1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .uring_cmd = io_uring_cmd_sock, 164 .mmap = sock_mmap, 165 .release = sock_close, 166 .fasync = sock_fasync, 167 .splice_write = splice_to_socket, 168 .splice_read = sock_splice_read, 169 .splice_eof = sock_splice_eof, 170 .show_fdinfo = sock_show_fdinfo, 171 }; 172 173 static const char * const pf_family_names[] = { 174 [PF_UNSPEC] = "PF_UNSPEC", 175 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 176 [PF_INET] = "PF_INET", 177 [PF_AX25] = "PF_AX25", 178 [PF_IPX] = "PF_IPX", 179 [PF_APPLETALK] = "PF_APPLETALK", 180 [PF_NETROM] = "PF_NETROM", 181 [PF_BRIDGE] = "PF_BRIDGE", 182 [PF_ATMPVC] = "PF_ATMPVC", 183 [PF_X25] = "PF_X25", 184 [PF_INET6] = "PF_INET6", 185 [PF_ROSE] = "PF_ROSE", 186 [PF_DECnet] = "PF_DECnet", 187 [PF_NETBEUI] = "PF_NETBEUI", 188 [PF_SECURITY] = "PF_SECURITY", 189 [PF_KEY] = "PF_KEY", 190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 191 [PF_PACKET] = "PF_PACKET", 192 [PF_ASH] = "PF_ASH", 193 [PF_ECONET] = "PF_ECONET", 194 [PF_ATMSVC] = "PF_ATMSVC", 195 [PF_RDS] = "PF_RDS", 196 [PF_SNA] = "PF_SNA", 197 [PF_IRDA] = "PF_IRDA", 198 [PF_PPPOX] = "PF_PPPOX", 199 [PF_WANPIPE] = "PF_WANPIPE", 200 [PF_LLC] = "PF_LLC", 201 [PF_IB] = "PF_IB", 202 [PF_MPLS] = "PF_MPLS", 203 [PF_CAN] = "PF_CAN", 204 [PF_TIPC] = "PF_TIPC", 205 [PF_BLUETOOTH] = "PF_BLUETOOTH", 206 [PF_IUCV] = "PF_IUCV", 207 [PF_RXRPC] = "PF_RXRPC", 208 [PF_ISDN] = "PF_ISDN", 209 [PF_PHONET] = "PF_PHONET", 210 [PF_IEEE802154] = "PF_IEEE802154", 211 [PF_CAIF] = "PF_CAIF", 212 [PF_ALG] = "PF_ALG", 213 [PF_NFC] = "PF_NFC", 214 [PF_VSOCK] = "PF_VSOCK", 215 [PF_KCM] = "PF_KCM", 216 [PF_QIPCRTR] = "PF_QIPCRTR", 217 [PF_SMC] = "PF_SMC", 218 [PF_XDP] = "PF_XDP", 219 [PF_MCTP] = "PF_MCTP", 220 }; 221 222 /* 223 * The protocol list. Each protocol is registered in here. 224 */ 225 226 static DEFINE_SPINLOCK(net_family_lock); 227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 228 229 /* 230 * Support routines. 231 * Move socket addresses back and forth across the kernel/user 232 * divide and look after the messy bits. 233 */ 234 235 /** 236 * move_addr_to_kernel - copy a socket address into kernel space 237 * @uaddr: Address in user space 238 * @kaddr: Address in kernel space 239 * @ulen: Length in user space 240 * 241 * The address is copied into kernel space. If the provided address is 242 * too long an error code of -EINVAL is returned. If the copy gives 243 * invalid addresses -EFAULT is returned. On a success 0 is returned. 244 */ 245 246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 247 { 248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 249 return -EINVAL; 250 if (ulen == 0) 251 return 0; 252 if (copy_from_user(kaddr, uaddr, ulen)) 253 return -EFAULT; 254 return audit_sockaddr(ulen, kaddr); 255 } 256 257 /** 258 * move_addr_to_user - copy an address to user space 259 * @kaddr: kernel space address 260 * @klen: length of address in kernel 261 * @uaddr: user space address 262 * @ulen: pointer to user length field 263 * 264 * The value pointed to by ulen on entry is the buffer length available. 265 * This is overwritten with the buffer space used. -EINVAL is returned 266 * if an overlong buffer is specified or a negative buffer size. -EFAULT 267 * is returned if either the buffer or the length field are not 268 * accessible. 269 * After copying the data up to the limit the user specifies, the true 270 * length of the data is written over the length limit the user 271 * specified. Zero is returned for a success. 272 */ 273 274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 275 void __user *uaddr, int __user *ulen) 276 { 277 int err; 278 int len; 279 280 BUG_ON(klen > sizeof(struct sockaddr_storage)); 281 err = get_user(len, ulen); 282 if (err) 283 return err; 284 if (len > klen) 285 len = klen; 286 if (len < 0) 287 return -EINVAL; 288 if (len) { 289 if (audit_sockaddr(klen, kaddr)) 290 return -ENOMEM; 291 if (copy_to_user(uaddr, kaddr, len)) 292 return -EFAULT; 293 } 294 /* 295 * "fromlen shall refer to the value before truncation.." 296 * 1003.1g 297 */ 298 return __put_user(klen, ulen); 299 } 300 301 static struct kmem_cache *sock_inode_cachep __ro_after_init; 302 303 static struct inode *sock_alloc_inode(struct super_block *sb) 304 { 305 struct socket_alloc *ei; 306 307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 308 if (!ei) 309 return NULL; 310 init_waitqueue_head(&ei->socket.wq.wait); 311 ei->socket.wq.fasync_list = NULL; 312 ei->socket.wq.flags = 0; 313 314 ei->socket.state = SS_UNCONNECTED; 315 ei->socket.flags = 0; 316 ei->socket.ops = NULL; 317 ei->socket.sk = NULL; 318 ei->socket.file = NULL; 319 320 return &ei->vfs_inode; 321 } 322 323 static void sock_free_inode(struct inode *inode) 324 { 325 struct socket_alloc *ei; 326 327 ei = container_of(inode, struct socket_alloc, vfs_inode); 328 kmem_cache_free(sock_inode_cachep, ei); 329 } 330 331 static void init_once(void *foo) 332 { 333 struct socket_alloc *ei = (struct socket_alloc *)foo; 334 335 inode_init_once(&ei->vfs_inode); 336 } 337 338 static void init_inodecache(void) 339 { 340 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 341 sizeof(struct socket_alloc), 342 0, 343 (SLAB_HWCACHE_ALIGN | 344 SLAB_RECLAIM_ACCOUNT | 345 SLAB_ACCOUNT), 346 init_once); 347 BUG_ON(sock_inode_cachep == NULL); 348 } 349 350 static const struct super_operations sockfs_ops = { 351 .alloc_inode = sock_alloc_inode, 352 .free_inode = sock_free_inode, 353 .statfs = simple_statfs, 354 }; 355 356 /* 357 * sockfs_dname() is called from d_path(). 358 */ 359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 360 { 361 return dynamic_dname(buffer, buflen, "socket:[%lu]", 362 d_inode(dentry)->i_ino); 363 } 364 365 static const struct dentry_operations sockfs_dentry_operations = { 366 .d_dname = sockfs_dname, 367 }; 368 369 static int sockfs_xattr_get(const struct xattr_handler *handler, 370 struct dentry *dentry, struct inode *inode, 371 const char *suffix, void *value, size_t size) 372 { 373 if (value) { 374 if (dentry->d_name.len + 1 > size) 375 return -ERANGE; 376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 377 } 378 return dentry->d_name.len + 1; 379 } 380 381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 384 385 static const struct xattr_handler sockfs_xattr_handler = { 386 .name = XATTR_NAME_SOCKPROTONAME, 387 .get = sockfs_xattr_get, 388 }; 389 390 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 391 struct mnt_idmap *idmap, 392 struct dentry *dentry, struct inode *inode, 393 const char *suffix, const void *value, 394 size_t size, int flags) 395 { 396 /* Handled by LSM. */ 397 return -EAGAIN; 398 } 399 400 static const struct xattr_handler sockfs_security_xattr_handler = { 401 .prefix = XATTR_SECURITY_PREFIX, 402 .set = sockfs_security_xattr_set, 403 }; 404 405 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 406 &sockfs_xattr_handler, 407 &sockfs_security_xattr_handler, 408 NULL 409 }; 410 411 static int sockfs_init_fs_context(struct fs_context *fc) 412 { 413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 414 if (!ctx) 415 return -ENOMEM; 416 ctx->ops = &sockfs_ops; 417 ctx->dops = &sockfs_dentry_operations; 418 ctx->xattr = sockfs_xattr_handlers; 419 return 0; 420 } 421 422 static struct vfsmount *sock_mnt __read_mostly; 423 424 static struct file_system_type sock_fs_type = { 425 .name = "sockfs", 426 .init_fs_context = sockfs_init_fs_context, 427 .kill_sb = kill_anon_super, 428 }; 429 430 /* 431 * Obtains the first available file descriptor and sets it up for use. 432 * 433 * These functions create file structures and maps them to fd space 434 * of the current process. On success it returns file descriptor 435 * and file struct implicitly stored in sock->file. 436 * Note that another thread may close file descriptor before we return 437 * from this function. We use the fact that now we do not refer 438 * to socket after mapping. If one day we will need it, this 439 * function will increment ref. count on file by 1. 440 * 441 * In any case returned fd MAY BE not valid! 442 * This race condition is unavoidable 443 * with shared fd spaces, we cannot solve it inside kernel, 444 * but we take care of internal coherence yet. 445 */ 446 447 /** 448 * sock_alloc_file - Bind a &socket to a &file 449 * @sock: socket 450 * @flags: file status flags 451 * @dname: protocol name 452 * 453 * Returns the &file bound with @sock, implicitly storing it 454 * in sock->file. If dname is %NULL, sets to "". 455 * 456 * On failure @sock is released, and an ERR pointer is returned. 457 * 458 * This function uses GFP_KERNEL internally. 459 */ 460 461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 462 { 463 struct file *file; 464 465 if (!dname) 466 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 467 468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 469 O_RDWR | (flags & O_NONBLOCK), 470 &socket_file_ops); 471 if (IS_ERR(file)) { 472 sock_release(sock); 473 return file; 474 } 475 476 file->f_mode |= FMODE_NOWAIT; 477 sock->file = file; 478 file->private_data = sock; 479 stream_open(SOCK_INODE(sock), file); 480 return file; 481 } 482 EXPORT_SYMBOL(sock_alloc_file); 483 484 static int sock_map_fd(struct socket *sock, int flags) 485 { 486 struct file *newfile; 487 int fd = get_unused_fd_flags(flags); 488 if (unlikely(fd < 0)) { 489 sock_release(sock); 490 return fd; 491 } 492 493 newfile = sock_alloc_file(sock, flags, NULL); 494 if (!IS_ERR(newfile)) { 495 fd_install(fd, newfile); 496 return fd; 497 } 498 499 put_unused_fd(fd); 500 return PTR_ERR(newfile); 501 } 502 503 /** 504 * sock_from_file - Return the &socket bounded to @file. 505 * @file: file 506 * 507 * On failure returns %NULL. 508 */ 509 510 struct socket *sock_from_file(struct file *file) 511 { 512 if (likely(file->f_op == &socket_file_ops)) 513 return file->private_data; /* set in sock_alloc_file */ 514 515 return NULL; 516 } 517 EXPORT_SYMBOL(sock_from_file); 518 519 /** 520 * sockfd_lookup - Go from a file number to its socket slot 521 * @fd: file handle 522 * @err: pointer to an error code return 523 * 524 * The file handle passed in is locked and the socket it is bound 525 * to is returned. If an error occurs the err pointer is overwritten 526 * with a negative errno code and NULL is returned. The function checks 527 * for both invalid handles and passing a handle which is not a socket. 528 * 529 * On a success the socket object pointer is returned. 530 */ 531 532 struct socket *sockfd_lookup(int fd, int *err) 533 { 534 struct file *file; 535 struct socket *sock; 536 537 file = fget(fd); 538 if (!file) { 539 *err = -EBADF; 540 return NULL; 541 } 542 543 sock = sock_from_file(file); 544 if (!sock) { 545 *err = -ENOTSOCK; 546 fput(file); 547 } 548 return sock; 549 } 550 EXPORT_SYMBOL(sockfd_lookup); 551 552 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 553 size_t size) 554 { 555 ssize_t len; 556 ssize_t used = 0; 557 558 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 559 if (len < 0) 560 return len; 561 used += len; 562 if (buffer) { 563 if (size < used) 564 return -ERANGE; 565 buffer += len; 566 } 567 568 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 569 used += len; 570 if (buffer) { 571 if (size < used) 572 return -ERANGE; 573 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 574 buffer += len; 575 } 576 577 return used; 578 } 579 580 static int sockfs_setattr(struct mnt_idmap *idmap, 581 struct dentry *dentry, struct iattr *iattr) 582 { 583 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 584 585 if (!err && (iattr->ia_valid & ATTR_UID)) { 586 struct socket *sock = SOCKET_I(d_inode(dentry)); 587 588 if (sock->sk) 589 sock->sk->sk_uid = iattr->ia_uid; 590 else 591 err = -ENOENT; 592 } 593 594 return err; 595 } 596 597 static const struct inode_operations sockfs_inode_ops = { 598 .listxattr = sockfs_listxattr, 599 .setattr = sockfs_setattr, 600 }; 601 602 /** 603 * sock_alloc - allocate a socket 604 * 605 * Allocate a new inode and socket object. The two are bound together 606 * and initialised. The socket is then returned. If we are out of inodes 607 * NULL is returned. This functions uses GFP_KERNEL internally. 608 */ 609 610 struct socket *sock_alloc(void) 611 { 612 struct inode *inode; 613 struct socket *sock; 614 615 inode = new_inode_pseudo(sock_mnt->mnt_sb); 616 if (!inode) 617 return NULL; 618 619 sock = SOCKET_I(inode); 620 621 inode->i_ino = get_next_ino(); 622 inode->i_mode = S_IFSOCK | S_IRWXUGO; 623 inode->i_uid = current_fsuid(); 624 inode->i_gid = current_fsgid(); 625 inode->i_op = &sockfs_inode_ops; 626 627 return sock; 628 } 629 EXPORT_SYMBOL(sock_alloc); 630 631 static void __sock_release(struct socket *sock, struct inode *inode) 632 { 633 const struct proto_ops *ops = READ_ONCE(sock->ops); 634 635 if (ops) { 636 struct module *owner = ops->owner; 637 638 if (inode) 639 inode_lock(inode); 640 ops->release(sock); 641 sock->sk = NULL; 642 if (inode) 643 inode_unlock(inode); 644 sock->ops = NULL; 645 module_put(owner); 646 } 647 648 if (sock->wq.fasync_list) 649 pr_err("%s: fasync list not empty!\n", __func__); 650 651 if (!sock->file) { 652 iput(SOCK_INODE(sock)); 653 return; 654 } 655 sock->file = NULL; 656 } 657 658 /** 659 * sock_release - close a socket 660 * @sock: socket to close 661 * 662 * The socket is released from the protocol stack if it has a release 663 * callback, and the inode is then released if the socket is bound to 664 * an inode not a file. 665 */ 666 void sock_release(struct socket *sock) 667 { 668 __sock_release(sock, NULL); 669 } 670 EXPORT_SYMBOL(sock_release); 671 672 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 673 { 674 u8 flags = *tx_flags; 675 676 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 677 flags |= SKBTX_HW_TSTAMP; 678 679 /* PTP hardware clocks can provide a free running cycle counter 680 * as a time base for virtual clocks. Tell driver to use the 681 * free running cycle counter for timestamp if socket is bound 682 * to virtual clock. 683 */ 684 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 685 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 686 } 687 688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 689 flags |= SKBTX_SW_TSTAMP; 690 691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 692 flags |= SKBTX_SCHED_TSTAMP; 693 694 *tx_flags = flags; 695 } 696 EXPORT_SYMBOL(__sock_tx_timestamp); 697 698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 699 size_t)); 700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 701 size_t)); 702 703 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 704 int flags) 705 { 706 trace_sock_send_length(sk, ret, 0); 707 } 708 709 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 710 { 711 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 712 inet_sendmsg, sock, msg, 713 msg_data_left(msg)); 714 BUG_ON(ret == -EIOCBQUEUED); 715 716 if (trace_sock_send_length_enabled()) 717 call_trace_sock_send_length(sock->sk, ret, 0); 718 return ret; 719 } 720 721 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 722 { 723 int err = security_socket_sendmsg(sock, msg, 724 msg_data_left(msg)); 725 726 return err ?: sock_sendmsg_nosec(sock, msg); 727 } 728 729 /** 730 * sock_sendmsg - send a message through @sock 731 * @sock: socket 732 * @msg: message to send 733 * 734 * Sends @msg through @sock, passing through LSM. 735 * Returns the number of bytes sent, or an error code. 736 */ 737 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 738 { 739 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 740 struct sockaddr_storage address; 741 int save_len = msg->msg_namelen; 742 int ret; 743 744 if (msg->msg_name) { 745 memcpy(&address, msg->msg_name, msg->msg_namelen); 746 msg->msg_name = &address; 747 } 748 749 ret = __sock_sendmsg(sock, msg); 750 msg->msg_name = save_addr; 751 msg->msg_namelen = save_len; 752 753 return ret; 754 } 755 EXPORT_SYMBOL(sock_sendmsg); 756 757 /** 758 * kernel_sendmsg - send a message through @sock (kernel-space) 759 * @sock: socket 760 * @msg: message header 761 * @vec: kernel vec 762 * @num: vec array length 763 * @size: total message data size 764 * 765 * Builds the message data with @vec and sends it through @sock. 766 * Returns the number of bytes sent, or an error code. 767 */ 768 769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 770 struct kvec *vec, size_t num, size_t size) 771 { 772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 773 return sock_sendmsg(sock, msg); 774 } 775 EXPORT_SYMBOL(kernel_sendmsg); 776 777 /** 778 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 779 * @sk: sock 780 * @msg: message header 781 * @vec: output s/g array 782 * @num: output s/g array length 783 * @size: total message data size 784 * 785 * Builds the message data with @vec and sends it through @sock. 786 * Returns the number of bytes sent, or an error code. 787 * Caller must hold @sk. 788 */ 789 790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 791 struct kvec *vec, size_t num, size_t size) 792 { 793 struct socket *sock = sk->sk_socket; 794 const struct proto_ops *ops = READ_ONCE(sock->ops); 795 796 if (!ops->sendmsg_locked) 797 return sock_no_sendmsg_locked(sk, msg, size); 798 799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 800 801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 802 } 803 EXPORT_SYMBOL(kernel_sendmsg_locked); 804 805 static bool skb_is_err_queue(const struct sk_buff *skb) 806 { 807 /* pkt_type of skbs enqueued on the error queue are set to 808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 809 * in recvmsg, since skbs received on a local socket will never 810 * have a pkt_type of PACKET_OUTGOING. 811 */ 812 return skb->pkt_type == PACKET_OUTGOING; 813 } 814 815 /* On transmit, software and hardware timestamps are returned independently. 816 * As the two skb clones share the hardware timestamp, which may be updated 817 * before the software timestamp is received, a hardware TX timestamp may be 818 * returned only if there is no software TX timestamp. Ignore false software 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 821 * hardware timestamp. 822 */ 823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 824 { 825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 826 } 827 828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 829 { 830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 832 struct net_device *orig_dev; 833 ktime_t hwtstamp; 834 835 rcu_read_lock(); 836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 837 if (orig_dev) { 838 *if_index = orig_dev->ifindex; 839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 840 } else { 841 hwtstamp = shhwtstamps->hwtstamp; 842 } 843 rcu_read_unlock(); 844 845 return hwtstamp; 846 } 847 848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 849 int if_index) 850 { 851 struct scm_ts_pktinfo ts_pktinfo; 852 struct net_device *orig_dev; 853 854 if (!skb_mac_header_was_set(skb)) 855 return; 856 857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 858 859 if (!if_index) { 860 rcu_read_lock(); 861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 862 if (orig_dev) 863 if_index = orig_dev->ifindex; 864 rcu_read_unlock(); 865 } 866 ts_pktinfo.if_index = if_index; 867 868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 870 sizeof(ts_pktinfo), &ts_pktinfo); 871 } 872 873 /* 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 875 */ 876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 877 struct sk_buff *skb) 878 { 879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 881 struct scm_timestamping_internal tss; 882 int empty = 1, false_tstamp = 0; 883 struct skb_shared_hwtstamps *shhwtstamps = 884 skb_hwtstamps(skb); 885 int if_index; 886 ktime_t hwtstamp; 887 u32 tsflags; 888 889 /* Race occurred between timestamp enabling and packet 890 receiving. Fill in the current time for now. */ 891 if (need_software_tstamp && skb->tstamp == 0) { 892 __net_timestamp(skb); 893 false_tstamp = 1; 894 } 895 896 if (need_software_tstamp) { 897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 898 if (new_tstamp) { 899 struct __kernel_sock_timeval tv; 900 901 skb_get_new_timestamp(skb, &tv); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 903 sizeof(tv), &tv); 904 } else { 905 struct __kernel_old_timeval tv; 906 907 skb_get_timestamp(skb, &tv); 908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 909 sizeof(tv), &tv); 910 } 911 } else { 912 if (new_tstamp) { 913 struct __kernel_timespec ts; 914 915 skb_get_new_timestampns(skb, &ts); 916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 917 sizeof(ts), &ts); 918 } else { 919 struct __kernel_old_timespec ts; 920 921 skb_get_timestampns(skb, &ts); 922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 923 sizeof(ts), &ts); 924 } 925 } 926 } 927 928 memset(&tss, 0, sizeof(tss)); 929 tsflags = READ_ONCE(sk->sk_tsflags); 930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 931 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 932 skb_is_err_queue(skb) || 933 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 934 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 935 empty = 0; 936 if (shhwtstamps && 937 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 938 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 939 skb_is_err_queue(skb) || 940 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 941 !skb_is_swtx_tstamp(skb, false_tstamp)) { 942 if_index = 0; 943 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 944 hwtstamp = get_timestamp(sk, skb, &if_index); 945 else 946 hwtstamp = shhwtstamps->hwtstamp; 947 948 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 949 hwtstamp = ptp_convert_timestamp(&hwtstamp, 950 READ_ONCE(sk->sk_bind_phc)); 951 952 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 953 empty = 0; 954 955 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 956 !skb_is_err_queue(skb)) 957 put_ts_pktinfo(msg, skb, if_index); 958 } 959 } 960 if (!empty) { 961 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 962 put_cmsg_scm_timestamping64(msg, &tss); 963 else 964 put_cmsg_scm_timestamping(msg, &tss); 965 966 if (skb_is_err_queue(skb) && skb->len && 967 SKB_EXT_ERR(skb)->opt_stats) 968 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 969 skb->len, skb->data); 970 } 971 } 972 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 973 974 #ifdef CONFIG_WIRELESS 975 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 976 struct sk_buff *skb) 977 { 978 int ack; 979 980 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 981 return; 982 if (!skb->wifi_acked_valid) 983 return; 984 985 ack = skb->wifi_acked; 986 987 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 988 } 989 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 990 #endif 991 992 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 993 struct sk_buff *skb) 994 { 995 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 996 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 997 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 998 } 999 1000 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1001 struct sk_buff *skb) 1002 { 1003 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1004 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1005 __u32 mark = skb->mark; 1006 1007 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1008 } 1009 } 1010 1011 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1012 struct sk_buff *skb) 1013 { 1014 sock_recv_timestamp(msg, sk, skb); 1015 sock_recv_drops(msg, sk, skb); 1016 sock_recv_mark(msg, sk, skb); 1017 } 1018 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1019 1020 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1021 size_t, int)); 1022 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1023 size_t, int)); 1024 1025 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1026 { 1027 trace_sock_recv_length(sk, ret, flags); 1028 } 1029 1030 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1031 int flags) 1032 { 1033 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1034 inet6_recvmsg, 1035 inet_recvmsg, sock, msg, 1036 msg_data_left(msg), flags); 1037 if (trace_sock_recv_length_enabled()) 1038 call_trace_sock_recv_length(sock->sk, ret, flags); 1039 return ret; 1040 } 1041 1042 /** 1043 * sock_recvmsg - receive a message from @sock 1044 * @sock: socket 1045 * @msg: message to receive 1046 * @flags: message flags 1047 * 1048 * Receives @msg from @sock, passing through LSM. Returns the total number 1049 * of bytes received, or an error. 1050 */ 1051 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1052 { 1053 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1054 1055 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1056 } 1057 EXPORT_SYMBOL(sock_recvmsg); 1058 1059 /** 1060 * kernel_recvmsg - Receive a message from a socket (kernel space) 1061 * @sock: The socket to receive the message from 1062 * @msg: Received message 1063 * @vec: Input s/g array for message data 1064 * @num: Size of input s/g array 1065 * @size: Number of bytes to read 1066 * @flags: Message flags (MSG_DONTWAIT, etc...) 1067 * 1068 * On return the msg structure contains the scatter/gather array passed in the 1069 * vec argument. The array is modified so that it consists of the unfilled 1070 * portion of the original array. 1071 * 1072 * The returned value is the total number of bytes received, or an error. 1073 */ 1074 1075 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1076 struct kvec *vec, size_t num, size_t size, int flags) 1077 { 1078 msg->msg_control_is_user = false; 1079 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1080 return sock_recvmsg(sock, msg, flags); 1081 } 1082 EXPORT_SYMBOL(kernel_recvmsg); 1083 1084 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1085 struct pipe_inode_info *pipe, size_t len, 1086 unsigned int flags) 1087 { 1088 struct socket *sock = file->private_data; 1089 const struct proto_ops *ops; 1090 1091 ops = READ_ONCE(sock->ops); 1092 if (unlikely(!ops->splice_read)) 1093 return copy_splice_read(file, ppos, pipe, len, flags); 1094 1095 return ops->splice_read(sock, ppos, pipe, len, flags); 1096 } 1097 1098 static void sock_splice_eof(struct file *file) 1099 { 1100 struct socket *sock = file->private_data; 1101 const struct proto_ops *ops; 1102 1103 ops = READ_ONCE(sock->ops); 1104 if (ops->splice_eof) 1105 ops->splice_eof(sock); 1106 } 1107 1108 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1109 { 1110 struct file *file = iocb->ki_filp; 1111 struct socket *sock = file->private_data; 1112 struct msghdr msg = {.msg_iter = *to, 1113 .msg_iocb = iocb}; 1114 ssize_t res; 1115 1116 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1117 msg.msg_flags = MSG_DONTWAIT; 1118 1119 if (iocb->ki_pos != 0) 1120 return -ESPIPE; 1121 1122 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1123 return 0; 1124 1125 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1126 *to = msg.msg_iter; 1127 return res; 1128 } 1129 1130 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1131 { 1132 struct file *file = iocb->ki_filp; 1133 struct socket *sock = file->private_data; 1134 struct msghdr msg = {.msg_iter = *from, 1135 .msg_iocb = iocb}; 1136 ssize_t res; 1137 1138 if (iocb->ki_pos != 0) 1139 return -ESPIPE; 1140 1141 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1142 msg.msg_flags = MSG_DONTWAIT; 1143 1144 if (sock->type == SOCK_SEQPACKET) 1145 msg.msg_flags |= MSG_EOR; 1146 1147 res = __sock_sendmsg(sock, &msg); 1148 *from = msg.msg_iter; 1149 return res; 1150 } 1151 1152 /* 1153 * Atomic setting of ioctl hooks to avoid race 1154 * with module unload. 1155 */ 1156 1157 static DEFINE_MUTEX(br_ioctl_mutex); 1158 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1159 unsigned int cmd, struct ifreq *ifr, 1160 void __user *uarg); 1161 1162 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1163 unsigned int cmd, struct ifreq *ifr, 1164 void __user *uarg)) 1165 { 1166 mutex_lock(&br_ioctl_mutex); 1167 br_ioctl_hook = hook; 1168 mutex_unlock(&br_ioctl_mutex); 1169 } 1170 EXPORT_SYMBOL(brioctl_set); 1171 1172 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1173 struct ifreq *ifr, void __user *uarg) 1174 { 1175 int err = -ENOPKG; 1176 1177 if (!br_ioctl_hook) 1178 request_module("bridge"); 1179 1180 mutex_lock(&br_ioctl_mutex); 1181 if (br_ioctl_hook) 1182 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1183 mutex_unlock(&br_ioctl_mutex); 1184 1185 return err; 1186 } 1187 1188 static DEFINE_MUTEX(vlan_ioctl_mutex); 1189 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1190 1191 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1192 { 1193 mutex_lock(&vlan_ioctl_mutex); 1194 vlan_ioctl_hook = hook; 1195 mutex_unlock(&vlan_ioctl_mutex); 1196 } 1197 EXPORT_SYMBOL(vlan_ioctl_set); 1198 1199 static long sock_do_ioctl(struct net *net, struct socket *sock, 1200 unsigned int cmd, unsigned long arg) 1201 { 1202 const struct proto_ops *ops = READ_ONCE(sock->ops); 1203 struct ifreq ifr; 1204 bool need_copyout; 1205 int err; 1206 void __user *argp = (void __user *)arg; 1207 void __user *data; 1208 1209 err = ops->ioctl(sock, cmd, arg); 1210 1211 /* 1212 * If this ioctl is unknown try to hand it down 1213 * to the NIC driver. 1214 */ 1215 if (err != -ENOIOCTLCMD) 1216 return err; 1217 1218 if (!is_socket_ioctl_cmd(cmd)) 1219 return -ENOTTY; 1220 1221 if (get_user_ifreq(&ifr, &data, argp)) 1222 return -EFAULT; 1223 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1224 if (!err && need_copyout) 1225 if (put_user_ifreq(&ifr, argp)) 1226 return -EFAULT; 1227 1228 return err; 1229 } 1230 1231 /* 1232 * With an ioctl, arg may well be a user mode pointer, but we don't know 1233 * what to do with it - that's up to the protocol still. 1234 */ 1235 1236 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1237 { 1238 const struct proto_ops *ops; 1239 struct socket *sock; 1240 struct sock *sk; 1241 void __user *argp = (void __user *)arg; 1242 int pid, err; 1243 struct net *net; 1244 1245 sock = file->private_data; 1246 ops = READ_ONCE(sock->ops); 1247 sk = sock->sk; 1248 net = sock_net(sk); 1249 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1250 struct ifreq ifr; 1251 void __user *data; 1252 bool need_copyout; 1253 if (get_user_ifreq(&ifr, &data, argp)) 1254 return -EFAULT; 1255 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1256 if (!err && need_copyout) 1257 if (put_user_ifreq(&ifr, argp)) 1258 return -EFAULT; 1259 } else 1260 #ifdef CONFIG_WEXT_CORE 1261 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1262 err = wext_handle_ioctl(net, cmd, argp); 1263 } else 1264 #endif 1265 switch (cmd) { 1266 case FIOSETOWN: 1267 case SIOCSPGRP: 1268 err = -EFAULT; 1269 if (get_user(pid, (int __user *)argp)) 1270 break; 1271 err = f_setown(sock->file, pid, 1); 1272 break; 1273 case FIOGETOWN: 1274 case SIOCGPGRP: 1275 err = put_user(f_getown(sock->file), 1276 (int __user *)argp); 1277 break; 1278 case SIOCGIFBR: 1279 case SIOCSIFBR: 1280 case SIOCBRADDBR: 1281 case SIOCBRDELBR: 1282 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1283 break; 1284 case SIOCGIFVLAN: 1285 case SIOCSIFVLAN: 1286 err = -ENOPKG; 1287 if (!vlan_ioctl_hook) 1288 request_module("8021q"); 1289 1290 mutex_lock(&vlan_ioctl_mutex); 1291 if (vlan_ioctl_hook) 1292 err = vlan_ioctl_hook(net, argp); 1293 mutex_unlock(&vlan_ioctl_mutex); 1294 break; 1295 case SIOCGSKNS: 1296 err = -EPERM; 1297 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1298 break; 1299 1300 err = open_related_ns(&net->ns, get_net_ns); 1301 break; 1302 case SIOCGSTAMP_OLD: 1303 case SIOCGSTAMPNS_OLD: 1304 if (!ops->gettstamp) { 1305 err = -ENOIOCTLCMD; 1306 break; 1307 } 1308 err = ops->gettstamp(sock, argp, 1309 cmd == SIOCGSTAMP_OLD, 1310 !IS_ENABLED(CONFIG_64BIT)); 1311 break; 1312 case SIOCGSTAMP_NEW: 1313 case SIOCGSTAMPNS_NEW: 1314 if (!ops->gettstamp) { 1315 err = -ENOIOCTLCMD; 1316 break; 1317 } 1318 err = ops->gettstamp(sock, argp, 1319 cmd == SIOCGSTAMP_NEW, 1320 false); 1321 break; 1322 1323 case SIOCGIFCONF: 1324 err = dev_ifconf(net, argp); 1325 break; 1326 1327 default: 1328 err = sock_do_ioctl(net, sock, cmd, arg); 1329 break; 1330 } 1331 return err; 1332 } 1333 1334 /** 1335 * sock_create_lite - creates a socket 1336 * @family: protocol family (AF_INET, ...) 1337 * @type: communication type (SOCK_STREAM, ...) 1338 * @protocol: protocol (0, ...) 1339 * @res: new socket 1340 * 1341 * Creates a new socket and assigns it to @res, passing through LSM. 1342 * The new socket initialization is not complete, see kernel_accept(). 1343 * Returns 0 or an error. On failure @res is set to %NULL. 1344 * This function internally uses GFP_KERNEL. 1345 */ 1346 1347 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1348 { 1349 int err; 1350 struct socket *sock = NULL; 1351 1352 err = security_socket_create(family, type, protocol, 1); 1353 if (err) 1354 goto out; 1355 1356 sock = sock_alloc(); 1357 if (!sock) { 1358 err = -ENOMEM; 1359 goto out; 1360 } 1361 1362 sock->type = type; 1363 err = security_socket_post_create(sock, family, type, protocol, 1); 1364 if (err) 1365 goto out_release; 1366 1367 out: 1368 *res = sock; 1369 return err; 1370 out_release: 1371 sock_release(sock); 1372 sock = NULL; 1373 goto out; 1374 } 1375 EXPORT_SYMBOL(sock_create_lite); 1376 1377 /* No kernel lock held - perfect */ 1378 static __poll_t sock_poll(struct file *file, poll_table *wait) 1379 { 1380 struct socket *sock = file->private_data; 1381 const struct proto_ops *ops = READ_ONCE(sock->ops); 1382 __poll_t events = poll_requested_events(wait), flag = 0; 1383 1384 if (!ops->poll) 1385 return 0; 1386 1387 if (sk_can_busy_loop(sock->sk)) { 1388 /* poll once if requested by the syscall */ 1389 if (events & POLL_BUSY_LOOP) 1390 sk_busy_loop(sock->sk, 1); 1391 1392 /* if this socket can poll_ll, tell the system call */ 1393 flag = POLL_BUSY_LOOP; 1394 } 1395 1396 return ops->poll(file, sock, wait) | flag; 1397 } 1398 1399 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1400 { 1401 struct socket *sock = file->private_data; 1402 1403 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1404 } 1405 1406 static int sock_close(struct inode *inode, struct file *filp) 1407 { 1408 __sock_release(SOCKET_I(inode), inode); 1409 return 0; 1410 } 1411 1412 /* 1413 * Update the socket async list 1414 * 1415 * Fasync_list locking strategy. 1416 * 1417 * 1. fasync_list is modified only under process context socket lock 1418 * i.e. under semaphore. 1419 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1420 * or under socket lock 1421 */ 1422 1423 static int sock_fasync(int fd, struct file *filp, int on) 1424 { 1425 struct socket *sock = filp->private_data; 1426 struct sock *sk = sock->sk; 1427 struct socket_wq *wq = &sock->wq; 1428 1429 if (sk == NULL) 1430 return -EINVAL; 1431 1432 lock_sock(sk); 1433 fasync_helper(fd, filp, on, &wq->fasync_list); 1434 1435 if (!wq->fasync_list) 1436 sock_reset_flag(sk, SOCK_FASYNC); 1437 else 1438 sock_set_flag(sk, SOCK_FASYNC); 1439 1440 release_sock(sk); 1441 return 0; 1442 } 1443 1444 /* This function may be called only under rcu_lock */ 1445 1446 int sock_wake_async(struct socket_wq *wq, int how, int band) 1447 { 1448 if (!wq || !wq->fasync_list) 1449 return -1; 1450 1451 switch (how) { 1452 case SOCK_WAKE_WAITD: 1453 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1454 break; 1455 goto call_kill; 1456 case SOCK_WAKE_SPACE: 1457 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1458 break; 1459 fallthrough; 1460 case SOCK_WAKE_IO: 1461 call_kill: 1462 kill_fasync(&wq->fasync_list, SIGIO, band); 1463 break; 1464 case SOCK_WAKE_URG: 1465 kill_fasync(&wq->fasync_list, SIGURG, band); 1466 } 1467 1468 return 0; 1469 } 1470 EXPORT_SYMBOL(sock_wake_async); 1471 1472 /** 1473 * __sock_create - creates a socket 1474 * @net: net namespace 1475 * @family: protocol family (AF_INET, ...) 1476 * @type: communication type (SOCK_STREAM, ...) 1477 * @protocol: protocol (0, ...) 1478 * @res: new socket 1479 * @kern: boolean for kernel space sockets 1480 * 1481 * Creates a new socket and assigns it to @res, passing through LSM. 1482 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1483 * be set to true if the socket resides in kernel space. 1484 * This function internally uses GFP_KERNEL. 1485 */ 1486 1487 int __sock_create(struct net *net, int family, int type, int protocol, 1488 struct socket **res, int kern) 1489 { 1490 int err; 1491 struct socket *sock; 1492 const struct net_proto_family *pf; 1493 1494 /* 1495 * Check protocol is in range 1496 */ 1497 if (family < 0 || family >= NPROTO) 1498 return -EAFNOSUPPORT; 1499 if (type < 0 || type >= SOCK_MAX) 1500 return -EINVAL; 1501 1502 /* Compatibility. 1503 1504 This uglymoron is moved from INET layer to here to avoid 1505 deadlock in module load. 1506 */ 1507 if (family == PF_INET && type == SOCK_PACKET) { 1508 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1509 current->comm); 1510 family = PF_PACKET; 1511 } 1512 1513 err = security_socket_create(family, type, protocol, kern); 1514 if (err) 1515 return err; 1516 1517 /* 1518 * Allocate the socket and allow the family to set things up. if 1519 * the protocol is 0, the family is instructed to select an appropriate 1520 * default. 1521 */ 1522 sock = sock_alloc(); 1523 if (!sock) { 1524 net_warn_ratelimited("socket: no more sockets\n"); 1525 return -ENFILE; /* Not exactly a match, but its the 1526 closest posix thing */ 1527 } 1528 1529 sock->type = type; 1530 1531 #ifdef CONFIG_MODULES 1532 /* Attempt to load a protocol module if the find failed. 1533 * 1534 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1535 * requested real, full-featured networking support upon configuration. 1536 * Otherwise module support will break! 1537 */ 1538 if (rcu_access_pointer(net_families[family]) == NULL) 1539 request_module("net-pf-%d", family); 1540 #endif 1541 1542 rcu_read_lock(); 1543 pf = rcu_dereference(net_families[family]); 1544 err = -EAFNOSUPPORT; 1545 if (!pf) 1546 goto out_release; 1547 1548 /* 1549 * We will call the ->create function, that possibly is in a loadable 1550 * module, so we have to bump that loadable module refcnt first. 1551 */ 1552 if (!try_module_get(pf->owner)) 1553 goto out_release; 1554 1555 /* Now protected by module ref count */ 1556 rcu_read_unlock(); 1557 1558 err = pf->create(net, sock, protocol, kern); 1559 if (err < 0) { 1560 /* ->create should release the allocated sock->sk object on error 1561 * but it may leave the dangling pointer 1562 */ 1563 sock->sk = NULL; 1564 goto out_module_put; 1565 } 1566 1567 /* 1568 * Now to bump the refcnt of the [loadable] module that owns this 1569 * socket at sock_release time we decrement its refcnt. 1570 */ 1571 if (!try_module_get(sock->ops->owner)) 1572 goto out_module_busy; 1573 1574 /* 1575 * Now that we're done with the ->create function, the [loadable] 1576 * module can have its refcnt decremented 1577 */ 1578 module_put(pf->owner); 1579 err = security_socket_post_create(sock, family, type, protocol, kern); 1580 if (err) 1581 goto out_sock_release; 1582 *res = sock; 1583 1584 return 0; 1585 1586 out_module_busy: 1587 err = -EAFNOSUPPORT; 1588 out_module_put: 1589 sock->ops = NULL; 1590 module_put(pf->owner); 1591 out_sock_release: 1592 sock_release(sock); 1593 return err; 1594 1595 out_release: 1596 rcu_read_unlock(); 1597 goto out_sock_release; 1598 } 1599 EXPORT_SYMBOL(__sock_create); 1600 1601 /** 1602 * sock_create - creates a socket 1603 * @family: protocol family (AF_INET, ...) 1604 * @type: communication type (SOCK_STREAM, ...) 1605 * @protocol: protocol (0, ...) 1606 * @res: new socket 1607 * 1608 * A wrapper around __sock_create(). 1609 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1610 */ 1611 1612 int sock_create(int family, int type, int protocol, struct socket **res) 1613 { 1614 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1615 } 1616 EXPORT_SYMBOL(sock_create); 1617 1618 /** 1619 * sock_create_kern - creates a socket (kernel space) 1620 * @net: net namespace 1621 * @family: protocol family (AF_INET, ...) 1622 * @type: communication type (SOCK_STREAM, ...) 1623 * @protocol: protocol (0, ...) 1624 * @res: new socket 1625 * 1626 * A wrapper around __sock_create(). 1627 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1628 */ 1629 1630 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1631 { 1632 return __sock_create(net, family, type, protocol, res, 1); 1633 } 1634 EXPORT_SYMBOL(sock_create_kern); 1635 1636 static struct socket *__sys_socket_create(int family, int type, int protocol) 1637 { 1638 struct socket *sock; 1639 int retval; 1640 1641 /* Check the SOCK_* constants for consistency. */ 1642 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1643 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1644 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1645 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1646 1647 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1648 return ERR_PTR(-EINVAL); 1649 type &= SOCK_TYPE_MASK; 1650 1651 retval = sock_create(family, type, protocol, &sock); 1652 if (retval < 0) 1653 return ERR_PTR(retval); 1654 1655 return sock; 1656 } 1657 1658 struct file *__sys_socket_file(int family, int type, int protocol) 1659 { 1660 struct socket *sock; 1661 int flags; 1662 1663 sock = __sys_socket_create(family, type, protocol); 1664 if (IS_ERR(sock)) 1665 return ERR_CAST(sock); 1666 1667 flags = type & ~SOCK_TYPE_MASK; 1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1670 1671 return sock_alloc_file(sock, flags, NULL); 1672 } 1673 1674 /* A hook for bpf progs to attach to and update socket protocol. 1675 * 1676 * A static noinline declaration here could cause the compiler to 1677 * optimize away the function. A global noinline declaration will 1678 * keep the definition, but may optimize away the callsite. 1679 * Therefore, __weak is needed to ensure that the call is still 1680 * emitted, by telling the compiler that we don't know what the 1681 * function might eventually be. 1682 */ 1683 1684 __bpf_hook_start(); 1685 1686 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1687 { 1688 return protocol; 1689 } 1690 1691 __bpf_hook_end(); 1692 1693 int __sys_socket(int family, int type, int protocol) 1694 { 1695 struct socket *sock; 1696 int flags; 1697 1698 sock = __sys_socket_create(family, type, 1699 update_socket_protocol(family, type, protocol)); 1700 if (IS_ERR(sock)) 1701 return PTR_ERR(sock); 1702 1703 flags = type & ~SOCK_TYPE_MASK; 1704 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1705 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1706 1707 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1708 } 1709 1710 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1711 { 1712 return __sys_socket(family, type, protocol); 1713 } 1714 1715 /* 1716 * Create a pair of connected sockets. 1717 */ 1718 1719 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1720 { 1721 struct socket *sock1, *sock2; 1722 int fd1, fd2, err; 1723 struct file *newfile1, *newfile2; 1724 int flags; 1725 1726 flags = type & ~SOCK_TYPE_MASK; 1727 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1728 return -EINVAL; 1729 type &= SOCK_TYPE_MASK; 1730 1731 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1732 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1733 1734 /* 1735 * reserve descriptors and make sure we won't fail 1736 * to return them to userland. 1737 */ 1738 fd1 = get_unused_fd_flags(flags); 1739 if (unlikely(fd1 < 0)) 1740 return fd1; 1741 1742 fd2 = get_unused_fd_flags(flags); 1743 if (unlikely(fd2 < 0)) { 1744 put_unused_fd(fd1); 1745 return fd2; 1746 } 1747 1748 err = put_user(fd1, &usockvec[0]); 1749 if (err) 1750 goto out; 1751 1752 err = put_user(fd2, &usockvec[1]); 1753 if (err) 1754 goto out; 1755 1756 /* 1757 * Obtain the first socket and check if the underlying protocol 1758 * supports the socketpair call. 1759 */ 1760 1761 err = sock_create(family, type, protocol, &sock1); 1762 if (unlikely(err < 0)) 1763 goto out; 1764 1765 err = sock_create(family, type, protocol, &sock2); 1766 if (unlikely(err < 0)) { 1767 sock_release(sock1); 1768 goto out; 1769 } 1770 1771 err = security_socket_socketpair(sock1, sock2); 1772 if (unlikely(err)) { 1773 sock_release(sock2); 1774 sock_release(sock1); 1775 goto out; 1776 } 1777 1778 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1779 if (unlikely(err < 0)) { 1780 sock_release(sock2); 1781 sock_release(sock1); 1782 goto out; 1783 } 1784 1785 newfile1 = sock_alloc_file(sock1, flags, NULL); 1786 if (IS_ERR(newfile1)) { 1787 err = PTR_ERR(newfile1); 1788 sock_release(sock2); 1789 goto out; 1790 } 1791 1792 newfile2 = sock_alloc_file(sock2, flags, NULL); 1793 if (IS_ERR(newfile2)) { 1794 err = PTR_ERR(newfile2); 1795 fput(newfile1); 1796 goto out; 1797 } 1798 1799 audit_fd_pair(fd1, fd2); 1800 1801 fd_install(fd1, newfile1); 1802 fd_install(fd2, newfile2); 1803 return 0; 1804 1805 out: 1806 put_unused_fd(fd2); 1807 put_unused_fd(fd1); 1808 return err; 1809 } 1810 1811 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1812 int __user *, usockvec) 1813 { 1814 return __sys_socketpair(family, type, protocol, usockvec); 1815 } 1816 1817 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1818 int addrlen) 1819 { 1820 int err; 1821 1822 err = security_socket_bind(sock, (struct sockaddr *)address, 1823 addrlen); 1824 if (!err) 1825 err = READ_ONCE(sock->ops)->bind(sock, 1826 (struct sockaddr *)address, 1827 addrlen); 1828 return err; 1829 } 1830 1831 /* 1832 * Bind a name to a socket. Nothing much to do here since it's 1833 * the protocol's responsibility to handle the local address. 1834 * 1835 * We move the socket address to kernel space before we call 1836 * the protocol layer (having also checked the address is ok). 1837 */ 1838 1839 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1840 { 1841 struct socket *sock; 1842 struct sockaddr_storage address; 1843 CLASS(fd, f)(fd); 1844 int err; 1845 1846 if (fd_empty(f)) 1847 return -EBADF; 1848 sock = sock_from_file(fd_file(f)); 1849 if (unlikely(!sock)) 1850 return -ENOTSOCK; 1851 1852 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1853 if (unlikely(err)) 1854 return err; 1855 1856 return __sys_bind_socket(sock, &address, addrlen); 1857 } 1858 1859 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1860 { 1861 return __sys_bind(fd, umyaddr, addrlen); 1862 } 1863 1864 /* 1865 * Perform a listen. Basically, we allow the protocol to do anything 1866 * necessary for a listen, and if that works, we mark the socket as 1867 * ready for listening. 1868 */ 1869 int __sys_listen_socket(struct socket *sock, int backlog) 1870 { 1871 int somaxconn, err; 1872 1873 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1874 if ((unsigned int)backlog > somaxconn) 1875 backlog = somaxconn; 1876 1877 err = security_socket_listen(sock, backlog); 1878 if (!err) 1879 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1880 return err; 1881 } 1882 1883 int __sys_listen(int fd, int backlog) 1884 { 1885 CLASS(fd, f)(fd); 1886 struct socket *sock; 1887 1888 if (fd_empty(f)) 1889 return -EBADF; 1890 sock = sock_from_file(fd_file(f)); 1891 if (unlikely(!sock)) 1892 return -ENOTSOCK; 1893 1894 return __sys_listen_socket(sock, backlog); 1895 } 1896 1897 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1898 { 1899 return __sys_listen(fd, backlog); 1900 } 1901 1902 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1903 struct sockaddr __user *upeer_sockaddr, 1904 int __user *upeer_addrlen, int flags) 1905 { 1906 struct socket *sock, *newsock; 1907 struct file *newfile; 1908 int err, len; 1909 struct sockaddr_storage address; 1910 const struct proto_ops *ops; 1911 1912 sock = sock_from_file(file); 1913 if (!sock) 1914 return ERR_PTR(-ENOTSOCK); 1915 1916 newsock = sock_alloc(); 1917 if (!newsock) 1918 return ERR_PTR(-ENFILE); 1919 ops = READ_ONCE(sock->ops); 1920 1921 newsock->type = sock->type; 1922 newsock->ops = ops; 1923 1924 /* 1925 * We don't need try_module_get here, as the listening socket (sock) 1926 * has the protocol module (sock->ops->owner) held. 1927 */ 1928 __module_get(ops->owner); 1929 1930 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1931 if (IS_ERR(newfile)) 1932 return newfile; 1933 1934 err = security_socket_accept(sock, newsock); 1935 if (err) 1936 goto out_fd; 1937 1938 arg->flags |= sock->file->f_flags; 1939 err = ops->accept(sock, newsock, arg); 1940 if (err < 0) 1941 goto out_fd; 1942 1943 if (upeer_sockaddr) { 1944 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1945 if (len < 0) { 1946 err = -ECONNABORTED; 1947 goto out_fd; 1948 } 1949 err = move_addr_to_user(&address, 1950 len, upeer_sockaddr, upeer_addrlen); 1951 if (err < 0) 1952 goto out_fd; 1953 } 1954 1955 /* File flags are not inherited via accept() unlike another OSes. */ 1956 return newfile; 1957 out_fd: 1958 fput(newfile); 1959 return ERR_PTR(err); 1960 } 1961 1962 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1963 int __user *upeer_addrlen, int flags) 1964 { 1965 struct proto_accept_arg arg = { }; 1966 struct file *newfile; 1967 int newfd; 1968 1969 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1970 return -EINVAL; 1971 1972 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1973 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1974 1975 newfd = get_unused_fd_flags(flags); 1976 if (unlikely(newfd < 0)) 1977 return newfd; 1978 1979 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1980 flags); 1981 if (IS_ERR(newfile)) { 1982 put_unused_fd(newfd); 1983 return PTR_ERR(newfile); 1984 } 1985 fd_install(newfd, newfile); 1986 return newfd; 1987 } 1988 1989 /* 1990 * For accept, we attempt to create a new socket, set up the link 1991 * with the client, wake up the client, then return the new 1992 * connected fd. We collect the address of the connector in kernel 1993 * space and move it to user at the very end. This is unclean because 1994 * we open the socket then return an error. 1995 * 1996 * 1003.1g adds the ability to recvmsg() to query connection pending 1997 * status to recvmsg. We need to add that support in a way thats 1998 * clean when we restructure accept also. 1999 */ 2000 2001 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2002 int __user *upeer_addrlen, int flags) 2003 { 2004 CLASS(fd, f)(fd); 2005 2006 if (fd_empty(f)) 2007 return -EBADF; 2008 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2009 upeer_addrlen, flags); 2010 } 2011 2012 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2013 int __user *, upeer_addrlen, int, flags) 2014 { 2015 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2016 } 2017 2018 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2019 int __user *, upeer_addrlen) 2020 { 2021 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2022 } 2023 2024 /* 2025 * Attempt to connect to a socket with the server address. The address 2026 * is in user space so we verify it is OK and move it to kernel space. 2027 * 2028 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2029 * break bindings 2030 * 2031 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2032 * other SEQPACKET protocols that take time to connect() as it doesn't 2033 * include the -EINPROGRESS status for such sockets. 2034 */ 2035 2036 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2037 int addrlen, int file_flags) 2038 { 2039 struct socket *sock; 2040 int err; 2041 2042 sock = sock_from_file(file); 2043 if (!sock) { 2044 err = -ENOTSOCK; 2045 goto out; 2046 } 2047 2048 err = 2049 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2050 if (err) 2051 goto out; 2052 2053 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2054 addrlen, sock->file->f_flags | file_flags); 2055 out: 2056 return err; 2057 } 2058 2059 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2060 { 2061 struct sockaddr_storage address; 2062 CLASS(fd, f)(fd); 2063 int ret; 2064 2065 if (fd_empty(f)) 2066 return -EBADF; 2067 2068 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2069 if (ret) 2070 return ret; 2071 2072 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2073 } 2074 2075 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2076 int, addrlen) 2077 { 2078 return __sys_connect(fd, uservaddr, addrlen); 2079 } 2080 2081 /* 2082 * Get the local address ('name') of a socket object. Move the obtained 2083 * name to user space. 2084 */ 2085 2086 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2087 int __user *usockaddr_len) 2088 { 2089 struct socket *sock; 2090 struct sockaddr_storage address; 2091 CLASS(fd, f)(fd); 2092 int err; 2093 2094 if (fd_empty(f)) 2095 return -EBADF; 2096 sock = sock_from_file(fd_file(f)); 2097 if (unlikely(!sock)) 2098 return -ENOTSOCK; 2099 2100 err = security_socket_getsockname(sock); 2101 if (err) 2102 return err; 2103 2104 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2105 if (err < 0) 2106 return err; 2107 2108 /* "err" is actually length in this case */ 2109 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2110 } 2111 2112 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2113 int __user *, usockaddr_len) 2114 { 2115 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2116 } 2117 2118 /* 2119 * Get the remote address ('name') of a socket object. Move the obtained 2120 * name to user space. 2121 */ 2122 2123 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2124 int __user *usockaddr_len) 2125 { 2126 struct socket *sock; 2127 struct sockaddr_storage address; 2128 CLASS(fd, f)(fd); 2129 int err; 2130 2131 if (fd_empty(f)) 2132 return -EBADF; 2133 sock = sock_from_file(fd_file(f)); 2134 if (unlikely(!sock)) 2135 return -ENOTSOCK; 2136 2137 err = security_socket_getpeername(sock); 2138 if (err) 2139 return err; 2140 2141 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2142 if (err < 0) 2143 return err; 2144 2145 /* "err" is actually length in this case */ 2146 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2147 } 2148 2149 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2150 int __user *, usockaddr_len) 2151 { 2152 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2153 } 2154 2155 /* 2156 * Send a datagram to a given address. We move the address into kernel 2157 * space and check the user space data area is readable before invoking 2158 * the protocol. 2159 */ 2160 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2161 struct sockaddr __user *addr, int addr_len) 2162 { 2163 struct socket *sock; 2164 struct sockaddr_storage address; 2165 int err; 2166 struct msghdr msg; 2167 2168 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2169 if (unlikely(err)) 2170 return err; 2171 2172 CLASS(fd, f)(fd); 2173 if (fd_empty(f)) 2174 return -EBADF; 2175 sock = sock_from_file(fd_file(f)); 2176 if (unlikely(!sock)) 2177 return -ENOTSOCK; 2178 2179 msg.msg_name = NULL; 2180 msg.msg_control = NULL; 2181 msg.msg_controllen = 0; 2182 msg.msg_namelen = 0; 2183 msg.msg_ubuf = NULL; 2184 if (addr) { 2185 err = move_addr_to_kernel(addr, addr_len, &address); 2186 if (err < 0) 2187 return err; 2188 msg.msg_name = (struct sockaddr *)&address; 2189 msg.msg_namelen = addr_len; 2190 } 2191 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2192 if (sock->file->f_flags & O_NONBLOCK) 2193 flags |= MSG_DONTWAIT; 2194 msg.msg_flags = flags; 2195 return __sock_sendmsg(sock, &msg); 2196 } 2197 2198 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2199 unsigned int, flags, struct sockaddr __user *, addr, 2200 int, addr_len) 2201 { 2202 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2203 } 2204 2205 /* 2206 * Send a datagram down a socket. 2207 */ 2208 2209 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2210 unsigned int, flags) 2211 { 2212 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2213 } 2214 2215 /* 2216 * Receive a frame from the socket and optionally record the address of the 2217 * sender. We verify the buffers are writable and if needed move the 2218 * sender address from kernel to user space. 2219 */ 2220 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2221 struct sockaddr __user *addr, int __user *addr_len) 2222 { 2223 struct sockaddr_storage address; 2224 struct msghdr msg = { 2225 /* Save some cycles and don't copy the address if not needed */ 2226 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2227 }; 2228 struct socket *sock; 2229 int err, err2; 2230 2231 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2232 if (unlikely(err)) 2233 return err; 2234 2235 CLASS(fd, f)(fd); 2236 2237 if (fd_empty(f)) 2238 return -EBADF; 2239 sock = sock_from_file(fd_file(f)); 2240 if (unlikely(!sock)) 2241 return -ENOTSOCK; 2242 2243 if (sock->file->f_flags & O_NONBLOCK) 2244 flags |= MSG_DONTWAIT; 2245 err = sock_recvmsg(sock, &msg, flags); 2246 2247 if (err >= 0 && addr != NULL) { 2248 err2 = move_addr_to_user(&address, 2249 msg.msg_namelen, addr, addr_len); 2250 if (err2 < 0) 2251 err = err2; 2252 } 2253 return err; 2254 } 2255 2256 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2257 unsigned int, flags, struct sockaddr __user *, addr, 2258 int __user *, addr_len) 2259 { 2260 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2261 } 2262 2263 /* 2264 * Receive a datagram from a socket. 2265 */ 2266 2267 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2268 unsigned int, flags) 2269 { 2270 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2271 } 2272 2273 static bool sock_use_custom_sol_socket(const struct socket *sock) 2274 { 2275 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2276 } 2277 2278 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2279 int optname, sockptr_t optval, int optlen) 2280 { 2281 const struct proto_ops *ops; 2282 char *kernel_optval = NULL; 2283 int err; 2284 2285 if (optlen < 0) 2286 return -EINVAL; 2287 2288 err = security_socket_setsockopt(sock, level, optname); 2289 if (err) 2290 goto out_put; 2291 2292 if (!compat) 2293 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2294 optval, &optlen, 2295 &kernel_optval); 2296 if (err < 0) 2297 goto out_put; 2298 if (err > 0) { 2299 err = 0; 2300 goto out_put; 2301 } 2302 2303 if (kernel_optval) 2304 optval = KERNEL_SOCKPTR(kernel_optval); 2305 ops = READ_ONCE(sock->ops); 2306 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2307 err = sock_setsockopt(sock, level, optname, optval, optlen); 2308 else if (unlikely(!ops->setsockopt)) 2309 err = -EOPNOTSUPP; 2310 else 2311 err = ops->setsockopt(sock, level, optname, optval, 2312 optlen); 2313 kfree(kernel_optval); 2314 out_put: 2315 return err; 2316 } 2317 EXPORT_SYMBOL(do_sock_setsockopt); 2318 2319 /* Set a socket option. Because we don't know the option lengths we have 2320 * to pass the user mode parameter for the protocols to sort out. 2321 */ 2322 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2323 int optlen) 2324 { 2325 sockptr_t optval = USER_SOCKPTR(user_optval); 2326 bool compat = in_compat_syscall(); 2327 struct socket *sock; 2328 CLASS(fd, f)(fd); 2329 2330 if (fd_empty(f)) 2331 return -EBADF; 2332 sock = sock_from_file(fd_file(f)); 2333 if (unlikely(!sock)) 2334 return -ENOTSOCK; 2335 2336 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2337 } 2338 2339 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2340 char __user *, optval, int, optlen) 2341 { 2342 return __sys_setsockopt(fd, level, optname, optval, optlen); 2343 } 2344 2345 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2346 int optname)); 2347 2348 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2349 int optname, sockptr_t optval, sockptr_t optlen) 2350 { 2351 int max_optlen __maybe_unused = 0; 2352 const struct proto_ops *ops; 2353 int err; 2354 2355 err = security_socket_getsockopt(sock, level, optname); 2356 if (err) 2357 return err; 2358 2359 if (!compat) 2360 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2361 2362 ops = READ_ONCE(sock->ops); 2363 if (level == SOL_SOCKET) { 2364 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2365 } else if (unlikely(!ops->getsockopt)) { 2366 err = -EOPNOTSUPP; 2367 } else { 2368 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2369 "Invalid argument type")) 2370 return -EOPNOTSUPP; 2371 2372 err = ops->getsockopt(sock, level, optname, optval.user, 2373 optlen.user); 2374 } 2375 2376 if (!compat) 2377 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2378 optval, optlen, max_optlen, 2379 err); 2380 2381 return err; 2382 } 2383 EXPORT_SYMBOL(do_sock_getsockopt); 2384 2385 /* 2386 * Get a socket option. Because we don't know the option lengths we have 2387 * to pass a user mode parameter for the protocols to sort out. 2388 */ 2389 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2390 int __user *optlen) 2391 { 2392 struct socket *sock; 2393 CLASS(fd, f)(fd); 2394 2395 if (fd_empty(f)) 2396 return -EBADF; 2397 sock = sock_from_file(fd_file(f)); 2398 if (unlikely(!sock)) 2399 return -ENOTSOCK; 2400 2401 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2402 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2403 } 2404 2405 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2406 char __user *, optval, int __user *, optlen) 2407 { 2408 return __sys_getsockopt(fd, level, optname, optval, optlen); 2409 } 2410 2411 /* 2412 * Shutdown a socket. 2413 */ 2414 2415 int __sys_shutdown_sock(struct socket *sock, int how) 2416 { 2417 int err; 2418 2419 err = security_socket_shutdown(sock, how); 2420 if (!err) 2421 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2422 2423 return err; 2424 } 2425 2426 int __sys_shutdown(int fd, int how) 2427 { 2428 struct socket *sock; 2429 CLASS(fd, f)(fd); 2430 2431 if (fd_empty(f)) 2432 return -EBADF; 2433 sock = sock_from_file(fd_file(f)); 2434 if (unlikely(!sock)) 2435 return -ENOTSOCK; 2436 2437 return __sys_shutdown_sock(sock, how); 2438 } 2439 2440 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2441 { 2442 return __sys_shutdown(fd, how); 2443 } 2444 2445 /* A couple of helpful macros for getting the address of the 32/64 bit 2446 * fields which are the same type (int / unsigned) on our platforms. 2447 */ 2448 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2449 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2450 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2451 2452 struct used_address { 2453 struct sockaddr_storage name; 2454 unsigned int name_len; 2455 }; 2456 2457 int __copy_msghdr(struct msghdr *kmsg, 2458 struct user_msghdr *msg, 2459 struct sockaddr __user **save_addr) 2460 { 2461 ssize_t err; 2462 2463 kmsg->msg_control_is_user = true; 2464 kmsg->msg_get_inq = 0; 2465 kmsg->msg_control_user = msg->msg_control; 2466 kmsg->msg_controllen = msg->msg_controllen; 2467 kmsg->msg_flags = msg->msg_flags; 2468 2469 kmsg->msg_namelen = msg->msg_namelen; 2470 if (!msg->msg_name) 2471 kmsg->msg_namelen = 0; 2472 2473 if (kmsg->msg_namelen < 0) 2474 return -EINVAL; 2475 2476 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2477 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2478 2479 if (save_addr) 2480 *save_addr = msg->msg_name; 2481 2482 if (msg->msg_name && kmsg->msg_namelen) { 2483 if (!save_addr) { 2484 err = move_addr_to_kernel(msg->msg_name, 2485 kmsg->msg_namelen, 2486 kmsg->msg_name); 2487 if (err < 0) 2488 return err; 2489 } 2490 } else { 2491 kmsg->msg_name = NULL; 2492 kmsg->msg_namelen = 0; 2493 } 2494 2495 if (msg->msg_iovlen > UIO_MAXIOV) 2496 return -EMSGSIZE; 2497 2498 kmsg->msg_iocb = NULL; 2499 kmsg->msg_ubuf = NULL; 2500 return 0; 2501 } 2502 2503 static int copy_msghdr_from_user(struct msghdr *kmsg, 2504 struct user_msghdr __user *umsg, 2505 struct sockaddr __user **save_addr, 2506 struct iovec **iov) 2507 { 2508 struct user_msghdr msg; 2509 ssize_t err; 2510 2511 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2512 return -EFAULT; 2513 2514 err = __copy_msghdr(kmsg, &msg, save_addr); 2515 if (err) 2516 return err; 2517 2518 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2519 msg.msg_iov, msg.msg_iovlen, 2520 UIO_FASTIOV, iov, &kmsg->msg_iter); 2521 return err < 0 ? err : 0; 2522 } 2523 2524 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2525 unsigned int flags, struct used_address *used_address, 2526 unsigned int allowed_msghdr_flags) 2527 { 2528 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2529 __aligned(sizeof(__kernel_size_t)); 2530 /* 20 is size of ipv6_pktinfo */ 2531 unsigned char *ctl_buf = ctl; 2532 int ctl_len; 2533 ssize_t err; 2534 2535 err = -ENOBUFS; 2536 2537 if (msg_sys->msg_controllen > INT_MAX) 2538 goto out; 2539 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2540 ctl_len = msg_sys->msg_controllen; 2541 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2542 err = 2543 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2544 sizeof(ctl)); 2545 if (err) 2546 goto out; 2547 ctl_buf = msg_sys->msg_control; 2548 ctl_len = msg_sys->msg_controllen; 2549 } else if (ctl_len) { 2550 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2551 CMSG_ALIGN(sizeof(struct cmsghdr))); 2552 if (ctl_len > sizeof(ctl)) { 2553 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2554 if (ctl_buf == NULL) 2555 goto out; 2556 } 2557 err = -EFAULT; 2558 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2559 goto out_freectl; 2560 msg_sys->msg_control = ctl_buf; 2561 msg_sys->msg_control_is_user = false; 2562 } 2563 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2564 msg_sys->msg_flags = flags; 2565 2566 if (sock->file->f_flags & O_NONBLOCK) 2567 msg_sys->msg_flags |= MSG_DONTWAIT; 2568 /* 2569 * If this is sendmmsg() and current destination address is same as 2570 * previously succeeded address, omit asking LSM's decision. 2571 * used_address->name_len is initialized to UINT_MAX so that the first 2572 * destination address never matches. 2573 */ 2574 if (used_address && msg_sys->msg_name && 2575 used_address->name_len == msg_sys->msg_namelen && 2576 !memcmp(&used_address->name, msg_sys->msg_name, 2577 used_address->name_len)) { 2578 err = sock_sendmsg_nosec(sock, msg_sys); 2579 goto out_freectl; 2580 } 2581 err = __sock_sendmsg(sock, msg_sys); 2582 /* 2583 * If this is sendmmsg() and sending to current destination address was 2584 * successful, remember it. 2585 */ 2586 if (used_address && err >= 0) { 2587 used_address->name_len = msg_sys->msg_namelen; 2588 if (msg_sys->msg_name) 2589 memcpy(&used_address->name, msg_sys->msg_name, 2590 used_address->name_len); 2591 } 2592 2593 out_freectl: 2594 if (ctl_buf != ctl) 2595 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2596 out: 2597 return err; 2598 } 2599 2600 static int sendmsg_copy_msghdr(struct msghdr *msg, 2601 struct user_msghdr __user *umsg, unsigned flags, 2602 struct iovec **iov) 2603 { 2604 int err; 2605 2606 if (flags & MSG_CMSG_COMPAT) { 2607 struct compat_msghdr __user *msg_compat; 2608 2609 msg_compat = (struct compat_msghdr __user *) umsg; 2610 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2611 } else { 2612 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2613 } 2614 if (err < 0) 2615 return err; 2616 2617 return 0; 2618 } 2619 2620 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2621 struct msghdr *msg_sys, unsigned int flags, 2622 struct used_address *used_address, 2623 unsigned int allowed_msghdr_flags) 2624 { 2625 struct sockaddr_storage address; 2626 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2627 ssize_t err; 2628 2629 msg_sys->msg_name = &address; 2630 2631 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2632 if (err < 0) 2633 return err; 2634 2635 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2636 allowed_msghdr_flags); 2637 kfree(iov); 2638 return err; 2639 } 2640 2641 /* 2642 * BSD sendmsg interface 2643 */ 2644 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2645 unsigned int flags) 2646 { 2647 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2648 } 2649 2650 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2651 bool forbid_cmsg_compat) 2652 { 2653 struct msghdr msg_sys; 2654 struct socket *sock; 2655 2656 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2657 return -EINVAL; 2658 2659 CLASS(fd, f)(fd); 2660 2661 if (fd_empty(f)) 2662 return -EBADF; 2663 sock = sock_from_file(fd_file(f)); 2664 if (unlikely(!sock)) 2665 return -ENOTSOCK; 2666 2667 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2668 } 2669 2670 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2671 { 2672 return __sys_sendmsg(fd, msg, flags, true); 2673 } 2674 2675 /* 2676 * Linux sendmmsg interface 2677 */ 2678 2679 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2680 unsigned int flags, bool forbid_cmsg_compat) 2681 { 2682 int err, datagrams; 2683 struct socket *sock; 2684 struct mmsghdr __user *entry; 2685 struct compat_mmsghdr __user *compat_entry; 2686 struct msghdr msg_sys; 2687 struct used_address used_address; 2688 unsigned int oflags = flags; 2689 2690 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2691 return -EINVAL; 2692 2693 if (vlen > UIO_MAXIOV) 2694 vlen = UIO_MAXIOV; 2695 2696 datagrams = 0; 2697 2698 CLASS(fd, f)(fd); 2699 2700 if (fd_empty(f)) 2701 return -EBADF; 2702 sock = sock_from_file(fd_file(f)); 2703 if (unlikely(!sock)) 2704 return -ENOTSOCK; 2705 2706 used_address.name_len = UINT_MAX; 2707 entry = mmsg; 2708 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2709 err = 0; 2710 flags |= MSG_BATCH; 2711 2712 while (datagrams < vlen) { 2713 if (datagrams == vlen - 1) 2714 flags = oflags; 2715 2716 if (MSG_CMSG_COMPAT & flags) { 2717 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2718 &msg_sys, flags, &used_address, MSG_EOR); 2719 if (err < 0) 2720 break; 2721 err = __put_user(err, &compat_entry->msg_len); 2722 ++compat_entry; 2723 } else { 2724 err = ___sys_sendmsg(sock, 2725 (struct user_msghdr __user *)entry, 2726 &msg_sys, flags, &used_address, MSG_EOR); 2727 if (err < 0) 2728 break; 2729 err = put_user(err, &entry->msg_len); 2730 ++entry; 2731 } 2732 2733 if (err) 2734 break; 2735 ++datagrams; 2736 if (msg_data_left(&msg_sys)) 2737 break; 2738 cond_resched(); 2739 } 2740 2741 /* We only return an error if no datagrams were able to be sent */ 2742 if (datagrams != 0) 2743 return datagrams; 2744 2745 return err; 2746 } 2747 2748 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2749 unsigned int, vlen, unsigned int, flags) 2750 { 2751 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2752 } 2753 2754 static int recvmsg_copy_msghdr(struct msghdr *msg, 2755 struct user_msghdr __user *umsg, unsigned flags, 2756 struct sockaddr __user **uaddr, 2757 struct iovec **iov) 2758 { 2759 ssize_t err; 2760 2761 if (MSG_CMSG_COMPAT & flags) { 2762 struct compat_msghdr __user *msg_compat; 2763 2764 msg_compat = (struct compat_msghdr __user *) umsg; 2765 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2766 } else { 2767 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2768 } 2769 if (err < 0) 2770 return err; 2771 2772 return 0; 2773 } 2774 2775 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2776 struct user_msghdr __user *msg, 2777 struct sockaddr __user *uaddr, 2778 unsigned int flags, int nosec) 2779 { 2780 struct compat_msghdr __user *msg_compat = 2781 (struct compat_msghdr __user *) msg; 2782 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2783 struct sockaddr_storage addr; 2784 unsigned long cmsg_ptr; 2785 int len; 2786 ssize_t err; 2787 2788 msg_sys->msg_name = &addr; 2789 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2790 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2791 2792 /* We assume all kernel code knows the size of sockaddr_storage */ 2793 msg_sys->msg_namelen = 0; 2794 2795 if (sock->file->f_flags & O_NONBLOCK) 2796 flags |= MSG_DONTWAIT; 2797 2798 if (unlikely(nosec)) 2799 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2800 else 2801 err = sock_recvmsg(sock, msg_sys, flags); 2802 2803 if (err < 0) 2804 goto out; 2805 len = err; 2806 2807 if (uaddr != NULL) { 2808 err = move_addr_to_user(&addr, 2809 msg_sys->msg_namelen, uaddr, 2810 uaddr_len); 2811 if (err < 0) 2812 goto out; 2813 } 2814 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2815 COMPAT_FLAGS(msg)); 2816 if (err) 2817 goto out; 2818 if (MSG_CMSG_COMPAT & flags) 2819 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2820 &msg_compat->msg_controllen); 2821 else 2822 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2823 &msg->msg_controllen); 2824 if (err) 2825 goto out; 2826 err = len; 2827 out: 2828 return err; 2829 } 2830 2831 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2832 struct msghdr *msg_sys, unsigned int flags, int nosec) 2833 { 2834 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2835 /* user mode address pointers */ 2836 struct sockaddr __user *uaddr; 2837 ssize_t err; 2838 2839 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2840 if (err < 0) 2841 return err; 2842 2843 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2844 kfree(iov); 2845 return err; 2846 } 2847 2848 /* 2849 * BSD recvmsg interface 2850 */ 2851 2852 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2853 struct user_msghdr __user *umsg, 2854 struct sockaddr __user *uaddr, unsigned int flags) 2855 { 2856 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2857 } 2858 2859 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2860 bool forbid_cmsg_compat) 2861 { 2862 struct msghdr msg_sys; 2863 struct socket *sock; 2864 2865 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2866 return -EINVAL; 2867 2868 CLASS(fd, f)(fd); 2869 2870 if (fd_empty(f)) 2871 return -EBADF; 2872 sock = sock_from_file(fd_file(f)); 2873 if (unlikely(!sock)) 2874 return -ENOTSOCK; 2875 2876 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2877 } 2878 2879 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2880 unsigned int, flags) 2881 { 2882 return __sys_recvmsg(fd, msg, flags, true); 2883 } 2884 2885 /* 2886 * Linux recvmmsg interface 2887 */ 2888 2889 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2890 unsigned int vlen, unsigned int flags, 2891 struct timespec64 *timeout) 2892 { 2893 int err = 0, datagrams; 2894 struct socket *sock; 2895 struct mmsghdr __user *entry; 2896 struct compat_mmsghdr __user *compat_entry; 2897 struct msghdr msg_sys; 2898 struct timespec64 end_time; 2899 struct timespec64 timeout64; 2900 2901 if (timeout && 2902 poll_select_set_timeout(&end_time, timeout->tv_sec, 2903 timeout->tv_nsec)) 2904 return -EINVAL; 2905 2906 datagrams = 0; 2907 2908 CLASS(fd, f)(fd); 2909 2910 if (fd_empty(f)) 2911 return -EBADF; 2912 sock = sock_from_file(fd_file(f)); 2913 if (unlikely(!sock)) 2914 return -ENOTSOCK; 2915 2916 if (likely(!(flags & MSG_ERRQUEUE))) { 2917 err = sock_error(sock->sk); 2918 if (err) 2919 return err; 2920 } 2921 2922 entry = mmsg; 2923 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2924 2925 while (datagrams < vlen) { 2926 /* 2927 * No need to ask LSM for more than the first datagram. 2928 */ 2929 if (MSG_CMSG_COMPAT & flags) { 2930 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2931 &msg_sys, flags & ~MSG_WAITFORONE, 2932 datagrams); 2933 if (err < 0) 2934 break; 2935 err = __put_user(err, &compat_entry->msg_len); 2936 ++compat_entry; 2937 } else { 2938 err = ___sys_recvmsg(sock, 2939 (struct user_msghdr __user *)entry, 2940 &msg_sys, flags & ~MSG_WAITFORONE, 2941 datagrams); 2942 if (err < 0) 2943 break; 2944 err = put_user(err, &entry->msg_len); 2945 ++entry; 2946 } 2947 2948 if (err) 2949 break; 2950 ++datagrams; 2951 2952 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2953 if (flags & MSG_WAITFORONE) 2954 flags |= MSG_DONTWAIT; 2955 2956 if (timeout) { 2957 ktime_get_ts64(&timeout64); 2958 *timeout = timespec64_sub(end_time, timeout64); 2959 if (timeout->tv_sec < 0) { 2960 timeout->tv_sec = timeout->tv_nsec = 0; 2961 break; 2962 } 2963 2964 /* Timeout, return less than vlen datagrams */ 2965 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2966 break; 2967 } 2968 2969 /* Out of band data, return right away */ 2970 if (msg_sys.msg_flags & MSG_OOB) 2971 break; 2972 cond_resched(); 2973 } 2974 2975 if (err == 0) 2976 return datagrams; 2977 2978 if (datagrams == 0) 2979 return err; 2980 2981 /* 2982 * We may return less entries than requested (vlen) if the 2983 * sock is non block and there aren't enough datagrams... 2984 */ 2985 if (err != -EAGAIN) { 2986 /* 2987 * ... or if recvmsg returns an error after we 2988 * received some datagrams, where we record the 2989 * error to return on the next call or if the 2990 * app asks about it using getsockopt(SO_ERROR). 2991 */ 2992 WRITE_ONCE(sock->sk->sk_err, -err); 2993 } 2994 return datagrams; 2995 } 2996 2997 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2998 unsigned int vlen, unsigned int flags, 2999 struct __kernel_timespec __user *timeout, 3000 struct old_timespec32 __user *timeout32) 3001 { 3002 int datagrams; 3003 struct timespec64 timeout_sys; 3004 3005 if (timeout && get_timespec64(&timeout_sys, timeout)) 3006 return -EFAULT; 3007 3008 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3009 return -EFAULT; 3010 3011 if (!timeout && !timeout32) 3012 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3013 3014 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3015 3016 if (datagrams <= 0) 3017 return datagrams; 3018 3019 if (timeout && put_timespec64(&timeout_sys, timeout)) 3020 datagrams = -EFAULT; 3021 3022 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3023 datagrams = -EFAULT; 3024 3025 return datagrams; 3026 } 3027 3028 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3029 unsigned int, vlen, unsigned int, flags, 3030 struct __kernel_timespec __user *, timeout) 3031 { 3032 if (flags & MSG_CMSG_COMPAT) 3033 return -EINVAL; 3034 3035 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3036 } 3037 3038 #ifdef CONFIG_COMPAT_32BIT_TIME 3039 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3040 unsigned int, vlen, unsigned int, flags, 3041 struct old_timespec32 __user *, timeout) 3042 { 3043 if (flags & MSG_CMSG_COMPAT) 3044 return -EINVAL; 3045 3046 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3047 } 3048 #endif 3049 3050 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3051 /* Argument list sizes for sys_socketcall */ 3052 #define AL(x) ((x) * sizeof(unsigned long)) 3053 static const unsigned char nargs[21] = { 3054 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3055 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3056 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3057 AL(4), AL(5), AL(4) 3058 }; 3059 3060 #undef AL 3061 3062 /* 3063 * System call vectors. 3064 * 3065 * Argument checking cleaned up. Saved 20% in size. 3066 * This function doesn't need to set the kernel lock because 3067 * it is set by the callees. 3068 */ 3069 3070 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3071 { 3072 unsigned long a[AUDITSC_ARGS]; 3073 unsigned long a0, a1; 3074 int err; 3075 unsigned int len; 3076 3077 if (call < 1 || call > SYS_SENDMMSG) 3078 return -EINVAL; 3079 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3080 3081 len = nargs[call]; 3082 if (len > sizeof(a)) 3083 return -EINVAL; 3084 3085 /* copy_from_user should be SMP safe. */ 3086 if (copy_from_user(a, args, len)) 3087 return -EFAULT; 3088 3089 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3090 if (err) 3091 return err; 3092 3093 a0 = a[0]; 3094 a1 = a[1]; 3095 3096 switch (call) { 3097 case SYS_SOCKET: 3098 err = __sys_socket(a0, a1, a[2]); 3099 break; 3100 case SYS_BIND: 3101 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3102 break; 3103 case SYS_CONNECT: 3104 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3105 break; 3106 case SYS_LISTEN: 3107 err = __sys_listen(a0, a1); 3108 break; 3109 case SYS_ACCEPT: 3110 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3111 (int __user *)a[2], 0); 3112 break; 3113 case SYS_GETSOCKNAME: 3114 err = 3115 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3116 (int __user *)a[2]); 3117 break; 3118 case SYS_GETPEERNAME: 3119 err = 3120 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3121 (int __user *)a[2]); 3122 break; 3123 case SYS_SOCKETPAIR: 3124 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3125 break; 3126 case SYS_SEND: 3127 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3128 NULL, 0); 3129 break; 3130 case SYS_SENDTO: 3131 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3132 (struct sockaddr __user *)a[4], a[5]); 3133 break; 3134 case SYS_RECV: 3135 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3136 NULL, NULL); 3137 break; 3138 case SYS_RECVFROM: 3139 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3140 (struct sockaddr __user *)a[4], 3141 (int __user *)a[5]); 3142 break; 3143 case SYS_SHUTDOWN: 3144 err = __sys_shutdown(a0, a1); 3145 break; 3146 case SYS_SETSOCKOPT: 3147 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3148 a[4]); 3149 break; 3150 case SYS_GETSOCKOPT: 3151 err = 3152 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3153 (int __user *)a[4]); 3154 break; 3155 case SYS_SENDMSG: 3156 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3157 a[2], true); 3158 break; 3159 case SYS_SENDMMSG: 3160 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3161 a[3], true); 3162 break; 3163 case SYS_RECVMSG: 3164 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3165 a[2], true); 3166 break; 3167 case SYS_RECVMMSG: 3168 if (IS_ENABLED(CONFIG_64BIT)) 3169 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3170 a[2], a[3], 3171 (struct __kernel_timespec __user *)a[4], 3172 NULL); 3173 else 3174 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3175 a[2], a[3], NULL, 3176 (struct old_timespec32 __user *)a[4]); 3177 break; 3178 case SYS_ACCEPT4: 3179 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3180 (int __user *)a[2], a[3]); 3181 break; 3182 default: 3183 err = -EINVAL; 3184 break; 3185 } 3186 return err; 3187 } 3188 3189 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3190 3191 /** 3192 * sock_register - add a socket protocol handler 3193 * @ops: description of protocol 3194 * 3195 * This function is called by a protocol handler that wants to 3196 * advertise its address family, and have it linked into the 3197 * socket interface. The value ops->family corresponds to the 3198 * socket system call protocol family. 3199 */ 3200 int sock_register(const struct net_proto_family *ops) 3201 { 3202 int err; 3203 3204 if (ops->family >= NPROTO) { 3205 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3206 return -ENOBUFS; 3207 } 3208 3209 spin_lock(&net_family_lock); 3210 if (rcu_dereference_protected(net_families[ops->family], 3211 lockdep_is_held(&net_family_lock))) 3212 err = -EEXIST; 3213 else { 3214 rcu_assign_pointer(net_families[ops->family], ops); 3215 err = 0; 3216 } 3217 spin_unlock(&net_family_lock); 3218 3219 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3220 return err; 3221 } 3222 EXPORT_SYMBOL(sock_register); 3223 3224 /** 3225 * sock_unregister - remove a protocol handler 3226 * @family: protocol family to remove 3227 * 3228 * This function is called by a protocol handler that wants to 3229 * remove its address family, and have it unlinked from the 3230 * new socket creation. 3231 * 3232 * If protocol handler is a module, then it can use module reference 3233 * counts to protect against new references. If protocol handler is not 3234 * a module then it needs to provide its own protection in 3235 * the ops->create routine. 3236 */ 3237 void sock_unregister(int family) 3238 { 3239 BUG_ON(family < 0 || family >= NPROTO); 3240 3241 spin_lock(&net_family_lock); 3242 RCU_INIT_POINTER(net_families[family], NULL); 3243 spin_unlock(&net_family_lock); 3244 3245 synchronize_rcu(); 3246 3247 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3248 } 3249 EXPORT_SYMBOL(sock_unregister); 3250 3251 bool sock_is_registered(int family) 3252 { 3253 return family < NPROTO && rcu_access_pointer(net_families[family]); 3254 } 3255 3256 static int __init sock_init(void) 3257 { 3258 int err; 3259 /* 3260 * Initialize the network sysctl infrastructure. 3261 */ 3262 err = net_sysctl_init(); 3263 if (err) 3264 goto out; 3265 3266 /* 3267 * Initialize skbuff SLAB cache 3268 */ 3269 skb_init(); 3270 3271 /* 3272 * Initialize the protocols module. 3273 */ 3274 3275 init_inodecache(); 3276 3277 err = register_filesystem(&sock_fs_type); 3278 if (err) 3279 goto out; 3280 sock_mnt = kern_mount(&sock_fs_type); 3281 if (IS_ERR(sock_mnt)) { 3282 err = PTR_ERR(sock_mnt); 3283 goto out_mount; 3284 } 3285 3286 /* The real protocol initialization is performed in later initcalls. 3287 */ 3288 3289 #ifdef CONFIG_NETFILTER 3290 err = netfilter_init(); 3291 if (err) 3292 goto out; 3293 #endif 3294 3295 ptp_classifier_init(); 3296 3297 out: 3298 return err; 3299 3300 out_mount: 3301 unregister_filesystem(&sock_fs_type); 3302 goto out; 3303 } 3304 3305 core_initcall(sock_init); /* early initcall */ 3306 3307 #ifdef CONFIG_PROC_FS 3308 void socket_seq_show(struct seq_file *seq) 3309 { 3310 seq_printf(seq, "sockets: used %d\n", 3311 sock_inuse_get(seq->private)); 3312 } 3313 #endif /* CONFIG_PROC_FS */ 3314 3315 /* Handle the fact that while struct ifreq has the same *layout* on 3316 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3317 * which are handled elsewhere, it still has different *size* due to 3318 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3319 * resulting in struct ifreq being 32 and 40 bytes respectively). 3320 * As a result, if the struct happens to be at the end of a page and 3321 * the next page isn't readable/writable, we get a fault. To prevent 3322 * that, copy back and forth to the full size. 3323 */ 3324 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3325 { 3326 if (in_compat_syscall()) { 3327 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3328 3329 memset(ifr, 0, sizeof(*ifr)); 3330 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3331 return -EFAULT; 3332 3333 if (ifrdata) 3334 *ifrdata = compat_ptr(ifr32->ifr_data); 3335 3336 return 0; 3337 } 3338 3339 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3340 return -EFAULT; 3341 3342 if (ifrdata) 3343 *ifrdata = ifr->ifr_data; 3344 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(get_user_ifreq); 3348 3349 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3350 { 3351 size_t size = sizeof(*ifr); 3352 3353 if (in_compat_syscall()) 3354 size = sizeof(struct compat_ifreq); 3355 3356 if (copy_to_user(arg, ifr, size)) 3357 return -EFAULT; 3358 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(put_user_ifreq); 3362 3363 #ifdef CONFIG_COMPAT 3364 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3365 { 3366 compat_uptr_t uptr32; 3367 struct ifreq ifr; 3368 void __user *saved; 3369 int err; 3370 3371 if (get_user_ifreq(&ifr, NULL, uifr32)) 3372 return -EFAULT; 3373 3374 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3375 return -EFAULT; 3376 3377 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3378 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3379 3380 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3381 if (!err) { 3382 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3383 if (put_user_ifreq(&ifr, uifr32)) 3384 err = -EFAULT; 3385 } 3386 return err; 3387 } 3388 3389 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3390 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3391 struct compat_ifreq __user *u_ifreq32) 3392 { 3393 struct ifreq ifreq; 3394 void __user *data; 3395 3396 if (!is_socket_ioctl_cmd(cmd)) 3397 return -ENOTTY; 3398 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3399 return -EFAULT; 3400 ifreq.ifr_data = data; 3401 3402 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3403 } 3404 3405 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3406 unsigned int cmd, unsigned long arg) 3407 { 3408 void __user *argp = compat_ptr(arg); 3409 struct sock *sk = sock->sk; 3410 struct net *net = sock_net(sk); 3411 const struct proto_ops *ops; 3412 3413 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3414 return sock_ioctl(file, cmd, (unsigned long)argp); 3415 3416 switch (cmd) { 3417 case SIOCWANDEV: 3418 return compat_siocwandev(net, argp); 3419 case SIOCGSTAMP_OLD: 3420 case SIOCGSTAMPNS_OLD: 3421 ops = READ_ONCE(sock->ops); 3422 if (!ops->gettstamp) 3423 return -ENOIOCTLCMD; 3424 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3425 !COMPAT_USE_64BIT_TIME); 3426 3427 case SIOCETHTOOL: 3428 case SIOCBONDSLAVEINFOQUERY: 3429 case SIOCBONDINFOQUERY: 3430 case SIOCSHWTSTAMP: 3431 case SIOCGHWTSTAMP: 3432 return compat_ifr_data_ioctl(net, cmd, argp); 3433 3434 case FIOSETOWN: 3435 case SIOCSPGRP: 3436 case FIOGETOWN: 3437 case SIOCGPGRP: 3438 case SIOCBRADDBR: 3439 case SIOCBRDELBR: 3440 case SIOCGIFVLAN: 3441 case SIOCSIFVLAN: 3442 case SIOCGSKNS: 3443 case SIOCGSTAMP_NEW: 3444 case SIOCGSTAMPNS_NEW: 3445 case SIOCGIFCONF: 3446 case SIOCSIFBR: 3447 case SIOCGIFBR: 3448 return sock_ioctl(file, cmd, arg); 3449 3450 case SIOCGIFFLAGS: 3451 case SIOCSIFFLAGS: 3452 case SIOCGIFMAP: 3453 case SIOCSIFMAP: 3454 case SIOCGIFMETRIC: 3455 case SIOCSIFMETRIC: 3456 case SIOCGIFMTU: 3457 case SIOCSIFMTU: 3458 case SIOCGIFMEM: 3459 case SIOCSIFMEM: 3460 case SIOCGIFHWADDR: 3461 case SIOCSIFHWADDR: 3462 case SIOCADDMULTI: 3463 case SIOCDELMULTI: 3464 case SIOCGIFINDEX: 3465 case SIOCGIFADDR: 3466 case SIOCSIFADDR: 3467 case SIOCSIFHWBROADCAST: 3468 case SIOCDIFADDR: 3469 case SIOCGIFBRDADDR: 3470 case SIOCSIFBRDADDR: 3471 case SIOCGIFDSTADDR: 3472 case SIOCSIFDSTADDR: 3473 case SIOCGIFNETMASK: 3474 case SIOCSIFNETMASK: 3475 case SIOCSIFPFLAGS: 3476 case SIOCGIFPFLAGS: 3477 case SIOCGIFTXQLEN: 3478 case SIOCSIFTXQLEN: 3479 case SIOCBRADDIF: 3480 case SIOCBRDELIF: 3481 case SIOCGIFNAME: 3482 case SIOCSIFNAME: 3483 case SIOCGMIIPHY: 3484 case SIOCGMIIREG: 3485 case SIOCSMIIREG: 3486 case SIOCBONDENSLAVE: 3487 case SIOCBONDRELEASE: 3488 case SIOCBONDSETHWADDR: 3489 case SIOCBONDCHANGEACTIVE: 3490 case SIOCSARP: 3491 case SIOCGARP: 3492 case SIOCDARP: 3493 case SIOCOUTQ: 3494 case SIOCOUTQNSD: 3495 case SIOCATMARK: 3496 return sock_do_ioctl(net, sock, cmd, arg); 3497 } 3498 3499 return -ENOIOCTLCMD; 3500 } 3501 3502 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3503 unsigned long arg) 3504 { 3505 struct socket *sock = file->private_data; 3506 const struct proto_ops *ops = READ_ONCE(sock->ops); 3507 int ret = -ENOIOCTLCMD; 3508 struct sock *sk; 3509 struct net *net; 3510 3511 sk = sock->sk; 3512 net = sock_net(sk); 3513 3514 if (ops->compat_ioctl) 3515 ret = ops->compat_ioctl(sock, cmd, arg); 3516 3517 if (ret == -ENOIOCTLCMD && 3518 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3519 ret = compat_wext_handle_ioctl(net, cmd, arg); 3520 3521 if (ret == -ENOIOCTLCMD) 3522 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3523 3524 return ret; 3525 } 3526 #endif 3527 3528 /** 3529 * kernel_bind - bind an address to a socket (kernel space) 3530 * @sock: socket 3531 * @addr: address 3532 * @addrlen: length of address 3533 * 3534 * Returns 0 or an error. 3535 */ 3536 3537 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3538 { 3539 struct sockaddr_storage address; 3540 3541 memcpy(&address, addr, addrlen); 3542 3543 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3544 addrlen); 3545 } 3546 EXPORT_SYMBOL(kernel_bind); 3547 3548 /** 3549 * kernel_listen - move socket to listening state (kernel space) 3550 * @sock: socket 3551 * @backlog: pending connections queue size 3552 * 3553 * Returns 0 or an error. 3554 */ 3555 3556 int kernel_listen(struct socket *sock, int backlog) 3557 { 3558 return READ_ONCE(sock->ops)->listen(sock, backlog); 3559 } 3560 EXPORT_SYMBOL(kernel_listen); 3561 3562 /** 3563 * kernel_accept - accept a connection (kernel space) 3564 * @sock: listening socket 3565 * @newsock: new connected socket 3566 * @flags: flags 3567 * 3568 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3569 * If it fails, @newsock is guaranteed to be %NULL. 3570 * Returns 0 or an error. 3571 */ 3572 3573 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3574 { 3575 struct sock *sk = sock->sk; 3576 const struct proto_ops *ops = READ_ONCE(sock->ops); 3577 struct proto_accept_arg arg = { 3578 .flags = flags, 3579 .kern = true, 3580 }; 3581 int err; 3582 3583 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3584 newsock); 3585 if (err < 0) 3586 goto done; 3587 3588 err = ops->accept(sock, *newsock, &arg); 3589 if (err < 0) { 3590 sock_release(*newsock); 3591 *newsock = NULL; 3592 goto done; 3593 } 3594 3595 (*newsock)->ops = ops; 3596 __module_get(ops->owner); 3597 3598 done: 3599 return err; 3600 } 3601 EXPORT_SYMBOL(kernel_accept); 3602 3603 /** 3604 * kernel_connect - connect a socket (kernel space) 3605 * @sock: socket 3606 * @addr: address 3607 * @addrlen: address length 3608 * @flags: flags (O_NONBLOCK, ...) 3609 * 3610 * For datagram sockets, @addr is the address to which datagrams are sent 3611 * by default, and the only address from which datagrams are received. 3612 * For stream sockets, attempts to connect to @addr. 3613 * Returns 0 or an error code. 3614 */ 3615 3616 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3617 int flags) 3618 { 3619 struct sockaddr_storage address; 3620 3621 memcpy(&address, addr, addrlen); 3622 3623 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3624 addrlen, flags); 3625 } 3626 EXPORT_SYMBOL(kernel_connect); 3627 3628 /** 3629 * kernel_getsockname - get the address which the socket is bound (kernel space) 3630 * @sock: socket 3631 * @addr: address holder 3632 * 3633 * Fills the @addr pointer with the address which the socket is bound. 3634 * Returns the length of the address in bytes or an error code. 3635 */ 3636 3637 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3638 { 3639 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3640 } 3641 EXPORT_SYMBOL(kernel_getsockname); 3642 3643 /** 3644 * kernel_getpeername - get the address which the socket is connected (kernel space) 3645 * @sock: socket 3646 * @addr: address holder 3647 * 3648 * Fills the @addr pointer with the address which the socket is connected. 3649 * Returns the length of the address in bytes or an error code. 3650 */ 3651 3652 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3653 { 3654 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3655 } 3656 EXPORT_SYMBOL(kernel_getpeername); 3657 3658 /** 3659 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3660 * @sock: socket 3661 * @how: connection part 3662 * 3663 * Returns 0 or an error. 3664 */ 3665 3666 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3667 { 3668 return READ_ONCE(sock->ops)->shutdown(sock, how); 3669 } 3670 EXPORT_SYMBOL(kernel_sock_shutdown); 3671 3672 /** 3673 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3674 * @sk: socket 3675 * 3676 * This routine returns the IP overhead imposed by a socket i.e. 3677 * the length of the underlying IP header, depending on whether 3678 * this is an IPv4 or IPv6 socket and the length from IP options turned 3679 * on at the socket. Assumes that the caller has a lock on the socket. 3680 */ 3681 3682 u32 kernel_sock_ip_overhead(struct sock *sk) 3683 { 3684 struct inet_sock *inet; 3685 struct ip_options_rcu *opt; 3686 u32 overhead = 0; 3687 #if IS_ENABLED(CONFIG_IPV6) 3688 struct ipv6_pinfo *np; 3689 struct ipv6_txoptions *optv6 = NULL; 3690 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3691 3692 if (!sk) 3693 return overhead; 3694 3695 switch (sk->sk_family) { 3696 case AF_INET: 3697 inet = inet_sk(sk); 3698 overhead += sizeof(struct iphdr); 3699 opt = rcu_dereference_protected(inet->inet_opt, 3700 sock_owned_by_user(sk)); 3701 if (opt) 3702 overhead += opt->opt.optlen; 3703 return overhead; 3704 #if IS_ENABLED(CONFIG_IPV6) 3705 case AF_INET6: 3706 np = inet6_sk(sk); 3707 overhead += sizeof(struct ipv6hdr); 3708 if (np) 3709 optv6 = rcu_dereference_protected(np->opt, 3710 sock_owned_by_user(sk)); 3711 if (optv6) 3712 overhead += (optv6->opt_flen + optv6->opt_nflen); 3713 return overhead; 3714 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3715 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3716 return overhead; 3717 } 3718 } 3719 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3720