ops->gettstamp(sock, argp, 1337 cmd == SIOCGSTAMP_NEW, 1338 false); 1339 break; 1340 1341 case SIOCGIFCONF: 1342 err = dev_ifconf(net, argp); 1343 break; 1344 1345 default: 1346 err = sock_do_ioctl(net, sock, cmd, arg); 1347 break; 1348 } 1349 return err; 1350 } 1351 1352 /** 1353 * sock_create_lite - creates a socket 1354 * @family: protocol family (AF_INET, ...) 1355 * @type: communication type (SOCK_STREAM, ...) 1356 * @protocol: protocol (0, ...) 1357 * @res: new socket 1358 * 1359 * Creates a new socket and assigns it to @res, passing through LSM. 1360 * The new socket initialization is not complete, see kernel_accept(). 1361 * Returns 0 or an error. On failure @res is set to %NULL. 1362 * This function internally uses GFP_KERNEL. 1363 */ 1364 1365 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1366 { 1367 int err; 1368 struct socket *sock = NULL; 1369 1370 err = security_socket_create(family, type, protocol, 1); 1371 if (err) 1372 goto out; 1373 1374 sock = sock_alloc(); 1375 if (!sock) { 1376 err = -ENOMEM; 1377 goto out; 1378 } 1379 1380 sock->type = type; 1381 err = security_socket_post_create(sock, family, type, protocol, 1); 1382 if (err) 1383 goto out_release; 1384 1385 out: 1386 *res = sock; 1387 return err; 1388 out_release: 1389 sock_release(sock); 1390 sock = NULL; 1391 goto out; 1392 } 1393 EXPORT_SYMBOL(sock_create_lite); 1394 1395 /* No kernel lock held - perfect */ 1396 static __poll_t sock_poll(struct file *file, poll_table *wait) 1397 { 1398 struct socket *sock = file->private_data; 1399 const struct proto_ops *ops = READ_ONCE(sock->ops); 1400 __poll_t events = poll_requested_events(wait), flag = 0; 1401 1402 if (!ops->poll) 1403 return 0; 1404 1405 if (sk_can_busy_loop(sock->sk)) { 1406 /* poll once if requested by the syscall */ 1407 if (events & POLL_BUSY_LOOP) 1408 sk_busy_loop(sock->sk, 1); 1409 1410 /* if this socket can poll_ll, tell the system call */ 1411 flag = POLL_BUSY_LOOP; 1412 } 1413 1414 return ops->poll(file, sock, wait) | flag; 1415 } 1416 1417 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1418 { 1419 struct socket *sock = file->private_data; 1420 1421 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1422 } 1423 1424 static int sock_close(struct inode *inode, struct file *filp) 1425 { 1426 __sock_release(SOCKET_I(inode), inode); 1427 return 0; 1428 } 1429 1430 /* 1431 * Update the socket async list 1432 * 1433 * Fasync_list locking strategy. 1434 * 1435 * 1. fasync_list is modified only under process context socket lock 1436 * i.e. under semaphore. 1437 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1438 * or under socket lock 1439 */ 1440 1441 static int sock_fasync(int fd, struct file *filp, int on) 1442 { 1443 struct socket *sock = filp->private_data; 1444 struct sock *sk = sock->sk; 1445 struct socket_wq *wq = &sock->wq; 1446 1447 if (sk == NULL) 1448 return -EINVAL; 1449 1450 lock_sock(sk); 1451 fasync_helper(fd, filp, on, &wq->fasync_list); 1452 1453 if (!wq->fasync_list) 1454 sock_reset_flag(sk, SOCK_FASYNC); 1455 else 1456 sock_set_flag(sk, SOCK_FASYNC); 1457 1458 release_sock(sk); 1459 return 0; 1460 } 1461 1462 /* This function may be called only under rcu_lock */ 1463 1464 int sock_wake_async(struct socket_wq *wq, int how, int band) 1465 { 1466 if (!wq || !wq->fasync_list) 1467 return -1; 1468 1469 switch (how) { 1470 case SOCK_WAKE_WAITD: 1471 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1472 break; 1473 goto call_kill; 1474 case SOCK_WAKE_SPACE: 1475 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1476 break; 1477 fallthrough; 1478 case SOCK_WAKE_IO: 1479 call_kill: 1480 kill_fasync(&wq->fasync_list, SIGIO, band); 1481 break; 1482 case SOCK_WAKE_URG: 1483 kill_fasync(&wq->fasync_list, SIGURG, band); 1484 } 1485 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(sock_wake_async); 1489 1490 /** 1491 * __sock_create - creates a socket 1492 * @net: net namespace 1493 * @family: protocol family (AF_INET, ...) 1494 * @type: communication type (SOCK_STREAM, ...) 1495 * @protocol: protocol (0, ...) 1496 * @res: new socket 1497 * @kern: boolean for kernel space sockets 1498 * 1499 * Creates a new socket and assigns it to @res, passing through LSM. 1500 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1501 * be set to true if the socket resides in kernel space. 1502 * This function internally uses GFP_KERNEL. 1503 */ 1504 1505 int __sock_create(struct net *net, int family, int type, int protocol, 1506 struct socket **res, int kern) 1507 { 1508 int err; 1509 struct socket *sock; 1510 const struct net_proto_family *pf; 1511 1512 /* 1513 * Check protocol is in range 1514 */ 1515 if (family < 0 || family >= NPROTO) 1516 return -EAFNOSUPPORT; 1517 if (type < 0 || type >= SOCK_MAX) 1518 return -EINVAL; 1519 1520 /* Compatibility. 1521 1522 This uglymoron is moved from INET layer to here to avoid 1523 deadlock in module load. 1524 */ 1525 if (family == PF_INET && type == SOCK_PACKET) { 1526 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1527 current->comm); 1528 family = PF_PACKET; 1529 } 1530 1531 err = security_socket_create(family, type, protocol, kern); 1532 if (err) 1533 return err; 1534 1535 /* 1536 * Allocate the socket and allow the family to set things up. if 1537 * the protocol is 0, the family is instructed to select an appropriate 1538 * default. 1539 */ 1540 sock = sock_alloc(); 1541 if (!sock) { 1542 net_warn_ratelimited("socket: no more sockets\n"); 1543 return -ENFILE; /* Not exactly a match, but its the 1544 closest posix thing */ 1545 } 1546 1547 sock->type = type; 1548 1549 #ifdef CONFIG_MODULES 1550 /* Attempt to load a protocol module if the find failed. 1551 * 1552 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1553 * requested real, full-featured networking support upon configuration. 1554 * Otherwise module support will break! 1555 */ 1556 if (rcu_access_pointer(net_families[family]) == NULL) 1557 request_module("net-pf-%d", family); 1558 #endif 1559 1560 rcu_read_lock(); 1561 pf = rcu_dereference(net_families[family]); 1562 err = -EAFNOSUPPORT; 1563 if (!pf) 1564 goto out_release; 1565 1566 /* 1567 * We will call the ->create function, that possibly is in a loadable 1568 * module, so we have to bump that loadable module refcnt first. 1569 */ 1570 if (!try_module_get(pf->owner)) 1571 goto out_release; 1572 1573 /* Now protected by module ref count */ 1574 rcu_read_unlock(); 1575 1576 err = pf->create(net, sock, protocol, kern); 1577 if (err < 0) { 1578 /* ->create should release the allocated sock->sk object on error 1579 * but it may leave the dangling pointer 1580 */ 1581 sock->sk = NULL; 1582 goto out_module_put; 1583 } 1584 1585 /* 1586 * Now to bump the refcnt of the [loadable] module that owns this 1587 * socket at sock_release time we decrement its refcnt. 1588 */ 1589 if (!try_module_get(sock->ops->owner)) 1590 goto out_module_busy; 1591 1592 /* 1593 * Now that we're done with the ->create function, the [loadable] 1594 * module can have its refcnt decremented 1595 */ 1596 module_put(pf->owner); 1597 err = security_socket_post_create(sock, family, type, protocol, kern); 1598 if (err) 1599 goto out_sock_release; 1600 *res = sock; 1601 1602 return 0; 1603 1604 out_module_busy: 1605 err = -EAFNOSUPPORT; 1606 out_module_put: 1607 sock->ops = NULL; 1608 module_put(pf->owner); 1609 out_sock_release: 1610 sock_release(sock); 1611 return err; 1612 1613 out_release: 1614 rcu_read_unlock(); 1615 goto out_sock_release; 1616 } 1617 EXPORT_SYMBOL(__sock_create); 1618 1619 /** 1620 * sock_create - creates a socket 1621 * @family: protocol family (AF_INET, ...) 1622 * @type: communication type (SOCK_STREAM, ...) 1623 * @protocol: protocol (0, ...) 1624 * @res: new socket 1625 * 1626 * A wrapper around __sock_create(). 1627 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1628 */ 1629 1630 int sock_create(int family, int type, int protocol, struct socket **res) 1631 { 1632 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1633 } 1634 EXPORT_SYMBOL(sock_create); 1635 1636 /** 1637 * sock_create_kern - creates a socket (kernel space) 1638 * @net: net namespace 1639 * @family: protocol family (AF_INET, ...) 1640 * @type: communication type (SOCK_STREAM, ...) 1641 * @protocol: protocol (0, ...) 1642 * @res: new socket 1643 * 1644 * A wrapper around __sock_create(). 1645 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1646 */ 1647 1648 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1649 { 1650 return __sock_create(net, family, type, protocol, res, 1); 1651 } 1652 EXPORT_SYMBOL(sock_create_kern); 1653 1654 static struct socket *__sys_socket_create(int family, int type, int protocol) 1655 { 1656 struct socket *sock; 1657 int retval; 1658 1659 /* Check the SOCK_* constants for consistency. */ 1660 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1661 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1662 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1663 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1664 1665 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1666 return ERR_PTR(-EINVAL); 1667 type &= SOCK_TYPE_MASK; 1668 1669 retval = sock_create(family, type, protocol, &sock); 1670 if (retval < 0) 1671 return ERR_PTR(retval); 1672 1673 return sock; 1674 } 1675 1676 struct file *__sys_socket_file(int family, int type, int protocol) 1677 { 1678 struct socket *sock; 1679 int flags; 1680 1681 sock = __sys_socket_create(family, type, protocol); 1682 if (IS_ERR(sock)) 1683 return ERR_CAST(sock); 1684 1685 flags = type & ~SOCK_TYPE_MASK; 1686 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1687 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1688 1689 return sock_alloc_file(sock, flags, NULL); 1690 } 1691 1692 /* A hook for bpf progs to attach to and update socket protocol. 1693 * 1694 * A static noinline declaration here could cause the compiler to 1695 * optimize away the function. A global noinline declaration will 1696 * keep the definition, but may optimize away the callsite. 1697 * Therefore, __weak is needed to ensure that the call is still 1698 * emitted, by telling the compiler that we don't know what the 1699 * function might eventually be. 1700 */ 1701 1702 __bpf_hook_start(); 1703 1704 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1705 { 1706 return protocol; 1707 } 1708 1709 __bpf_hook_end(); 1710 1711 int __sys_socket(int family, int type, int protocol) 1712 { 1713 struct socket *sock; 1714 int flags; 1715 1716 sock = __sys_socket_create(family, type, 1717 update_socket_protocol(family, type, protocol)); 1718 if (IS_ERR(sock)) 1719 return PTR_ERR(sock); 1720 1721 flags = type & ~SOCK_TYPE_MASK; 1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1724 1725 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1726 } 1727 1728 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1729 { 1730 return __sys_socket(family, type, protocol); 1731 } 1732 1733 /* 1734 * Create a pair of connected sockets. 1735 */ 1736 1737 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1738 { 1739 struct socket *sock1, *sock2; 1740 int fd1, fd2, err; 1741 struct file *newfile1, *newfile2; 1742 int flags; 1743 1744 flags = type & ~SOCK_TYPE_MASK; 1745 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1746 return -EINVAL; 1747 type &= SOCK_TYPE_MASK; 1748 1749 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1750 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1751 1752 /* 1753 * reserve descriptors and make sure we won't fail 1754 * to return them to userland. 1755 */ 1756 fd1 = get_unused_fd_flags(flags); 1757 if (unlikely(fd1 < 0)) 1758 return fd1; 1759 1760 fd2 = get_unused_fd_flags(flags); 1761 if (unlikely(fd2 < 0)) { 1762 put_unused_fd(fd1); 1763 return fd2; 1764 } 1765 1766 err = put_user(fd1, &usockvec[0]); 1767 if (err) 1768 goto out; 1769 1770 err = put_user(fd2, &usockvec[1]); 1771 if (err) 1772 goto out; 1773 1774 /* 1775 * Obtain the first socket and check if the underlying protocol 1776 * supports the socketpair call. 1777 */ 1778 1779 err = sock_create(family, type, protocol, &sock1); 1780 if (unlikely(err < 0)) 1781 goto out; 1782 1783 err = sock_create(family, type, protocol, &sock2); 1784 if (unlikely(err < 0)) { 1785 sock_release(sock1); 1786 goto out; 1787 } 1788 1789 err = security_socket_socketpair(sock1, sock2); 1790 if (unlikely(err)) { 1791 sock_release(sock2); 1792 sock_release(sock1); 1793 goto out; 1794 } 1795 1796 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1797 if (unlikely(err < 0)) { 1798 sock_release(sock2); 1799 sock_release(sock1); 1800 goto out; 1801 } 1802 1803 newfile1 = sock_alloc_file(sock1, flags, NULL); 1804 if (IS_ERR(newfile1)) { 1805 err = PTR_ERR(newfile1); 1806 sock_release(sock2); 1807 goto out; 1808 } 1809 1810 newfile2 = sock_alloc_file(sock2, flags, NULL); 1811 if (IS_ERR(newfile2)) { 1812 err = PTR_ERR(newfile2); 1813 fput(newfile1); 1814 goto out; 1815 } 1816 1817 audit_fd_pair(fd1, fd2); 1818 1819 fd_install(fd1, newfile1); 1820 fd_install(fd2, newfile2); 1821 return 0; 1822 1823 out: 1824 put_unused_fd(fd2); 1825 put_unused_fd(fd1); 1826 return err; 1827 } 1828 1829 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1830 int __user *, usockvec) 1831 { 1832 return __sys_socketpair(family, type, protocol, usockvec); 1833 } 1834 1835 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1836 int addrlen) 1837 { 1838 int err; 1839 1840 err = security_socket_bind(sock, (struct sockaddr *)address, 1841 addrlen); 1842 if (!err) 1843 err = READ_ONCE(sock->ops)->bind(sock, 1844 (struct sockaddr *)address, 1845 addrlen); 1846 return err; 1847 } 1848 1849 /* 1850 * Bind a name to a socket. Nothing much to do here since it's 1851 * the protocol's responsibility to handle the local address. 1852 * 1853 * We move the socket address to kernel space before we call 1854 * the protocol layer (having also checked the address is ok). 1855 */ 1856 1857 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1858 { 1859 struct socket *sock; 1860 struct sockaddr_storage address; 1861 int err, fput_needed; 1862 1863 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1864 if (sock) { 1865 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1866 if (!err) 1867 err = __sys_bind_socket(sock, &address, addrlen); 1868 fput_light(sock->file, fput_needed); 1869 } 1870 return err; 1871 } 1872 1873 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1874 { 1875 return __sys_bind(fd, umyaddr, addrlen); 1876 } 1877 1878 /* 1879 * Perform a listen. Basically, we allow the protocol to do anything 1880 * necessary for a listen, and if that works, we mark the socket as 1881 * ready for listening. 1882 */ 1883 int __sys_listen_socket(struct socket *sock, int backlog) 1884 { 1885 int somaxconn, err; 1886 1887 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1888 if ((unsigned int)backlog > somaxconn) 1889 backlog = somaxconn; 1890 1891 err = security_socket_listen(sock, backlog); 1892 if (!err) 1893 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1894 return err; 1895 } 1896 1897 int __sys_listen(int fd, int backlog) 1898 { 1899 struct socket *sock; 1900 int err, fput_needed; 1901 1902 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1903 if (sock) { 1904 err = __sys_listen_socket(sock, backlog); 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1911 { 1912 return __sys_listen(fd, backlog); 1913 } 1914 1915 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1916 struct sockaddr __user *upeer_sockaddr, 1917 int __user *upeer_addrlen, int flags) 1918 { 1919 struct socket *sock, *newsock; 1920 struct file *newfile; 1921 int err, len; 1922 struct sockaddr_storage address; 1923 const struct proto_ops *ops; 1924 1925 sock = sock_from_file(file); 1926 if (!sock) 1927 return ERR_PTR(-ENOTSOCK); 1928 1929 newsock = sock_alloc(); 1930 if (!newsock) 1931 return ERR_PTR(-ENFILE); 1932 ops = READ_ONCE(sock->ops); 1933 1934 newsock->type = sock->type; 1935 newsock->ops = ops; 1936 1937 /* 1938 * We don't need try_module_get here, as the listening socket (sock) 1939 * has the protocol module (sock->ops->owner) held. 1940 */ 1941 __module_get(ops->owner); 1942 1943 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1944 if (IS_ERR(newfile)) 1945 return newfile; 1946 1947 err = security_socket_accept(sock, newsock); 1948 if (err) 1949 goto out_fd; 1950 1951 arg->flags |= sock->file->f_flags; 1952 err = ops->accept(sock, newsock, arg); 1953 if (err < 0) 1954 goto out_fd; 1955 1956 if (upeer_sockaddr) { 1957 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1958 if (len < 0) { 1959 err = -ECONNABORTED; 1960 goto out_fd; 1961 } 1962 err = move_addr_to_user(&address, 1963 len, upeer_sockaddr, upeer_addrlen); 1964 if (err < 0) 1965 goto out_fd; 1966 } 1967 1968 /* File flags are not inherited via accept() unlike another OSes. */ 1969 return newfile; 1970 out_fd: 1971 fput(newfile); 1972 return ERR_PTR(err); 1973 } 1974 1975 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1976 int __user *upeer_addrlen, int flags) 1977 { 1978 struct proto_accept_arg arg = { }; 1979 struct file *newfile; 1980 int newfd; 1981 1982 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1983 return -EINVAL; 1984 1985 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1986 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1987 1988 newfd = get_unused_fd_flags(flags); 1989 if (unlikely(newfd < 0)) 1990 return newfd; 1991 1992 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1993 flags); 1994 if (IS_ERR(newfile)) { 1995 put_unused_fd(newfd); 1996 return PTR_ERR(newfile); 1997 } 1998 fd_install(newfd, newfile); 1999 return newfd; 2000 } 2001 2002 /* 2003 * For accept, we attempt to create a new socket, set up the link 2004 * with the client, wake up the client, then return the new 2005 * connected fd. We collect the address of the connector in kernel 2006 * space and move it to user at the very end. This is unclean because 2007 * we open the socket then return an error. 2008 * 2009 * 1003.1g adds the ability to recvmsg() to query connection pending 2010 * status to recvmsg. We need to add that support in a way thats 2011 * clean when we restructure accept also. 2012 */ 2013 2014 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2015 int __user *upeer_addrlen, int flags) 2016 { 2017 int ret = -EBADF; 2018 struct fd f; 2019 2020 f = fdget(fd); 2021 if (fd_file(f)) { 2022 ret = __sys_accept4_file(fd_file(f), upeer_sockaddr, 2023 upeer_addrlen, flags); 2024 fdput(f); 2025 } 2026 2027 return ret; 2028 } 2029 2030 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2031 int __user *, upeer_addrlen, int, flags) 2032 { 2033 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2034 } 2035 2036 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2037 int __user *, upeer_addrlen) 2038 { 2039 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2040 } 2041 2042 /* 2043 * Attempt to connect to a socket with the server address. The address 2044 * is in user space so we verify it is OK and move it to kernel space. 2045 * 2046 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2047 * break bindings 2048 * 2049 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2050 * other SEQPACKET protocols that take time to connect() as it doesn't 2051 * include the -EINPROGRESS status for such sockets. 2052 */ 2053 2054 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2055 int addrlen, int file_flags) 2056 { 2057 struct socket *sock; 2058 int err; 2059 2060 sock = sock_from_file(file); 2061 if (!sock) { 2062 err = -ENOTSOCK; 2063 goto out; 2064 } 2065 2066 err = 2067 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2068 if (err) 2069 goto out; 2070 2071 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2072 addrlen, sock->file->f_flags | file_flags); 2073 out: 2074 return err; 2075 } 2076 2077 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2078 { 2079 int ret = -EBADF; 2080 struct fd f; 2081 2082 f = fdget(fd); 2083 if (fd_file(f)) { 2084 struct sockaddr_storage address; 2085 2086 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2087 if (!ret) 2088 ret = __sys_connect_file(fd_file(f), &address, addrlen, 0); 2089 fdput(f); 2090 } 2091 2092 return ret; 2093 } 2094 2095 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2096 int, addrlen) 2097 { 2098 return __sys_connect(fd, uservaddr, addrlen); 2099 } 2100 2101 /* 2102 * Get the local address ('name') of a socket object. Move the obtained 2103 * name to user space. 2104 */ 2105 2106 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2107 int __user *usockaddr_len) 2108 { 2109 struct socket *sock; 2110 struct sockaddr_storage address; 2111 int err, fput_needed; 2112 2113 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2114 if (!sock) 2115 goto out; 2116 2117 err = security_socket_getsockname(sock); 2118 if (err) 2119 goto out_put; 2120 2121 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2122 if (err < 0) 2123 goto out_put; 2124 /* "err" is actually length in this case */ 2125 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2126 2127 out_put: 2128 fput_light(sock->file, fput_needed); 2129 out: 2130 return err; 2131 } 2132 2133 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2134 int __user *, usockaddr_len) 2135 { 2136 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2137 } 2138 2139 /* 2140 * Get the remote address ('name') of a socket object. Move the obtained 2141 * name to user space. 2142 */ 2143 2144 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2145 int __user *usockaddr_len) 2146 { 2147 struct socket *sock; 2148 struct sockaddr_storage address; 2149 int err, fput_needed; 2150 2151 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2152 if (sock != NULL) { 2153 const struct proto_ops *ops = READ_ONCE(sock->ops); 2154 2155 err = security_socket_getpeername(sock); 2156 if (err) { 2157 fput_light(sock->file, fput_needed); 2158 return err; 2159 } 2160 2161 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2162 if (err >= 0) 2163 /* "err" is actually length in this case */ 2164 err = move_addr_to_user(&address, err, usockaddr, 2165 usockaddr_len); 2166 fput_light(sock->file, fput_needed); 2167 } 2168 return err; 2169 } 2170 2171 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2172 int __user *, usockaddr_len) 2173 { 2174 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2175 } 2176 2177 /* 2178 * Send a datagram to a given address. We move the address into kernel 2179 * space and check the user space data area is readable before invoking 2180 * the protocol. 2181 */ 2182 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2183 struct sockaddr __user *addr, int addr_len) 2184 { 2185 struct socket *sock; 2186 struct sockaddr_storage address; 2187 int err; 2188 struct msghdr msg; 2189 int fput_needed; 2190 2191 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2192 if (unlikely(err)) 2193 return err; 2194 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2195 if (!sock) 2196 goto out; 2197 2198 msg.msg_name = NULL; 2199 msg.msg_control = NULL; 2200 msg.msg_controllen = 0; 2201 msg.msg_namelen = 0; 2202 msg.msg_ubuf = NULL; 2203 if (addr) { 2204 err = move_addr_to_kernel(addr, addr_len, &address); 2205 if (err < 0) 2206 goto out_put; 2207 msg.msg_name = (struct sockaddr *)&address; 2208 msg.msg_namelen = addr_len; 2209 } 2210 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2211 if (sock->file->f_flags & O_NONBLOCK) 2212 flags |= MSG_DONTWAIT; 2213 msg.msg_flags = flags; 2214 err = __sock_sendmsg(sock, &msg); 2215 2216 out_put: 2217 fput_light(sock->file, fput_needed); 2218 out: 2219 return err; 2220 } 2221 2222 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2223 unsigned int, flags, struct sockaddr __user *, addr, 2224 int, addr_len) 2225 { 2226 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2227 } 2228 2229 /* 2230 * Send a datagram down a socket. 2231 */ 2232 2233 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2234 unsigned int, flags) 2235 { 2236 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2237 } 2238 2239 /* 2240 * Receive a frame from the socket and optionally record the address of the 2241 * sender. We verify the buffers are writable and if needed move the 2242 * sender address from kernel to user space. 2243 */ 2244 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2245 struct sockaddr __user *addr, int __user *addr_len) 2246 { 2247 struct sockaddr_storage address; 2248 struct msghdr msg = { 2249 /* Save some cycles and don't copy the address if not needed */ 2250 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2251 }; 2252 struct socket *sock; 2253 int err, err2; 2254 int fput_needed; 2255 2256 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2257 if (unlikely(err)) 2258 return err; 2259 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2260 if (!sock) 2261 goto out; 2262 2263 if (sock->file->f_flags & O_NONBLOCK) 2264 flags |= MSG_DONTWAIT; 2265 err = sock_recvmsg(sock, &msg, flags); 2266 2267 if (err >= 0 && addr != NULL) { 2268 err2 = move_addr_to_user(&address, 2269 msg.msg_namelen, addr, addr_len); 2270 if (err2 < 0) 2271 err = err2; 2272 } 2273 2274 fput_light(sock->file, fput_needed); 2275 out: 2276 return err; 2277 } 2278 2279 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2280 unsigned int, flags, struct sockaddr __user *, addr, 2281 int __user *, addr_len) 2282 { 2283 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2284 } 2285 2286 /* 2287 * Receive a datagram from a socket. 2288 */ 2289 2290 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2291 unsigned int, flags) 2292 { 2293 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2294 } 2295 2296 static bool sock_use_custom_sol_socket(const struct socket *sock) 2297 { 2298 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2299 } 2300 2301 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2302 int optname, sockptr_t optval, int optlen) 2303 { 2304 const struct proto_ops *ops; 2305 char *kernel_optval = NULL; 2306 int err; 2307 2308 if (optlen < 0) 2309 return -EINVAL; 2310 2311 err = security_socket_setsockopt(sock, level, optname); 2312 if (err) 2313 goto out_put; 2314 2315 if (!compat) 2316 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2317 optval, &optlen, 2318 &kernel_optval); 2319 if (err < 0) 2320 goto out_put; 2321 if (err > 0) { 2322 err = 0; 2323 goto out_put; 2324 } 2325 2326 if (kernel_optval) 2327 optval = KERNEL_SOCKPTR(kernel_optval); 2328 ops = READ_ONCE(sock->ops); 2329 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2330 err = sock_setsockopt(sock, level, optname, optval, optlen); 2331 else if (unlikely(!ops->setsockopt)) 2332 err = -EOPNOTSUPP; 2333 else 2334 err = ops->setsockopt(sock, level, optname, optval, 2335 optlen); 2336 kfree(kernel_optval); 2337 out_put: 2338 return err; 2339 } 2340 EXPORT_SYMBOL(do_sock_setsockopt); 2341 2342 /* Set a socket option. Because we don't know the option lengths we have 2343 * to pass the user mode parameter for the protocols to sort out. 2344 */ 2345 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2346 int optlen) 2347 { 2348 sockptr_t optval = USER_SOCKPTR(user_optval); 2349 bool compat = in_compat_syscall(); 2350 int err, fput_needed; 2351 struct socket *sock; 2352 2353 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2354 if (!sock) 2355 return err; 2356 2357 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2358 2359 fput_light(sock->file, fput_needed); 2360 return err; 2361 } 2362 2363 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2364 char __user *, optval, int, optlen) 2365 { 2366 return __sys_setsockopt(fd, level, optname, optval, optlen); 2367 } 2368 2369 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2370 int optname)); 2371 2372 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2373 int optname, sockptr_t optval, sockptr_t optlen) 2374 { 2375 int max_optlen __maybe_unused = 0; 2376 const struct proto_ops *ops; 2377 int err; 2378 2379 err = security_socket_getsockopt(sock, level, optname); 2380 if (err) 2381 return err; 2382 2383 if (!compat) 2384 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2385 2386 ops = READ_ONCE(sock->ops); 2387 if (level == SOL_SOCKET) { 2388 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2389 } else if (unlikely(!ops->getsockopt)) { 2390 err = -EOPNOTSUPP; 2391 } else { 2392 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2393 "Invalid argument type")) 2394 return -EOPNOTSUPP; 2395 2396 err = ops->getsockopt(sock, level, optname, optval.user, 2397 optlen.user); 2398 } 2399 2400 if (!compat) 2401 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2402 optval, optlen, max_optlen, 2403 err); 2404 2405 return err; 2406 } 2407 EXPORT_SYMBOL(do_sock_getsockopt); 2408 2409 /* 2410 * Get a socket option. Because we don't know the option lengths we have 2411 * to pass a user mode parameter for the protocols to sort out. 2412 */ 2413 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2414 int __user *optlen) 2415 { 2416 int err, fput_needed; 2417 struct socket *sock; 2418 bool compat; 2419 2420 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2421 if (!sock) 2422 return err; 2423 2424 compat = in_compat_syscall(); 2425 err = do_sock_getsockopt(sock, compat, level, optname, 2426 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2427 2428 fput_light(sock->file, fput_needed); 2429 return err; 2430 } 2431 2432 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2433 char __user *, optval, int __user *, optlen) 2434 { 2435 return __sys_getsockopt(fd, level, optname, optval, optlen); 2436 } 2437 2438 /* 2439 * Shutdown a socket. 2440 */ 2441 2442 int __sys_shutdown_sock(struct socket *sock, int how) 2443 { 2444 int err; 2445 2446 err = security_socket_shutdown(sock, how); 2447 if (!err) 2448 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2449 2450 return err; 2451 } 2452 2453 int __sys_shutdown(int fd, int how) 2454 { 2455 int err, fput_needed; 2456 struct socket *sock; 2457 2458 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2459 if (sock != NULL) { 2460 err = __sys_shutdown_sock(sock, how); 2461 fput_light(sock->file, fput_needed); 2462 } 2463 return err; 2464 } 2465 2466 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2467 { 2468 return __sys_shutdown(fd, how); 2469 } 2470 2471 /* A couple of helpful macros for getting the address of the 32/64 bit 2472 * fields which are the same type (int / unsigned) on our platforms. 2473 */ 2474 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2475 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2476 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2477 2478 struct used_address { 2479 struct sockaddr_storage name; 2480 unsigned int name_len; 2481 }; 2482 2483 int __copy_msghdr(struct msghdr *kmsg, 2484 struct user_msghdr *msg, 2485 struct sockaddr __user **save_addr) 2486 { 2487 ssize_t err; 2488 2489 kmsg->msg_control_is_user = true; 2490 kmsg->msg_get_inq = 0; 2491 kmsg->msg_control_user = msg->msg_control; 2492 kmsg->msg_controllen = msg->msg_controllen; 2493 kmsg->msg_flags = msg->msg_flags; 2494 2495 kmsg->msg_namelen = msg->msg_namelen; 2496 if (!msg->msg_name) 2497 kmsg->msg_namelen = 0; 2498 2499 if (kmsg->msg_namelen < 0) 2500 return -EINVAL; 2501 2502 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2503 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2504 2505 if (save_addr) 2506 *save_addr = msg->msg_name; 2507 2508 if (msg->msg_name && kmsg->msg_namelen) { 2509 if (!save_addr) { 2510 err = move_addr_to_kernel(msg->msg_name, 2511 kmsg->msg_namelen, 2512 kmsg->msg_name); 2513 if (err < 0) 2514 return err; 2515 } 2516 } else { 2517 kmsg->msg_name = NULL; 2518 kmsg->msg_namelen = 0; 2519 } 2520 2521 if (msg->msg_iovlen > UIO_MAXIOV) 2522 return -EMSGSIZE; 2523 2524 kmsg->msg_iocb = NULL; 2525 kmsg->msg_ubuf = NULL; 2526 return 0; 2527 } 2528 2529 static int copy_msghdr_from_user(struct msghdr *kmsg, 2530 struct user_msghdr __user *umsg, 2531 struct sockaddr __user **save_addr, 2532 struct iovec **iov) 2533 { 2534 struct user_msghdr msg; 2535 ssize_t err; 2536 2537 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2538 return -EFAULT; 2539 2540 err = __copy_msghdr(kmsg, &msg, save_addr); 2541 if (err) 2542 return err; 2543 2544 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2545 msg.msg_iov, msg.msg_iovlen, 2546 UIO_FASTIOV, iov, &kmsg->msg_iter); 2547 return err < 0 ? err : 0; 2548 } 2549 2550 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2551 unsigned int flags, struct used_address *used_address, 2552 unsigned int allowed_msghdr_flags) 2553 { 2554 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2555 __aligned(sizeof(__kernel_size_t)); 2556 /* 20 is size of ipv6_pktinfo */ 2557 unsigned char *ctl_buf = ctl; 2558 int ctl_len; 2559 ssize_t err; 2560 2561 err = -ENOBUFS; 2562 2563 if (msg_sys->msg_controllen > INT_MAX) 2564 goto out; 2565 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2566 ctl_len = msg_sys->msg_controllen; 2567 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2568 err = 2569 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2570 sizeof(ctl)); 2571 if (err) 2572 goto out; 2573 ctl_buf = msg_sys->msg_control; 2574 ctl_len = msg_sys->msg_controllen; 2575 } else if (ctl_len) { 2576 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2577 CMSG_ALIGN(sizeof(struct cmsghdr))); 2578 if (ctl_len > sizeof(ctl)) { 2579 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2580 if (ctl_buf == NULL) 2581 goto out; 2582 } 2583 err = -EFAULT; 2584 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2585 goto out_freectl; 2586 msg_sys->msg_control = ctl_buf; 2587 msg_sys->msg_control_is_user = false; 2588 } 2589 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2590 msg_sys->msg_flags = flags; 2591 2592 if (sock->file->f_flags & O_NONBLOCK) 2593 msg_sys->msg_flags |= MSG_DONTWAIT; 2594 /* 2595 * If this is sendmmsg() and current destination address is same as 2596 * previously succeeded address, omit asking LSM's decision. 2597 * used_address->name_len is initialized to UINT_MAX so that the first 2598 * destination address never matches. 2599 */ 2600 if (used_address && msg_sys->msg_name && 2601 used_address->name_len == msg_sys->msg_namelen && 2602 !memcmp(&used_address->name, msg_sys->msg_name, 2603 used_address->name_len)) { 2604 err = sock_sendmsg_nosec(sock, msg_sys); 2605 goto out_freectl; 2606 } 2607 err = __sock_sendmsg(sock, msg_sys); 2608 /* 2609 * If this is sendmmsg() and sending to current destination address was 2610 * successful, remember it. 2611 */ 2612 if (used_address && err >= 0) { 2613 used_address->name_len = msg_sys->msg_namelen; 2614 if (msg_sys->msg_name) 2615 memcpy(&used_address->name, msg_sys->msg_name, 2616 used_address->name_len); 2617 } 2618 2619 out_freectl: 2620 if (ctl_buf != ctl) 2621 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2622 out: 2623 return err; 2624 } 2625 2626 static int sendmsg_copy_msghdr(struct msghdr *msg, 2627 struct user_msghdr __user *umsg, unsigned flags, 2628 struct iovec **iov) 2629 { 2630 int err; 2631 2632 if (flags & MSG_CMSG_COMPAT) { 2633 struct compat_msghdr __user *msg_compat; 2634 2635 msg_compat = (struct compat_msghdr __user *) umsg; 2636 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2637 } else { 2638 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2639 } 2640 if (err < 0) 2641 return err; 2642 2643 return 0; 2644 } 2645 2646 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2647 struct msghdr *msg_sys, unsigned int flags, 2648 struct used_address *used_address, 2649 unsigned int allowed_msghdr_flags) 2650 { 2651 struct sockaddr_storage address; 2652 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2653 ssize_t err; 2654 2655 msg_sys->msg_name = &address; 2656 2657 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2658 if (err < 0) 2659 return err; 2660 2661 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2662 allowed_msghdr_flags); 2663 kfree(iov); 2664 return err; 2665 } 2666 2667 /* 2668 * BSD sendmsg interface 2669 */ 2670 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2671 unsigned int flags) 2672 { 2673 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2674 } 2675 2676 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2677 bool forbid_cmsg_compat) 2678 { 2679 int fput_needed, err; 2680 struct msghdr msg_sys; 2681 struct socket *sock; 2682 2683 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2684 return -EINVAL; 2685 2686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2687 if (!sock) 2688 goto out; 2689 2690 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2691 2692 fput_light(sock->file, fput_needed); 2693 out: 2694 return err; 2695 } 2696 2697 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2698 { 2699 return __sys_sendmsg(fd, msg, flags, true); 2700 } 2701 2702 /* 2703 * Linux sendmmsg interface 2704 */ 2705 2706 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2707 unsigned int flags, bool forbid_cmsg_compat) 2708 { 2709 int fput_needed, err, datagrams; 2710 struct socket *sock; 2711 struct mmsghdr __user *entry; 2712 struct compat_mmsghdr __user *compat_entry; 2713 struct msghdr msg_sys; 2714 struct used_address used_address; 2715 unsigned int oflags = flags; 2716 2717 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2718 return -EINVAL; 2719 2720 if (vlen > UIO_MAXIOV) 2721 vlen = UIO_MAXIOV; 2722 2723 datagrams = 0; 2724 2725 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2726 if (!sock) 2727 return err; 2728 2729 used_address.name_len = UINT_MAX; 2730 entry = mmsg; 2731 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2732 err = 0; 2733 flags |= MSG_BATCH; 2734 2735 while (datagrams < vlen) { 2736 if (datagrams == vlen - 1) 2737 flags = oflags; 2738 2739 if (MSG_CMSG_COMPAT & flags) { 2740 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2741 &msg_sys, flags, &used_address, MSG_EOR); 2742 if (err < 0) 2743 break; 2744 err = __put_user(err, &compat_entry->msg_len); 2745 ++compat_entry; 2746 } else { 2747 err = ___sys_sendmsg(sock, 2748 (struct user_msghdr __user *)entry, 2749 &msg_sys, flags, &used_address, MSG_EOR); 2750 if (err < 0) 2751 break; 2752 err = put_user(err, &entry->msg_len); 2753 ++entry; 2754 } 2755 2756 if (err) 2757 break; 2758 ++datagrams; 2759 if (msg_data_left(&msg_sys)) 2760 break; 2761 cond_resched(); 2762 } 2763 2764 fput_light(sock->file, fput_needed); 2765 2766 /* We only return an error if no datagrams were able to be sent */ 2767 if (datagrams != 0) 2768 return datagrams; 2769 2770 return err; 2771 } 2772 2773 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2774 unsigned int, vlen, unsigned int, flags) 2775 { 2776 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2777 } 2778 2779 static int recvmsg_copy_msghdr(struct msghdr *msg, 2780 struct user_msghdr __user *umsg, unsigned flags, 2781 struct sockaddr __user **uaddr, 2782 struct iovec **iov) 2783 { 2784 ssize_t err; 2785 2786 if (MSG_CMSG_COMPAT & flags) { 2787 struct compat_msghdr __user *msg_compat; 2788 2789 msg_compat = (struct compat_msghdr __user *) umsg; 2790 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2791 } else { 2792 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2793 } 2794 if (err < 0) 2795 return err; 2796 2797 return 0; 2798 } 2799 2800 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2801 struct user_msghdr __user *msg, 2802 struct sockaddr __user *uaddr, 2803 unsigned int flags, int nosec) 2804 { 2805 struct compat_msghdr __user *msg_compat = 2806 (struct compat_msghdr __user *) msg; 2807 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2808 struct sockaddr_storage addr; 2809 unsigned long cmsg_ptr; 2810 int len; 2811 ssize_t err; 2812 2813 msg_sys->msg_name = &addr; 2814 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2815 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2816 2817 /* We assume all kernel code knows the size of sockaddr_storage */ 2818 msg_sys->msg_namelen = 0; 2819 2820 if (sock->file->f_flags & O_NONBLOCK) 2821 flags |= MSG_DONTWAIT; 2822 2823 if (unlikely(nosec)) 2824 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2825 else 2826 err = sock_recvmsg(sock, msg_sys, flags); 2827 2828 if (err < 0) 2829 goto out; 2830 len = err; 2831 2832 if (uaddr != NULL) { 2833 err = move_addr_to_user(&addr, 2834 msg_sys->msg_namelen, uaddr, 2835 uaddr_len); 2836 if (err < 0) 2837 goto out; 2838 } 2839 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2840 COMPAT_FLAGS(msg)); 2841 if (err) 2842 goto out; 2843 if (MSG_CMSG_COMPAT & flags) 2844 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2845 &msg_compat->msg_controllen); 2846 else 2847 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2848 &msg->msg_controllen); 2849 if (err) 2850 goto out; 2851 err = len; 2852 out: 2853 return err; 2854 } 2855 2856 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2857 struct msghdr *msg_sys, unsigned int flags, int nosec) 2858 { 2859 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2860 /* user mode address pointers */ 2861 struct sockaddr __user *uaddr; 2862 ssize_t err; 2863 2864 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2865 if (err < 0) 2866 return err; 2867 2868 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2869 kfree(iov); 2870 return err; 2871 } 2872 2873 /* 2874 * BSD recvmsg interface 2875 */ 2876 2877 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2878 struct user_msghdr __user *umsg, 2879 struct sockaddr __user *uaddr, unsigned int flags) 2880 { 2881 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2882 } 2883 2884 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2885 bool forbid_cmsg_compat) 2886 { 2887 int fput_needed, err; 2888 struct msghdr msg_sys; 2889 struct socket *sock; 2890 2891 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2892 return -EINVAL; 2893 2894 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2895 if (!sock) 2896 goto out; 2897 2898 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2899 2900 fput_light(sock->file, fput_needed); 2901 out: 2902 return err; 2903 } 2904 2905 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2906 unsigned int, flags) 2907 { 2908 return __sys_recvmsg(fd, msg, flags, true); 2909 } 2910 2911 /* 2912 * Linux recvmmsg interface 2913 */ 2914 2915 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2916 unsigned int vlen, unsigned int flags, 2917 struct timespec64 *timeout) 2918 { 2919 int fput_needed, err, datagrams; 2920 struct socket *sock; 2921 struct mmsghdr __user *entry; 2922 struct compat_mmsghdr __user *compat_entry; 2923 struct msghdr msg_sys; 2924 struct timespec64 end_time; 2925 struct timespec64 timeout64; 2926 2927 if (timeout && 2928 poll_select_set_timeout(&end_time, timeout->tv_sec, 2929 timeout->tv_nsec)) 2930 return -EINVAL; 2931 2932 datagrams = 0; 2933 2934 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2935 if (!sock) 2936 return err; 2937 2938 if (likely(!(flags & MSG_ERRQUEUE))) { 2939 err = sock_error(sock->sk); 2940 if (err) { 2941 datagrams = err; 2942 goto out_put; 2943 } 2944 } 2945 2946 entry = mmsg; 2947 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2948 2949 while (datagrams < vlen) { 2950 /* 2951 * No need to ask LSM for more than the first datagram. 2952 */ 2953 if (MSG_CMSG_COMPAT & flags) { 2954 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2955 &msg_sys, flags & ~MSG_WAITFORONE, 2956 datagrams); 2957 if (err < 0) 2958 break; 2959 err = __put_user(err, &compat_entry->msg_len); 2960 ++compat_entry; 2961 } else { 2962 err = ___sys_recvmsg(sock, 2963 (struct user_msghdr __user *)entry, 2964 &msg_sys, flags & ~MSG_WAITFORONE, 2965 datagrams); 2966 if (err < 0) 2967 break; 2968 err = put_user(err, &entry->msg_len); 2969 ++entry; 2970 } 2971 2972 if (err) 2973 break; 2974 ++datagrams; 2975 2976 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2977 if (flags & MSG_WAITFORONE) 2978 flags |= MSG_DONTWAIT; 2979 2980 if (timeout) { 2981 ktime_get_ts64(&timeout64); 2982 *timeout = timespec64_sub(end_time, timeout64); 2983 if (timeout->tv_sec < 0) { 2984 timeout->tv_sec = timeout->tv_nsec = 0; 2985 break; 2986 } 2987 2988 /* Timeout, return less than vlen datagrams */ 2989 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2990 break; 2991 } 2992 2993 /* Out of band data, return right away */ 2994 if (msg_sys.msg_flags & MSG_OOB) 2995 break; 2996 cond_resched(); 2997 } 2998 2999 if (err == 0) 3000 goto out_put; 3001 3002 if (datagrams == 0) { 3003 datagrams = err; 3004 goto out_put; 3005 } 3006 3007 /* 3008 * We may return less entries than requested (vlen) if the 3009 * sock is non block and there aren't enough datagrams... 3010 */ 3011 if (err != -EAGAIN) { 3012 /* 3013 * ... or if recvmsg returns an error after we 3014 * received some datagrams, where we record the 3015 * error to return on the next call or if the 3016 * app asks about it using getsockopt(SO_ERROR). 3017 */ 3018 WRITE_ONCE(sock->sk->sk_err, -err); 3019 } 3020 out_put: 3021 fput_light(sock->file, fput_needed); 3022 3023 return datagrams; 3024 } 3025 3026 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3027 unsigned int vlen, unsigned int flags, 3028 struct __kernel_timespec __user *timeout, 3029 struct old_timespec32 __user *timeout32) 3030 { 3031 int datagrams; 3032 struct timespec64 timeout_sys; 3033 3034 if (timeout && get_timespec64(&timeout_sys, timeout)) 3035 return -EFAULT; 3036 3037 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3038 return -EFAULT; 3039 3040 if (!timeout && !timeout32) 3041 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3042 3043 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3044 3045 if (datagrams <= 0) 3046 return datagrams; 3047 3048 if (timeout && put_timespec64(&timeout_sys, timeout)) 3049 datagrams = -EFAULT; 3050 3051 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3052 datagrams = -EFAULT; 3053 3054 return datagrams; 3055 } 3056 3057 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3058 unsigned int, vlen, unsigned int, flags, 3059 struct __kernel_timespec __user *, timeout) 3060 { 3061 if (flags & MSG_CMSG_COMPAT) 3062 return -EINVAL; 3063 3064 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3065 } 3066 3067 #ifdef CONFIG_COMPAT_32BIT_TIME 3068 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3069 unsigned int, vlen, unsigned int, flags, 3070 struct old_timespec32 __user *, timeout) 3071 { 3072 if (flags & MSG_CMSG_COMPAT) 3073 return -EINVAL; 3074 3075 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3076 } 3077 #endif 3078 3079 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3080 /* Argument list sizes for sys_socketcall */ 3081 #define AL(x) ((x) * sizeof(unsigned long)) 3082 static const unsigned char nargs[21] = { 3083 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3084 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3085 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3086 AL(4), AL(5), AL(4) 3087 }; 3088 3089 #undef AL 3090 3091 /* 3092 * System call vectors. 3093 * 3094 * Argument checking cleaned up. Saved 20% in size. 3095 * This function doesn't need to set the kernel lock because 3096 * it is set by the callees. 3097 */ 3098 3099 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3100 { 3101 unsigned long a[AUDITSC_ARGS]; 3102 unsigned long a0, a1; 3103 int err; 3104 unsigned int len; 3105 3106 if (call < 1 || call > SYS_SENDMMSG) 3107 return -EINVAL; 3108 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3109 3110 len = nargs[call]; 3111 if (len > sizeof(a)) 3112 return -EINVAL; 3113 3114 /* copy_from_user should be SMP safe. */ 3115 if (copy_from_user(a, args, len)) 3116 return -EFAULT; 3117 3118 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3119 if (err) 3120 return err; 3121 3122 a0 = a[0]; 3123 a1 = a[1]; 3124 3125 switch (call) { 3126 case SYS_SOCKET: 3127 err = __sys_socket(a0, a1, a[2]); 3128 break; 3129 case SYS_BIND: 3130 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3131 break; 3132 case SYS_CONNECT: 3133 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3134 break; 3135 case SYS_LISTEN: 3136 err = __sys_listen(a0, a1); 3137 break; 3138 case SYS_ACCEPT: 3139 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3140 (int __user *)a[2], 0); 3141 break; 3142 case SYS_GETSOCKNAME: 3143 err = 3144 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3145 (int __user *)a[2]); 3146 break; 3147 case SYS_GETPEERNAME: 3148 err = 3149 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3150 (int __user *)a[2]); 3151 break; 3152 case SYS_SOCKETPAIR: 3153 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3154 break; 3155 case SYS_SEND: 3156 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3157 NULL, 0); 3158 break; 3159 case SYS_SENDTO: 3160 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3161 (struct sockaddr __user *)a[4], a[5]); 3162 break; 3163 case SYS_RECV: 3164 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3165 NULL, NULL); 3166 break; 3167 case SYS_RECVFROM: 3168 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3169 (struct sockaddr __user *)a[4], 3170 (int __user *)a[5]); 3171 break; 3172 case SYS_SHUTDOWN: 3173 err = __sys_shutdown(a0, a1); 3174 break; 3175 case SYS_SETSOCKOPT: 3176 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3177 a[4]); 3178 break; 3179 case SYS_GETSOCKOPT: 3180 err = 3181 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3182 (int __user *)a[4]); 3183 break; 3184 case SYS_SENDMSG: 3185 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3186 a[2], true); 3187 break; 3188 case SYS_SENDMMSG: 3189 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3190 a[3], true); 3191 break; 3192 case SYS_RECVMSG: 3193 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3194 a[2], true); 3195 break; 3196 case SYS_RECVMMSG: 3197 if (IS_ENABLED(CONFIG_64BIT)) 3198 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3199 a[2], a[3], 3200 (struct __kernel_timespec __user *)a[4], 3201 NULL); 3202 else 3203 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3204 a[2], a[3], NULL, 3205 (struct old_timespec32 __user *)a[4]); 3206 break; 3207 case SYS_ACCEPT4: 3208 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3209 (int __user *)a[2], a[3]); 3210 break; 3211 default: 3212 err = -EINVAL; 3213 break; 3214 } 3215 return err; 3216 } 3217 3218 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3219 3220 /** 3221 * sock_register - add a socket protocol handler 3222 * @ops: description of protocol 3223 * 3224 * This function is called by a protocol handler that wants to 3225 * advertise its address family, and have it linked into the 3226 * socket interface. The value ops->family corresponds to the 3227 * socket system call protocol family. 3228 */ 3229 int sock_register(const struct net_proto_family *ops) 3230 { 3231 int err; 3232 3233 if (ops->family >= NPROTO) { 3234 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3235 return -ENOBUFS; 3236 } 3237 3238 spin_lock(&net_family_lock); 3239 if (rcu_dereference_protected(net_families[ops->family], 3240 lockdep_is_held(&net_family_lock))) 3241 err = -EEXIST; 3242 else { 3243 rcu_assign_pointer(net_families[ops->family], ops); 3244 err = 0; 3245 } 3246 spin_unlock(&net_family_lock); 3247 3248 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3249 return err; 3250 } 3251 EXPORT_SYMBOL(sock_register); 3252 3253 /** 3254 * sock_unregister - remove a protocol handler 3255 * @family: protocol family to remove 3256 * 3257 * This function is called by a protocol handler that wants to 3258 * remove its address family, and have it unlinked from the 3259 * new socket creation. 3260 * 3261 * If protocol handler is a module, then it can use module reference 3262 * counts to protect against new references. If protocol handler is not 3263 * a module then it needs to provide its own protection in 3264 * the ops->create routine. 3265 */ 3266 void sock_unregister(int family) 3267 { 3268 BUG_ON(family < 0 || family >= NPROTO); 3269 3270 spin_lock(&net_family_lock); 3271 RCU_INIT_POINTER(net_families[family], NULL); 3272 spin_unlock(&net_family_lock); 3273 3274 synchronize_rcu(); 3275 3276 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3277 } 3278 EXPORT_SYMBOL(sock_unregister); 3279 3280 bool sock_is_registered(int family) 3281 { 3282 return family < NPROTO && rcu_access_pointer(net_families[family]); 3283 } 3284 3285 static int __init sock_init(void) 3286 { 3287 int err; 3288 /* 3289 * Initialize the network sysctl infrastructure. 3290 */ 3291 err = net_sysctl_init(); 3292 if (err) 3293 goto out; 3294 3295 /* 3296 * Initialize skbuff SLAB cache 3297 */ 3298 skb_init(); 3299 3300 /* 3301 * Initialize the protocols module. 3302 */ 3303 3304 init_inodecache(); 3305 3306 err = register_filesystem(&sock_fs_type); 3307 if (err) 3308 goto out; 3309 sock_mnt = kern_mount(&sock_fs_type); 3310 if (IS_ERR(sock_mnt)) { 3311 err = PTR_ERR(sock_mnt); 3312 goto out_mount; 3313 } 3314 3315 /* The real protocol initialization is performed in later initcalls. 3316 */ 3317 3318 #ifdef CONFIG_NETFILTER 3319 err = netfilter_init(); 3320 if (err) 3321 goto out; 3322 #endif 3323 3324 ptp_classifier_init(); 3325 3326 out: 3327 return err; 3328 3329 out_mount: 3330 unregister_filesystem(&sock_fs_type); 3331 goto out; 3332 } 3333 3334 core_initcall(sock_init); /* early initcall */ 3335 3336 #ifdef CONFIG_PROC_FS 3337 void socket_seq_show(struct seq_file *seq) 3338 { 3339 seq_printf(seq, "sockets: used %d\n", 3340 sock_inuse_get(seq->private)); 3341 } 3342 #endif /* CONFIG_PROC_FS */ 3343 3344 /* Handle the fact that while struct ifreq has the same *layout* on 3345 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3346 * which are handled elsewhere, it still has different *size* due to 3347 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3348 * resulting in struct ifreq being 32 and 40 bytes respectively). 3349 * As a result, if the struct happens to be at the end of a page and 3350 * the next page isn't readable/writable, we get a fault. To prevent 3351 * that, copy back and forth to the full size. 3352 */ 3353 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3354 { 3355 if (in_compat_syscall()) { 3356 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3357 3358 memset(ifr, 0, sizeof(*ifr)); 3359 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3360 return -EFAULT; 3361 3362 if (ifrdata) 3363 *ifrdata = compat_ptr(ifr32->ifr_data); 3364 3365 return 0; 3366 } 3367 3368 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3369 return -EFAULT; 3370 3371 if (ifrdata) 3372 *ifrdata = ifr->ifr_data; 3373 3374 return 0; 3375 } 3376 EXPORT_SYMBOL(get_user_ifreq); 3377 3378 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3379 { 3380 size_t size = sizeof(*ifr); 3381 3382 if (in_compat_syscall()) 3383 size = sizeof(struct compat_ifreq); 3384 3385 if (copy_to_user(arg, ifr, size)) 3386 return -EFAULT; 3387 3388 return 0; 3389 } 3390 EXPORT_SYMBOL(put_user_ifreq); 3391 3392 #ifdef CONFIG_COMPAT 3393 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3394 { 3395 compat_uptr_t uptr32; 3396 struct ifreq ifr; 3397 void __user *saved; 3398 int err; 3399 3400 if (get_user_ifreq(&ifr, NULL, uifr32)) 3401 return -EFAULT; 3402 3403 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3404 return -EFAULT; 3405 3406 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3407 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3408 3409 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3410 if (!err) { 3411 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3412 if (put_user_ifreq(&ifr, uifr32)) 3413 err = -EFAULT; 3414 } 3415 return err; 3416 } 3417 3418 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3419 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3420 struct compat_ifreq __user *u_ifreq32) 3421 { 3422 struct ifreq ifreq; 3423 void __user *data; 3424 3425 if (!is_socket_ioctl_cmd(cmd)) 3426 return -ENOTTY; 3427 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3428 return -EFAULT; 3429 ifreq.ifr_data = data; 3430 3431 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3432 } 3433 3434 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3435 unsigned int cmd, unsigned long arg) 3436 { 3437 void __user *argp = compat_ptr(arg); 3438 struct sock *sk = sock->sk; 3439 struct net *net = sock_net(sk); 3440 const struct proto_ops *ops; 3441 3442 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3443 return sock_ioctl(file, cmd, (unsigned long)argp); 3444 3445 switch (cmd) { 3446 case SIOCWANDEV: 3447 return compat_siocwandev(net, argp); 3448 case SIOCGSTAMP_OLD: 3449 case SIOCGSTAMPNS_OLD: 3450 ops = READ_ONCE(sock->ops); 3451 if (!ops->gettstamp) 3452 return -ENOIOCTLCMD; 3453 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3454 !COMPAT_USE_64BIT_TIME); 3455 3456 case SIOCETHTOOL: 3457 case SIOCBONDSLAVEINFOQUERY: 3458 case SIOCBONDINFOQUERY: 3459 case SIOCSHWTSTAMP: 3460 case SIOCGHWTSTAMP: 3461 return compat_ifr_data_ioctl(net, cmd, argp); 3462 3463 case FIOSETOWN: 3464 case SIOCSPGRP: 3465 case FIOGETOWN: 3466 case SIOCGPGRP: 3467 case SIOCBRADDBR: 3468 case SIOCBRDELBR: 3469 case SIOCGIFVLAN: 3470 case SIOCSIFVLAN: 3471 case SIOCGSKNS: 3472 case SIOCGSTAMP_NEW: 3473 case SIOCGSTAMPNS_NEW: 3474 case SIOCGIFCONF: 3475 case SIOCSIFBR: 3476 case SIOCGIFBR: 3477 return sock_ioctl(file, cmd, arg); 3478 3479 case SIOCGIFFLAGS: 3480 case SIOCSIFFLAGS: 3481 case SIOCGIFMAP: 3482 case SIOCSIFMAP: 3483 case SIOCGIFMETRIC: 3484 case SIOCSIFMETRIC: 3485 case SIOCGIFMTU: 3486 case SIOCSIFMTU: 3487 case SIOCGIFMEM: 3488 case SIOCSIFMEM: 3489 case SIOCGIFHWADDR: 3490 case SIOCSIFHWADDR: 3491 case SIOCADDMULTI: 3492 case SIOCDELMULTI: 3493 case SIOCGIFINDEX: 3494 case SIOCGIFADDR: 3495 case SIOCSIFADDR: 3496 case SIOCSIFHWBROADCAST: 3497 case SIOCDIFADDR: 3498 case SIOCGIFBRDADDR: 3499 case SIOCSIFBRDADDR: 3500 case SIOCGIFDSTADDR: 3501 case SIOCSIFDSTADDR: 3502 case SIOCGIFNETMASK: 3503 case SIOCSIFNETMASK: 3504 case SIOCSIFPFLAGS: 3505 case SIOCGIFPFLAGS: 3506 case SIOCGIFTXQLEN: 3507 case SIOCSIFTXQLEN: 3508 case SIOCBRADDIF: 3509 case SIOCBRDELIF: 3510 case SIOCGIFNAME: 3511 case SIOCSIFNAME: 3512 case SIOCGMIIPHY: 3513 case SIOCGMIIREG: 3514 case SIOCSMIIREG: 3515 case SIOCBONDENSLAVE: 3516 case SIOCBONDRELEASE: 3517 case SIOCBONDSETHWADDR: 3518 case SIOCBONDCHANGEACTIVE: 3519 case SIOCSARP: 3520 case SIOCGARP: 3521 case SIOCDARP: 3522 case SIOCOUTQ: 3523 case SIOCOUTQNSD: 3524 case SIOCATMARK: 3525 return sock_do_ioctl(net, sock, cmd, arg); 3526 } 3527 3528 return -ENOIOCTLCMD; 3529 } 3530 3531 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3532 unsigned long arg) 3533 { 3534 struct socket *sock = file->private_data; 3535 const struct proto_ops *ops = READ_ONCE(sock->ops); 3536 int ret = -ENOIOCTLCMD; 3537 struct sock *sk; 3538 struct net *net; 3539 3540 sk = sock->sk; 3541 net = sock_net(sk); 3542 3543 if (ops->compat_ioctl) 3544 ret = ops->compat_ioctl(sock, cmd, arg); 3545 3546 if (ret == -ENOIOCTLCMD && 3547 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3548 ret = compat_wext_handle_ioctl(net, cmd, arg); 3549 3550 if (ret == -ENOIOCTLCMD) 3551 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3552 3553 return ret; 3554 } 3555 #endif 3556 3557 /** 3558 * kernel_bind - bind an address to a socket (kernel space) 3559 * @sock: socket 3560 * @addr: address 3561 * @addrlen: length of address 3562 * 3563 * Returns 0 or an error. 3564 */ 3565 3566 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3567 { 3568 struct sockaddr_storage address; 3569 3570 memcpy(&address, addr, addrlen); 3571 3572 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3573 addrlen); 3574 } 3575 EXPORT_SYMBOL(kernel_bind); 3576 3577 /** 3578 * kernel_listen - move socket to listening state (kernel space) 3579 * @sock: socket 3580 * @backlog: pending connections queue size 3581 * 3582 * Returns 0 or an error. 3583 */ 3584 3585 int kernel_listen(struct socket *sock, int backlog) 3586 { 3587 return READ_ONCE(sock->ops)->listen(sock, backlog); 3588 } 3589 EXPORT_SYMBOL(kernel_listen); 3590 3591 /** 3592 * kernel_accept - accept a connection (kernel space) 3593 * @sock: listening socket 3594 * @newsock: new connected socket 3595 * @flags: flags 3596 * 3597 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3598 * If it fails, @newsock is guaranteed to be %NULL. 3599 * Returns 0 or an error. 3600 */ 3601 3602 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3603 { 3604 struct sock *sk = sock->sk; 3605 const struct proto_ops *ops = READ_ONCE(sock->ops); 3606 struct proto_accept_arg arg = { 3607 .flags = flags, 3608 .kern = true, 3609 }; 3610 int err; 3611 3612 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3613 newsock); 3614 if (err < 0) 3615 goto done; 3616 3617 err = ops->accept(sock, *newsock, &arg); 3618 if (err < 0) { 3619 sock_release(*newsock); 3620 *newsock = NULL; 3621 goto done; 3622 } 3623 3624 (*newsock)->ops = ops; 3625 __module_get(ops->owner); 3626 3627 done: 3628 return err; 3629 } 3630 EXPORT_SYMBOL(kernel_accept); 3631 3632 /** 3633 * kernel_connect - connect a socket (kernel space) 3634 * @sock: socket 3635 * @addr: address 3636 * @addrlen: address length 3637 * @flags: flags (O_NONBLOCK, ...) 3638 * 3639 * For datagram sockets, @addr is the address to which datagrams are sent 3640 * by default, and the only address from which datagrams are received. 3641 * For stream sockets, attempts to connect to @addr. 3642 * Returns 0 or an error code. 3643 */ 3644 3645 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3646 int flags) 3647 { 3648 struct sockaddr_storage address; 3649 3650 memcpy(&address, addr, addrlen); 3651 3652 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3653 addrlen, flags); 3654 } 3655 EXPORT_SYMBOL(kernel_connect); 3656 3657 /** 3658 * kernel_getsockname - get the address which the socket is bound (kernel space) 3659 * @sock: socket 3660 * @addr: address holder 3661 * 3662 * Fills the @addr pointer with the address which the socket is bound. 3663 * Returns the length of the address in bytes or an error code. 3664 */ 3665 3666 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3667 { 3668 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3669 } 3670 EXPORT_SYMBOL(kernel_getsockname); 3671 3672 /** 3673 * kernel_getpeername - get the address which the socket is connected (kernel space) 3674 * @sock: socket 3675 * @addr: address holder 3676 * 3677 * Fills the @addr pointer with the address which the socket is connected. 3678 * Returns the length of the address in bytes or an error code. 3679 */ 3680 3681 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3682 { 3683 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3684 } 3685 EXPORT_SYMBOL(kernel_getpeername); 3686 3687 /** 3688 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3689 * @sock: socket 3690 * @how: connection part 3691 * 3692 * Returns 0 or an error. 3693 */ 3694 3695 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3696 { 3697 return READ_ONCE(sock->ops)->shutdown(sock, how); 3698 } 3699 EXPORT_SYMBOL(kernel_sock_shutdown); 3700 3701 /** 3702 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3703 * @sk: socket 3704 * 3705 * This routine returns the IP overhead imposed by a socket i.e. 3706 * the length of the underlying IP header, depending on whether 3707 * this is an IPv4 or IPv6 socket and the length from IP options turned 3708 * on at the socket. Assumes that the caller has a lock on the socket. 3709 */ 3710 3711 u32 kernel_sock_ip_overhead(struct sock *sk) 3712 { 3713 struct inet_sock *inet; 3714 struct ip_options_rcu *opt; 3715 u32 overhead = 0; 3716 #if IS_ENABLED(CONFIG_IPV6) 3717 struct ipv6_pinfo *np; 3718 struct ipv6_txoptions *optv6 = NULL; 3719 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3720 3721 if (!sk) 3722 return overhead; 3723 3724 switch (sk->sk_family) { 3725 case AF_INET: 3726 inet = inet_sk(sk); 3727 overhead += sizeof(struct iphdr); 3728 opt = rcu_dereference_protected(inet->inet_opt, 3729 sock_owned_by_user(sk)); 3730 if (opt) 3731 overhead += opt->opt.optlen; 3732 return overhead; 3733 #if IS_ENABLED(CONFIG_IPV6) 3734 case AF_INET6: 3735 np = inet6_sk(sk); 3736 overhead += sizeof(struct ipv6hdr); 3737 if (np) 3738 optv6 = rcu_dereference_protected(np->opt, 3739 sock_owned_by_user(sk)); 3740 if (optv6) 3741 overhead += (optv6->opt_flen + optv6->opt_nflen); 3742 return overhead; 3743 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3744 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3745 return overhead; 3746 } 3747 } 3748 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3749