1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .uring_cmd = io_uring_cmd_sock, 164 .mmap = sock_mmap, 165 .release = sock_close, 166 .fasync = sock_fasync, 167 .splice_write = splice_to_socket, 168 .splice_read = sock_splice_read, 169 .splice_eof = sock_splice_eof, 170 .show_fdinfo = sock_show_fdinfo, 171 }; 172 173 static const char * const pf_family_names[] = { 174 [PF_UNSPEC] = "PF_UNSPEC", 175 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 176 [PF_INET] = "PF_INET", 177 [PF_AX25] = "PF_AX25", 178 [PF_IPX] = "PF_IPX", 179 [PF_APPLETALK] = "PF_APPLETALK", 180 [PF_NETROM] = "PF_NETROM", 181 [PF_BRIDGE] = "PF_BRIDGE", 182 [PF_ATMPVC] = "PF_ATMPVC", 183 [PF_X25] = "PF_X25", 184 [PF_INET6] = "PF_INET6", 185 [PF_ROSE] = "PF_ROSE", 186 [PF_DECnet] = "PF_DECnet", 187 [PF_NETBEUI] = "PF_NETBEUI", 188 [PF_SECURITY] = "PF_SECURITY", 189 [PF_KEY] = "PF_KEY", 190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 191 [PF_PACKET] = "PF_PACKET", 192 [PF_ASH] = "PF_ASH", 193 [PF_ECONET] = "PF_ECONET", 194 [PF_ATMSVC] = "PF_ATMSVC", 195 [PF_RDS] = "PF_RDS", 196 [PF_SNA] = "PF_SNA", 197 [PF_IRDA] = "PF_IRDA", 198 [PF_PPPOX] = "PF_PPPOX", 199 [PF_WANPIPE] = "PF_WANPIPE", 200 [PF_LLC] = "PF_LLC", 201 [PF_IB] = "PF_IB", 202 [PF_MPLS] = "PF_MPLS", 203 [PF_CAN] = "PF_CAN", 204 [PF_TIPC] = "PF_TIPC", 205 [PF_BLUETOOTH] = "PF_BLUETOOTH", 206 [PF_IUCV] = "PF_IUCV", 207 [PF_RXRPC] = "PF_RXRPC", 208 [PF_ISDN] = "PF_ISDN", 209 [PF_PHONET] = "PF_PHONET", 210 [PF_IEEE802154] = "PF_IEEE802154", 211 [PF_CAIF] = "PF_CAIF", 212 [PF_ALG] = "PF_ALG", 213 [PF_NFC] = "PF_NFC", 214 [PF_VSOCK] = "PF_VSOCK", 215 [PF_KCM] = "PF_KCM", 216 [PF_QIPCRTR] = "PF_QIPCRTR", 217 [PF_SMC] = "PF_SMC", 218 [PF_XDP] = "PF_XDP", 219 [PF_MCTP] = "PF_MCTP", 220 }; 221 222 /* 223 * The protocol list. Each protocol is registered in here. 224 */ 225 226 static DEFINE_SPINLOCK(net_family_lock); 227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 228 229 /* 230 * Support routines. 231 * Move socket addresses back and forth across the kernel/user 232 * divide and look after the messy bits. 233 */ 234 235 /** 236 * move_addr_to_kernel - copy a socket address into kernel space 237 * @uaddr: Address in user space 238 * @kaddr: Address in kernel space 239 * @ulen: Length in user space 240 * 241 * The address is copied into kernel space. If the provided address is 242 * too long an error code of -EINVAL is returned. If the copy gives 243 * invalid addresses -EFAULT is returned. On a success 0 is returned. 244 */ 245 246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 247 { 248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 249 return -EINVAL; 250 if (ulen == 0) 251 return 0; 252 if (copy_from_user(kaddr, uaddr, ulen)) 253 return -EFAULT; 254 return audit_sockaddr(ulen, kaddr); 255 } 256 257 /** 258 * move_addr_to_user - copy an address to user space 259 * @kaddr: kernel space address 260 * @klen: length of address in kernel 261 * @uaddr: user space address 262 * @ulen: pointer to user length field 263 * 264 * The value pointed to by ulen on entry is the buffer length available. 265 * This is overwritten with the buffer space used. -EINVAL is returned 266 * if an overlong buffer is specified or a negative buffer size. -EFAULT 267 * is returned if either the buffer or the length field are not 268 * accessible. 269 * After copying the data up to the limit the user specifies, the true 270 * length of the data is written over the length limit the user 271 * specified. Zero is returned for a success. 272 */ 273 274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 275 void __user *uaddr, int __user *ulen) 276 { 277 int err; 278 int len; 279 280 BUG_ON(klen > sizeof(struct sockaddr_storage)); 281 err = get_user(len, ulen); 282 if (err) 283 return err; 284 if (len > klen) 285 len = klen; 286 if (len < 0) 287 return -EINVAL; 288 if (len) { 289 if (audit_sockaddr(klen, kaddr)) 290 return -ENOMEM; 291 if (copy_to_user(uaddr, kaddr, len)) 292 return -EFAULT; 293 } 294 /* 295 * "fromlen shall refer to the value before truncation.." 296 * 1003.1g 297 */ 298 return __put_user(klen, ulen); 299 } 300 301 static struct kmem_cache *sock_inode_cachep __ro_after_init; 302 303 static struct inode *sock_alloc_inode(struct super_block *sb) 304 { 305 struct socket_alloc *ei; 306 307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 308 if (!ei) 309 return NULL; 310 init_waitqueue_head(&ei->socket.wq.wait); 311 ei->socket.wq.fasync_list = NULL; 312 ei->socket.wq.flags = 0; 313 314 ei->socket.state = SS_UNCONNECTED; 315 ei->socket.flags = 0; 316 ei->socket.ops = NULL; 317 ei->socket.sk = NULL; 318 ei->socket.file = NULL; 319 320 return &ei->vfs_inode; 321 } 322 323 static void sock_free_inode(struct inode *inode) 324 { 325 struct socket_alloc *ei; 326 327 ei = container_of(inode, struct socket_alloc, vfs_inode); 328 kmem_cache_free(sock_inode_cachep, ei); 329 } 330 331 static void init_once(void *foo) 332 { 333 struct socket_alloc *ei = (struct socket_alloc *)foo; 334 335 inode_init_once(&ei->vfs_inode); 336 } 337 338 static void init_inodecache(void) 339 { 340 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 341 sizeof(struct socket_alloc), 342 0, 343 (SLAB_HWCACHE_ALIGN | 344 SLAB_RECLAIM_ACCOUNT | 345 SLAB_ACCOUNT), 346 init_once); 347 BUG_ON(sock_inode_cachep == NULL); 348 } 349 350 static const struct super_operations sockfs_ops = { 351 .alloc_inode = sock_alloc_inode, 352 .free_inode = sock_free_inode, 353 .statfs = simple_statfs, 354 }; 355 356 /* 357 * sockfs_dname() is called from d_path(). 358 */ 359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 360 { 361 return dynamic_dname(buffer, buflen, "socket:[%lu]", 362 d_inode(dentry)->i_ino); 363 } 364 365 static const struct dentry_operations sockfs_dentry_operations = { 366 .d_dname = sockfs_dname, 367 }; 368 369 static int sockfs_xattr_get(const struct xattr_handler *handler, 370 struct dentry *dentry, struct inode *inode, 371 const char *suffix, void *value, size_t size) 372 { 373 if (value) { 374 if (dentry->d_name.len + 1 > size) 375 return -ERANGE; 376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 377 } 378 return dentry->d_name.len + 1; 379 } 380 381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 384 385 static const struct xattr_handler sockfs_xattr_handler = { 386 .name = XATTR_NAME_SOCKPROTONAME, 387 .get = sockfs_xattr_get, 388 }; 389 390 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 391 struct mnt_idmap *idmap, 392 struct dentry *dentry, struct inode *inode, 393 const char *suffix, const void *value, 394 size_t size, int flags) 395 { 396 /* Handled by LSM. */ 397 return -EAGAIN; 398 } 399 400 static const struct xattr_handler sockfs_security_xattr_handler = { 401 .prefix = XATTR_SECURITY_PREFIX, 402 .set = sockfs_security_xattr_set, 403 }; 404 405 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 406 &sockfs_xattr_handler, 407 &sockfs_security_xattr_handler, 408 NULL 409 }; 410 411 static int sockfs_init_fs_context(struct fs_context *fc) 412 { 413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 414 if (!ctx) 415 return -ENOMEM; 416 ctx->ops = &sockfs_ops; 417 ctx->dops = &sockfs_dentry_operations; 418 ctx->xattr = sockfs_xattr_handlers; 419 return 0; 420 } 421 422 static struct vfsmount *sock_mnt __read_mostly; 423 424 static struct file_system_type sock_fs_type = { 425 .name = "sockfs", 426 .init_fs_context = sockfs_init_fs_context, 427 .kill_sb = kill_anon_super, 428 }; 429 430 /* 431 * Obtains the first available file descriptor and sets it up for use. 432 * 433 * These functions create file structures and maps them to fd space 434 * of the current process. On success it returns file descriptor 435 * and file struct implicitly stored in sock->file. 436 * Note that another thread may close file descriptor before we return 437 * from this function. We use the fact that now we do not refer 438 * to socket after mapping. If one day we will need it, this 439 * function will increment ref. count on file by 1. 440 * 441 * In any case returned fd MAY BE not valid! 442 * This race condition is unavoidable 443 * with shared fd spaces, we cannot solve it inside kernel, 444 * but we take care of internal coherence yet. 445 */ 446 447 /** 448 * sock_alloc_file - Bind a &socket to a &file 449 * @sock: socket 450 * @flags: file status flags 451 * @dname: protocol name 452 * 453 * Returns the &file bound with @sock, implicitly storing it 454 * in sock->file. If dname is %NULL, sets to "". 455 * 456 * On failure @sock is released, and an ERR pointer is returned. 457 * 458 * This function uses GFP_KERNEL internally. 459 */ 460 461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 462 { 463 struct file *file; 464 465 if (!dname) 466 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 467 468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 469 O_RDWR | (flags & O_NONBLOCK), 470 &socket_file_ops); 471 if (IS_ERR(file)) { 472 sock_release(sock); 473 return file; 474 } 475 476 file->f_mode |= FMODE_NOWAIT; 477 sock->file = file; 478 file->private_data = sock; 479 stream_open(SOCK_INODE(sock), file); 480 return file; 481 } 482 EXPORT_SYMBOL(sock_alloc_file); 483 484 static int sock_map_fd(struct socket *sock, int flags) 485 { 486 struct file *newfile; 487 int fd = get_unused_fd_flags(flags); 488 if (unlikely(fd < 0)) { 489 sock_release(sock); 490 return fd; 491 } 492 493 newfile = sock_alloc_file(sock, flags, NULL); 494 if (!IS_ERR(newfile)) { 495 fd_install(fd, newfile); 496 return fd; 497 } 498 499 put_unused_fd(fd); 500 return PTR_ERR(newfile); 501 } 502 503 /** 504 * sock_from_file - Return the &socket bounded to @file. 505 * @file: file 506 * 507 * On failure returns %NULL. 508 */ 509 510 struct socket *sock_from_file(struct file *file) 511 { 512 if (file->f_op == &socket_file_ops) 513 return file->private_data; /* set in sock_alloc_file */ 514 515 return NULL; 516 } 517 EXPORT_SYMBOL(sock_from_file); 518 519 /** 520 * sockfd_lookup - Go from a file number to its socket slot 521 * @fd: file handle 522 * @err: pointer to an error code return 523 * 524 * The file handle passed in is locked and the socket it is bound 525 * to is returned. If an error occurs the err pointer is overwritten 526 * with a negative errno code and NULL is returned. The function checks 527 * for both invalid handles and passing a handle which is not a socket. 528 * 529 * On a success the socket object pointer is returned. 530 */ 531 532 struct socket *sockfd_lookup(int fd, int *err) 533 { 534 struct file *file; 535 struct socket *sock; 536 537 file = fget(fd); 538 if (!file) { 539 *err = -EBADF; 540 return NULL; 541 } 542 543 sock = sock_from_file(file); 544 if (!sock) { 545 *err = -ENOTSOCK; 546 fput(file); 547 } 548 return sock; 549 } 550 EXPORT_SYMBOL(sockfd_lookup); 551 552 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 553 { 554 struct fd f = fdget(fd); 555 struct socket *sock; 556 557 *err = -EBADF; 558 if (fd_file(f)) { 559 sock = sock_from_file(fd_file(f)); 560 if (likely(sock)) { 561 *fput_needed = f.word & FDPUT_FPUT; 562 return sock; 563 } 564 *err = -ENOTSOCK; 565 fdput(f); 566 } 567 return NULL; 568 } 569 570 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 571 size_t size) 572 { 573 ssize_t len; 574 ssize_t used = 0; 575 576 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 577 if (len < 0) 578 return len; 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 buffer += len; 584 } 585 586 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 587 used += len; 588 if (buffer) { 589 if (size < used) 590 return -ERANGE; 591 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 592 buffer += len; 593 } 594 595 return used; 596 } 597 598 static int sockfs_setattr(struct mnt_idmap *idmap, 599 struct dentry *dentry, struct iattr *iattr) 600 { 601 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 602 603 if (!err && (iattr->ia_valid & ATTR_UID)) { 604 struct socket *sock = SOCKET_I(d_inode(dentry)); 605 606 if (sock->sk) 607 sock->sk->sk_uid = iattr->ia_uid; 608 else 609 err = -ENOENT; 610 } 611 612 return err; 613 } 614 615 static const struct inode_operations sockfs_inode_ops = { 616 .listxattr = sockfs_listxattr, 617 .setattr = sockfs_setattr, 618 }; 619 620 /** 621 * sock_alloc - allocate a socket 622 * 623 * Allocate a new inode and socket object. The two are bound together 624 * and initialised. The socket is then returned. If we are out of inodes 625 * NULL is returned. This functions uses GFP_KERNEL internally. 626 */ 627 628 struct socket *sock_alloc(void) 629 { 630 struct inode *inode; 631 struct socket *sock; 632 633 inode = new_inode_pseudo(sock_mnt->mnt_sb); 634 if (!inode) 635 return NULL; 636 637 sock = SOCKET_I(inode); 638 639 inode->i_ino = get_next_ino(); 640 inode->i_mode = S_IFSOCK | S_IRWXUGO; 641 inode->i_uid = current_fsuid(); 642 inode->i_gid = current_fsgid(); 643 inode->i_op = &sockfs_inode_ops; 644 645 return sock; 646 } 647 EXPORT_SYMBOL(sock_alloc); 648 649 static void __sock_release(struct socket *sock, struct inode *inode) 650 { 651 const struct proto_ops *ops = READ_ONCE(sock->ops); 652 653 if (ops) { 654 struct module *owner = ops->owner; 655 656 if (inode) 657 inode_lock(inode); 658 ops->release(sock); 659 sock->sk = NULL; 660 if (inode) 661 inode_unlock(inode); 662 sock->ops = NULL; 663 module_put(owner); 664 } 665 666 if (sock->wq.fasync_list) 667 pr_err("%s: fasync list not empty!\n", __func__); 668 669 if (!sock->file) { 670 iput(SOCK_INODE(sock)); 671 return; 672 } 673 sock->file = NULL; 674 } 675 676 /** 677 * sock_release - close a socket 678 * @sock: socket to close 679 * 680 * The socket is released from the protocol stack if it has a release 681 * callback, and the inode is then released if the socket is bound to 682 * an inode not a file. 683 */ 684 void sock_release(struct socket *sock) 685 { 686 __sock_release(sock, NULL); 687 } 688 EXPORT_SYMBOL(sock_release); 689 690 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 691 { 692 u8 flags = *tx_flags; 693 694 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 695 flags |= SKBTX_HW_TSTAMP; 696 697 /* PTP hardware clocks can provide a free running cycle counter 698 * as a time base for virtual clocks. Tell driver to use the 699 * free running cycle counter for timestamp if socket is bound 700 * to virtual clock. 701 */ 702 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 703 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 704 } 705 706 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 707 flags |= SKBTX_SW_TSTAMP; 708 709 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 710 flags |= SKBTX_SCHED_TSTAMP; 711 712 *tx_flags = flags; 713 } 714 EXPORT_SYMBOL(__sock_tx_timestamp); 715 716 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 717 size_t)); 718 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 719 size_t)); 720 721 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 722 int flags) 723 { 724 trace_sock_send_length(sk, ret, 0); 725 } 726 727 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 728 { 729 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 730 inet_sendmsg, sock, msg, 731 msg_data_left(msg)); 732 BUG_ON(ret == -EIOCBQUEUED); 733 734 if (trace_sock_send_length_enabled()) 735 call_trace_sock_send_length(sock->sk, ret, 0); 736 return ret; 737 } 738 739 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 740 { 741 int err = security_socket_sendmsg(sock, msg, 742 msg_data_left(msg)); 743 744 return err ?: sock_sendmsg_nosec(sock, msg); 745 } 746 747 /** 748 * sock_sendmsg - send a message through @sock 749 * @sock: socket 750 * @msg: message to send 751 * 752 * Sends @msg through @sock, passing through LSM. 753 * Returns the number of bytes sent, or an error code. 754 */ 755 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 756 { 757 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 758 struct sockaddr_storage address; 759 int save_len = msg->msg_namelen; 760 int ret; 761 762 if (msg->msg_name) { 763 memcpy(&address, msg->msg_name, msg->msg_namelen); 764 msg->msg_name = &address; 765 } 766 767 ret = __sock_sendmsg(sock, msg); 768 msg->msg_name = save_addr; 769 msg->msg_namelen = save_len; 770 771 return ret; 772 } 773 EXPORT_SYMBOL(sock_sendmsg); 774 775 /** 776 * kernel_sendmsg - send a message through @sock (kernel-space) 777 * @sock: socket 778 * @msg: message header 779 * @vec: kernel vec 780 * @num: vec array length 781 * @size: total message data size 782 * 783 * Builds the message data with @vec and sends it through @sock. 784 * Returns the number of bytes sent, or an error code. 785 */ 786 787 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 788 struct kvec *vec, size_t num, size_t size) 789 { 790 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 791 return sock_sendmsg(sock, msg); 792 } 793 EXPORT_SYMBOL(kernel_sendmsg); 794 795 /** 796 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 797 * @sk: sock 798 * @msg: message header 799 * @vec: output s/g array 800 * @num: output s/g array length 801 * @size: total message data size 802 * 803 * Builds the message data with @vec and sends it through @sock. 804 * Returns the number of bytes sent, or an error code. 805 * Caller must hold @sk. 806 */ 807 808 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 809 struct kvec *vec, size_t num, size_t size) 810 { 811 struct socket *sock = sk->sk_socket; 812 const struct proto_ops *ops = READ_ONCE(sock->ops); 813 814 if (!ops->sendmsg_locked) 815 return sock_no_sendmsg_locked(sk, msg, size); 816 817 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 818 819 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 820 } 821 EXPORT_SYMBOL(kernel_sendmsg_locked); 822 823 static bool skb_is_err_queue(const struct sk_buff *skb) 824 { 825 /* pkt_type of skbs enqueued on the error queue are set to 826 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 827 * in recvmsg, since skbs received on a local socket will never 828 * have a pkt_type of PACKET_OUTGOING. 829 */ 830 return skb->pkt_type == PACKET_OUTGOING; 831 } 832 833 /* On transmit, software and hardware timestamps are returned independently. 834 * As the two skb clones share the hardware timestamp, which may be updated 835 * before the software timestamp is received, a hardware TX timestamp may be 836 * returned only if there is no software TX timestamp. Ignore false software 837 * timestamps, which may be made in the __sock_recv_timestamp() call when the 838 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 839 * hardware timestamp. 840 */ 841 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 842 { 843 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 844 } 845 846 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 847 { 848 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 849 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 850 struct net_device *orig_dev; 851 ktime_t hwtstamp; 852 853 rcu_read_lock(); 854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 855 if (orig_dev) { 856 *if_index = orig_dev->ifindex; 857 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 858 } else { 859 hwtstamp = shhwtstamps->hwtstamp; 860 } 861 rcu_read_unlock(); 862 863 return hwtstamp; 864 } 865 866 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 867 int if_index) 868 { 869 struct scm_ts_pktinfo ts_pktinfo; 870 struct net_device *orig_dev; 871 872 if (!skb_mac_header_was_set(skb)) 873 return; 874 875 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 876 877 if (!if_index) { 878 rcu_read_lock(); 879 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 880 if (orig_dev) 881 if_index = orig_dev->ifindex; 882 rcu_read_unlock(); 883 } 884 ts_pktinfo.if_index = if_index; 885 886 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 887 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 888 sizeof(ts_pktinfo), &ts_pktinfo); 889 } 890 891 /* 892 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 893 */ 894 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 895 struct sk_buff *skb) 896 { 897 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 898 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 899 struct scm_timestamping_internal tss; 900 int empty = 1, false_tstamp = 0; 901 struct skb_shared_hwtstamps *shhwtstamps = 902 skb_hwtstamps(skb); 903 int if_index; 904 ktime_t hwtstamp; 905 u32 tsflags; 906 907 /* Race occurred between timestamp enabling and packet 908 receiving. Fill in the current time for now. */ 909 if (need_software_tstamp && skb->tstamp == 0) { 910 __net_timestamp(skb); 911 false_tstamp = 1; 912 } 913 914 if (need_software_tstamp) { 915 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 916 if (new_tstamp) { 917 struct __kernel_sock_timeval tv; 918 919 skb_get_new_timestamp(skb, &tv); 920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 921 sizeof(tv), &tv); 922 } else { 923 struct __kernel_old_timeval tv; 924 925 skb_get_timestamp(skb, &tv); 926 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 927 sizeof(tv), &tv); 928 } 929 } else { 930 if (new_tstamp) { 931 struct __kernel_timespec ts; 932 933 skb_get_new_timestampns(skb, &ts); 934 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 935 sizeof(ts), &ts); 936 } else { 937 struct __kernel_old_timespec ts; 938 939 skb_get_timestampns(skb, &ts); 940 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 941 sizeof(ts), &ts); 942 } 943 } 944 } 945 946 memset(&tss, 0, sizeof(tss)); 947 tsflags = READ_ONCE(sk->sk_tsflags); 948 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 949 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 950 skb_is_err_queue(skb) || 951 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 952 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 953 empty = 0; 954 if (shhwtstamps && 955 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 956 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 957 skb_is_err_queue(skb) || 958 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 959 !skb_is_swtx_tstamp(skb, false_tstamp)) { 960 if_index = 0; 961 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 962 hwtstamp = get_timestamp(sk, skb, &if_index); 963 else 964 hwtstamp = shhwtstamps->hwtstamp; 965 966 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 967 hwtstamp = ptp_convert_timestamp(&hwtstamp, 968 READ_ONCE(sk->sk_bind_phc)); 969 970 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 971 empty = 0; 972 973 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 974 !skb_is_err_queue(skb)) 975 put_ts_pktinfo(msg, skb, if_index); 976 } 977 } 978 if (!empty) { 979 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 980 put_cmsg_scm_timestamping64(msg, &tss); 981 else 982 put_cmsg_scm_timestamping(msg, &tss); 983 984 if (skb_is_err_queue(skb) && skb->len && 985 SKB_EXT_ERR(skb)->opt_stats) 986 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 987 skb->len, skb->data); 988 } 989 } 990 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 991 992 #ifdef CONFIG_WIRELESS 993 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 994 struct sk_buff *skb) 995 { 996 int ack; 997 998 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 999 return; 1000 if (!skb->wifi_acked_valid) 1001 return; 1002 1003 ack = skb->wifi_acked; 1004 1005 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1006 } 1007 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1008 #endif 1009 1010 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1011 struct sk_buff *skb) 1012 { 1013 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1014 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1015 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1016 } 1017 1018 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1019 struct sk_buff *skb) 1020 { 1021 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1022 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1023 __u32 mark = skb->mark; 1024 1025 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1026 } 1027 } 1028 1029 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1030 struct sk_buff *skb) 1031 { 1032 sock_recv_timestamp(msg, sk, skb); 1033 sock_recv_drops(msg, sk, skb); 1034 sock_recv_mark(msg, sk, skb); 1035 } 1036 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1037 1038 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1039 size_t, int)); 1040 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1041 size_t, int)); 1042 1043 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1044 { 1045 trace_sock_recv_length(sk, ret, flags); 1046 } 1047 1048 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1049 int flags) 1050 { 1051 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1052 inet6_recvmsg, 1053 inet_recvmsg, sock, msg, 1054 msg_data_left(msg), flags); 1055 if (trace_sock_recv_length_enabled()) 1056 call_trace_sock_recv_length(sock->sk, ret, flags); 1057 return ret; 1058 } 1059 1060 /** 1061 * sock_recvmsg - receive a message from @sock 1062 * @sock: socket 1063 * @msg: message to receive 1064 * @flags: message flags 1065 * 1066 * Receives @msg from @sock, passing through LSM. Returns the total number 1067 * of bytes received, or an error. 1068 */ 1069 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1070 { 1071 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1072 1073 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1074 } 1075 EXPORT_SYMBOL(sock_recvmsg); 1076 1077 /** 1078 * kernel_recvmsg - Receive a message from a socket (kernel space) 1079 * @sock: The socket to receive the message from 1080 * @msg: Received message 1081 * @vec: Input s/g array for message data 1082 * @num: Size of input s/g array 1083 * @size: Number of bytes to read 1084 * @flags: Message flags (MSG_DONTWAIT, etc...) 1085 * 1086 * On return the msg structure contains the scatter/gather array passed in the 1087 * vec argument. The array is modified so that it consists of the unfilled 1088 * portion of the original array. 1089 * 1090 * The returned value is the total number of bytes received, or an error. 1091 */ 1092 1093 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1094 struct kvec *vec, size_t num, size_t size, int flags) 1095 { 1096 msg->msg_control_is_user = false; 1097 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1098 return sock_recvmsg(sock, msg, flags); 1099 } 1100 EXPORT_SYMBOL(kernel_recvmsg); 1101 1102 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1103 struct pipe_inode_info *pipe, size_t len, 1104 unsigned int flags) 1105 { 1106 struct socket *sock = file->private_data; 1107 const struct proto_ops *ops; 1108 1109 ops = READ_ONCE(sock->ops); 1110 if (unlikely(!ops->splice_read)) 1111 return copy_splice_read(file, ppos, pipe, len, flags); 1112 1113 return ops->splice_read(sock, ppos, pipe, len, flags); 1114 } 1115 1116 static void sock_splice_eof(struct file *file) 1117 { 1118 struct socket *sock = file->private_data; 1119 const struct proto_ops *ops; 1120 1121 ops = READ_ONCE(sock->ops); 1122 if (ops->splice_eof) 1123 ops->splice_eof(sock); 1124 } 1125 1126 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1127 { 1128 struct file *file = iocb->ki_filp; 1129 struct socket *sock = file->private_data; 1130 struct msghdr msg = {.msg_iter = *to, 1131 .msg_iocb = iocb}; 1132 ssize_t res; 1133 1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1135 msg.msg_flags = MSG_DONTWAIT; 1136 1137 if (iocb->ki_pos != 0) 1138 return -ESPIPE; 1139 1140 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1141 return 0; 1142 1143 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1144 *to = msg.msg_iter; 1145 return res; 1146 } 1147 1148 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1149 { 1150 struct file *file = iocb->ki_filp; 1151 struct socket *sock = file->private_data; 1152 struct msghdr msg = {.msg_iter = *from, 1153 .msg_iocb = iocb}; 1154 ssize_t res; 1155 1156 if (iocb->ki_pos != 0) 1157 return -ESPIPE; 1158 1159 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1160 msg.msg_flags = MSG_DONTWAIT; 1161 1162 if (sock->type == SOCK_SEQPACKET) 1163 msg.msg_flags |= MSG_EOR; 1164 1165 res = __sock_sendmsg(sock, &msg); 1166 *from = msg.msg_iter; 1167 return res; 1168 } 1169 1170 /* 1171 * Atomic setting of ioctl hooks to avoid race 1172 * with module unload. 1173 */ 1174 1175 static DEFINE_MUTEX(br_ioctl_mutex); 1176 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1177 unsigned int cmd, struct ifreq *ifr, 1178 void __user *uarg); 1179 1180 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1181 unsigned int cmd, struct ifreq *ifr, 1182 void __user *uarg)) 1183 { 1184 mutex_lock(&br_ioctl_mutex); 1185 br_ioctl_hook = hook; 1186 mutex_unlock(&br_ioctl_mutex); 1187 } 1188 EXPORT_SYMBOL(brioctl_set); 1189 1190 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1191 struct ifreq *ifr, void __user *uarg) 1192 { 1193 int err = -ENOPKG; 1194 1195 if (!br_ioctl_hook) 1196 request_module("bridge"); 1197 1198 mutex_lock(&br_ioctl_mutex); 1199 if (br_ioctl_hook) 1200 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1201 mutex_unlock(&br_ioctl_mutex); 1202 1203 return err; 1204 } 1205 1206 static DEFINE_MUTEX(vlan_ioctl_mutex); 1207 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1208 1209 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1210 { 1211 mutex_lock(&vlan_ioctl_mutex); 1212 vlan_ioctl_hook = hook; 1213 mutex_unlock(&vlan_ioctl_mutex); 1214 } 1215 EXPORT_SYMBOL(vlan_ioctl_set); 1216 1217 static long sock_do_ioctl(struct net *net, struct socket *sock, 1218 unsigned int cmd, unsigned long arg) 1219 { 1220 const struct proto_ops *ops = READ_ONCE(sock->ops); 1221 struct ifreq ifr; 1222 bool need_copyout; 1223 int err; 1224 void __user *argp = (void __user *)arg; 1225 void __user *data; 1226 1227 err = ops->ioctl(sock, cmd, arg); 1228 1229 /* 1230 * If this ioctl is unknown try to hand it down 1231 * to the NIC driver. 1232 */ 1233 if (err != -ENOIOCTLCMD) 1234 return err; 1235 1236 if (!is_socket_ioctl_cmd(cmd)) 1237 return -ENOTTY; 1238 1239 if (get_user_ifreq(&ifr, &data, argp)) 1240 return -EFAULT; 1241 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1242 if (!err && need_copyout) 1243 if (put_user_ifreq(&ifr, argp)) 1244 return -EFAULT; 1245 1246 return err; 1247 } 1248 1249 /* 1250 * With an ioctl, arg may well be a user mode pointer, but we don't know 1251 * what to do with it - that's up to the protocol still. 1252 */ 1253 1254 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1255 { 1256 const struct proto_ops *ops; 1257 struct socket *sock; 1258 struct sock *sk; 1259 void __user *argp = (void __user *)arg; 1260 int pid, err; 1261 struct net *net; 1262 1263 sock = file->private_data; 1264 ops = READ_ONCE(sock->ops); 1265 sk = sock->sk; 1266 net = sock_net(sk); 1267 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1268 struct ifreq ifr; 1269 void __user *data; 1270 bool need_copyout; 1271 if (get_user_ifreq(&ifr, &data, argp)) 1272 return -EFAULT; 1273 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1274 if (!err && need_copyout) 1275 if (put_user_ifreq(&ifr, argp)) 1276 return -EFAULT; 1277 } else 1278 #ifdef CONFIG_WEXT_CORE 1279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1280 err = wext_handle_ioctl(net, cmd, argp); 1281 } else 1282 #endif 1283 switch (cmd) { 1284 case FIOSETOWN: 1285 case SIOCSPGRP: 1286 err = -EFAULT; 1287 if (get_user(pid, (int __user *)argp)) 1288 break; 1289 err = f_setown(sock->file, pid, 1); 1290 break; 1291 case FIOGETOWN: 1292 case SIOCGPGRP: 1293 err = put_user(f_getown(sock->file), 1294 (int __user *)argp); 1295 break; 1296 case SIOCGIFBR: 1297 case SIOCSIFBR: 1298 case SIOCBRADDBR: 1299 case SIOCBRDELBR: 1300 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1301 break; 1302 case SIOCGIFVLAN: 1303 case SIOCSIFVLAN: 1304 err = -ENOPKG; 1305 if (!vlan_ioctl_hook) 1306 request_module("8021q"); 1307 1308 mutex_lock(&vlan_ioctl_mutex); 1309 if (vlan_ioctl_hook) 1310 err = vlan_ioctl_hook(net, argp); 1311 mutex_unlock(&vlan_ioctl_mutex); 1312 break; 1313 case SIOCGSKNS: 1314 err = -EPERM; 1315 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1316 break; 1317 1318 err = open_related_ns(&net->ns, get_net_ns); 1319 break; 1320 case SIOCGSTAMP_OLD: 1321 case SIOCGSTAMPNS_OLD: 1322 if (!ops->gettstamp) { 1323 err = -ENOIOCTLCMD; 1324 break; 1325 } 1326 err = ops->gettstamp(sock, argp, 1327 cmd == SIOCGSTAMP_OLD, 1328 !IS_ENABLED(CONFIG_64BIT)); 1329 break; 1330 case SIOCGSTAMP_NEW: 1331 case SIOCGSTAMPNS_NEW: 1332 if (!ops->gettstamp) { 1333 err = -ENOIOCTLCMD; 1334 break; 1335 } 1336 err = ops->gettstamp(sock, argp, 1337 cmd == SIOCGSTAMP_NEW, 1338 false); 1339 break; 1340 1341 case SIOCGIFCONF: 1342 err = dev_ifconf(net, argp); 1343 break; 1344 1345 default: 1346 err = sock_do_ioctl(net, sock, cmd, arg); 1347 break; 1348 } 1349 return err; 1350 } 1351 1352 /** 1353 * sock_create_lite - creates a socket 1354 * @family: protocol family (AF_INET, ...) 1355 * @type: communication type (SOCK_STREAM, ...) 1356 * @protocol: protocol (0, ...) 1357 * @res: new socket 1358 * 1359 * Creates a new socket and assigns it to @res, passing through LSM. 1360 * The new socket initialization is not complete, see kernel_accept(). 1361 * Returns 0 or an error. On failure @res is set to %NULL. 1362 * This function internally uses GFP_KERNEL. 1363 */ 1364 1365 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1366 { 1367 int err; 1368 struct socket *sock = NULL; 1369 1370 err = security_socket_create(family, type, protocol, 1); 1371 if (err) 1372 goto out; 1373 1374 sock = sock_alloc(); 1375 if (!sock) { 1376 err = -ENOMEM; 1377 goto out; 1378 } 1379 1380 sock->type = type; 1381 err = security_socket_post_create(sock, family, type, protocol, 1); 1382 if (err) 1383 goto out_release; 1384 1385 out: 1386 *res = sock; 1387 return err; 1388 out_release: 1389 sock_release(sock); 1390 sock = NULL; 1391 goto out; 1392 } 1393 EXPORT_SYMBOL(sock_create_lite); 1394 1395 /* No kernel lock held - perfect */ 1396 static __poll_t sock_poll(struct file *file, poll_table *wait) 1397 { 1398 struct socket *sock = file->private_data; 1399 const struct proto_ops *ops = READ_ONCE(sock->ops); 1400 __poll_t events = poll_requested_events(wait), flag = 0; 1401 1402 if (!ops->poll) 1403 return 0; 1404 1405 if (sk_can_busy_loop(sock->sk)) { 1406 /* poll once if requested by the syscall */ 1407 if (events & POLL_BUSY_LOOP) 1408 sk_busy_loop(sock->sk, 1); 1409 1410 /* if this socket can poll_ll, tell the system call */ 1411 flag = POLL_BUSY_LOOP; 1412 } 1413 1414 return ops->poll(file, sock, wait) | flag; 1415 } 1416 1417 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1418 { 1419 struct socket *sock = file->private_data; 1420 1421 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1422 } 1423 1424 static int sock_close(struct inode *inode, struct file *filp) 1425 { 1426 __sock_release(SOCKET_I(inode), inode); 1427 return 0; 1428 } 1429 1430 /* 1431 * Update the socket async list 1432 * 1433 * Fasync_list locking strategy. 1434 * 1435 * 1. fasync_list is modified only under process context socket lock 1436 * i.e. under semaphore. 1437 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1438 * or under socket lock 1439 */ 1440 1441 static int sock_fasync(int fd, struct file *filp, int on) 1442 { 1443 struct socket *sock = filp->private_data; 1444 struct sock *sk = sock->sk; 1445 struct socket_wq *wq = &sock->wq; 1446 1447 if (sk == NULL) 1448 return -EINVAL; 1449 1450 lock_sock(sk); 1451 fasync_helper(fd, filp, on, &wq->fasync_list); 1452 1453 if (!wq->fasync_list) 1454 sock_reset_flag(sk, SOCK_FASYNC); 1455 else 1456 sock_set_flag(sk, SOCK_FASYNC); 1457 1458 release_sock(sk); 1459 return 0; 1460 } 1461 1462 /* This function may be called only under rcu_lock */ 1463 1464 int sock_wake_async(struct socket_wq *wq, int how, int band) 1465 { 1466 if (!wq || !wq->fasync_list) 1467 return -1; 1468 1469 switch (how) { 1470 case SOCK_WAKE_WAITD: 1471 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1472 break; 1473 goto call_kill; 1474 case SOCK_WAKE_SPACE: 1475 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1476 break; 1477 fallthrough; 1478 case SOCK_WAKE_IO: 1479 call_kill: 1480 kill_fasync(&wq->fasync_list, SIGIO, band); 1481 break; 1482 case SOCK_WAKE_URG: 1483 kill_fasync(&wq->fasync_list, SIGURG, band); 1484 } 1485 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(sock_wake_async); 1489 1490 /** 1491 * __sock_create - creates a socket 1492 * @net: net namespace 1493 * @family: protocol family (AF_INET, ...) 1494 * @type: communication type (SOCK_STREAM, ...) 1495 * @protocol: protocol (0, ...) 1496 * @res: new socket 1497 * @kern: boolean for kernel space sockets 1498 * 1499 * Creates a new socket and assigns it to @res, passing through LSM. 1500 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1501 * be set to true if the socket resides in kernel space. 1502 * This function internally uses GFP_KERNEL. 1503 */ 1504 1505 int __sock_create(struct net *net, int family, int type, int protocol, 1506 struct socket **res, int kern) 1507 { 1508 int err; 1509 struct socket *sock; 1510 const struct net_proto_family *pf; 1511 1512 /* 1513 * Check protocol is in range 1514 */ 1515 if (family < 0 || family >= NPROTO) 1516 return -EAFNOSUPPORT; 1517 if (type < 0 || type >= SOCK_MAX) 1518 return -EINVAL; 1519 1520 /* Compatibility. 1521 1522 This uglymoron is moved from INET layer to here to avoid 1523 deadlock in module load. 1524 */ 1525 if (family == PF_INET && type == SOCK_PACKET) { 1526 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1527 current->comm); 1528 family = PF_PACKET; 1529 } 1530 1531 err = security_socket_create(family, type, protocol, kern); 1532 if (err) 1533 return err; 1534 1535 /* 1536 * Allocate the socket and allow the family to set things up. if 1537 * the protocol is 0, the family is instructed to select an appropriate 1538 * default. 1539 */ 1540 sock = sock_alloc(); 1541 if (!sock) { 1542 net_warn_ratelimited("socket: no more sockets\n"); 1543 return -ENFILE; /* Not exactly a match, but its the 1544 closest posix thing */ 1545 } 1546 1547 sock->type = type; 1548 1549 #ifdef CONFIG_MODULES 1550 /* Attempt to load a protocol module if the find failed. 1551 * 1552 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1553 * requested real, full-featured networking support upon configuration. 1554 * Otherwise module support will break! 1555 */ 1556 if (rcu_access_pointer(net_families[family]) == NULL) 1557 request_module("net-pf-%d", family); 1558 #endif 1559 1560 rcu_read_lock(); 1561 pf = rcu_dereference(net_families[family]); 1562 err = -EAFNOSUPPORT; 1563 if (!pf) 1564 goto out_release; 1565 1566 /* 1567 * We will call the ->create function, that possibly is in a loadable 1568 * module, so we have to bump that loadable module refcnt first. 1569 */ 1570 if (!try_module_get(pf->owner)) 1571 goto out_release; 1572 1573 /* Now protected by module ref count */ 1574 rcu_read_unlock(); 1575 1576 err = pf->create(net, sock, protocol, kern); 1577 if (err < 0) 1578 goto out_module_put; 1579 1580 /* 1581 * Now to bump the refcnt of the [loadable] module that owns this 1582 * socket at sock_release time we decrement its refcnt. 1583 */ 1584 if (!try_module_get(sock->ops->owner)) 1585 goto out_module_busy; 1586 1587 /* 1588 * Now that we're done with the ->create function, the [loadable] 1589 * module can have its refcnt decremented 1590 */ 1591 module_put(pf->owner); 1592 err = security_socket_post_create(sock, family, type, protocol, kern); 1593 if (err) 1594 goto out_sock_release; 1595 *res = sock; 1596 1597 return 0; 1598 1599 out_module_busy: 1600 err = -EAFNOSUPPORT; 1601 out_module_put: 1602 sock->ops = NULL; 1603 module_put(pf->owner); 1604 out_sock_release: 1605 sock_release(sock); 1606 return err; 1607 1608 out_release: 1609 rcu_read_unlock(); 1610 goto out_sock_release; 1611 } 1612 EXPORT_SYMBOL(__sock_create); 1613 1614 /** 1615 * sock_create - creates a socket 1616 * @family: protocol family (AF_INET, ...) 1617 * @type: communication type (SOCK_STREAM, ...) 1618 * @protocol: protocol (0, ...) 1619 * @res: new socket 1620 * 1621 * A wrapper around __sock_create(). 1622 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1623 */ 1624 1625 int sock_create(int family, int type, int protocol, struct socket **res) 1626 { 1627 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1628 } 1629 EXPORT_SYMBOL(sock_create); 1630 1631 /** 1632 * sock_create_kern - creates a socket (kernel space) 1633 * @net: net namespace 1634 * @family: protocol family (AF_INET, ...) 1635 * @type: communication type (SOCK_STREAM, ...) 1636 * @protocol: protocol (0, ...) 1637 * @res: new socket 1638 * 1639 * A wrapper around __sock_create(). 1640 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1641 */ 1642 1643 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1644 { 1645 return __sock_create(net, family, type, protocol, res, 1); 1646 } 1647 EXPORT_SYMBOL(sock_create_kern); 1648 1649 static struct socket *__sys_socket_create(int family, int type, int protocol) 1650 { 1651 struct socket *sock; 1652 int retval; 1653 1654 /* Check the SOCK_* constants for consistency. */ 1655 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1656 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1657 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1658 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1659 1660 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1661 return ERR_PTR(-EINVAL); 1662 type &= SOCK_TYPE_MASK; 1663 1664 retval = sock_create(family, type, protocol, &sock); 1665 if (retval < 0) 1666 return ERR_PTR(retval); 1667 1668 return sock; 1669 } 1670 1671 struct file *__sys_socket_file(int family, int type, int protocol) 1672 { 1673 struct socket *sock; 1674 int flags; 1675 1676 sock = __sys_socket_create(family, type, protocol); 1677 if (IS_ERR(sock)) 1678 return ERR_CAST(sock); 1679 1680 flags = type & ~SOCK_TYPE_MASK; 1681 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1682 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1683 1684 return sock_alloc_file(sock, flags, NULL); 1685 } 1686 1687 /* A hook for bpf progs to attach to and update socket protocol. 1688 * 1689 * A static noinline declaration here could cause the compiler to 1690 * optimize away the function. A global noinline declaration will 1691 * keep the definition, but may optimize away the callsite. 1692 * Therefore, __weak is needed to ensure that the call is still 1693 * emitted, by telling the compiler that we don't know what the 1694 * function might eventually be. 1695 */ 1696 1697 __bpf_hook_start(); 1698 1699 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1700 { 1701 return protocol; 1702 } 1703 1704 __bpf_hook_end(); 1705 1706 int __sys_socket(int family, int type, int protocol) 1707 { 1708 struct socket *sock; 1709 int flags; 1710 1711 sock = __sys_socket_create(family, type, 1712 update_socket_protocol(family, type, protocol)); 1713 if (IS_ERR(sock)) 1714 return PTR_ERR(sock); 1715 1716 flags = type & ~SOCK_TYPE_MASK; 1717 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1718 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1719 1720 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1721 } 1722 1723 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1724 { 1725 return __sys_socket(family, type, protocol); 1726 } 1727 1728 /* 1729 * Create a pair of connected sockets. 1730 */ 1731 1732 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1733 { 1734 struct socket *sock1, *sock2; 1735 int fd1, fd2, err; 1736 struct file *newfile1, *newfile2; 1737 int flags; 1738 1739 flags = type & ~SOCK_TYPE_MASK; 1740 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1741 return -EINVAL; 1742 type &= SOCK_TYPE_MASK; 1743 1744 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1745 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1746 1747 /* 1748 * reserve descriptors and make sure we won't fail 1749 * to return them to userland. 1750 */ 1751 fd1 = get_unused_fd_flags(flags); 1752 if (unlikely(fd1 < 0)) 1753 return fd1; 1754 1755 fd2 = get_unused_fd_flags(flags); 1756 if (unlikely(fd2 < 0)) { 1757 put_unused_fd(fd1); 1758 return fd2; 1759 } 1760 1761 err = put_user(fd1, &usockvec[0]); 1762 if (err) 1763 goto out; 1764 1765 err = put_user(fd2, &usockvec[1]); 1766 if (err) 1767 goto out; 1768 1769 /* 1770 * Obtain the first socket and check if the underlying protocol 1771 * supports the socketpair call. 1772 */ 1773 1774 err = sock_create(family, type, protocol, &sock1); 1775 if (unlikely(err < 0)) 1776 goto out; 1777 1778 err = sock_create(family, type, protocol, &sock2); 1779 if (unlikely(err < 0)) { 1780 sock_release(sock1); 1781 goto out; 1782 } 1783 1784 err = security_socket_socketpair(sock1, sock2); 1785 if (unlikely(err)) { 1786 sock_release(sock2); 1787 sock_release(sock1); 1788 goto out; 1789 } 1790 1791 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1792 if (unlikely(err < 0)) { 1793 sock_release(sock2); 1794 sock_release(sock1); 1795 goto out; 1796 } 1797 1798 newfile1 = sock_alloc_file(sock1, flags, NULL); 1799 if (IS_ERR(newfile1)) { 1800 err = PTR_ERR(newfile1); 1801 sock_release(sock2); 1802 goto out; 1803 } 1804 1805 newfile2 = sock_alloc_file(sock2, flags, NULL); 1806 if (IS_ERR(newfile2)) { 1807 err = PTR_ERR(newfile2); 1808 fput(newfile1); 1809 goto out; 1810 } 1811 1812 audit_fd_pair(fd1, fd2); 1813 1814 fd_install(fd1, newfile1); 1815 fd_install(fd2, newfile2); 1816 return 0; 1817 1818 out: 1819 put_unused_fd(fd2); 1820 put_unused_fd(fd1); 1821 return err; 1822 } 1823 1824 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1825 int __user *, usockvec) 1826 { 1827 return __sys_socketpair(family, type, protocol, usockvec); 1828 } 1829 1830 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1831 int addrlen) 1832 { 1833 int err; 1834 1835 err = security_socket_bind(sock, (struct sockaddr *)address, 1836 addrlen); 1837 if (!err) 1838 err = READ_ONCE(sock->ops)->bind(sock, 1839 (struct sockaddr *)address, 1840 addrlen); 1841 return err; 1842 } 1843 1844 /* 1845 * Bind a name to a socket. Nothing much to do here since it's 1846 * the protocol's responsibility to handle the local address. 1847 * 1848 * We move the socket address to kernel space before we call 1849 * the protocol layer (having also checked the address is ok). 1850 */ 1851 1852 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1853 { 1854 struct socket *sock; 1855 struct sockaddr_storage address; 1856 int err, fput_needed; 1857 1858 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1859 if (sock) { 1860 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1861 if (!err) 1862 err = __sys_bind_socket(sock, &address, addrlen); 1863 fput_light(sock->file, fput_needed); 1864 } 1865 return err; 1866 } 1867 1868 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1869 { 1870 return __sys_bind(fd, umyaddr, addrlen); 1871 } 1872 1873 /* 1874 * Perform a listen. Basically, we allow the protocol to do anything 1875 * necessary for a listen, and if that works, we mark the socket as 1876 * ready for listening. 1877 */ 1878 int __sys_listen_socket(struct socket *sock, int backlog) 1879 { 1880 int somaxconn, err; 1881 1882 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1883 if ((unsigned int)backlog > somaxconn) 1884 backlog = somaxconn; 1885 1886 err = security_socket_listen(sock, backlog); 1887 if (!err) 1888 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1889 return err; 1890 } 1891 1892 int __sys_listen(int fd, int backlog) 1893 { 1894 struct socket *sock; 1895 int err, fput_needed; 1896 1897 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1898 if (sock) { 1899 err = __sys_listen_socket(sock, backlog); 1900 fput_light(sock->file, fput_needed); 1901 } 1902 return err; 1903 } 1904 1905 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1906 { 1907 return __sys_listen(fd, backlog); 1908 } 1909 1910 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1911 struct sockaddr __user *upeer_sockaddr, 1912 int __user *upeer_addrlen, int flags) 1913 { 1914 struct socket *sock, *newsock; 1915 struct file *newfile; 1916 int err, len; 1917 struct sockaddr_storage address; 1918 const struct proto_ops *ops; 1919 1920 sock = sock_from_file(file); 1921 if (!sock) 1922 return ERR_PTR(-ENOTSOCK); 1923 1924 newsock = sock_alloc(); 1925 if (!newsock) 1926 return ERR_PTR(-ENFILE); 1927 ops = READ_ONCE(sock->ops); 1928 1929 newsock->type = sock->type; 1930 newsock->ops = ops; 1931 1932 /* 1933 * We don't need try_module_get here, as the listening socket (sock) 1934 * has the protocol module (sock->ops->owner) held. 1935 */ 1936 __module_get(ops->owner); 1937 1938 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1939 if (IS_ERR(newfile)) 1940 return newfile; 1941 1942 err = security_socket_accept(sock, newsock); 1943 if (err) 1944 goto out_fd; 1945 1946 arg->flags |= sock->file->f_flags; 1947 err = ops->accept(sock, newsock, arg); 1948 if (err < 0) 1949 goto out_fd; 1950 1951 if (upeer_sockaddr) { 1952 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1953 if (len < 0) { 1954 err = -ECONNABORTED; 1955 goto out_fd; 1956 } 1957 err = move_addr_to_user(&address, 1958 len, upeer_sockaddr, upeer_addrlen); 1959 if (err < 0) 1960 goto out_fd; 1961 } 1962 1963 /* File flags are not inherited via accept() unlike another OSes. */ 1964 return newfile; 1965 out_fd: 1966 fput(newfile); 1967 return ERR_PTR(err); 1968 } 1969 1970 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1971 int __user *upeer_addrlen, int flags) 1972 { 1973 struct proto_accept_arg arg = { }; 1974 struct file *newfile; 1975 int newfd; 1976 1977 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1978 return -EINVAL; 1979 1980 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1981 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1982 1983 newfd = get_unused_fd_flags(flags); 1984 if (unlikely(newfd < 0)) 1985 return newfd; 1986 1987 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1988 flags); 1989 if (IS_ERR(newfile)) { 1990 put_unused_fd(newfd); 1991 return PTR_ERR(newfile); 1992 } 1993 fd_install(newfd, newfile); 1994 return newfd; 1995 } 1996 1997 /* 1998 * For accept, we attempt to create a new socket, set up the link 1999 * with the client, wake up the client, then return the new 2000 * connected fd. We collect the address of the connector in kernel 2001 * space and move it to user at the very end. This is unclean because 2002 * we open the socket then return an error. 2003 * 2004 * 1003.1g adds the ability to recvmsg() to query connection pending 2005 * status to recvmsg. We need to add that support in a way thats 2006 * clean when we restructure accept also. 2007 */ 2008 2009 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2010 int __user *upeer_addrlen, int flags) 2011 { 2012 int ret = -EBADF; 2013 struct fd f; 2014 2015 f = fdget(fd); 2016 if (fd_file(f)) { 2017 ret = __sys_accept4_file(fd_file(f), upeer_sockaddr, 2018 upeer_addrlen, flags); 2019 fdput(f); 2020 } 2021 2022 return ret; 2023 } 2024 2025 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2026 int __user *, upeer_addrlen, int, flags) 2027 { 2028 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2029 } 2030 2031 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2032 int __user *, upeer_addrlen) 2033 { 2034 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2035 } 2036 2037 /* 2038 * Attempt to connect to a socket with the server address. The address 2039 * is in user space so we verify it is OK and move it to kernel space. 2040 * 2041 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2042 * break bindings 2043 * 2044 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2045 * other SEQPACKET protocols that take time to connect() as it doesn't 2046 * include the -EINPROGRESS status for such sockets. 2047 */ 2048 2049 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2050 int addrlen, int file_flags) 2051 { 2052 struct socket *sock; 2053 int err; 2054 2055 sock = sock_from_file(file); 2056 if (!sock) { 2057 err = -ENOTSOCK; 2058 goto out; 2059 } 2060 2061 err = 2062 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2063 if (err) 2064 goto out; 2065 2066 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2067 addrlen, sock->file->f_flags | file_flags); 2068 out: 2069 return err; 2070 } 2071 2072 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2073 { 2074 int ret = -EBADF; 2075 struct fd f; 2076 2077 f = fdget(fd); 2078 if (fd_file(f)) { 2079 struct sockaddr_storage address; 2080 2081 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2082 if (!ret) 2083 ret = __sys_connect_file(fd_file(f), &address, addrlen, 0); 2084 fdput(f); 2085 } 2086 2087 return ret; 2088 } 2089 2090 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2091 int, addrlen) 2092 { 2093 return __sys_connect(fd, uservaddr, addrlen); 2094 } 2095 2096 /* 2097 * Get the local address ('name') of a socket object. Move the obtained 2098 * name to user space. 2099 */ 2100 2101 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2102 int __user *usockaddr_len) 2103 { 2104 struct socket *sock; 2105 struct sockaddr_storage address; 2106 int err, fput_needed; 2107 2108 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2109 if (!sock) 2110 goto out; 2111 2112 err = security_socket_getsockname(sock); 2113 if (err) 2114 goto out_put; 2115 2116 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2117 if (err < 0) 2118 goto out_put; 2119 /* "err" is actually length in this case */ 2120 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2121 2122 out_put: 2123 fput_light(sock->file, fput_needed); 2124 out: 2125 return err; 2126 } 2127 2128 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2129 int __user *, usockaddr_len) 2130 { 2131 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2132 } 2133 2134 /* 2135 * Get the remote address ('name') of a socket object. Move the obtained 2136 * name to user space. 2137 */ 2138 2139 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2140 int __user *usockaddr_len) 2141 { 2142 struct socket *sock; 2143 struct sockaddr_storage address; 2144 int err, fput_needed; 2145 2146 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2147 if (sock != NULL) { 2148 const struct proto_ops *ops = READ_ONCE(sock->ops); 2149 2150 err = security_socket_getpeername(sock); 2151 if (err) { 2152 fput_light(sock->file, fput_needed); 2153 return err; 2154 } 2155 2156 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2157 if (err >= 0) 2158 /* "err" is actually length in this case */ 2159 err = move_addr_to_user(&address, err, usockaddr, 2160 usockaddr_len); 2161 fput_light(sock->file, fput_needed); 2162 } 2163 return err; 2164 } 2165 2166 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2167 int __user *, usockaddr_len) 2168 { 2169 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2170 } 2171 2172 /* 2173 * Send a datagram to a given address. We move the address into kernel 2174 * space and check the user space data area is readable before invoking 2175 * the protocol. 2176 */ 2177 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2178 struct sockaddr __user *addr, int addr_len) 2179 { 2180 struct socket *sock; 2181 struct sockaddr_storage address; 2182 int err; 2183 struct msghdr msg; 2184 int fput_needed; 2185 2186 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2187 if (unlikely(err)) 2188 return err; 2189 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2190 if (!sock) 2191 goto out; 2192 2193 msg.msg_name = NULL; 2194 msg.msg_control = NULL; 2195 msg.msg_controllen = 0; 2196 msg.msg_namelen = 0; 2197 msg.msg_ubuf = NULL; 2198 if (addr) { 2199 err = move_addr_to_kernel(addr, addr_len, &address); 2200 if (err < 0) 2201 goto out_put; 2202 msg.msg_name = (struct sockaddr *)&address; 2203 msg.msg_namelen = addr_len; 2204 } 2205 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2206 if (sock->file->f_flags & O_NONBLOCK) 2207 flags |= MSG_DONTWAIT; 2208 msg.msg_flags = flags; 2209 err = __sock_sendmsg(sock, &msg); 2210 2211 out_put: 2212 fput_light(sock->file, fput_needed); 2213 out: 2214 return err; 2215 } 2216 2217 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2218 unsigned int, flags, struct sockaddr __user *, addr, 2219 int, addr_len) 2220 { 2221 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2222 } 2223 2224 /* 2225 * Send a datagram down a socket. 2226 */ 2227 2228 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2229 unsigned int, flags) 2230 { 2231 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2232 } 2233 2234 /* 2235 * Receive a frame from the socket and optionally record the address of the 2236 * sender. We verify the buffers are writable and if needed move the 2237 * sender address from kernel to user space. 2238 */ 2239 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2240 struct sockaddr __user *addr, int __user *addr_len) 2241 { 2242 struct sockaddr_storage address; 2243 struct msghdr msg = { 2244 /* Save some cycles and don't copy the address if not needed */ 2245 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2246 }; 2247 struct socket *sock; 2248 int err, err2; 2249 int fput_needed; 2250 2251 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2252 if (unlikely(err)) 2253 return err; 2254 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2255 if (!sock) 2256 goto out; 2257 2258 if (sock->file->f_flags & O_NONBLOCK) 2259 flags |= MSG_DONTWAIT; 2260 err = sock_recvmsg(sock, &msg, flags); 2261 2262 if (err >= 0 && addr != NULL) { 2263 err2 = move_addr_to_user(&address, 2264 msg.msg_namelen, addr, addr_len); 2265 if (err2 < 0) 2266 err = err2; 2267 } 2268 2269 fput_light(sock->file, fput_needed); 2270 out: 2271 return err; 2272 } 2273 2274 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2275 unsigned int, flags, struct sockaddr __user *, addr, 2276 int __user *, addr_len) 2277 { 2278 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2279 } 2280 2281 /* 2282 * Receive a datagram from a socket. 2283 */ 2284 2285 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2286 unsigned int, flags) 2287 { 2288 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2289 } 2290 2291 static bool sock_use_custom_sol_socket(const struct socket *sock) 2292 { 2293 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2294 } 2295 2296 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2297 int optname, sockptr_t optval, int optlen) 2298 { 2299 const struct proto_ops *ops; 2300 char *kernel_optval = NULL; 2301 int err; 2302 2303 if (optlen < 0) 2304 return -EINVAL; 2305 2306 err = security_socket_setsockopt(sock, level, optname); 2307 if (err) 2308 goto out_put; 2309 2310 if (!compat) 2311 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2312 optval, &optlen, 2313 &kernel_optval); 2314 if (err < 0) 2315 goto out_put; 2316 if (err > 0) { 2317 err = 0; 2318 goto out_put; 2319 } 2320 2321 if (kernel_optval) 2322 optval = KERNEL_SOCKPTR(kernel_optval); 2323 ops = READ_ONCE(sock->ops); 2324 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2325 err = sock_setsockopt(sock, level, optname, optval, optlen); 2326 else if (unlikely(!ops->setsockopt)) 2327 err = -EOPNOTSUPP; 2328 else 2329 err = ops->setsockopt(sock, level, optname, optval, 2330 optlen); 2331 kfree(kernel_optval); 2332 out_put: 2333 return err; 2334 } 2335 EXPORT_SYMBOL(do_sock_setsockopt); 2336 2337 /* Set a socket option. Because we don't know the option lengths we have 2338 * to pass the user mode parameter for the protocols to sort out. 2339 */ 2340 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2341 int optlen) 2342 { 2343 sockptr_t optval = USER_SOCKPTR(user_optval); 2344 bool compat = in_compat_syscall(); 2345 int err, fput_needed; 2346 struct socket *sock; 2347 2348 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2349 if (!sock) 2350 return err; 2351 2352 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2353 2354 fput_light(sock->file, fput_needed); 2355 return err; 2356 } 2357 2358 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2359 char __user *, optval, int, optlen) 2360 { 2361 return __sys_setsockopt(fd, level, optname, optval, optlen); 2362 } 2363 2364 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2365 int optname)); 2366 2367 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2368 int optname, sockptr_t optval, sockptr_t optlen) 2369 { 2370 int max_optlen __maybe_unused = 0; 2371 const struct proto_ops *ops; 2372 int err; 2373 2374 err = security_socket_getsockopt(sock, level, optname); 2375 if (err) 2376 return err; 2377 2378 if (!compat) 2379 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2380 2381 ops = READ_ONCE(sock->ops); 2382 if (level == SOL_SOCKET) { 2383 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2384 } else if (unlikely(!ops->getsockopt)) { 2385 err = -EOPNOTSUPP; 2386 } else { 2387 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2388 "Invalid argument type")) 2389 return -EOPNOTSUPP; 2390 2391 err = ops->getsockopt(sock, level, optname, optval.user, 2392 optlen.user); 2393 } 2394 2395 if (!compat) 2396 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2397 optval, optlen, max_optlen, 2398 err); 2399 2400 return err; 2401 } 2402 EXPORT_SYMBOL(do_sock_getsockopt); 2403 2404 /* 2405 * Get a socket option. Because we don't know the option lengths we have 2406 * to pass a user mode parameter for the protocols to sort out. 2407 */ 2408 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2409 int __user *optlen) 2410 { 2411 int err, fput_needed; 2412 struct socket *sock; 2413 bool compat; 2414 2415 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2416 if (!sock) 2417 return err; 2418 2419 compat = in_compat_syscall(); 2420 err = do_sock_getsockopt(sock, compat, level, optname, 2421 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2422 2423 fput_light(sock->file, fput_needed); 2424 return err; 2425 } 2426 2427 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2428 char __user *, optval, int __user *, optlen) 2429 { 2430 return __sys_getsockopt(fd, level, optname, optval, optlen); 2431 } 2432 2433 /* 2434 * Shutdown a socket. 2435 */ 2436 2437 int __sys_shutdown_sock(struct socket *sock, int how) 2438 { 2439 int err; 2440 2441 err = security_socket_shutdown(sock, how); 2442 if (!err) 2443 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2444 2445 return err; 2446 } 2447 2448 int __sys_shutdown(int fd, int how) 2449 { 2450 int err, fput_needed; 2451 struct socket *sock; 2452 2453 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2454 if (sock != NULL) { 2455 err = __sys_shutdown_sock(sock, how); 2456 fput_light(sock->file, fput_needed); 2457 } 2458 return err; 2459 } 2460 2461 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2462 { 2463 return __sys_shutdown(fd, how); 2464 } 2465 2466 /* A couple of helpful macros for getting the address of the 32/64 bit 2467 * fields which are the same type (int / unsigned) on our platforms. 2468 */ 2469 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2470 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2471 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2472 2473 struct used_address { 2474 struct sockaddr_storage name; 2475 unsigned int name_len; 2476 }; 2477 2478 int __copy_msghdr(struct msghdr *kmsg, 2479 struct user_msghdr *msg, 2480 struct sockaddr __user **save_addr) 2481 { 2482 ssize_t err; 2483 2484 kmsg->msg_control_is_user = true; 2485 kmsg->msg_get_inq = 0; 2486 kmsg->msg_control_user = msg->msg_control; 2487 kmsg->msg_controllen = msg->msg_controllen; 2488 kmsg->msg_flags = msg->msg_flags; 2489 2490 kmsg->msg_namelen = msg->msg_namelen; 2491 if (!msg->msg_name) 2492 kmsg->msg_namelen = 0; 2493 2494 if (kmsg->msg_namelen < 0) 2495 return -EINVAL; 2496 2497 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2498 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2499 2500 if (save_addr) 2501 *save_addr = msg->msg_name; 2502 2503 if (msg->msg_name && kmsg->msg_namelen) { 2504 if (!save_addr) { 2505 err = move_addr_to_kernel(msg->msg_name, 2506 kmsg->msg_namelen, 2507 kmsg->msg_name); 2508 if (err < 0) 2509 return err; 2510 } 2511 } else { 2512 kmsg->msg_name = NULL; 2513 kmsg->msg_namelen = 0; 2514 } 2515 2516 if (msg->msg_iovlen > UIO_MAXIOV) 2517 return -EMSGSIZE; 2518 2519 kmsg->msg_iocb = NULL; 2520 kmsg->msg_ubuf = NULL; 2521 return 0; 2522 } 2523 2524 static int copy_msghdr_from_user(struct msghdr *kmsg, 2525 struct user_msghdr __user *umsg, 2526 struct sockaddr __user **save_addr, 2527 struct iovec **iov) 2528 { 2529 struct user_msghdr msg; 2530 ssize_t err; 2531 2532 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2533 return -EFAULT; 2534 2535 err = __copy_msghdr(kmsg, &msg, save_addr); 2536 if (err) 2537 return err; 2538 2539 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2540 msg.msg_iov, msg.msg_iovlen, 2541 UIO_FASTIOV, iov, &kmsg->msg_iter); 2542 return err < 0 ? err : 0; 2543 } 2544 2545 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2546 unsigned int flags, struct used_address *used_address, 2547 unsigned int allowed_msghdr_flags) 2548 { 2549 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2550 __aligned(sizeof(__kernel_size_t)); 2551 /* 20 is size of ipv6_pktinfo */ 2552 unsigned char *ctl_buf = ctl; 2553 int ctl_len; 2554 ssize_t err; 2555 2556 err = -ENOBUFS; 2557 2558 if (msg_sys->msg_controllen > INT_MAX) 2559 goto out; 2560 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2561 ctl_len = msg_sys->msg_controllen; 2562 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2563 err = 2564 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2565 sizeof(ctl)); 2566 if (err) 2567 goto out; 2568 ctl_buf = msg_sys->msg_control; 2569 ctl_len = msg_sys->msg_controllen; 2570 } else if (ctl_len) { 2571 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2572 CMSG_ALIGN(sizeof(struct cmsghdr))); 2573 if (ctl_len > sizeof(ctl)) { 2574 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2575 if (ctl_buf == NULL) 2576 goto out; 2577 } 2578 err = -EFAULT; 2579 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2580 goto out_freectl; 2581 msg_sys->msg_control = ctl_buf; 2582 msg_sys->msg_control_is_user = false; 2583 } 2584 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2585 msg_sys->msg_flags = flags; 2586 2587 if (sock->file->f_flags & O_NONBLOCK) 2588 msg_sys->msg_flags |= MSG_DONTWAIT; 2589 /* 2590 * If this is sendmmsg() and current destination address is same as 2591 * previously succeeded address, omit asking LSM's decision. 2592 * used_address->name_len is initialized to UINT_MAX so that the first 2593 * destination address never matches. 2594 */ 2595 if (used_address && msg_sys->msg_name && 2596 used_address->name_len == msg_sys->msg_namelen && 2597 !memcmp(&used_address->name, msg_sys->msg_name, 2598 used_address->name_len)) { 2599 err = sock_sendmsg_nosec(sock, msg_sys); 2600 goto out_freectl; 2601 } 2602 err = __sock_sendmsg(sock, msg_sys); 2603 /* 2604 * If this is sendmmsg() and sending to current destination address was 2605 * successful, remember it. 2606 */ 2607 if (used_address && err >= 0) { 2608 used_address->name_len = msg_sys->msg_namelen; 2609 if (msg_sys->msg_name) 2610 memcpy(&used_address->name, msg_sys->msg_name, 2611 used_address->name_len); 2612 } 2613 2614 out_freectl: 2615 if (ctl_buf != ctl) 2616 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2617 out: 2618 return err; 2619 } 2620 2621 static int sendmsg_copy_msghdr(struct msghdr *msg, 2622 struct user_msghdr __user *umsg, unsigned flags, 2623 struct iovec **iov) 2624 { 2625 int err; 2626 2627 if (flags & MSG_CMSG_COMPAT) { 2628 struct compat_msghdr __user *msg_compat; 2629 2630 msg_compat = (struct compat_msghdr __user *) umsg; 2631 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2632 } else { 2633 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2634 } 2635 if (err < 0) 2636 return err; 2637 2638 return 0; 2639 } 2640 2641 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2642 struct msghdr *msg_sys, unsigned int flags, 2643 struct used_address *used_address, 2644 unsigned int allowed_msghdr_flags) 2645 { 2646 struct sockaddr_storage address; 2647 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2648 ssize_t err; 2649 2650 msg_sys->msg_name = &address; 2651 2652 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2653 if (err < 0) 2654 return err; 2655 2656 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2657 allowed_msghdr_flags); 2658 kfree(iov); 2659 return err; 2660 } 2661 2662 /* 2663 * BSD sendmsg interface 2664 */ 2665 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2666 unsigned int flags) 2667 { 2668 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2669 } 2670 2671 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2672 bool forbid_cmsg_compat) 2673 { 2674 int fput_needed, err; 2675 struct msghdr msg_sys; 2676 struct socket *sock; 2677 2678 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2679 return -EINVAL; 2680 2681 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2682 if (!sock) 2683 goto out; 2684 2685 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2686 2687 fput_light(sock->file, fput_needed); 2688 out: 2689 return err; 2690 } 2691 2692 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2693 { 2694 return __sys_sendmsg(fd, msg, flags, true); 2695 } 2696 2697 /* 2698 * Linux sendmmsg interface 2699 */ 2700 2701 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2702 unsigned int flags, bool forbid_cmsg_compat) 2703 { 2704 int fput_needed, err, datagrams; 2705 struct socket *sock; 2706 struct mmsghdr __user *entry; 2707 struct compat_mmsghdr __user *compat_entry; 2708 struct msghdr msg_sys; 2709 struct used_address used_address; 2710 unsigned int oflags = flags; 2711 2712 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2713 return -EINVAL; 2714 2715 if (vlen > UIO_MAXIOV) 2716 vlen = UIO_MAXIOV; 2717 2718 datagrams = 0; 2719 2720 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2721 if (!sock) 2722 return err; 2723 2724 used_address.name_len = UINT_MAX; 2725 entry = mmsg; 2726 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2727 err = 0; 2728 flags |= MSG_BATCH; 2729 2730 while (datagrams < vlen) { 2731 if (datagrams == vlen - 1) 2732 flags = oflags; 2733 2734 if (MSG_CMSG_COMPAT & flags) { 2735 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2736 &msg_sys, flags, &used_address, MSG_EOR); 2737 if (err < 0) 2738 break; 2739 err = __put_user(err, &compat_entry->msg_len); 2740 ++compat_entry; 2741 } else { 2742 err = ___sys_sendmsg(sock, 2743 (struct user_msghdr __user *)entry, 2744 &msg_sys, flags, &used_address, MSG_EOR); 2745 if (err < 0) 2746 break; 2747 err = put_user(err, &entry->msg_len); 2748 ++entry; 2749 } 2750 2751 if (err) 2752 break; 2753 ++datagrams; 2754 if (msg_data_left(&msg_sys)) 2755 break; 2756 cond_resched(); 2757 } 2758 2759 fput_light(sock->file, fput_needed); 2760 2761 /* We only return an error if no datagrams were able to be sent */ 2762 if (datagrams != 0) 2763 return datagrams; 2764 2765 return err; 2766 } 2767 2768 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2769 unsigned int, vlen, unsigned int, flags) 2770 { 2771 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2772 } 2773 2774 static int recvmsg_copy_msghdr(struct msghdr *msg, 2775 struct user_msghdr __user *umsg, unsigned flags, 2776 struct sockaddr __user **uaddr, 2777 struct iovec **iov) 2778 { 2779 ssize_t err; 2780 2781 if (MSG_CMSG_COMPAT & flags) { 2782 struct compat_msghdr __user *msg_compat; 2783 2784 msg_compat = (struct compat_msghdr __user *) umsg; 2785 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2786 } else { 2787 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2788 } 2789 if (err < 0) 2790 return err; 2791 2792 return 0; 2793 } 2794 2795 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2796 struct user_msghdr __user *msg, 2797 struct sockaddr __user *uaddr, 2798 unsigned int flags, int nosec) 2799 { 2800 struct compat_msghdr __user *msg_compat = 2801 (struct compat_msghdr __user *) msg; 2802 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2803 struct sockaddr_storage addr; 2804 unsigned long cmsg_ptr; 2805 int len; 2806 ssize_t err; 2807 2808 msg_sys->msg_name = &addr; 2809 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2810 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2811 2812 /* We assume all kernel code knows the size of sockaddr_storage */ 2813 msg_sys->msg_namelen = 0; 2814 2815 if (sock->file->f_flags & O_NONBLOCK) 2816 flags |= MSG_DONTWAIT; 2817 2818 if (unlikely(nosec)) 2819 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2820 else 2821 err = sock_recvmsg(sock, msg_sys, flags); 2822 2823 if (err < 0) 2824 goto out; 2825 len = err; 2826 2827 if (uaddr != NULL) { 2828 err = move_addr_to_user(&addr, 2829 msg_sys->msg_namelen, uaddr, 2830 uaddr_len); 2831 if (err < 0) 2832 goto out; 2833 } 2834 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2835 COMPAT_FLAGS(msg)); 2836 if (err) 2837 goto out; 2838 if (MSG_CMSG_COMPAT & flags) 2839 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2840 &msg_compat->msg_controllen); 2841 else 2842 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2843 &msg->msg_controllen); 2844 if (err) 2845 goto out; 2846 err = len; 2847 out: 2848 return err; 2849 } 2850 2851 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2852 struct msghdr *msg_sys, unsigned int flags, int nosec) 2853 { 2854 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2855 /* user mode address pointers */ 2856 struct sockaddr __user *uaddr; 2857 ssize_t err; 2858 2859 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2860 if (err < 0) 2861 return err; 2862 2863 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2864 kfree(iov); 2865 return err; 2866 } 2867 2868 /* 2869 * BSD recvmsg interface 2870 */ 2871 2872 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2873 struct user_msghdr __user *umsg, 2874 struct sockaddr __user *uaddr, unsigned int flags) 2875 { 2876 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2877 } 2878 2879 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2880 bool forbid_cmsg_compat) 2881 { 2882 int fput_needed, err; 2883 struct msghdr msg_sys; 2884 struct socket *sock; 2885 2886 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2887 return -EINVAL; 2888 2889 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2890 if (!sock) 2891 goto out; 2892 2893 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2894 2895 fput_light(sock->file, fput_needed); 2896 out: 2897 return err; 2898 } 2899 2900 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2901 unsigned int, flags) 2902 { 2903 return __sys_recvmsg(fd, msg, flags, true); 2904 } 2905 2906 /* 2907 * Linux recvmmsg interface 2908 */ 2909 2910 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2911 unsigned int vlen, unsigned int flags, 2912 struct timespec64 *timeout) 2913 { 2914 int fput_needed, err, datagrams; 2915 struct socket *sock; 2916 struct mmsghdr __user *entry; 2917 struct compat_mmsghdr __user *compat_entry; 2918 struct msghdr msg_sys; 2919 struct timespec64 end_time; 2920 struct timespec64 timeout64; 2921 2922 if (timeout && 2923 poll_select_set_timeout(&end_time, timeout->tv_sec, 2924 timeout->tv_nsec)) 2925 return -EINVAL; 2926 2927 datagrams = 0; 2928 2929 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2930 if (!sock) 2931 return err; 2932 2933 if (likely(!(flags & MSG_ERRQUEUE))) { 2934 err = sock_error(sock->sk); 2935 if (err) { 2936 datagrams = err; 2937 goto out_put; 2938 } 2939 } 2940 2941 entry = mmsg; 2942 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2943 2944 while (datagrams < vlen) { 2945 /* 2946 * No need to ask LSM for more than the first datagram. 2947 */ 2948 if (MSG_CMSG_COMPAT & flags) { 2949 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2950 &msg_sys, flags & ~MSG_WAITFORONE, 2951 datagrams); 2952 if (err < 0) 2953 break; 2954 err = __put_user(err, &compat_entry->msg_len); 2955 ++compat_entry; 2956 } else { 2957 err = ___sys_recvmsg(sock, 2958 (struct user_msghdr __user *)entry, 2959 &msg_sys, flags & ~MSG_WAITFORONE, 2960 datagrams); 2961 if (err < 0) 2962 break; 2963 err = put_user(err, &entry->msg_len); 2964 ++entry; 2965 } 2966 2967 if (err) 2968 break; 2969 ++datagrams; 2970 2971 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2972 if (flags & MSG_WAITFORONE) 2973 flags |= MSG_DONTWAIT; 2974 2975 if (timeout) { 2976 ktime_get_ts64(&timeout64); 2977 *timeout = timespec64_sub(end_time, timeout64); 2978 if (timeout->tv_sec < 0) { 2979 timeout->tv_sec = timeout->tv_nsec = 0; 2980 break; 2981 } 2982 2983 /* Timeout, return less than vlen datagrams */ 2984 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2985 break; 2986 } 2987 2988 /* Out of band data, return right away */ 2989 if (msg_sys.msg_flags & MSG_OOB) 2990 break; 2991 cond_resched(); 2992 } 2993 2994 if (err == 0) 2995 goto out_put; 2996 2997 if (datagrams == 0) { 2998 datagrams = err; 2999 goto out_put; 3000 } 3001 3002 /* 3003 * We may return less entries than requested (vlen) if the 3004 * sock is non block and there aren't enough datagrams... 3005 */ 3006 if (err != -EAGAIN) { 3007 /* 3008 * ... or if recvmsg returns an error after we 3009 * received some datagrams, where we record the 3010 * error to return on the next call or if the 3011 * app asks about it using getsockopt(SO_ERROR). 3012 */ 3013 WRITE_ONCE(sock->sk->sk_err, -err); 3014 } 3015 out_put: 3016 fput_light(sock->file, fput_needed); 3017 3018 return datagrams; 3019 } 3020 3021 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3022 unsigned int vlen, unsigned int flags, 3023 struct __kernel_timespec __user *timeout, 3024 struct old_timespec32 __user *timeout32) 3025 { 3026 int datagrams; 3027 struct timespec64 timeout_sys; 3028 3029 if (timeout && get_timespec64(&timeout_sys, timeout)) 3030 return -EFAULT; 3031 3032 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3033 return -EFAULT; 3034 3035 if (!timeout && !timeout32) 3036 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3037 3038 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3039 3040 if (datagrams <= 0) 3041 return datagrams; 3042 3043 if (timeout && put_timespec64(&timeout_sys, timeout)) 3044 datagrams = -EFAULT; 3045 3046 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3047 datagrams = -EFAULT; 3048 3049 return datagrams; 3050 } 3051 3052 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3053 unsigned int, vlen, unsigned int, flags, 3054 struct __kernel_timespec __user *, timeout) 3055 { 3056 if (flags & MSG_CMSG_COMPAT) 3057 return -EINVAL; 3058 3059 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3060 } 3061 3062 #ifdef CONFIG_COMPAT_32BIT_TIME 3063 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3064 unsigned int, vlen, unsigned int, flags, 3065 struct old_timespec32 __user *, timeout) 3066 { 3067 if (flags & MSG_CMSG_COMPAT) 3068 return -EINVAL; 3069 3070 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3071 } 3072 #endif 3073 3074 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3075 /* Argument list sizes for sys_socketcall */ 3076 #define AL(x) ((x) * sizeof(unsigned long)) 3077 static const unsigned char nargs[21] = { 3078 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3079 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3080 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3081 AL(4), AL(5), AL(4) 3082 }; 3083 3084 #undef AL 3085 3086 /* 3087 * System call vectors. 3088 * 3089 * Argument checking cleaned up. Saved 20% in size. 3090 * This function doesn't need to set the kernel lock because 3091 * it is set by the callees. 3092 */ 3093 3094 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3095 { 3096 unsigned long a[AUDITSC_ARGS]; 3097 unsigned long a0, a1; 3098 int err; 3099 unsigned int len; 3100 3101 if (call < 1 || call > SYS_SENDMMSG) 3102 return -EINVAL; 3103 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3104 3105 len = nargs[call]; 3106 if (len > sizeof(a)) 3107 return -EINVAL; 3108 3109 /* copy_from_user should be SMP safe. */ 3110 if (copy_from_user(a, args, len)) 3111 return -EFAULT; 3112 3113 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3114 if (err) 3115 return err; 3116 3117 a0 = a[0]; 3118 a1 = a[1]; 3119 3120 switch (call) { 3121 case SYS_SOCKET: 3122 err = __sys_socket(a0, a1, a[2]); 3123 break; 3124 case SYS_BIND: 3125 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3126 break; 3127 case SYS_CONNECT: 3128 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3129 break; 3130 case SYS_LISTEN: 3131 err = __sys_listen(a0, a1); 3132 break; 3133 case SYS_ACCEPT: 3134 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3135 (int __user *)a[2], 0); 3136 break; 3137 case SYS_GETSOCKNAME: 3138 err = 3139 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3140 (int __user *)a[2]); 3141 break; 3142 case SYS_GETPEERNAME: 3143 err = 3144 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3145 (int __user *)a[2]); 3146 break; 3147 case SYS_SOCKETPAIR: 3148 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3149 break; 3150 case SYS_SEND: 3151 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3152 NULL, 0); 3153 break; 3154 case SYS_SENDTO: 3155 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3156 (struct sockaddr __user *)a[4], a[5]); 3157 break; 3158 case SYS_RECV: 3159 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3160 NULL, NULL); 3161 break; 3162 case SYS_RECVFROM: 3163 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3164 (struct sockaddr __user *)a[4], 3165 (int __user *)a[5]); 3166 break; 3167 case SYS_SHUTDOWN: 3168 err = __sys_shutdown(a0, a1); 3169 break; 3170 case SYS_SETSOCKOPT: 3171 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3172 a[4]); 3173 break; 3174 case SYS_GETSOCKOPT: 3175 err = 3176 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3177 (int __user *)a[4]); 3178 break; 3179 case SYS_SENDMSG: 3180 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3181 a[2], true); 3182 break; 3183 case SYS_SENDMMSG: 3184 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3185 a[3], true); 3186 break; 3187 case SYS_RECVMSG: 3188 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3189 a[2], true); 3190 break; 3191 case SYS_RECVMMSG: 3192 if (IS_ENABLED(CONFIG_64BIT)) 3193 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3194 a[2], a[3], 3195 (struct __kernel_timespec __user *)a[4], 3196 NULL); 3197 else 3198 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3199 a[2], a[3], NULL, 3200 (struct old_timespec32 __user *)a[4]); 3201 break; 3202 case SYS_ACCEPT4: 3203 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3204 (int __user *)a[2], a[3]); 3205 break; 3206 default: 3207 err = -EINVAL; 3208 break; 3209 } 3210 return err; 3211 } 3212 3213 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3214 3215 /** 3216 * sock_register - add a socket protocol handler 3217 * @ops: description of protocol 3218 * 3219 * This function is called by a protocol handler that wants to 3220 * advertise its address family, and have it linked into the 3221 * socket interface. The value ops->family corresponds to the 3222 * socket system call protocol family. 3223 */ 3224 int sock_register(const struct net_proto_family *ops) 3225 { 3226 int err; 3227 3228 if (ops->family >= NPROTO) { 3229 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3230 return -ENOBUFS; 3231 } 3232 3233 spin_lock(&net_family_lock); 3234 if (rcu_dereference_protected(net_families[ops->family], 3235 lockdep_is_held(&net_family_lock))) 3236 err = -EEXIST; 3237 else { 3238 rcu_assign_pointer(net_families[ops->family], ops); 3239 err = 0; 3240 } 3241 spin_unlock(&net_family_lock); 3242 3243 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3244 return err; 3245 } 3246 EXPORT_SYMBOL(sock_register); 3247 3248 /** 3249 * sock_unregister - remove a protocol handler 3250 * @family: protocol family to remove 3251 * 3252 * This function is called by a protocol handler that wants to 3253 * remove its address family, and have it unlinked from the 3254 * new socket creation. 3255 * 3256 * If protocol handler is a module, then it can use module reference 3257 * counts to protect against new references. If protocol handler is not 3258 * a module then it needs to provide its own protection in 3259 * the ops->create routine. 3260 */ 3261 void sock_unregister(int family) 3262 { 3263 BUG_ON(family < 0 || family >= NPROTO); 3264 3265 spin_lock(&net_family_lock); 3266 RCU_INIT_POINTER(net_families[family], NULL); 3267 spin_unlock(&net_family_lock); 3268 3269 synchronize_rcu(); 3270 3271 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3272 } 3273 EXPORT_SYMBOL(sock_unregister); 3274 3275 bool sock_is_registered(int family) 3276 { 3277 return family < NPROTO && rcu_access_pointer(net_families[family]); 3278 } 3279 3280 static int __init sock_init(void) 3281 { 3282 int err; 3283 /* 3284 * Initialize the network sysctl infrastructure. 3285 */ 3286 err = net_sysctl_init(); 3287 if (err) 3288 goto out; 3289 3290 /* 3291 * Initialize skbuff SLAB cache 3292 */ 3293 skb_init(); 3294 3295 /* 3296 * Initialize the protocols module. 3297 */ 3298 3299 init_inodecache(); 3300 3301 err = register_filesystem(&sock_fs_type); 3302 if (err) 3303 goto out; 3304 sock_mnt = kern_mount(&sock_fs_type); 3305 if (IS_ERR(sock_mnt)) { 3306 err = PTR_ERR(sock_mnt); 3307 goto out_mount; 3308 } 3309 3310 /* The real protocol initialization is performed in later initcalls. 3311 */ 3312 3313 #ifdef CONFIG_NETFILTER 3314 err = netfilter_init(); 3315 if (err) 3316 goto out; 3317 #endif 3318 3319 ptp_classifier_init(); 3320 3321 out: 3322 return err; 3323 3324 out_mount: 3325 unregister_filesystem(&sock_fs_type); 3326 goto out; 3327 } 3328 3329 core_initcall(sock_init); /* early initcall */ 3330 3331 #ifdef CONFIG_PROC_FS 3332 void socket_seq_show(struct seq_file *seq) 3333 { 3334 seq_printf(seq, "sockets: used %d\n", 3335 sock_inuse_get(seq->private)); 3336 } 3337 #endif /* CONFIG_PROC_FS */ 3338 3339 /* Handle the fact that while struct ifreq has the same *layout* on 3340 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3341 * which are handled elsewhere, it still has different *size* due to 3342 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3343 * resulting in struct ifreq being 32 and 40 bytes respectively). 3344 * As a result, if the struct happens to be at the end of a page and 3345 * the next page isn't readable/writable, we get a fault. To prevent 3346 * that, copy back and forth to the full size. 3347 */ 3348 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3349 { 3350 if (in_compat_syscall()) { 3351 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3352 3353 memset(ifr, 0, sizeof(*ifr)); 3354 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3355 return -EFAULT; 3356 3357 if (ifrdata) 3358 *ifrdata = compat_ptr(ifr32->ifr_data); 3359 3360 return 0; 3361 } 3362 3363 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3364 return -EFAULT; 3365 3366 if (ifrdata) 3367 *ifrdata = ifr->ifr_data; 3368 3369 return 0; 3370 } 3371 EXPORT_SYMBOL(get_user_ifreq); 3372 3373 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3374 { 3375 size_t size = sizeof(*ifr); 3376 3377 if (in_compat_syscall()) 3378 size = sizeof(struct compat_ifreq); 3379 3380 if (copy_to_user(arg, ifr, size)) 3381 return -EFAULT; 3382 3383 return 0; 3384 } 3385 EXPORT_SYMBOL(put_user_ifreq); 3386 3387 #ifdef CONFIG_COMPAT 3388 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3389 { 3390 compat_uptr_t uptr32; 3391 struct ifreq ifr; 3392 void __user *saved; 3393 int err; 3394 3395 if (get_user_ifreq(&ifr, NULL, uifr32)) 3396 return -EFAULT; 3397 3398 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3399 return -EFAULT; 3400 3401 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3402 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3403 3404 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3405 if (!err) { 3406 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3407 if (put_user_ifreq(&ifr, uifr32)) 3408 err = -EFAULT; 3409 } 3410 return err; 3411 } 3412 3413 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3414 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3415 struct compat_ifreq __user *u_ifreq32) 3416 { 3417 struct ifreq ifreq; 3418 void __user *data; 3419 3420 if (!is_socket_ioctl_cmd(cmd)) 3421 return -ENOTTY; 3422 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3423 return -EFAULT; 3424 ifreq.ifr_data = data; 3425 3426 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3427 } 3428 3429 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3430 unsigned int cmd, unsigned long arg) 3431 { 3432 void __user *argp = compat_ptr(arg); 3433 struct sock *sk = sock->sk; 3434 struct net *net = sock_net(sk); 3435 const struct proto_ops *ops; 3436 3437 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3438 return sock_ioctl(file, cmd, (unsigned long)argp); 3439 3440 switch (cmd) { 3441 case SIOCWANDEV: 3442 return compat_siocwandev(net, argp); 3443 case SIOCGSTAMP_OLD: 3444 case SIOCGSTAMPNS_OLD: 3445 ops = READ_ONCE(sock->ops); 3446 if (!ops->gettstamp) 3447 return -ENOIOCTLCMD; 3448 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3449 !COMPAT_USE_64BIT_TIME); 3450 3451 case SIOCETHTOOL: 3452 case SIOCBONDSLAVEINFOQUERY: 3453 case SIOCBONDINFOQUERY: 3454 case SIOCSHWTSTAMP: 3455 case SIOCGHWTSTAMP: 3456 return compat_ifr_data_ioctl(net, cmd, argp); 3457 3458 case FIOSETOWN: 3459 case SIOCSPGRP: 3460 case FIOGETOWN: 3461 case SIOCGPGRP: 3462 case SIOCBRADDBR: 3463 case SIOCBRDELBR: 3464 case SIOCGIFVLAN: 3465 case SIOCSIFVLAN: 3466 case SIOCGSKNS: 3467 case SIOCGSTAMP_NEW: 3468 case SIOCGSTAMPNS_NEW: 3469 case SIOCGIFCONF: 3470 case SIOCSIFBR: 3471 case SIOCGIFBR: 3472 return sock_ioctl(file, cmd, arg); 3473 3474 case SIOCGIFFLAGS: 3475 case SIOCSIFFLAGS: 3476 case SIOCGIFMAP: 3477 case SIOCSIFMAP: 3478 case SIOCGIFMETRIC: 3479 case SIOCSIFMETRIC: 3480 case SIOCGIFMTU: 3481 case SIOCSIFMTU: 3482 case SIOCGIFMEM: 3483 case SIOCSIFMEM: 3484 case SIOCGIFHWADDR: 3485 case SIOCSIFHWADDR: 3486 case SIOCADDMULTI: 3487 case SIOCDELMULTI: 3488 case SIOCGIFINDEX: 3489 case SIOCGIFADDR: 3490 case SIOCSIFADDR: 3491 case SIOCSIFHWBROADCAST: 3492 case SIOCDIFADDR: 3493 case SIOCGIFBRDADDR: 3494 case SIOCSIFBRDADDR: 3495 case SIOCGIFDSTADDR: 3496 case SIOCSIFDSTADDR: 3497 case SIOCGIFNETMASK: 3498 case SIOCSIFNETMASK: 3499 case SIOCSIFPFLAGS: 3500 case SIOCGIFPFLAGS: 3501 case SIOCGIFTXQLEN: 3502 case SIOCSIFTXQLEN: 3503 case SIOCBRADDIF: 3504 case SIOCBRDELIF: 3505 case SIOCGIFNAME: 3506 case SIOCSIFNAME: 3507 case SIOCGMIIPHY: 3508 case SIOCGMIIREG: 3509 case SIOCSMIIREG: 3510 case SIOCBONDENSLAVE: 3511 case SIOCBONDRELEASE: 3512 case SIOCBONDSETHWADDR: 3513 case SIOCBONDCHANGEACTIVE: 3514 case SIOCSARP: 3515 case SIOCGARP: 3516 case SIOCDARP: 3517 case SIOCOUTQ: 3518 case SIOCOUTQNSD: 3519 case SIOCATMARK: 3520 return sock_do_ioctl(net, sock, cmd, arg); 3521 } 3522 3523 return -ENOIOCTLCMD; 3524 } 3525 3526 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3527 unsigned long arg) 3528 { 3529 struct socket *sock = file->private_data; 3530 const struct proto_ops *ops = READ_ONCE(sock->ops); 3531 int ret = -ENOIOCTLCMD; 3532 struct sock *sk; 3533 struct net *net; 3534 3535 sk = sock->sk; 3536 net = sock_net(sk); 3537 3538 if (ops->compat_ioctl) 3539 ret = ops->compat_ioctl(sock, cmd, arg); 3540 3541 if (ret == -ENOIOCTLCMD && 3542 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3543 ret = compat_wext_handle_ioctl(net, cmd, arg); 3544 3545 if (ret == -ENOIOCTLCMD) 3546 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3547 3548 return ret; 3549 } 3550 #endif 3551 3552 /** 3553 * kernel_bind - bind an address to a socket (kernel space) 3554 * @sock: socket 3555 * @addr: address 3556 * @addrlen: length of address 3557 * 3558 * Returns 0 or an error. 3559 */ 3560 3561 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3562 { 3563 struct sockaddr_storage address; 3564 3565 memcpy(&address, addr, addrlen); 3566 3567 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3568 addrlen); 3569 } 3570 EXPORT_SYMBOL(kernel_bind); 3571 3572 /** 3573 * kernel_listen - move socket to listening state (kernel space) 3574 * @sock: socket 3575 * @backlog: pending connections queue size 3576 * 3577 * Returns 0 or an error. 3578 */ 3579 3580 int kernel_listen(struct socket *sock, int backlog) 3581 { 3582 return READ_ONCE(sock->ops)->listen(sock, backlog); 3583 } 3584 EXPORT_SYMBOL(kernel_listen); 3585 3586 /** 3587 * kernel_accept - accept a connection (kernel space) 3588 * @sock: listening socket 3589 * @newsock: new connected socket 3590 * @flags: flags 3591 * 3592 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3593 * If it fails, @newsock is guaranteed to be %NULL. 3594 * Returns 0 or an error. 3595 */ 3596 3597 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3598 { 3599 struct sock *sk = sock->sk; 3600 const struct proto_ops *ops = READ_ONCE(sock->ops); 3601 struct proto_accept_arg arg = { 3602 .flags = flags, 3603 .kern = true, 3604 }; 3605 int err; 3606 3607 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3608 newsock); 3609 if (err < 0) 3610 goto done; 3611 3612 err = ops->accept(sock, *newsock, &arg); 3613 if (err < 0) { 3614 sock_release(*newsock); 3615 *newsock = NULL; 3616 goto done; 3617 } 3618 3619 (*newsock)->ops = ops; 3620 __module_get(ops->owner); 3621 3622 done: 3623 return err; 3624 } 3625 EXPORT_SYMBOL(kernel_accept); 3626 3627 /** 3628 * kernel_connect - connect a socket (kernel space) 3629 * @sock: socket 3630 * @addr: address 3631 * @addrlen: address length 3632 * @flags: flags (O_NONBLOCK, ...) 3633 * 3634 * For datagram sockets, @addr is the address to which datagrams are sent 3635 * by default, and the only address from which datagrams are received. 3636 * For stream sockets, attempts to connect to @addr. 3637 * Returns 0 or an error code. 3638 */ 3639 3640 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3641 int flags) 3642 { 3643 struct sockaddr_storage address; 3644 3645 memcpy(&address, addr, addrlen); 3646 3647 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3648 addrlen, flags); 3649 } 3650 EXPORT_SYMBOL(kernel_connect); 3651 3652 /** 3653 * kernel_getsockname - get the address which the socket is bound (kernel space) 3654 * @sock: socket 3655 * @addr: address holder 3656 * 3657 * Fills the @addr pointer with the address which the socket is bound. 3658 * Returns the length of the address in bytes or an error code. 3659 */ 3660 3661 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3662 { 3663 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3664 } 3665 EXPORT_SYMBOL(kernel_getsockname); 3666 3667 /** 3668 * kernel_getpeername - get the address which the socket is connected (kernel space) 3669 * @sock: socket 3670 * @addr: address holder 3671 * 3672 * Fills the @addr pointer with the address which the socket is connected. 3673 * Returns the length of the address in bytes or an error code. 3674 */ 3675 3676 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3677 { 3678 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3679 } 3680 EXPORT_SYMBOL(kernel_getpeername); 3681 3682 /** 3683 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3684 * @sock: socket 3685 * @how: connection part 3686 * 3687 * Returns 0 or an error. 3688 */ 3689 3690 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3691 { 3692 return READ_ONCE(sock->ops)->shutdown(sock, how); 3693 } 3694 EXPORT_SYMBOL(kernel_sock_shutdown); 3695 3696 /** 3697 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3698 * @sk: socket 3699 * 3700 * This routine returns the IP overhead imposed by a socket i.e. 3701 * the length of the underlying IP header, depending on whether 3702 * this is an IPv4 or IPv6 socket and the length from IP options turned 3703 * on at the socket. Assumes that the caller has a lock on the socket. 3704 */ 3705 3706 u32 kernel_sock_ip_overhead(struct sock *sk) 3707 { 3708 struct inet_sock *inet; 3709 struct ip_options_rcu *opt; 3710 u32 overhead = 0; 3711 #if IS_ENABLED(CONFIG_IPV6) 3712 struct ipv6_pinfo *np; 3713 struct ipv6_txoptions *optv6 = NULL; 3714 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3715 3716 if (!sk) 3717 return overhead; 3718 3719 switch (sk->sk_family) { 3720 case AF_INET: 3721 inet = inet_sk(sk); 3722 overhead += sizeof(struct iphdr); 3723 opt = rcu_dereference_protected(inet->inet_opt, 3724 sock_owned_by_user(sk)); 3725 if (opt) 3726 overhead += opt->opt.optlen; 3727 return overhead; 3728 #if IS_ENABLED(CONFIG_IPV6) 3729 case AF_INET6: 3730 np = inet6_sk(sk); 3731 overhead += sizeof(struct ipv6hdr); 3732 if (np) 3733 optv6 = rcu_dereference_protected(np->opt, 3734 sock_owned_by_user(sk)); 3735 if (optv6) 3736 overhead += (optv6->opt_flen + optv6->opt_nflen); 3737 return overhead; 3738 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3739 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3740 return overhead; 3741 } 3742 } 3743 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3744