1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int err; 280 int len; 281 282 BUG_ON(klen > sizeof(struct sockaddr_storage)); 283 err = get_user(len, ulen); 284 if (err) 285 return err; 286 if (len > klen) 287 len = klen; 288 if (len < 0) 289 return -EINVAL; 290 if (len) { 291 if (audit_sockaddr(klen, kaddr)) 292 return -ENOMEM; 293 if (copy_to_user(uaddr, kaddr, len)) 294 return -EFAULT; 295 } 296 /* 297 * "fromlen shall refer to the value before truncation.." 298 * 1003.1g 299 */ 300 return __put_user(klen, ulen); 301 } 302 303 static struct kmem_cache *sock_inode_cachep __ro_after_init; 304 305 static struct inode *sock_alloc_inode(struct super_block *sb) 306 { 307 struct socket_alloc *ei; 308 309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 310 if (!ei) 311 return NULL; 312 init_waitqueue_head(&ei->socket.wq.wait); 313 ei->socket.wq.fasync_list = NULL; 314 ei->socket.wq.flags = 0; 315 316 ei->socket.state = SS_UNCONNECTED; 317 ei->socket.flags = 0; 318 ei->socket.ops = NULL; 319 ei->socket.sk = NULL; 320 ei->socket.file = NULL; 321 322 return &ei->vfs_inode; 323 } 324 325 static void sock_free_inode(struct inode *inode) 326 { 327 struct socket_alloc *ei; 328 329 ei = container_of(inode, struct socket_alloc, vfs_inode); 330 kmem_cache_free(sock_inode_cachep, ei); 331 } 332 333 static void init_once(void *foo) 334 { 335 struct socket_alloc *ei = (struct socket_alloc *)foo; 336 337 inode_init_once(&ei->vfs_inode); 338 } 339 340 static void init_inodecache(void) 341 { 342 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 343 sizeof(struct socket_alloc), 344 0, 345 (SLAB_HWCACHE_ALIGN | 346 SLAB_RECLAIM_ACCOUNT | 347 SLAB_ACCOUNT), 348 init_once); 349 BUG_ON(sock_inode_cachep == NULL); 350 } 351 352 static const struct super_operations sockfs_ops = { 353 .alloc_inode = sock_alloc_inode, 354 .free_inode = sock_free_inode, 355 .statfs = simple_statfs, 356 }; 357 358 /* 359 * sockfs_dname() is called from d_path(). 360 */ 361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 362 { 363 return dynamic_dname(buffer, buflen, "socket:[%lu]", 364 d_inode(dentry)->i_ino); 365 } 366 367 static const struct dentry_operations sockfs_dentry_operations = { 368 .d_dname = sockfs_dname, 369 }; 370 371 static int sockfs_xattr_get(const struct xattr_handler *handler, 372 struct dentry *dentry, struct inode *inode, 373 const char *suffix, void *value, size_t size) 374 { 375 if (value) { 376 if (dentry->d_name.len + 1 > size) 377 return -ERANGE; 378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 379 } 380 return dentry->d_name.len + 1; 381 } 382 383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 386 387 static const struct xattr_handler sockfs_xattr_handler = { 388 .name = XATTR_NAME_SOCKPROTONAME, 389 .get = sockfs_xattr_get, 390 }; 391 392 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 393 struct mnt_idmap *idmap, 394 struct dentry *dentry, struct inode *inode, 395 const char *suffix, const void *value, 396 size_t size, int flags) 397 { 398 /* Handled by LSM. */ 399 return -EAGAIN; 400 } 401 402 static const struct xattr_handler sockfs_security_xattr_handler = { 403 .prefix = XATTR_SECURITY_PREFIX, 404 .set = sockfs_security_xattr_set, 405 }; 406 407 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 408 &sockfs_xattr_handler, 409 &sockfs_security_xattr_handler, 410 NULL 411 }; 412 413 static int sockfs_init_fs_context(struct fs_context *fc) 414 { 415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 416 if (!ctx) 417 return -ENOMEM; 418 ctx->ops = &sockfs_ops; 419 ctx->dops = &sockfs_dentry_operations; 420 ctx->xattr = sockfs_xattr_handlers; 421 return 0; 422 } 423 424 static struct vfsmount *sock_mnt __read_mostly; 425 426 static struct file_system_type sock_fs_type = { 427 .name = "sockfs", 428 .init_fs_context = sockfs_init_fs_context, 429 .kill_sb = kill_anon_super, 430 }; 431 432 /* 433 * Obtains the first available file descriptor and sets it up for use. 434 * 435 * These functions create file structures and maps them to fd space 436 * of the current process. On success it returns file descriptor 437 * and file struct implicitly stored in sock->file. 438 * Note that another thread may close file descriptor before we return 439 * from this function. We use the fact that now we do not refer 440 * to socket after mapping. If one day we will need it, this 441 * function will increment ref. count on file by 1. 442 * 443 * In any case returned fd MAY BE not valid! 444 * This race condition is unavoidable 445 * with shared fd spaces, we cannot solve it inside kernel, 446 * but we take care of internal coherence yet. 447 */ 448 449 /** 450 * sock_alloc_file - Bind a &socket to a &file 451 * @sock: socket 452 * @flags: file status flags 453 * @dname: protocol name 454 * 455 * Returns the &file bound with @sock, implicitly storing it 456 * in sock->file. If dname is %NULL, sets to "". 457 * 458 * On failure @sock is released, and an ERR pointer is returned. 459 * 460 * This function uses GFP_KERNEL internally. 461 */ 462 463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 464 { 465 struct file *file; 466 467 if (!dname) 468 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 469 470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 471 O_RDWR | (flags & O_NONBLOCK), 472 &socket_file_ops); 473 if (IS_ERR(file)) { 474 sock_release(sock); 475 return file; 476 } 477 478 file->f_mode |= FMODE_NOWAIT; 479 sock->file = file; 480 file->private_data = sock; 481 stream_open(SOCK_INODE(sock), file); 482 /* 483 * Disable permission and pre-content events, but enable legacy 484 * inotify events for legacy users. 485 */ 486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 487 return file; 488 } 489 EXPORT_SYMBOL(sock_alloc_file); 490 491 static int sock_map_fd(struct socket *sock, int flags) 492 { 493 struct file *newfile; 494 int fd = get_unused_fd_flags(flags); 495 if (unlikely(fd < 0)) { 496 sock_release(sock); 497 return fd; 498 } 499 500 newfile = sock_alloc_file(sock, flags, NULL); 501 if (!IS_ERR(newfile)) { 502 fd_install(fd, newfile); 503 return fd; 504 } 505 506 put_unused_fd(fd); 507 return PTR_ERR(newfile); 508 } 509 510 /** 511 * sock_from_file - Return the &socket bounded to @file. 512 * @file: file 513 * 514 * On failure returns %NULL. 515 */ 516 517 struct socket *sock_from_file(struct file *file) 518 { 519 if (likely(file->f_op == &socket_file_ops)) 520 return file->private_data; /* set in sock_alloc_file */ 521 522 return NULL; 523 } 524 EXPORT_SYMBOL(sock_from_file); 525 526 /** 527 * sockfd_lookup - Go from a file number to its socket slot 528 * @fd: file handle 529 * @err: pointer to an error code return 530 * 531 * The file handle passed in is locked and the socket it is bound 532 * to is returned. If an error occurs the err pointer is overwritten 533 * with a negative errno code and NULL is returned. The function checks 534 * for both invalid handles and passing a handle which is not a socket. 535 * 536 * On a success the socket object pointer is returned. 537 */ 538 539 struct socket *sockfd_lookup(int fd, int *err) 540 { 541 struct file *file; 542 struct socket *sock; 543 544 file = fget(fd); 545 if (!file) { 546 *err = -EBADF; 547 return NULL; 548 } 549 550 sock = sock_from_file(file); 551 if (!sock) { 552 *err = -ENOTSOCK; 553 fput(file); 554 } 555 return sock; 556 } 557 EXPORT_SYMBOL(sockfd_lookup); 558 559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 560 size_t size) 561 { 562 ssize_t len; 563 ssize_t used = 0; 564 565 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 566 if (len < 0) 567 return len; 568 used += len; 569 if (buffer) { 570 if (size < used) 571 return -ERANGE; 572 buffer += len; 573 } 574 575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 581 buffer += len; 582 } 583 584 return used; 585 } 586 587 static int sockfs_setattr(struct mnt_idmap *idmap, 588 struct dentry *dentry, struct iattr *iattr) 589 { 590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 591 592 if (!err && (iattr->ia_valid & ATTR_UID)) { 593 struct socket *sock = SOCKET_I(d_inode(dentry)); 594 595 if (sock->sk) 596 sock->sk->sk_uid = iattr->ia_uid; 597 else 598 err = -ENOENT; 599 } 600 601 return err; 602 } 603 604 static const struct inode_operations sockfs_inode_ops = { 605 .listxattr = sockfs_listxattr, 606 .setattr = sockfs_setattr, 607 }; 608 609 /** 610 * sock_alloc - allocate a socket 611 * 612 * Allocate a new inode and socket object. The two are bound together 613 * and initialised. The socket is then returned. If we are out of inodes 614 * NULL is returned. This functions uses GFP_KERNEL internally. 615 */ 616 617 struct socket *sock_alloc(void) 618 { 619 struct inode *inode; 620 struct socket *sock; 621 622 inode = new_inode_pseudo(sock_mnt->mnt_sb); 623 if (!inode) 624 return NULL; 625 626 sock = SOCKET_I(inode); 627 628 inode->i_ino = get_next_ino(); 629 inode->i_mode = S_IFSOCK | S_IRWXUGO; 630 inode->i_uid = current_fsuid(); 631 inode->i_gid = current_fsgid(); 632 inode->i_op = &sockfs_inode_ops; 633 634 return sock; 635 } 636 EXPORT_SYMBOL(sock_alloc); 637 638 static void __sock_release(struct socket *sock, struct inode *inode) 639 { 640 const struct proto_ops *ops = READ_ONCE(sock->ops); 641 642 if (ops) { 643 struct module *owner = ops->owner; 644 645 if (inode) 646 inode_lock(inode); 647 ops->release(sock); 648 sock->sk = NULL; 649 if (inode) 650 inode_unlock(inode); 651 sock->ops = NULL; 652 module_put(owner); 653 } 654 655 if (sock->wq.fasync_list) 656 pr_err("%s: fasync list not empty!\n", __func__); 657 658 if (!sock->file) { 659 iput(SOCK_INODE(sock)); 660 return; 661 } 662 sock->file = NULL; 663 } 664 665 /** 666 * sock_release - close a socket 667 * @sock: socket to close 668 * 669 * The socket is released from the protocol stack if it has a release 670 * callback, and the inode is then released if the socket is bound to 671 * an inode not a file. 672 */ 673 void sock_release(struct socket *sock) 674 { 675 __sock_release(sock, NULL); 676 } 677 EXPORT_SYMBOL(sock_release); 678 679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 680 { 681 u8 flags = *tx_flags; 682 683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 684 flags |= SKBTX_HW_TSTAMP; 685 686 /* PTP hardware clocks can provide a free running cycle counter 687 * as a time base for virtual clocks. Tell driver to use the 688 * free running cycle counter for timestamp if socket is bound 689 * to virtual clock. 690 */ 691 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 692 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 693 } 694 695 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 696 flags |= SKBTX_SW_TSTAMP; 697 698 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 699 flags |= SKBTX_SCHED_TSTAMP; 700 701 *tx_flags = flags; 702 } 703 EXPORT_SYMBOL(__sock_tx_timestamp); 704 705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 706 size_t)); 707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 708 size_t)); 709 710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 711 int flags) 712 { 713 trace_sock_send_length(sk, ret, 0); 714 } 715 716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 717 { 718 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 719 inet_sendmsg, sock, msg, 720 msg_data_left(msg)); 721 BUG_ON(ret == -EIOCBQUEUED); 722 723 if (trace_sock_send_length_enabled()) 724 call_trace_sock_send_length(sock->sk, ret, 0); 725 return ret; 726 } 727 728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 729 { 730 int err = security_socket_sendmsg(sock, msg, 731 msg_data_left(msg)); 732 733 return err ?: sock_sendmsg_nosec(sock, msg); 734 } 735 736 /** 737 * sock_sendmsg - send a message through @sock 738 * @sock: socket 739 * @msg: message to send 740 * 741 * Sends @msg through @sock, passing through LSM. 742 * Returns the number of bytes sent, or an error code. 743 */ 744 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 745 { 746 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 747 struct sockaddr_storage address; 748 int save_len = msg->msg_namelen; 749 int ret; 750 751 if (msg->msg_name) { 752 memcpy(&address, msg->msg_name, msg->msg_namelen); 753 msg->msg_name = &address; 754 } 755 756 ret = __sock_sendmsg(sock, msg); 757 msg->msg_name = save_addr; 758 msg->msg_namelen = save_len; 759 760 return ret; 761 } 762 EXPORT_SYMBOL(sock_sendmsg); 763 764 /** 765 * kernel_sendmsg - send a message through @sock (kernel-space) 766 * @sock: socket 767 * @msg: message header 768 * @vec: kernel vec 769 * @num: vec array length 770 * @size: total message data size 771 * 772 * Builds the message data with @vec and sends it through @sock. 773 * Returns the number of bytes sent, or an error code. 774 */ 775 776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 777 struct kvec *vec, size_t num, size_t size) 778 { 779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 780 return sock_sendmsg(sock, msg); 781 } 782 EXPORT_SYMBOL(kernel_sendmsg); 783 784 static bool skb_is_err_queue(const struct sk_buff *skb) 785 { 786 /* pkt_type of skbs enqueued on the error queue are set to 787 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 788 * in recvmsg, since skbs received on a local socket will never 789 * have a pkt_type of PACKET_OUTGOING. 790 */ 791 return skb->pkt_type == PACKET_OUTGOING; 792 } 793 794 /* On transmit, software and hardware timestamps are returned independently. 795 * As the two skb clones share the hardware timestamp, which may be updated 796 * before the software timestamp is received, a hardware TX timestamp may be 797 * returned only if there is no software TX timestamp. Ignore false software 798 * timestamps, which may be made in the __sock_recv_timestamp() call when the 799 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 800 * hardware timestamp. 801 */ 802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 803 { 804 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 805 } 806 807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 808 { 809 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 810 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 811 struct net_device *orig_dev; 812 ktime_t hwtstamp; 813 814 rcu_read_lock(); 815 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 816 if (orig_dev) { 817 *if_index = orig_dev->ifindex; 818 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 819 } else { 820 hwtstamp = shhwtstamps->hwtstamp; 821 } 822 rcu_read_unlock(); 823 824 return hwtstamp; 825 } 826 827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 828 int if_index) 829 { 830 struct scm_ts_pktinfo ts_pktinfo; 831 struct net_device *orig_dev; 832 833 if (!skb_mac_header_was_set(skb)) 834 return; 835 836 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 837 838 if (!if_index) { 839 rcu_read_lock(); 840 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 841 if (orig_dev) 842 if_index = orig_dev->ifindex; 843 rcu_read_unlock(); 844 } 845 ts_pktinfo.if_index = if_index; 846 847 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 848 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 849 sizeof(ts_pktinfo), &ts_pktinfo); 850 } 851 852 /* 853 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 854 */ 855 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 856 struct sk_buff *skb) 857 { 858 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 859 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 860 struct scm_timestamping_internal tss; 861 int empty = 1, false_tstamp = 0; 862 struct skb_shared_hwtstamps *shhwtstamps = 863 skb_hwtstamps(skb); 864 int if_index; 865 ktime_t hwtstamp; 866 u32 tsflags; 867 868 /* Race occurred between timestamp enabling and packet 869 receiving. Fill in the current time for now. */ 870 if (need_software_tstamp && skb->tstamp == 0) { 871 __net_timestamp(skb); 872 false_tstamp = 1; 873 } 874 875 if (need_software_tstamp) { 876 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 877 if (new_tstamp) { 878 struct __kernel_sock_timeval tv; 879 880 skb_get_new_timestamp(skb, &tv); 881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 882 sizeof(tv), &tv); 883 } else { 884 struct __kernel_old_timeval tv; 885 886 skb_get_timestamp(skb, &tv); 887 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 888 sizeof(tv), &tv); 889 } 890 } else { 891 if (new_tstamp) { 892 struct __kernel_timespec ts; 893 894 skb_get_new_timestampns(skb, &ts); 895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 896 sizeof(ts), &ts); 897 } else { 898 struct __kernel_old_timespec ts; 899 900 skb_get_timestampns(skb, &ts); 901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 902 sizeof(ts), &ts); 903 } 904 } 905 } 906 907 memset(&tss, 0, sizeof(tss)); 908 tsflags = READ_ONCE(sk->sk_tsflags); 909 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 910 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 911 skb_is_err_queue(skb) || 912 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 913 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 914 empty = 0; 915 if (shhwtstamps && 916 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 917 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 918 skb_is_err_queue(skb) || 919 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 920 !skb_is_swtx_tstamp(skb, false_tstamp)) { 921 if_index = 0; 922 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 923 hwtstamp = get_timestamp(sk, skb, &if_index); 924 else 925 hwtstamp = shhwtstamps->hwtstamp; 926 927 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 928 hwtstamp = ptp_convert_timestamp(&hwtstamp, 929 READ_ONCE(sk->sk_bind_phc)); 930 931 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 932 empty = 0; 933 934 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 935 !skb_is_err_queue(skb)) 936 put_ts_pktinfo(msg, skb, if_index); 937 } 938 } 939 if (!empty) { 940 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 941 put_cmsg_scm_timestamping64(msg, &tss); 942 else 943 put_cmsg_scm_timestamping(msg, &tss); 944 945 if (skb_is_err_queue(skb) && skb->len && 946 SKB_EXT_ERR(skb)->opt_stats) 947 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 948 skb->len, skb->data); 949 } 950 } 951 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 952 953 #ifdef CONFIG_WIRELESS 954 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 955 struct sk_buff *skb) 956 { 957 int ack; 958 959 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 960 return; 961 if (!skb->wifi_acked_valid) 962 return; 963 964 ack = skb->wifi_acked; 965 966 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 967 } 968 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 969 #endif 970 971 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 972 struct sk_buff *skb) 973 { 974 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 975 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 976 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 977 } 978 979 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 980 struct sk_buff *skb) 981 { 982 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 983 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 984 __u32 mark = skb->mark; 985 986 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 987 } 988 } 989 990 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 991 struct sk_buff *skb) 992 { 993 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 994 __u32 priority = skb->priority; 995 996 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 997 } 998 } 999 1000 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1001 struct sk_buff *skb) 1002 { 1003 sock_recv_timestamp(msg, sk, skb); 1004 sock_recv_drops(msg, sk, skb); 1005 sock_recv_mark(msg, sk, skb); 1006 sock_recv_priority(msg, sk, skb); 1007 } 1008 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1009 1010 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1011 size_t, int)); 1012 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1013 size_t, int)); 1014 1015 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1016 { 1017 trace_sock_recv_length(sk, ret, flags); 1018 } 1019 1020 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1021 int flags) 1022 { 1023 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1024 inet6_recvmsg, 1025 inet_recvmsg, sock, msg, 1026 msg_data_left(msg), flags); 1027 if (trace_sock_recv_length_enabled()) 1028 call_trace_sock_recv_length(sock->sk, ret, flags); 1029 return ret; 1030 } 1031 1032 /** 1033 * sock_recvmsg - receive a message from @sock 1034 * @sock: socket 1035 * @msg: message to receive 1036 * @flags: message flags 1037 * 1038 * Receives @msg from @sock, passing through LSM. Returns the total number 1039 * of bytes received, or an error. 1040 */ 1041 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1042 { 1043 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1044 1045 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1046 } 1047 EXPORT_SYMBOL(sock_recvmsg); 1048 1049 /** 1050 * kernel_recvmsg - Receive a message from a socket (kernel space) 1051 * @sock: The socket to receive the message from 1052 * @msg: Received message 1053 * @vec: Input s/g array for message data 1054 * @num: Size of input s/g array 1055 * @size: Number of bytes to read 1056 * @flags: Message flags (MSG_DONTWAIT, etc...) 1057 * 1058 * On return the msg structure contains the scatter/gather array passed in the 1059 * vec argument. The array is modified so that it consists of the unfilled 1060 * portion of the original array. 1061 * 1062 * The returned value is the total number of bytes received, or an error. 1063 */ 1064 1065 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1066 struct kvec *vec, size_t num, size_t size, int flags) 1067 { 1068 msg->msg_control_is_user = false; 1069 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1070 return sock_recvmsg(sock, msg, flags); 1071 } 1072 EXPORT_SYMBOL(kernel_recvmsg); 1073 1074 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1075 struct pipe_inode_info *pipe, size_t len, 1076 unsigned int flags) 1077 { 1078 struct socket *sock = file->private_data; 1079 const struct proto_ops *ops; 1080 1081 ops = READ_ONCE(sock->ops); 1082 if (unlikely(!ops->splice_read)) 1083 return copy_splice_read(file, ppos, pipe, len, flags); 1084 1085 return ops->splice_read(sock, ppos, pipe, len, flags); 1086 } 1087 1088 static void sock_splice_eof(struct file *file) 1089 { 1090 struct socket *sock = file->private_data; 1091 const struct proto_ops *ops; 1092 1093 ops = READ_ONCE(sock->ops); 1094 if (ops->splice_eof) 1095 ops->splice_eof(sock); 1096 } 1097 1098 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1099 { 1100 struct file *file = iocb->ki_filp; 1101 struct socket *sock = file->private_data; 1102 struct msghdr msg = {.msg_iter = *to, 1103 .msg_iocb = iocb}; 1104 ssize_t res; 1105 1106 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1107 msg.msg_flags = MSG_DONTWAIT; 1108 1109 if (iocb->ki_pos != 0) 1110 return -ESPIPE; 1111 1112 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1113 return 0; 1114 1115 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1116 *to = msg.msg_iter; 1117 return res; 1118 } 1119 1120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1121 { 1122 struct file *file = iocb->ki_filp; 1123 struct socket *sock = file->private_data; 1124 struct msghdr msg = {.msg_iter = *from, 1125 .msg_iocb = iocb}; 1126 ssize_t res; 1127 1128 if (iocb->ki_pos != 0) 1129 return -ESPIPE; 1130 1131 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1132 msg.msg_flags = MSG_DONTWAIT; 1133 1134 if (sock->type == SOCK_SEQPACKET) 1135 msg.msg_flags |= MSG_EOR; 1136 1137 res = __sock_sendmsg(sock, &msg); 1138 *from = msg.msg_iter; 1139 return res; 1140 } 1141 1142 /* 1143 * Atomic setting of ioctl hooks to avoid race 1144 * with module unload. 1145 */ 1146 1147 static DEFINE_MUTEX(br_ioctl_mutex); 1148 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1149 unsigned int cmd, struct ifreq *ifr, 1150 void __user *uarg); 1151 1152 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1153 unsigned int cmd, struct ifreq *ifr, 1154 void __user *uarg)) 1155 { 1156 mutex_lock(&br_ioctl_mutex); 1157 br_ioctl_hook = hook; 1158 mutex_unlock(&br_ioctl_mutex); 1159 } 1160 EXPORT_SYMBOL(brioctl_set); 1161 1162 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1163 struct ifreq *ifr, void __user *uarg) 1164 { 1165 int err = -ENOPKG; 1166 1167 if (!br_ioctl_hook) 1168 request_module("bridge"); 1169 1170 mutex_lock(&br_ioctl_mutex); 1171 if (br_ioctl_hook) 1172 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1173 mutex_unlock(&br_ioctl_mutex); 1174 1175 return err; 1176 } 1177 1178 static DEFINE_MUTEX(vlan_ioctl_mutex); 1179 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1180 1181 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1182 { 1183 mutex_lock(&vlan_ioctl_mutex); 1184 vlan_ioctl_hook = hook; 1185 mutex_unlock(&vlan_ioctl_mutex); 1186 } 1187 EXPORT_SYMBOL(vlan_ioctl_set); 1188 1189 static long sock_do_ioctl(struct net *net, struct socket *sock, 1190 unsigned int cmd, unsigned long arg) 1191 { 1192 const struct proto_ops *ops = READ_ONCE(sock->ops); 1193 struct ifreq ifr; 1194 bool need_copyout; 1195 int err; 1196 void __user *argp = (void __user *)arg; 1197 void __user *data; 1198 1199 err = ops->ioctl(sock, cmd, arg); 1200 1201 /* 1202 * If this ioctl is unknown try to hand it down 1203 * to the NIC driver. 1204 */ 1205 if (err != -ENOIOCTLCMD) 1206 return err; 1207 1208 if (!is_socket_ioctl_cmd(cmd)) 1209 return -ENOTTY; 1210 1211 if (get_user_ifreq(&ifr, &data, argp)) 1212 return -EFAULT; 1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1214 if (!err && need_copyout) 1215 if (put_user_ifreq(&ifr, argp)) 1216 return -EFAULT; 1217 1218 return err; 1219 } 1220 1221 /* 1222 * With an ioctl, arg may well be a user mode pointer, but we don't know 1223 * what to do with it - that's up to the protocol still. 1224 */ 1225 1226 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1227 { 1228 const struct proto_ops *ops; 1229 struct socket *sock; 1230 struct sock *sk; 1231 void __user *argp = (void __user *)arg; 1232 int pid, err; 1233 struct net *net; 1234 1235 sock = file->private_data; 1236 ops = READ_ONCE(sock->ops); 1237 sk = sock->sk; 1238 net = sock_net(sk); 1239 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1240 struct ifreq ifr; 1241 void __user *data; 1242 bool need_copyout; 1243 if (get_user_ifreq(&ifr, &data, argp)) 1244 return -EFAULT; 1245 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1246 if (!err && need_copyout) 1247 if (put_user_ifreq(&ifr, argp)) 1248 return -EFAULT; 1249 } else 1250 #ifdef CONFIG_WEXT_CORE 1251 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1252 err = wext_handle_ioctl(net, cmd, argp); 1253 } else 1254 #endif 1255 switch (cmd) { 1256 case FIOSETOWN: 1257 case SIOCSPGRP: 1258 err = -EFAULT; 1259 if (get_user(pid, (int __user *)argp)) 1260 break; 1261 err = f_setown(sock->file, pid, 1); 1262 break; 1263 case FIOGETOWN: 1264 case SIOCGPGRP: 1265 err = put_user(f_getown(sock->file), 1266 (int __user *)argp); 1267 break; 1268 case SIOCGIFBR: 1269 case SIOCSIFBR: 1270 case SIOCBRADDBR: 1271 case SIOCBRDELBR: 1272 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1273 break; 1274 case SIOCGIFVLAN: 1275 case SIOCSIFVLAN: 1276 err = -ENOPKG; 1277 if (!vlan_ioctl_hook) 1278 request_module("8021q"); 1279 1280 mutex_lock(&vlan_ioctl_mutex); 1281 if (vlan_ioctl_hook) 1282 err = vlan_ioctl_hook(net, argp); 1283 mutex_unlock(&vlan_ioctl_mutex); 1284 break; 1285 case SIOCGSKNS: 1286 err = -EPERM; 1287 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1288 break; 1289 1290 err = open_related_ns(&net->ns, get_net_ns); 1291 break; 1292 case SIOCGSTAMP_OLD: 1293 case SIOCGSTAMPNS_OLD: 1294 if (!ops->gettstamp) { 1295 err = -ENOIOCTLCMD; 1296 break; 1297 } 1298 err = ops->gettstamp(sock, argp, 1299 cmd == SIOCGSTAMP_OLD, 1300 !IS_ENABLED(CONFIG_64BIT)); 1301 break; 1302 case SIOCGSTAMP_NEW: 1303 case SIOCGSTAMPNS_NEW: 1304 if (!ops->gettstamp) { 1305 err = -ENOIOCTLCMD; 1306 break; 1307 } 1308 err = ops->gettstamp(sock, argp, 1309 cmd == SIOCGSTAMP_NEW, 1310 false); 1311 break; 1312 1313 case SIOCGIFCONF: 1314 err = dev_ifconf(net, argp); 1315 break; 1316 1317 default: 1318 err = sock_do_ioctl(net, sock, cmd, arg); 1319 break; 1320 } 1321 return err; 1322 } 1323 1324 /** 1325 * sock_create_lite - creates a socket 1326 * @family: protocol family (AF_INET, ...) 1327 * @type: communication type (SOCK_STREAM, ...) 1328 * @protocol: protocol (0, ...) 1329 * @res: new socket 1330 * 1331 * Creates a new socket and assigns it to @res, passing through LSM. 1332 * The new socket initialization is not complete, see kernel_accept(). 1333 * Returns 0 or an error. On failure @res is set to %NULL. 1334 * This function internally uses GFP_KERNEL. 1335 */ 1336 1337 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1338 { 1339 int err; 1340 struct socket *sock = NULL; 1341 1342 err = security_socket_create(family, type, protocol, 1); 1343 if (err) 1344 goto out; 1345 1346 sock = sock_alloc(); 1347 if (!sock) { 1348 err = -ENOMEM; 1349 goto out; 1350 } 1351 1352 sock->type = type; 1353 err = security_socket_post_create(sock, family, type, protocol, 1); 1354 if (err) 1355 goto out_release; 1356 1357 out: 1358 *res = sock; 1359 return err; 1360 out_release: 1361 sock_release(sock); 1362 sock = NULL; 1363 goto out; 1364 } 1365 EXPORT_SYMBOL(sock_create_lite); 1366 1367 /* No kernel lock held - perfect */ 1368 static __poll_t sock_poll(struct file *file, poll_table *wait) 1369 { 1370 struct socket *sock = file->private_data; 1371 const struct proto_ops *ops = READ_ONCE(sock->ops); 1372 __poll_t events = poll_requested_events(wait), flag = 0; 1373 1374 if (!ops->poll) 1375 return 0; 1376 1377 if (sk_can_busy_loop(sock->sk)) { 1378 /* poll once if requested by the syscall */ 1379 if (events & POLL_BUSY_LOOP) 1380 sk_busy_loop(sock->sk, 1); 1381 1382 /* if this socket can poll_ll, tell the system call */ 1383 flag = POLL_BUSY_LOOP; 1384 } 1385 1386 return ops->poll(file, sock, wait) | flag; 1387 } 1388 1389 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1390 { 1391 struct socket *sock = file->private_data; 1392 1393 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1394 } 1395 1396 static int sock_close(struct inode *inode, struct file *filp) 1397 { 1398 __sock_release(SOCKET_I(inode), inode); 1399 return 0; 1400 } 1401 1402 /* 1403 * Update the socket async list 1404 * 1405 * Fasync_list locking strategy. 1406 * 1407 * 1. fasync_list is modified only under process context socket lock 1408 * i.e. under semaphore. 1409 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1410 * or under socket lock 1411 */ 1412 1413 static int sock_fasync(int fd, struct file *filp, int on) 1414 { 1415 struct socket *sock = filp->private_data; 1416 struct sock *sk = sock->sk; 1417 struct socket_wq *wq = &sock->wq; 1418 1419 if (sk == NULL) 1420 return -EINVAL; 1421 1422 lock_sock(sk); 1423 fasync_helper(fd, filp, on, &wq->fasync_list); 1424 1425 if (!wq->fasync_list) 1426 sock_reset_flag(sk, SOCK_FASYNC); 1427 else 1428 sock_set_flag(sk, SOCK_FASYNC); 1429 1430 release_sock(sk); 1431 return 0; 1432 } 1433 1434 /* This function may be called only under rcu_lock */ 1435 1436 int sock_wake_async(struct socket_wq *wq, int how, int band) 1437 { 1438 if (!wq || !wq->fasync_list) 1439 return -1; 1440 1441 switch (how) { 1442 case SOCK_WAKE_WAITD: 1443 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1444 break; 1445 goto call_kill; 1446 case SOCK_WAKE_SPACE: 1447 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1448 break; 1449 fallthrough; 1450 case SOCK_WAKE_IO: 1451 call_kill: 1452 kill_fasync(&wq->fasync_list, SIGIO, band); 1453 break; 1454 case SOCK_WAKE_URG: 1455 kill_fasync(&wq->fasync_list, SIGURG, band); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(sock_wake_async); 1461 1462 /** 1463 * __sock_create - creates a socket 1464 * @net: net namespace 1465 * @family: protocol family (AF_INET, ...) 1466 * @type: communication type (SOCK_STREAM, ...) 1467 * @protocol: protocol (0, ...) 1468 * @res: new socket 1469 * @kern: boolean for kernel space sockets 1470 * 1471 * Creates a new socket and assigns it to @res, passing through LSM. 1472 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1473 * be set to true if the socket resides in kernel space. 1474 * This function internally uses GFP_KERNEL. 1475 */ 1476 1477 int __sock_create(struct net *net, int family, int type, int protocol, 1478 struct socket **res, int kern) 1479 { 1480 int err; 1481 struct socket *sock; 1482 const struct net_proto_family *pf; 1483 1484 /* 1485 * Check protocol is in range 1486 */ 1487 if (family < 0 || family >= NPROTO) 1488 return -EAFNOSUPPORT; 1489 if (type < 0 || type >= SOCK_MAX) 1490 return -EINVAL; 1491 1492 /* Compatibility. 1493 1494 This uglymoron is moved from INET layer to here to avoid 1495 deadlock in module load. 1496 */ 1497 if (family == PF_INET && type == SOCK_PACKET) { 1498 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1499 current->comm); 1500 family = PF_PACKET; 1501 } 1502 1503 err = security_socket_create(family, type, protocol, kern); 1504 if (err) 1505 return err; 1506 1507 /* 1508 * Allocate the socket and allow the family to set things up. if 1509 * the protocol is 0, the family is instructed to select an appropriate 1510 * default. 1511 */ 1512 sock = sock_alloc(); 1513 if (!sock) { 1514 net_warn_ratelimited("socket: no more sockets\n"); 1515 return -ENFILE; /* Not exactly a match, but its the 1516 closest posix thing */ 1517 } 1518 1519 sock->type = type; 1520 1521 #ifdef CONFIG_MODULES 1522 /* Attempt to load a protocol module if the find failed. 1523 * 1524 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1525 * requested real, full-featured networking support upon configuration. 1526 * Otherwise module support will break! 1527 */ 1528 if (rcu_access_pointer(net_families[family]) == NULL) 1529 request_module("net-pf-%d", family); 1530 #endif 1531 1532 rcu_read_lock(); 1533 pf = rcu_dereference(net_families[family]); 1534 err = -EAFNOSUPPORT; 1535 if (!pf) 1536 goto out_release; 1537 1538 /* 1539 * We will call the ->create function, that possibly is in a loadable 1540 * module, so we have to bump that loadable module refcnt first. 1541 */ 1542 if (!try_module_get(pf->owner)) 1543 goto out_release; 1544 1545 /* Now protected by module ref count */ 1546 rcu_read_unlock(); 1547 1548 err = pf->create(net, sock, protocol, kern); 1549 if (err < 0) { 1550 /* ->create should release the allocated sock->sk object on error 1551 * and make sure sock->sk is set to NULL to avoid use-after-free 1552 */ 1553 DEBUG_NET_WARN_ONCE(sock->sk, 1554 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1555 pf->create, family, type, protocol); 1556 goto out_module_put; 1557 } 1558 1559 /* 1560 * Now to bump the refcnt of the [loadable] module that owns this 1561 * socket at sock_release time we decrement its refcnt. 1562 */ 1563 if (!try_module_get(sock->ops->owner)) 1564 goto out_module_busy; 1565 1566 /* 1567 * Now that we're done with the ->create function, the [loadable] 1568 * module can have its refcnt decremented 1569 */ 1570 module_put(pf->owner); 1571 err = security_socket_post_create(sock, family, type, protocol, kern); 1572 if (err) 1573 goto out_sock_release; 1574 *res = sock; 1575 1576 return 0; 1577 1578 out_module_busy: 1579 err = -EAFNOSUPPORT; 1580 out_module_put: 1581 sock->ops = NULL; 1582 module_put(pf->owner); 1583 out_sock_release: 1584 sock_release(sock); 1585 return err; 1586 1587 out_release: 1588 rcu_read_unlock(); 1589 goto out_sock_release; 1590 } 1591 EXPORT_SYMBOL(__sock_create); 1592 1593 /** 1594 * sock_create - creates a socket 1595 * @family: protocol family (AF_INET, ...) 1596 * @type: communication type (SOCK_STREAM, ...) 1597 * @protocol: protocol (0, ...) 1598 * @res: new socket 1599 * 1600 * A wrapper around __sock_create(). 1601 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1602 */ 1603 1604 int sock_create(int family, int type, int protocol, struct socket **res) 1605 { 1606 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1607 } 1608 EXPORT_SYMBOL(sock_create); 1609 1610 /** 1611 * sock_create_kern - creates a socket (kernel space) 1612 * @net: net namespace 1613 * @family: protocol family (AF_INET, ...) 1614 * @type: communication type (SOCK_STREAM, ...) 1615 * @protocol: protocol (0, ...) 1616 * @res: new socket 1617 * 1618 * A wrapper around __sock_create(). 1619 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1620 */ 1621 1622 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1623 { 1624 return __sock_create(net, family, type, protocol, res, 1); 1625 } 1626 EXPORT_SYMBOL(sock_create_kern); 1627 1628 static struct socket *__sys_socket_create(int family, int type, int protocol) 1629 { 1630 struct socket *sock; 1631 int retval; 1632 1633 /* Check the SOCK_* constants for consistency. */ 1634 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1635 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1636 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1637 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1638 1639 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1640 return ERR_PTR(-EINVAL); 1641 type &= SOCK_TYPE_MASK; 1642 1643 retval = sock_create(family, type, protocol, &sock); 1644 if (retval < 0) 1645 return ERR_PTR(retval); 1646 1647 return sock; 1648 } 1649 1650 struct file *__sys_socket_file(int family, int type, int protocol) 1651 { 1652 struct socket *sock; 1653 int flags; 1654 1655 sock = __sys_socket_create(family, type, protocol); 1656 if (IS_ERR(sock)) 1657 return ERR_CAST(sock); 1658 1659 flags = type & ~SOCK_TYPE_MASK; 1660 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1661 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1662 1663 return sock_alloc_file(sock, flags, NULL); 1664 } 1665 1666 /* A hook for bpf progs to attach to and update socket protocol. 1667 * 1668 * A static noinline declaration here could cause the compiler to 1669 * optimize away the function. A global noinline declaration will 1670 * keep the definition, but may optimize away the callsite. 1671 * Therefore, __weak is needed to ensure that the call is still 1672 * emitted, by telling the compiler that we don't know what the 1673 * function might eventually be. 1674 */ 1675 1676 __bpf_hook_start(); 1677 1678 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1679 { 1680 return protocol; 1681 } 1682 1683 __bpf_hook_end(); 1684 1685 int __sys_socket(int family, int type, int protocol) 1686 { 1687 struct socket *sock; 1688 int flags; 1689 1690 sock = __sys_socket_create(family, type, 1691 update_socket_protocol(family, type, protocol)); 1692 if (IS_ERR(sock)) 1693 return PTR_ERR(sock); 1694 1695 flags = type & ~SOCK_TYPE_MASK; 1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1698 1699 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1700 } 1701 1702 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1703 { 1704 return __sys_socket(family, type, protocol); 1705 } 1706 1707 /* 1708 * Create a pair of connected sockets. 1709 */ 1710 1711 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1712 { 1713 struct socket *sock1, *sock2; 1714 int fd1, fd2, err; 1715 struct file *newfile1, *newfile2; 1716 int flags; 1717 1718 flags = type & ~SOCK_TYPE_MASK; 1719 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1720 return -EINVAL; 1721 type &= SOCK_TYPE_MASK; 1722 1723 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1724 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1725 1726 /* 1727 * reserve descriptors and make sure we won't fail 1728 * to return them to userland. 1729 */ 1730 fd1 = get_unused_fd_flags(flags); 1731 if (unlikely(fd1 < 0)) 1732 return fd1; 1733 1734 fd2 = get_unused_fd_flags(flags); 1735 if (unlikely(fd2 < 0)) { 1736 put_unused_fd(fd1); 1737 return fd2; 1738 } 1739 1740 err = put_user(fd1, &usockvec[0]); 1741 if (err) 1742 goto out; 1743 1744 err = put_user(fd2, &usockvec[1]); 1745 if (err) 1746 goto out; 1747 1748 /* 1749 * Obtain the first socket and check if the underlying protocol 1750 * supports the socketpair call. 1751 */ 1752 1753 err = sock_create(family, type, protocol, &sock1); 1754 if (unlikely(err < 0)) 1755 goto out; 1756 1757 err = sock_create(family, type, protocol, &sock2); 1758 if (unlikely(err < 0)) { 1759 sock_release(sock1); 1760 goto out; 1761 } 1762 1763 err = security_socket_socketpair(sock1, sock2); 1764 if (unlikely(err)) { 1765 sock_release(sock2); 1766 sock_release(sock1); 1767 goto out; 1768 } 1769 1770 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1771 if (unlikely(err < 0)) { 1772 sock_release(sock2); 1773 sock_release(sock1); 1774 goto out; 1775 } 1776 1777 newfile1 = sock_alloc_file(sock1, flags, NULL); 1778 if (IS_ERR(newfile1)) { 1779 err = PTR_ERR(newfile1); 1780 sock_release(sock2); 1781 goto out; 1782 } 1783 1784 newfile2 = sock_alloc_file(sock2, flags, NULL); 1785 if (IS_ERR(newfile2)) { 1786 err = PTR_ERR(newfile2); 1787 fput(newfile1); 1788 goto out; 1789 } 1790 1791 audit_fd_pair(fd1, fd2); 1792 1793 fd_install(fd1, newfile1); 1794 fd_install(fd2, newfile2); 1795 return 0; 1796 1797 out: 1798 put_unused_fd(fd2); 1799 put_unused_fd(fd1); 1800 return err; 1801 } 1802 1803 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1804 int __user *, usockvec) 1805 { 1806 return __sys_socketpair(family, type, protocol, usockvec); 1807 } 1808 1809 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1810 int addrlen) 1811 { 1812 int err; 1813 1814 err = security_socket_bind(sock, (struct sockaddr *)address, 1815 addrlen); 1816 if (!err) 1817 err = READ_ONCE(sock->ops)->bind(sock, 1818 (struct sockaddr *)address, 1819 addrlen); 1820 return err; 1821 } 1822 1823 /* 1824 * Bind a name to a socket. Nothing much to do here since it's 1825 * the protocol's responsibility to handle the local address. 1826 * 1827 * We move the socket address to kernel space before we call 1828 * the protocol layer (having also checked the address is ok). 1829 */ 1830 1831 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1832 { 1833 struct socket *sock; 1834 struct sockaddr_storage address; 1835 CLASS(fd, f)(fd); 1836 int err; 1837 1838 if (fd_empty(f)) 1839 return -EBADF; 1840 sock = sock_from_file(fd_file(f)); 1841 if (unlikely(!sock)) 1842 return -ENOTSOCK; 1843 1844 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1845 if (unlikely(err)) 1846 return err; 1847 1848 return __sys_bind_socket(sock, &address, addrlen); 1849 } 1850 1851 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1852 { 1853 return __sys_bind(fd, umyaddr, addrlen); 1854 } 1855 1856 /* 1857 * Perform a listen. Basically, we allow the protocol to do anything 1858 * necessary for a listen, and if that works, we mark the socket as 1859 * ready for listening. 1860 */ 1861 int __sys_listen_socket(struct socket *sock, int backlog) 1862 { 1863 int somaxconn, err; 1864 1865 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1866 if ((unsigned int)backlog > somaxconn) 1867 backlog = somaxconn; 1868 1869 err = security_socket_listen(sock, backlog); 1870 if (!err) 1871 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1872 return err; 1873 } 1874 1875 int __sys_listen(int fd, int backlog) 1876 { 1877 CLASS(fd, f)(fd); 1878 struct socket *sock; 1879 1880 if (fd_empty(f)) 1881 return -EBADF; 1882 sock = sock_from_file(fd_file(f)); 1883 if (unlikely(!sock)) 1884 return -ENOTSOCK; 1885 1886 return __sys_listen_socket(sock, backlog); 1887 } 1888 1889 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1890 { 1891 return __sys_listen(fd, backlog); 1892 } 1893 1894 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1895 struct sockaddr __user *upeer_sockaddr, 1896 int __user *upeer_addrlen, int flags) 1897 { 1898 struct socket *sock, *newsock; 1899 struct file *newfile; 1900 int err, len; 1901 struct sockaddr_storage address; 1902 const struct proto_ops *ops; 1903 1904 sock = sock_from_file(file); 1905 if (!sock) 1906 return ERR_PTR(-ENOTSOCK); 1907 1908 newsock = sock_alloc(); 1909 if (!newsock) 1910 return ERR_PTR(-ENFILE); 1911 ops = READ_ONCE(sock->ops); 1912 1913 newsock->type = sock->type; 1914 newsock->ops = ops; 1915 1916 /* 1917 * We don't need try_module_get here, as the listening socket (sock) 1918 * has the protocol module (sock->ops->owner) held. 1919 */ 1920 __module_get(ops->owner); 1921 1922 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1923 if (IS_ERR(newfile)) 1924 return newfile; 1925 1926 err = security_socket_accept(sock, newsock); 1927 if (err) 1928 goto out_fd; 1929 1930 arg->flags |= sock->file->f_flags; 1931 err = ops->accept(sock, newsock, arg); 1932 if (err < 0) 1933 goto out_fd; 1934 1935 if (upeer_sockaddr) { 1936 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1937 if (len < 0) { 1938 err = -ECONNABORTED; 1939 goto out_fd; 1940 } 1941 err = move_addr_to_user(&address, 1942 len, upeer_sockaddr, upeer_addrlen); 1943 if (err < 0) 1944 goto out_fd; 1945 } 1946 1947 /* File flags are not inherited via accept() unlike another OSes. */ 1948 return newfile; 1949 out_fd: 1950 fput(newfile); 1951 return ERR_PTR(err); 1952 } 1953 1954 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1955 int __user *upeer_addrlen, int flags) 1956 { 1957 struct proto_accept_arg arg = { }; 1958 struct file *newfile; 1959 int newfd; 1960 1961 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1962 return -EINVAL; 1963 1964 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1965 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1966 1967 newfd = get_unused_fd_flags(flags); 1968 if (unlikely(newfd < 0)) 1969 return newfd; 1970 1971 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1972 flags); 1973 if (IS_ERR(newfile)) { 1974 put_unused_fd(newfd); 1975 return PTR_ERR(newfile); 1976 } 1977 fd_install(newfd, newfile); 1978 return newfd; 1979 } 1980 1981 /* 1982 * For accept, we attempt to create a new socket, set up the link 1983 * with the client, wake up the client, then return the new 1984 * connected fd. We collect the address of the connector in kernel 1985 * space and move it to user at the very end. This is unclean because 1986 * we open the socket then return an error. 1987 * 1988 * 1003.1g adds the ability to recvmsg() to query connection pending 1989 * status to recvmsg. We need to add that support in a way thats 1990 * clean when we restructure accept also. 1991 */ 1992 1993 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1994 int __user *upeer_addrlen, int flags) 1995 { 1996 CLASS(fd, f)(fd); 1997 1998 if (fd_empty(f)) 1999 return -EBADF; 2000 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2001 upeer_addrlen, flags); 2002 } 2003 2004 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2005 int __user *, upeer_addrlen, int, flags) 2006 { 2007 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2008 } 2009 2010 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2011 int __user *, upeer_addrlen) 2012 { 2013 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2014 } 2015 2016 /* 2017 * Attempt to connect to a socket with the server address. The address 2018 * is in user space so we verify it is OK and move it to kernel space. 2019 * 2020 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2021 * break bindings 2022 * 2023 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2024 * other SEQPACKET protocols that take time to connect() as it doesn't 2025 * include the -EINPROGRESS status for such sockets. 2026 */ 2027 2028 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2029 int addrlen, int file_flags) 2030 { 2031 struct socket *sock; 2032 int err; 2033 2034 sock = sock_from_file(file); 2035 if (!sock) { 2036 err = -ENOTSOCK; 2037 goto out; 2038 } 2039 2040 err = 2041 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2042 if (err) 2043 goto out; 2044 2045 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2046 addrlen, sock->file->f_flags | file_flags); 2047 out: 2048 return err; 2049 } 2050 2051 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2052 { 2053 struct sockaddr_storage address; 2054 CLASS(fd, f)(fd); 2055 int ret; 2056 2057 if (fd_empty(f)) 2058 return -EBADF; 2059 2060 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2061 if (ret) 2062 return ret; 2063 2064 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2065 } 2066 2067 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2068 int, addrlen) 2069 { 2070 return __sys_connect(fd, uservaddr, addrlen); 2071 } 2072 2073 /* 2074 * Get the local address ('name') of a socket object. Move the obtained 2075 * name to user space. 2076 */ 2077 2078 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2079 int __user *usockaddr_len) 2080 { 2081 struct socket *sock; 2082 struct sockaddr_storage address; 2083 CLASS(fd, f)(fd); 2084 int err; 2085 2086 if (fd_empty(f)) 2087 return -EBADF; 2088 sock = sock_from_file(fd_file(f)); 2089 if (unlikely(!sock)) 2090 return -ENOTSOCK; 2091 2092 err = security_socket_getsockname(sock); 2093 if (err) 2094 return err; 2095 2096 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2097 if (err < 0) 2098 return err; 2099 2100 /* "err" is actually length in this case */ 2101 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2102 } 2103 2104 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2105 int __user *, usockaddr_len) 2106 { 2107 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2108 } 2109 2110 /* 2111 * Get the remote address ('name') of a socket object. Move the obtained 2112 * name to user space. 2113 */ 2114 2115 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2116 int __user *usockaddr_len) 2117 { 2118 struct socket *sock; 2119 struct sockaddr_storage address; 2120 CLASS(fd, f)(fd); 2121 int err; 2122 2123 if (fd_empty(f)) 2124 return -EBADF; 2125 sock = sock_from_file(fd_file(f)); 2126 if (unlikely(!sock)) 2127 return -ENOTSOCK; 2128 2129 err = security_socket_getpeername(sock); 2130 if (err) 2131 return err; 2132 2133 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2134 if (err < 0) 2135 return err; 2136 2137 /* "err" is actually length in this case */ 2138 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2139 } 2140 2141 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2142 int __user *, usockaddr_len) 2143 { 2144 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2145 } 2146 2147 /* 2148 * Send a datagram to a given address. We move the address into kernel 2149 * space and check the user space data area is readable before invoking 2150 * the protocol. 2151 */ 2152 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2153 struct sockaddr __user *addr, int addr_len) 2154 { 2155 struct socket *sock; 2156 struct sockaddr_storage address; 2157 int err; 2158 struct msghdr msg; 2159 2160 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2161 if (unlikely(err)) 2162 return err; 2163 2164 CLASS(fd, f)(fd); 2165 if (fd_empty(f)) 2166 return -EBADF; 2167 sock = sock_from_file(fd_file(f)); 2168 if (unlikely(!sock)) 2169 return -ENOTSOCK; 2170 2171 msg.msg_name = NULL; 2172 msg.msg_control = NULL; 2173 msg.msg_controllen = 0; 2174 msg.msg_namelen = 0; 2175 msg.msg_ubuf = NULL; 2176 if (addr) { 2177 err = move_addr_to_kernel(addr, addr_len, &address); 2178 if (err < 0) 2179 return err; 2180 msg.msg_name = (struct sockaddr *)&address; 2181 msg.msg_namelen = addr_len; 2182 } 2183 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2184 if (sock->file->f_flags & O_NONBLOCK) 2185 flags |= MSG_DONTWAIT; 2186 msg.msg_flags = flags; 2187 return __sock_sendmsg(sock, &msg); 2188 } 2189 2190 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2191 unsigned int, flags, struct sockaddr __user *, addr, 2192 int, addr_len) 2193 { 2194 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2195 } 2196 2197 /* 2198 * Send a datagram down a socket. 2199 */ 2200 2201 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2202 unsigned int, flags) 2203 { 2204 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2205 } 2206 2207 /* 2208 * Receive a frame from the socket and optionally record the address of the 2209 * sender. We verify the buffers are writable and if needed move the 2210 * sender address from kernel to user space. 2211 */ 2212 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2213 struct sockaddr __user *addr, int __user *addr_len) 2214 { 2215 struct sockaddr_storage address; 2216 struct msghdr msg = { 2217 /* Save some cycles and don't copy the address if not needed */ 2218 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2219 }; 2220 struct socket *sock; 2221 int err, err2; 2222 2223 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2224 if (unlikely(err)) 2225 return err; 2226 2227 CLASS(fd, f)(fd); 2228 2229 if (fd_empty(f)) 2230 return -EBADF; 2231 sock = sock_from_file(fd_file(f)); 2232 if (unlikely(!sock)) 2233 return -ENOTSOCK; 2234 2235 if (sock->file->f_flags & O_NONBLOCK) 2236 flags |= MSG_DONTWAIT; 2237 err = sock_recvmsg(sock, &msg, flags); 2238 2239 if (err >= 0 && addr != NULL) { 2240 err2 = move_addr_to_user(&address, 2241 msg.msg_namelen, addr, addr_len); 2242 if (err2 < 0) 2243 err = err2; 2244 } 2245 return err; 2246 } 2247 2248 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2249 unsigned int, flags, struct sockaddr __user *, addr, 2250 int __user *, addr_len) 2251 { 2252 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2253 } 2254 2255 /* 2256 * Receive a datagram from a socket. 2257 */ 2258 2259 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2260 unsigned int, flags) 2261 { 2262 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2263 } 2264 2265 static bool sock_use_custom_sol_socket(const struct socket *sock) 2266 { 2267 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2268 } 2269 2270 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2271 int optname, sockptr_t optval, int optlen) 2272 { 2273 const struct proto_ops *ops; 2274 char *kernel_optval = NULL; 2275 int err; 2276 2277 if (optlen < 0) 2278 return -EINVAL; 2279 2280 err = security_socket_setsockopt(sock, level, optname); 2281 if (err) 2282 goto out_put; 2283 2284 if (!compat) 2285 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2286 optval, &optlen, 2287 &kernel_optval); 2288 if (err < 0) 2289 goto out_put; 2290 if (err > 0) { 2291 err = 0; 2292 goto out_put; 2293 } 2294 2295 if (kernel_optval) 2296 optval = KERNEL_SOCKPTR(kernel_optval); 2297 ops = READ_ONCE(sock->ops); 2298 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2299 err = sock_setsockopt(sock, level, optname, optval, optlen); 2300 else if (unlikely(!ops->setsockopt)) 2301 err = -EOPNOTSUPP; 2302 else 2303 err = ops->setsockopt(sock, level, optname, optval, 2304 optlen); 2305 kfree(kernel_optval); 2306 out_put: 2307 return err; 2308 } 2309 EXPORT_SYMBOL(do_sock_setsockopt); 2310 2311 /* Set a socket option. Because we don't know the option lengths we have 2312 * to pass the user mode parameter for the protocols to sort out. 2313 */ 2314 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2315 int optlen) 2316 { 2317 sockptr_t optval = USER_SOCKPTR(user_optval); 2318 bool compat = in_compat_syscall(); 2319 struct socket *sock; 2320 CLASS(fd, f)(fd); 2321 2322 if (fd_empty(f)) 2323 return -EBADF; 2324 sock = sock_from_file(fd_file(f)); 2325 if (unlikely(!sock)) 2326 return -ENOTSOCK; 2327 2328 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2329 } 2330 2331 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2332 char __user *, optval, int, optlen) 2333 { 2334 return __sys_setsockopt(fd, level, optname, optval, optlen); 2335 } 2336 2337 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2338 int optname)); 2339 2340 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2341 int optname, sockptr_t optval, sockptr_t optlen) 2342 { 2343 int max_optlen __maybe_unused = 0; 2344 const struct proto_ops *ops; 2345 int err; 2346 2347 err = security_socket_getsockopt(sock, level, optname); 2348 if (err) 2349 return err; 2350 2351 if (!compat) 2352 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2353 2354 ops = READ_ONCE(sock->ops); 2355 if (level == SOL_SOCKET) { 2356 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2357 } else if (unlikely(!ops->getsockopt)) { 2358 err = -EOPNOTSUPP; 2359 } else { 2360 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2361 "Invalid argument type")) 2362 return -EOPNOTSUPP; 2363 2364 err = ops->getsockopt(sock, level, optname, optval.user, 2365 optlen.user); 2366 } 2367 2368 if (!compat) 2369 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2370 optval, optlen, max_optlen, 2371 err); 2372 2373 return err; 2374 } 2375 EXPORT_SYMBOL(do_sock_getsockopt); 2376 2377 /* 2378 * Get a socket option. Because we don't know the option lengths we have 2379 * to pass a user mode parameter for the protocols to sort out. 2380 */ 2381 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2382 int __user *optlen) 2383 { 2384 struct socket *sock; 2385 CLASS(fd, f)(fd); 2386 2387 if (fd_empty(f)) 2388 return -EBADF; 2389 sock = sock_from_file(fd_file(f)); 2390 if (unlikely(!sock)) 2391 return -ENOTSOCK; 2392 2393 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2394 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2395 } 2396 2397 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2398 char __user *, optval, int __user *, optlen) 2399 { 2400 return __sys_getsockopt(fd, level, optname, optval, optlen); 2401 } 2402 2403 /* 2404 * Shutdown a socket. 2405 */ 2406 2407 int __sys_shutdown_sock(struct socket *sock, int how) 2408 { 2409 int err; 2410 2411 err = security_socket_shutdown(sock, how); 2412 if (!err) 2413 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2414 2415 return err; 2416 } 2417 2418 int __sys_shutdown(int fd, int how) 2419 { 2420 struct socket *sock; 2421 CLASS(fd, f)(fd); 2422 2423 if (fd_empty(f)) 2424 return -EBADF; 2425 sock = sock_from_file(fd_file(f)); 2426 if (unlikely(!sock)) 2427 return -ENOTSOCK; 2428 2429 return __sys_shutdown_sock(sock, how); 2430 } 2431 2432 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2433 { 2434 return __sys_shutdown(fd, how); 2435 } 2436 2437 /* A couple of helpful macros for getting the address of the 32/64 bit 2438 * fields which are the same type (int / unsigned) on our platforms. 2439 */ 2440 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2441 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2442 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2443 2444 struct used_address { 2445 struct sockaddr_storage name; 2446 unsigned int name_len; 2447 }; 2448 2449 int __copy_msghdr(struct msghdr *kmsg, 2450 struct user_msghdr *msg, 2451 struct sockaddr __user **save_addr) 2452 { 2453 ssize_t err; 2454 2455 kmsg->msg_control_is_user = true; 2456 kmsg->msg_get_inq = 0; 2457 kmsg->msg_control_user = msg->msg_control; 2458 kmsg->msg_controllen = msg->msg_controllen; 2459 kmsg->msg_flags = msg->msg_flags; 2460 2461 kmsg->msg_namelen = msg->msg_namelen; 2462 if (!msg->msg_name) 2463 kmsg->msg_namelen = 0; 2464 2465 if (kmsg->msg_namelen < 0) 2466 return -EINVAL; 2467 2468 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2469 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2470 2471 if (save_addr) 2472 *save_addr = msg->msg_name; 2473 2474 if (msg->msg_name && kmsg->msg_namelen) { 2475 if (!save_addr) { 2476 err = move_addr_to_kernel(msg->msg_name, 2477 kmsg->msg_namelen, 2478 kmsg->msg_name); 2479 if (err < 0) 2480 return err; 2481 } 2482 } else { 2483 kmsg->msg_name = NULL; 2484 kmsg->msg_namelen = 0; 2485 } 2486 2487 if (msg->msg_iovlen > UIO_MAXIOV) 2488 return -EMSGSIZE; 2489 2490 kmsg->msg_iocb = NULL; 2491 kmsg->msg_ubuf = NULL; 2492 return 0; 2493 } 2494 2495 static int copy_msghdr_from_user(struct msghdr *kmsg, 2496 struct user_msghdr __user *umsg, 2497 struct sockaddr __user **save_addr, 2498 struct iovec **iov) 2499 { 2500 struct user_msghdr msg; 2501 ssize_t err; 2502 2503 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2504 return -EFAULT; 2505 2506 err = __copy_msghdr(kmsg, &msg, save_addr); 2507 if (err) 2508 return err; 2509 2510 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2511 msg.msg_iov, msg.msg_iovlen, 2512 UIO_FASTIOV, iov, &kmsg->msg_iter); 2513 return err < 0 ? err : 0; 2514 } 2515 2516 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2517 unsigned int flags, struct used_address *used_address, 2518 unsigned int allowed_msghdr_flags) 2519 { 2520 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2521 __aligned(sizeof(__kernel_size_t)); 2522 /* 20 is size of ipv6_pktinfo */ 2523 unsigned char *ctl_buf = ctl; 2524 int ctl_len; 2525 ssize_t err; 2526 2527 err = -ENOBUFS; 2528 2529 if (msg_sys->msg_controllen > INT_MAX) 2530 goto out; 2531 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2532 ctl_len = msg_sys->msg_controllen; 2533 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2534 err = 2535 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2536 sizeof(ctl)); 2537 if (err) 2538 goto out; 2539 ctl_buf = msg_sys->msg_control; 2540 ctl_len = msg_sys->msg_controllen; 2541 } else if (ctl_len) { 2542 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2543 CMSG_ALIGN(sizeof(struct cmsghdr))); 2544 if (ctl_len > sizeof(ctl)) { 2545 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2546 if (ctl_buf == NULL) 2547 goto out; 2548 } 2549 err = -EFAULT; 2550 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2551 goto out_freectl; 2552 msg_sys->msg_control = ctl_buf; 2553 msg_sys->msg_control_is_user = false; 2554 } 2555 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2556 msg_sys->msg_flags = flags; 2557 2558 if (sock->file->f_flags & O_NONBLOCK) 2559 msg_sys->msg_flags |= MSG_DONTWAIT; 2560 /* 2561 * If this is sendmmsg() and current destination address is same as 2562 * previously succeeded address, omit asking LSM's decision. 2563 * used_address->name_len is initialized to UINT_MAX so that the first 2564 * destination address never matches. 2565 */ 2566 if (used_address && msg_sys->msg_name && 2567 used_address->name_len == msg_sys->msg_namelen && 2568 !memcmp(&used_address->name, msg_sys->msg_name, 2569 used_address->name_len)) { 2570 err = sock_sendmsg_nosec(sock, msg_sys); 2571 goto out_freectl; 2572 } 2573 err = __sock_sendmsg(sock, msg_sys); 2574 /* 2575 * If this is sendmmsg() and sending to current destination address was 2576 * successful, remember it. 2577 */ 2578 if (used_address && err >= 0) { 2579 used_address->name_len = msg_sys->msg_namelen; 2580 if (msg_sys->msg_name) 2581 memcpy(&used_address->name, msg_sys->msg_name, 2582 used_address->name_len); 2583 } 2584 2585 out_freectl: 2586 if (ctl_buf != ctl) 2587 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2588 out: 2589 return err; 2590 } 2591 2592 static int sendmsg_copy_msghdr(struct msghdr *msg, 2593 struct user_msghdr __user *umsg, unsigned flags, 2594 struct iovec **iov) 2595 { 2596 int err; 2597 2598 if (flags & MSG_CMSG_COMPAT) { 2599 struct compat_msghdr __user *msg_compat; 2600 2601 msg_compat = (struct compat_msghdr __user *) umsg; 2602 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2603 } else { 2604 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2605 } 2606 if (err < 0) 2607 return err; 2608 2609 return 0; 2610 } 2611 2612 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2613 struct msghdr *msg_sys, unsigned int flags, 2614 struct used_address *used_address, 2615 unsigned int allowed_msghdr_flags) 2616 { 2617 struct sockaddr_storage address; 2618 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2619 ssize_t err; 2620 2621 msg_sys->msg_name = &address; 2622 2623 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2624 if (err < 0) 2625 return err; 2626 2627 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2628 allowed_msghdr_flags); 2629 kfree(iov); 2630 return err; 2631 } 2632 2633 /* 2634 * BSD sendmsg interface 2635 */ 2636 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2637 unsigned int flags) 2638 { 2639 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2640 } 2641 2642 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2643 bool forbid_cmsg_compat) 2644 { 2645 struct msghdr msg_sys; 2646 struct socket *sock; 2647 2648 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2649 return -EINVAL; 2650 2651 CLASS(fd, f)(fd); 2652 2653 if (fd_empty(f)) 2654 return -EBADF; 2655 sock = sock_from_file(fd_file(f)); 2656 if (unlikely(!sock)) 2657 return -ENOTSOCK; 2658 2659 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2660 } 2661 2662 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2663 { 2664 return __sys_sendmsg(fd, msg, flags, true); 2665 } 2666 2667 /* 2668 * Linux sendmmsg interface 2669 */ 2670 2671 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2672 unsigned int flags, bool forbid_cmsg_compat) 2673 { 2674 int err, datagrams; 2675 struct socket *sock; 2676 struct mmsghdr __user *entry; 2677 struct compat_mmsghdr __user *compat_entry; 2678 struct msghdr msg_sys; 2679 struct used_address used_address; 2680 unsigned int oflags = flags; 2681 2682 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2683 return -EINVAL; 2684 2685 if (vlen > UIO_MAXIOV) 2686 vlen = UIO_MAXIOV; 2687 2688 datagrams = 0; 2689 2690 CLASS(fd, f)(fd); 2691 2692 if (fd_empty(f)) 2693 return -EBADF; 2694 sock = sock_from_file(fd_file(f)); 2695 if (unlikely(!sock)) 2696 return -ENOTSOCK; 2697 2698 used_address.name_len = UINT_MAX; 2699 entry = mmsg; 2700 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2701 err = 0; 2702 flags |= MSG_BATCH; 2703 2704 while (datagrams < vlen) { 2705 if (datagrams == vlen - 1) 2706 flags = oflags; 2707 2708 if (MSG_CMSG_COMPAT & flags) { 2709 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2710 &msg_sys, flags, &used_address, MSG_EOR); 2711 if (err < 0) 2712 break; 2713 err = __put_user(err, &compat_entry->msg_len); 2714 ++compat_entry; 2715 } else { 2716 err = ___sys_sendmsg(sock, 2717 (struct user_msghdr __user *)entry, 2718 &msg_sys, flags, &used_address, MSG_EOR); 2719 if (err < 0) 2720 break; 2721 err = put_user(err, &entry->msg_len); 2722 ++entry; 2723 } 2724 2725 if (err) 2726 break; 2727 ++datagrams; 2728 if (msg_data_left(&msg_sys)) 2729 break; 2730 cond_resched(); 2731 } 2732 2733 /* We only return an error if no datagrams were able to be sent */ 2734 if (datagrams != 0) 2735 return datagrams; 2736 2737 return err; 2738 } 2739 2740 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2741 unsigned int, vlen, unsigned int, flags) 2742 { 2743 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2744 } 2745 2746 static int recvmsg_copy_msghdr(struct msghdr *msg, 2747 struct user_msghdr __user *umsg, unsigned flags, 2748 struct sockaddr __user **uaddr, 2749 struct iovec **iov) 2750 { 2751 ssize_t err; 2752 2753 if (MSG_CMSG_COMPAT & flags) { 2754 struct compat_msghdr __user *msg_compat; 2755 2756 msg_compat = (struct compat_msghdr __user *) umsg; 2757 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2758 } else { 2759 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2760 } 2761 if (err < 0) 2762 return err; 2763 2764 return 0; 2765 } 2766 2767 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2768 struct user_msghdr __user *msg, 2769 struct sockaddr __user *uaddr, 2770 unsigned int flags, int nosec) 2771 { 2772 struct compat_msghdr __user *msg_compat = 2773 (struct compat_msghdr __user *) msg; 2774 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2775 struct sockaddr_storage addr; 2776 unsigned long cmsg_ptr; 2777 int len; 2778 ssize_t err; 2779 2780 msg_sys->msg_name = &addr; 2781 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2782 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2783 2784 /* We assume all kernel code knows the size of sockaddr_storage */ 2785 msg_sys->msg_namelen = 0; 2786 2787 if (sock->file->f_flags & O_NONBLOCK) 2788 flags |= MSG_DONTWAIT; 2789 2790 if (unlikely(nosec)) 2791 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2792 else 2793 err = sock_recvmsg(sock, msg_sys, flags); 2794 2795 if (err < 0) 2796 goto out; 2797 len = err; 2798 2799 if (uaddr != NULL) { 2800 err = move_addr_to_user(&addr, 2801 msg_sys->msg_namelen, uaddr, 2802 uaddr_len); 2803 if (err < 0) 2804 goto out; 2805 } 2806 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2807 COMPAT_FLAGS(msg)); 2808 if (err) 2809 goto out; 2810 if (MSG_CMSG_COMPAT & flags) 2811 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2812 &msg_compat->msg_controllen); 2813 else 2814 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2815 &msg->msg_controllen); 2816 if (err) 2817 goto out; 2818 err = len; 2819 out: 2820 return err; 2821 } 2822 2823 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2824 struct msghdr *msg_sys, unsigned int flags, int nosec) 2825 { 2826 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2827 /* user mode address pointers */ 2828 struct sockaddr __user *uaddr; 2829 ssize_t err; 2830 2831 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2832 if (err < 0) 2833 return err; 2834 2835 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2836 kfree(iov); 2837 return err; 2838 } 2839 2840 /* 2841 * BSD recvmsg interface 2842 */ 2843 2844 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2845 struct user_msghdr __user *umsg, 2846 struct sockaddr __user *uaddr, unsigned int flags) 2847 { 2848 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2849 } 2850 2851 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2852 bool forbid_cmsg_compat) 2853 { 2854 struct msghdr msg_sys; 2855 struct socket *sock; 2856 2857 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2858 return -EINVAL; 2859 2860 CLASS(fd, f)(fd); 2861 2862 if (fd_empty(f)) 2863 return -EBADF; 2864 sock = sock_from_file(fd_file(f)); 2865 if (unlikely(!sock)) 2866 return -ENOTSOCK; 2867 2868 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2869 } 2870 2871 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2872 unsigned int, flags) 2873 { 2874 return __sys_recvmsg(fd, msg, flags, true); 2875 } 2876 2877 /* 2878 * Linux recvmmsg interface 2879 */ 2880 2881 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2882 unsigned int vlen, unsigned int flags, 2883 struct timespec64 *timeout) 2884 { 2885 int err = 0, datagrams; 2886 struct socket *sock; 2887 struct mmsghdr __user *entry; 2888 struct compat_mmsghdr __user *compat_entry; 2889 struct msghdr msg_sys; 2890 struct timespec64 end_time; 2891 struct timespec64 timeout64; 2892 2893 if (timeout && 2894 poll_select_set_timeout(&end_time, timeout->tv_sec, 2895 timeout->tv_nsec)) 2896 return -EINVAL; 2897 2898 datagrams = 0; 2899 2900 CLASS(fd, f)(fd); 2901 2902 if (fd_empty(f)) 2903 return -EBADF; 2904 sock = sock_from_file(fd_file(f)); 2905 if (unlikely(!sock)) 2906 return -ENOTSOCK; 2907 2908 if (likely(!(flags & MSG_ERRQUEUE))) { 2909 err = sock_error(sock->sk); 2910 if (err) 2911 return err; 2912 } 2913 2914 entry = mmsg; 2915 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2916 2917 while (datagrams < vlen) { 2918 /* 2919 * No need to ask LSM for more than the first datagram. 2920 */ 2921 if (MSG_CMSG_COMPAT & flags) { 2922 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2923 &msg_sys, flags & ~MSG_WAITFORONE, 2924 datagrams); 2925 if (err < 0) 2926 break; 2927 err = __put_user(err, &compat_entry->msg_len); 2928 ++compat_entry; 2929 } else { 2930 err = ___sys_recvmsg(sock, 2931 (struct user_msghdr __user *)entry, 2932 &msg_sys, flags & ~MSG_WAITFORONE, 2933 datagrams); 2934 if (err < 0) 2935 break; 2936 err = put_user(err, &entry->msg_len); 2937 ++entry; 2938 } 2939 2940 if (err) 2941 break; 2942 ++datagrams; 2943 2944 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2945 if (flags & MSG_WAITFORONE) 2946 flags |= MSG_DONTWAIT; 2947 2948 if (timeout) { 2949 ktime_get_ts64(&timeout64); 2950 *timeout = timespec64_sub(end_time, timeout64); 2951 if (timeout->tv_sec < 0) { 2952 timeout->tv_sec = timeout->tv_nsec = 0; 2953 break; 2954 } 2955 2956 /* Timeout, return less than vlen datagrams */ 2957 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2958 break; 2959 } 2960 2961 /* Out of band data, return right away */ 2962 if (msg_sys.msg_flags & MSG_OOB) 2963 break; 2964 cond_resched(); 2965 } 2966 2967 if (err == 0) 2968 return datagrams; 2969 2970 if (datagrams == 0) 2971 return err; 2972 2973 /* 2974 * We may return less entries than requested (vlen) if the 2975 * sock is non block and there aren't enough datagrams... 2976 */ 2977 if (err != -EAGAIN) { 2978 /* 2979 * ... or if recvmsg returns an error after we 2980 * received some datagrams, where we record the 2981 * error to return on the next call or if the 2982 * app asks about it using getsockopt(SO_ERROR). 2983 */ 2984 WRITE_ONCE(sock->sk->sk_err, -err); 2985 } 2986 return datagrams; 2987 } 2988 2989 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2990 unsigned int vlen, unsigned int flags, 2991 struct __kernel_timespec __user *timeout, 2992 struct old_timespec32 __user *timeout32) 2993 { 2994 int datagrams; 2995 struct timespec64 timeout_sys; 2996 2997 if (timeout && get_timespec64(&timeout_sys, timeout)) 2998 return -EFAULT; 2999 3000 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3001 return -EFAULT; 3002 3003 if (!timeout && !timeout32) 3004 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3005 3006 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3007 3008 if (datagrams <= 0) 3009 return datagrams; 3010 3011 if (timeout && put_timespec64(&timeout_sys, timeout)) 3012 datagrams = -EFAULT; 3013 3014 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3015 datagrams = -EFAULT; 3016 3017 return datagrams; 3018 } 3019 3020 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3021 unsigned int, vlen, unsigned int, flags, 3022 struct __kernel_timespec __user *, timeout) 3023 { 3024 if (flags & MSG_CMSG_COMPAT) 3025 return -EINVAL; 3026 3027 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3028 } 3029 3030 #ifdef CONFIG_COMPAT_32BIT_TIME 3031 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3032 unsigned int, vlen, unsigned int, flags, 3033 struct old_timespec32 __user *, timeout) 3034 { 3035 if (flags & MSG_CMSG_COMPAT) 3036 return -EINVAL; 3037 3038 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3039 } 3040 #endif 3041 3042 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3043 /* Argument list sizes for sys_socketcall */ 3044 #define AL(x) ((x) * sizeof(unsigned long)) 3045 static const unsigned char nargs[21] = { 3046 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3047 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3048 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3049 AL(4), AL(5), AL(4) 3050 }; 3051 3052 #undef AL 3053 3054 /* 3055 * System call vectors. 3056 * 3057 * Argument checking cleaned up. Saved 20% in size. 3058 * This function doesn't need to set the kernel lock because 3059 * it is set by the callees. 3060 */ 3061 3062 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3063 { 3064 unsigned long a[AUDITSC_ARGS]; 3065 unsigned long a0, a1; 3066 int err; 3067 unsigned int len; 3068 3069 if (call < 1 || call > SYS_SENDMMSG) 3070 return -EINVAL; 3071 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3072 3073 len = nargs[call]; 3074 if (len > sizeof(a)) 3075 return -EINVAL; 3076 3077 /* copy_from_user should be SMP safe. */ 3078 if (copy_from_user(a, args, len)) 3079 return -EFAULT; 3080 3081 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3082 if (err) 3083 return err; 3084 3085 a0 = a[0]; 3086 a1 = a[1]; 3087 3088 switch (call) { 3089 case SYS_SOCKET: 3090 err = __sys_socket(a0, a1, a[2]); 3091 break; 3092 case SYS_BIND: 3093 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3094 break; 3095 case SYS_CONNECT: 3096 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3097 break; 3098 case SYS_LISTEN: 3099 err = __sys_listen(a0, a1); 3100 break; 3101 case SYS_ACCEPT: 3102 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3103 (int __user *)a[2], 0); 3104 break; 3105 case SYS_GETSOCKNAME: 3106 err = 3107 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3108 (int __user *)a[2]); 3109 break; 3110 case SYS_GETPEERNAME: 3111 err = 3112 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3113 (int __user *)a[2]); 3114 break; 3115 case SYS_SOCKETPAIR: 3116 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3117 break; 3118 case SYS_SEND: 3119 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3120 NULL, 0); 3121 break; 3122 case SYS_SENDTO: 3123 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3124 (struct sockaddr __user *)a[4], a[5]); 3125 break; 3126 case SYS_RECV: 3127 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3128 NULL, NULL); 3129 break; 3130 case SYS_RECVFROM: 3131 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3132 (struct sockaddr __user *)a[4], 3133 (int __user *)a[5]); 3134 break; 3135 case SYS_SHUTDOWN: 3136 err = __sys_shutdown(a0, a1); 3137 break; 3138 case SYS_SETSOCKOPT: 3139 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3140 a[4]); 3141 break; 3142 case SYS_GETSOCKOPT: 3143 err = 3144 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3145 (int __user *)a[4]); 3146 break; 3147 case SYS_SENDMSG: 3148 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3149 a[2], true); 3150 break; 3151 case SYS_SENDMMSG: 3152 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3153 a[3], true); 3154 break; 3155 case SYS_RECVMSG: 3156 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3157 a[2], true); 3158 break; 3159 case SYS_RECVMMSG: 3160 if (IS_ENABLED(CONFIG_64BIT)) 3161 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3162 a[2], a[3], 3163 (struct __kernel_timespec __user *)a[4], 3164 NULL); 3165 else 3166 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3167 a[2], a[3], NULL, 3168 (struct old_timespec32 __user *)a[4]); 3169 break; 3170 case SYS_ACCEPT4: 3171 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3172 (int __user *)a[2], a[3]); 3173 break; 3174 default: 3175 err = -EINVAL; 3176 break; 3177 } 3178 return err; 3179 } 3180 3181 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3182 3183 /** 3184 * sock_register - add a socket protocol handler 3185 * @ops: description of protocol 3186 * 3187 * This function is called by a protocol handler that wants to 3188 * advertise its address family, and have it linked into the 3189 * socket interface. The value ops->family corresponds to the 3190 * socket system call protocol family. 3191 */ 3192 int sock_register(const struct net_proto_family *ops) 3193 { 3194 int err; 3195 3196 if (ops->family >= NPROTO) { 3197 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3198 return -ENOBUFS; 3199 } 3200 3201 spin_lock(&net_family_lock); 3202 if (rcu_dereference_protected(net_families[ops->family], 3203 lockdep_is_held(&net_family_lock))) 3204 err = -EEXIST; 3205 else { 3206 rcu_assign_pointer(net_families[ops->family], ops); 3207 err = 0; 3208 } 3209 spin_unlock(&net_family_lock); 3210 3211 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3212 return err; 3213 } 3214 EXPORT_SYMBOL(sock_register); 3215 3216 /** 3217 * sock_unregister - remove a protocol handler 3218 * @family: protocol family to remove 3219 * 3220 * This function is called by a protocol handler that wants to 3221 * remove its address family, and have it unlinked from the 3222 * new socket creation. 3223 * 3224 * If protocol handler is a module, then it can use module reference 3225 * counts to protect against new references. If protocol handler is not 3226 * a module then it needs to provide its own protection in 3227 * the ops->create routine. 3228 */ 3229 void sock_unregister(int family) 3230 { 3231 BUG_ON(family < 0 || family >= NPROTO); 3232 3233 spin_lock(&net_family_lock); 3234 RCU_INIT_POINTER(net_families[family], NULL); 3235 spin_unlock(&net_family_lock); 3236 3237 synchronize_rcu(); 3238 3239 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3240 } 3241 EXPORT_SYMBOL(sock_unregister); 3242 3243 bool sock_is_registered(int family) 3244 { 3245 return family < NPROTO && rcu_access_pointer(net_families[family]); 3246 } 3247 3248 static int __init sock_init(void) 3249 { 3250 int err; 3251 /* 3252 * Initialize the network sysctl infrastructure. 3253 */ 3254 err = net_sysctl_init(); 3255 if (err) 3256 goto out; 3257 3258 /* 3259 * Initialize skbuff SLAB cache 3260 */ 3261 skb_init(); 3262 3263 /* 3264 * Initialize the protocols module. 3265 */ 3266 3267 init_inodecache(); 3268 3269 err = register_filesystem(&sock_fs_type); 3270 if (err) 3271 goto out; 3272 sock_mnt = kern_mount(&sock_fs_type); 3273 if (IS_ERR(sock_mnt)) { 3274 err = PTR_ERR(sock_mnt); 3275 goto out_mount; 3276 } 3277 3278 /* The real protocol initialization is performed in later initcalls. 3279 */ 3280 3281 #ifdef CONFIG_NETFILTER 3282 err = netfilter_init(); 3283 if (err) 3284 goto out; 3285 #endif 3286 3287 ptp_classifier_init(); 3288 3289 out: 3290 return err; 3291 3292 out_mount: 3293 unregister_filesystem(&sock_fs_type); 3294 goto out; 3295 } 3296 3297 core_initcall(sock_init); /* early initcall */ 3298 3299 #ifdef CONFIG_PROC_FS 3300 void socket_seq_show(struct seq_file *seq) 3301 { 3302 seq_printf(seq, "sockets: used %d\n", 3303 sock_inuse_get(seq->private)); 3304 } 3305 #endif /* CONFIG_PROC_FS */ 3306 3307 /* Handle the fact that while struct ifreq has the same *layout* on 3308 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3309 * which are handled elsewhere, it still has different *size* due to 3310 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3311 * resulting in struct ifreq being 32 and 40 bytes respectively). 3312 * As a result, if the struct happens to be at the end of a page and 3313 * the next page isn't readable/writable, we get a fault. To prevent 3314 * that, copy back and forth to the full size. 3315 */ 3316 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3317 { 3318 if (in_compat_syscall()) { 3319 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3320 3321 memset(ifr, 0, sizeof(*ifr)); 3322 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3323 return -EFAULT; 3324 3325 if (ifrdata) 3326 *ifrdata = compat_ptr(ifr32->ifr_data); 3327 3328 return 0; 3329 } 3330 3331 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3332 return -EFAULT; 3333 3334 if (ifrdata) 3335 *ifrdata = ifr->ifr_data; 3336 3337 return 0; 3338 } 3339 EXPORT_SYMBOL(get_user_ifreq); 3340 3341 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3342 { 3343 size_t size = sizeof(*ifr); 3344 3345 if (in_compat_syscall()) 3346 size = sizeof(struct compat_ifreq); 3347 3348 if (copy_to_user(arg, ifr, size)) 3349 return -EFAULT; 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(put_user_ifreq); 3354 3355 #ifdef CONFIG_COMPAT 3356 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3357 { 3358 compat_uptr_t uptr32; 3359 struct ifreq ifr; 3360 void __user *saved; 3361 int err; 3362 3363 if (get_user_ifreq(&ifr, NULL, uifr32)) 3364 return -EFAULT; 3365 3366 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3367 return -EFAULT; 3368 3369 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3370 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3371 3372 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3373 if (!err) { 3374 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3375 if (put_user_ifreq(&ifr, uifr32)) 3376 err = -EFAULT; 3377 } 3378 return err; 3379 } 3380 3381 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3382 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3383 struct compat_ifreq __user *u_ifreq32) 3384 { 3385 struct ifreq ifreq; 3386 void __user *data; 3387 3388 if (!is_socket_ioctl_cmd(cmd)) 3389 return -ENOTTY; 3390 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3391 return -EFAULT; 3392 ifreq.ifr_data = data; 3393 3394 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3395 } 3396 3397 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3398 unsigned int cmd, unsigned long arg) 3399 { 3400 void __user *argp = compat_ptr(arg); 3401 struct sock *sk = sock->sk; 3402 struct net *net = sock_net(sk); 3403 const struct proto_ops *ops; 3404 3405 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3406 return sock_ioctl(file, cmd, (unsigned long)argp); 3407 3408 switch (cmd) { 3409 case SIOCWANDEV: 3410 return compat_siocwandev(net, argp); 3411 case SIOCGSTAMP_OLD: 3412 case SIOCGSTAMPNS_OLD: 3413 ops = READ_ONCE(sock->ops); 3414 if (!ops->gettstamp) 3415 return -ENOIOCTLCMD; 3416 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3417 !COMPAT_USE_64BIT_TIME); 3418 3419 case SIOCETHTOOL: 3420 case SIOCBONDSLAVEINFOQUERY: 3421 case SIOCBONDINFOQUERY: 3422 case SIOCSHWTSTAMP: 3423 case SIOCGHWTSTAMP: 3424 return compat_ifr_data_ioctl(net, cmd, argp); 3425 3426 case FIOSETOWN: 3427 case SIOCSPGRP: 3428 case FIOGETOWN: 3429 case SIOCGPGRP: 3430 case SIOCBRADDBR: 3431 case SIOCBRDELBR: 3432 case SIOCGIFVLAN: 3433 case SIOCSIFVLAN: 3434 case SIOCGSKNS: 3435 case SIOCGSTAMP_NEW: 3436 case SIOCGSTAMPNS_NEW: 3437 case SIOCGIFCONF: 3438 case SIOCSIFBR: 3439 case SIOCGIFBR: 3440 return sock_ioctl(file, cmd, arg); 3441 3442 case SIOCGIFFLAGS: 3443 case SIOCSIFFLAGS: 3444 case SIOCGIFMAP: 3445 case SIOCSIFMAP: 3446 case SIOCGIFMETRIC: 3447 case SIOCSIFMETRIC: 3448 case SIOCGIFMTU: 3449 case SIOCSIFMTU: 3450 case SIOCGIFMEM: 3451 case SIOCSIFMEM: 3452 case SIOCGIFHWADDR: 3453 case SIOCSIFHWADDR: 3454 case SIOCADDMULTI: 3455 case SIOCDELMULTI: 3456 case SIOCGIFINDEX: 3457 case SIOCGIFADDR: 3458 case SIOCSIFADDR: 3459 case SIOCSIFHWBROADCAST: 3460 case SIOCDIFADDR: 3461 case SIOCGIFBRDADDR: 3462 case SIOCSIFBRDADDR: 3463 case SIOCGIFDSTADDR: 3464 case SIOCSIFDSTADDR: 3465 case SIOCGIFNETMASK: 3466 case SIOCSIFNETMASK: 3467 case SIOCSIFPFLAGS: 3468 case SIOCGIFPFLAGS: 3469 case SIOCGIFTXQLEN: 3470 case SIOCSIFTXQLEN: 3471 case SIOCBRADDIF: 3472 case SIOCBRDELIF: 3473 case SIOCGIFNAME: 3474 case SIOCSIFNAME: 3475 case SIOCGMIIPHY: 3476 case SIOCGMIIREG: 3477 case SIOCSMIIREG: 3478 case SIOCBONDENSLAVE: 3479 case SIOCBONDRELEASE: 3480 case SIOCBONDSETHWADDR: 3481 case SIOCBONDCHANGEACTIVE: 3482 case SIOCSARP: 3483 case SIOCGARP: 3484 case SIOCDARP: 3485 case SIOCOUTQ: 3486 case SIOCOUTQNSD: 3487 case SIOCATMARK: 3488 return sock_do_ioctl(net, sock, cmd, arg); 3489 } 3490 3491 return -ENOIOCTLCMD; 3492 } 3493 3494 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3495 unsigned long arg) 3496 { 3497 struct socket *sock = file->private_data; 3498 const struct proto_ops *ops = READ_ONCE(sock->ops); 3499 int ret = -ENOIOCTLCMD; 3500 struct sock *sk; 3501 struct net *net; 3502 3503 sk = sock->sk; 3504 net = sock_net(sk); 3505 3506 if (ops->compat_ioctl) 3507 ret = ops->compat_ioctl(sock, cmd, arg); 3508 3509 if (ret == -ENOIOCTLCMD && 3510 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3511 ret = compat_wext_handle_ioctl(net, cmd, arg); 3512 3513 if (ret == -ENOIOCTLCMD) 3514 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3515 3516 return ret; 3517 } 3518 #endif 3519 3520 /** 3521 * kernel_bind - bind an address to a socket (kernel space) 3522 * @sock: socket 3523 * @addr: address 3524 * @addrlen: length of address 3525 * 3526 * Returns 0 or an error. 3527 */ 3528 3529 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3530 { 3531 struct sockaddr_storage address; 3532 3533 memcpy(&address, addr, addrlen); 3534 3535 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3536 addrlen); 3537 } 3538 EXPORT_SYMBOL(kernel_bind); 3539 3540 /** 3541 * kernel_listen - move socket to listening state (kernel space) 3542 * @sock: socket 3543 * @backlog: pending connections queue size 3544 * 3545 * Returns 0 or an error. 3546 */ 3547 3548 int kernel_listen(struct socket *sock, int backlog) 3549 { 3550 return READ_ONCE(sock->ops)->listen(sock, backlog); 3551 } 3552 EXPORT_SYMBOL(kernel_listen); 3553 3554 /** 3555 * kernel_accept - accept a connection (kernel space) 3556 * @sock: listening socket 3557 * @newsock: new connected socket 3558 * @flags: flags 3559 * 3560 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3561 * If it fails, @newsock is guaranteed to be %NULL. 3562 * Returns 0 or an error. 3563 */ 3564 3565 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3566 { 3567 struct sock *sk = sock->sk; 3568 const struct proto_ops *ops = READ_ONCE(sock->ops); 3569 struct proto_accept_arg arg = { 3570 .flags = flags, 3571 .kern = true, 3572 }; 3573 int err; 3574 3575 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3576 newsock); 3577 if (err < 0) 3578 goto done; 3579 3580 err = ops->accept(sock, *newsock, &arg); 3581 if (err < 0) { 3582 sock_release(*newsock); 3583 *newsock = NULL; 3584 goto done; 3585 } 3586 3587 (*newsock)->ops = ops; 3588 __module_get(ops->owner); 3589 3590 done: 3591 return err; 3592 } 3593 EXPORT_SYMBOL(kernel_accept); 3594 3595 /** 3596 * kernel_connect - connect a socket (kernel space) 3597 * @sock: socket 3598 * @addr: address 3599 * @addrlen: address length 3600 * @flags: flags (O_NONBLOCK, ...) 3601 * 3602 * For datagram sockets, @addr is the address to which datagrams are sent 3603 * by default, and the only address from which datagrams are received. 3604 * For stream sockets, attempts to connect to @addr. 3605 * Returns 0 or an error code. 3606 */ 3607 3608 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3609 int flags) 3610 { 3611 struct sockaddr_storage address; 3612 3613 memcpy(&address, addr, addrlen); 3614 3615 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3616 addrlen, flags); 3617 } 3618 EXPORT_SYMBOL(kernel_connect); 3619 3620 /** 3621 * kernel_getsockname - get the address which the socket is bound (kernel space) 3622 * @sock: socket 3623 * @addr: address holder 3624 * 3625 * Fills the @addr pointer with the address which the socket is bound. 3626 * Returns the length of the address in bytes or an error code. 3627 */ 3628 3629 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3630 { 3631 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3632 } 3633 EXPORT_SYMBOL(kernel_getsockname); 3634 3635 /** 3636 * kernel_getpeername - get the address which the socket is connected (kernel space) 3637 * @sock: socket 3638 * @addr: address holder 3639 * 3640 * Fills the @addr pointer with the address which the socket is connected. 3641 * Returns the length of the address in bytes or an error code. 3642 */ 3643 3644 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3645 { 3646 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3647 } 3648 EXPORT_SYMBOL(kernel_getpeername); 3649 3650 /** 3651 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3652 * @sock: socket 3653 * @how: connection part 3654 * 3655 * Returns 0 or an error. 3656 */ 3657 3658 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3659 { 3660 return READ_ONCE(sock->ops)->shutdown(sock, how); 3661 } 3662 EXPORT_SYMBOL(kernel_sock_shutdown); 3663 3664 /** 3665 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3666 * @sk: socket 3667 * 3668 * This routine returns the IP overhead imposed by a socket i.e. 3669 * the length of the underlying IP header, depending on whether 3670 * this is an IPv4 or IPv6 socket and the length from IP options turned 3671 * on at the socket. Assumes that the caller has a lock on the socket. 3672 */ 3673 3674 u32 kernel_sock_ip_overhead(struct sock *sk) 3675 { 3676 struct inet_sock *inet; 3677 struct ip_options_rcu *opt; 3678 u32 overhead = 0; 3679 #if IS_ENABLED(CONFIG_IPV6) 3680 struct ipv6_pinfo *np; 3681 struct ipv6_txoptions *optv6 = NULL; 3682 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3683 3684 if (!sk) 3685 return overhead; 3686 3687 switch (sk->sk_family) { 3688 case AF_INET: 3689 inet = inet_sk(sk); 3690 overhead += sizeof(struct iphdr); 3691 opt = rcu_dereference_protected(inet->inet_opt, 3692 sock_owned_by_user(sk)); 3693 if (opt) 3694 overhead += opt->opt.optlen; 3695 return overhead; 3696 #if IS_ENABLED(CONFIG_IPV6) 3697 case AF_INET6: 3698 np = inet6_sk(sk); 3699 overhead += sizeof(struct ipv6hdr); 3700 if (np) 3701 optv6 = rcu_dereference_protected(np->opt, 3702 sock_owned_by_user(sk)); 3703 if (optv6) 3704 overhead += (optv6->opt_flen + optv6->opt_nflen); 3705 return overhead; 3706 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3707 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3708 return overhead; 3709 } 3710 } 3711 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3712