xref: /linux/net/socket.c (revision 48c36c8f9a3e881953bb72deb55623a53795a684)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 	if (!ei->socket.wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&ei->socket.wq->wait);
253 	ei->socket.wq->fasync_list = NULL;
254 
255 	ei->socket.state = SS_UNCONNECTED;
256 	ei->socket.flags = 0;
257 	ei->socket.ops = NULL;
258 	ei->socket.sk = NULL;
259 	ei->socket.file = NULL;
260 
261 	return &ei->vfs_inode;
262 }
263 
264 
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268 
269 	kfree(wq);
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 	kmem_cache_free(sock_inode_cachep, ei);
279 }
280 
281 static void init_once(void *foo)
282 {
283 	struct socket_alloc *ei = (struct socket_alloc *)foo;
284 
285 	inode_init_once(&ei->vfs_inode);
286 }
287 
288 static int init_inodecache(void)
289 {
290 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 					      sizeof(struct socket_alloc),
292 					      0,
293 					      (SLAB_HWCACHE_ALIGN |
294 					       SLAB_RECLAIM_ACCOUNT |
295 					       SLAB_MEM_SPREAD),
296 					      init_once);
297 	if (sock_inode_cachep == NULL)
298 		return -ENOMEM;
299 	return 0;
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
309 			 int flags, const char *dev_name, void *data)
310 {
311 	return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
312 }
313 
314 static struct vfsmount *sock_mnt __read_mostly;
315 
316 static struct file_system_type sock_fs_type = {
317 	.name =		"sockfs",
318 	.mount =	sockfs_mount,
319 	.kill_sb =	kill_anon_super,
320 };
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static const struct dentry_operations sockfs_dentry_operations = {
332 	.d_dname  = sockfs_dname,
333 };
334 
335 /*
336  *	Obtains the first available file descriptor and sets it up for use.
337  *
338  *	These functions create file structures and maps them to fd space
339  *	of the current process. On success it returns file descriptor
340  *	and file struct implicitly stored in sock->file.
341  *	Note that another thread may close file descriptor before we return
342  *	from this function. We use the fact that now we do not refer
343  *	to socket after mapping. If one day we will need it, this
344  *	function will increment ref. count on file by 1.
345  *
346  *	In any case returned fd MAY BE not valid!
347  *	This race condition is unavoidable
348  *	with shared fd spaces, we cannot solve it inside kernel,
349  *	but we take care of internal coherence yet.
350  */
351 
352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
353 {
354 	struct qstr name = { .name = "" };
355 	struct path path;
356 	struct file *file;
357 	int fd;
358 
359 	fd = get_unused_fd_flags(flags);
360 	if (unlikely(fd < 0))
361 		return fd;
362 
363 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
364 	if (unlikely(!path.dentry)) {
365 		put_unused_fd(fd);
366 		return -ENOMEM;
367 	}
368 	path.mnt = mntget(sock_mnt);
369 
370 	path.dentry->d_op = &sockfs_dentry_operations;
371 	d_instantiate(path.dentry, SOCK_INODE(sock));
372 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
373 
374 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 		  &socket_file_ops);
376 	if (unlikely(!file)) {
377 		/* drop dentry, keep inode */
378 		ihold(path.dentry->d_inode);
379 		path_put(&path);
380 		put_unused_fd(fd);
381 		return -ENFILE;
382 	}
383 
384 	sock->file = file;
385 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 	file->f_pos = 0;
387 	file->private_data = sock;
388 
389 	*f = file;
390 	return fd;
391 }
392 
393 int sock_map_fd(struct socket *sock, int flags)
394 {
395 	struct file *newfile;
396 	int fd = sock_alloc_file(sock, &newfile, flags);
397 
398 	if (likely(fd >= 0))
399 		fd_install(fd, newfile);
400 
401 	return fd;
402 }
403 EXPORT_SYMBOL(sock_map_fd);
404 
405 static struct socket *sock_from_file(struct file *file, int *err)
406 {
407 	if (file->f_op == &socket_file_ops)
408 		return file->private_data;	/* set in sock_map_fd */
409 
410 	*err = -ENOTSOCK;
411 	return NULL;
412 }
413 
414 /**
415  *	sockfd_lookup - Go from a file number to its socket slot
416  *	@fd: file handle
417  *	@err: pointer to an error code return
418  *
419  *	The file handle passed in is locked and the socket it is bound
420  *	too is returned. If an error occurs the err pointer is overwritten
421  *	with a negative errno code and NULL is returned. The function checks
422  *	for both invalid handles and passing a handle which is not a socket.
423  *
424  *	On a success the socket object pointer is returned.
425  */
426 
427 struct socket *sockfd_lookup(int fd, int *err)
428 {
429 	struct file *file;
430 	struct socket *sock;
431 
432 	file = fget(fd);
433 	if (!file) {
434 		*err = -EBADF;
435 		return NULL;
436 	}
437 
438 	sock = sock_from_file(file, err);
439 	if (!sock)
440 		fput(file);
441 	return sock;
442 }
443 EXPORT_SYMBOL(sockfd_lookup);
444 
445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446 {
447 	struct file *file;
448 	struct socket *sock;
449 
450 	*err = -EBADF;
451 	file = fget_light(fd, fput_needed);
452 	if (file) {
453 		sock = sock_from_file(file, err);
454 		if (sock)
455 			return sock;
456 		fput_light(file, *fput_needed);
457 	}
458 	return NULL;
459 }
460 
461 /**
462  *	sock_alloc	-	allocate a socket
463  *
464  *	Allocate a new inode and socket object. The two are bound together
465  *	and initialised. The socket is then returned. If we are out of inodes
466  *	NULL is returned.
467  */
468 
469 static struct socket *sock_alloc(void)
470 {
471 	struct inode *inode;
472 	struct socket *sock;
473 
474 	inode = new_inode(sock_mnt->mnt_sb);
475 	if (!inode)
476 		return NULL;
477 
478 	sock = SOCKET_I(inode);
479 
480 	kmemcheck_annotate_bitfield(sock, type);
481 	inode->i_ino = get_next_ino();
482 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 	inode->i_uid = current_fsuid();
484 	inode->i_gid = current_fsgid();
485 
486 	percpu_add(sockets_in_use, 1);
487 	return sock;
488 }
489 
490 /*
491  *	In theory you can't get an open on this inode, but /proc provides
492  *	a back door. Remember to keep it shut otherwise you'll let the
493  *	creepy crawlies in.
494  */
495 
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
497 {
498 	return -ENXIO;
499 }
500 
501 const struct file_operations bad_sock_fops = {
502 	.owner = THIS_MODULE,
503 	.open = sock_no_open,
504 	.llseek = noop_llseek,
505 };
506 
507 /**
508  *	sock_release	-	close a socket
509  *	@sock: socket to close
510  *
511  *	The socket is released from the protocol stack if it has a release
512  *	callback, and the inode is then released if the socket is bound to
513  *	an inode not a file.
514  */
515 
516 void sock_release(struct socket *sock)
517 {
518 	if (sock->ops) {
519 		struct module *owner = sock->ops->owner;
520 
521 		sock->ops->release(sock);
522 		sock->ops = NULL;
523 		module_put(owner);
524 	}
525 
526 	if (sock->wq->fasync_list)
527 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
528 
529 	percpu_sub(sockets_in_use, 1);
530 	if (!sock->file) {
531 		iput(SOCK_INODE(sock));
532 		return;
533 	}
534 	sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537 
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 	*tx_flags = 0;
541 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 		*tx_flags |= SKBTX_HW_TSTAMP;
543 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 		*tx_flags |= SKBTX_SW_TSTAMP;
545 	return 0;
546 }
547 EXPORT_SYMBOL(sock_tx_timestamp);
548 
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 				 struct msghdr *msg, size_t size)
551 {
552 	struct sock_iocb *si = kiocb_to_siocb(iocb);
553 	int err;
554 
555 	sock_update_classid(sock->sk);
556 
557 	si->sock = sock;
558 	si->scm = NULL;
559 	si->msg = msg;
560 	si->size = size;
561 
562 	err = security_socket_sendmsg(sock, msg, size);
563 	if (err)
564 		return err;
565 
566 	return sock->ops->sendmsg(iocb, sock, msg, size);
567 }
568 
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
570 {
571 	struct kiocb iocb;
572 	struct sock_iocb siocb;
573 	int ret;
574 
575 	init_sync_kiocb(&iocb, NULL);
576 	iocb.private = &siocb;
577 	ret = __sock_sendmsg(&iocb, sock, msg, size);
578 	if (-EIOCBQUEUED == ret)
579 		ret = wait_on_sync_kiocb(&iocb);
580 	return ret;
581 }
582 EXPORT_SYMBOL(sock_sendmsg);
583 
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 		   struct kvec *vec, size_t num, size_t size)
586 {
587 	mm_segment_t oldfs = get_fs();
588 	int result;
589 
590 	set_fs(KERNEL_DS);
591 	/*
592 	 * the following is safe, since for compiler definitions of kvec and
593 	 * iovec are identical, yielding the same in-core layout and alignment
594 	 */
595 	msg->msg_iov = (struct iovec *)vec;
596 	msg->msg_iovlen = num;
597 	result = sock_sendmsg(sock, msg, size);
598 	set_fs(oldfs);
599 	return result;
600 }
601 EXPORT_SYMBOL(kernel_sendmsg);
602 
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
604 {
605 	if (kt.tv64) {
606 		*ts = ktime_to_timespec(kt);
607 		return 1;
608 	} else {
609 		return 0;
610 	}
611 }
612 
613 /*
614  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
615  */
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 	struct sk_buff *skb)
618 {
619 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 	struct timespec ts[3];
621 	int empty = 1;
622 	struct skb_shared_hwtstamps *shhwtstamps =
623 		skb_hwtstamps(skb);
624 
625 	/* Race occurred between timestamp enabling and packet
626 	   receiving.  Fill in the current time for now. */
627 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 		__net_timestamp(skb);
629 
630 	if (need_software_tstamp) {
631 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 			struct timeval tv;
633 			skb_get_timestamp(skb, &tv);
634 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 				 sizeof(tv), &tv);
636 		} else {
637 			skb_get_timestampns(skb, &ts[0]);
638 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 				 sizeof(ts[0]), &ts[0]);
640 		}
641 	}
642 
643 
644 	memset(ts, 0, sizeof(ts));
645 	if (skb->tstamp.tv64 &&
646 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 		skb_get_timestampns(skb, ts + 0);
648 		empty = 0;
649 	}
650 	if (shhwtstamps) {
651 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
653 			empty = 0;
654 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 			empty = 0;
657 	}
658 	if (!empty)
659 		put_cmsg(msg, SOL_SOCKET,
660 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
661 }
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
663 
664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
665 				   struct sk_buff *skb)
666 {
667 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669 			sizeof(__u32), &skb->dropcount);
670 }
671 
672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673 	struct sk_buff *skb)
674 {
675 	sock_recv_timestamp(msg, sk, skb);
676 	sock_recv_drops(msg, sk, skb);
677 }
678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
679 
680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681 				       struct msghdr *msg, size_t size, int flags)
682 {
683 	struct sock_iocb *si = kiocb_to_siocb(iocb);
684 
685 	sock_update_classid(sock->sk);
686 
687 	si->sock = sock;
688 	si->scm = NULL;
689 	si->msg = msg;
690 	si->size = size;
691 	si->flags = flags;
692 
693 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
694 }
695 
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 				 struct msghdr *msg, size_t size, int flags)
698 {
699 	int err = security_socket_recvmsg(sock, msg, size, flags);
700 
701 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
702 }
703 
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 		 size_t size, int flags)
706 {
707 	struct kiocb iocb;
708 	struct sock_iocb siocb;
709 	int ret;
710 
711 	init_sync_kiocb(&iocb, NULL);
712 	iocb.private = &siocb;
713 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 	if (-EIOCBQUEUED == ret)
715 		ret = wait_on_sync_kiocb(&iocb);
716 	return ret;
717 }
718 EXPORT_SYMBOL(sock_recvmsg);
719 
720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 			      size_t size, int flags)
722 {
723 	struct kiocb iocb;
724 	struct sock_iocb siocb;
725 	int ret;
726 
727 	init_sync_kiocb(&iocb, NULL);
728 	iocb.private = &siocb;
729 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730 	if (-EIOCBQUEUED == ret)
731 		ret = wait_on_sync_kiocb(&iocb);
732 	return ret;
733 }
734 
735 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
736 		   struct kvec *vec, size_t num, size_t size, int flags)
737 {
738 	mm_segment_t oldfs = get_fs();
739 	int result;
740 
741 	set_fs(KERNEL_DS);
742 	/*
743 	 * the following is safe, since for compiler definitions of kvec and
744 	 * iovec are identical, yielding the same in-core layout and alignment
745 	 */
746 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
747 	result = sock_recvmsg(sock, msg, size, flags);
748 	set_fs(oldfs);
749 	return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752 
753 static void sock_aio_dtor(struct kiocb *iocb)
754 {
755 	kfree(iocb->private);
756 }
757 
758 static ssize_t sock_sendpage(struct file *file, struct page *page,
759 			     int offset, size_t size, loff_t *ppos, int more)
760 {
761 	struct socket *sock;
762 	int flags;
763 
764 	sock = file->private_data;
765 
766 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
767 	if (more)
768 		flags |= MSG_MORE;
769 
770 	return kernel_sendpage(sock, page, offset, size, flags);
771 }
772 
773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774 				struct pipe_inode_info *pipe, size_t len,
775 				unsigned int flags)
776 {
777 	struct socket *sock = file->private_data;
778 
779 	if (unlikely(!sock->ops->splice_read))
780 		return -EINVAL;
781 
782 	sock_update_classid(sock->sk);
783 
784 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
785 }
786 
787 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
788 					 struct sock_iocb *siocb)
789 {
790 	if (!is_sync_kiocb(iocb)) {
791 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
792 		if (!siocb)
793 			return NULL;
794 		iocb->ki_dtor = sock_aio_dtor;
795 	}
796 
797 	siocb->kiocb = iocb;
798 	iocb->private = siocb;
799 	return siocb;
800 }
801 
802 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
803 		struct file *file, const struct iovec *iov,
804 		unsigned long nr_segs)
805 {
806 	struct socket *sock = file->private_data;
807 	size_t size = 0;
808 	int i;
809 
810 	for (i = 0; i < nr_segs; i++)
811 		size += iov[i].iov_len;
812 
813 	msg->msg_name = NULL;
814 	msg->msg_namelen = 0;
815 	msg->msg_control = NULL;
816 	msg->msg_controllen = 0;
817 	msg->msg_iov = (struct iovec *)iov;
818 	msg->msg_iovlen = nr_segs;
819 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
820 
821 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
822 }
823 
824 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
825 				unsigned long nr_segs, loff_t pos)
826 {
827 	struct sock_iocb siocb, *x;
828 
829 	if (pos != 0)
830 		return -ESPIPE;
831 
832 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
833 		return 0;
834 
835 
836 	x = alloc_sock_iocb(iocb, &siocb);
837 	if (!x)
838 		return -ENOMEM;
839 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
840 }
841 
842 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
843 			struct file *file, const struct iovec *iov,
844 			unsigned long nr_segs)
845 {
846 	struct socket *sock = file->private_data;
847 	size_t size = 0;
848 	int i;
849 
850 	for (i = 0; i < nr_segs; i++)
851 		size += iov[i].iov_len;
852 
853 	msg->msg_name = NULL;
854 	msg->msg_namelen = 0;
855 	msg->msg_control = NULL;
856 	msg->msg_controllen = 0;
857 	msg->msg_iov = (struct iovec *)iov;
858 	msg->msg_iovlen = nr_segs;
859 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860 	if (sock->type == SOCK_SEQPACKET)
861 		msg->msg_flags |= MSG_EOR;
862 
863 	return __sock_sendmsg(iocb, sock, msg, size);
864 }
865 
866 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
867 			  unsigned long nr_segs, loff_t pos)
868 {
869 	struct sock_iocb siocb, *x;
870 
871 	if (pos != 0)
872 		return -ESPIPE;
873 
874 	x = alloc_sock_iocb(iocb, &siocb);
875 	if (!x)
876 		return -ENOMEM;
877 
878 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
879 }
880 
881 /*
882  * Atomic setting of ioctl hooks to avoid race
883  * with module unload.
884  */
885 
886 static DEFINE_MUTEX(br_ioctl_mutex);
887 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
888 
889 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
890 {
891 	mutex_lock(&br_ioctl_mutex);
892 	br_ioctl_hook = hook;
893 	mutex_unlock(&br_ioctl_mutex);
894 }
895 EXPORT_SYMBOL(brioctl_set);
896 
897 static DEFINE_MUTEX(vlan_ioctl_mutex);
898 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
899 
900 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
901 {
902 	mutex_lock(&vlan_ioctl_mutex);
903 	vlan_ioctl_hook = hook;
904 	mutex_unlock(&vlan_ioctl_mutex);
905 }
906 EXPORT_SYMBOL(vlan_ioctl_set);
907 
908 static DEFINE_MUTEX(dlci_ioctl_mutex);
909 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
910 
911 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
912 {
913 	mutex_lock(&dlci_ioctl_mutex);
914 	dlci_ioctl_hook = hook;
915 	mutex_unlock(&dlci_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(dlci_ioctl_set);
918 
919 static long sock_do_ioctl(struct net *net, struct socket *sock,
920 				 unsigned int cmd, unsigned long arg)
921 {
922 	int err;
923 	void __user *argp = (void __user *)arg;
924 
925 	err = sock->ops->ioctl(sock, cmd, arg);
926 
927 	/*
928 	 * If this ioctl is unknown try to hand it down
929 	 * to the NIC driver.
930 	 */
931 	if (err == -ENOIOCTLCMD)
932 		err = dev_ioctl(net, cmd, argp);
933 
934 	return err;
935 }
936 
937 /*
938  *	With an ioctl, arg may well be a user mode pointer, but we don't know
939  *	what to do with it - that's up to the protocol still.
940  */
941 
942 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
943 {
944 	struct socket *sock;
945 	struct sock *sk;
946 	void __user *argp = (void __user *)arg;
947 	int pid, err;
948 	struct net *net;
949 
950 	sock = file->private_data;
951 	sk = sock->sk;
952 	net = sock_net(sk);
953 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
954 		err = dev_ioctl(net, cmd, argp);
955 	} else
956 #ifdef CONFIG_WEXT_CORE
957 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
958 		err = dev_ioctl(net, cmd, argp);
959 	} else
960 #endif
961 		switch (cmd) {
962 		case FIOSETOWN:
963 		case SIOCSPGRP:
964 			err = -EFAULT;
965 			if (get_user(pid, (int __user *)argp))
966 				break;
967 			err = f_setown(sock->file, pid, 1);
968 			break;
969 		case FIOGETOWN:
970 		case SIOCGPGRP:
971 			err = put_user(f_getown(sock->file),
972 				       (int __user *)argp);
973 			break;
974 		case SIOCGIFBR:
975 		case SIOCSIFBR:
976 		case SIOCBRADDBR:
977 		case SIOCBRDELBR:
978 			err = -ENOPKG;
979 			if (!br_ioctl_hook)
980 				request_module("bridge");
981 
982 			mutex_lock(&br_ioctl_mutex);
983 			if (br_ioctl_hook)
984 				err = br_ioctl_hook(net, cmd, argp);
985 			mutex_unlock(&br_ioctl_mutex);
986 			break;
987 		case SIOCGIFVLAN:
988 		case SIOCSIFVLAN:
989 			err = -ENOPKG;
990 			if (!vlan_ioctl_hook)
991 				request_module("8021q");
992 
993 			mutex_lock(&vlan_ioctl_mutex);
994 			if (vlan_ioctl_hook)
995 				err = vlan_ioctl_hook(net, argp);
996 			mutex_unlock(&vlan_ioctl_mutex);
997 			break;
998 		case SIOCADDDLCI:
999 		case SIOCDELDLCI:
1000 			err = -ENOPKG;
1001 			if (!dlci_ioctl_hook)
1002 				request_module("dlci");
1003 
1004 			mutex_lock(&dlci_ioctl_mutex);
1005 			if (dlci_ioctl_hook)
1006 				err = dlci_ioctl_hook(cmd, argp);
1007 			mutex_unlock(&dlci_ioctl_mutex);
1008 			break;
1009 		default:
1010 			err = sock_do_ioctl(net, sock, cmd, arg);
1011 			break;
1012 		}
1013 	return err;
1014 }
1015 
1016 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1017 {
1018 	int err;
1019 	struct socket *sock = NULL;
1020 
1021 	err = security_socket_create(family, type, protocol, 1);
1022 	if (err)
1023 		goto out;
1024 
1025 	sock = sock_alloc();
1026 	if (!sock) {
1027 		err = -ENOMEM;
1028 		goto out;
1029 	}
1030 
1031 	sock->type = type;
1032 	err = security_socket_post_create(sock, family, type, protocol, 1);
1033 	if (err)
1034 		goto out_release;
1035 
1036 out:
1037 	*res = sock;
1038 	return err;
1039 out_release:
1040 	sock_release(sock);
1041 	sock = NULL;
1042 	goto out;
1043 }
1044 EXPORT_SYMBOL(sock_create_lite);
1045 
1046 /* No kernel lock held - perfect */
1047 static unsigned int sock_poll(struct file *file, poll_table *wait)
1048 {
1049 	struct socket *sock;
1050 
1051 	/*
1052 	 *      We can't return errors to poll, so it's either yes or no.
1053 	 */
1054 	sock = file->private_data;
1055 	return sock->ops->poll(file, sock, wait);
1056 }
1057 
1058 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1059 {
1060 	struct socket *sock = file->private_data;
1061 
1062 	return sock->ops->mmap(file, sock, vma);
1063 }
1064 
1065 static int sock_close(struct inode *inode, struct file *filp)
1066 {
1067 	/*
1068 	 *      It was possible the inode is NULL we were
1069 	 *      closing an unfinished socket.
1070 	 */
1071 
1072 	if (!inode) {
1073 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1074 		return 0;
1075 	}
1076 	sock_release(SOCKET_I(inode));
1077 	return 0;
1078 }
1079 
1080 /*
1081  *	Update the socket async list
1082  *
1083  *	Fasync_list locking strategy.
1084  *
1085  *	1. fasync_list is modified only under process context socket lock
1086  *	   i.e. under semaphore.
1087  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1088  *	   or under socket lock
1089  */
1090 
1091 static int sock_fasync(int fd, struct file *filp, int on)
1092 {
1093 	struct socket *sock = filp->private_data;
1094 	struct sock *sk = sock->sk;
1095 
1096 	if (sk == NULL)
1097 		return -EINVAL;
1098 
1099 	lock_sock(sk);
1100 
1101 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1102 
1103 	if (!sock->wq->fasync_list)
1104 		sock_reset_flag(sk, SOCK_FASYNC);
1105 	else
1106 		sock_set_flag(sk, SOCK_FASYNC);
1107 
1108 	release_sock(sk);
1109 	return 0;
1110 }
1111 
1112 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1113 
1114 int sock_wake_async(struct socket *sock, int how, int band)
1115 {
1116 	struct socket_wq *wq;
1117 
1118 	if (!sock)
1119 		return -1;
1120 	rcu_read_lock();
1121 	wq = rcu_dereference(sock->wq);
1122 	if (!wq || !wq->fasync_list) {
1123 		rcu_read_unlock();
1124 		return -1;
1125 	}
1126 	switch (how) {
1127 	case SOCK_WAKE_WAITD:
1128 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1129 			break;
1130 		goto call_kill;
1131 	case SOCK_WAKE_SPACE:
1132 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1133 			break;
1134 		/* fall through */
1135 	case SOCK_WAKE_IO:
1136 call_kill:
1137 		kill_fasync(&wq->fasync_list, SIGIO, band);
1138 		break;
1139 	case SOCK_WAKE_URG:
1140 		kill_fasync(&wq->fasync_list, SIGURG, band);
1141 	}
1142 	rcu_read_unlock();
1143 	return 0;
1144 }
1145 EXPORT_SYMBOL(sock_wake_async);
1146 
1147 int __sock_create(struct net *net, int family, int type, int protocol,
1148 			 struct socket **res, int kern)
1149 {
1150 	int err;
1151 	struct socket *sock;
1152 	const struct net_proto_family *pf;
1153 
1154 	/*
1155 	 *      Check protocol is in range
1156 	 */
1157 	if (family < 0 || family >= NPROTO)
1158 		return -EAFNOSUPPORT;
1159 	if (type < 0 || type >= SOCK_MAX)
1160 		return -EINVAL;
1161 
1162 	/* Compatibility.
1163 
1164 	   This uglymoron is moved from INET layer to here to avoid
1165 	   deadlock in module load.
1166 	 */
1167 	if (family == PF_INET && type == SOCK_PACKET) {
1168 		static int warned;
1169 		if (!warned) {
1170 			warned = 1;
1171 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1172 			       current->comm);
1173 		}
1174 		family = PF_PACKET;
1175 	}
1176 
1177 	err = security_socket_create(family, type, protocol, kern);
1178 	if (err)
1179 		return err;
1180 
1181 	/*
1182 	 *	Allocate the socket and allow the family to set things up. if
1183 	 *	the protocol is 0, the family is instructed to select an appropriate
1184 	 *	default.
1185 	 */
1186 	sock = sock_alloc();
1187 	if (!sock) {
1188 		if (net_ratelimit())
1189 			printk(KERN_WARNING "socket: no more sockets\n");
1190 		return -ENFILE;	/* Not exactly a match, but its the
1191 				   closest posix thing */
1192 	}
1193 
1194 	sock->type = type;
1195 
1196 #ifdef CONFIG_MODULES
1197 	/* Attempt to load a protocol module if the find failed.
1198 	 *
1199 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1200 	 * requested real, full-featured networking support upon configuration.
1201 	 * Otherwise module support will break!
1202 	 */
1203 	if (net_families[family] == NULL)
1204 		request_module("net-pf-%d", family);
1205 #endif
1206 
1207 	rcu_read_lock();
1208 	pf = rcu_dereference(net_families[family]);
1209 	err = -EAFNOSUPPORT;
1210 	if (!pf)
1211 		goto out_release;
1212 
1213 	/*
1214 	 * We will call the ->create function, that possibly is in a loadable
1215 	 * module, so we have to bump that loadable module refcnt first.
1216 	 */
1217 	if (!try_module_get(pf->owner))
1218 		goto out_release;
1219 
1220 	/* Now protected by module ref count */
1221 	rcu_read_unlock();
1222 
1223 	err = pf->create(net, sock, protocol, kern);
1224 	if (err < 0)
1225 		goto out_module_put;
1226 
1227 	/*
1228 	 * Now to bump the refcnt of the [loadable] module that owns this
1229 	 * socket at sock_release time we decrement its refcnt.
1230 	 */
1231 	if (!try_module_get(sock->ops->owner))
1232 		goto out_module_busy;
1233 
1234 	/*
1235 	 * Now that we're done with the ->create function, the [loadable]
1236 	 * module can have its refcnt decremented
1237 	 */
1238 	module_put(pf->owner);
1239 	err = security_socket_post_create(sock, family, type, protocol, kern);
1240 	if (err)
1241 		goto out_sock_release;
1242 	*res = sock;
1243 
1244 	return 0;
1245 
1246 out_module_busy:
1247 	err = -EAFNOSUPPORT;
1248 out_module_put:
1249 	sock->ops = NULL;
1250 	module_put(pf->owner);
1251 out_sock_release:
1252 	sock_release(sock);
1253 	return err;
1254 
1255 out_release:
1256 	rcu_read_unlock();
1257 	goto out_sock_release;
1258 }
1259 EXPORT_SYMBOL(__sock_create);
1260 
1261 int sock_create(int family, int type, int protocol, struct socket **res)
1262 {
1263 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1264 }
1265 EXPORT_SYMBOL(sock_create);
1266 
1267 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1268 {
1269 	return __sock_create(&init_net, family, type, protocol, res, 1);
1270 }
1271 EXPORT_SYMBOL(sock_create_kern);
1272 
1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1274 {
1275 	int retval;
1276 	struct socket *sock;
1277 	int flags;
1278 
1279 	/* Check the SOCK_* constants for consistency.  */
1280 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1281 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1282 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1283 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1284 
1285 	flags = type & ~SOCK_TYPE_MASK;
1286 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1287 		return -EINVAL;
1288 	type &= SOCK_TYPE_MASK;
1289 
1290 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1291 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1292 
1293 	retval = sock_create(family, type, protocol, &sock);
1294 	if (retval < 0)
1295 		goto out;
1296 
1297 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1298 	if (retval < 0)
1299 		goto out_release;
1300 
1301 out:
1302 	/* It may be already another descriptor 8) Not kernel problem. */
1303 	return retval;
1304 
1305 out_release:
1306 	sock_release(sock);
1307 	return retval;
1308 }
1309 
1310 /*
1311  *	Create a pair of connected sockets.
1312  */
1313 
1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1315 		int __user *, usockvec)
1316 {
1317 	struct socket *sock1, *sock2;
1318 	int fd1, fd2, err;
1319 	struct file *newfile1, *newfile2;
1320 	int flags;
1321 
1322 	flags = type & ~SOCK_TYPE_MASK;
1323 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1324 		return -EINVAL;
1325 	type &= SOCK_TYPE_MASK;
1326 
1327 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1328 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1329 
1330 	/*
1331 	 * Obtain the first socket and check if the underlying protocol
1332 	 * supports the socketpair call.
1333 	 */
1334 
1335 	err = sock_create(family, type, protocol, &sock1);
1336 	if (err < 0)
1337 		goto out;
1338 
1339 	err = sock_create(family, type, protocol, &sock2);
1340 	if (err < 0)
1341 		goto out_release_1;
1342 
1343 	err = sock1->ops->socketpair(sock1, sock2);
1344 	if (err < 0)
1345 		goto out_release_both;
1346 
1347 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1348 	if (unlikely(fd1 < 0)) {
1349 		err = fd1;
1350 		goto out_release_both;
1351 	}
1352 
1353 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1354 	if (unlikely(fd2 < 0)) {
1355 		err = fd2;
1356 		fput(newfile1);
1357 		put_unused_fd(fd1);
1358 		sock_release(sock2);
1359 		goto out;
1360 	}
1361 
1362 	audit_fd_pair(fd1, fd2);
1363 	fd_install(fd1, newfile1);
1364 	fd_install(fd2, newfile2);
1365 	/* fd1 and fd2 may be already another descriptors.
1366 	 * Not kernel problem.
1367 	 */
1368 
1369 	err = put_user(fd1, &usockvec[0]);
1370 	if (!err)
1371 		err = put_user(fd2, &usockvec[1]);
1372 	if (!err)
1373 		return 0;
1374 
1375 	sys_close(fd2);
1376 	sys_close(fd1);
1377 	return err;
1378 
1379 out_release_both:
1380 	sock_release(sock2);
1381 out_release_1:
1382 	sock_release(sock1);
1383 out:
1384 	return err;
1385 }
1386 
1387 /*
1388  *	Bind a name to a socket. Nothing much to do here since it's
1389  *	the protocol's responsibility to handle the local address.
1390  *
1391  *	We move the socket address to kernel space before we call
1392  *	the protocol layer (having also checked the address is ok).
1393  */
1394 
1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1396 {
1397 	struct socket *sock;
1398 	struct sockaddr_storage address;
1399 	int err, fput_needed;
1400 
1401 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 	if (sock) {
1403 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1404 		if (err >= 0) {
1405 			err = security_socket_bind(sock,
1406 						   (struct sockaddr *)&address,
1407 						   addrlen);
1408 			if (!err)
1409 				err = sock->ops->bind(sock,
1410 						      (struct sockaddr *)
1411 						      &address, addrlen);
1412 		}
1413 		fput_light(sock->file, fput_needed);
1414 	}
1415 	return err;
1416 }
1417 
1418 /*
1419  *	Perform a listen. Basically, we allow the protocol to do anything
1420  *	necessary for a listen, and if that works, we mark the socket as
1421  *	ready for listening.
1422  */
1423 
1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1425 {
1426 	struct socket *sock;
1427 	int err, fput_needed;
1428 	int somaxconn;
1429 
1430 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1431 	if (sock) {
1432 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1433 		if ((unsigned)backlog > somaxconn)
1434 			backlog = somaxconn;
1435 
1436 		err = security_socket_listen(sock, backlog);
1437 		if (!err)
1438 			err = sock->ops->listen(sock, backlog);
1439 
1440 		fput_light(sock->file, fput_needed);
1441 	}
1442 	return err;
1443 }
1444 
1445 /*
1446  *	For accept, we attempt to create a new socket, set up the link
1447  *	with the client, wake up the client, then return the new
1448  *	connected fd. We collect the address of the connector in kernel
1449  *	space and move it to user at the very end. This is unclean because
1450  *	we open the socket then return an error.
1451  *
1452  *	1003.1g adds the ability to recvmsg() to query connection pending
1453  *	status to recvmsg. We need to add that support in a way thats
1454  *	clean when we restucture accept also.
1455  */
1456 
1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1458 		int __user *, upeer_addrlen, int, flags)
1459 {
1460 	struct socket *sock, *newsock;
1461 	struct file *newfile;
1462 	int err, len, newfd, fput_needed;
1463 	struct sockaddr_storage address;
1464 
1465 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1466 		return -EINVAL;
1467 
1468 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1469 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1470 
1471 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1472 	if (!sock)
1473 		goto out;
1474 
1475 	err = -ENFILE;
1476 	newsock = sock_alloc();
1477 	if (!newsock)
1478 		goto out_put;
1479 
1480 	newsock->type = sock->type;
1481 	newsock->ops = sock->ops;
1482 
1483 	/*
1484 	 * We don't need try_module_get here, as the listening socket (sock)
1485 	 * has the protocol module (sock->ops->owner) held.
1486 	 */
1487 	__module_get(newsock->ops->owner);
1488 
1489 	newfd = sock_alloc_file(newsock, &newfile, flags);
1490 	if (unlikely(newfd < 0)) {
1491 		err = newfd;
1492 		sock_release(newsock);
1493 		goto out_put;
1494 	}
1495 
1496 	err = security_socket_accept(sock, newsock);
1497 	if (err)
1498 		goto out_fd;
1499 
1500 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1501 	if (err < 0)
1502 		goto out_fd;
1503 
1504 	if (upeer_sockaddr) {
1505 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1506 					  &len, 2) < 0) {
1507 			err = -ECONNABORTED;
1508 			goto out_fd;
1509 		}
1510 		err = move_addr_to_user((struct sockaddr *)&address,
1511 					len, upeer_sockaddr, upeer_addrlen);
1512 		if (err < 0)
1513 			goto out_fd;
1514 	}
1515 
1516 	/* File flags are not inherited via accept() unlike another OSes. */
1517 
1518 	fd_install(newfd, newfile);
1519 	err = newfd;
1520 
1521 out_put:
1522 	fput_light(sock->file, fput_needed);
1523 out:
1524 	return err;
1525 out_fd:
1526 	fput(newfile);
1527 	put_unused_fd(newfd);
1528 	goto out_put;
1529 }
1530 
1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1532 		int __user *, upeer_addrlen)
1533 {
1534 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1535 }
1536 
1537 /*
1538  *	Attempt to connect to a socket with the server address.  The address
1539  *	is in user space so we verify it is OK and move it to kernel space.
1540  *
1541  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1542  *	break bindings
1543  *
1544  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1545  *	other SEQPACKET protocols that take time to connect() as it doesn't
1546  *	include the -EINPROGRESS status for such sockets.
1547  */
1548 
1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1550 		int, addrlen)
1551 {
1552 	struct socket *sock;
1553 	struct sockaddr_storage address;
1554 	int err, fput_needed;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1560 	if (err < 0)
1561 		goto out_put;
1562 
1563 	err =
1564 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1565 	if (err)
1566 		goto out_put;
1567 
1568 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1569 				 sock->file->f_flags);
1570 out_put:
1571 	fput_light(sock->file, fput_needed);
1572 out:
1573 	return err;
1574 }
1575 
1576 /*
1577  *	Get the local address ('name') of a socket object. Move the obtained
1578  *	name to user space.
1579  */
1580 
1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1582 		int __user *, usockaddr_len)
1583 {
1584 	struct socket *sock;
1585 	struct sockaddr_storage address;
1586 	int len, err, fput_needed;
1587 
1588 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 	if (!sock)
1590 		goto out;
1591 
1592 	err = security_socket_getsockname(sock);
1593 	if (err)
1594 		goto out_put;
1595 
1596 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1597 	if (err)
1598 		goto out_put;
1599 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1600 
1601 out_put:
1602 	fput_light(sock->file, fput_needed);
1603 out:
1604 	return err;
1605 }
1606 
1607 /*
1608  *	Get the remote address ('name') of a socket object. Move the obtained
1609  *	name to user space.
1610  */
1611 
1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1613 		int __user *, usockaddr_len)
1614 {
1615 	struct socket *sock;
1616 	struct sockaddr_storage address;
1617 	int len, err, fput_needed;
1618 
1619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 	if (sock != NULL) {
1621 		err = security_socket_getpeername(sock);
1622 		if (err) {
1623 			fput_light(sock->file, fput_needed);
1624 			return err;
1625 		}
1626 
1627 		err =
1628 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1629 				       1);
1630 		if (!err)
1631 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1632 						usockaddr_len);
1633 		fput_light(sock->file, fput_needed);
1634 	}
1635 	return err;
1636 }
1637 
1638 /*
1639  *	Send a datagram to a given address. We move the address into kernel
1640  *	space and check the user space data area is readable before invoking
1641  *	the protocol.
1642  */
1643 
1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1645 		unsigned, flags, struct sockaddr __user *, addr,
1646 		int, addr_len)
1647 {
1648 	struct socket *sock;
1649 	struct sockaddr_storage address;
1650 	int err;
1651 	struct msghdr msg;
1652 	struct iovec iov;
1653 	int fput_needed;
1654 
1655 	if (len > INT_MAX)
1656 		len = INT_MAX;
1657 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 	if (!sock)
1659 		goto out;
1660 
1661 	iov.iov_base = buff;
1662 	iov.iov_len = len;
1663 	msg.msg_name = NULL;
1664 	msg.msg_iov = &iov;
1665 	msg.msg_iovlen = 1;
1666 	msg.msg_control = NULL;
1667 	msg.msg_controllen = 0;
1668 	msg.msg_namelen = 0;
1669 	if (addr) {
1670 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1671 		if (err < 0)
1672 			goto out_put;
1673 		msg.msg_name = (struct sockaddr *)&address;
1674 		msg.msg_namelen = addr_len;
1675 	}
1676 	if (sock->file->f_flags & O_NONBLOCK)
1677 		flags |= MSG_DONTWAIT;
1678 	msg.msg_flags = flags;
1679 	err = sock_sendmsg(sock, &msg, len);
1680 
1681 out_put:
1682 	fput_light(sock->file, fput_needed);
1683 out:
1684 	return err;
1685 }
1686 
1687 /*
1688  *	Send a datagram down a socket.
1689  */
1690 
1691 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1692 		unsigned, flags)
1693 {
1694 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1695 }
1696 
1697 /*
1698  *	Receive a frame from the socket and optionally record the address of the
1699  *	sender. We verify the buffers are writable and if needed move the
1700  *	sender address from kernel to user space.
1701  */
1702 
1703 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1704 		unsigned, flags, struct sockaddr __user *, addr,
1705 		int __user *, addr_len)
1706 {
1707 	struct socket *sock;
1708 	struct iovec iov;
1709 	struct msghdr msg;
1710 	struct sockaddr_storage address;
1711 	int err, err2;
1712 	int fput_needed;
1713 
1714 	if (size > INT_MAX)
1715 		size = INT_MAX;
1716 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1717 	if (!sock)
1718 		goto out;
1719 
1720 	msg.msg_control = NULL;
1721 	msg.msg_controllen = 0;
1722 	msg.msg_iovlen = 1;
1723 	msg.msg_iov = &iov;
1724 	iov.iov_len = size;
1725 	iov.iov_base = ubuf;
1726 	msg.msg_name = (struct sockaddr *)&address;
1727 	msg.msg_namelen = sizeof(address);
1728 	if (sock->file->f_flags & O_NONBLOCK)
1729 		flags |= MSG_DONTWAIT;
1730 	err = sock_recvmsg(sock, &msg, size, flags);
1731 
1732 	if (err >= 0 && addr != NULL) {
1733 		err2 = move_addr_to_user((struct sockaddr *)&address,
1734 					 msg.msg_namelen, addr, addr_len);
1735 		if (err2 < 0)
1736 			err = err2;
1737 	}
1738 
1739 	fput_light(sock->file, fput_needed);
1740 out:
1741 	return err;
1742 }
1743 
1744 /*
1745  *	Receive a datagram from a socket.
1746  */
1747 
1748 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1749 			 unsigned flags)
1750 {
1751 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1752 }
1753 
1754 /*
1755  *	Set a socket option. Because we don't know the option lengths we have
1756  *	to pass the user mode parameter for the protocols to sort out.
1757  */
1758 
1759 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1760 		char __user *, optval, int, optlen)
1761 {
1762 	int err, fput_needed;
1763 	struct socket *sock;
1764 
1765 	if (optlen < 0)
1766 		return -EINVAL;
1767 
1768 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 	if (sock != NULL) {
1770 		err = security_socket_setsockopt(sock, level, optname);
1771 		if (err)
1772 			goto out_put;
1773 
1774 		if (level == SOL_SOCKET)
1775 			err =
1776 			    sock_setsockopt(sock, level, optname, optval,
1777 					    optlen);
1778 		else
1779 			err =
1780 			    sock->ops->setsockopt(sock, level, optname, optval,
1781 						  optlen);
1782 out_put:
1783 		fput_light(sock->file, fput_needed);
1784 	}
1785 	return err;
1786 }
1787 
1788 /*
1789  *	Get a socket option. Because we don't know the option lengths we have
1790  *	to pass a user mode parameter for the protocols to sort out.
1791  */
1792 
1793 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1794 		char __user *, optval, int __user *, optlen)
1795 {
1796 	int err, fput_needed;
1797 	struct socket *sock;
1798 
1799 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1800 	if (sock != NULL) {
1801 		err = security_socket_getsockopt(sock, level, optname);
1802 		if (err)
1803 			goto out_put;
1804 
1805 		if (level == SOL_SOCKET)
1806 			err =
1807 			    sock_getsockopt(sock, level, optname, optval,
1808 					    optlen);
1809 		else
1810 			err =
1811 			    sock->ops->getsockopt(sock, level, optname, optval,
1812 						  optlen);
1813 out_put:
1814 		fput_light(sock->file, fput_needed);
1815 	}
1816 	return err;
1817 }
1818 
1819 /*
1820  *	Shutdown a socket.
1821  */
1822 
1823 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1824 {
1825 	int err, fput_needed;
1826 	struct socket *sock;
1827 
1828 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 	if (sock != NULL) {
1830 		err = security_socket_shutdown(sock, how);
1831 		if (!err)
1832 			err = sock->ops->shutdown(sock, how);
1833 		fput_light(sock->file, fput_needed);
1834 	}
1835 	return err;
1836 }
1837 
1838 /* A couple of helpful macros for getting the address of the 32/64 bit
1839  * fields which are the same type (int / unsigned) on our platforms.
1840  */
1841 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1842 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1843 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1844 
1845 /*
1846  *	BSD sendmsg interface
1847  */
1848 
1849 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1850 {
1851 	struct compat_msghdr __user *msg_compat =
1852 	    (struct compat_msghdr __user *)msg;
1853 	struct socket *sock;
1854 	struct sockaddr_storage address;
1855 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1856 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1857 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1858 	/* 20 is size of ipv6_pktinfo */
1859 	unsigned char *ctl_buf = ctl;
1860 	struct msghdr msg_sys;
1861 	int err, ctl_len, iov_size, total_len;
1862 	int fput_needed;
1863 
1864 	err = -EFAULT;
1865 	if (MSG_CMSG_COMPAT & flags) {
1866 		if (get_compat_msghdr(&msg_sys, msg_compat))
1867 			return -EFAULT;
1868 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1869 		return -EFAULT;
1870 
1871 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872 	if (!sock)
1873 		goto out;
1874 
1875 	/* do not move before msg_sys is valid */
1876 	err = -EMSGSIZE;
1877 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1878 		goto out_put;
1879 
1880 	/* Check whether to allocate the iovec area */
1881 	err = -ENOMEM;
1882 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1883 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1884 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1885 		if (!iov)
1886 			goto out_put;
1887 	}
1888 
1889 	/* This will also move the address data into kernel space */
1890 	if (MSG_CMSG_COMPAT & flags) {
1891 		err = verify_compat_iovec(&msg_sys, iov,
1892 					  (struct sockaddr *)&address,
1893 					  VERIFY_READ);
1894 	} else
1895 		err = verify_iovec(&msg_sys, iov,
1896 				   (struct sockaddr *)&address,
1897 				   VERIFY_READ);
1898 	if (err < 0)
1899 		goto out_freeiov;
1900 	total_len = err;
1901 
1902 	err = -ENOBUFS;
1903 
1904 	if (msg_sys.msg_controllen > INT_MAX)
1905 		goto out_freeiov;
1906 	ctl_len = msg_sys.msg_controllen;
1907 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1908 		err =
1909 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1910 						     sizeof(ctl));
1911 		if (err)
1912 			goto out_freeiov;
1913 		ctl_buf = msg_sys.msg_control;
1914 		ctl_len = msg_sys.msg_controllen;
1915 	} else if (ctl_len) {
1916 		if (ctl_len > sizeof(ctl)) {
1917 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1918 			if (ctl_buf == NULL)
1919 				goto out_freeiov;
1920 		}
1921 		err = -EFAULT;
1922 		/*
1923 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1924 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1925 		 * checking falls down on this.
1926 		 */
1927 		if (copy_from_user(ctl_buf,
1928 				   (void __user __force *)msg_sys.msg_control,
1929 				   ctl_len))
1930 			goto out_freectl;
1931 		msg_sys.msg_control = ctl_buf;
1932 	}
1933 	msg_sys.msg_flags = flags;
1934 
1935 	if (sock->file->f_flags & O_NONBLOCK)
1936 		msg_sys.msg_flags |= MSG_DONTWAIT;
1937 	err = sock_sendmsg(sock, &msg_sys, total_len);
1938 
1939 out_freectl:
1940 	if (ctl_buf != ctl)
1941 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1942 out_freeiov:
1943 	if (iov != iovstack)
1944 		sock_kfree_s(sock->sk, iov, iov_size);
1945 out_put:
1946 	fput_light(sock->file, fput_needed);
1947 out:
1948 	return err;
1949 }
1950 
1951 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1952 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1953 {
1954 	struct compat_msghdr __user *msg_compat =
1955 	    (struct compat_msghdr __user *)msg;
1956 	struct iovec iovstack[UIO_FASTIOV];
1957 	struct iovec *iov = iovstack;
1958 	unsigned long cmsg_ptr;
1959 	int err, iov_size, total_len, len;
1960 
1961 	/* kernel mode address */
1962 	struct sockaddr_storage addr;
1963 
1964 	/* user mode address pointers */
1965 	struct sockaddr __user *uaddr;
1966 	int __user *uaddr_len;
1967 
1968 	if (MSG_CMSG_COMPAT & flags) {
1969 		if (get_compat_msghdr(msg_sys, msg_compat))
1970 			return -EFAULT;
1971 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1972 		return -EFAULT;
1973 
1974 	err = -EMSGSIZE;
1975 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1976 		goto out;
1977 
1978 	/* Check whether to allocate the iovec area */
1979 	err = -ENOMEM;
1980 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1981 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1982 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1983 		if (!iov)
1984 			goto out;
1985 	}
1986 
1987 	/*
1988 	 *      Save the user-mode address (verify_iovec will change the
1989 	 *      kernel msghdr to use the kernel address space)
1990 	 */
1991 
1992 	uaddr = (__force void __user *)msg_sys->msg_name;
1993 	uaddr_len = COMPAT_NAMELEN(msg);
1994 	if (MSG_CMSG_COMPAT & flags) {
1995 		err = verify_compat_iovec(msg_sys, iov,
1996 					  (struct sockaddr *)&addr,
1997 					  VERIFY_WRITE);
1998 	} else
1999 		err = verify_iovec(msg_sys, iov,
2000 				   (struct sockaddr *)&addr,
2001 				   VERIFY_WRITE);
2002 	if (err < 0)
2003 		goto out_freeiov;
2004 	total_len = err;
2005 
2006 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2007 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2008 
2009 	if (sock->file->f_flags & O_NONBLOCK)
2010 		flags |= MSG_DONTWAIT;
2011 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2012 							  total_len, flags);
2013 	if (err < 0)
2014 		goto out_freeiov;
2015 	len = err;
2016 
2017 	if (uaddr != NULL) {
2018 		err = move_addr_to_user((struct sockaddr *)&addr,
2019 					msg_sys->msg_namelen, uaddr,
2020 					uaddr_len);
2021 		if (err < 0)
2022 			goto out_freeiov;
2023 	}
2024 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2025 			 COMPAT_FLAGS(msg));
2026 	if (err)
2027 		goto out_freeiov;
2028 	if (MSG_CMSG_COMPAT & flags)
2029 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2030 				 &msg_compat->msg_controllen);
2031 	else
2032 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2033 				 &msg->msg_controllen);
2034 	if (err)
2035 		goto out_freeiov;
2036 	err = len;
2037 
2038 out_freeiov:
2039 	if (iov != iovstack)
2040 		sock_kfree_s(sock->sk, iov, iov_size);
2041 out:
2042 	return err;
2043 }
2044 
2045 /*
2046  *	BSD recvmsg interface
2047  */
2048 
2049 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2050 		unsigned int, flags)
2051 {
2052 	int fput_needed, err;
2053 	struct msghdr msg_sys;
2054 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2055 
2056 	if (!sock)
2057 		goto out;
2058 
2059 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2060 
2061 	fput_light(sock->file, fput_needed);
2062 out:
2063 	return err;
2064 }
2065 
2066 /*
2067  *     Linux recvmmsg interface
2068  */
2069 
2070 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2071 		   unsigned int flags, struct timespec *timeout)
2072 {
2073 	int fput_needed, err, datagrams;
2074 	struct socket *sock;
2075 	struct mmsghdr __user *entry;
2076 	struct compat_mmsghdr __user *compat_entry;
2077 	struct msghdr msg_sys;
2078 	struct timespec end_time;
2079 
2080 	if (timeout &&
2081 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2082 				    timeout->tv_nsec))
2083 		return -EINVAL;
2084 
2085 	datagrams = 0;
2086 
2087 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2088 	if (!sock)
2089 		return err;
2090 
2091 	err = sock_error(sock->sk);
2092 	if (err)
2093 		goto out_put;
2094 
2095 	entry = mmsg;
2096 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2097 
2098 	while (datagrams < vlen) {
2099 		/*
2100 		 * No need to ask LSM for more than the first datagram.
2101 		 */
2102 		if (MSG_CMSG_COMPAT & flags) {
2103 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2104 					    &msg_sys, flags, datagrams);
2105 			if (err < 0)
2106 				break;
2107 			err = __put_user(err, &compat_entry->msg_len);
2108 			++compat_entry;
2109 		} else {
2110 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2111 					    &msg_sys, flags, datagrams);
2112 			if (err < 0)
2113 				break;
2114 			err = put_user(err, &entry->msg_len);
2115 			++entry;
2116 		}
2117 
2118 		if (err)
2119 			break;
2120 		++datagrams;
2121 
2122 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2123 		if (flags & MSG_WAITFORONE)
2124 			flags |= MSG_DONTWAIT;
2125 
2126 		if (timeout) {
2127 			ktime_get_ts(timeout);
2128 			*timeout = timespec_sub(end_time, *timeout);
2129 			if (timeout->tv_sec < 0) {
2130 				timeout->tv_sec = timeout->tv_nsec = 0;
2131 				break;
2132 			}
2133 
2134 			/* Timeout, return less than vlen datagrams */
2135 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2136 				break;
2137 		}
2138 
2139 		/* Out of band data, return right away */
2140 		if (msg_sys.msg_flags & MSG_OOB)
2141 			break;
2142 	}
2143 
2144 out_put:
2145 	fput_light(sock->file, fput_needed);
2146 
2147 	if (err == 0)
2148 		return datagrams;
2149 
2150 	if (datagrams != 0) {
2151 		/*
2152 		 * We may return less entries than requested (vlen) if the
2153 		 * sock is non block and there aren't enough datagrams...
2154 		 */
2155 		if (err != -EAGAIN) {
2156 			/*
2157 			 * ... or  if recvmsg returns an error after we
2158 			 * received some datagrams, where we record the
2159 			 * error to return on the next call or if the
2160 			 * app asks about it using getsockopt(SO_ERROR).
2161 			 */
2162 			sock->sk->sk_err = -err;
2163 		}
2164 
2165 		return datagrams;
2166 	}
2167 
2168 	return err;
2169 }
2170 
2171 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2172 		unsigned int, vlen, unsigned int, flags,
2173 		struct timespec __user *, timeout)
2174 {
2175 	int datagrams;
2176 	struct timespec timeout_sys;
2177 
2178 	if (!timeout)
2179 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2180 
2181 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2182 		return -EFAULT;
2183 
2184 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2185 
2186 	if (datagrams > 0 &&
2187 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2188 		datagrams = -EFAULT;
2189 
2190 	return datagrams;
2191 }
2192 
2193 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2194 /* Argument list sizes for sys_socketcall */
2195 #define AL(x) ((x) * sizeof(unsigned long))
2196 static const unsigned char nargs[20] = {
2197 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2198 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2199 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2200 	AL(4), AL(5)
2201 };
2202 
2203 #undef AL
2204 
2205 /*
2206  *	System call vectors.
2207  *
2208  *	Argument checking cleaned up. Saved 20% in size.
2209  *  This function doesn't need to set the kernel lock because
2210  *  it is set by the callees.
2211  */
2212 
2213 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2214 {
2215 	unsigned long a[6];
2216 	unsigned long a0, a1;
2217 	int err;
2218 	unsigned int len;
2219 
2220 	if (call < 1 || call > SYS_RECVMMSG)
2221 		return -EINVAL;
2222 
2223 	len = nargs[call];
2224 	if (len > sizeof(a))
2225 		return -EINVAL;
2226 
2227 	/* copy_from_user should be SMP safe. */
2228 	if (copy_from_user(a, args, len))
2229 		return -EFAULT;
2230 
2231 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2232 
2233 	a0 = a[0];
2234 	a1 = a[1];
2235 
2236 	switch (call) {
2237 	case SYS_SOCKET:
2238 		err = sys_socket(a0, a1, a[2]);
2239 		break;
2240 	case SYS_BIND:
2241 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2242 		break;
2243 	case SYS_CONNECT:
2244 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2245 		break;
2246 	case SYS_LISTEN:
2247 		err = sys_listen(a0, a1);
2248 		break;
2249 	case SYS_ACCEPT:
2250 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2251 				  (int __user *)a[2], 0);
2252 		break;
2253 	case SYS_GETSOCKNAME:
2254 		err =
2255 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2256 				    (int __user *)a[2]);
2257 		break;
2258 	case SYS_GETPEERNAME:
2259 		err =
2260 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2261 				    (int __user *)a[2]);
2262 		break;
2263 	case SYS_SOCKETPAIR:
2264 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2265 		break;
2266 	case SYS_SEND:
2267 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2268 		break;
2269 	case SYS_SENDTO:
2270 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2271 				 (struct sockaddr __user *)a[4], a[5]);
2272 		break;
2273 	case SYS_RECV:
2274 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2275 		break;
2276 	case SYS_RECVFROM:
2277 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2278 				   (struct sockaddr __user *)a[4],
2279 				   (int __user *)a[5]);
2280 		break;
2281 	case SYS_SHUTDOWN:
2282 		err = sys_shutdown(a0, a1);
2283 		break;
2284 	case SYS_SETSOCKOPT:
2285 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2286 		break;
2287 	case SYS_GETSOCKOPT:
2288 		err =
2289 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2290 				   (int __user *)a[4]);
2291 		break;
2292 	case SYS_SENDMSG:
2293 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2294 		break;
2295 	case SYS_RECVMSG:
2296 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2297 		break;
2298 	case SYS_RECVMMSG:
2299 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2300 				   (struct timespec __user *)a[4]);
2301 		break;
2302 	case SYS_ACCEPT4:
2303 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2304 				  (int __user *)a[2], a[3]);
2305 		break;
2306 	default:
2307 		err = -EINVAL;
2308 		break;
2309 	}
2310 	return err;
2311 }
2312 
2313 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2314 
2315 /**
2316  *	sock_register - add a socket protocol handler
2317  *	@ops: description of protocol
2318  *
2319  *	This function is called by a protocol handler that wants to
2320  *	advertise its address family, and have it linked into the
2321  *	socket interface. The value ops->family coresponds to the
2322  *	socket system call protocol family.
2323  */
2324 int sock_register(const struct net_proto_family *ops)
2325 {
2326 	int err;
2327 
2328 	if (ops->family >= NPROTO) {
2329 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2330 		       NPROTO);
2331 		return -ENOBUFS;
2332 	}
2333 
2334 	spin_lock(&net_family_lock);
2335 	if (net_families[ops->family])
2336 		err = -EEXIST;
2337 	else {
2338 		net_families[ops->family] = ops;
2339 		err = 0;
2340 	}
2341 	spin_unlock(&net_family_lock);
2342 
2343 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2344 	return err;
2345 }
2346 EXPORT_SYMBOL(sock_register);
2347 
2348 /**
2349  *	sock_unregister - remove a protocol handler
2350  *	@family: protocol family to remove
2351  *
2352  *	This function is called by a protocol handler that wants to
2353  *	remove its address family, and have it unlinked from the
2354  *	new socket creation.
2355  *
2356  *	If protocol handler is a module, then it can use module reference
2357  *	counts to protect against new references. If protocol handler is not
2358  *	a module then it needs to provide its own protection in
2359  *	the ops->create routine.
2360  */
2361 void sock_unregister(int family)
2362 {
2363 	BUG_ON(family < 0 || family >= NPROTO);
2364 
2365 	spin_lock(&net_family_lock);
2366 	net_families[family] = NULL;
2367 	spin_unlock(&net_family_lock);
2368 
2369 	synchronize_rcu();
2370 
2371 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2372 }
2373 EXPORT_SYMBOL(sock_unregister);
2374 
2375 static int __init sock_init(void)
2376 {
2377 	/*
2378 	 *      Initialize sock SLAB cache.
2379 	 */
2380 
2381 	sk_init();
2382 
2383 	/*
2384 	 *      Initialize skbuff SLAB cache
2385 	 */
2386 	skb_init();
2387 
2388 	/*
2389 	 *      Initialize the protocols module.
2390 	 */
2391 
2392 	init_inodecache();
2393 	register_filesystem(&sock_fs_type);
2394 	sock_mnt = kern_mount(&sock_fs_type);
2395 
2396 	/* The real protocol initialization is performed in later initcalls.
2397 	 */
2398 
2399 #ifdef CONFIG_NETFILTER
2400 	netfilter_init();
2401 #endif
2402 
2403 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2404 	skb_timestamping_init();
2405 #endif
2406 
2407 	return 0;
2408 }
2409 
2410 core_initcall(sock_init);	/* early initcall */
2411 
2412 #ifdef CONFIG_PROC_FS
2413 void socket_seq_show(struct seq_file *seq)
2414 {
2415 	int cpu;
2416 	int counter = 0;
2417 
2418 	for_each_possible_cpu(cpu)
2419 	    counter += per_cpu(sockets_in_use, cpu);
2420 
2421 	/* It can be negative, by the way. 8) */
2422 	if (counter < 0)
2423 		counter = 0;
2424 
2425 	seq_printf(seq, "sockets: used %d\n", counter);
2426 }
2427 #endif				/* CONFIG_PROC_FS */
2428 
2429 #ifdef CONFIG_COMPAT
2430 static int do_siocgstamp(struct net *net, struct socket *sock,
2431 			 unsigned int cmd, struct compat_timeval __user *up)
2432 {
2433 	mm_segment_t old_fs = get_fs();
2434 	struct timeval ktv;
2435 	int err;
2436 
2437 	set_fs(KERNEL_DS);
2438 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2439 	set_fs(old_fs);
2440 	if (!err) {
2441 		err = put_user(ktv.tv_sec, &up->tv_sec);
2442 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2443 	}
2444 	return err;
2445 }
2446 
2447 static int do_siocgstampns(struct net *net, struct socket *sock,
2448 			 unsigned int cmd, struct compat_timespec __user *up)
2449 {
2450 	mm_segment_t old_fs = get_fs();
2451 	struct timespec kts;
2452 	int err;
2453 
2454 	set_fs(KERNEL_DS);
2455 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2456 	set_fs(old_fs);
2457 	if (!err) {
2458 		err = put_user(kts.tv_sec, &up->tv_sec);
2459 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2460 	}
2461 	return err;
2462 }
2463 
2464 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2465 {
2466 	struct ifreq __user *uifr;
2467 	int err;
2468 
2469 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2470 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2471 		return -EFAULT;
2472 
2473 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2474 	if (err)
2475 		return err;
2476 
2477 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2478 		return -EFAULT;
2479 
2480 	return 0;
2481 }
2482 
2483 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2484 {
2485 	struct compat_ifconf ifc32;
2486 	struct ifconf ifc;
2487 	struct ifconf __user *uifc;
2488 	struct compat_ifreq __user *ifr32;
2489 	struct ifreq __user *ifr;
2490 	unsigned int i, j;
2491 	int err;
2492 
2493 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2494 		return -EFAULT;
2495 
2496 	if (ifc32.ifcbuf == 0) {
2497 		ifc32.ifc_len = 0;
2498 		ifc.ifc_len = 0;
2499 		ifc.ifc_req = NULL;
2500 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2501 	} else {
2502 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2503 			sizeof(struct ifreq);
2504 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2505 		ifc.ifc_len = len;
2506 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2507 		ifr32 = compat_ptr(ifc32.ifcbuf);
2508 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2509 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2510 				return -EFAULT;
2511 			ifr++;
2512 			ifr32++;
2513 		}
2514 	}
2515 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2516 		return -EFAULT;
2517 
2518 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2519 	if (err)
2520 		return err;
2521 
2522 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2523 		return -EFAULT;
2524 
2525 	ifr = ifc.ifc_req;
2526 	ifr32 = compat_ptr(ifc32.ifcbuf);
2527 	for (i = 0, j = 0;
2528 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2529 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2530 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2531 			return -EFAULT;
2532 		ifr32++;
2533 		ifr++;
2534 	}
2535 
2536 	if (ifc32.ifcbuf == 0) {
2537 		/* Translate from 64-bit structure multiple to
2538 		 * a 32-bit one.
2539 		 */
2540 		i = ifc.ifc_len;
2541 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2542 		ifc32.ifc_len = i;
2543 	} else {
2544 		ifc32.ifc_len = i;
2545 	}
2546 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2547 		return -EFAULT;
2548 
2549 	return 0;
2550 }
2551 
2552 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2553 {
2554 	struct ifreq __user *ifr;
2555 	u32 data;
2556 	void __user *datap;
2557 
2558 	ifr = compat_alloc_user_space(sizeof(*ifr));
2559 
2560 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2561 		return -EFAULT;
2562 
2563 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2564 		return -EFAULT;
2565 
2566 	datap = compat_ptr(data);
2567 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2568 		return -EFAULT;
2569 
2570 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2571 }
2572 
2573 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2574 {
2575 	void __user *uptr;
2576 	compat_uptr_t uptr32;
2577 	struct ifreq __user *uifr;
2578 
2579 	uifr = compat_alloc_user_space(sizeof(*uifr));
2580 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2581 		return -EFAULT;
2582 
2583 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2584 		return -EFAULT;
2585 
2586 	uptr = compat_ptr(uptr32);
2587 
2588 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2589 		return -EFAULT;
2590 
2591 	return dev_ioctl(net, SIOCWANDEV, uifr);
2592 }
2593 
2594 static int bond_ioctl(struct net *net, unsigned int cmd,
2595 			 struct compat_ifreq __user *ifr32)
2596 {
2597 	struct ifreq kifr;
2598 	struct ifreq __user *uifr;
2599 	mm_segment_t old_fs;
2600 	int err;
2601 	u32 data;
2602 	void __user *datap;
2603 
2604 	switch (cmd) {
2605 	case SIOCBONDENSLAVE:
2606 	case SIOCBONDRELEASE:
2607 	case SIOCBONDSETHWADDR:
2608 	case SIOCBONDCHANGEACTIVE:
2609 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2610 			return -EFAULT;
2611 
2612 		old_fs = get_fs();
2613 		set_fs(KERNEL_DS);
2614 		err = dev_ioctl(net, cmd, &kifr);
2615 		set_fs(old_fs);
2616 
2617 		return err;
2618 	case SIOCBONDSLAVEINFOQUERY:
2619 	case SIOCBONDINFOQUERY:
2620 		uifr = compat_alloc_user_space(sizeof(*uifr));
2621 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2622 			return -EFAULT;
2623 
2624 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2625 			return -EFAULT;
2626 
2627 		datap = compat_ptr(data);
2628 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2629 			return -EFAULT;
2630 
2631 		return dev_ioctl(net, cmd, uifr);
2632 	default:
2633 		return -EINVAL;
2634 	}
2635 }
2636 
2637 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2638 				 struct compat_ifreq __user *u_ifreq32)
2639 {
2640 	struct ifreq __user *u_ifreq64;
2641 	char tmp_buf[IFNAMSIZ];
2642 	void __user *data64;
2643 	u32 data32;
2644 
2645 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2646 			   IFNAMSIZ))
2647 		return -EFAULT;
2648 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2649 		return -EFAULT;
2650 	data64 = compat_ptr(data32);
2651 
2652 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2653 
2654 	/* Don't check these user accesses, just let that get trapped
2655 	 * in the ioctl handler instead.
2656 	 */
2657 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2658 			 IFNAMSIZ))
2659 		return -EFAULT;
2660 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2661 		return -EFAULT;
2662 
2663 	return dev_ioctl(net, cmd, u_ifreq64);
2664 }
2665 
2666 static int dev_ifsioc(struct net *net, struct socket *sock,
2667 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2668 {
2669 	struct ifreq __user *uifr;
2670 	int err;
2671 
2672 	uifr = compat_alloc_user_space(sizeof(*uifr));
2673 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2674 		return -EFAULT;
2675 
2676 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2677 
2678 	if (!err) {
2679 		switch (cmd) {
2680 		case SIOCGIFFLAGS:
2681 		case SIOCGIFMETRIC:
2682 		case SIOCGIFMTU:
2683 		case SIOCGIFMEM:
2684 		case SIOCGIFHWADDR:
2685 		case SIOCGIFINDEX:
2686 		case SIOCGIFADDR:
2687 		case SIOCGIFBRDADDR:
2688 		case SIOCGIFDSTADDR:
2689 		case SIOCGIFNETMASK:
2690 		case SIOCGIFPFLAGS:
2691 		case SIOCGIFTXQLEN:
2692 		case SIOCGMIIPHY:
2693 		case SIOCGMIIREG:
2694 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2695 				err = -EFAULT;
2696 			break;
2697 		}
2698 	}
2699 	return err;
2700 }
2701 
2702 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2703 			struct compat_ifreq __user *uifr32)
2704 {
2705 	struct ifreq ifr;
2706 	struct compat_ifmap __user *uifmap32;
2707 	mm_segment_t old_fs;
2708 	int err;
2709 
2710 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2711 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2712 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2713 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2714 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2715 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2716 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2717 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2718 	if (err)
2719 		return -EFAULT;
2720 
2721 	old_fs = get_fs();
2722 	set_fs(KERNEL_DS);
2723 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2724 	set_fs(old_fs);
2725 
2726 	if (cmd == SIOCGIFMAP && !err) {
2727 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2728 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2729 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2730 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2731 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2732 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2733 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2734 		if (err)
2735 			err = -EFAULT;
2736 	}
2737 	return err;
2738 }
2739 
2740 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2741 {
2742 	void __user *uptr;
2743 	compat_uptr_t uptr32;
2744 	struct ifreq __user *uifr;
2745 
2746 	uifr = compat_alloc_user_space(sizeof(*uifr));
2747 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2748 		return -EFAULT;
2749 
2750 	if (get_user(uptr32, &uifr32->ifr_data))
2751 		return -EFAULT;
2752 
2753 	uptr = compat_ptr(uptr32);
2754 
2755 	if (put_user(uptr, &uifr->ifr_data))
2756 		return -EFAULT;
2757 
2758 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2759 }
2760 
2761 struct rtentry32 {
2762 	u32		rt_pad1;
2763 	struct sockaddr rt_dst;         /* target address               */
2764 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2765 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2766 	unsigned short	rt_flags;
2767 	short		rt_pad2;
2768 	u32		rt_pad3;
2769 	unsigned char	rt_tos;
2770 	unsigned char	rt_class;
2771 	short		rt_pad4;
2772 	short		rt_metric;      /* +1 for binary compatibility! */
2773 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2774 	u32		rt_mtu;         /* per route MTU/Window         */
2775 	u32		rt_window;      /* Window clamping              */
2776 	unsigned short  rt_irtt;        /* Initial RTT                  */
2777 };
2778 
2779 struct in6_rtmsg32 {
2780 	struct in6_addr		rtmsg_dst;
2781 	struct in6_addr		rtmsg_src;
2782 	struct in6_addr		rtmsg_gateway;
2783 	u32			rtmsg_type;
2784 	u16			rtmsg_dst_len;
2785 	u16			rtmsg_src_len;
2786 	u32			rtmsg_metric;
2787 	u32			rtmsg_info;
2788 	u32			rtmsg_flags;
2789 	s32			rtmsg_ifindex;
2790 };
2791 
2792 static int routing_ioctl(struct net *net, struct socket *sock,
2793 			 unsigned int cmd, void __user *argp)
2794 {
2795 	int ret;
2796 	void *r = NULL;
2797 	struct in6_rtmsg r6;
2798 	struct rtentry r4;
2799 	char devname[16];
2800 	u32 rtdev;
2801 	mm_segment_t old_fs = get_fs();
2802 
2803 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2804 		struct in6_rtmsg32 __user *ur6 = argp;
2805 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2806 			3 * sizeof(struct in6_addr));
2807 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2808 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2809 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2810 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2811 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2812 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2813 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2814 
2815 		r = (void *) &r6;
2816 	} else { /* ipv4 */
2817 		struct rtentry32 __user *ur4 = argp;
2818 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2819 					3 * sizeof(struct sockaddr));
2820 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2821 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2822 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2823 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2824 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2825 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2826 		if (rtdev) {
2827 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2828 			r4.rt_dev = devname; devname[15] = 0;
2829 		} else
2830 			r4.rt_dev = NULL;
2831 
2832 		r = (void *) &r4;
2833 	}
2834 
2835 	if (ret) {
2836 		ret = -EFAULT;
2837 		goto out;
2838 	}
2839 
2840 	set_fs(KERNEL_DS);
2841 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2842 	set_fs(old_fs);
2843 
2844 out:
2845 	return ret;
2846 }
2847 
2848 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2849  * for some operations; this forces use of the newer bridge-utils that
2850  * use compatiable ioctls
2851  */
2852 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2853 {
2854 	compat_ulong_t tmp;
2855 
2856 	if (get_user(tmp, argp))
2857 		return -EFAULT;
2858 	if (tmp == BRCTL_GET_VERSION)
2859 		return BRCTL_VERSION + 1;
2860 	return -EINVAL;
2861 }
2862 
2863 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2864 			 unsigned int cmd, unsigned long arg)
2865 {
2866 	void __user *argp = compat_ptr(arg);
2867 	struct sock *sk = sock->sk;
2868 	struct net *net = sock_net(sk);
2869 
2870 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2871 		return siocdevprivate_ioctl(net, cmd, argp);
2872 
2873 	switch (cmd) {
2874 	case SIOCSIFBR:
2875 	case SIOCGIFBR:
2876 		return old_bridge_ioctl(argp);
2877 	case SIOCGIFNAME:
2878 		return dev_ifname32(net, argp);
2879 	case SIOCGIFCONF:
2880 		return dev_ifconf(net, argp);
2881 	case SIOCETHTOOL:
2882 		return ethtool_ioctl(net, argp);
2883 	case SIOCWANDEV:
2884 		return compat_siocwandev(net, argp);
2885 	case SIOCGIFMAP:
2886 	case SIOCSIFMAP:
2887 		return compat_sioc_ifmap(net, cmd, argp);
2888 	case SIOCBONDENSLAVE:
2889 	case SIOCBONDRELEASE:
2890 	case SIOCBONDSETHWADDR:
2891 	case SIOCBONDSLAVEINFOQUERY:
2892 	case SIOCBONDINFOQUERY:
2893 	case SIOCBONDCHANGEACTIVE:
2894 		return bond_ioctl(net, cmd, argp);
2895 	case SIOCADDRT:
2896 	case SIOCDELRT:
2897 		return routing_ioctl(net, sock, cmd, argp);
2898 	case SIOCGSTAMP:
2899 		return do_siocgstamp(net, sock, cmd, argp);
2900 	case SIOCGSTAMPNS:
2901 		return do_siocgstampns(net, sock, cmd, argp);
2902 	case SIOCSHWTSTAMP:
2903 		return compat_siocshwtstamp(net, argp);
2904 
2905 	case FIOSETOWN:
2906 	case SIOCSPGRP:
2907 	case FIOGETOWN:
2908 	case SIOCGPGRP:
2909 	case SIOCBRADDBR:
2910 	case SIOCBRDELBR:
2911 	case SIOCGIFVLAN:
2912 	case SIOCSIFVLAN:
2913 	case SIOCADDDLCI:
2914 	case SIOCDELDLCI:
2915 		return sock_ioctl(file, cmd, arg);
2916 
2917 	case SIOCGIFFLAGS:
2918 	case SIOCSIFFLAGS:
2919 	case SIOCGIFMETRIC:
2920 	case SIOCSIFMETRIC:
2921 	case SIOCGIFMTU:
2922 	case SIOCSIFMTU:
2923 	case SIOCGIFMEM:
2924 	case SIOCSIFMEM:
2925 	case SIOCGIFHWADDR:
2926 	case SIOCSIFHWADDR:
2927 	case SIOCADDMULTI:
2928 	case SIOCDELMULTI:
2929 	case SIOCGIFINDEX:
2930 	case SIOCGIFADDR:
2931 	case SIOCSIFADDR:
2932 	case SIOCSIFHWBROADCAST:
2933 	case SIOCDIFADDR:
2934 	case SIOCGIFBRDADDR:
2935 	case SIOCSIFBRDADDR:
2936 	case SIOCGIFDSTADDR:
2937 	case SIOCSIFDSTADDR:
2938 	case SIOCGIFNETMASK:
2939 	case SIOCSIFNETMASK:
2940 	case SIOCSIFPFLAGS:
2941 	case SIOCGIFPFLAGS:
2942 	case SIOCGIFTXQLEN:
2943 	case SIOCSIFTXQLEN:
2944 	case SIOCBRADDIF:
2945 	case SIOCBRDELIF:
2946 	case SIOCSIFNAME:
2947 	case SIOCGMIIPHY:
2948 	case SIOCGMIIREG:
2949 	case SIOCSMIIREG:
2950 		return dev_ifsioc(net, sock, cmd, argp);
2951 
2952 	case SIOCSARP:
2953 	case SIOCGARP:
2954 	case SIOCDARP:
2955 	case SIOCATMARK:
2956 		return sock_do_ioctl(net, sock, cmd, arg);
2957 	}
2958 
2959 	/* Prevent warning from compat_sys_ioctl, these always
2960 	 * result in -EINVAL in the native case anyway. */
2961 	switch (cmd) {
2962 	case SIOCRTMSG:
2963 	case SIOCGIFCOUNT:
2964 	case SIOCSRARP:
2965 	case SIOCGRARP:
2966 	case SIOCDRARP:
2967 	case SIOCSIFLINK:
2968 	case SIOCGIFSLAVE:
2969 	case SIOCSIFSLAVE:
2970 		return -EINVAL;
2971 	}
2972 
2973 	return -ENOIOCTLCMD;
2974 }
2975 
2976 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2977 			      unsigned long arg)
2978 {
2979 	struct socket *sock = file->private_data;
2980 	int ret = -ENOIOCTLCMD;
2981 	struct sock *sk;
2982 	struct net *net;
2983 
2984 	sk = sock->sk;
2985 	net = sock_net(sk);
2986 
2987 	if (sock->ops->compat_ioctl)
2988 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2989 
2990 	if (ret == -ENOIOCTLCMD &&
2991 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2992 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2993 
2994 	if (ret == -ENOIOCTLCMD)
2995 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2996 
2997 	return ret;
2998 }
2999 #endif
3000 
3001 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3002 {
3003 	return sock->ops->bind(sock, addr, addrlen);
3004 }
3005 EXPORT_SYMBOL(kernel_bind);
3006 
3007 int kernel_listen(struct socket *sock, int backlog)
3008 {
3009 	return sock->ops->listen(sock, backlog);
3010 }
3011 EXPORT_SYMBOL(kernel_listen);
3012 
3013 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3014 {
3015 	struct sock *sk = sock->sk;
3016 	int err;
3017 
3018 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3019 			       newsock);
3020 	if (err < 0)
3021 		goto done;
3022 
3023 	err = sock->ops->accept(sock, *newsock, flags);
3024 	if (err < 0) {
3025 		sock_release(*newsock);
3026 		*newsock = NULL;
3027 		goto done;
3028 	}
3029 
3030 	(*newsock)->ops = sock->ops;
3031 	__module_get((*newsock)->ops->owner);
3032 
3033 done:
3034 	return err;
3035 }
3036 EXPORT_SYMBOL(kernel_accept);
3037 
3038 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3039 		   int flags)
3040 {
3041 	return sock->ops->connect(sock, addr, addrlen, flags);
3042 }
3043 EXPORT_SYMBOL(kernel_connect);
3044 
3045 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3046 			 int *addrlen)
3047 {
3048 	return sock->ops->getname(sock, addr, addrlen, 0);
3049 }
3050 EXPORT_SYMBOL(kernel_getsockname);
3051 
3052 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3053 			 int *addrlen)
3054 {
3055 	return sock->ops->getname(sock, addr, addrlen, 1);
3056 }
3057 EXPORT_SYMBOL(kernel_getpeername);
3058 
3059 int kernel_getsockopt(struct socket *sock, int level, int optname,
3060 			char *optval, int *optlen)
3061 {
3062 	mm_segment_t oldfs = get_fs();
3063 	char __user *uoptval;
3064 	int __user *uoptlen;
3065 	int err;
3066 
3067 	uoptval = (char __user __force *) optval;
3068 	uoptlen = (int __user __force *) optlen;
3069 
3070 	set_fs(KERNEL_DS);
3071 	if (level == SOL_SOCKET)
3072 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3073 	else
3074 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3075 					    uoptlen);
3076 	set_fs(oldfs);
3077 	return err;
3078 }
3079 EXPORT_SYMBOL(kernel_getsockopt);
3080 
3081 int kernel_setsockopt(struct socket *sock, int level, int optname,
3082 			char *optval, unsigned int optlen)
3083 {
3084 	mm_segment_t oldfs = get_fs();
3085 	char __user *uoptval;
3086 	int err;
3087 
3088 	uoptval = (char __user __force *) optval;
3089 
3090 	set_fs(KERNEL_DS);
3091 	if (level == SOL_SOCKET)
3092 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3093 	else
3094 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3095 					    optlen);
3096 	set_fs(oldfs);
3097 	return err;
3098 }
3099 EXPORT_SYMBOL(kernel_setsockopt);
3100 
3101 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3102 		    size_t size, int flags)
3103 {
3104 	sock_update_classid(sock->sk);
3105 
3106 	if (sock->ops->sendpage)
3107 		return sock->ops->sendpage(sock, page, offset, size, flags);
3108 
3109 	return sock_no_sendpage(sock, page, offset, size, flags);
3110 }
3111 EXPORT_SYMBOL(kernel_sendpage);
3112 
3113 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3114 {
3115 	mm_segment_t oldfs = get_fs();
3116 	int err;
3117 
3118 	set_fs(KERNEL_DS);
3119 	err = sock->ops->ioctl(sock, cmd, arg);
3120 	set_fs(oldfs);
3121 
3122 	return err;
3123 }
3124 EXPORT_SYMBOL(kernel_sock_ioctl);
3125 
3126 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3127 {
3128 	return sock->ops->shutdown(sock, how);
3129 }
3130 EXPORT_SYMBOL(kernel_sock_shutdown);
3131