1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 static void wq_free_rcu(struct rcu_head *head) 266 { 267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 268 269 kfree(wq); 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 278 kmem_cache_free(sock_inode_cachep, ei); 279 } 280 281 static void init_once(void *foo) 282 { 283 struct socket_alloc *ei = (struct socket_alloc *)foo; 284 285 inode_init_once(&ei->vfs_inode); 286 } 287 288 static int init_inodecache(void) 289 { 290 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 291 sizeof(struct socket_alloc), 292 0, 293 (SLAB_HWCACHE_ALIGN | 294 SLAB_RECLAIM_ACCOUNT | 295 SLAB_MEM_SPREAD), 296 init_once); 297 if (sock_inode_cachep == NULL) 298 return -ENOMEM; 299 return 0; 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 309 int flags, const char *dev_name, void *data) 310 { 311 return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 312 } 313 314 static struct vfsmount *sock_mnt __read_mostly; 315 316 static struct file_system_type sock_fs_type = { 317 .name = "sockfs", 318 .mount = sockfs_mount, 319 .kill_sb = kill_anon_super, 320 }; 321 322 /* 323 * sockfs_dname() is called from d_path(). 324 */ 325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 326 { 327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 328 dentry->d_inode->i_ino); 329 } 330 331 static const struct dentry_operations sockfs_dentry_operations = { 332 .d_dname = sockfs_dname, 333 }; 334 335 /* 336 * Obtains the first available file descriptor and sets it up for use. 337 * 338 * These functions create file structures and maps them to fd space 339 * of the current process. On success it returns file descriptor 340 * and file struct implicitly stored in sock->file. 341 * Note that another thread may close file descriptor before we return 342 * from this function. We use the fact that now we do not refer 343 * to socket after mapping. If one day we will need it, this 344 * function will increment ref. count on file by 1. 345 * 346 * In any case returned fd MAY BE not valid! 347 * This race condition is unavoidable 348 * with shared fd spaces, we cannot solve it inside kernel, 349 * but we take care of internal coherence yet. 350 */ 351 352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 353 { 354 struct qstr name = { .name = "" }; 355 struct path path; 356 struct file *file; 357 int fd; 358 359 fd = get_unused_fd_flags(flags); 360 if (unlikely(fd < 0)) 361 return fd; 362 363 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 364 if (unlikely(!path.dentry)) { 365 put_unused_fd(fd); 366 return -ENOMEM; 367 } 368 path.mnt = mntget(sock_mnt); 369 370 path.dentry->d_op = &sockfs_dentry_operations; 371 d_instantiate(path.dentry, SOCK_INODE(sock)); 372 SOCK_INODE(sock)->i_fop = &socket_file_ops; 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (unlikely(!file)) { 377 /* drop dentry, keep inode */ 378 ihold(path.dentry->d_inode); 379 path_put(&path); 380 put_unused_fd(fd); 381 return -ENFILE; 382 } 383 384 sock->file = file; 385 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 386 file->f_pos = 0; 387 file->private_data = sock; 388 389 *f = file; 390 return fd; 391 } 392 393 int sock_map_fd(struct socket *sock, int flags) 394 { 395 struct file *newfile; 396 int fd = sock_alloc_file(sock, &newfile, flags); 397 398 if (likely(fd >= 0)) 399 fd_install(fd, newfile); 400 401 return fd; 402 } 403 EXPORT_SYMBOL(sock_map_fd); 404 405 static struct socket *sock_from_file(struct file *file, int *err) 406 { 407 if (file->f_op == &socket_file_ops) 408 return file->private_data; /* set in sock_map_fd */ 409 410 *err = -ENOTSOCK; 411 return NULL; 412 } 413 414 /** 415 * sockfd_lookup - Go from a file number to its socket slot 416 * @fd: file handle 417 * @err: pointer to an error code return 418 * 419 * The file handle passed in is locked and the socket it is bound 420 * too is returned. If an error occurs the err pointer is overwritten 421 * with a negative errno code and NULL is returned. The function checks 422 * for both invalid handles and passing a handle which is not a socket. 423 * 424 * On a success the socket object pointer is returned. 425 */ 426 427 struct socket *sockfd_lookup(int fd, int *err) 428 { 429 struct file *file; 430 struct socket *sock; 431 432 file = fget(fd); 433 if (!file) { 434 *err = -EBADF; 435 return NULL; 436 } 437 438 sock = sock_from_file(file, err); 439 if (!sock) 440 fput(file); 441 return sock; 442 } 443 EXPORT_SYMBOL(sockfd_lookup); 444 445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 446 { 447 struct file *file; 448 struct socket *sock; 449 450 *err = -EBADF; 451 file = fget_light(fd, fput_needed); 452 if (file) { 453 sock = sock_from_file(file, err); 454 if (sock) 455 return sock; 456 fput_light(file, *fput_needed); 457 } 458 return NULL; 459 } 460 461 /** 462 * sock_alloc - allocate a socket 463 * 464 * Allocate a new inode and socket object. The two are bound together 465 * and initialised. The socket is then returned. If we are out of inodes 466 * NULL is returned. 467 */ 468 469 static struct socket *sock_alloc(void) 470 { 471 struct inode *inode; 472 struct socket *sock; 473 474 inode = new_inode(sock_mnt->mnt_sb); 475 if (!inode) 476 return NULL; 477 478 sock = SOCKET_I(inode); 479 480 kmemcheck_annotate_bitfield(sock, type); 481 inode->i_ino = get_next_ino(); 482 inode->i_mode = S_IFSOCK | S_IRWXUGO; 483 inode->i_uid = current_fsuid(); 484 inode->i_gid = current_fsgid(); 485 486 percpu_add(sockets_in_use, 1); 487 return sock; 488 } 489 490 /* 491 * In theory you can't get an open on this inode, but /proc provides 492 * a back door. Remember to keep it shut otherwise you'll let the 493 * creepy crawlies in. 494 */ 495 496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 497 { 498 return -ENXIO; 499 } 500 501 const struct file_operations bad_sock_fops = { 502 .owner = THIS_MODULE, 503 .open = sock_no_open, 504 .llseek = noop_llseek, 505 }; 506 507 /** 508 * sock_release - close a socket 509 * @sock: socket to close 510 * 511 * The socket is released from the protocol stack if it has a release 512 * callback, and the inode is then released if the socket is bound to 513 * an inode not a file. 514 */ 515 516 void sock_release(struct socket *sock) 517 { 518 if (sock->ops) { 519 struct module *owner = sock->ops->owner; 520 521 sock->ops->release(sock); 522 sock->ops = NULL; 523 module_put(owner); 524 } 525 526 if (sock->wq->fasync_list) 527 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 528 529 percpu_sub(sockets_in_use, 1); 530 if (!sock->file) { 531 iput(SOCK_INODE(sock)); 532 return; 533 } 534 sock->file = NULL; 535 } 536 EXPORT_SYMBOL(sock_release); 537 538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 539 { 540 *tx_flags = 0; 541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 542 *tx_flags |= SKBTX_HW_TSTAMP; 543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 544 *tx_flags |= SKBTX_SW_TSTAMP; 545 return 0; 546 } 547 EXPORT_SYMBOL(sock_tx_timestamp); 548 549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 550 struct msghdr *msg, size_t size) 551 { 552 struct sock_iocb *si = kiocb_to_siocb(iocb); 553 int err; 554 555 sock_update_classid(sock->sk); 556 557 si->sock = sock; 558 si->scm = NULL; 559 si->msg = msg; 560 si->size = size; 561 562 err = security_socket_sendmsg(sock, msg, size); 563 if (err) 564 return err; 565 566 return sock->ops->sendmsg(iocb, sock, msg, size); 567 } 568 569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 570 { 571 struct kiocb iocb; 572 struct sock_iocb siocb; 573 int ret; 574 575 init_sync_kiocb(&iocb, NULL); 576 iocb.private = &siocb; 577 ret = __sock_sendmsg(&iocb, sock, msg, size); 578 if (-EIOCBQUEUED == ret) 579 ret = wait_on_sync_kiocb(&iocb); 580 return ret; 581 } 582 EXPORT_SYMBOL(sock_sendmsg); 583 584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 585 struct kvec *vec, size_t num, size_t size) 586 { 587 mm_segment_t oldfs = get_fs(); 588 int result; 589 590 set_fs(KERNEL_DS); 591 /* 592 * the following is safe, since for compiler definitions of kvec and 593 * iovec are identical, yielding the same in-core layout and alignment 594 */ 595 msg->msg_iov = (struct iovec *)vec; 596 msg->msg_iovlen = num; 597 result = sock_sendmsg(sock, msg, size); 598 set_fs(oldfs); 599 return result; 600 } 601 EXPORT_SYMBOL(kernel_sendmsg); 602 603 static int ktime2ts(ktime_t kt, struct timespec *ts) 604 { 605 if (kt.tv64) { 606 *ts = ktime_to_timespec(kt); 607 return 1; 608 } else { 609 return 0; 610 } 611 } 612 613 /* 614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 615 */ 616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 617 struct sk_buff *skb) 618 { 619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 620 struct timespec ts[3]; 621 int empty = 1; 622 struct skb_shared_hwtstamps *shhwtstamps = 623 skb_hwtstamps(skb); 624 625 /* Race occurred between timestamp enabling and packet 626 receiving. Fill in the current time for now. */ 627 if (need_software_tstamp && skb->tstamp.tv64 == 0) 628 __net_timestamp(skb); 629 630 if (need_software_tstamp) { 631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 632 struct timeval tv; 633 skb_get_timestamp(skb, &tv); 634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 635 sizeof(tv), &tv); 636 } else { 637 skb_get_timestampns(skb, &ts[0]); 638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 639 sizeof(ts[0]), &ts[0]); 640 } 641 } 642 643 644 memset(ts, 0, sizeof(ts)); 645 if (skb->tstamp.tv64 && 646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 647 skb_get_timestampns(skb, ts + 0); 648 empty = 0; 649 } 650 if (shhwtstamps) { 651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 652 ktime2ts(shhwtstamps->syststamp, ts + 1)) 653 empty = 0; 654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 655 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 656 empty = 0; 657 } 658 if (!empty) 659 put_cmsg(msg, SOL_SOCKET, 660 SCM_TIMESTAMPING, sizeof(ts), &ts); 661 } 662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 663 664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 665 struct sk_buff *skb) 666 { 667 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 668 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 669 sizeof(__u32), &skb->dropcount); 670 } 671 672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 673 struct sk_buff *skb) 674 { 675 sock_recv_timestamp(msg, sk, skb); 676 sock_recv_drops(msg, sk, skb); 677 } 678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 679 680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 681 struct msghdr *msg, size_t size, int flags) 682 { 683 struct sock_iocb *si = kiocb_to_siocb(iocb); 684 685 sock_update_classid(sock->sk); 686 687 si->sock = sock; 688 si->scm = NULL; 689 si->msg = msg; 690 si->size = size; 691 si->flags = flags; 692 693 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 694 } 695 696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 697 struct msghdr *msg, size_t size, int flags) 698 { 699 int err = security_socket_recvmsg(sock, msg, size, flags); 700 701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 702 } 703 704 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 705 size_t size, int flags) 706 { 707 struct kiocb iocb; 708 struct sock_iocb siocb; 709 int ret; 710 711 init_sync_kiocb(&iocb, NULL); 712 iocb.private = &siocb; 713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 714 if (-EIOCBQUEUED == ret) 715 ret = wait_on_sync_kiocb(&iocb); 716 return ret; 717 } 718 EXPORT_SYMBOL(sock_recvmsg); 719 720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 721 size_t size, int flags) 722 { 723 struct kiocb iocb; 724 struct sock_iocb siocb; 725 int ret; 726 727 init_sync_kiocb(&iocb, NULL); 728 iocb.private = &siocb; 729 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 730 if (-EIOCBQUEUED == ret) 731 ret = wait_on_sync_kiocb(&iocb); 732 return ret; 733 } 734 735 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 736 struct kvec *vec, size_t num, size_t size, int flags) 737 { 738 mm_segment_t oldfs = get_fs(); 739 int result; 740 741 set_fs(KERNEL_DS); 742 /* 743 * the following is safe, since for compiler definitions of kvec and 744 * iovec are identical, yielding the same in-core layout and alignment 745 */ 746 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 747 result = sock_recvmsg(sock, msg, size, flags); 748 set_fs(oldfs); 749 return result; 750 } 751 EXPORT_SYMBOL(kernel_recvmsg); 752 753 static void sock_aio_dtor(struct kiocb *iocb) 754 { 755 kfree(iocb->private); 756 } 757 758 static ssize_t sock_sendpage(struct file *file, struct page *page, 759 int offset, size_t size, loff_t *ppos, int more) 760 { 761 struct socket *sock; 762 int flags; 763 764 sock = file->private_data; 765 766 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 767 if (more) 768 flags |= MSG_MORE; 769 770 return kernel_sendpage(sock, page, offset, size, flags); 771 } 772 773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 struct socket *sock = file->private_data; 778 779 if (unlikely(!sock->ops->splice_read)) 780 return -EINVAL; 781 782 sock_update_classid(sock->sk); 783 784 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 785 } 786 787 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 788 struct sock_iocb *siocb) 789 { 790 if (!is_sync_kiocb(iocb)) { 791 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 792 if (!siocb) 793 return NULL; 794 iocb->ki_dtor = sock_aio_dtor; 795 } 796 797 siocb->kiocb = iocb; 798 iocb->private = siocb; 799 return siocb; 800 } 801 802 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 803 struct file *file, const struct iovec *iov, 804 unsigned long nr_segs) 805 { 806 struct socket *sock = file->private_data; 807 size_t size = 0; 808 int i; 809 810 for (i = 0; i < nr_segs; i++) 811 size += iov[i].iov_len; 812 813 msg->msg_name = NULL; 814 msg->msg_namelen = 0; 815 msg->msg_control = NULL; 816 msg->msg_controllen = 0; 817 msg->msg_iov = (struct iovec *)iov; 818 msg->msg_iovlen = nr_segs; 819 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 820 821 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 822 } 823 824 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 825 unsigned long nr_segs, loff_t pos) 826 { 827 struct sock_iocb siocb, *x; 828 829 if (pos != 0) 830 return -ESPIPE; 831 832 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 833 return 0; 834 835 836 x = alloc_sock_iocb(iocb, &siocb); 837 if (!x) 838 return -ENOMEM; 839 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 840 } 841 842 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 843 struct file *file, const struct iovec *iov, 844 unsigned long nr_segs) 845 { 846 struct socket *sock = file->private_data; 847 size_t size = 0; 848 int i; 849 850 for (i = 0; i < nr_segs; i++) 851 size += iov[i].iov_len; 852 853 msg->msg_name = NULL; 854 msg->msg_namelen = 0; 855 msg->msg_control = NULL; 856 msg->msg_controllen = 0; 857 msg->msg_iov = (struct iovec *)iov; 858 msg->msg_iovlen = nr_segs; 859 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 860 if (sock->type == SOCK_SEQPACKET) 861 msg->msg_flags |= MSG_EOR; 862 863 return __sock_sendmsg(iocb, sock, msg, size); 864 } 865 866 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 867 unsigned long nr_segs, loff_t pos) 868 { 869 struct sock_iocb siocb, *x; 870 871 if (pos != 0) 872 return -ESPIPE; 873 874 x = alloc_sock_iocb(iocb, &siocb); 875 if (!x) 876 return -ENOMEM; 877 878 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 879 } 880 881 /* 882 * Atomic setting of ioctl hooks to avoid race 883 * with module unload. 884 */ 885 886 static DEFINE_MUTEX(br_ioctl_mutex); 887 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 888 889 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 890 { 891 mutex_lock(&br_ioctl_mutex); 892 br_ioctl_hook = hook; 893 mutex_unlock(&br_ioctl_mutex); 894 } 895 EXPORT_SYMBOL(brioctl_set); 896 897 static DEFINE_MUTEX(vlan_ioctl_mutex); 898 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 899 900 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 901 { 902 mutex_lock(&vlan_ioctl_mutex); 903 vlan_ioctl_hook = hook; 904 mutex_unlock(&vlan_ioctl_mutex); 905 } 906 EXPORT_SYMBOL(vlan_ioctl_set); 907 908 static DEFINE_MUTEX(dlci_ioctl_mutex); 909 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 910 911 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 912 { 913 mutex_lock(&dlci_ioctl_mutex); 914 dlci_ioctl_hook = hook; 915 mutex_unlock(&dlci_ioctl_mutex); 916 } 917 EXPORT_SYMBOL(dlci_ioctl_set); 918 919 static long sock_do_ioctl(struct net *net, struct socket *sock, 920 unsigned int cmd, unsigned long arg) 921 { 922 int err; 923 void __user *argp = (void __user *)arg; 924 925 err = sock->ops->ioctl(sock, cmd, arg); 926 927 /* 928 * If this ioctl is unknown try to hand it down 929 * to the NIC driver. 930 */ 931 if (err == -ENOIOCTLCMD) 932 err = dev_ioctl(net, cmd, argp); 933 934 return err; 935 } 936 937 /* 938 * With an ioctl, arg may well be a user mode pointer, but we don't know 939 * what to do with it - that's up to the protocol still. 940 */ 941 942 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 943 { 944 struct socket *sock; 945 struct sock *sk; 946 void __user *argp = (void __user *)arg; 947 int pid, err; 948 struct net *net; 949 950 sock = file->private_data; 951 sk = sock->sk; 952 net = sock_net(sk); 953 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 954 err = dev_ioctl(net, cmd, argp); 955 } else 956 #ifdef CONFIG_WEXT_CORE 957 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 958 err = dev_ioctl(net, cmd, argp); 959 } else 960 #endif 961 switch (cmd) { 962 case FIOSETOWN: 963 case SIOCSPGRP: 964 err = -EFAULT; 965 if (get_user(pid, (int __user *)argp)) 966 break; 967 err = f_setown(sock->file, pid, 1); 968 break; 969 case FIOGETOWN: 970 case SIOCGPGRP: 971 err = put_user(f_getown(sock->file), 972 (int __user *)argp); 973 break; 974 case SIOCGIFBR: 975 case SIOCSIFBR: 976 case SIOCBRADDBR: 977 case SIOCBRDELBR: 978 err = -ENOPKG; 979 if (!br_ioctl_hook) 980 request_module("bridge"); 981 982 mutex_lock(&br_ioctl_mutex); 983 if (br_ioctl_hook) 984 err = br_ioctl_hook(net, cmd, argp); 985 mutex_unlock(&br_ioctl_mutex); 986 break; 987 case SIOCGIFVLAN: 988 case SIOCSIFVLAN: 989 err = -ENOPKG; 990 if (!vlan_ioctl_hook) 991 request_module("8021q"); 992 993 mutex_lock(&vlan_ioctl_mutex); 994 if (vlan_ioctl_hook) 995 err = vlan_ioctl_hook(net, argp); 996 mutex_unlock(&vlan_ioctl_mutex); 997 break; 998 case SIOCADDDLCI: 999 case SIOCDELDLCI: 1000 err = -ENOPKG; 1001 if (!dlci_ioctl_hook) 1002 request_module("dlci"); 1003 1004 mutex_lock(&dlci_ioctl_mutex); 1005 if (dlci_ioctl_hook) 1006 err = dlci_ioctl_hook(cmd, argp); 1007 mutex_unlock(&dlci_ioctl_mutex); 1008 break; 1009 default: 1010 err = sock_do_ioctl(net, sock, cmd, arg); 1011 break; 1012 } 1013 return err; 1014 } 1015 1016 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1017 { 1018 int err; 1019 struct socket *sock = NULL; 1020 1021 err = security_socket_create(family, type, protocol, 1); 1022 if (err) 1023 goto out; 1024 1025 sock = sock_alloc(); 1026 if (!sock) { 1027 err = -ENOMEM; 1028 goto out; 1029 } 1030 1031 sock->type = type; 1032 err = security_socket_post_create(sock, family, type, protocol, 1); 1033 if (err) 1034 goto out_release; 1035 1036 out: 1037 *res = sock; 1038 return err; 1039 out_release: 1040 sock_release(sock); 1041 sock = NULL; 1042 goto out; 1043 } 1044 EXPORT_SYMBOL(sock_create_lite); 1045 1046 /* No kernel lock held - perfect */ 1047 static unsigned int sock_poll(struct file *file, poll_table *wait) 1048 { 1049 struct socket *sock; 1050 1051 /* 1052 * We can't return errors to poll, so it's either yes or no. 1053 */ 1054 sock = file->private_data; 1055 return sock->ops->poll(file, sock, wait); 1056 } 1057 1058 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1059 { 1060 struct socket *sock = file->private_data; 1061 1062 return sock->ops->mmap(file, sock, vma); 1063 } 1064 1065 static int sock_close(struct inode *inode, struct file *filp) 1066 { 1067 /* 1068 * It was possible the inode is NULL we were 1069 * closing an unfinished socket. 1070 */ 1071 1072 if (!inode) { 1073 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1074 return 0; 1075 } 1076 sock_release(SOCKET_I(inode)); 1077 return 0; 1078 } 1079 1080 /* 1081 * Update the socket async list 1082 * 1083 * Fasync_list locking strategy. 1084 * 1085 * 1. fasync_list is modified only under process context socket lock 1086 * i.e. under semaphore. 1087 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1088 * or under socket lock 1089 */ 1090 1091 static int sock_fasync(int fd, struct file *filp, int on) 1092 { 1093 struct socket *sock = filp->private_data; 1094 struct sock *sk = sock->sk; 1095 1096 if (sk == NULL) 1097 return -EINVAL; 1098 1099 lock_sock(sk); 1100 1101 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1102 1103 if (!sock->wq->fasync_list) 1104 sock_reset_flag(sk, SOCK_FASYNC); 1105 else 1106 sock_set_flag(sk, SOCK_FASYNC); 1107 1108 release_sock(sk); 1109 return 0; 1110 } 1111 1112 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1113 1114 int sock_wake_async(struct socket *sock, int how, int band) 1115 { 1116 struct socket_wq *wq; 1117 1118 if (!sock) 1119 return -1; 1120 rcu_read_lock(); 1121 wq = rcu_dereference(sock->wq); 1122 if (!wq || !wq->fasync_list) { 1123 rcu_read_unlock(); 1124 return -1; 1125 } 1126 switch (how) { 1127 case SOCK_WAKE_WAITD: 1128 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1129 break; 1130 goto call_kill; 1131 case SOCK_WAKE_SPACE: 1132 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1133 break; 1134 /* fall through */ 1135 case SOCK_WAKE_IO: 1136 call_kill: 1137 kill_fasync(&wq->fasync_list, SIGIO, band); 1138 break; 1139 case SOCK_WAKE_URG: 1140 kill_fasync(&wq->fasync_list, SIGURG, band); 1141 } 1142 rcu_read_unlock(); 1143 return 0; 1144 } 1145 EXPORT_SYMBOL(sock_wake_async); 1146 1147 int __sock_create(struct net *net, int family, int type, int protocol, 1148 struct socket **res, int kern) 1149 { 1150 int err; 1151 struct socket *sock; 1152 const struct net_proto_family *pf; 1153 1154 /* 1155 * Check protocol is in range 1156 */ 1157 if (family < 0 || family >= NPROTO) 1158 return -EAFNOSUPPORT; 1159 if (type < 0 || type >= SOCK_MAX) 1160 return -EINVAL; 1161 1162 /* Compatibility. 1163 1164 This uglymoron is moved from INET layer to here to avoid 1165 deadlock in module load. 1166 */ 1167 if (family == PF_INET && type == SOCK_PACKET) { 1168 static int warned; 1169 if (!warned) { 1170 warned = 1; 1171 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1172 current->comm); 1173 } 1174 family = PF_PACKET; 1175 } 1176 1177 err = security_socket_create(family, type, protocol, kern); 1178 if (err) 1179 return err; 1180 1181 /* 1182 * Allocate the socket and allow the family to set things up. if 1183 * the protocol is 0, the family is instructed to select an appropriate 1184 * default. 1185 */ 1186 sock = sock_alloc(); 1187 if (!sock) { 1188 if (net_ratelimit()) 1189 printk(KERN_WARNING "socket: no more sockets\n"); 1190 return -ENFILE; /* Not exactly a match, but its the 1191 closest posix thing */ 1192 } 1193 1194 sock->type = type; 1195 1196 #ifdef CONFIG_MODULES 1197 /* Attempt to load a protocol module if the find failed. 1198 * 1199 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1200 * requested real, full-featured networking support upon configuration. 1201 * Otherwise module support will break! 1202 */ 1203 if (net_families[family] == NULL) 1204 request_module("net-pf-%d", family); 1205 #endif 1206 1207 rcu_read_lock(); 1208 pf = rcu_dereference(net_families[family]); 1209 err = -EAFNOSUPPORT; 1210 if (!pf) 1211 goto out_release; 1212 1213 /* 1214 * We will call the ->create function, that possibly is in a loadable 1215 * module, so we have to bump that loadable module refcnt first. 1216 */ 1217 if (!try_module_get(pf->owner)) 1218 goto out_release; 1219 1220 /* Now protected by module ref count */ 1221 rcu_read_unlock(); 1222 1223 err = pf->create(net, sock, protocol, kern); 1224 if (err < 0) 1225 goto out_module_put; 1226 1227 /* 1228 * Now to bump the refcnt of the [loadable] module that owns this 1229 * socket at sock_release time we decrement its refcnt. 1230 */ 1231 if (!try_module_get(sock->ops->owner)) 1232 goto out_module_busy; 1233 1234 /* 1235 * Now that we're done with the ->create function, the [loadable] 1236 * module can have its refcnt decremented 1237 */ 1238 module_put(pf->owner); 1239 err = security_socket_post_create(sock, family, type, protocol, kern); 1240 if (err) 1241 goto out_sock_release; 1242 *res = sock; 1243 1244 return 0; 1245 1246 out_module_busy: 1247 err = -EAFNOSUPPORT; 1248 out_module_put: 1249 sock->ops = NULL; 1250 module_put(pf->owner); 1251 out_sock_release: 1252 sock_release(sock); 1253 return err; 1254 1255 out_release: 1256 rcu_read_unlock(); 1257 goto out_sock_release; 1258 } 1259 EXPORT_SYMBOL(__sock_create); 1260 1261 int sock_create(int family, int type, int protocol, struct socket **res) 1262 { 1263 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1264 } 1265 EXPORT_SYMBOL(sock_create); 1266 1267 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1268 { 1269 return __sock_create(&init_net, family, type, protocol, res, 1); 1270 } 1271 EXPORT_SYMBOL(sock_create_kern); 1272 1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1274 { 1275 int retval; 1276 struct socket *sock; 1277 int flags; 1278 1279 /* Check the SOCK_* constants for consistency. */ 1280 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1281 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1282 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1283 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1284 1285 flags = type & ~SOCK_TYPE_MASK; 1286 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1287 return -EINVAL; 1288 type &= SOCK_TYPE_MASK; 1289 1290 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1291 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1292 1293 retval = sock_create(family, type, protocol, &sock); 1294 if (retval < 0) 1295 goto out; 1296 1297 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1298 if (retval < 0) 1299 goto out_release; 1300 1301 out: 1302 /* It may be already another descriptor 8) Not kernel problem. */ 1303 return retval; 1304 1305 out_release: 1306 sock_release(sock); 1307 return retval; 1308 } 1309 1310 /* 1311 * Create a pair of connected sockets. 1312 */ 1313 1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1315 int __user *, usockvec) 1316 { 1317 struct socket *sock1, *sock2; 1318 int fd1, fd2, err; 1319 struct file *newfile1, *newfile2; 1320 int flags; 1321 1322 flags = type & ~SOCK_TYPE_MASK; 1323 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1324 return -EINVAL; 1325 type &= SOCK_TYPE_MASK; 1326 1327 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1328 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1329 1330 /* 1331 * Obtain the first socket and check if the underlying protocol 1332 * supports the socketpair call. 1333 */ 1334 1335 err = sock_create(family, type, protocol, &sock1); 1336 if (err < 0) 1337 goto out; 1338 1339 err = sock_create(family, type, protocol, &sock2); 1340 if (err < 0) 1341 goto out_release_1; 1342 1343 err = sock1->ops->socketpair(sock1, sock2); 1344 if (err < 0) 1345 goto out_release_both; 1346 1347 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1348 if (unlikely(fd1 < 0)) { 1349 err = fd1; 1350 goto out_release_both; 1351 } 1352 1353 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1354 if (unlikely(fd2 < 0)) { 1355 err = fd2; 1356 fput(newfile1); 1357 put_unused_fd(fd1); 1358 sock_release(sock2); 1359 goto out; 1360 } 1361 1362 audit_fd_pair(fd1, fd2); 1363 fd_install(fd1, newfile1); 1364 fd_install(fd2, newfile2); 1365 /* fd1 and fd2 may be already another descriptors. 1366 * Not kernel problem. 1367 */ 1368 1369 err = put_user(fd1, &usockvec[0]); 1370 if (!err) 1371 err = put_user(fd2, &usockvec[1]); 1372 if (!err) 1373 return 0; 1374 1375 sys_close(fd2); 1376 sys_close(fd1); 1377 return err; 1378 1379 out_release_both: 1380 sock_release(sock2); 1381 out_release_1: 1382 sock_release(sock1); 1383 out: 1384 return err; 1385 } 1386 1387 /* 1388 * Bind a name to a socket. Nothing much to do here since it's 1389 * the protocol's responsibility to handle the local address. 1390 * 1391 * We move the socket address to kernel space before we call 1392 * the protocol layer (having also checked the address is ok). 1393 */ 1394 1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1396 { 1397 struct socket *sock; 1398 struct sockaddr_storage address; 1399 int err, fput_needed; 1400 1401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1402 if (sock) { 1403 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1404 if (err >= 0) { 1405 err = security_socket_bind(sock, 1406 (struct sockaddr *)&address, 1407 addrlen); 1408 if (!err) 1409 err = sock->ops->bind(sock, 1410 (struct sockaddr *) 1411 &address, addrlen); 1412 } 1413 fput_light(sock->file, fput_needed); 1414 } 1415 return err; 1416 } 1417 1418 /* 1419 * Perform a listen. Basically, we allow the protocol to do anything 1420 * necessary for a listen, and if that works, we mark the socket as 1421 * ready for listening. 1422 */ 1423 1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1425 { 1426 struct socket *sock; 1427 int err, fput_needed; 1428 int somaxconn; 1429 1430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1431 if (sock) { 1432 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1433 if ((unsigned)backlog > somaxconn) 1434 backlog = somaxconn; 1435 1436 err = security_socket_listen(sock, backlog); 1437 if (!err) 1438 err = sock->ops->listen(sock, backlog); 1439 1440 fput_light(sock->file, fput_needed); 1441 } 1442 return err; 1443 } 1444 1445 /* 1446 * For accept, we attempt to create a new socket, set up the link 1447 * with the client, wake up the client, then return the new 1448 * connected fd. We collect the address of the connector in kernel 1449 * space and move it to user at the very end. This is unclean because 1450 * we open the socket then return an error. 1451 * 1452 * 1003.1g adds the ability to recvmsg() to query connection pending 1453 * status to recvmsg. We need to add that support in a way thats 1454 * clean when we restucture accept also. 1455 */ 1456 1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1458 int __user *, upeer_addrlen, int, flags) 1459 { 1460 struct socket *sock, *newsock; 1461 struct file *newfile; 1462 int err, len, newfd, fput_needed; 1463 struct sockaddr_storage address; 1464 1465 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1466 return -EINVAL; 1467 1468 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1469 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1470 1471 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1472 if (!sock) 1473 goto out; 1474 1475 err = -ENFILE; 1476 newsock = sock_alloc(); 1477 if (!newsock) 1478 goto out_put; 1479 1480 newsock->type = sock->type; 1481 newsock->ops = sock->ops; 1482 1483 /* 1484 * We don't need try_module_get here, as the listening socket (sock) 1485 * has the protocol module (sock->ops->owner) held. 1486 */ 1487 __module_get(newsock->ops->owner); 1488 1489 newfd = sock_alloc_file(newsock, &newfile, flags); 1490 if (unlikely(newfd < 0)) { 1491 err = newfd; 1492 sock_release(newsock); 1493 goto out_put; 1494 } 1495 1496 err = security_socket_accept(sock, newsock); 1497 if (err) 1498 goto out_fd; 1499 1500 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1501 if (err < 0) 1502 goto out_fd; 1503 1504 if (upeer_sockaddr) { 1505 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1506 &len, 2) < 0) { 1507 err = -ECONNABORTED; 1508 goto out_fd; 1509 } 1510 err = move_addr_to_user((struct sockaddr *)&address, 1511 len, upeer_sockaddr, upeer_addrlen); 1512 if (err < 0) 1513 goto out_fd; 1514 } 1515 1516 /* File flags are not inherited via accept() unlike another OSes. */ 1517 1518 fd_install(newfd, newfile); 1519 err = newfd; 1520 1521 out_put: 1522 fput_light(sock->file, fput_needed); 1523 out: 1524 return err; 1525 out_fd: 1526 fput(newfile); 1527 put_unused_fd(newfd); 1528 goto out_put; 1529 } 1530 1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1532 int __user *, upeer_addrlen) 1533 { 1534 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1535 } 1536 1537 /* 1538 * Attempt to connect to a socket with the server address. The address 1539 * is in user space so we verify it is OK and move it to kernel space. 1540 * 1541 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1542 * break bindings 1543 * 1544 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1545 * other SEQPACKET protocols that take time to connect() as it doesn't 1546 * include the -EINPROGRESS status for such sockets. 1547 */ 1548 1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1550 int, addrlen) 1551 { 1552 struct socket *sock; 1553 struct sockaddr_storage address; 1554 int err, fput_needed; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (!sock) 1558 goto out; 1559 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1560 if (err < 0) 1561 goto out_put; 1562 1563 err = 1564 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1565 if (err) 1566 goto out_put; 1567 1568 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1569 sock->file->f_flags); 1570 out_put: 1571 fput_light(sock->file, fput_needed); 1572 out: 1573 return err; 1574 } 1575 1576 /* 1577 * Get the local address ('name') of a socket object. Move the obtained 1578 * name to user space. 1579 */ 1580 1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1582 int __user *, usockaddr_len) 1583 { 1584 struct socket *sock; 1585 struct sockaddr_storage address; 1586 int len, err, fput_needed; 1587 1588 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1589 if (!sock) 1590 goto out; 1591 1592 err = security_socket_getsockname(sock); 1593 if (err) 1594 goto out_put; 1595 1596 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1597 if (err) 1598 goto out_put; 1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1600 1601 out_put: 1602 fput_light(sock->file, fput_needed); 1603 out: 1604 return err; 1605 } 1606 1607 /* 1608 * Get the remote address ('name') of a socket object. Move the obtained 1609 * name to user space. 1610 */ 1611 1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1613 int __user *, usockaddr_len) 1614 { 1615 struct socket *sock; 1616 struct sockaddr_storage address; 1617 int len, err, fput_needed; 1618 1619 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1620 if (sock != NULL) { 1621 err = security_socket_getpeername(sock); 1622 if (err) { 1623 fput_light(sock->file, fput_needed); 1624 return err; 1625 } 1626 1627 err = 1628 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1629 1); 1630 if (!err) 1631 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1632 usockaddr_len); 1633 fput_light(sock->file, fput_needed); 1634 } 1635 return err; 1636 } 1637 1638 /* 1639 * Send a datagram to a given address. We move the address into kernel 1640 * space and check the user space data area is readable before invoking 1641 * the protocol. 1642 */ 1643 1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1645 unsigned, flags, struct sockaddr __user *, addr, 1646 int, addr_len) 1647 { 1648 struct socket *sock; 1649 struct sockaddr_storage address; 1650 int err; 1651 struct msghdr msg; 1652 struct iovec iov; 1653 int fput_needed; 1654 1655 if (len > INT_MAX) 1656 len = INT_MAX; 1657 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1658 if (!sock) 1659 goto out; 1660 1661 iov.iov_base = buff; 1662 iov.iov_len = len; 1663 msg.msg_name = NULL; 1664 msg.msg_iov = &iov; 1665 msg.msg_iovlen = 1; 1666 msg.msg_control = NULL; 1667 msg.msg_controllen = 0; 1668 msg.msg_namelen = 0; 1669 if (addr) { 1670 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1671 if (err < 0) 1672 goto out_put; 1673 msg.msg_name = (struct sockaddr *)&address; 1674 msg.msg_namelen = addr_len; 1675 } 1676 if (sock->file->f_flags & O_NONBLOCK) 1677 flags |= MSG_DONTWAIT; 1678 msg.msg_flags = flags; 1679 err = sock_sendmsg(sock, &msg, len); 1680 1681 out_put: 1682 fput_light(sock->file, fput_needed); 1683 out: 1684 return err; 1685 } 1686 1687 /* 1688 * Send a datagram down a socket. 1689 */ 1690 1691 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1692 unsigned, flags) 1693 { 1694 return sys_sendto(fd, buff, len, flags, NULL, 0); 1695 } 1696 1697 /* 1698 * Receive a frame from the socket and optionally record the address of the 1699 * sender. We verify the buffers are writable and if needed move the 1700 * sender address from kernel to user space. 1701 */ 1702 1703 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1704 unsigned, flags, struct sockaddr __user *, addr, 1705 int __user *, addr_len) 1706 { 1707 struct socket *sock; 1708 struct iovec iov; 1709 struct msghdr msg; 1710 struct sockaddr_storage address; 1711 int err, err2; 1712 int fput_needed; 1713 1714 if (size > INT_MAX) 1715 size = INT_MAX; 1716 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1717 if (!sock) 1718 goto out; 1719 1720 msg.msg_control = NULL; 1721 msg.msg_controllen = 0; 1722 msg.msg_iovlen = 1; 1723 msg.msg_iov = &iov; 1724 iov.iov_len = size; 1725 iov.iov_base = ubuf; 1726 msg.msg_name = (struct sockaddr *)&address; 1727 msg.msg_namelen = sizeof(address); 1728 if (sock->file->f_flags & O_NONBLOCK) 1729 flags |= MSG_DONTWAIT; 1730 err = sock_recvmsg(sock, &msg, size, flags); 1731 1732 if (err >= 0 && addr != NULL) { 1733 err2 = move_addr_to_user((struct sockaddr *)&address, 1734 msg.msg_namelen, addr, addr_len); 1735 if (err2 < 0) 1736 err = err2; 1737 } 1738 1739 fput_light(sock->file, fput_needed); 1740 out: 1741 return err; 1742 } 1743 1744 /* 1745 * Receive a datagram from a socket. 1746 */ 1747 1748 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1749 unsigned flags) 1750 { 1751 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1752 } 1753 1754 /* 1755 * Set a socket option. Because we don't know the option lengths we have 1756 * to pass the user mode parameter for the protocols to sort out. 1757 */ 1758 1759 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1760 char __user *, optval, int, optlen) 1761 { 1762 int err, fput_needed; 1763 struct socket *sock; 1764 1765 if (optlen < 0) 1766 return -EINVAL; 1767 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (sock != NULL) { 1770 err = security_socket_setsockopt(sock, level, optname); 1771 if (err) 1772 goto out_put; 1773 1774 if (level == SOL_SOCKET) 1775 err = 1776 sock_setsockopt(sock, level, optname, optval, 1777 optlen); 1778 else 1779 err = 1780 sock->ops->setsockopt(sock, level, optname, optval, 1781 optlen); 1782 out_put: 1783 fput_light(sock->file, fput_needed); 1784 } 1785 return err; 1786 } 1787 1788 /* 1789 * Get a socket option. Because we don't know the option lengths we have 1790 * to pass a user mode parameter for the protocols to sort out. 1791 */ 1792 1793 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1794 char __user *, optval, int __user *, optlen) 1795 { 1796 int err, fput_needed; 1797 struct socket *sock; 1798 1799 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1800 if (sock != NULL) { 1801 err = security_socket_getsockopt(sock, level, optname); 1802 if (err) 1803 goto out_put; 1804 1805 if (level == SOL_SOCKET) 1806 err = 1807 sock_getsockopt(sock, level, optname, optval, 1808 optlen); 1809 else 1810 err = 1811 sock->ops->getsockopt(sock, level, optname, optval, 1812 optlen); 1813 out_put: 1814 fput_light(sock->file, fput_needed); 1815 } 1816 return err; 1817 } 1818 1819 /* 1820 * Shutdown a socket. 1821 */ 1822 1823 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1824 { 1825 int err, fput_needed; 1826 struct socket *sock; 1827 1828 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1829 if (sock != NULL) { 1830 err = security_socket_shutdown(sock, how); 1831 if (!err) 1832 err = sock->ops->shutdown(sock, how); 1833 fput_light(sock->file, fput_needed); 1834 } 1835 return err; 1836 } 1837 1838 /* A couple of helpful macros for getting the address of the 32/64 bit 1839 * fields which are the same type (int / unsigned) on our platforms. 1840 */ 1841 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1842 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1843 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1844 1845 /* 1846 * BSD sendmsg interface 1847 */ 1848 1849 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1850 { 1851 struct compat_msghdr __user *msg_compat = 1852 (struct compat_msghdr __user *)msg; 1853 struct socket *sock; 1854 struct sockaddr_storage address; 1855 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1856 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1857 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1858 /* 20 is size of ipv6_pktinfo */ 1859 unsigned char *ctl_buf = ctl; 1860 struct msghdr msg_sys; 1861 int err, ctl_len, iov_size, total_len; 1862 int fput_needed; 1863 1864 err = -EFAULT; 1865 if (MSG_CMSG_COMPAT & flags) { 1866 if (get_compat_msghdr(&msg_sys, msg_compat)) 1867 return -EFAULT; 1868 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1869 return -EFAULT; 1870 1871 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1872 if (!sock) 1873 goto out; 1874 1875 /* do not move before msg_sys is valid */ 1876 err = -EMSGSIZE; 1877 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1878 goto out_put; 1879 1880 /* Check whether to allocate the iovec area */ 1881 err = -ENOMEM; 1882 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1883 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1884 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1885 if (!iov) 1886 goto out_put; 1887 } 1888 1889 /* This will also move the address data into kernel space */ 1890 if (MSG_CMSG_COMPAT & flags) { 1891 err = verify_compat_iovec(&msg_sys, iov, 1892 (struct sockaddr *)&address, 1893 VERIFY_READ); 1894 } else 1895 err = verify_iovec(&msg_sys, iov, 1896 (struct sockaddr *)&address, 1897 VERIFY_READ); 1898 if (err < 0) 1899 goto out_freeiov; 1900 total_len = err; 1901 1902 err = -ENOBUFS; 1903 1904 if (msg_sys.msg_controllen > INT_MAX) 1905 goto out_freeiov; 1906 ctl_len = msg_sys.msg_controllen; 1907 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1908 err = 1909 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1910 sizeof(ctl)); 1911 if (err) 1912 goto out_freeiov; 1913 ctl_buf = msg_sys.msg_control; 1914 ctl_len = msg_sys.msg_controllen; 1915 } else if (ctl_len) { 1916 if (ctl_len > sizeof(ctl)) { 1917 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1918 if (ctl_buf == NULL) 1919 goto out_freeiov; 1920 } 1921 err = -EFAULT; 1922 /* 1923 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1924 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1925 * checking falls down on this. 1926 */ 1927 if (copy_from_user(ctl_buf, 1928 (void __user __force *)msg_sys.msg_control, 1929 ctl_len)) 1930 goto out_freectl; 1931 msg_sys.msg_control = ctl_buf; 1932 } 1933 msg_sys.msg_flags = flags; 1934 1935 if (sock->file->f_flags & O_NONBLOCK) 1936 msg_sys.msg_flags |= MSG_DONTWAIT; 1937 err = sock_sendmsg(sock, &msg_sys, total_len); 1938 1939 out_freectl: 1940 if (ctl_buf != ctl) 1941 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1942 out_freeiov: 1943 if (iov != iovstack) 1944 sock_kfree_s(sock->sk, iov, iov_size); 1945 out_put: 1946 fput_light(sock->file, fput_needed); 1947 out: 1948 return err; 1949 } 1950 1951 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1952 struct msghdr *msg_sys, unsigned flags, int nosec) 1953 { 1954 struct compat_msghdr __user *msg_compat = 1955 (struct compat_msghdr __user *)msg; 1956 struct iovec iovstack[UIO_FASTIOV]; 1957 struct iovec *iov = iovstack; 1958 unsigned long cmsg_ptr; 1959 int err, iov_size, total_len, len; 1960 1961 /* kernel mode address */ 1962 struct sockaddr_storage addr; 1963 1964 /* user mode address pointers */ 1965 struct sockaddr __user *uaddr; 1966 int __user *uaddr_len; 1967 1968 if (MSG_CMSG_COMPAT & flags) { 1969 if (get_compat_msghdr(msg_sys, msg_compat)) 1970 return -EFAULT; 1971 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1972 return -EFAULT; 1973 1974 err = -EMSGSIZE; 1975 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1976 goto out; 1977 1978 /* Check whether to allocate the iovec area */ 1979 err = -ENOMEM; 1980 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1981 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1982 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1983 if (!iov) 1984 goto out; 1985 } 1986 1987 /* 1988 * Save the user-mode address (verify_iovec will change the 1989 * kernel msghdr to use the kernel address space) 1990 */ 1991 1992 uaddr = (__force void __user *)msg_sys->msg_name; 1993 uaddr_len = COMPAT_NAMELEN(msg); 1994 if (MSG_CMSG_COMPAT & flags) { 1995 err = verify_compat_iovec(msg_sys, iov, 1996 (struct sockaddr *)&addr, 1997 VERIFY_WRITE); 1998 } else 1999 err = verify_iovec(msg_sys, iov, 2000 (struct sockaddr *)&addr, 2001 VERIFY_WRITE); 2002 if (err < 0) 2003 goto out_freeiov; 2004 total_len = err; 2005 2006 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2007 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2008 2009 if (sock->file->f_flags & O_NONBLOCK) 2010 flags |= MSG_DONTWAIT; 2011 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2012 total_len, flags); 2013 if (err < 0) 2014 goto out_freeiov; 2015 len = err; 2016 2017 if (uaddr != NULL) { 2018 err = move_addr_to_user((struct sockaddr *)&addr, 2019 msg_sys->msg_namelen, uaddr, 2020 uaddr_len); 2021 if (err < 0) 2022 goto out_freeiov; 2023 } 2024 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2025 COMPAT_FLAGS(msg)); 2026 if (err) 2027 goto out_freeiov; 2028 if (MSG_CMSG_COMPAT & flags) 2029 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2030 &msg_compat->msg_controllen); 2031 else 2032 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2033 &msg->msg_controllen); 2034 if (err) 2035 goto out_freeiov; 2036 err = len; 2037 2038 out_freeiov: 2039 if (iov != iovstack) 2040 sock_kfree_s(sock->sk, iov, iov_size); 2041 out: 2042 return err; 2043 } 2044 2045 /* 2046 * BSD recvmsg interface 2047 */ 2048 2049 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2050 unsigned int, flags) 2051 { 2052 int fput_needed, err; 2053 struct msghdr msg_sys; 2054 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2055 2056 if (!sock) 2057 goto out; 2058 2059 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2060 2061 fput_light(sock->file, fput_needed); 2062 out: 2063 return err; 2064 } 2065 2066 /* 2067 * Linux recvmmsg interface 2068 */ 2069 2070 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2071 unsigned int flags, struct timespec *timeout) 2072 { 2073 int fput_needed, err, datagrams; 2074 struct socket *sock; 2075 struct mmsghdr __user *entry; 2076 struct compat_mmsghdr __user *compat_entry; 2077 struct msghdr msg_sys; 2078 struct timespec end_time; 2079 2080 if (timeout && 2081 poll_select_set_timeout(&end_time, timeout->tv_sec, 2082 timeout->tv_nsec)) 2083 return -EINVAL; 2084 2085 datagrams = 0; 2086 2087 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2088 if (!sock) 2089 return err; 2090 2091 err = sock_error(sock->sk); 2092 if (err) 2093 goto out_put; 2094 2095 entry = mmsg; 2096 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2097 2098 while (datagrams < vlen) { 2099 /* 2100 * No need to ask LSM for more than the first datagram. 2101 */ 2102 if (MSG_CMSG_COMPAT & flags) { 2103 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2104 &msg_sys, flags, datagrams); 2105 if (err < 0) 2106 break; 2107 err = __put_user(err, &compat_entry->msg_len); 2108 ++compat_entry; 2109 } else { 2110 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2111 &msg_sys, flags, datagrams); 2112 if (err < 0) 2113 break; 2114 err = put_user(err, &entry->msg_len); 2115 ++entry; 2116 } 2117 2118 if (err) 2119 break; 2120 ++datagrams; 2121 2122 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2123 if (flags & MSG_WAITFORONE) 2124 flags |= MSG_DONTWAIT; 2125 2126 if (timeout) { 2127 ktime_get_ts(timeout); 2128 *timeout = timespec_sub(end_time, *timeout); 2129 if (timeout->tv_sec < 0) { 2130 timeout->tv_sec = timeout->tv_nsec = 0; 2131 break; 2132 } 2133 2134 /* Timeout, return less than vlen datagrams */ 2135 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2136 break; 2137 } 2138 2139 /* Out of band data, return right away */ 2140 if (msg_sys.msg_flags & MSG_OOB) 2141 break; 2142 } 2143 2144 out_put: 2145 fput_light(sock->file, fput_needed); 2146 2147 if (err == 0) 2148 return datagrams; 2149 2150 if (datagrams != 0) { 2151 /* 2152 * We may return less entries than requested (vlen) if the 2153 * sock is non block and there aren't enough datagrams... 2154 */ 2155 if (err != -EAGAIN) { 2156 /* 2157 * ... or if recvmsg returns an error after we 2158 * received some datagrams, where we record the 2159 * error to return on the next call or if the 2160 * app asks about it using getsockopt(SO_ERROR). 2161 */ 2162 sock->sk->sk_err = -err; 2163 } 2164 2165 return datagrams; 2166 } 2167 2168 return err; 2169 } 2170 2171 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2172 unsigned int, vlen, unsigned int, flags, 2173 struct timespec __user *, timeout) 2174 { 2175 int datagrams; 2176 struct timespec timeout_sys; 2177 2178 if (!timeout) 2179 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2180 2181 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2182 return -EFAULT; 2183 2184 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2185 2186 if (datagrams > 0 && 2187 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2188 datagrams = -EFAULT; 2189 2190 return datagrams; 2191 } 2192 2193 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2194 /* Argument list sizes for sys_socketcall */ 2195 #define AL(x) ((x) * sizeof(unsigned long)) 2196 static const unsigned char nargs[20] = { 2197 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2198 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2199 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2200 AL(4), AL(5) 2201 }; 2202 2203 #undef AL 2204 2205 /* 2206 * System call vectors. 2207 * 2208 * Argument checking cleaned up. Saved 20% in size. 2209 * This function doesn't need to set the kernel lock because 2210 * it is set by the callees. 2211 */ 2212 2213 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2214 { 2215 unsigned long a[6]; 2216 unsigned long a0, a1; 2217 int err; 2218 unsigned int len; 2219 2220 if (call < 1 || call > SYS_RECVMMSG) 2221 return -EINVAL; 2222 2223 len = nargs[call]; 2224 if (len > sizeof(a)) 2225 return -EINVAL; 2226 2227 /* copy_from_user should be SMP safe. */ 2228 if (copy_from_user(a, args, len)) 2229 return -EFAULT; 2230 2231 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2232 2233 a0 = a[0]; 2234 a1 = a[1]; 2235 2236 switch (call) { 2237 case SYS_SOCKET: 2238 err = sys_socket(a0, a1, a[2]); 2239 break; 2240 case SYS_BIND: 2241 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2242 break; 2243 case SYS_CONNECT: 2244 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2245 break; 2246 case SYS_LISTEN: 2247 err = sys_listen(a0, a1); 2248 break; 2249 case SYS_ACCEPT: 2250 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2251 (int __user *)a[2], 0); 2252 break; 2253 case SYS_GETSOCKNAME: 2254 err = 2255 sys_getsockname(a0, (struct sockaddr __user *)a1, 2256 (int __user *)a[2]); 2257 break; 2258 case SYS_GETPEERNAME: 2259 err = 2260 sys_getpeername(a0, (struct sockaddr __user *)a1, 2261 (int __user *)a[2]); 2262 break; 2263 case SYS_SOCKETPAIR: 2264 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2265 break; 2266 case SYS_SEND: 2267 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2268 break; 2269 case SYS_SENDTO: 2270 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2271 (struct sockaddr __user *)a[4], a[5]); 2272 break; 2273 case SYS_RECV: 2274 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2275 break; 2276 case SYS_RECVFROM: 2277 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2278 (struct sockaddr __user *)a[4], 2279 (int __user *)a[5]); 2280 break; 2281 case SYS_SHUTDOWN: 2282 err = sys_shutdown(a0, a1); 2283 break; 2284 case SYS_SETSOCKOPT: 2285 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2286 break; 2287 case SYS_GETSOCKOPT: 2288 err = 2289 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2290 (int __user *)a[4]); 2291 break; 2292 case SYS_SENDMSG: 2293 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2294 break; 2295 case SYS_RECVMSG: 2296 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2297 break; 2298 case SYS_RECVMMSG: 2299 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2300 (struct timespec __user *)a[4]); 2301 break; 2302 case SYS_ACCEPT4: 2303 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2304 (int __user *)a[2], a[3]); 2305 break; 2306 default: 2307 err = -EINVAL; 2308 break; 2309 } 2310 return err; 2311 } 2312 2313 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2314 2315 /** 2316 * sock_register - add a socket protocol handler 2317 * @ops: description of protocol 2318 * 2319 * This function is called by a protocol handler that wants to 2320 * advertise its address family, and have it linked into the 2321 * socket interface. The value ops->family coresponds to the 2322 * socket system call protocol family. 2323 */ 2324 int sock_register(const struct net_proto_family *ops) 2325 { 2326 int err; 2327 2328 if (ops->family >= NPROTO) { 2329 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2330 NPROTO); 2331 return -ENOBUFS; 2332 } 2333 2334 spin_lock(&net_family_lock); 2335 if (net_families[ops->family]) 2336 err = -EEXIST; 2337 else { 2338 net_families[ops->family] = ops; 2339 err = 0; 2340 } 2341 spin_unlock(&net_family_lock); 2342 2343 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2344 return err; 2345 } 2346 EXPORT_SYMBOL(sock_register); 2347 2348 /** 2349 * sock_unregister - remove a protocol handler 2350 * @family: protocol family to remove 2351 * 2352 * This function is called by a protocol handler that wants to 2353 * remove its address family, and have it unlinked from the 2354 * new socket creation. 2355 * 2356 * If protocol handler is a module, then it can use module reference 2357 * counts to protect against new references. If protocol handler is not 2358 * a module then it needs to provide its own protection in 2359 * the ops->create routine. 2360 */ 2361 void sock_unregister(int family) 2362 { 2363 BUG_ON(family < 0 || family >= NPROTO); 2364 2365 spin_lock(&net_family_lock); 2366 net_families[family] = NULL; 2367 spin_unlock(&net_family_lock); 2368 2369 synchronize_rcu(); 2370 2371 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2372 } 2373 EXPORT_SYMBOL(sock_unregister); 2374 2375 static int __init sock_init(void) 2376 { 2377 /* 2378 * Initialize sock SLAB cache. 2379 */ 2380 2381 sk_init(); 2382 2383 /* 2384 * Initialize skbuff SLAB cache 2385 */ 2386 skb_init(); 2387 2388 /* 2389 * Initialize the protocols module. 2390 */ 2391 2392 init_inodecache(); 2393 register_filesystem(&sock_fs_type); 2394 sock_mnt = kern_mount(&sock_fs_type); 2395 2396 /* The real protocol initialization is performed in later initcalls. 2397 */ 2398 2399 #ifdef CONFIG_NETFILTER 2400 netfilter_init(); 2401 #endif 2402 2403 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2404 skb_timestamping_init(); 2405 #endif 2406 2407 return 0; 2408 } 2409 2410 core_initcall(sock_init); /* early initcall */ 2411 2412 #ifdef CONFIG_PROC_FS 2413 void socket_seq_show(struct seq_file *seq) 2414 { 2415 int cpu; 2416 int counter = 0; 2417 2418 for_each_possible_cpu(cpu) 2419 counter += per_cpu(sockets_in_use, cpu); 2420 2421 /* It can be negative, by the way. 8) */ 2422 if (counter < 0) 2423 counter = 0; 2424 2425 seq_printf(seq, "sockets: used %d\n", counter); 2426 } 2427 #endif /* CONFIG_PROC_FS */ 2428 2429 #ifdef CONFIG_COMPAT 2430 static int do_siocgstamp(struct net *net, struct socket *sock, 2431 unsigned int cmd, struct compat_timeval __user *up) 2432 { 2433 mm_segment_t old_fs = get_fs(); 2434 struct timeval ktv; 2435 int err; 2436 2437 set_fs(KERNEL_DS); 2438 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2439 set_fs(old_fs); 2440 if (!err) { 2441 err = put_user(ktv.tv_sec, &up->tv_sec); 2442 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2443 } 2444 return err; 2445 } 2446 2447 static int do_siocgstampns(struct net *net, struct socket *sock, 2448 unsigned int cmd, struct compat_timespec __user *up) 2449 { 2450 mm_segment_t old_fs = get_fs(); 2451 struct timespec kts; 2452 int err; 2453 2454 set_fs(KERNEL_DS); 2455 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2456 set_fs(old_fs); 2457 if (!err) { 2458 err = put_user(kts.tv_sec, &up->tv_sec); 2459 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2460 } 2461 return err; 2462 } 2463 2464 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2465 { 2466 struct ifreq __user *uifr; 2467 int err; 2468 2469 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2470 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2471 return -EFAULT; 2472 2473 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2474 if (err) 2475 return err; 2476 2477 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2478 return -EFAULT; 2479 2480 return 0; 2481 } 2482 2483 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2484 { 2485 struct compat_ifconf ifc32; 2486 struct ifconf ifc; 2487 struct ifconf __user *uifc; 2488 struct compat_ifreq __user *ifr32; 2489 struct ifreq __user *ifr; 2490 unsigned int i, j; 2491 int err; 2492 2493 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2494 return -EFAULT; 2495 2496 if (ifc32.ifcbuf == 0) { 2497 ifc32.ifc_len = 0; 2498 ifc.ifc_len = 0; 2499 ifc.ifc_req = NULL; 2500 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2501 } else { 2502 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2503 sizeof(struct ifreq); 2504 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2505 ifc.ifc_len = len; 2506 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2507 ifr32 = compat_ptr(ifc32.ifcbuf); 2508 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2509 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2510 return -EFAULT; 2511 ifr++; 2512 ifr32++; 2513 } 2514 } 2515 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2516 return -EFAULT; 2517 2518 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2519 if (err) 2520 return err; 2521 2522 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2523 return -EFAULT; 2524 2525 ifr = ifc.ifc_req; 2526 ifr32 = compat_ptr(ifc32.ifcbuf); 2527 for (i = 0, j = 0; 2528 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2529 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2530 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2531 return -EFAULT; 2532 ifr32++; 2533 ifr++; 2534 } 2535 2536 if (ifc32.ifcbuf == 0) { 2537 /* Translate from 64-bit structure multiple to 2538 * a 32-bit one. 2539 */ 2540 i = ifc.ifc_len; 2541 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2542 ifc32.ifc_len = i; 2543 } else { 2544 ifc32.ifc_len = i; 2545 } 2546 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2547 return -EFAULT; 2548 2549 return 0; 2550 } 2551 2552 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2553 { 2554 struct ifreq __user *ifr; 2555 u32 data; 2556 void __user *datap; 2557 2558 ifr = compat_alloc_user_space(sizeof(*ifr)); 2559 2560 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2561 return -EFAULT; 2562 2563 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2564 return -EFAULT; 2565 2566 datap = compat_ptr(data); 2567 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2568 return -EFAULT; 2569 2570 return dev_ioctl(net, SIOCETHTOOL, ifr); 2571 } 2572 2573 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2574 { 2575 void __user *uptr; 2576 compat_uptr_t uptr32; 2577 struct ifreq __user *uifr; 2578 2579 uifr = compat_alloc_user_space(sizeof(*uifr)); 2580 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2581 return -EFAULT; 2582 2583 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2584 return -EFAULT; 2585 2586 uptr = compat_ptr(uptr32); 2587 2588 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2589 return -EFAULT; 2590 2591 return dev_ioctl(net, SIOCWANDEV, uifr); 2592 } 2593 2594 static int bond_ioctl(struct net *net, unsigned int cmd, 2595 struct compat_ifreq __user *ifr32) 2596 { 2597 struct ifreq kifr; 2598 struct ifreq __user *uifr; 2599 mm_segment_t old_fs; 2600 int err; 2601 u32 data; 2602 void __user *datap; 2603 2604 switch (cmd) { 2605 case SIOCBONDENSLAVE: 2606 case SIOCBONDRELEASE: 2607 case SIOCBONDSETHWADDR: 2608 case SIOCBONDCHANGEACTIVE: 2609 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2610 return -EFAULT; 2611 2612 old_fs = get_fs(); 2613 set_fs(KERNEL_DS); 2614 err = dev_ioctl(net, cmd, &kifr); 2615 set_fs(old_fs); 2616 2617 return err; 2618 case SIOCBONDSLAVEINFOQUERY: 2619 case SIOCBONDINFOQUERY: 2620 uifr = compat_alloc_user_space(sizeof(*uifr)); 2621 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2622 return -EFAULT; 2623 2624 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2625 return -EFAULT; 2626 2627 datap = compat_ptr(data); 2628 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2629 return -EFAULT; 2630 2631 return dev_ioctl(net, cmd, uifr); 2632 default: 2633 return -EINVAL; 2634 } 2635 } 2636 2637 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2638 struct compat_ifreq __user *u_ifreq32) 2639 { 2640 struct ifreq __user *u_ifreq64; 2641 char tmp_buf[IFNAMSIZ]; 2642 void __user *data64; 2643 u32 data32; 2644 2645 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2646 IFNAMSIZ)) 2647 return -EFAULT; 2648 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2649 return -EFAULT; 2650 data64 = compat_ptr(data32); 2651 2652 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2653 2654 /* Don't check these user accesses, just let that get trapped 2655 * in the ioctl handler instead. 2656 */ 2657 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2658 IFNAMSIZ)) 2659 return -EFAULT; 2660 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2661 return -EFAULT; 2662 2663 return dev_ioctl(net, cmd, u_ifreq64); 2664 } 2665 2666 static int dev_ifsioc(struct net *net, struct socket *sock, 2667 unsigned int cmd, struct compat_ifreq __user *uifr32) 2668 { 2669 struct ifreq __user *uifr; 2670 int err; 2671 2672 uifr = compat_alloc_user_space(sizeof(*uifr)); 2673 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2674 return -EFAULT; 2675 2676 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2677 2678 if (!err) { 2679 switch (cmd) { 2680 case SIOCGIFFLAGS: 2681 case SIOCGIFMETRIC: 2682 case SIOCGIFMTU: 2683 case SIOCGIFMEM: 2684 case SIOCGIFHWADDR: 2685 case SIOCGIFINDEX: 2686 case SIOCGIFADDR: 2687 case SIOCGIFBRDADDR: 2688 case SIOCGIFDSTADDR: 2689 case SIOCGIFNETMASK: 2690 case SIOCGIFPFLAGS: 2691 case SIOCGIFTXQLEN: 2692 case SIOCGMIIPHY: 2693 case SIOCGMIIREG: 2694 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2695 err = -EFAULT; 2696 break; 2697 } 2698 } 2699 return err; 2700 } 2701 2702 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2703 struct compat_ifreq __user *uifr32) 2704 { 2705 struct ifreq ifr; 2706 struct compat_ifmap __user *uifmap32; 2707 mm_segment_t old_fs; 2708 int err; 2709 2710 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2711 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2712 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2713 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2714 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2715 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2716 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2717 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2718 if (err) 2719 return -EFAULT; 2720 2721 old_fs = get_fs(); 2722 set_fs(KERNEL_DS); 2723 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2724 set_fs(old_fs); 2725 2726 if (cmd == SIOCGIFMAP && !err) { 2727 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2728 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2729 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2730 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2731 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2732 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2733 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2734 if (err) 2735 err = -EFAULT; 2736 } 2737 return err; 2738 } 2739 2740 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2741 { 2742 void __user *uptr; 2743 compat_uptr_t uptr32; 2744 struct ifreq __user *uifr; 2745 2746 uifr = compat_alloc_user_space(sizeof(*uifr)); 2747 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2748 return -EFAULT; 2749 2750 if (get_user(uptr32, &uifr32->ifr_data)) 2751 return -EFAULT; 2752 2753 uptr = compat_ptr(uptr32); 2754 2755 if (put_user(uptr, &uifr->ifr_data)) 2756 return -EFAULT; 2757 2758 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2759 } 2760 2761 struct rtentry32 { 2762 u32 rt_pad1; 2763 struct sockaddr rt_dst; /* target address */ 2764 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2765 struct sockaddr rt_genmask; /* target network mask (IP) */ 2766 unsigned short rt_flags; 2767 short rt_pad2; 2768 u32 rt_pad3; 2769 unsigned char rt_tos; 2770 unsigned char rt_class; 2771 short rt_pad4; 2772 short rt_metric; /* +1 for binary compatibility! */ 2773 /* char * */ u32 rt_dev; /* forcing the device at add */ 2774 u32 rt_mtu; /* per route MTU/Window */ 2775 u32 rt_window; /* Window clamping */ 2776 unsigned short rt_irtt; /* Initial RTT */ 2777 }; 2778 2779 struct in6_rtmsg32 { 2780 struct in6_addr rtmsg_dst; 2781 struct in6_addr rtmsg_src; 2782 struct in6_addr rtmsg_gateway; 2783 u32 rtmsg_type; 2784 u16 rtmsg_dst_len; 2785 u16 rtmsg_src_len; 2786 u32 rtmsg_metric; 2787 u32 rtmsg_info; 2788 u32 rtmsg_flags; 2789 s32 rtmsg_ifindex; 2790 }; 2791 2792 static int routing_ioctl(struct net *net, struct socket *sock, 2793 unsigned int cmd, void __user *argp) 2794 { 2795 int ret; 2796 void *r = NULL; 2797 struct in6_rtmsg r6; 2798 struct rtentry r4; 2799 char devname[16]; 2800 u32 rtdev; 2801 mm_segment_t old_fs = get_fs(); 2802 2803 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2804 struct in6_rtmsg32 __user *ur6 = argp; 2805 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2806 3 * sizeof(struct in6_addr)); 2807 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2808 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2809 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2810 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2811 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2812 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2813 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2814 2815 r = (void *) &r6; 2816 } else { /* ipv4 */ 2817 struct rtentry32 __user *ur4 = argp; 2818 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2819 3 * sizeof(struct sockaddr)); 2820 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2821 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2822 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2823 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2824 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2825 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2826 if (rtdev) { 2827 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2828 r4.rt_dev = devname; devname[15] = 0; 2829 } else 2830 r4.rt_dev = NULL; 2831 2832 r = (void *) &r4; 2833 } 2834 2835 if (ret) { 2836 ret = -EFAULT; 2837 goto out; 2838 } 2839 2840 set_fs(KERNEL_DS); 2841 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2842 set_fs(old_fs); 2843 2844 out: 2845 return ret; 2846 } 2847 2848 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2849 * for some operations; this forces use of the newer bridge-utils that 2850 * use compatiable ioctls 2851 */ 2852 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2853 { 2854 compat_ulong_t tmp; 2855 2856 if (get_user(tmp, argp)) 2857 return -EFAULT; 2858 if (tmp == BRCTL_GET_VERSION) 2859 return BRCTL_VERSION + 1; 2860 return -EINVAL; 2861 } 2862 2863 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2864 unsigned int cmd, unsigned long arg) 2865 { 2866 void __user *argp = compat_ptr(arg); 2867 struct sock *sk = sock->sk; 2868 struct net *net = sock_net(sk); 2869 2870 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2871 return siocdevprivate_ioctl(net, cmd, argp); 2872 2873 switch (cmd) { 2874 case SIOCSIFBR: 2875 case SIOCGIFBR: 2876 return old_bridge_ioctl(argp); 2877 case SIOCGIFNAME: 2878 return dev_ifname32(net, argp); 2879 case SIOCGIFCONF: 2880 return dev_ifconf(net, argp); 2881 case SIOCETHTOOL: 2882 return ethtool_ioctl(net, argp); 2883 case SIOCWANDEV: 2884 return compat_siocwandev(net, argp); 2885 case SIOCGIFMAP: 2886 case SIOCSIFMAP: 2887 return compat_sioc_ifmap(net, cmd, argp); 2888 case SIOCBONDENSLAVE: 2889 case SIOCBONDRELEASE: 2890 case SIOCBONDSETHWADDR: 2891 case SIOCBONDSLAVEINFOQUERY: 2892 case SIOCBONDINFOQUERY: 2893 case SIOCBONDCHANGEACTIVE: 2894 return bond_ioctl(net, cmd, argp); 2895 case SIOCADDRT: 2896 case SIOCDELRT: 2897 return routing_ioctl(net, sock, cmd, argp); 2898 case SIOCGSTAMP: 2899 return do_siocgstamp(net, sock, cmd, argp); 2900 case SIOCGSTAMPNS: 2901 return do_siocgstampns(net, sock, cmd, argp); 2902 case SIOCSHWTSTAMP: 2903 return compat_siocshwtstamp(net, argp); 2904 2905 case FIOSETOWN: 2906 case SIOCSPGRP: 2907 case FIOGETOWN: 2908 case SIOCGPGRP: 2909 case SIOCBRADDBR: 2910 case SIOCBRDELBR: 2911 case SIOCGIFVLAN: 2912 case SIOCSIFVLAN: 2913 case SIOCADDDLCI: 2914 case SIOCDELDLCI: 2915 return sock_ioctl(file, cmd, arg); 2916 2917 case SIOCGIFFLAGS: 2918 case SIOCSIFFLAGS: 2919 case SIOCGIFMETRIC: 2920 case SIOCSIFMETRIC: 2921 case SIOCGIFMTU: 2922 case SIOCSIFMTU: 2923 case SIOCGIFMEM: 2924 case SIOCSIFMEM: 2925 case SIOCGIFHWADDR: 2926 case SIOCSIFHWADDR: 2927 case SIOCADDMULTI: 2928 case SIOCDELMULTI: 2929 case SIOCGIFINDEX: 2930 case SIOCGIFADDR: 2931 case SIOCSIFADDR: 2932 case SIOCSIFHWBROADCAST: 2933 case SIOCDIFADDR: 2934 case SIOCGIFBRDADDR: 2935 case SIOCSIFBRDADDR: 2936 case SIOCGIFDSTADDR: 2937 case SIOCSIFDSTADDR: 2938 case SIOCGIFNETMASK: 2939 case SIOCSIFNETMASK: 2940 case SIOCSIFPFLAGS: 2941 case SIOCGIFPFLAGS: 2942 case SIOCGIFTXQLEN: 2943 case SIOCSIFTXQLEN: 2944 case SIOCBRADDIF: 2945 case SIOCBRDELIF: 2946 case SIOCSIFNAME: 2947 case SIOCGMIIPHY: 2948 case SIOCGMIIREG: 2949 case SIOCSMIIREG: 2950 return dev_ifsioc(net, sock, cmd, argp); 2951 2952 case SIOCSARP: 2953 case SIOCGARP: 2954 case SIOCDARP: 2955 case SIOCATMARK: 2956 return sock_do_ioctl(net, sock, cmd, arg); 2957 } 2958 2959 /* Prevent warning from compat_sys_ioctl, these always 2960 * result in -EINVAL in the native case anyway. */ 2961 switch (cmd) { 2962 case SIOCRTMSG: 2963 case SIOCGIFCOUNT: 2964 case SIOCSRARP: 2965 case SIOCGRARP: 2966 case SIOCDRARP: 2967 case SIOCSIFLINK: 2968 case SIOCGIFSLAVE: 2969 case SIOCSIFSLAVE: 2970 return -EINVAL; 2971 } 2972 2973 return -ENOIOCTLCMD; 2974 } 2975 2976 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2977 unsigned long arg) 2978 { 2979 struct socket *sock = file->private_data; 2980 int ret = -ENOIOCTLCMD; 2981 struct sock *sk; 2982 struct net *net; 2983 2984 sk = sock->sk; 2985 net = sock_net(sk); 2986 2987 if (sock->ops->compat_ioctl) 2988 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2989 2990 if (ret == -ENOIOCTLCMD && 2991 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2992 ret = compat_wext_handle_ioctl(net, cmd, arg); 2993 2994 if (ret == -ENOIOCTLCMD) 2995 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 2996 2997 return ret; 2998 } 2999 #endif 3000 3001 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3002 { 3003 return sock->ops->bind(sock, addr, addrlen); 3004 } 3005 EXPORT_SYMBOL(kernel_bind); 3006 3007 int kernel_listen(struct socket *sock, int backlog) 3008 { 3009 return sock->ops->listen(sock, backlog); 3010 } 3011 EXPORT_SYMBOL(kernel_listen); 3012 3013 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3014 { 3015 struct sock *sk = sock->sk; 3016 int err; 3017 3018 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3019 newsock); 3020 if (err < 0) 3021 goto done; 3022 3023 err = sock->ops->accept(sock, *newsock, flags); 3024 if (err < 0) { 3025 sock_release(*newsock); 3026 *newsock = NULL; 3027 goto done; 3028 } 3029 3030 (*newsock)->ops = sock->ops; 3031 __module_get((*newsock)->ops->owner); 3032 3033 done: 3034 return err; 3035 } 3036 EXPORT_SYMBOL(kernel_accept); 3037 3038 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3039 int flags) 3040 { 3041 return sock->ops->connect(sock, addr, addrlen, flags); 3042 } 3043 EXPORT_SYMBOL(kernel_connect); 3044 3045 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3046 int *addrlen) 3047 { 3048 return sock->ops->getname(sock, addr, addrlen, 0); 3049 } 3050 EXPORT_SYMBOL(kernel_getsockname); 3051 3052 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3053 int *addrlen) 3054 { 3055 return sock->ops->getname(sock, addr, addrlen, 1); 3056 } 3057 EXPORT_SYMBOL(kernel_getpeername); 3058 3059 int kernel_getsockopt(struct socket *sock, int level, int optname, 3060 char *optval, int *optlen) 3061 { 3062 mm_segment_t oldfs = get_fs(); 3063 char __user *uoptval; 3064 int __user *uoptlen; 3065 int err; 3066 3067 uoptval = (char __user __force *) optval; 3068 uoptlen = (int __user __force *) optlen; 3069 3070 set_fs(KERNEL_DS); 3071 if (level == SOL_SOCKET) 3072 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3073 else 3074 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3075 uoptlen); 3076 set_fs(oldfs); 3077 return err; 3078 } 3079 EXPORT_SYMBOL(kernel_getsockopt); 3080 3081 int kernel_setsockopt(struct socket *sock, int level, int optname, 3082 char *optval, unsigned int optlen) 3083 { 3084 mm_segment_t oldfs = get_fs(); 3085 char __user *uoptval; 3086 int err; 3087 3088 uoptval = (char __user __force *) optval; 3089 3090 set_fs(KERNEL_DS); 3091 if (level == SOL_SOCKET) 3092 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3093 else 3094 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3095 optlen); 3096 set_fs(oldfs); 3097 return err; 3098 } 3099 EXPORT_SYMBOL(kernel_setsockopt); 3100 3101 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3102 size_t size, int flags) 3103 { 3104 sock_update_classid(sock->sk); 3105 3106 if (sock->ops->sendpage) 3107 return sock->ops->sendpage(sock, page, offset, size, flags); 3108 3109 return sock_no_sendpage(sock, page, offset, size, flags); 3110 } 3111 EXPORT_SYMBOL(kernel_sendpage); 3112 3113 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3114 { 3115 mm_segment_t oldfs = get_fs(); 3116 int err; 3117 3118 set_fs(KERNEL_DS); 3119 err = sock->ops->ioctl(sock, cmd, arg); 3120 set_fs(oldfs); 3121 3122 return err; 3123 } 3124 EXPORT_SYMBOL(kernel_sock_ioctl); 3125 3126 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3127 { 3128 return sock->ops->shutdown(sock, how); 3129 } 3130 EXPORT_SYMBOL(kernel_sock_shutdown); 3131