xref: /linux/net/socket.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 			 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 			  unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 			     int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 
137 /*
138  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139  *	in the operation structures but are done directly via the socketcall() multiplexor.
140  */
141 
142 static const struct file_operations socket_file_ops = {
143 	.owner =	THIS_MODULE,
144 	.llseek =	no_llseek,
145 	.aio_read =	sock_aio_read,
146 	.aio_write =	sock_aio_write,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 				       struct msghdr *msg, size_t size)
615 {
616 	struct sock_iocb *si = kiocb_to_siocb(iocb);
617 
618 	si->sock = sock;
619 	si->scm = NULL;
620 	si->msg = msg;
621 	si->size = size;
622 
623 	return sock->ops->sendmsg(iocb, sock, msg, size);
624 }
625 
626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
627 				 struct msghdr *msg, size_t size)
628 {
629 	int err = security_socket_sendmsg(sock, msg, size);
630 
631 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
632 }
633 
634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
635 			   size_t size, bool nosec)
636 {
637 	struct kiocb iocb;
638 	struct sock_iocb siocb;
639 	int ret;
640 
641 	init_sync_kiocb(&iocb, NULL);
642 	iocb.private = &siocb;
643 	ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
644 		      __sock_sendmsg(&iocb, sock, msg, size);
645 	if (-EIOCBQUEUED == ret)
646 		ret = wait_on_sync_kiocb(&iocb);
647 	return ret;
648 }
649 
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
651 {
652 	return do_sock_sendmsg(sock, msg, size, false);
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655 
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 	return do_sock_sendmsg(sock, msg, size, true);
659 }
660 
661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
662 		   struct kvec *vec, size_t num, size_t size)
663 {
664 	mm_segment_t oldfs = get_fs();
665 	int result;
666 
667 	set_fs(KERNEL_DS);
668 	/*
669 	 * the following is safe, since for compiler definitions of kvec and
670 	 * iovec are identical, yielding the same in-core layout and alignment
671 	 */
672 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
673 	result = sock_sendmsg(sock, msg, size);
674 	set_fs(oldfs);
675 	return result;
676 }
677 EXPORT_SYMBOL(kernel_sendmsg);
678 
679 /*
680  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
681  */
682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
683 	struct sk_buff *skb)
684 {
685 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
686 	struct scm_timestamping tss;
687 	int empty = 1;
688 	struct skb_shared_hwtstamps *shhwtstamps =
689 		skb_hwtstamps(skb);
690 
691 	/* Race occurred between timestamp enabling and packet
692 	   receiving.  Fill in the current time for now. */
693 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
694 		__net_timestamp(skb);
695 
696 	if (need_software_tstamp) {
697 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
698 			struct timeval tv;
699 			skb_get_timestamp(skb, &tv);
700 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
701 				 sizeof(tv), &tv);
702 		} else {
703 			struct timespec ts;
704 			skb_get_timestampns(skb, &ts);
705 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
706 				 sizeof(ts), &ts);
707 		}
708 	}
709 
710 	memset(&tss, 0, sizeof(tss));
711 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
712 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
713 		empty = 0;
714 	if (shhwtstamps &&
715 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
716 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
717 		empty = 0;
718 	if (!empty)
719 		put_cmsg(msg, SOL_SOCKET,
720 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
721 }
722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
723 
724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
725 	struct sk_buff *skb)
726 {
727 	int ack;
728 
729 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
730 		return;
731 	if (!skb->wifi_acked_valid)
732 		return;
733 
734 	ack = skb->wifi_acked;
735 
736 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
737 }
738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
739 
740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
741 				   struct sk_buff *skb)
742 {
743 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
744 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
745 			sizeof(__u32), &skb->dropcount);
746 }
747 
748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
749 	struct sk_buff *skb)
750 {
751 	sock_recv_timestamp(msg, sk, skb);
752 	sock_recv_drops(msg, sk, skb);
753 }
754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
755 
756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
757 				       struct msghdr *msg, size_t size, int flags)
758 {
759 	struct sock_iocb *si = kiocb_to_siocb(iocb);
760 
761 	si->sock = sock;
762 	si->scm = NULL;
763 	si->msg = msg;
764 	si->size = size;
765 	si->flags = flags;
766 
767 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
768 }
769 
770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
771 				 struct msghdr *msg, size_t size, int flags)
772 {
773 	int err = security_socket_recvmsg(sock, msg, size, flags);
774 
775 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
776 }
777 
778 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
779 		 size_t size, int flags)
780 {
781 	struct kiocb iocb;
782 	struct sock_iocb siocb;
783 	int ret;
784 
785 	init_sync_kiocb(&iocb, NULL);
786 	iocb.private = &siocb;
787 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
788 	if (-EIOCBQUEUED == ret)
789 		ret = wait_on_sync_kiocb(&iocb);
790 	return ret;
791 }
792 EXPORT_SYMBOL(sock_recvmsg);
793 
794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
795 			      size_t size, int flags)
796 {
797 	struct kiocb iocb;
798 	struct sock_iocb siocb;
799 	int ret;
800 
801 	init_sync_kiocb(&iocb, NULL);
802 	iocb.private = &siocb;
803 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
804 	if (-EIOCBQUEUED == ret)
805 		ret = wait_on_sync_kiocb(&iocb);
806 	return ret;
807 }
808 
809 /**
810  * kernel_recvmsg - Receive a message from a socket (kernel space)
811  * @sock:       The socket to receive the message from
812  * @msg:        Received message
813  * @vec:        Input s/g array for message data
814  * @num:        Size of input s/g array
815  * @size:       Number of bytes to read
816  * @flags:      Message flags (MSG_DONTWAIT, etc...)
817  *
818  * On return the msg structure contains the scatter/gather array passed in the
819  * vec argument. The array is modified so that it consists of the unfilled
820  * portion of the original array.
821  *
822  * The returned value is the total number of bytes received, or an error.
823  */
824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
825 		   struct kvec *vec, size_t num, size_t size, int flags)
826 {
827 	mm_segment_t oldfs = get_fs();
828 	int result;
829 
830 	set_fs(KERNEL_DS);
831 	/*
832 	 * the following is safe, since for compiler definitions of kvec and
833 	 * iovec are identical, yielding the same in-core layout and alignment
834 	 */
835 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
836 	result = sock_recvmsg(sock, msg, size, flags);
837 	set_fs(oldfs);
838 	return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841 
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 			     int offset, size_t size, loff_t *ppos, int more)
844 {
845 	struct socket *sock;
846 	int flags;
847 
848 	sock = file->private_data;
849 
850 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 	flags |= more;
853 
854 	return kernel_sendpage(sock, page, offset, size, flags);
855 }
856 
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 				struct pipe_inode_info *pipe, size_t len,
859 				unsigned int flags)
860 {
861 	struct socket *sock = file->private_data;
862 
863 	if (unlikely(!sock->ops->splice_read))
864 		return -EINVAL;
865 
866 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868 
869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
870 					 struct sock_iocb *siocb)
871 {
872 	siocb->kiocb = iocb;
873 	iocb->private = siocb;
874 	return siocb;
875 }
876 
877 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
878 		struct file *file, const struct iovec *iov,
879 		unsigned long nr_segs)
880 {
881 	struct socket *sock = file->private_data;
882 	size_t size = 0;
883 	int i;
884 
885 	for (i = 0; i < nr_segs; i++)
886 		size += iov[i].iov_len;
887 
888 	msg->msg_name = NULL;
889 	msg->msg_namelen = 0;
890 	msg->msg_control = NULL;
891 	msg->msg_controllen = 0;
892 	iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
893 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
894 
895 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
896 }
897 
898 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
899 				unsigned long nr_segs, loff_t pos)
900 {
901 	struct sock_iocb siocb, *x;
902 
903 	if (pos != 0)
904 		return -ESPIPE;
905 
906 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
907 		return 0;
908 
909 
910 	x = alloc_sock_iocb(iocb, &siocb);
911 	if (!x)
912 		return -ENOMEM;
913 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
914 }
915 
916 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
917 			struct file *file, const struct iovec *iov,
918 			unsigned long nr_segs)
919 {
920 	struct socket *sock = file->private_data;
921 	size_t size = 0;
922 	int i;
923 
924 	for (i = 0; i < nr_segs; i++)
925 		size += iov[i].iov_len;
926 
927 	msg->msg_name = NULL;
928 	msg->msg_namelen = 0;
929 	msg->msg_control = NULL;
930 	msg->msg_controllen = 0;
931 	iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
932 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 	if (sock->type == SOCK_SEQPACKET)
934 		msg->msg_flags |= MSG_EOR;
935 
936 	return __sock_sendmsg(iocb, sock, msg, size);
937 }
938 
939 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
940 			  unsigned long nr_segs, loff_t pos)
941 {
942 	struct sock_iocb siocb, *x;
943 
944 	if (pos != 0)
945 		return -ESPIPE;
946 
947 	x = alloc_sock_iocb(iocb, &siocb);
948 	if (!x)
949 		return -ENOMEM;
950 
951 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
952 }
953 
954 /*
955  * Atomic setting of ioctl hooks to avoid race
956  * with module unload.
957  */
958 
959 static DEFINE_MUTEX(br_ioctl_mutex);
960 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
961 
962 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
963 {
964 	mutex_lock(&br_ioctl_mutex);
965 	br_ioctl_hook = hook;
966 	mutex_unlock(&br_ioctl_mutex);
967 }
968 EXPORT_SYMBOL(brioctl_set);
969 
970 static DEFINE_MUTEX(vlan_ioctl_mutex);
971 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
972 
973 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
974 {
975 	mutex_lock(&vlan_ioctl_mutex);
976 	vlan_ioctl_hook = hook;
977 	mutex_unlock(&vlan_ioctl_mutex);
978 }
979 EXPORT_SYMBOL(vlan_ioctl_set);
980 
981 static DEFINE_MUTEX(dlci_ioctl_mutex);
982 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
983 
984 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
985 {
986 	mutex_lock(&dlci_ioctl_mutex);
987 	dlci_ioctl_hook = hook;
988 	mutex_unlock(&dlci_ioctl_mutex);
989 }
990 EXPORT_SYMBOL(dlci_ioctl_set);
991 
992 static long sock_do_ioctl(struct net *net, struct socket *sock,
993 				 unsigned int cmd, unsigned long arg)
994 {
995 	int err;
996 	void __user *argp = (void __user *)arg;
997 
998 	err = sock->ops->ioctl(sock, cmd, arg);
999 
1000 	/*
1001 	 * If this ioctl is unknown try to hand it down
1002 	 * to the NIC driver.
1003 	 */
1004 	if (err == -ENOIOCTLCMD)
1005 		err = dev_ioctl(net, cmd, argp);
1006 
1007 	return err;
1008 }
1009 
1010 /*
1011  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1012  *	what to do with it - that's up to the protocol still.
1013  */
1014 
1015 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1016 {
1017 	struct socket *sock;
1018 	struct sock *sk;
1019 	void __user *argp = (void __user *)arg;
1020 	int pid, err;
1021 	struct net *net;
1022 
1023 	sock = file->private_data;
1024 	sk = sock->sk;
1025 	net = sock_net(sk);
1026 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1027 		err = dev_ioctl(net, cmd, argp);
1028 	} else
1029 #ifdef CONFIG_WEXT_CORE
1030 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1031 		err = dev_ioctl(net, cmd, argp);
1032 	} else
1033 #endif
1034 		switch (cmd) {
1035 		case FIOSETOWN:
1036 		case SIOCSPGRP:
1037 			err = -EFAULT;
1038 			if (get_user(pid, (int __user *)argp))
1039 				break;
1040 			f_setown(sock->file, pid, 1);
1041 			err = 0;
1042 			break;
1043 		case FIOGETOWN:
1044 		case SIOCGPGRP:
1045 			err = put_user(f_getown(sock->file),
1046 				       (int __user *)argp);
1047 			break;
1048 		case SIOCGIFBR:
1049 		case SIOCSIFBR:
1050 		case SIOCBRADDBR:
1051 		case SIOCBRDELBR:
1052 			err = -ENOPKG;
1053 			if (!br_ioctl_hook)
1054 				request_module("bridge");
1055 
1056 			mutex_lock(&br_ioctl_mutex);
1057 			if (br_ioctl_hook)
1058 				err = br_ioctl_hook(net, cmd, argp);
1059 			mutex_unlock(&br_ioctl_mutex);
1060 			break;
1061 		case SIOCGIFVLAN:
1062 		case SIOCSIFVLAN:
1063 			err = -ENOPKG;
1064 			if (!vlan_ioctl_hook)
1065 				request_module("8021q");
1066 
1067 			mutex_lock(&vlan_ioctl_mutex);
1068 			if (vlan_ioctl_hook)
1069 				err = vlan_ioctl_hook(net, argp);
1070 			mutex_unlock(&vlan_ioctl_mutex);
1071 			break;
1072 		case SIOCADDDLCI:
1073 		case SIOCDELDLCI:
1074 			err = -ENOPKG;
1075 			if (!dlci_ioctl_hook)
1076 				request_module("dlci");
1077 
1078 			mutex_lock(&dlci_ioctl_mutex);
1079 			if (dlci_ioctl_hook)
1080 				err = dlci_ioctl_hook(cmd, argp);
1081 			mutex_unlock(&dlci_ioctl_mutex);
1082 			break;
1083 		default:
1084 			err = sock_do_ioctl(net, sock, cmd, arg);
1085 			break;
1086 		}
1087 	return err;
1088 }
1089 
1090 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1091 {
1092 	int err;
1093 	struct socket *sock = NULL;
1094 
1095 	err = security_socket_create(family, type, protocol, 1);
1096 	if (err)
1097 		goto out;
1098 
1099 	sock = sock_alloc();
1100 	if (!sock) {
1101 		err = -ENOMEM;
1102 		goto out;
1103 	}
1104 
1105 	sock->type = type;
1106 	err = security_socket_post_create(sock, family, type, protocol, 1);
1107 	if (err)
1108 		goto out_release;
1109 
1110 out:
1111 	*res = sock;
1112 	return err;
1113 out_release:
1114 	sock_release(sock);
1115 	sock = NULL;
1116 	goto out;
1117 }
1118 EXPORT_SYMBOL(sock_create_lite);
1119 
1120 /* No kernel lock held - perfect */
1121 static unsigned int sock_poll(struct file *file, poll_table *wait)
1122 {
1123 	unsigned int busy_flag = 0;
1124 	struct socket *sock;
1125 
1126 	/*
1127 	 *      We can't return errors to poll, so it's either yes or no.
1128 	 */
1129 	sock = file->private_data;
1130 
1131 	if (sk_can_busy_loop(sock->sk)) {
1132 		/* this socket can poll_ll so tell the system call */
1133 		busy_flag = POLL_BUSY_LOOP;
1134 
1135 		/* once, only if requested by syscall */
1136 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1137 			sk_busy_loop(sock->sk, 1);
1138 	}
1139 
1140 	return busy_flag | sock->ops->poll(file, sock, wait);
1141 }
1142 
1143 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1144 {
1145 	struct socket *sock = file->private_data;
1146 
1147 	return sock->ops->mmap(file, sock, vma);
1148 }
1149 
1150 static int sock_close(struct inode *inode, struct file *filp)
1151 {
1152 	sock_release(SOCKET_I(inode));
1153 	return 0;
1154 }
1155 
1156 /*
1157  *	Update the socket async list
1158  *
1159  *	Fasync_list locking strategy.
1160  *
1161  *	1. fasync_list is modified only under process context socket lock
1162  *	   i.e. under semaphore.
1163  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1164  *	   or under socket lock
1165  */
1166 
1167 static int sock_fasync(int fd, struct file *filp, int on)
1168 {
1169 	struct socket *sock = filp->private_data;
1170 	struct sock *sk = sock->sk;
1171 	struct socket_wq *wq;
1172 
1173 	if (sk == NULL)
1174 		return -EINVAL;
1175 
1176 	lock_sock(sk);
1177 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1178 	fasync_helper(fd, filp, on, &wq->fasync_list);
1179 
1180 	if (!wq->fasync_list)
1181 		sock_reset_flag(sk, SOCK_FASYNC);
1182 	else
1183 		sock_set_flag(sk, SOCK_FASYNC);
1184 
1185 	release_sock(sk);
1186 	return 0;
1187 }
1188 
1189 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1190 
1191 int sock_wake_async(struct socket *sock, int how, int band)
1192 {
1193 	struct socket_wq *wq;
1194 
1195 	if (!sock)
1196 		return -1;
1197 	rcu_read_lock();
1198 	wq = rcu_dereference(sock->wq);
1199 	if (!wq || !wq->fasync_list) {
1200 		rcu_read_unlock();
1201 		return -1;
1202 	}
1203 	switch (how) {
1204 	case SOCK_WAKE_WAITD:
1205 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1206 			break;
1207 		goto call_kill;
1208 	case SOCK_WAKE_SPACE:
1209 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1210 			break;
1211 		/* fall through */
1212 	case SOCK_WAKE_IO:
1213 call_kill:
1214 		kill_fasync(&wq->fasync_list, SIGIO, band);
1215 		break;
1216 	case SOCK_WAKE_URG:
1217 		kill_fasync(&wq->fasync_list, SIGURG, band);
1218 	}
1219 	rcu_read_unlock();
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL(sock_wake_async);
1223 
1224 int __sock_create(struct net *net, int family, int type, int protocol,
1225 			 struct socket **res, int kern)
1226 {
1227 	int err;
1228 	struct socket *sock;
1229 	const struct net_proto_family *pf;
1230 
1231 	/*
1232 	 *      Check protocol is in range
1233 	 */
1234 	if (family < 0 || family >= NPROTO)
1235 		return -EAFNOSUPPORT;
1236 	if (type < 0 || type >= SOCK_MAX)
1237 		return -EINVAL;
1238 
1239 	/* Compatibility.
1240 
1241 	   This uglymoron is moved from INET layer to here to avoid
1242 	   deadlock in module load.
1243 	 */
1244 	if (family == PF_INET && type == SOCK_PACKET) {
1245 		static int warned;
1246 		if (!warned) {
1247 			warned = 1;
1248 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1249 				current->comm);
1250 		}
1251 		family = PF_PACKET;
1252 	}
1253 
1254 	err = security_socket_create(family, type, protocol, kern);
1255 	if (err)
1256 		return err;
1257 
1258 	/*
1259 	 *	Allocate the socket and allow the family to set things up. if
1260 	 *	the protocol is 0, the family is instructed to select an appropriate
1261 	 *	default.
1262 	 */
1263 	sock = sock_alloc();
1264 	if (!sock) {
1265 		net_warn_ratelimited("socket: no more sockets\n");
1266 		return -ENFILE;	/* Not exactly a match, but its the
1267 				   closest posix thing */
1268 	}
1269 
1270 	sock->type = type;
1271 
1272 #ifdef CONFIG_MODULES
1273 	/* Attempt to load a protocol module if the find failed.
1274 	 *
1275 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1276 	 * requested real, full-featured networking support upon configuration.
1277 	 * Otherwise module support will break!
1278 	 */
1279 	if (rcu_access_pointer(net_families[family]) == NULL)
1280 		request_module("net-pf-%d", family);
1281 #endif
1282 
1283 	rcu_read_lock();
1284 	pf = rcu_dereference(net_families[family]);
1285 	err = -EAFNOSUPPORT;
1286 	if (!pf)
1287 		goto out_release;
1288 
1289 	/*
1290 	 * We will call the ->create function, that possibly is in a loadable
1291 	 * module, so we have to bump that loadable module refcnt first.
1292 	 */
1293 	if (!try_module_get(pf->owner))
1294 		goto out_release;
1295 
1296 	/* Now protected by module ref count */
1297 	rcu_read_unlock();
1298 
1299 	err = pf->create(net, sock, protocol, kern);
1300 	if (err < 0)
1301 		goto out_module_put;
1302 
1303 	/*
1304 	 * Now to bump the refcnt of the [loadable] module that owns this
1305 	 * socket at sock_release time we decrement its refcnt.
1306 	 */
1307 	if (!try_module_get(sock->ops->owner))
1308 		goto out_module_busy;
1309 
1310 	/*
1311 	 * Now that we're done with the ->create function, the [loadable]
1312 	 * module can have its refcnt decremented
1313 	 */
1314 	module_put(pf->owner);
1315 	err = security_socket_post_create(sock, family, type, protocol, kern);
1316 	if (err)
1317 		goto out_sock_release;
1318 	*res = sock;
1319 
1320 	return 0;
1321 
1322 out_module_busy:
1323 	err = -EAFNOSUPPORT;
1324 out_module_put:
1325 	sock->ops = NULL;
1326 	module_put(pf->owner);
1327 out_sock_release:
1328 	sock_release(sock);
1329 	return err;
1330 
1331 out_release:
1332 	rcu_read_unlock();
1333 	goto out_sock_release;
1334 }
1335 EXPORT_SYMBOL(__sock_create);
1336 
1337 int sock_create(int family, int type, int protocol, struct socket **res)
1338 {
1339 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1340 }
1341 EXPORT_SYMBOL(sock_create);
1342 
1343 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1344 {
1345 	return __sock_create(&init_net, family, type, protocol, res, 1);
1346 }
1347 EXPORT_SYMBOL(sock_create_kern);
1348 
1349 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1350 {
1351 	int retval;
1352 	struct socket *sock;
1353 	int flags;
1354 
1355 	/* Check the SOCK_* constants for consistency.  */
1356 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1357 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1358 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1359 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1360 
1361 	flags = type & ~SOCK_TYPE_MASK;
1362 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1363 		return -EINVAL;
1364 	type &= SOCK_TYPE_MASK;
1365 
1366 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1368 
1369 	retval = sock_create(family, type, protocol, &sock);
1370 	if (retval < 0)
1371 		goto out;
1372 
1373 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1374 	if (retval < 0)
1375 		goto out_release;
1376 
1377 out:
1378 	/* It may be already another descriptor 8) Not kernel problem. */
1379 	return retval;
1380 
1381 out_release:
1382 	sock_release(sock);
1383 	return retval;
1384 }
1385 
1386 /*
1387  *	Create a pair of connected sockets.
1388  */
1389 
1390 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1391 		int __user *, usockvec)
1392 {
1393 	struct socket *sock1, *sock2;
1394 	int fd1, fd2, err;
1395 	struct file *newfile1, *newfile2;
1396 	int flags;
1397 
1398 	flags = type & ~SOCK_TYPE_MASK;
1399 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1400 		return -EINVAL;
1401 	type &= SOCK_TYPE_MASK;
1402 
1403 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1404 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1405 
1406 	/*
1407 	 * Obtain the first socket and check if the underlying protocol
1408 	 * supports the socketpair call.
1409 	 */
1410 
1411 	err = sock_create(family, type, protocol, &sock1);
1412 	if (err < 0)
1413 		goto out;
1414 
1415 	err = sock_create(family, type, protocol, &sock2);
1416 	if (err < 0)
1417 		goto out_release_1;
1418 
1419 	err = sock1->ops->socketpair(sock1, sock2);
1420 	if (err < 0)
1421 		goto out_release_both;
1422 
1423 	fd1 = get_unused_fd_flags(flags);
1424 	if (unlikely(fd1 < 0)) {
1425 		err = fd1;
1426 		goto out_release_both;
1427 	}
1428 
1429 	fd2 = get_unused_fd_flags(flags);
1430 	if (unlikely(fd2 < 0)) {
1431 		err = fd2;
1432 		goto out_put_unused_1;
1433 	}
1434 
1435 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1436 	if (unlikely(IS_ERR(newfile1))) {
1437 		err = PTR_ERR(newfile1);
1438 		goto out_put_unused_both;
1439 	}
1440 
1441 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1442 	if (IS_ERR(newfile2)) {
1443 		err = PTR_ERR(newfile2);
1444 		goto out_fput_1;
1445 	}
1446 
1447 	err = put_user(fd1, &usockvec[0]);
1448 	if (err)
1449 		goto out_fput_both;
1450 
1451 	err = put_user(fd2, &usockvec[1]);
1452 	if (err)
1453 		goto out_fput_both;
1454 
1455 	audit_fd_pair(fd1, fd2);
1456 
1457 	fd_install(fd1, newfile1);
1458 	fd_install(fd2, newfile2);
1459 	/* fd1 and fd2 may be already another descriptors.
1460 	 * Not kernel problem.
1461 	 */
1462 
1463 	return 0;
1464 
1465 out_fput_both:
1466 	fput(newfile2);
1467 	fput(newfile1);
1468 	put_unused_fd(fd2);
1469 	put_unused_fd(fd1);
1470 	goto out;
1471 
1472 out_fput_1:
1473 	fput(newfile1);
1474 	put_unused_fd(fd2);
1475 	put_unused_fd(fd1);
1476 	sock_release(sock2);
1477 	goto out;
1478 
1479 out_put_unused_both:
1480 	put_unused_fd(fd2);
1481 out_put_unused_1:
1482 	put_unused_fd(fd1);
1483 out_release_both:
1484 	sock_release(sock2);
1485 out_release_1:
1486 	sock_release(sock1);
1487 out:
1488 	return err;
1489 }
1490 
1491 /*
1492  *	Bind a name to a socket. Nothing much to do here since it's
1493  *	the protocol's responsibility to handle the local address.
1494  *
1495  *	We move the socket address to kernel space before we call
1496  *	the protocol layer (having also checked the address is ok).
1497  */
1498 
1499 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1500 {
1501 	struct socket *sock;
1502 	struct sockaddr_storage address;
1503 	int err, fput_needed;
1504 
1505 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1506 	if (sock) {
1507 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1508 		if (err >= 0) {
1509 			err = security_socket_bind(sock,
1510 						   (struct sockaddr *)&address,
1511 						   addrlen);
1512 			if (!err)
1513 				err = sock->ops->bind(sock,
1514 						      (struct sockaddr *)
1515 						      &address, addrlen);
1516 		}
1517 		fput_light(sock->file, fput_needed);
1518 	}
1519 	return err;
1520 }
1521 
1522 /*
1523  *	Perform a listen. Basically, we allow the protocol to do anything
1524  *	necessary for a listen, and if that works, we mark the socket as
1525  *	ready for listening.
1526  */
1527 
1528 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1529 {
1530 	struct socket *sock;
1531 	int err, fput_needed;
1532 	int somaxconn;
1533 
1534 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1535 	if (sock) {
1536 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1537 		if ((unsigned int)backlog > somaxconn)
1538 			backlog = somaxconn;
1539 
1540 		err = security_socket_listen(sock, backlog);
1541 		if (!err)
1542 			err = sock->ops->listen(sock, backlog);
1543 
1544 		fput_light(sock->file, fput_needed);
1545 	}
1546 	return err;
1547 }
1548 
1549 /*
1550  *	For accept, we attempt to create a new socket, set up the link
1551  *	with the client, wake up the client, then return the new
1552  *	connected fd. We collect the address of the connector in kernel
1553  *	space and move it to user at the very end. This is unclean because
1554  *	we open the socket then return an error.
1555  *
1556  *	1003.1g adds the ability to recvmsg() to query connection pending
1557  *	status to recvmsg. We need to add that support in a way thats
1558  *	clean when we restucture accept also.
1559  */
1560 
1561 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1562 		int __user *, upeer_addrlen, int, flags)
1563 {
1564 	struct socket *sock, *newsock;
1565 	struct file *newfile;
1566 	int err, len, newfd, fput_needed;
1567 	struct sockaddr_storage address;
1568 
1569 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 		return -EINVAL;
1571 
1572 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1573 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1574 
1575 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1576 	if (!sock)
1577 		goto out;
1578 
1579 	err = -ENFILE;
1580 	newsock = sock_alloc();
1581 	if (!newsock)
1582 		goto out_put;
1583 
1584 	newsock->type = sock->type;
1585 	newsock->ops = sock->ops;
1586 
1587 	/*
1588 	 * We don't need try_module_get here, as the listening socket (sock)
1589 	 * has the protocol module (sock->ops->owner) held.
1590 	 */
1591 	__module_get(newsock->ops->owner);
1592 
1593 	newfd = get_unused_fd_flags(flags);
1594 	if (unlikely(newfd < 0)) {
1595 		err = newfd;
1596 		sock_release(newsock);
1597 		goto out_put;
1598 	}
1599 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1600 	if (unlikely(IS_ERR(newfile))) {
1601 		err = PTR_ERR(newfile);
1602 		put_unused_fd(newfd);
1603 		sock_release(newsock);
1604 		goto out_put;
1605 	}
1606 
1607 	err = security_socket_accept(sock, newsock);
1608 	if (err)
1609 		goto out_fd;
1610 
1611 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1612 	if (err < 0)
1613 		goto out_fd;
1614 
1615 	if (upeer_sockaddr) {
1616 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1617 					  &len, 2) < 0) {
1618 			err = -ECONNABORTED;
1619 			goto out_fd;
1620 		}
1621 		err = move_addr_to_user(&address,
1622 					len, upeer_sockaddr, upeer_addrlen);
1623 		if (err < 0)
1624 			goto out_fd;
1625 	}
1626 
1627 	/* File flags are not inherited via accept() unlike another OSes. */
1628 
1629 	fd_install(newfd, newfile);
1630 	err = newfd;
1631 
1632 out_put:
1633 	fput_light(sock->file, fput_needed);
1634 out:
1635 	return err;
1636 out_fd:
1637 	fput(newfile);
1638 	put_unused_fd(newfd);
1639 	goto out_put;
1640 }
1641 
1642 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1643 		int __user *, upeer_addrlen)
1644 {
1645 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1646 }
1647 
1648 /*
1649  *	Attempt to connect to a socket with the server address.  The address
1650  *	is in user space so we verify it is OK and move it to kernel space.
1651  *
1652  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1653  *	break bindings
1654  *
1655  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1656  *	other SEQPACKET protocols that take time to connect() as it doesn't
1657  *	include the -EINPROGRESS status for such sockets.
1658  */
1659 
1660 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1661 		int, addrlen)
1662 {
1663 	struct socket *sock;
1664 	struct sockaddr_storage address;
1665 	int err, fput_needed;
1666 
1667 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 	if (!sock)
1669 		goto out;
1670 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1671 	if (err < 0)
1672 		goto out_put;
1673 
1674 	err =
1675 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1676 	if (err)
1677 		goto out_put;
1678 
1679 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1680 				 sock->file->f_flags);
1681 out_put:
1682 	fput_light(sock->file, fput_needed);
1683 out:
1684 	return err;
1685 }
1686 
1687 /*
1688  *	Get the local address ('name') of a socket object. Move the obtained
1689  *	name to user space.
1690  */
1691 
1692 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1693 		int __user *, usockaddr_len)
1694 {
1695 	struct socket *sock;
1696 	struct sockaddr_storage address;
1697 	int len, err, fput_needed;
1698 
1699 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 	if (!sock)
1701 		goto out;
1702 
1703 	err = security_socket_getsockname(sock);
1704 	if (err)
1705 		goto out_put;
1706 
1707 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1708 	if (err)
1709 		goto out_put;
1710 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1711 
1712 out_put:
1713 	fput_light(sock->file, fput_needed);
1714 out:
1715 	return err;
1716 }
1717 
1718 /*
1719  *	Get the remote address ('name') of a socket object. Move the obtained
1720  *	name to user space.
1721  */
1722 
1723 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1724 		int __user *, usockaddr_len)
1725 {
1726 	struct socket *sock;
1727 	struct sockaddr_storage address;
1728 	int len, err, fput_needed;
1729 
1730 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 	if (sock != NULL) {
1732 		err = security_socket_getpeername(sock);
1733 		if (err) {
1734 			fput_light(sock->file, fput_needed);
1735 			return err;
1736 		}
1737 
1738 		err =
1739 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1740 				       1);
1741 		if (!err)
1742 			err = move_addr_to_user(&address, len, usockaddr,
1743 						usockaddr_len);
1744 		fput_light(sock->file, fput_needed);
1745 	}
1746 	return err;
1747 }
1748 
1749 /*
1750  *	Send a datagram to a given address. We move the address into kernel
1751  *	space and check the user space data area is readable before invoking
1752  *	the protocol.
1753  */
1754 
1755 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1756 		unsigned int, flags, struct sockaddr __user *, addr,
1757 		int, addr_len)
1758 {
1759 	struct socket *sock;
1760 	struct sockaddr_storage address;
1761 	int err;
1762 	struct msghdr msg;
1763 	struct iovec iov;
1764 	int fput_needed;
1765 
1766 	if (len > INT_MAX)
1767 		len = INT_MAX;
1768 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 	if (!sock)
1770 		goto out;
1771 
1772 	iov.iov_base = buff;
1773 	iov.iov_len = len;
1774 	msg.msg_name = NULL;
1775 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1776 	msg.msg_control = NULL;
1777 	msg.msg_controllen = 0;
1778 	msg.msg_namelen = 0;
1779 	if (addr) {
1780 		err = move_addr_to_kernel(addr, addr_len, &address);
1781 		if (err < 0)
1782 			goto out_put;
1783 		msg.msg_name = (struct sockaddr *)&address;
1784 		msg.msg_namelen = addr_len;
1785 	}
1786 	if (sock->file->f_flags & O_NONBLOCK)
1787 		flags |= MSG_DONTWAIT;
1788 	msg.msg_flags = flags;
1789 	err = sock_sendmsg(sock, &msg, len);
1790 
1791 out_put:
1792 	fput_light(sock->file, fput_needed);
1793 out:
1794 	return err;
1795 }
1796 
1797 /*
1798  *	Send a datagram down a socket.
1799  */
1800 
1801 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1802 		unsigned int, flags)
1803 {
1804 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1805 }
1806 
1807 /*
1808  *	Receive a frame from the socket and optionally record the address of the
1809  *	sender. We verify the buffers are writable and if needed move the
1810  *	sender address from kernel to user space.
1811  */
1812 
1813 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1814 		unsigned int, flags, struct sockaddr __user *, addr,
1815 		int __user *, addr_len)
1816 {
1817 	struct socket *sock;
1818 	struct iovec iov;
1819 	struct msghdr msg;
1820 	struct sockaddr_storage address;
1821 	int err, err2;
1822 	int fput_needed;
1823 
1824 	if (size > INT_MAX)
1825 		size = INT_MAX;
1826 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 	if (!sock)
1828 		goto out;
1829 
1830 	msg.msg_control = NULL;
1831 	msg.msg_controllen = 0;
1832 	iov.iov_len = size;
1833 	iov.iov_base = ubuf;
1834 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1835 	/* Save some cycles and don't copy the address if not needed */
1836 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1837 	/* We assume all kernel code knows the size of sockaddr_storage */
1838 	msg.msg_namelen = 0;
1839 	if (sock->file->f_flags & O_NONBLOCK)
1840 		flags |= MSG_DONTWAIT;
1841 	err = sock_recvmsg(sock, &msg, size, flags);
1842 
1843 	if (err >= 0 && addr != NULL) {
1844 		err2 = move_addr_to_user(&address,
1845 					 msg.msg_namelen, addr, addr_len);
1846 		if (err2 < 0)
1847 			err = err2;
1848 	}
1849 
1850 	fput_light(sock->file, fput_needed);
1851 out:
1852 	return err;
1853 }
1854 
1855 /*
1856  *	Receive a datagram from a socket.
1857  */
1858 
1859 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1860 		unsigned int, flags)
1861 {
1862 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1863 }
1864 
1865 /*
1866  *	Set a socket option. Because we don't know the option lengths we have
1867  *	to pass the user mode parameter for the protocols to sort out.
1868  */
1869 
1870 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1871 		char __user *, optval, int, optlen)
1872 {
1873 	int err, fput_needed;
1874 	struct socket *sock;
1875 
1876 	if (optlen < 0)
1877 		return -EINVAL;
1878 
1879 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 	if (sock != NULL) {
1881 		err = security_socket_setsockopt(sock, level, optname);
1882 		if (err)
1883 			goto out_put;
1884 
1885 		if (level == SOL_SOCKET)
1886 			err =
1887 			    sock_setsockopt(sock, level, optname, optval,
1888 					    optlen);
1889 		else
1890 			err =
1891 			    sock->ops->setsockopt(sock, level, optname, optval,
1892 						  optlen);
1893 out_put:
1894 		fput_light(sock->file, fput_needed);
1895 	}
1896 	return err;
1897 }
1898 
1899 /*
1900  *	Get a socket option. Because we don't know the option lengths we have
1901  *	to pass a user mode parameter for the protocols to sort out.
1902  */
1903 
1904 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1905 		char __user *, optval, int __user *, optlen)
1906 {
1907 	int err, fput_needed;
1908 	struct socket *sock;
1909 
1910 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1911 	if (sock != NULL) {
1912 		err = security_socket_getsockopt(sock, level, optname);
1913 		if (err)
1914 			goto out_put;
1915 
1916 		if (level == SOL_SOCKET)
1917 			err =
1918 			    sock_getsockopt(sock, level, optname, optval,
1919 					    optlen);
1920 		else
1921 			err =
1922 			    sock->ops->getsockopt(sock, level, optname, optval,
1923 						  optlen);
1924 out_put:
1925 		fput_light(sock->file, fput_needed);
1926 	}
1927 	return err;
1928 }
1929 
1930 /*
1931  *	Shutdown a socket.
1932  */
1933 
1934 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1935 {
1936 	int err, fput_needed;
1937 	struct socket *sock;
1938 
1939 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1940 	if (sock != NULL) {
1941 		err = security_socket_shutdown(sock, how);
1942 		if (!err)
1943 			err = sock->ops->shutdown(sock, how);
1944 		fput_light(sock->file, fput_needed);
1945 	}
1946 	return err;
1947 }
1948 
1949 /* A couple of helpful macros for getting the address of the 32/64 bit
1950  * fields which are the same type (int / unsigned) on our platforms.
1951  */
1952 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1953 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1954 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1955 
1956 struct used_address {
1957 	struct sockaddr_storage name;
1958 	unsigned int name_len;
1959 };
1960 
1961 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1962 				     struct user_msghdr __user *umsg,
1963 				     struct sockaddr __user **save_addr,
1964 				     struct iovec **iov)
1965 {
1966 	struct sockaddr __user *uaddr;
1967 	struct iovec __user *uiov;
1968 	size_t nr_segs;
1969 	ssize_t err;
1970 
1971 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1972 	    __get_user(uaddr, &umsg->msg_name) ||
1973 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1974 	    __get_user(uiov, &umsg->msg_iov) ||
1975 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1976 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1977 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1978 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1979 		return -EFAULT;
1980 
1981 	if (!uaddr)
1982 		kmsg->msg_namelen = 0;
1983 
1984 	if (kmsg->msg_namelen < 0)
1985 		return -EINVAL;
1986 
1987 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1988 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1989 
1990 	if (save_addr)
1991 		*save_addr = uaddr;
1992 
1993 	if (uaddr && kmsg->msg_namelen) {
1994 		if (!save_addr) {
1995 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1996 						  kmsg->msg_name);
1997 			if (err < 0)
1998 				return err;
1999 		}
2000 	} else {
2001 		kmsg->msg_name = NULL;
2002 		kmsg->msg_namelen = 0;
2003 	}
2004 
2005 	if (nr_segs > UIO_MAXIOV)
2006 		return -EMSGSIZE;
2007 
2008 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2009 				    uiov, nr_segs,
2010 				    UIO_FASTIOV, *iov, iov);
2011 	if (err >= 0)
2012 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2013 			      *iov, nr_segs, err);
2014 	return err;
2015 }
2016 
2017 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2018 			 struct msghdr *msg_sys, unsigned int flags,
2019 			 struct used_address *used_address)
2020 {
2021 	struct compat_msghdr __user *msg_compat =
2022 	    (struct compat_msghdr __user *)msg;
2023 	struct sockaddr_storage address;
2024 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2025 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2026 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2027 	/* 20 is size of ipv6_pktinfo */
2028 	unsigned char *ctl_buf = ctl;
2029 	int ctl_len, total_len;
2030 	ssize_t err;
2031 
2032 	msg_sys->msg_name = &address;
2033 
2034 	if (MSG_CMSG_COMPAT & flags)
2035 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2036 	else
2037 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2038 	if (err < 0)
2039 		goto out_freeiov;
2040 	total_len = err;
2041 
2042 	err = -ENOBUFS;
2043 
2044 	if (msg_sys->msg_controllen > INT_MAX)
2045 		goto out_freeiov;
2046 	ctl_len = msg_sys->msg_controllen;
2047 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2048 		err =
2049 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2050 						     sizeof(ctl));
2051 		if (err)
2052 			goto out_freeiov;
2053 		ctl_buf = msg_sys->msg_control;
2054 		ctl_len = msg_sys->msg_controllen;
2055 	} else if (ctl_len) {
2056 		if (ctl_len > sizeof(ctl)) {
2057 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2058 			if (ctl_buf == NULL)
2059 				goto out_freeiov;
2060 		}
2061 		err = -EFAULT;
2062 		/*
2063 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2064 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2065 		 * checking falls down on this.
2066 		 */
2067 		if (copy_from_user(ctl_buf,
2068 				   (void __user __force *)msg_sys->msg_control,
2069 				   ctl_len))
2070 			goto out_freectl;
2071 		msg_sys->msg_control = ctl_buf;
2072 	}
2073 	msg_sys->msg_flags = flags;
2074 
2075 	if (sock->file->f_flags & O_NONBLOCK)
2076 		msg_sys->msg_flags |= MSG_DONTWAIT;
2077 	/*
2078 	 * If this is sendmmsg() and current destination address is same as
2079 	 * previously succeeded address, omit asking LSM's decision.
2080 	 * used_address->name_len is initialized to UINT_MAX so that the first
2081 	 * destination address never matches.
2082 	 */
2083 	if (used_address && msg_sys->msg_name &&
2084 	    used_address->name_len == msg_sys->msg_namelen &&
2085 	    !memcmp(&used_address->name, msg_sys->msg_name,
2086 		    used_address->name_len)) {
2087 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2088 		goto out_freectl;
2089 	}
2090 	err = sock_sendmsg(sock, msg_sys, total_len);
2091 	/*
2092 	 * If this is sendmmsg() and sending to current destination address was
2093 	 * successful, remember it.
2094 	 */
2095 	if (used_address && err >= 0) {
2096 		used_address->name_len = msg_sys->msg_namelen;
2097 		if (msg_sys->msg_name)
2098 			memcpy(&used_address->name, msg_sys->msg_name,
2099 			       used_address->name_len);
2100 	}
2101 
2102 out_freectl:
2103 	if (ctl_buf != ctl)
2104 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2105 out_freeiov:
2106 	if (iov != iovstack)
2107 		kfree(iov);
2108 	return err;
2109 }
2110 
2111 /*
2112  *	BSD sendmsg interface
2113  */
2114 
2115 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2116 {
2117 	int fput_needed, err;
2118 	struct msghdr msg_sys;
2119 	struct socket *sock;
2120 
2121 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2122 	if (!sock)
2123 		goto out;
2124 
2125 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2126 
2127 	fput_light(sock->file, fput_needed);
2128 out:
2129 	return err;
2130 }
2131 
2132 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2133 {
2134 	if (flags & MSG_CMSG_COMPAT)
2135 		return -EINVAL;
2136 	return __sys_sendmsg(fd, msg, flags);
2137 }
2138 
2139 /*
2140  *	Linux sendmmsg interface
2141  */
2142 
2143 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2144 		   unsigned int flags)
2145 {
2146 	int fput_needed, err, datagrams;
2147 	struct socket *sock;
2148 	struct mmsghdr __user *entry;
2149 	struct compat_mmsghdr __user *compat_entry;
2150 	struct msghdr msg_sys;
2151 	struct used_address used_address;
2152 
2153 	if (vlen > UIO_MAXIOV)
2154 		vlen = UIO_MAXIOV;
2155 
2156 	datagrams = 0;
2157 
2158 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 	if (!sock)
2160 		return err;
2161 
2162 	used_address.name_len = UINT_MAX;
2163 	entry = mmsg;
2164 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2165 	err = 0;
2166 
2167 	while (datagrams < vlen) {
2168 		if (MSG_CMSG_COMPAT & flags) {
2169 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2170 					     &msg_sys, flags, &used_address);
2171 			if (err < 0)
2172 				break;
2173 			err = __put_user(err, &compat_entry->msg_len);
2174 			++compat_entry;
2175 		} else {
2176 			err = ___sys_sendmsg(sock,
2177 					     (struct user_msghdr __user *)entry,
2178 					     &msg_sys, flags, &used_address);
2179 			if (err < 0)
2180 				break;
2181 			err = put_user(err, &entry->msg_len);
2182 			++entry;
2183 		}
2184 
2185 		if (err)
2186 			break;
2187 		++datagrams;
2188 	}
2189 
2190 	fput_light(sock->file, fput_needed);
2191 
2192 	/* We only return an error if no datagrams were able to be sent */
2193 	if (datagrams != 0)
2194 		return datagrams;
2195 
2196 	return err;
2197 }
2198 
2199 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2200 		unsigned int, vlen, unsigned int, flags)
2201 {
2202 	if (flags & MSG_CMSG_COMPAT)
2203 		return -EINVAL;
2204 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2205 }
2206 
2207 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2208 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2209 {
2210 	struct compat_msghdr __user *msg_compat =
2211 	    (struct compat_msghdr __user *)msg;
2212 	struct iovec iovstack[UIO_FASTIOV];
2213 	struct iovec *iov = iovstack;
2214 	unsigned long cmsg_ptr;
2215 	int total_len, len;
2216 	ssize_t err;
2217 
2218 	/* kernel mode address */
2219 	struct sockaddr_storage addr;
2220 
2221 	/* user mode address pointers */
2222 	struct sockaddr __user *uaddr;
2223 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2224 
2225 	msg_sys->msg_name = &addr;
2226 
2227 	if (MSG_CMSG_COMPAT & flags)
2228 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2229 	else
2230 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2231 	if (err < 0)
2232 		goto out_freeiov;
2233 	total_len = err;
2234 
2235 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2236 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2237 
2238 	/* We assume all kernel code knows the size of sockaddr_storage */
2239 	msg_sys->msg_namelen = 0;
2240 
2241 	if (sock->file->f_flags & O_NONBLOCK)
2242 		flags |= MSG_DONTWAIT;
2243 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2244 							  total_len, flags);
2245 	if (err < 0)
2246 		goto out_freeiov;
2247 	len = err;
2248 
2249 	if (uaddr != NULL) {
2250 		err = move_addr_to_user(&addr,
2251 					msg_sys->msg_namelen, uaddr,
2252 					uaddr_len);
2253 		if (err < 0)
2254 			goto out_freeiov;
2255 	}
2256 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2257 			 COMPAT_FLAGS(msg));
2258 	if (err)
2259 		goto out_freeiov;
2260 	if (MSG_CMSG_COMPAT & flags)
2261 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2262 				 &msg_compat->msg_controllen);
2263 	else
2264 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2265 				 &msg->msg_controllen);
2266 	if (err)
2267 		goto out_freeiov;
2268 	err = len;
2269 
2270 out_freeiov:
2271 	if (iov != iovstack)
2272 		kfree(iov);
2273 	return err;
2274 }
2275 
2276 /*
2277  *	BSD recvmsg interface
2278  */
2279 
2280 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2281 {
2282 	int fput_needed, err;
2283 	struct msghdr msg_sys;
2284 	struct socket *sock;
2285 
2286 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2287 	if (!sock)
2288 		goto out;
2289 
2290 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2291 
2292 	fput_light(sock->file, fput_needed);
2293 out:
2294 	return err;
2295 }
2296 
2297 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2298 		unsigned int, flags)
2299 {
2300 	if (flags & MSG_CMSG_COMPAT)
2301 		return -EINVAL;
2302 	return __sys_recvmsg(fd, msg, flags);
2303 }
2304 
2305 /*
2306  *     Linux recvmmsg interface
2307  */
2308 
2309 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2310 		   unsigned int flags, struct timespec *timeout)
2311 {
2312 	int fput_needed, err, datagrams;
2313 	struct socket *sock;
2314 	struct mmsghdr __user *entry;
2315 	struct compat_mmsghdr __user *compat_entry;
2316 	struct msghdr msg_sys;
2317 	struct timespec end_time;
2318 
2319 	if (timeout &&
2320 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2321 				    timeout->tv_nsec))
2322 		return -EINVAL;
2323 
2324 	datagrams = 0;
2325 
2326 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2327 	if (!sock)
2328 		return err;
2329 
2330 	err = sock_error(sock->sk);
2331 	if (err)
2332 		goto out_put;
2333 
2334 	entry = mmsg;
2335 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2336 
2337 	while (datagrams < vlen) {
2338 		/*
2339 		 * No need to ask LSM for more than the first datagram.
2340 		 */
2341 		if (MSG_CMSG_COMPAT & flags) {
2342 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2343 					     &msg_sys, flags & ~MSG_WAITFORONE,
2344 					     datagrams);
2345 			if (err < 0)
2346 				break;
2347 			err = __put_user(err, &compat_entry->msg_len);
2348 			++compat_entry;
2349 		} else {
2350 			err = ___sys_recvmsg(sock,
2351 					     (struct user_msghdr __user *)entry,
2352 					     &msg_sys, flags & ~MSG_WAITFORONE,
2353 					     datagrams);
2354 			if (err < 0)
2355 				break;
2356 			err = put_user(err, &entry->msg_len);
2357 			++entry;
2358 		}
2359 
2360 		if (err)
2361 			break;
2362 		++datagrams;
2363 
2364 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2365 		if (flags & MSG_WAITFORONE)
2366 			flags |= MSG_DONTWAIT;
2367 
2368 		if (timeout) {
2369 			ktime_get_ts(timeout);
2370 			*timeout = timespec_sub(end_time, *timeout);
2371 			if (timeout->tv_sec < 0) {
2372 				timeout->tv_sec = timeout->tv_nsec = 0;
2373 				break;
2374 			}
2375 
2376 			/* Timeout, return less than vlen datagrams */
2377 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2378 				break;
2379 		}
2380 
2381 		/* Out of band data, return right away */
2382 		if (msg_sys.msg_flags & MSG_OOB)
2383 			break;
2384 	}
2385 
2386 out_put:
2387 	fput_light(sock->file, fput_needed);
2388 
2389 	if (err == 0)
2390 		return datagrams;
2391 
2392 	if (datagrams != 0) {
2393 		/*
2394 		 * We may return less entries than requested (vlen) if the
2395 		 * sock is non block and there aren't enough datagrams...
2396 		 */
2397 		if (err != -EAGAIN) {
2398 			/*
2399 			 * ... or  if recvmsg returns an error after we
2400 			 * received some datagrams, where we record the
2401 			 * error to return on the next call or if the
2402 			 * app asks about it using getsockopt(SO_ERROR).
2403 			 */
2404 			sock->sk->sk_err = -err;
2405 		}
2406 
2407 		return datagrams;
2408 	}
2409 
2410 	return err;
2411 }
2412 
2413 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2414 		unsigned int, vlen, unsigned int, flags,
2415 		struct timespec __user *, timeout)
2416 {
2417 	int datagrams;
2418 	struct timespec timeout_sys;
2419 
2420 	if (flags & MSG_CMSG_COMPAT)
2421 		return -EINVAL;
2422 
2423 	if (!timeout)
2424 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2425 
2426 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2427 		return -EFAULT;
2428 
2429 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2430 
2431 	if (datagrams > 0 &&
2432 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2433 		datagrams = -EFAULT;
2434 
2435 	return datagrams;
2436 }
2437 
2438 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2439 /* Argument list sizes for sys_socketcall */
2440 #define AL(x) ((x) * sizeof(unsigned long))
2441 static const unsigned char nargs[21] = {
2442 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2443 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2444 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2445 	AL(4), AL(5), AL(4)
2446 };
2447 
2448 #undef AL
2449 
2450 /*
2451  *	System call vectors.
2452  *
2453  *	Argument checking cleaned up. Saved 20% in size.
2454  *  This function doesn't need to set the kernel lock because
2455  *  it is set by the callees.
2456  */
2457 
2458 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2459 {
2460 	unsigned long a[AUDITSC_ARGS];
2461 	unsigned long a0, a1;
2462 	int err;
2463 	unsigned int len;
2464 
2465 	if (call < 1 || call > SYS_SENDMMSG)
2466 		return -EINVAL;
2467 
2468 	len = nargs[call];
2469 	if (len > sizeof(a))
2470 		return -EINVAL;
2471 
2472 	/* copy_from_user should be SMP safe. */
2473 	if (copy_from_user(a, args, len))
2474 		return -EFAULT;
2475 
2476 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2477 	if (err)
2478 		return err;
2479 
2480 	a0 = a[0];
2481 	a1 = a[1];
2482 
2483 	switch (call) {
2484 	case SYS_SOCKET:
2485 		err = sys_socket(a0, a1, a[2]);
2486 		break;
2487 	case SYS_BIND:
2488 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2489 		break;
2490 	case SYS_CONNECT:
2491 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2492 		break;
2493 	case SYS_LISTEN:
2494 		err = sys_listen(a0, a1);
2495 		break;
2496 	case SYS_ACCEPT:
2497 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2498 				  (int __user *)a[2], 0);
2499 		break;
2500 	case SYS_GETSOCKNAME:
2501 		err =
2502 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2503 				    (int __user *)a[2]);
2504 		break;
2505 	case SYS_GETPEERNAME:
2506 		err =
2507 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2508 				    (int __user *)a[2]);
2509 		break;
2510 	case SYS_SOCKETPAIR:
2511 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2512 		break;
2513 	case SYS_SEND:
2514 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2515 		break;
2516 	case SYS_SENDTO:
2517 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2518 				 (struct sockaddr __user *)a[4], a[5]);
2519 		break;
2520 	case SYS_RECV:
2521 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2522 		break;
2523 	case SYS_RECVFROM:
2524 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2525 				   (struct sockaddr __user *)a[4],
2526 				   (int __user *)a[5]);
2527 		break;
2528 	case SYS_SHUTDOWN:
2529 		err = sys_shutdown(a0, a1);
2530 		break;
2531 	case SYS_SETSOCKOPT:
2532 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2533 		break;
2534 	case SYS_GETSOCKOPT:
2535 		err =
2536 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2537 				   (int __user *)a[4]);
2538 		break;
2539 	case SYS_SENDMSG:
2540 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2541 		break;
2542 	case SYS_SENDMMSG:
2543 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2544 		break;
2545 	case SYS_RECVMSG:
2546 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2547 		break;
2548 	case SYS_RECVMMSG:
2549 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2550 				   (struct timespec __user *)a[4]);
2551 		break;
2552 	case SYS_ACCEPT4:
2553 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2554 				  (int __user *)a[2], a[3]);
2555 		break;
2556 	default:
2557 		err = -EINVAL;
2558 		break;
2559 	}
2560 	return err;
2561 }
2562 
2563 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2564 
2565 /**
2566  *	sock_register - add a socket protocol handler
2567  *	@ops: description of protocol
2568  *
2569  *	This function is called by a protocol handler that wants to
2570  *	advertise its address family, and have it linked into the
2571  *	socket interface. The value ops->family corresponds to the
2572  *	socket system call protocol family.
2573  */
2574 int sock_register(const struct net_proto_family *ops)
2575 {
2576 	int err;
2577 
2578 	if (ops->family >= NPROTO) {
2579 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2580 		return -ENOBUFS;
2581 	}
2582 
2583 	spin_lock(&net_family_lock);
2584 	if (rcu_dereference_protected(net_families[ops->family],
2585 				      lockdep_is_held(&net_family_lock)))
2586 		err = -EEXIST;
2587 	else {
2588 		rcu_assign_pointer(net_families[ops->family], ops);
2589 		err = 0;
2590 	}
2591 	spin_unlock(&net_family_lock);
2592 
2593 	pr_info("NET: Registered protocol family %d\n", ops->family);
2594 	return err;
2595 }
2596 EXPORT_SYMBOL(sock_register);
2597 
2598 /**
2599  *	sock_unregister - remove a protocol handler
2600  *	@family: protocol family to remove
2601  *
2602  *	This function is called by a protocol handler that wants to
2603  *	remove its address family, and have it unlinked from the
2604  *	new socket creation.
2605  *
2606  *	If protocol handler is a module, then it can use module reference
2607  *	counts to protect against new references. If protocol handler is not
2608  *	a module then it needs to provide its own protection in
2609  *	the ops->create routine.
2610  */
2611 void sock_unregister(int family)
2612 {
2613 	BUG_ON(family < 0 || family >= NPROTO);
2614 
2615 	spin_lock(&net_family_lock);
2616 	RCU_INIT_POINTER(net_families[family], NULL);
2617 	spin_unlock(&net_family_lock);
2618 
2619 	synchronize_rcu();
2620 
2621 	pr_info("NET: Unregistered protocol family %d\n", family);
2622 }
2623 EXPORT_SYMBOL(sock_unregister);
2624 
2625 static int __init sock_init(void)
2626 {
2627 	int err;
2628 	/*
2629 	 *      Initialize the network sysctl infrastructure.
2630 	 */
2631 	err = net_sysctl_init();
2632 	if (err)
2633 		goto out;
2634 
2635 	/*
2636 	 *      Initialize skbuff SLAB cache
2637 	 */
2638 	skb_init();
2639 
2640 	/*
2641 	 *      Initialize the protocols module.
2642 	 */
2643 
2644 	init_inodecache();
2645 
2646 	err = register_filesystem(&sock_fs_type);
2647 	if (err)
2648 		goto out_fs;
2649 	sock_mnt = kern_mount(&sock_fs_type);
2650 	if (IS_ERR(sock_mnt)) {
2651 		err = PTR_ERR(sock_mnt);
2652 		goto out_mount;
2653 	}
2654 
2655 	/* The real protocol initialization is performed in later initcalls.
2656 	 */
2657 
2658 #ifdef CONFIG_NETFILTER
2659 	err = netfilter_init();
2660 	if (err)
2661 		goto out;
2662 #endif
2663 
2664 	ptp_classifier_init();
2665 
2666 out:
2667 	return err;
2668 
2669 out_mount:
2670 	unregister_filesystem(&sock_fs_type);
2671 out_fs:
2672 	goto out;
2673 }
2674 
2675 core_initcall(sock_init);	/* early initcall */
2676 
2677 #ifdef CONFIG_PROC_FS
2678 void socket_seq_show(struct seq_file *seq)
2679 {
2680 	int cpu;
2681 	int counter = 0;
2682 
2683 	for_each_possible_cpu(cpu)
2684 	    counter += per_cpu(sockets_in_use, cpu);
2685 
2686 	/* It can be negative, by the way. 8) */
2687 	if (counter < 0)
2688 		counter = 0;
2689 
2690 	seq_printf(seq, "sockets: used %d\n", counter);
2691 }
2692 #endif				/* CONFIG_PROC_FS */
2693 
2694 #ifdef CONFIG_COMPAT
2695 static int do_siocgstamp(struct net *net, struct socket *sock,
2696 			 unsigned int cmd, void __user *up)
2697 {
2698 	mm_segment_t old_fs = get_fs();
2699 	struct timeval ktv;
2700 	int err;
2701 
2702 	set_fs(KERNEL_DS);
2703 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2704 	set_fs(old_fs);
2705 	if (!err)
2706 		err = compat_put_timeval(&ktv, up);
2707 
2708 	return err;
2709 }
2710 
2711 static int do_siocgstampns(struct net *net, struct socket *sock,
2712 			   unsigned int cmd, void __user *up)
2713 {
2714 	mm_segment_t old_fs = get_fs();
2715 	struct timespec kts;
2716 	int err;
2717 
2718 	set_fs(KERNEL_DS);
2719 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2720 	set_fs(old_fs);
2721 	if (!err)
2722 		err = compat_put_timespec(&kts, up);
2723 
2724 	return err;
2725 }
2726 
2727 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2728 {
2729 	struct ifreq __user *uifr;
2730 	int err;
2731 
2732 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2733 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2734 		return -EFAULT;
2735 
2736 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2737 	if (err)
2738 		return err;
2739 
2740 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2741 		return -EFAULT;
2742 
2743 	return 0;
2744 }
2745 
2746 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2747 {
2748 	struct compat_ifconf ifc32;
2749 	struct ifconf ifc;
2750 	struct ifconf __user *uifc;
2751 	struct compat_ifreq __user *ifr32;
2752 	struct ifreq __user *ifr;
2753 	unsigned int i, j;
2754 	int err;
2755 
2756 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2757 		return -EFAULT;
2758 
2759 	memset(&ifc, 0, sizeof(ifc));
2760 	if (ifc32.ifcbuf == 0) {
2761 		ifc32.ifc_len = 0;
2762 		ifc.ifc_len = 0;
2763 		ifc.ifc_req = NULL;
2764 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2765 	} else {
2766 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2767 			sizeof(struct ifreq);
2768 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2769 		ifc.ifc_len = len;
2770 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2771 		ifr32 = compat_ptr(ifc32.ifcbuf);
2772 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2773 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2774 				return -EFAULT;
2775 			ifr++;
2776 			ifr32++;
2777 		}
2778 	}
2779 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2780 		return -EFAULT;
2781 
2782 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2783 	if (err)
2784 		return err;
2785 
2786 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2787 		return -EFAULT;
2788 
2789 	ifr = ifc.ifc_req;
2790 	ifr32 = compat_ptr(ifc32.ifcbuf);
2791 	for (i = 0, j = 0;
2792 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2793 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2794 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2795 			return -EFAULT;
2796 		ifr32++;
2797 		ifr++;
2798 	}
2799 
2800 	if (ifc32.ifcbuf == 0) {
2801 		/* Translate from 64-bit structure multiple to
2802 		 * a 32-bit one.
2803 		 */
2804 		i = ifc.ifc_len;
2805 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2806 		ifc32.ifc_len = i;
2807 	} else {
2808 		ifc32.ifc_len = i;
2809 	}
2810 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2811 		return -EFAULT;
2812 
2813 	return 0;
2814 }
2815 
2816 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2817 {
2818 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2819 	bool convert_in = false, convert_out = false;
2820 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2821 	struct ethtool_rxnfc __user *rxnfc;
2822 	struct ifreq __user *ifr;
2823 	u32 rule_cnt = 0, actual_rule_cnt;
2824 	u32 ethcmd;
2825 	u32 data;
2826 	int ret;
2827 
2828 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2829 		return -EFAULT;
2830 
2831 	compat_rxnfc = compat_ptr(data);
2832 
2833 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2834 		return -EFAULT;
2835 
2836 	/* Most ethtool structures are defined without padding.
2837 	 * Unfortunately struct ethtool_rxnfc is an exception.
2838 	 */
2839 	switch (ethcmd) {
2840 	default:
2841 		break;
2842 	case ETHTOOL_GRXCLSRLALL:
2843 		/* Buffer size is variable */
2844 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2845 			return -EFAULT;
2846 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2847 			return -ENOMEM;
2848 		buf_size += rule_cnt * sizeof(u32);
2849 		/* fall through */
2850 	case ETHTOOL_GRXRINGS:
2851 	case ETHTOOL_GRXCLSRLCNT:
2852 	case ETHTOOL_GRXCLSRULE:
2853 	case ETHTOOL_SRXCLSRLINS:
2854 		convert_out = true;
2855 		/* fall through */
2856 	case ETHTOOL_SRXCLSRLDEL:
2857 		buf_size += sizeof(struct ethtool_rxnfc);
2858 		convert_in = true;
2859 		break;
2860 	}
2861 
2862 	ifr = compat_alloc_user_space(buf_size);
2863 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2864 
2865 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2866 		return -EFAULT;
2867 
2868 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2869 		     &ifr->ifr_ifru.ifru_data))
2870 		return -EFAULT;
2871 
2872 	if (convert_in) {
2873 		/* We expect there to be holes between fs.m_ext and
2874 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2875 		 */
2876 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2877 			     sizeof(compat_rxnfc->fs.m_ext) !=
2878 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2879 			     sizeof(rxnfc->fs.m_ext));
2880 		BUILD_BUG_ON(
2881 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2882 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2883 			offsetof(struct ethtool_rxnfc, fs.location) -
2884 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2885 
2886 		if (copy_in_user(rxnfc, compat_rxnfc,
2887 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2888 				 (void __user *)rxnfc) ||
2889 		    copy_in_user(&rxnfc->fs.ring_cookie,
2890 				 &compat_rxnfc->fs.ring_cookie,
2891 				 (void __user *)(&rxnfc->fs.location + 1) -
2892 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2893 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2894 				 sizeof(rxnfc->rule_cnt)))
2895 			return -EFAULT;
2896 	}
2897 
2898 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2899 	if (ret)
2900 		return ret;
2901 
2902 	if (convert_out) {
2903 		if (copy_in_user(compat_rxnfc, rxnfc,
2904 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2905 				 (const void __user *)rxnfc) ||
2906 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2907 				 &rxnfc->fs.ring_cookie,
2908 				 (const void __user *)(&rxnfc->fs.location + 1) -
2909 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2910 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2911 				 sizeof(rxnfc->rule_cnt)))
2912 			return -EFAULT;
2913 
2914 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2915 			/* As an optimisation, we only copy the actual
2916 			 * number of rules that the underlying
2917 			 * function returned.  Since Mallory might
2918 			 * change the rule count in user memory, we
2919 			 * check that it is less than the rule count
2920 			 * originally given (as the user buffer size),
2921 			 * which has been range-checked.
2922 			 */
2923 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2924 				return -EFAULT;
2925 			if (actual_rule_cnt < rule_cnt)
2926 				rule_cnt = actual_rule_cnt;
2927 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2928 					 &rxnfc->rule_locs[0],
2929 					 rule_cnt * sizeof(u32)))
2930 				return -EFAULT;
2931 		}
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2938 {
2939 	void __user *uptr;
2940 	compat_uptr_t uptr32;
2941 	struct ifreq __user *uifr;
2942 
2943 	uifr = compat_alloc_user_space(sizeof(*uifr));
2944 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2945 		return -EFAULT;
2946 
2947 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2948 		return -EFAULT;
2949 
2950 	uptr = compat_ptr(uptr32);
2951 
2952 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2953 		return -EFAULT;
2954 
2955 	return dev_ioctl(net, SIOCWANDEV, uifr);
2956 }
2957 
2958 static int bond_ioctl(struct net *net, unsigned int cmd,
2959 			 struct compat_ifreq __user *ifr32)
2960 {
2961 	struct ifreq kifr;
2962 	mm_segment_t old_fs;
2963 	int err;
2964 
2965 	switch (cmd) {
2966 	case SIOCBONDENSLAVE:
2967 	case SIOCBONDRELEASE:
2968 	case SIOCBONDSETHWADDR:
2969 	case SIOCBONDCHANGEACTIVE:
2970 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2971 			return -EFAULT;
2972 
2973 		old_fs = get_fs();
2974 		set_fs(KERNEL_DS);
2975 		err = dev_ioctl(net, cmd,
2976 				(struct ifreq __user __force *) &kifr);
2977 		set_fs(old_fs);
2978 
2979 		return err;
2980 	default:
2981 		return -ENOIOCTLCMD;
2982 	}
2983 }
2984 
2985 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2986 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2987 				 struct compat_ifreq __user *u_ifreq32)
2988 {
2989 	struct ifreq __user *u_ifreq64;
2990 	char tmp_buf[IFNAMSIZ];
2991 	void __user *data64;
2992 	u32 data32;
2993 
2994 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2995 			   IFNAMSIZ))
2996 		return -EFAULT;
2997 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2998 		return -EFAULT;
2999 	data64 = compat_ptr(data32);
3000 
3001 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3002 
3003 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3004 			 IFNAMSIZ))
3005 		return -EFAULT;
3006 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3007 		return -EFAULT;
3008 
3009 	return dev_ioctl(net, cmd, u_ifreq64);
3010 }
3011 
3012 static int dev_ifsioc(struct net *net, struct socket *sock,
3013 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3014 {
3015 	struct ifreq __user *uifr;
3016 	int err;
3017 
3018 	uifr = compat_alloc_user_space(sizeof(*uifr));
3019 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3020 		return -EFAULT;
3021 
3022 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3023 
3024 	if (!err) {
3025 		switch (cmd) {
3026 		case SIOCGIFFLAGS:
3027 		case SIOCGIFMETRIC:
3028 		case SIOCGIFMTU:
3029 		case SIOCGIFMEM:
3030 		case SIOCGIFHWADDR:
3031 		case SIOCGIFINDEX:
3032 		case SIOCGIFADDR:
3033 		case SIOCGIFBRDADDR:
3034 		case SIOCGIFDSTADDR:
3035 		case SIOCGIFNETMASK:
3036 		case SIOCGIFPFLAGS:
3037 		case SIOCGIFTXQLEN:
3038 		case SIOCGMIIPHY:
3039 		case SIOCGMIIREG:
3040 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3041 				err = -EFAULT;
3042 			break;
3043 		}
3044 	}
3045 	return err;
3046 }
3047 
3048 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3049 			struct compat_ifreq __user *uifr32)
3050 {
3051 	struct ifreq ifr;
3052 	struct compat_ifmap __user *uifmap32;
3053 	mm_segment_t old_fs;
3054 	int err;
3055 
3056 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3057 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3058 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3059 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3060 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3061 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3062 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3063 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3064 	if (err)
3065 		return -EFAULT;
3066 
3067 	old_fs = get_fs();
3068 	set_fs(KERNEL_DS);
3069 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3070 	set_fs(old_fs);
3071 
3072 	if (cmd == SIOCGIFMAP && !err) {
3073 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3074 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3075 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3076 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3077 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3078 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3079 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3080 		if (err)
3081 			err = -EFAULT;
3082 	}
3083 	return err;
3084 }
3085 
3086 struct rtentry32 {
3087 	u32		rt_pad1;
3088 	struct sockaddr rt_dst;         /* target address               */
3089 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3090 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3091 	unsigned short	rt_flags;
3092 	short		rt_pad2;
3093 	u32		rt_pad3;
3094 	unsigned char	rt_tos;
3095 	unsigned char	rt_class;
3096 	short		rt_pad4;
3097 	short		rt_metric;      /* +1 for binary compatibility! */
3098 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3099 	u32		rt_mtu;         /* per route MTU/Window         */
3100 	u32		rt_window;      /* Window clamping              */
3101 	unsigned short  rt_irtt;        /* Initial RTT                  */
3102 };
3103 
3104 struct in6_rtmsg32 {
3105 	struct in6_addr		rtmsg_dst;
3106 	struct in6_addr		rtmsg_src;
3107 	struct in6_addr		rtmsg_gateway;
3108 	u32			rtmsg_type;
3109 	u16			rtmsg_dst_len;
3110 	u16			rtmsg_src_len;
3111 	u32			rtmsg_metric;
3112 	u32			rtmsg_info;
3113 	u32			rtmsg_flags;
3114 	s32			rtmsg_ifindex;
3115 };
3116 
3117 static int routing_ioctl(struct net *net, struct socket *sock,
3118 			 unsigned int cmd, void __user *argp)
3119 {
3120 	int ret;
3121 	void *r = NULL;
3122 	struct in6_rtmsg r6;
3123 	struct rtentry r4;
3124 	char devname[16];
3125 	u32 rtdev;
3126 	mm_segment_t old_fs = get_fs();
3127 
3128 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3129 		struct in6_rtmsg32 __user *ur6 = argp;
3130 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3131 			3 * sizeof(struct in6_addr));
3132 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3133 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3134 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3135 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3136 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3137 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3138 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3139 
3140 		r = (void *) &r6;
3141 	} else { /* ipv4 */
3142 		struct rtentry32 __user *ur4 = argp;
3143 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3144 					3 * sizeof(struct sockaddr));
3145 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3146 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3147 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3148 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3149 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3150 		ret |= get_user(rtdev, &(ur4->rt_dev));
3151 		if (rtdev) {
3152 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3153 			r4.rt_dev = (char __user __force *)devname;
3154 			devname[15] = 0;
3155 		} else
3156 			r4.rt_dev = NULL;
3157 
3158 		r = (void *) &r4;
3159 	}
3160 
3161 	if (ret) {
3162 		ret = -EFAULT;
3163 		goto out;
3164 	}
3165 
3166 	set_fs(KERNEL_DS);
3167 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3168 	set_fs(old_fs);
3169 
3170 out:
3171 	return ret;
3172 }
3173 
3174 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3175  * for some operations; this forces use of the newer bridge-utils that
3176  * use compatible ioctls
3177  */
3178 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3179 {
3180 	compat_ulong_t tmp;
3181 
3182 	if (get_user(tmp, argp))
3183 		return -EFAULT;
3184 	if (tmp == BRCTL_GET_VERSION)
3185 		return BRCTL_VERSION + 1;
3186 	return -EINVAL;
3187 }
3188 
3189 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3190 			 unsigned int cmd, unsigned long arg)
3191 {
3192 	void __user *argp = compat_ptr(arg);
3193 	struct sock *sk = sock->sk;
3194 	struct net *net = sock_net(sk);
3195 
3196 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3197 		return compat_ifr_data_ioctl(net, cmd, argp);
3198 
3199 	switch (cmd) {
3200 	case SIOCSIFBR:
3201 	case SIOCGIFBR:
3202 		return old_bridge_ioctl(argp);
3203 	case SIOCGIFNAME:
3204 		return dev_ifname32(net, argp);
3205 	case SIOCGIFCONF:
3206 		return dev_ifconf(net, argp);
3207 	case SIOCETHTOOL:
3208 		return ethtool_ioctl(net, argp);
3209 	case SIOCWANDEV:
3210 		return compat_siocwandev(net, argp);
3211 	case SIOCGIFMAP:
3212 	case SIOCSIFMAP:
3213 		return compat_sioc_ifmap(net, cmd, argp);
3214 	case SIOCBONDENSLAVE:
3215 	case SIOCBONDRELEASE:
3216 	case SIOCBONDSETHWADDR:
3217 	case SIOCBONDCHANGEACTIVE:
3218 		return bond_ioctl(net, cmd, argp);
3219 	case SIOCADDRT:
3220 	case SIOCDELRT:
3221 		return routing_ioctl(net, sock, cmd, argp);
3222 	case SIOCGSTAMP:
3223 		return do_siocgstamp(net, sock, cmd, argp);
3224 	case SIOCGSTAMPNS:
3225 		return do_siocgstampns(net, sock, cmd, argp);
3226 	case SIOCBONDSLAVEINFOQUERY:
3227 	case SIOCBONDINFOQUERY:
3228 	case SIOCSHWTSTAMP:
3229 	case SIOCGHWTSTAMP:
3230 		return compat_ifr_data_ioctl(net, cmd, argp);
3231 
3232 	case FIOSETOWN:
3233 	case SIOCSPGRP:
3234 	case FIOGETOWN:
3235 	case SIOCGPGRP:
3236 	case SIOCBRADDBR:
3237 	case SIOCBRDELBR:
3238 	case SIOCGIFVLAN:
3239 	case SIOCSIFVLAN:
3240 	case SIOCADDDLCI:
3241 	case SIOCDELDLCI:
3242 		return sock_ioctl(file, cmd, arg);
3243 
3244 	case SIOCGIFFLAGS:
3245 	case SIOCSIFFLAGS:
3246 	case SIOCGIFMETRIC:
3247 	case SIOCSIFMETRIC:
3248 	case SIOCGIFMTU:
3249 	case SIOCSIFMTU:
3250 	case SIOCGIFMEM:
3251 	case SIOCSIFMEM:
3252 	case SIOCGIFHWADDR:
3253 	case SIOCSIFHWADDR:
3254 	case SIOCADDMULTI:
3255 	case SIOCDELMULTI:
3256 	case SIOCGIFINDEX:
3257 	case SIOCGIFADDR:
3258 	case SIOCSIFADDR:
3259 	case SIOCSIFHWBROADCAST:
3260 	case SIOCDIFADDR:
3261 	case SIOCGIFBRDADDR:
3262 	case SIOCSIFBRDADDR:
3263 	case SIOCGIFDSTADDR:
3264 	case SIOCSIFDSTADDR:
3265 	case SIOCGIFNETMASK:
3266 	case SIOCSIFNETMASK:
3267 	case SIOCSIFPFLAGS:
3268 	case SIOCGIFPFLAGS:
3269 	case SIOCGIFTXQLEN:
3270 	case SIOCSIFTXQLEN:
3271 	case SIOCBRADDIF:
3272 	case SIOCBRDELIF:
3273 	case SIOCSIFNAME:
3274 	case SIOCGMIIPHY:
3275 	case SIOCGMIIREG:
3276 	case SIOCSMIIREG:
3277 		return dev_ifsioc(net, sock, cmd, argp);
3278 
3279 	case SIOCSARP:
3280 	case SIOCGARP:
3281 	case SIOCDARP:
3282 	case SIOCATMARK:
3283 		return sock_do_ioctl(net, sock, cmd, arg);
3284 	}
3285 
3286 	return -ENOIOCTLCMD;
3287 }
3288 
3289 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3290 			      unsigned long arg)
3291 {
3292 	struct socket *sock = file->private_data;
3293 	int ret = -ENOIOCTLCMD;
3294 	struct sock *sk;
3295 	struct net *net;
3296 
3297 	sk = sock->sk;
3298 	net = sock_net(sk);
3299 
3300 	if (sock->ops->compat_ioctl)
3301 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3302 
3303 	if (ret == -ENOIOCTLCMD &&
3304 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3305 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3306 
3307 	if (ret == -ENOIOCTLCMD)
3308 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3309 
3310 	return ret;
3311 }
3312 #endif
3313 
3314 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3315 {
3316 	return sock->ops->bind(sock, addr, addrlen);
3317 }
3318 EXPORT_SYMBOL(kernel_bind);
3319 
3320 int kernel_listen(struct socket *sock, int backlog)
3321 {
3322 	return sock->ops->listen(sock, backlog);
3323 }
3324 EXPORT_SYMBOL(kernel_listen);
3325 
3326 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3327 {
3328 	struct sock *sk = sock->sk;
3329 	int err;
3330 
3331 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3332 			       newsock);
3333 	if (err < 0)
3334 		goto done;
3335 
3336 	err = sock->ops->accept(sock, *newsock, flags);
3337 	if (err < 0) {
3338 		sock_release(*newsock);
3339 		*newsock = NULL;
3340 		goto done;
3341 	}
3342 
3343 	(*newsock)->ops = sock->ops;
3344 	__module_get((*newsock)->ops->owner);
3345 
3346 done:
3347 	return err;
3348 }
3349 EXPORT_SYMBOL(kernel_accept);
3350 
3351 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3352 		   int flags)
3353 {
3354 	return sock->ops->connect(sock, addr, addrlen, flags);
3355 }
3356 EXPORT_SYMBOL(kernel_connect);
3357 
3358 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3359 			 int *addrlen)
3360 {
3361 	return sock->ops->getname(sock, addr, addrlen, 0);
3362 }
3363 EXPORT_SYMBOL(kernel_getsockname);
3364 
3365 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3366 			 int *addrlen)
3367 {
3368 	return sock->ops->getname(sock, addr, addrlen, 1);
3369 }
3370 EXPORT_SYMBOL(kernel_getpeername);
3371 
3372 int kernel_getsockopt(struct socket *sock, int level, int optname,
3373 			char *optval, int *optlen)
3374 {
3375 	mm_segment_t oldfs = get_fs();
3376 	char __user *uoptval;
3377 	int __user *uoptlen;
3378 	int err;
3379 
3380 	uoptval = (char __user __force *) optval;
3381 	uoptlen = (int __user __force *) optlen;
3382 
3383 	set_fs(KERNEL_DS);
3384 	if (level == SOL_SOCKET)
3385 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3386 	else
3387 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3388 					    uoptlen);
3389 	set_fs(oldfs);
3390 	return err;
3391 }
3392 EXPORT_SYMBOL(kernel_getsockopt);
3393 
3394 int kernel_setsockopt(struct socket *sock, int level, int optname,
3395 			char *optval, unsigned int optlen)
3396 {
3397 	mm_segment_t oldfs = get_fs();
3398 	char __user *uoptval;
3399 	int err;
3400 
3401 	uoptval = (char __user __force *) optval;
3402 
3403 	set_fs(KERNEL_DS);
3404 	if (level == SOL_SOCKET)
3405 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3406 	else
3407 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3408 					    optlen);
3409 	set_fs(oldfs);
3410 	return err;
3411 }
3412 EXPORT_SYMBOL(kernel_setsockopt);
3413 
3414 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3415 		    size_t size, int flags)
3416 {
3417 	if (sock->ops->sendpage)
3418 		return sock->ops->sendpage(sock, page, offset, size, flags);
3419 
3420 	return sock_no_sendpage(sock, page, offset, size, flags);
3421 }
3422 EXPORT_SYMBOL(kernel_sendpage);
3423 
3424 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3425 {
3426 	mm_segment_t oldfs = get_fs();
3427 	int err;
3428 
3429 	set_fs(KERNEL_DS);
3430 	err = sock->ops->ioctl(sock, cmd, arg);
3431 	set_fs(oldfs);
3432 
3433 	return err;
3434 }
3435 EXPORT_SYMBOL(kernel_sock_ioctl);
3436 
3437 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3438 {
3439 	return sock->ops->shutdown(sock, how);
3440 }
3441 EXPORT_SYMBOL(kernel_sock_shutdown);
3442