1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 117 unsigned long nr_segs, loff_t pos); 118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 119 unsigned long nr_segs, loff_t pos); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static unsigned int sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_sendpage(struct file *file, struct page *page, 132 int offset, size_t size, loff_t *ppos, int more); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 137 /* 138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 139 * in the operation structures but are done directly via the socketcall() multiplexor. 140 */ 141 142 static const struct file_operations socket_file_ops = { 143 .owner = THIS_MODULE, 144 .llseek = no_llseek, 145 .aio_read = sock_aio_read, 146 .aio_write = sock_aio_write, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct fd f = fdget(fd); 453 struct socket *sock; 454 455 *err = -EBADF; 456 if (f.file) { 457 sock = sock_from_file(f.file, err); 458 if (likely(sock)) { 459 *fput_needed = f.flags; 460 return sock; 461 } 462 fdput(f); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 582 return; 583 584 this_cpu_sub(sockets_in_use, 1); 585 if (!sock->file) { 586 iput(SOCK_INODE(sock)); 587 return; 588 } 589 sock->file = NULL; 590 } 591 EXPORT_SYMBOL(sock_release); 592 593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 594 { 595 u8 flags = *tx_flags; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 598 flags |= SKBTX_HW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 601 flags |= SKBTX_SW_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 604 flags |= SKBTX_SCHED_TSTAMP; 605 606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 607 flags |= SKBTX_ACK_TSTAMP; 608 609 *tx_flags = flags; 610 } 611 EXPORT_SYMBOL(__sock_tx_timestamp); 612 613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 614 struct msghdr *msg, size_t size) 615 { 616 struct sock_iocb *si = kiocb_to_siocb(iocb); 617 618 si->sock = sock; 619 si->scm = NULL; 620 si->msg = msg; 621 si->size = size; 622 623 return sock->ops->sendmsg(iocb, sock, msg, size); 624 } 625 626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 627 struct msghdr *msg, size_t size) 628 { 629 int err = security_socket_sendmsg(sock, msg, size); 630 631 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 632 } 633 634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg, 635 size_t size, bool nosec) 636 { 637 struct kiocb iocb; 638 struct sock_iocb siocb; 639 int ret; 640 641 init_sync_kiocb(&iocb, NULL); 642 iocb.private = &siocb; 643 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) : 644 __sock_sendmsg(&iocb, sock, msg, size); 645 if (-EIOCBQUEUED == ret) 646 ret = wait_on_sync_kiocb(&iocb); 647 return ret; 648 } 649 650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 651 { 652 return do_sock_sendmsg(sock, msg, size, false); 653 } 654 EXPORT_SYMBOL(sock_sendmsg); 655 656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 657 { 658 return do_sock_sendmsg(sock, msg, size, true); 659 } 660 661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 662 struct kvec *vec, size_t num, size_t size) 663 { 664 mm_segment_t oldfs = get_fs(); 665 int result; 666 667 set_fs(KERNEL_DS); 668 /* 669 * the following is safe, since for compiler definitions of kvec and 670 * iovec are identical, yielding the same in-core layout and alignment 671 */ 672 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size); 673 result = sock_sendmsg(sock, msg, size); 674 set_fs(oldfs); 675 return result; 676 } 677 EXPORT_SYMBOL(kernel_sendmsg); 678 679 /* 680 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 681 */ 682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 683 struct sk_buff *skb) 684 { 685 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 686 struct scm_timestamping tss; 687 int empty = 1; 688 struct skb_shared_hwtstamps *shhwtstamps = 689 skb_hwtstamps(skb); 690 691 /* Race occurred between timestamp enabling and packet 692 receiving. Fill in the current time for now. */ 693 if (need_software_tstamp && skb->tstamp.tv64 == 0) 694 __net_timestamp(skb); 695 696 if (need_software_tstamp) { 697 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 698 struct timeval tv; 699 skb_get_timestamp(skb, &tv); 700 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 701 sizeof(tv), &tv); 702 } else { 703 struct timespec ts; 704 skb_get_timestampns(skb, &ts); 705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 706 sizeof(ts), &ts); 707 } 708 } 709 710 memset(&tss, 0, sizeof(tss)); 711 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 712 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 713 empty = 0; 714 if (shhwtstamps && 715 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 716 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 717 empty = 0; 718 if (!empty) 719 put_cmsg(msg, SOL_SOCKET, 720 SCM_TIMESTAMPING, sizeof(tss), &tss); 721 } 722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 723 724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 725 struct sk_buff *skb) 726 { 727 int ack; 728 729 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 730 return; 731 if (!skb->wifi_acked_valid) 732 return; 733 734 ack = skb->wifi_acked; 735 736 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 737 } 738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 739 740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 741 struct sk_buff *skb) 742 { 743 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 744 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 745 sizeof(__u32), &skb->dropcount); 746 } 747 748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 749 struct sk_buff *skb) 750 { 751 sock_recv_timestamp(msg, sk, skb); 752 sock_recv_drops(msg, sk, skb); 753 } 754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 755 756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 757 struct msghdr *msg, size_t size, int flags) 758 { 759 struct sock_iocb *si = kiocb_to_siocb(iocb); 760 761 si->sock = sock; 762 si->scm = NULL; 763 si->msg = msg; 764 si->size = size; 765 si->flags = flags; 766 767 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 768 } 769 770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 771 struct msghdr *msg, size_t size, int flags) 772 { 773 int err = security_socket_recvmsg(sock, msg, size, flags); 774 775 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 776 } 777 778 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 779 size_t size, int flags) 780 { 781 struct kiocb iocb; 782 struct sock_iocb siocb; 783 int ret; 784 785 init_sync_kiocb(&iocb, NULL); 786 iocb.private = &siocb; 787 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 788 if (-EIOCBQUEUED == ret) 789 ret = wait_on_sync_kiocb(&iocb); 790 return ret; 791 } 792 EXPORT_SYMBOL(sock_recvmsg); 793 794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 795 size_t size, int flags) 796 { 797 struct kiocb iocb; 798 struct sock_iocb siocb; 799 int ret; 800 801 init_sync_kiocb(&iocb, NULL); 802 iocb.private = &siocb; 803 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 804 if (-EIOCBQUEUED == ret) 805 ret = wait_on_sync_kiocb(&iocb); 806 return ret; 807 } 808 809 /** 810 * kernel_recvmsg - Receive a message from a socket (kernel space) 811 * @sock: The socket to receive the message from 812 * @msg: Received message 813 * @vec: Input s/g array for message data 814 * @num: Size of input s/g array 815 * @size: Number of bytes to read 816 * @flags: Message flags (MSG_DONTWAIT, etc...) 817 * 818 * On return the msg structure contains the scatter/gather array passed in the 819 * vec argument. The array is modified so that it consists of the unfilled 820 * portion of the original array. 821 * 822 * The returned value is the total number of bytes received, or an error. 823 */ 824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 825 struct kvec *vec, size_t num, size_t size, int flags) 826 { 827 mm_segment_t oldfs = get_fs(); 828 int result; 829 830 set_fs(KERNEL_DS); 831 /* 832 * the following is safe, since for compiler definitions of kvec and 833 * iovec are identical, yielding the same in-core layout and alignment 834 */ 835 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size); 836 result = sock_recvmsg(sock, msg, size, flags); 837 set_fs(oldfs); 838 return result; 839 } 840 EXPORT_SYMBOL(kernel_recvmsg); 841 842 static ssize_t sock_sendpage(struct file *file, struct page *page, 843 int offset, size_t size, loff_t *ppos, int more) 844 { 845 struct socket *sock; 846 int flags; 847 848 sock = file->private_data; 849 850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 852 flags |= more; 853 854 return kernel_sendpage(sock, page, offset, size, flags); 855 } 856 857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 858 struct pipe_inode_info *pipe, size_t len, 859 unsigned int flags) 860 { 861 struct socket *sock = file->private_data; 862 863 if (unlikely(!sock->ops->splice_read)) 864 return -EINVAL; 865 866 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 867 } 868 869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 870 struct sock_iocb *siocb) 871 { 872 siocb->kiocb = iocb; 873 iocb->private = siocb; 874 return siocb; 875 } 876 877 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 878 struct file *file, const struct iovec *iov, 879 unsigned long nr_segs) 880 { 881 struct socket *sock = file->private_data; 882 size_t size = 0; 883 int i; 884 885 for (i = 0; i < nr_segs; i++) 886 size += iov[i].iov_len; 887 888 msg->msg_name = NULL; 889 msg->msg_namelen = 0; 890 msg->msg_control = NULL; 891 msg->msg_controllen = 0; 892 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size); 893 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 894 895 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 896 } 897 898 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 899 unsigned long nr_segs, loff_t pos) 900 { 901 struct sock_iocb siocb, *x; 902 903 if (pos != 0) 904 return -ESPIPE; 905 906 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 907 return 0; 908 909 910 x = alloc_sock_iocb(iocb, &siocb); 911 if (!x) 912 return -ENOMEM; 913 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 914 } 915 916 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 917 struct file *file, const struct iovec *iov, 918 unsigned long nr_segs) 919 { 920 struct socket *sock = file->private_data; 921 size_t size = 0; 922 int i; 923 924 for (i = 0; i < nr_segs; i++) 925 size += iov[i].iov_len; 926 927 msg->msg_name = NULL; 928 msg->msg_namelen = 0; 929 msg->msg_control = NULL; 930 msg->msg_controllen = 0; 931 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size); 932 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 933 if (sock->type == SOCK_SEQPACKET) 934 msg->msg_flags |= MSG_EOR; 935 936 return __sock_sendmsg(iocb, sock, msg, size); 937 } 938 939 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 940 unsigned long nr_segs, loff_t pos) 941 { 942 struct sock_iocb siocb, *x; 943 944 if (pos != 0) 945 return -ESPIPE; 946 947 x = alloc_sock_iocb(iocb, &siocb); 948 if (!x) 949 return -ENOMEM; 950 951 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 952 } 953 954 /* 955 * Atomic setting of ioctl hooks to avoid race 956 * with module unload. 957 */ 958 959 static DEFINE_MUTEX(br_ioctl_mutex); 960 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 961 962 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 963 { 964 mutex_lock(&br_ioctl_mutex); 965 br_ioctl_hook = hook; 966 mutex_unlock(&br_ioctl_mutex); 967 } 968 EXPORT_SYMBOL(brioctl_set); 969 970 static DEFINE_MUTEX(vlan_ioctl_mutex); 971 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 972 973 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 974 { 975 mutex_lock(&vlan_ioctl_mutex); 976 vlan_ioctl_hook = hook; 977 mutex_unlock(&vlan_ioctl_mutex); 978 } 979 EXPORT_SYMBOL(vlan_ioctl_set); 980 981 static DEFINE_MUTEX(dlci_ioctl_mutex); 982 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 983 984 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 985 { 986 mutex_lock(&dlci_ioctl_mutex); 987 dlci_ioctl_hook = hook; 988 mutex_unlock(&dlci_ioctl_mutex); 989 } 990 EXPORT_SYMBOL(dlci_ioctl_set); 991 992 static long sock_do_ioctl(struct net *net, struct socket *sock, 993 unsigned int cmd, unsigned long arg) 994 { 995 int err; 996 void __user *argp = (void __user *)arg; 997 998 err = sock->ops->ioctl(sock, cmd, arg); 999 1000 /* 1001 * If this ioctl is unknown try to hand it down 1002 * to the NIC driver. 1003 */ 1004 if (err == -ENOIOCTLCMD) 1005 err = dev_ioctl(net, cmd, argp); 1006 1007 return err; 1008 } 1009 1010 /* 1011 * With an ioctl, arg may well be a user mode pointer, but we don't know 1012 * what to do with it - that's up to the protocol still. 1013 */ 1014 1015 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1016 { 1017 struct socket *sock; 1018 struct sock *sk; 1019 void __user *argp = (void __user *)arg; 1020 int pid, err; 1021 struct net *net; 1022 1023 sock = file->private_data; 1024 sk = sock->sk; 1025 net = sock_net(sk); 1026 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1027 err = dev_ioctl(net, cmd, argp); 1028 } else 1029 #ifdef CONFIG_WEXT_CORE 1030 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1031 err = dev_ioctl(net, cmd, argp); 1032 } else 1033 #endif 1034 switch (cmd) { 1035 case FIOSETOWN: 1036 case SIOCSPGRP: 1037 err = -EFAULT; 1038 if (get_user(pid, (int __user *)argp)) 1039 break; 1040 f_setown(sock->file, pid, 1); 1041 err = 0; 1042 break; 1043 case FIOGETOWN: 1044 case SIOCGPGRP: 1045 err = put_user(f_getown(sock->file), 1046 (int __user *)argp); 1047 break; 1048 case SIOCGIFBR: 1049 case SIOCSIFBR: 1050 case SIOCBRADDBR: 1051 case SIOCBRDELBR: 1052 err = -ENOPKG; 1053 if (!br_ioctl_hook) 1054 request_module("bridge"); 1055 1056 mutex_lock(&br_ioctl_mutex); 1057 if (br_ioctl_hook) 1058 err = br_ioctl_hook(net, cmd, argp); 1059 mutex_unlock(&br_ioctl_mutex); 1060 break; 1061 case SIOCGIFVLAN: 1062 case SIOCSIFVLAN: 1063 err = -ENOPKG; 1064 if (!vlan_ioctl_hook) 1065 request_module("8021q"); 1066 1067 mutex_lock(&vlan_ioctl_mutex); 1068 if (vlan_ioctl_hook) 1069 err = vlan_ioctl_hook(net, argp); 1070 mutex_unlock(&vlan_ioctl_mutex); 1071 break; 1072 case SIOCADDDLCI: 1073 case SIOCDELDLCI: 1074 err = -ENOPKG; 1075 if (!dlci_ioctl_hook) 1076 request_module("dlci"); 1077 1078 mutex_lock(&dlci_ioctl_mutex); 1079 if (dlci_ioctl_hook) 1080 err = dlci_ioctl_hook(cmd, argp); 1081 mutex_unlock(&dlci_ioctl_mutex); 1082 break; 1083 default: 1084 err = sock_do_ioctl(net, sock, cmd, arg); 1085 break; 1086 } 1087 return err; 1088 } 1089 1090 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1091 { 1092 int err; 1093 struct socket *sock = NULL; 1094 1095 err = security_socket_create(family, type, protocol, 1); 1096 if (err) 1097 goto out; 1098 1099 sock = sock_alloc(); 1100 if (!sock) { 1101 err = -ENOMEM; 1102 goto out; 1103 } 1104 1105 sock->type = type; 1106 err = security_socket_post_create(sock, family, type, protocol, 1); 1107 if (err) 1108 goto out_release; 1109 1110 out: 1111 *res = sock; 1112 return err; 1113 out_release: 1114 sock_release(sock); 1115 sock = NULL; 1116 goto out; 1117 } 1118 EXPORT_SYMBOL(sock_create_lite); 1119 1120 /* No kernel lock held - perfect */ 1121 static unsigned int sock_poll(struct file *file, poll_table *wait) 1122 { 1123 unsigned int busy_flag = 0; 1124 struct socket *sock; 1125 1126 /* 1127 * We can't return errors to poll, so it's either yes or no. 1128 */ 1129 sock = file->private_data; 1130 1131 if (sk_can_busy_loop(sock->sk)) { 1132 /* this socket can poll_ll so tell the system call */ 1133 busy_flag = POLL_BUSY_LOOP; 1134 1135 /* once, only if requested by syscall */ 1136 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1137 sk_busy_loop(sock->sk, 1); 1138 } 1139 1140 return busy_flag | sock->ops->poll(file, sock, wait); 1141 } 1142 1143 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1144 { 1145 struct socket *sock = file->private_data; 1146 1147 return sock->ops->mmap(file, sock, vma); 1148 } 1149 1150 static int sock_close(struct inode *inode, struct file *filp) 1151 { 1152 sock_release(SOCKET_I(inode)); 1153 return 0; 1154 } 1155 1156 /* 1157 * Update the socket async list 1158 * 1159 * Fasync_list locking strategy. 1160 * 1161 * 1. fasync_list is modified only under process context socket lock 1162 * i.e. under semaphore. 1163 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1164 * or under socket lock 1165 */ 1166 1167 static int sock_fasync(int fd, struct file *filp, int on) 1168 { 1169 struct socket *sock = filp->private_data; 1170 struct sock *sk = sock->sk; 1171 struct socket_wq *wq; 1172 1173 if (sk == NULL) 1174 return -EINVAL; 1175 1176 lock_sock(sk); 1177 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1178 fasync_helper(fd, filp, on, &wq->fasync_list); 1179 1180 if (!wq->fasync_list) 1181 sock_reset_flag(sk, SOCK_FASYNC); 1182 else 1183 sock_set_flag(sk, SOCK_FASYNC); 1184 1185 release_sock(sk); 1186 return 0; 1187 } 1188 1189 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1190 1191 int sock_wake_async(struct socket *sock, int how, int band) 1192 { 1193 struct socket_wq *wq; 1194 1195 if (!sock) 1196 return -1; 1197 rcu_read_lock(); 1198 wq = rcu_dereference(sock->wq); 1199 if (!wq || !wq->fasync_list) { 1200 rcu_read_unlock(); 1201 return -1; 1202 } 1203 switch (how) { 1204 case SOCK_WAKE_WAITD: 1205 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1206 break; 1207 goto call_kill; 1208 case SOCK_WAKE_SPACE: 1209 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1210 break; 1211 /* fall through */ 1212 case SOCK_WAKE_IO: 1213 call_kill: 1214 kill_fasync(&wq->fasync_list, SIGIO, band); 1215 break; 1216 case SOCK_WAKE_URG: 1217 kill_fasync(&wq->fasync_list, SIGURG, band); 1218 } 1219 rcu_read_unlock(); 1220 return 0; 1221 } 1222 EXPORT_SYMBOL(sock_wake_async); 1223 1224 int __sock_create(struct net *net, int family, int type, int protocol, 1225 struct socket **res, int kern) 1226 { 1227 int err; 1228 struct socket *sock; 1229 const struct net_proto_family *pf; 1230 1231 /* 1232 * Check protocol is in range 1233 */ 1234 if (family < 0 || family >= NPROTO) 1235 return -EAFNOSUPPORT; 1236 if (type < 0 || type >= SOCK_MAX) 1237 return -EINVAL; 1238 1239 /* Compatibility. 1240 1241 This uglymoron is moved from INET layer to here to avoid 1242 deadlock in module load. 1243 */ 1244 if (family == PF_INET && type == SOCK_PACKET) { 1245 static int warned; 1246 if (!warned) { 1247 warned = 1; 1248 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1249 current->comm); 1250 } 1251 family = PF_PACKET; 1252 } 1253 1254 err = security_socket_create(family, type, protocol, kern); 1255 if (err) 1256 return err; 1257 1258 /* 1259 * Allocate the socket and allow the family to set things up. if 1260 * the protocol is 0, the family is instructed to select an appropriate 1261 * default. 1262 */ 1263 sock = sock_alloc(); 1264 if (!sock) { 1265 net_warn_ratelimited("socket: no more sockets\n"); 1266 return -ENFILE; /* Not exactly a match, but its the 1267 closest posix thing */ 1268 } 1269 1270 sock->type = type; 1271 1272 #ifdef CONFIG_MODULES 1273 /* Attempt to load a protocol module if the find failed. 1274 * 1275 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1276 * requested real, full-featured networking support upon configuration. 1277 * Otherwise module support will break! 1278 */ 1279 if (rcu_access_pointer(net_families[family]) == NULL) 1280 request_module("net-pf-%d", family); 1281 #endif 1282 1283 rcu_read_lock(); 1284 pf = rcu_dereference(net_families[family]); 1285 err = -EAFNOSUPPORT; 1286 if (!pf) 1287 goto out_release; 1288 1289 /* 1290 * We will call the ->create function, that possibly is in a loadable 1291 * module, so we have to bump that loadable module refcnt first. 1292 */ 1293 if (!try_module_get(pf->owner)) 1294 goto out_release; 1295 1296 /* Now protected by module ref count */ 1297 rcu_read_unlock(); 1298 1299 err = pf->create(net, sock, protocol, kern); 1300 if (err < 0) 1301 goto out_module_put; 1302 1303 /* 1304 * Now to bump the refcnt of the [loadable] module that owns this 1305 * socket at sock_release time we decrement its refcnt. 1306 */ 1307 if (!try_module_get(sock->ops->owner)) 1308 goto out_module_busy; 1309 1310 /* 1311 * Now that we're done with the ->create function, the [loadable] 1312 * module can have its refcnt decremented 1313 */ 1314 module_put(pf->owner); 1315 err = security_socket_post_create(sock, family, type, protocol, kern); 1316 if (err) 1317 goto out_sock_release; 1318 *res = sock; 1319 1320 return 0; 1321 1322 out_module_busy: 1323 err = -EAFNOSUPPORT; 1324 out_module_put: 1325 sock->ops = NULL; 1326 module_put(pf->owner); 1327 out_sock_release: 1328 sock_release(sock); 1329 return err; 1330 1331 out_release: 1332 rcu_read_unlock(); 1333 goto out_sock_release; 1334 } 1335 EXPORT_SYMBOL(__sock_create); 1336 1337 int sock_create(int family, int type, int protocol, struct socket **res) 1338 { 1339 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1340 } 1341 EXPORT_SYMBOL(sock_create); 1342 1343 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1344 { 1345 return __sock_create(&init_net, family, type, protocol, res, 1); 1346 } 1347 EXPORT_SYMBOL(sock_create_kern); 1348 1349 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1350 { 1351 int retval; 1352 struct socket *sock; 1353 int flags; 1354 1355 /* Check the SOCK_* constants for consistency. */ 1356 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1357 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1358 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1359 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1360 1361 flags = type & ~SOCK_TYPE_MASK; 1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1363 return -EINVAL; 1364 type &= SOCK_TYPE_MASK; 1365 1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1368 1369 retval = sock_create(family, type, protocol, &sock); 1370 if (retval < 0) 1371 goto out; 1372 1373 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1374 if (retval < 0) 1375 goto out_release; 1376 1377 out: 1378 /* It may be already another descriptor 8) Not kernel problem. */ 1379 return retval; 1380 1381 out_release: 1382 sock_release(sock); 1383 return retval; 1384 } 1385 1386 /* 1387 * Create a pair of connected sockets. 1388 */ 1389 1390 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1391 int __user *, usockvec) 1392 { 1393 struct socket *sock1, *sock2; 1394 int fd1, fd2, err; 1395 struct file *newfile1, *newfile2; 1396 int flags; 1397 1398 flags = type & ~SOCK_TYPE_MASK; 1399 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1400 return -EINVAL; 1401 type &= SOCK_TYPE_MASK; 1402 1403 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1404 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1405 1406 /* 1407 * Obtain the first socket and check if the underlying protocol 1408 * supports the socketpair call. 1409 */ 1410 1411 err = sock_create(family, type, protocol, &sock1); 1412 if (err < 0) 1413 goto out; 1414 1415 err = sock_create(family, type, protocol, &sock2); 1416 if (err < 0) 1417 goto out_release_1; 1418 1419 err = sock1->ops->socketpair(sock1, sock2); 1420 if (err < 0) 1421 goto out_release_both; 1422 1423 fd1 = get_unused_fd_flags(flags); 1424 if (unlikely(fd1 < 0)) { 1425 err = fd1; 1426 goto out_release_both; 1427 } 1428 1429 fd2 = get_unused_fd_flags(flags); 1430 if (unlikely(fd2 < 0)) { 1431 err = fd2; 1432 goto out_put_unused_1; 1433 } 1434 1435 newfile1 = sock_alloc_file(sock1, flags, NULL); 1436 if (unlikely(IS_ERR(newfile1))) { 1437 err = PTR_ERR(newfile1); 1438 goto out_put_unused_both; 1439 } 1440 1441 newfile2 = sock_alloc_file(sock2, flags, NULL); 1442 if (IS_ERR(newfile2)) { 1443 err = PTR_ERR(newfile2); 1444 goto out_fput_1; 1445 } 1446 1447 err = put_user(fd1, &usockvec[0]); 1448 if (err) 1449 goto out_fput_both; 1450 1451 err = put_user(fd2, &usockvec[1]); 1452 if (err) 1453 goto out_fput_both; 1454 1455 audit_fd_pair(fd1, fd2); 1456 1457 fd_install(fd1, newfile1); 1458 fd_install(fd2, newfile2); 1459 /* fd1 and fd2 may be already another descriptors. 1460 * Not kernel problem. 1461 */ 1462 1463 return 0; 1464 1465 out_fput_both: 1466 fput(newfile2); 1467 fput(newfile1); 1468 put_unused_fd(fd2); 1469 put_unused_fd(fd1); 1470 goto out; 1471 1472 out_fput_1: 1473 fput(newfile1); 1474 put_unused_fd(fd2); 1475 put_unused_fd(fd1); 1476 sock_release(sock2); 1477 goto out; 1478 1479 out_put_unused_both: 1480 put_unused_fd(fd2); 1481 out_put_unused_1: 1482 put_unused_fd(fd1); 1483 out_release_both: 1484 sock_release(sock2); 1485 out_release_1: 1486 sock_release(sock1); 1487 out: 1488 return err; 1489 } 1490 1491 /* 1492 * Bind a name to a socket. Nothing much to do here since it's 1493 * the protocol's responsibility to handle the local address. 1494 * 1495 * We move the socket address to kernel space before we call 1496 * the protocol layer (having also checked the address is ok). 1497 */ 1498 1499 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1500 { 1501 struct socket *sock; 1502 struct sockaddr_storage address; 1503 int err, fput_needed; 1504 1505 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1506 if (sock) { 1507 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1508 if (err >= 0) { 1509 err = security_socket_bind(sock, 1510 (struct sockaddr *)&address, 1511 addrlen); 1512 if (!err) 1513 err = sock->ops->bind(sock, 1514 (struct sockaddr *) 1515 &address, addrlen); 1516 } 1517 fput_light(sock->file, fput_needed); 1518 } 1519 return err; 1520 } 1521 1522 /* 1523 * Perform a listen. Basically, we allow the protocol to do anything 1524 * necessary for a listen, and if that works, we mark the socket as 1525 * ready for listening. 1526 */ 1527 1528 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1529 { 1530 struct socket *sock; 1531 int err, fput_needed; 1532 int somaxconn; 1533 1534 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1535 if (sock) { 1536 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1537 if ((unsigned int)backlog > somaxconn) 1538 backlog = somaxconn; 1539 1540 err = security_socket_listen(sock, backlog); 1541 if (!err) 1542 err = sock->ops->listen(sock, backlog); 1543 1544 fput_light(sock->file, fput_needed); 1545 } 1546 return err; 1547 } 1548 1549 /* 1550 * For accept, we attempt to create a new socket, set up the link 1551 * with the client, wake up the client, then return the new 1552 * connected fd. We collect the address of the connector in kernel 1553 * space and move it to user at the very end. This is unclean because 1554 * we open the socket then return an error. 1555 * 1556 * 1003.1g adds the ability to recvmsg() to query connection pending 1557 * status to recvmsg. We need to add that support in a way thats 1558 * clean when we restucture accept also. 1559 */ 1560 1561 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1562 int __user *, upeer_addrlen, int, flags) 1563 { 1564 struct socket *sock, *newsock; 1565 struct file *newfile; 1566 int err, len, newfd, fput_needed; 1567 struct sockaddr_storage address; 1568 1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1570 return -EINVAL; 1571 1572 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1573 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1574 1575 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1576 if (!sock) 1577 goto out; 1578 1579 err = -ENFILE; 1580 newsock = sock_alloc(); 1581 if (!newsock) 1582 goto out_put; 1583 1584 newsock->type = sock->type; 1585 newsock->ops = sock->ops; 1586 1587 /* 1588 * We don't need try_module_get here, as the listening socket (sock) 1589 * has the protocol module (sock->ops->owner) held. 1590 */ 1591 __module_get(newsock->ops->owner); 1592 1593 newfd = get_unused_fd_flags(flags); 1594 if (unlikely(newfd < 0)) { 1595 err = newfd; 1596 sock_release(newsock); 1597 goto out_put; 1598 } 1599 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1600 if (unlikely(IS_ERR(newfile))) { 1601 err = PTR_ERR(newfile); 1602 put_unused_fd(newfd); 1603 sock_release(newsock); 1604 goto out_put; 1605 } 1606 1607 err = security_socket_accept(sock, newsock); 1608 if (err) 1609 goto out_fd; 1610 1611 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1612 if (err < 0) 1613 goto out_fd; 1614 1615 if (upeer_sockaddr) { 1616 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1617 &len, 2) < 0) { 1618 err = -ECONNABORTED; 1619 goto out_fd; 1620 } 1621 err = move_addr_to_user(&address, 1622 len, upeer_sockaddr, upeer_addrlen); 1623 if (err < 0) 1624 goto out_fd; 1625 } 1626 1627 /* File flags are not inherited via accept() unlike another OSes. */ 1628 1629 fd_install(newfd, newfile); 1630 err = newfd; 1631 1632 out_put: 1633 fput_light(sock->file, fput_needed); 1634 out: 1635 return err; 1636 out_fd: 1637 fput(newfile); 1638 put_unused_fd(newfd); 1639 goto out_put; 1640 } 1641 1642 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1643 int __user *, upeer_addrlen) 1644 { 1645 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1646 } 1647 1648 /* 1649 * Attempt to connect to a socket with the server address. The address 1650 * is in user space so we verify it is OK and move it to kernel space. 1651 * 1652 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1653 * break bindings 1654 * 1655 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1656 * other SEQPACKET protocols that take time to connect() as it doesn't 1657 * include the -EINPROGRESS status for such sockets. 1658 */ 1659 1660 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1661 int, addrlen) 1662 { 1663 struct socket *sock; 1664 struct sockaddr_storage address; 1665 int err, fput_needed; 1666 1667 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1668 if (!sock) 1669 goto out; 1670 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1671 if (err < 0) 1672 goto out_put; 1673 1674 err = 1675 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1676 if (err) 1677 goto out_put; 1678 1679 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1680 sock->file->f_flags); 1681 out_put: 1682 fput_light(sock->file, fput_needed); 1683 out: 1684 return err; 1685 } 1686 1687 /* 1688 * Get the local address ('name') of a socket object. Move the obtained 1689 * name to user space. 1690 */ 1691 1692 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1693 int __user *, usockaddr_len) 1694 { 1695 struct socket *sock; 1696 struct sockaddr_storage address; 1697 int len, err, fput_needed; 1698 1699 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1700 if (!sock) 1701 goto out; 1702 1703 err = security_socket_getsockname(sock); 1704 if (err) 1705 goto out_put; 1706 1707 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1708 if (err) 1709 goto out_put; 1710 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1711 1712 out_put: 1713 fput_light(sock->file, fput_needed); 1714 out: 1715 return err; 1716 } 1717 1718 /* 1719 * Get the remote address ('name') of a socket object. Move the obtained 1720 * name to user space. 1721 */ 1722 1723 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1724 int __user *, usockaddr_len) 1725 { 1726 struct socket *sock; 1727 struct sockaddr_storage address; 1728 int len, err, fput_needed; 1729 1730 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1731 if (sock != NULL) { 1732 err = security_socket_getpeername(sock); 1733 if (err) { 1734 fput_light(sock->file, fput_needed); 1735 return err; 1736 } 1737 1738 err = 1739 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1740 1); 1741 if (!err) 1742 err = move_addr_to_user(&address, len, usockaddr, 1743 usockaddr_len); 1744 fput_light(sock->file, fput_needed); 1745 } 1746 return err; 1747 } 1748 1749 /* 1750 * Send a datagram to a given address. We move the address into kernel 1751 * space and check the user space data area is readable before invoking 1752 * the protocol. 1753 */ 1754 1755 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1756 unsigned int, flags, struct sockaddr __user *, addr, 1757 int, addr_len) 1758 { 1759 struct socket *sock; 1760 struct sockaddr_storage address; 1761 int err; 1762 struct msghdr msg; 1763 struct iovec iov; 1764 int fput_needed; 1765 1766 if (len > INT_MAX) 1767 len = INT_MAX; 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (!sock) 1770 goto out; 1771 1772 iov.iov_base = buff; 1773 iov.iov_len = len; 1774 msg.msg_name = NULL; 1775 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len); 1776 msg.msg_control = NULL; 1777 msg.msg_controllen = 0; 1778 msg.msg_namelen = 0; 1779 if (addr) { 1780 err = move_addr_to_kernel(addr, addr_len, &address); 1781 if (err < 0) 1782 goto out_put; 1783 msg.msg_name = (struct sockaddr *)&address; 1784 msg.msg_namelen = addr_len; 1785 } 1786 if (sock->file->f_flags & O_NONBLOCK) 1787 flags |= MSG_DONTWAIT; 1788 msg.msg_flags = flags; 1789 err = sock_sendmsg(sock, &msg, len); 1790 1791 out_put: 1792 fput_light(sock->file, fput_needed); 1793 out: 1794 return err; 1795 } 1796 1797 /* 1798 * Send a datagram down a socket. 1799 */ 1800 1801 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1802 unsigned int, flags) 1803 { 1804 return sys_sendto(fd, buff, len, flags, NULL, 0); 1805 } 1806 1807 /* 1808 * Receive a frame from the socket and optionally record the address of the 1809 * sender. We verify the buffers are writable and if needed move the 1810 * sender address from kernel to user space. 1811 */ 1812 1813 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1814 unsigned int, flags, struct sockaddr __user *, addr, 1815 int __user *, addr_len) 1816 { 1817 struct socket *sock; 1818 struct iovec iov; 1819 struct msghdr msg; 1820 struct sockaddr_storage address; 1821 int err, err2; 1822 int fput_needed; 1823 1824 if (size > INT_MAX) 1825 size = INT_MAX; 1826 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1827 if (!sock) 1828 goto out; 1829 1830 msg.msg_control = NULL; 1831 msg.msg_controllen = 0; 1832 iov.iov_len = size; 1833 iov.iov_base = ubuf; 1834 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size); 1835 /* Save some cycles and don't copy the address if not needed */ 1836 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1837 /* We assume all kernel code knows the size of sockaddr_storage */ 1838 msg.msg_namelen = 0; 1839 if (sock->file->f_flags & O_NONBLOCK) 1840 flags |= MSG_DONTWAIT; 1841 err = sock_recvmsg(sock, &msg, size, flags); 1842 1843 if (err >= 0 && addr != NULL) { 1844 err2 = move_addr_to_user(&address, 1845 msg.msg_namelen, addr, addr_len); 1846 if (err2 < 0) 1847 err = err2; 1848 } 1849 1850 fput_light(sock->file, fput_needed); 1851 out: 1852 return err; 1853 } 1854 1855 /* 1856 * Receive a datagram from a socket. 1857 */ 1858 1859 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1860 unsigned int, flags) 1861 { 1862 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1863 } 1864 1865 /* 1866 * Set a socket option. Because we don't know the option lengths we have 1867 * to pass the user mode parameter for the protocols to sort out. 1868 */ 1869 1870 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1871 char __user *, optval, int, optlen) 1872 { 1873 int err, fput_needed; 1874 struct socket *sock; 1875 1876 if (optlen < 0) 1877 return -EINVAL; 1878 1879 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1880 if (sock != NULL) { 1881 err = security_socket_setsockopt(sock, level, optname); 1882 if (err) 1883 goto out_put; 1884 1885 if (level == SOL_SOCKET) 1886 err = 1887 sock_setsockopt(sock, level, optname, optval, 1888 optlen); 1889 else 1890 err = 1891 sock->ops->setsockopt(sock, level, optname, optval, 1892 optlen); 1893 out_put: 1894 fput_light(sock->file, fput_needed); 1895 } 1896 return err; 1897 } 1898 1899 /* 1900 * Get a socket option. Because we don't know the option lengths we have 1901 * to pass a user mode parameter for the protocols to sort out. 1902 */ 1903 1904 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1905 char __user *, optval, int __user *, optlen) 1906 { 1907 int err, fput_needed; 1908 struct socket *sock; 1909 1910 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1911 if (sock != NULL) { 1912 err = security_socket_getsockopt(sock, level, optname); 1913 if (err) 1914 goto out_put; 1915 1916 if (level == SOL_SOCKET) 1917 err = 1918 sock_getsockopt(sock, level, optname, optval, 1919 optlen); 1920 else 1921 err = 1922 sock->ops->getsockopt(sock, level, optname, optval, 1923 optlen); 1924 out_put: 1925 fput_light(sock->file, fput_needed); 1926 } 1927 return err; 1928 } 1929 1930 /* 1931 * Shutdown a socket. 1932 */ 1933 1934 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1935 { 1936 int err, fput_needed; 1937 struct socket *sock; 1938 1939 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1940 if (sock != NULL) { 1941 err = security_socket_shutdown(sock, how); 1942 if (!err) 1943 err = sock->ops->shutdown(sock, how); 1944 fput_light(sock->file, fput_needed); 1945 } 1946 return err; 1947 } 1948 1949 /* A couple of helpful macros for getting the address of the 32/64 bit 1950 * fields which are the same type (int / unsigned) on our platforms. 1951 */ 1952 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1953 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1954 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1955 1956 struct used_address { 1957 struct sockaddr_storage name; 1958 unsigned int name_len; 1959 }; 1960 1961 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg, 1962 struct user_msghdr __user *umsg, 1963 struct sockaddr __user **save_addr, 1964 struct iovec **iov) 1965 { 1966 struct sockaddr __user *uaddr; 1967 struct iovec __user *uiov; 1968 size_t nr_segs; 1969 ssize_t err; 1970 1971 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1972 __get_user(uaddr, &umsg->msg_name) || 1973 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1974 __get_user(uiov, &umsg->msg_iov) || 1975 __get_user(nr_segs, &umsg->msg_iovlen) || 1976 __get_user(kmsg->msg_control, &umsg->msg_control) || 1977 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1978 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1979 return -EFAULT; 1980 1981 if (!uaddr) 1982 kmsg->msg_namelen = 0; 1983 1984 if (kmsg->msg_namelen < 0) 1985 return -EINVAL; 1986 1987 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1988 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1989 1990 if (save_addr) 1991 *save_addr = uaddr; 1992 1993 if (uaddr && kmsg->msg_namelen) { 1994 if (!save_addr) { 1995 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1996 kmsg->msg_name); 1997 if (err < 0) 1998 return err; 1999 } 2000 } else { 2001 kmsg->msg_name = NULL; 2002 kmsg->msg_namelen = 0; 2003 } 2004 2005 if (nr_segs > UIO_MAXIOV) 2006 return -EMSGSIZE; 2007 2008 err = rw_copy_check_uvector(save_addr ? READ : WRITE, 2009 uiov, nr_segs, 2010 UIO_FASTIOV, *iov, iov); 2011 if (err >= 0) 2012 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE, 2013 *iov, nr_segs, err); 2014 return err; 2015 } 2016 2017 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2018 struct msghdr *msg_sys, unsigned int flags, 2019 struct used_address *used_address) 2020 { 2021 struct compat_msghdr __user *msg_compat = 2022 (struct compat_msghdr __user *)msg; 2023 struct sockaddr_storage address; 2024 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2025 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2026 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2027 /* 20 is size of ipv6_pktinfo */ 2028 unsigned char *ctl_buf = ctl; 2029 int ctl_len, total_len; 2030 ssize_t err; 2031 2032 msg_sys->msg_name = &address; 2033 2034 if (MSG_CMSG_COMPAT & flags) 2035 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2036 else 2037 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2038 if (err < 0) 2039 goto out_freeiov; 2040 total_len = err; 2041 2042 err = -ENOBUFS; 2043 2044 if (msg_sys->msg_controllen > INT_MAX) 2045 goto out_freeiov; 2046 ctl_len = msg_sys->msg_controllen; 2047 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2048 err = 2049 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2050 sizeof(ctl)); 2051 if (err) 2052 goto out_freeiov; 2053 ctl_buf = msg_sys->msg_control; 2054 ctl_len = msg_sys->msg_controllen; 2055 } else if (ctl_len) { 2056 if (ctl_len > sizeof(ctl)) { 2057 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2058 if (ctl_buf == NULL) 2059 goto out_freeiov; 2060 } 2061 err = -EFAULT; 2062 /* 2063 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2064 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2065 * checking falls down on this. 2066 */ 2067 if (copy_from_user(ctl_buf, 2068 (void __user __force *)msg_sys->msg_control, 2069 ctl_len)) 2070 goto out_freectl; 2071 msg_sys->msg_control = ctl_buf; 2072 } 2073 msg_sys->msg_flags = flags; 2074 2075 if (sock->file->f_flags & O_NONBLOCK) 2076 msg_sys->msg_flags |= MSG_DONTWAIT; 2077 /* 2078 * If this is sendmmsg() and current destination address is same as 2079 * previously succeeded address, omit asking LSM's decision. 2080 * used_address->name_len is initialized to UINT_MAX so that the first 2081 * destination address never matches. 2082 */ 2083 if (used_address && msg_sys->msg_name && 2084 used_address->name_len == msg_sys->msg_namelen && 2085 !memcmp(&used_address->name, msg_sys->msg_name, 2086 used_address->name_len)) { 2087 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2088 goto out_freectl; 2089 } 2090 err = sock_sendmsg(sock, msg_sys, total_len); 2091 /* 2092 * If this is sendmmsg() and sending to current destination address was 2093 * successful, remember it. 2094 */ 2095 if (used_address && err >= 0) { 2096 used_address->name_len = msg_sys->msg_namelen; 2097 if (msg_sys->msg_name) 2098 memcpy(&used_address->name, msg_sys->msg_name, 2099 used_address->name_len); 2100 } 2101 2102 out_freectl: 2103 if (ctl_buf != ctl) 2104 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2105 out_freeiov: 2106 if (iov != iovstack) 2107 kfree(iov); 2108 return err; 2109 } 2110 2111 /* 2112 * BSD sendmsg interface 2113 */ 2114 2115 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2116 { 2117 int fput_needed, err; 2118 struct msghdr msg_sys; 2119 struct socket *sock; 2120 2121 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2122 if (!sock) 2123 goto out; 2124 2125 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2126 2127 fput_light(sock->file, fput_needed); 2128 out: 2129 return err; 2130 } 2131 2132 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2133 { 2134 if (flags & MSG_CMSG_COMPAT) 2135 return -EINVAL; 2136 return __sys_sendmsg(fd, msg, flags); 2137 } 2138 2139 /* 2140 * Linux sendmmsg interface 2141 */ 2142 2143 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2144 unsigned int flags) 2145 { 2146 int fput_needed, err, datagrams; 2147 struct socket *sock; 2148 struct mmsghdr __user *entry; 2149 struct compat_mmsghdr __user *compat_entry; 2150 struct msghdr msg_sys; 2151 struct used_address used_address; 2152 2153 if (vlen > UIO_MAXIOV) 2154 vlen = UIO_MAXIOV; 2155 2156 datagrams = 0; 2157 2158 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2159 if (!sock) 2160 return err; 2161 2162 used_address.name_len = UINT_MAX; 2163 entry = mmsg; 2164 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2165 err = 0; 2166 2167 while (datagrams < vlen) { 2168 if (MSG_CMSG_COMPAT & flags) { 2169 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2170 &msg_sys, flags, &used_address); 2171 if (err < 0) 2172 break; 2173 err = __put_user(err, &compat_entry->msg_len); 2174 ++compat_entry; 2175 } else { 2176 err = ___sys_sendmsg(sock, 2177 (struct user_msghdr __user *)entry, 2178 &msg_sys, flags, &used_address); 2179 if (err < 0) 2180 break; 2181 err = put_user(err, &entry->msg_len); 2182 ++entry; 2183 } 2184 2185 if (err) 2186 break; 2187 ++datagrams; 2188 } 2189 2190 fput_light(sock->file, fput_needed); 2191 2192 /* We only return an error if no datagrams were able to be sent */ 2193 if (datagrams != 0) 2194 return datagrams; 2195 2196 return err; 2197 } 2198 2199 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2200 unsigned int, vlen, unsigned int, flags) 2201 { 2202 if (flags & MSG_CMSG_COMPAT) 2203 return -EINVAL; 2204 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2205 } 2206 2207 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2208 struct msghdr *msg_sys, unsigned int flags, int nosec) 2209 { 2210 struct compat_msghdr __user *msg_compat = 2211 (struct compat_msghdr __user *)msg; 2212 struct iovec iovstack[UIO_FASTIOV]; 2213 struct iovec *iov = iovstack; 2214 unsigned long cmsg_ptr; 2215 int total_len, len; 2216 ssize_t err; 2217 2218 /* kernel mode address */ 2219 struct sockaddr_storage addr; 2220 2221 /* user mode address pointers */ 2222 struct sockaddr __user *uaddr; 2223 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2224 2225 msg_sys->msg_name = &addr; 2226 2227 if (MSG_CMSG_COMPAT & flags) 2228 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2229 else 2230 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2231 if (err < 0) 2232 goto out_freeiov; 2233 total_len = err; 2234 2235 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2236 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2237 2238 /* We assume all kernel code knows the size of sockaddr_storage */ 2239 msg_sys->msg_namelen = 0; 2240 2241 if (sock->file->f_flags & O_NONBLOCK) 2242 flags |= MSG_DONTWAIT; 2243 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2244 total_len, flags); 2245 if (err < 0) 2246 goto out_freeiov; 2247 len = err; 2248 2249 if (uaddr != NULL) { 2250 err = move_addr_to_user(&addr, 2251 msg_sys->msg_namelen, uaddr, 2252 uaddr_len); 2253 if (err < 0) 2254 goto out_freeiov; 2255 } 2256 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2257 COMPAT_FLAGS(msg)); 2258 if (err) 2259 goto out_freeiov; 2260 if (MSG_CMSG_COMPAT & flags) 2261 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2262 &msg_compat->msg_controllen); 2263 else 2264 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2265 &msg->msg_controllen); 2266 if (err) 2267 goto out_freeiov; 2268 err = len; 2269 2270 out_freeiov: 2271 if (iov != iovstack) 2272 kfree(iov); 2273 return err; 2274 } 2275 2276 /* 2277 * BSD recvmsg interface 2278 */ 2279 2280 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2281 { 2282 int fput_needed, err; 2283 struct msghdr msg_sys; 2284 struct socket *sock; 2285 2286 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2287 if (!sock) 2288 goto out; 2289 2290 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2291 2292 fput_light(sock->file, fput_needed); 2293 out: 2294 return err; 2295 } 2296 2297 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2298 unsigned int, flags) 2299 { 2300 if (flags & MSG_CMSG_COMPAT) 2301 return -EINVAL; 2302 return __sys_recvmsg(fd, msg, flags); 2303 } 2304 2305 /* 2306 * Linux recvmmsg interface 2307 */ 2308 2309 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2310 unsigned int flags, struct timespec *timeout) 2311 { 2312 int fput_needed, err, datagrams; 2313 struct socket *sock; 2314 struct mmsghdr __user *entry; 2315 struct compat_mmsghdr __user *compat_entry; 2316 struct msghdr msg_sys; 2317 struct timespec end_time; 2318 2319 if (timeout && 2320 poll_select_set_timeout(&end_time, timeout->tv_sec, 2321 timeout->tv_nsec)) 2322 return -EINVAL; 2323 2324 datagrams = 0; 2325 2326 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2327 if (!sock) 2328 return err; 2329 2330 err = sock_error(sock->sk); 2331 if (err) 2332 goto out_put; 2333 2334 entry = mmsg; 2335 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2336 2337 while (datagrams < vlen) { 2338 /* 2339 * No need to ask LSM for more than the first datagram. 2340 */ 2341 if (MSG_CMSG_COMPAT & flags) { 2342 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2343 &msg_sys, flags & ~MSG_WAITFORONE, 2344 datagrams); 2345 if (err < 0) 2346 break; 2347 err = __put_user(err, &compat_entry->msg_len); 2348 ++compat_entry; 2349 } else { 2350 err = ___sys_recvmsg(sock, 2351 (struct user_msghdr __user *)entry, 2352 &msg_sys, flags & ~MSG_WAITFORONE, 2353 datagrams); 2354 if (err < 0) 2355 break; 2356 err = put_user(err, &entry->msg_len); 2357 ++entry; 2358 } 2359 2360 if (err) 2361 break; 2362 ++datagrams; 2363 2364 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2365 if (flags & MSG_WAITFORONE) 2366 flags |= MSG_DONTWAIT; 2367 2368 if (timeout) { 2369 ktime_get_ts(timeout); 2370 *timeout = timespec_sub(end_time, *timeout); 2371 if (timeout->tv_sec < 0) { 2372 timeout->tv_sec = timeout->tv_nsec = 0; 2373 break; 2374 } 2375 2376 /* Timeout, return less than vlen datagrams */ 2377 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2378 break; 2379 } 2380 2381 /* Out of band data, return right away */ 2382 if (msg_sys.msg_flags & MSG_OOB) 2383 break; 2384 } 2385 2386 out_put: 2387 fput_light(sock->file, fput_needed); 2388 2389 if (err == 0) 2390 return datagrams; 2391 2392 if (datagrams != 0) { 2393 /* 2394 * We may return less entries than requested (vlen) if the 2395 * sock is non block and there aren't enough datagrams... 2396 */ 2397 if (err != -EAGAIN) { 2398 /* 2399 * ... or if recvmsg returns an error after we 2400 * received some datagrams, where we record the 2401 * error to return on the next call or if the 2402 * app asks about it using getsockopt(SO_ERROR). 2403 */ 2404 sock->sk->sk_err = -err; 2405 } 2406 2407 return datagrams; 2408 } 2409 2410 return err; 2411 } 2412 2413 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2414 unsigned int, vlen, unsigned int, flags, 2415 struct timespec __user *, timeout) 2416 { 2417 int datagrams; 2418 struct timespec timeout_sys; 2419 2420 if (flags & MSG_CMSG_COMPAT) 2421 return -EINVAL; 2422 2423 if (!timeout) 2424 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2425 2426 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2427 return -EFAULT; 2428 2429 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2430 2431 if (datagrams > 0 && 2432 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2433 datagrams = -EFAULT; 2434 2435 return datagrams; 2436 } 2437 2438 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2439 /* Argument list sizes for sys_socketcall */ 2440 #define AL(x) ((x) * sizeof(unsigned long)) 2441 static const unsigned char nargs[21] = { 2442 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2443 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2444 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2445 AL(4), AL(5), AL(4) 2446 }; 2447 2448 #undef AL 2449 2450 /* 2451 * System call vectors. 2452 * 2453 * Argument checking cleaned up. Saved 20% in size. 2454 * This function doesn't need to set the kernel lock because 2455 * it is set by the callees. 2456 */ 2457 2458 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2459 { 2460 unsigned long a[AUDITSC_ARGS]; 2461 unsigned long a0, a1; 2462 int err; 2463 unsigned int len; 2464 2465 if (call < 1 || call > SYS_SENDMMSG) 2466 return -EINVAL; 2467 2468 len = nargs[call]; 2469 if (len > sizeof(a)) 2470 return -EINVAL; 2471 2472 /* copy_from_user should be SMP safe. */ 2473 if (copy_from_user(a, args, len)) 2474 return -EFAULT; 2475 2476 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2477 if (err) 2478 return err; 2479 2480 a0 = a[0]; 2481 a1 = a[1]; 2482 2483 switch (call) { 2484 case SYS_SOCKET: 2485 err = sys_socket(a0, a1, a[2]); 2486 break; 2487 case SYS_BIND: 2488 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2489 break; 2490 case SYS_CONNECT: 2491 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2492 break; 2493 case SYS_LISTEN: 2494 err = sys_listen(a0, a1); 2495 break; 2496 case SYS_ACCEPT: 2497 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2498 (int __user *)a[2], 0); 2499 break; 2500 case SYS_GETSOCKNAME: 2501 err = 2502 sys_getsockname(a0, (struct sockaddr __user *)a1, 2503 (int __user *)a[2]); 2504 break; 2505 case SYS_GETPEERNAME: 2506 err = 2507 sys_getpeername(a0, (struct sockaddr __user *)a1, 2508 (int __user *)a[2]); 2509 break; 2510 case SYS_SOCKETPAIR: 2511 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2512 break; 2513 case SYS_SEND: 2514 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2515 break; 2516 case SYS_SENDTO: 2517 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2518 (struct sockaddr __user *)a[4], a[5]); 2519 break; 2520 case SYS_RECV: 2521 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2522 break; 2523 case SYS_RECVFROM: 2524 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2525 (struct sockaddr __user *)a[4], 2526 (int __user *)a[5]); 2527 break; 2528 case SYS_SHUTDOWN: 2529 err = sys_shutdown(a0, a1); 2530 break; 2531 case SYS_SETSOCKOPT: 2532 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2533 break; 2534 case SYS_GETSOCKOPT: 2535 err = 2536 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2537 (int __user *)a[4]); 2538 break; 2539 case SYS_SENDMSG: 2540 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2541 break; 2542 case SYS_SENDMMSG: 2543 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2544 break; 2545 case SYS_RECVMSG: 2546 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2547 break; 2548 case SYS_RECVMMSG: 2549 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2550 (struct timespec __user *)a[4]); 2551 break; 2552 case SYS_ACCEPT4: 2553 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2554 (int __user *)a[2], a[3]); 2555 break; 2556 default: 2557 err = -EINVAL; 2558 break; 2559 } 2560 return err; 2561 } 2562 2563 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2564 2565 /** 2566 * sock_register - add a socket protocol handler 2567 * @ops: description of protocol 2568 * 2569 * This function is called by a protocol handler that wants to 2570 * advertise its address family, and have it linked into the 2571 * socket interface. The value ops->family corresponds to the 2572 * socket system call protocol family. 2573 */ 2574 int sock_register(const struct net_proto_family *ops) 2575 { 2576 int err; 2577 2578 if (ops->family >= NPROTO) { 2579 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2580 return -ENOBUFS; 2581 } 2582 2583 spin_lock(&net_family_lock); 2584 if (rcu_dereference_protected(net_families[ops->family], 2585 lockdep_is_held(&net_family_lock))) 2586 err = -EEXIST; 2587 else { 2588 rcu_assign_pointer(net_families[ops->family], ops); 2589 err = 0; 2590 } 2591 spin_unlock(&net_family_lock); 2592 2593 pr_info("NET: Registered protocol family %d\n", ops->family); 2594 return err; 2595 } 2596 EXPORT_SYMBOL(sock_register); 2597 2598 /** 2599 * sock_unregister - remove a protocol handler 2600 * @family: protocol family to remove 2601 * 2602 * This function is called by a protocol handler that wants to 2603 * remove its address family, and have it unlinked from the 2604 * new socket creation. 2605 * 2606 * If protocol handler is a module, then it can use module reference 2607 * counts to protect against new references. If protocol handler is not 2608 * a module then it needs to provide its own protection in 2609 * the ops->create routine. 2610 */ 2611 void sock_unregister(int family) 2612 { 2613 BUG_ON(family < 0 || family >= NPROTO); 2614 2615 spin_lock(&net_family_lock); 2616 RCU_INIT_POINTER(net_families[family], NULL); 2617 spin_unlock(&net_family_lock); 2618 2619 synchronize_rcu(); 2620 2621 pr_info("NET: Unregistered protocol family %d\n", family); 2622 } 2623 EXPORT_SYMBOL(sock_unregister); 2624 2625 static int __init sock_init(void) 2626 { 2627 int err; 2628 /* 2629 * Initialize the network sysctl infrastructure. 2630 */ 2631 err = net_sysctl_init(); 2632 if (err) 2633 goto out; 2634 2635 /* 2636 * Initialize skbuff SLAB cache 2637 */ 2638 skb_init(); 2639 2640 /* 2641 * Initialize the protocols module. 2642 */ 2643 2644 init_inodecache(); 2645 2646 err = register_filesystem(&sock_fs_type); 2647 if (err) 2648 goto out_fs; 2649 sock_mnt = kern_mount(&sock_fs_type); 2650 if (IS_ERR(sock_mnt)) { 2651 err = PTR_ERR(sock_mnt); 2652 goto out_mount; 2653 } 2654 2655 /* The real protocol initialization is performed in later initcalls. 2656 */ 2657 2658 #ifdef CONFIG_NETFILTER 2659 err = netfilter_init(); 2660 if (err) 2661 goto out; 2662 #endif 2663 2664 ptp_classifier_init(); 2665 2666 out: 2667 return err; 2668 2669 out_mount: 2670 unregister_filesystem(&sock_fs_type); 2671 out_fs: 2672 goto out; 2673 } 2674 2675 core_initcall(sock_init); /* early initcall */ 2676 2677 #ifdef CONFIG_PROC_FS 2678 void socket_seq_show(struct seq_file *seq) 2679 { 2680 int cpu; 2681 int counter = 0; 2682 2683 for_each_possible_cpu(cpu) 2684 counter += per_cpu(sockets_in_use, cpu); 2685 2686 /* It can be negative, by the way. 8) */ 2687 if (counter < 0) 2688 counter = 0; 2689 2690 seq_printf(seq, "sockets: used %d\n", counter); 2691 } 2692 #endif /* CONFIG_PROC_FS */ 2693 2694 #ifdef CONFIG_COMPAT 2695 static int do_siocgstamp(struct net *net, struct socket *sock, 2696 unsigned int cmd, void __user *up) 2697 { 2698 mm_segment_t old_fs = get_fs(); 2699 struct timeval ktv; 2700 int err; 2701 2702 set_fs(KERNEL_DS); 2703 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2704 set_fs(old_fs); 2705 if (!err) 2706 err = compat_put_timeval(&ktv, up); 2707 2708 return err; 2709 } 2710 2711 static int do_siocgstampns(struct net *net, struct socket *sock, 2712 unsigned int cmd, void __user *up) 2713 { 2714 mm_segment_t old_fs = get_fs(); 2715 struct timespec kts; 2716 int err; 2717 2718 set_fs(KERNEL_DS); 2719 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2720 set_fs(old_fs); 2721 if (!err) 2722 err = compat_put_timespec(&kts, up); 2723 2724 return err; 2725 } 2726 2727 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2728 { 2729 struct ifreq __user *uifr; 2730 int err; 2731 2732 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2733 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2734 return -EFAULT; 2735 2736 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2737 if (err) 2738 return err; 2739 2740 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2741 return -EFAULT; 2742 2743 return 0; 2744 } 2745 2746 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2747 { 2748 struct compat_ifconf ifc32; 2749 struct ifconf ifc; 2750 struct ifconf __user *uifc; 2751 struct compat_ifreq __user *ifr32; 2752 struct ifreq __user *ifr; 2753 unsigned int i, j; 2754 int err; 2755 2756 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2757 return -EFAULT; 2758 2759 memset(&ifc, 0, sizeof(ifc)); 2760 if (ifc32.ifcbuf == 0) { 2761 ifc32.ifc_len = 0; 2762 ifc.ifc_len = 0; 2763 ifc.ifc_req = NULL; 2764 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2765 } else { 2766 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2767 sizeof(struct ifreq); 2768 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2769 ifc.ifc_len = len; 2770 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2771 ifr32 = compat_ptr(ifc32.ifcbuf); 2772 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2773 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2774 return -EFAULT; 2775 ifr++; 2776 ifr32++; 2777 } 2778 } 2779 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2780 return -EFAULT; 2781 2782 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2783 if (err) 2784 return err; 2785 2786 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2787 return -EFAULT; 2788 2789 ifr = ifc.ifc_req; 2790 ifr32 = compat_ptr(ifc32.ifcbuf); 2791 for (i = 0, j = 0; 2792 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2793 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2794 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2795 return -EFAULT; 2796 ifr32++; 2797 ifr++; 2798 } 2799 2800 if (ifc32.ifcbuf == 0) { 2801 /* Translate from 64-bit structure multiple to 2802 * a 32-bit one. 2803 */ 2804 i = ifc.ifc_len; 2805 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2806 ifc32.ifc_len = i; 2807 } else { 2808 ifc32.ifc_len = i; 2809 } 2810 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2811 return -EFAULT; 2812 2813 return 0; 2814 } 2815 2816 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2817 { 2818 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2819 bool convert_in = false, convert_out = false; 2820 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2821 struct ethtool_rxnfc __user *rxnfc; 2822 struct ifreq __user *ifr; 2823 u32 rule_cnt = 0, actual_rule_cnt; 2824 u32 ethcmd; 2825 u32 data; 2826 int ret; 2827 2828 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2829 return -EFAULT; 2830 2831 compat_rxnfc = compat_ptr(data); 2832 2833 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2834 return -EFAULT; 2835 2836 /* Most ethtool structures are defined without padding. 2837 * Unfortunately struct ethtool_rxnfc is an exception. 2838 */ 2839 switch (ethcmd) { 2840 default: 2841 break; 2842 case ETHTOOL_GRXCLSRLALL: 2843 /* Buffer size is variable */ 2844 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2845 return -EFAULT; 2846 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2847 return -ENOMEM; 2848 buf_size += rule_cnt * sizeof(u32); 2849 /* fall through */ 2850 case ETHTOOL_GRXRINGS: 2851 case ETHTOOL_GRXCLSRLCNT: 2852 case ETHTOOL_GRXCLSRULE: 2853 case ETHTOOL_SRXCLSRLINS: 2854 convert_out = true; 2855 /* fall through */ 2856 case ETHTOOL_SRXCLSRLDEL: 2857 buf_size += sizeof(struct ethtool_rxnfc); 2858 convert_in = true; 2859 break; 2860 } 2861 2862 ifr = compat_alloc_user_space(buf_size); 2863 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2864 2865 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2866 return -EFAULT; 2867 2868 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2869 &ifr->ifr_ifru.ifru_data)) 2870 return -EFAULT; 2871 2872 if (convert_in) { 2873 /* We expect there to be holes between fs.m_ext and 2874 * fs.ring_cookie and at the end of fs, but nowhere else. 2875 */ 2876 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2877 sizeof(compat_rxnfc->fs.m_ext) != 2878 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2879 sizeof(rxnfc->fs.m_ext)); 2880 BUILD_BUG_ON( 2881 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2882 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2883 offsetof(struct ethtool_rxnfc, fs.location) - 2884 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2885 2886 if (copy_in_user(rxnfc, compat_rxnfc, 2887 (void __user *)(&rxnfc->fs.m_ext + 1) - 2888 (void __user *)rxnfc) || 2889 copy_in_user(&rxnfc->fs.ring_cookie, 2890 &compat_rxnfc->fs.ring_cookie, 2891 (void __user *)(&rxnfc->fs.location + 1) - 2892 (void __user *)&rxnfc->fs.ring_cookie) || 2893 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2894 sizeof(rxnfc->rule_cnt))) 2895 return -EFAULT; 2896 } 2897 2898 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2899 if (ret) 2900 return ret; 2901 2902 if (convert_out) { 2903 if (copy_in_user(compat_rxnfc, rxnfc, 2904 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2905 (const void __user *)rxnfc) || 2906 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2907 &rxnfc->fs.ring_cookie, 2908 (const void __user *)(&rxnfc->fs.location + 1) - 2909 (const void __user *)&rxnfc->fs.ring_cookie) || 2910 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2911 sizeof(rxnfc->rule_cnt))) 2912 return -EFAULT; 2913 2914 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2915 /* As an optimisation, we only copy the actual 2916 * number of rules that the underlying 2917 * function returned. Since Mallory might 2918 * change the rule count in user memory, we 2919 * check that it is less than the rule count 2920 * originally given (as the user buffer size), 2921 * which has been range-checked. 2922 */ 2923 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2924 return -EFAULT; 2925 if (actual_rule_cnt < rule_cnt) 2926 rule_cnt = actual_rule_cnt; 2927 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2928 &rxnfc->rule_locs[0], 2929 rule_cnt * sizeof(u32))) 2930 return -EFAULT; 2931 } 2932 } 2933 2934 return 0; 2935 } 2936 2937 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2938 { 2939 void __user *uptr; 2940 compat_uptr_t uptr32; 2941 struct ifreq __user *uifr; 2942 2943 uifr = compat_alloc_user_space(sizeof(*uifr)); 2944 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2945 return -EFAULT; 2946 2947 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2948 return -EFAULT; 2949 2950 uptr = compat_ptr(uptr32); 2951 2952 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2953 return -EFAULT; 2954 2955 return dev_ioctl(net, SIOCWANDEV, uifr); 2956 } 2957 2958 static int bond_ioctl(struct net *net, unsigned int cmd, 2959 struct compat_ifreq __user *ifr32) 2960 { 2961 struct ifreq kifr; 2962 mm_segment_t old_fs; 2963 int err; 2964 2965 switch (cmd) { 2966 case SIOCBONDENSLAVE: 2967 case SIOCBONDRELEASE: 2968 case SIOCBONDSETHWADDR: 2969 case SIOCBONDCHANGEACTIVE: 2970 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2971 return -EFAULT; 2972 2973 old_fs = get_fs(); 2974 set_fs(KERNEL_DS); 2975 err = dev_ioctl(net, cmd, 2976 (struct ifreq __user __force *) &kifr); 2977 set_fs(old_fs); 2978 2979 return err; 2980 default: 2981 return -ENOIOCTLCMD; 2982 } 2983 } 2984 2985 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2986 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2987 struct compat_ifreq __user *u_ifreq32) 2988 { 2989 struct ifreq __user *u_ifreq64; 2990 char tmp_buf[IFNAMSIZ]; 2991 void __user *data64; 2992 u32 data32; 2993 2994 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2995 IFNAMSIZ)) 2996 return -EFAULT; 2997 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2998 return -EFAULT; 2999 data64 = compat_ptr(data32); 3000 3001 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3002 3003 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3004 IFNAMSIZ)) 3005 return -EFAULT; 3006 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3007 return -EFAULT; 3008 3009 return dev_ioctl(net, cmd, u_ifreq64); 3010 } 3011 3012 static int dev_ifsioc(struct net *net, struct socket *sock, 3013 unsigned int cmd, struct compat_ifreq __user *uifr32) 3014 { 3015 struct ifreq __user *uifr; 3016 int err; 3017 3018 uifr = compat_alloc_user_space(sizeof(*uifr)); 3019 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3020 return -EFAULT; 3021 3022 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3023 3024 if (!err) { 3025 switch (cmd) { 3026 case SIOCGIFFLAGS: 3027 case SIOCGIFMETRIC: 3028 case SIOCGIFMTU: 3029 case SIOCGIFMEM: 3030 case SIOCGIFHWADDR: 3031 case SIOCGIFINDEX: 3032 case SIOCGIFADDR: 3033 case SIOCGIFBRDADDR: 3034 case SIOCGIFDSTADDR: 3035 case SIOCGIFNETMASK: 3036 case SIOCGIFPFLAGS: 3037 case SIOCGIFTXQLEN: 3038 case SIOCGMIIPHY: 3039 case SIOCGMIIREG: 3040 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3041 err = -EFAULT; 3042 break; 3043 } 3044 } 3045 return err; 3046 } 3047 3048 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3049 struct compat_ifreq __user *uifr32) 3050 { 3051 struct ifreq ifr; 3052 struct compat_ifmap __user *uifmap32; 3053 mm_segment_t old_fs; 3054 int err; 3055 3056 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3057 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3058 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3059 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3060 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3061 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3062 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3063 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3064 if (err) 3065 return -EFAULT; 3066 3067 old_fs = get_fs(); 3068 set_fs(KERNEL_DS); 3069 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3070 set_fs(old_fs); 3071 3072 if (cmd == SIOCGIFMAP && !err) { 3073 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3074 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3075 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3076 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3077 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3078 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3079 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3080 if (err) 3081 err = -EFAULT; 3082 } 3083 return err; 3084 } 3085 3086 struct rtentry32 { 3087 u32 rt_pad1; 3088 struct sockaddr rt_dst; /* target address */ 3089 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3090 struct sockaddr rt_genmask; /* target network mask (IP) */ 3091 unsigned short rt_flags; 3092 short rt_pad2; 3093 u32 rt_pad3; 3094 unsigned char rt_tos; 3095 unsigned char rt_class; 3096 short rt_pad4; 3097 short rt_metric; /* +1 for binary compatibility! */ 3098 /* char * */ u32 rt_dev; /* forcing the device at add */ 3099 u32 rt_mtu; /* per route MTU/Window */ 3100 u32 rt_window; /* Window clamping */ 3101 unsigned short rt_irtt; /* Initial RTT */ 3102 }; 3103 3104 struct in6_rtmsg32 { 3105 struct in6_addr rtmsg_dst; 3106 struct in6_addr rtmsg_src; 3107 struct in6_addr rtmsg_gateway; 3108 u32 rtmsg_type; 3109 u16 rtmsg_dst_len; 3110 u16 rtmsg_src_len; 3111 u32 rtmsg_metric; 3112 u32 rtmsg_info; 3113 u32 rtmsg_flags; 3114 s32 rtmsg_ifindex; 3115 }; 3116 3117 static int routing_ioctl(struct net *net, struct socket *sock, 3118 unsigned int cmd, void __user *argp) 3119 { 3120 int ret; 3121 void *r = NULL; 3122 struct in6_rtmsg r6; 3123 struct rtentry r4; 3124 char devname[16]; 3125 u32 rtdev; 3126 mm_segment_t old_fs = get_fs(); 3127 3128 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3129 struct in6_rtmsg32 __user *ur6 = argp; 3130 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3131 3 * sizeof(struct in6_addr)); 3132 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3133 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3134 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3135 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3136 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3137 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3138 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3139 3140 r = (void *) &r6; 3141 } else { /* ipv4 */ 3142 struct rtentry32 __user *ur4 = argp; 3143 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3144 3 * sizeof(struct sockaddr)); 3145 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3146 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3147 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3148 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3149 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3150 ret |= get_user(rtdev, &(ur4->rt_dev)); 3151 if (rtdev) { 3152 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3153 r4.rt_dev = (char __user __force *)devname; 3154 devname[15] = 0; 3155 } else 3156 r4.rt_dev = NULL; 3157 3158 r = (void *) &r4; 3159 } 3160 3161 if (ret) { 3162 ret = -EFAULT; 3163 goto out; 3164 } 3165 3166 set_fs(KERNEL_DS); 3167 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3168 set_fs(old_fs); 3169 3170 out: 3171 return ret; 3172 } 3173 3174 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3175 * for some operations; this forces use of the newer bridge-utils that 3176 * use compatible ioctls 3177 */ 3178 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3179 { 3180 compat_ulong_t tmp; 3181 3182 if (get_user(tmp, argp)) 3183 return -EFAULT; 3184 if (tmp == BRCTL_GET_VERSION) 3185 return BRCTL_VERSION + 1; 3186 return -EINVAL; 3187 } 3188 3189 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3190 unsigned int cmd, unsigned long arg) 3191 { 3192 void __user *argp = compat_ptr(arg); 3193 struct sock *sk = sock->sk; 3194 struct net *net = sock_net(sk); 3195 3196 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3197 return compat_ifr_data_ioctl(net, cmd, argp); 3198 3199 switch (cmd) { 3200 case SIOCSIFBR: 3201 case SIOCGIFBR: 3202 return old_bridge_ioctl(argp); 3203 case SIOCGIFNAME: 3204 return dev_ifname32(net, argp); 3205 case SIOCGIFCONF: 3206 return dev_ifconf(net, argp); 3207 case SIOCETHTOOL: 3208 return ethtool_ioctl(net, argp); 3209 case SIOCWANDEV: 3210 return compat_siocwandev(net, argp); 3211 case SIOCGIFMAP: 3212 case SIOCSIFMAP: 3213 return compat_sioc_ifmap(net, cmd, argp); 3214 case SIOCBONDENSLAVE: 3215 case SIOCBONDRELEASE: 3216 case SIOCBONDSETHWADDR: 3217 case SIOCBONDCHANGEACTIVE: 3218 return bond_ioctl(net, cmd, argp); 3219 case SIOCADDRT: 3220 case SIOCDELRT: 3221 return routing_ioctl(net, sock, cmd, argp); 3222 case SIOCGSTAMP: 3223 return do_siocgstamp(net, sock, cmd, argp); 3224 case SIOCGSTAMPNS: 3225 return do_siocgstampns(net, sock, cmd, argp); 3226 case SIOCBONDSLAVEINFOQUERY: 3227 case SIOCBONDINFOQUERY: 3228 case SIOCSHWTSTAMP: 3229 case SIOCGHWTSTAMP: 3230 return compat_ifr_data_ioctl(net, cmd, argp); 3231 3232 case FIOSETOWN: 3233 case SIOCSPGRP: 3234 case FIOGETOWN: 3235 case SIOCGPGRP: 3236 case SIOCBRADDBR: 3237 case SIOCBRDELBR: 3238 case SIOCGIFVLAN: 3239 case SIOCSIFVLAN: 3240 case SIOCADDDLCI: 3241 case SIOCDELDLCI: 3242 return sock_ioctl(file, cmd, arg); 3243 3244 case SIOCGIFFLAGS: 3245 case SIOCSIFFLAGS: 3246 case SIOCGIFMETRIC: 3247 case SIOCSIFMETRIC: 3248 case SIOCGIFMTU: 3249 case SIOCSIFMTU: 3250 case SIOCGIFMEM: 3251 case SIOCSIFMEM: 3252 case SIOCGIFHWADDR: 3253 case SIOCSIFHWADDR: 3254 case SIOCADDMULTI: 3255 case SIOCDELMULTI: 3256 case SIOCGIFINDEX: 3257 case SIOCGIFADDR: 3258 case SIOCSIFADDR: 3259 case SIOCSIFHWBROADCAST: 3260 case SIOCDIFADDR: 3261 case SIOCGIFBRDADDR: 3262 case SIOCSIFBRDADDR: 3263 case SIOCGIFDSTADDR: 3264 case SIOCSIFDSTADDR: 3265 case SIOCGIFNETMASK: 3266 case SIOCSIFNETMASK: 3267 case SIOCSIFPFLAGS: 3268 case SIOCGIFPFLAGS: 3269 case SIOCGIFTXQLEN: 3270 case SIOCSIFTXQLEN: 3271 case SIOCBRADDIF: 3272 case SIOCBRDELIF: 3273 case SIOCSIFNAME: 3274 case SIOCGMIIPHY: 3275 case SIOCGMIIREG: 3276 case SIOCSMIIREG: 3277 return dev_ifsioc(net, sock, cmd, argp); 3278 3279 case SIOCSARP: 3280 case SIOCGARP: 3281 case SIOCDARP: 3282 case SIOCATMARK: 3283 return sock_do_ioctl(net, sock, cmd, arg); 3284 } 3285 3286 return -ENOIOCTLCMD; 3287 } 3288 3289 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3290 unsigned long arg) 3291 { 3292 struct socket *sock = file->private_data; 3293 int ret = -ENOIOCTLCMD; 3294 struct sock *sk; 3295 struct net *net; 3296 3297 sk = sock->sk; 3298 net = sock_net(sk); 3299 3300 if (sock->ops->compat_ioctl) 3301 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3302 3303 if (ret == -ENOIOCTLCMD && 3304 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3305 ret = compat_wext_handle_ioctl(net, cmd, arg); 3306 3307 if (ret == -ENOIOCTLCMD) 3308 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3309 3310 return ret; 3311 } 3312 #endif 3313 3314 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3315 { 3316 return sock->ops->bind(sock, addr, addrlen); 3317 } 3318 EXPORT_SYMBOL(kernel_bind); 3319 3320 int kernel_listen(struct socket *sock, int backlog) 3321 { 3322 return sock->ops->listen(sock, backlog); 3323 } 3324 EXPORT_SYMBOL(kernel_listen); 3325 3326 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3327 { 3328 struct sock *sk = sock->sk; 3329 int err; 3330 3331 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3332 newsock); 3333 if (err < 0) 3334 goto done; 3335 3336 err = sock->ops->accept(sock, *newsock, flags); 3337 if (err < 0) { 3338 sock_release(*newsock); 3339 *newsock = NULL; 3340 goto done; 3341 } 3342 3343 (*newsock)->ops = sock->ops; 3344 __module_get((*newsock)->ops->owner); 3345 3346 done: 3347 return err; 3348 } 3349 EXPORT_SYMBOL(kernel_accept); 3350 3351 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3352 int flags) 3353 { 3354 return sock->ops->connect(sock, addr, addrlen, flags); 3355 } 3356 EXPORT_SYMBOL(kernel_connect); 3357 3358 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3359 int *addrlen) 3360 { 3361 return sock->ops->getname(sock, addr, addrlen, 0); 3362 } 3363 EXPORT_SYMBOL(kernel_getsockname); 3364 3365 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3366 int *addrlen) 3367 { 3368 return sock->ops->getname(sock, addr, addrlen, 1); 3369 } 3370 EXPORT_SYMBOL(kernel_getpeername); 3371 3372 int kernel_getsockopt(struct socket *sock, int level, int optname, 3373 char *optval, int *optlen) 3374 { 3375 mm_segment_t oldfs = get_fs(); 3376 char __user *uoptval; 3377 int __user *uoptlen; 3378 int err; 3379 3380 uoptval = (char __user __force *) optval; 3381 uoptlen = (int __user __force *) optlen; 3382 3383 set_fs(KERNEL_DS); 3384 if (level == SOL_SOCKET) 3385 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3386 else 3387 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3388 uoptlen); 3389 set_fs(oldfs); 3390 return err; 3391 } 3392 EXPORT_SYMBOL(kernel_getsockopt); 3393 3394 int kernel_setsockopt(struct socket *sock, int level, int optname, 3395 char *optval, unsigned int optlen) 3396 { 3397 mm_segment_t oldfs = get_fs(); 3398 char __user *uoptval; 3399 int err; 3400 3401 uoptval = (char __user __force *) optval; 3402 3403 set_fs(KERNEL_DS); 3404 if (level == SOL_SOCKET) 3405 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3406 else 3407 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3408 optlen); 3409 set_fs(oldfs); 3410 return err; 3411 } 3412 EXPORT_SYMBOL(kernel_setsockopt); 3413 3414 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3415 size_t size, int flags) 3416 { 3417 if (sock->ops->sendpage) 3418 return sock->ops->sendpage(sock, page, offset, size, flags); 3419 3420 return sock_no_sendpage(sock, page, offset, size, flags); 3421 } 3422 EXPORT_SYMBOL(kernel_sendpage); 3423 3424 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3425 { 3426 mm_segment_t oldfs = get_fs(); 3427 int err; 3428 3429 set_fs(KERNEL_DS); 3430 err = sock->ops->ioctl(sock, cmd, arg); 3431 set_fs(oldfs); 3432 3433 return err; 3434 } 3435 EXPORT_SYMBOL(kernel_sock_ioctl); 3436 3437 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3438 { 3439 return sock->ops->shutdown(sock, how); 3440 } 3441 EXPORT_SYMBOL(kernel_sock_shutdown); 3442