xref: /linux/net/socket.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.read_iter =	sock_read_iter,
157 	.write_iter =	sock_write_iter,
158 	.poll =		sock_poll,
159 	.unlocked_ioctl = sock_ioctl,
160 #ifdef CONFIG_COMPAT
161 	.compat_ioctl = compat_sock_ioctl,
162 #endif
163 	.uring_cmd =    io_uring_cmd_sock,
164 	.mmap =		sock_mmap,
165 	.release =	sock_close,
166 	.fasync =	sock_fasync,
167 	.splice_write = splice_to_socket,
168 	.splice_read =	sock_splice_read,
169 	.splice_eof =	sock_splice_eof,
170 	.show_fdinfo =	sock_show_fdinfo,
171 };
172 
173 static const char * const pf_family_names[] = {
174 	[PF_UNSPEC]	= "PF_UNSPEC",
175 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
176 	[PF_INET]	= "PF_INET",
177 	[PF_AX25]	= "PF_AX25",
178 	[PF_IPX]	= "PF_IPX",
179 	[PF_APPLETALK]	= "PF_APPLETALK",
180 	[PF_NETROM]	= "PF_NETROM",
181 	[PF_BRIDGE]	= "PF_BRIDGE",
182 	[PF_ATMPVC]	= "PF_ATMPVC",
183 	[PF_X25]	= "PF_X25",
184 	[PF_INET6]	= "PF_INET6",
185 	[PF_ROSE]	= "PF_ROSE",
186 	[PF_DECnet]	= "PF_DECnet",
187 	[PF_NETBEUI]	= "PF_NETBEUI",
188 	[PF_SECURITY]	= "PF_SECURITY",
189 	[PF_KEY]	= "PF_KEY",
190 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
191 	[PF_PACKET]	= "PF_PACKET",
192 	[PF_ASH]	= "PF_ASH",
193 	[PF_ECONET]	= "PF_ECONET",
194 	[PF_ATMSVC]	= "PF_ATMSVC",
195 	[PF_RDS]	= "PF_RDS",
196 	[PF_SNA]	= "PF_SNA",
197 	[PF_IRDA]	= "PF_IRDA",
198 	[PF_PPPOX]	= "PF_PPPOX",
199 	[PF_WANPIPE]	= "PF_WANPIPE",
200 	[PF_LLC]	= "PF_LLC",
201 	[PF_IB]		= "PF_IB",
202 	[PF_MPLS]	= "PF_MPLS",
203 	[PF_CAN]	= "PF_CAN",
204 	[PF_TIPC]	= "PF_TIPC",
205 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
206 	[PF_IUCV]	= "PF_IUCV",
207 	[PF_RXRPC]	= "PF_RXRPC",
208 	[PF_ISDN]	= "PF_ISDN",
209 	[PF_PHONET]	= "PF_PHONET",
210 	[PF_IEEE802154]	= "PF_IEEE802154",
211 	[PF_CAIF]	= "PF_CAIF",
212 	[PF_ALG]	= "PF_ALG",
213 	[PF_NFC]	= "PF_NFC",
214 	[PF_VSOCK]	= "PF_VSOCK",
215 	[PF_KCM]	= "PF_KCM",
216 	[PF_QIPCRTR]	= "PF_QIPCRTR",
217 	[PF_SMC]	= "PF_SMC",
218 	[PF_XDP]	= "PF_XDP",
219 	[PF_MCTP]	= "PF_MCTP",
220 };
221 
222 /*
223  *	The protocol list. Each protocol is registered in here.
224  */
225 
226 static DEFINE_SPINLOCK(net_family_lock);
227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228 
229 /*
230  * Support routines.
231  * Move socket addresses back and forth across the kernel/user
232  * divide and look after the messy bits.
233  */
234 
235 /**
236  *	move_addr_to_kernel	-	copy a socket address into kernel space
237  *	@uaddr: Address in user space
238  *	@kaddr: Address in kernel space
239  *	@ulen: Length in user space
240  *
241  *	The address is copied into kernel space. If the provided address is
242  *	too long an error code of -EINVAL is returned. If the copy gives
243  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
244  */
245 
246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247 {
248 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 		return -EINVAL;
250 	if (ulen == 0)
251 		return 0;
252 	if (copy_from_user(kaddr, uaddr, ulen))
253 		return -EFAULT;
254 	return audit_sockaddr(ulen, kaddr);
255 }
256 
257 /**
258  *	move_addr_to_user	-	copy an address to user space
259  *	@kaddr: kernel space address
260  *	@klen: length of address in kernel
261  *	@uaddr: user space address
262  *	@ulen: pointer to user length field
263  *
264  *	The value pointed to by ulen on entry is the buffer length available.
265  *	This is overwritten with the buffer space used. -EINVAL is returned
266  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
267  *	is returned if either the buffer or the length field are not
268  *	accessible.
269  *	After copying the data up to the limit the user specifies, the true
270  *	length of the data is written over the length limit the user
271  *	specified. Zero is returned for a success.
272  */
273 
274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 			     void __user *uaddr, int __user *ulen)
276 {
277 	int err;
278 	int len;
279 
280 	BUG_ON(klen > sizeof(struct sockaddr_storage));
281 	err = get_user(len, ulen);
282 	if (err)
283 		return err;
284 	if (len > klen)
285 		len = klen;
286 	if (len < 0)
287 		return -EINVAL;
288 	if (len) {
289 		if (audit_sockaddr(klen, kaddr))
290 			return -ENOMEM;
291 		if (copy_to_user(uaddr, kaddr, len))
292 			return -EFAULT;
293 	}
294 	/*
295 	 *      "fromlen shall refer to the value before truncation.."
296 	 *                      1003.1g
297 	 */
298 	return __put_user(klen, ulen);
299 }
300 
301 static struct kmem_cache *sock_inode_cachep __ro_after_init;
302 
303 static struct inode *sock_alloc_inode(struct super_block *sb)
304 {
305 	struct socket_alloc *ei;
306 
307 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 	if (!ei)
309 		return NULL;
310 	init_waitqueue_head(&ei->socket.wq.wait);
311 	ei->socket.wq.fasync_list = NULL;
312 	ei->socket.wq.flags = 0;
313 
314 	ei->socket.state = SS_UNCONNECTED;
315 	ei->socket.flags = 0;
316 	ei->socket.ops = NULL;
317 	ei->socket.sk = NULL;
318 	ei->socket.file = NULL;
319 
320 	return &ei->vfs_inode;
321 }
322 
323 static void sock_free_inode(struct inode *inode)
324 {
325 	struct socket_alloc *ei;
326 
327 	ei = container_of(inode, struct socket_alloc, vfs_inode);
328 	kmem_cache_free(sock_inode_cachep, ei);
329 }
330 
331 static void init_once(void *foo)
332 {
333 	struct socket_alloc *ei = (struct socket_alloc *)foo;
334 
335 	inode_init_once(&ei->vfs_inode);
336 }
337 
338 static void init_inodecache(void)
339 {
340 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 					      sizeof(struct socket_alloc),
342 					      0,
343 					      (SLAB_HWCACHE_ALIGN |
344 					       SLAB_RECLAIM_ACCOUNT |
345 					       SLAB_ACCOUNT),
346 					      init_once);
347 	BUG_ON(sock_inode_cachep == NULL);
348 }
349 
350 static const struct super_operations sockfs_ops = {
351 	.alloc_inode	= sock_alloc_inode,
352 	.free_inode	= sock_free_inode,
353 	.statfs		= simple_statfs,
354 };
355 
356 /*
357  * sockfs_dname() is called from d_path().
358  */
359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360 {
361 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 				d_inode(dentry)->i_ino);
363 }
364 
365 static const struct dentry_operations sockfs_dentry_operations = {
366 	.d_dname  = sockfs_dname,
367 };
368 
369 static int sockfs_xattr_get(const struct xattr_handler *handler,
370 			    struct dentry *dentry, struct inode *inode,
371 			    const char *suffix, void *value, size_t size)
372 {
373 	if (value) {
374 		if (dentry->d_name.len + 1 > size)
375 			return -ERANGE;
376 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 	}
378 	return dentry->d_name.len + 1;
379 }
380 
381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384 
385 static const struct xattr_handler sockfs_xattr_handler = {
386 	.name = XATTR_NAME_SOCKPROTONAME,
387 	.get = sockfs_xattr_get,
388 };
389 
390 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 				     struct mnt_idmap *idmap,
392 				     struct dentry *dentry, struct inode *inode,
393 				     const char *suffix, const void *value,
394 				     size_t size, int flags)
395 {
396 	/* Handled by LSM. */
397 	return -EAGAIN;
398 }
399 
400 static const struct xattr_handler sockfs_security_xattr_handler = {
401 	.prefix = XATTR_SECURITY_PREFIX,
402 	.set = sockfs_security_xattr_set,
403 };
404 
405 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 	&sockfs_xattr_handler,
407 	&sockfs_security_xattr_handler,
408 	NULL
409 };
410 
411 static int sockfs_init_fs_context(struct fs_context *fc)
412 {
413 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 	if (!ctx)
415 		return -ENOMEM;
416 	ctx->ops = &sockfs_ops;
417 	ctx->dops = &sockfs_dentry_operations;
418 	ctx->xattr = sockfs_xattr_handlers;
419 	return 0;
420 }
421 
422 static struct vfsmount *sock_mnt __read_mostly;
423 
424 static struct file_system_type sock_fs_type = {
425 	.name =		"sockfs",
426 	.init_fs_context = sockfs_init_fs_context,
427 	.kill_sb =	kill_anon_super,
428 };
429 
430 /*
431  *	Obtains the first available file descriptor and sets it up for use.
432  *
433  *	These functions create file structures and maps them to fd space
434  *	of the current process. On success it returns file descriptor
435  *	and file struct implicitly stored in sock->file.
436  *	Note that another thread may close file descriptor before we return
437  *	from this function. We use the fact that now we do not refer
438  *	to socket after mapping. If one day we will need it, this
439  *	function will increment ref. count on file by 1.
440  *
441  *	In any case returned fd MAY BE not valid!
442  *	This race condition is unavoidable
443  *	with shared fd spaces, we cannot solve it inside kernel,
444  *	but we take care of internal coherence yet.
445  */
446 
447 /**
448  *	sock_alloc_file - Bind a &socket to a &file
449  *	@sock: socket
450  *	@flags: file status flags
451  *	@dname: protocol name
452  *
453  *	Returns the &file bound with @sock, implicitly storing it
454  *	in sock->file. If dname is %NULL, sets to "".
455  *
456  *	On failure @sock is released, and an ERR pointer is returned.
457  *
458  *	This function uses GFP_KERNEL internally.
459  */
460 
461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462 {
463 	struct file *file;
464 
465 	if (!dname)
466 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467 
468 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 				O_RDWR | (flags & O_NONBLOCK),
470 				&socket_file_ops);
471 	if (IS_ERR(file)) {
472 		sock_release(sock);
473 		return file;
474 	}
475 
476 	file->f_mode |= FMODE_NOWAIT;
477 	sock->file = file;
478 	file->private_data = sock;
479 	stream_open(SOCK_INODE(sock), file);
480 	return file;
481 }
482 EXPORT_SYMBOL(sock_alloc_file);
483 
484 static int sock_map_fd(struct socket *sock, int flags)
485 {
486 	struct file *newfile;
487 	int fd = get_unused_fd_flags(flags);
488 	if (unlikely(fd < 0)) {
489 		sock_release(sock);
490 		return fd;
491 	}
492 
493 	newfile = sock_alloc_file(sock, flags, NULL);
494 	if (!IS_ERR(newfile)) {
495 		fd_install(fd, newfile);
496 		return fd;
497 	}
498 
499 	put_unused_fd(fd);
500 	return PTR_ERR(newfile);
501 }
502 
503 /**
504  *	sock_from_file - Return the &socket bounded to @file.
505  *	@file: file
506  *
507  *	On failure returns %NULL.
508  */
509 
510 struct socket *sock_from_file(struct file *file)
511 {
512 	if (likely(file->f_op == &socket_file_ops))
513 		return file->private_data;	/* set in sock_alloc_file */
514 
515 	return NULL;
516 }
517 EXPORT_SYMBOL(sock_from_file);
518 
519 /**
520  *	sockfd_lookup - Go from a file number to its socket slot
521  *	@fd: file handle
522  *	@err: pointer to an error code return
523  *
524  *	The file handle passed in is locked and the socket it is bound
525  *	to is returned. If an error occurs the err pointer is overwritten
526  *	with a negative errno code and NULL is returned. The function checks
527  *	for both invalid handles and passing a handle which is not a socket.
528  *
529  *	On a success the socket object pointer is returned.
530  */
531 
532 struct socket *sockfd_lookup(int fd, int *err)
533 {
534 	struct file *file;
535 	struct socket *sock;
536 
537 	file = fget(fd);
538 	if (!file) {
539 		*err = -EBADF;
540 		return NULL;
541 	}
542 
543 	sock = sock_from_file(file);
544 	if (!sock) {
545 		*err = -ENOTSOCK;
546 		fput(file);
547 	}
548 	return sock;
549 }
550 EXPORT_SYMBOL(sockfd_lookup);
551 
552 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
553 				size_t size)
554 {
555 	ssize_t len;
556 	ssize_t used = 0;
557 
558 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
559 	if (len < 0)
560 		return len;
561 	used += len;
562 	if (buffer) {
563 		if (size < used)
564 			return -ERANGE;
565 		buffer += len;
566 	}
567 
568 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
569 	used += len;
570 	if (buffer) {
571 		if (size < used)
572 			return -ERANGE;
573 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
574 		buffer += len;
575 	}
576 
577 	return used;
578 }
579 
580 static int sockfs_setattr(struct mnt_idmap *idmap,
581 			  struct dentry *dentry, struct iattr *iattr)
582 {
583 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
584 
585 	if (!err && (iattr->ia_valid & ATTR_UID)) {
586 		struct socket *sock = SOCKET_I(d_inode(dentry));
587 
588 		if (sock->sk)
589 			sock->sk->sk_uid = iattr->ia_uid;
590 		else
591 			err = -ENOENT;
592 	}
593 
594 	return err;
595 }
596 
597 static const struct inode_operations sockfs_inode_ops = {
598 	.listxattr = sockfs_listxattr,
599 	.setattr = sockfs_setattr,
600 };
601 
602 /**
603  *	sock_alloc - allocate a socket
604  *
605  *	Allocate a new inode and socket object. The two are bound together
606  *	and initialised. The socket is then returned. If we are out of inodes
607  *	NULL is returned. This functions uses GFP_KERNEL internally.
608  */
609 
610 struct socket *sock_alloc(void)
611 {
612 	struct inode *inode;
613 	struct socket *sock;
614 
615 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
616 	if (!inode)
617 		return NULL;
618 
619 	sock = SOCKET_I(inode);
620 
621 	inode->i_ino = get_next_ino();
622 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
623 	inode->i_uid = current_fsuid();
624 	inode->i_gid = current_fsgid();
625 	inode->i_op = &sockfs_inode_ops;
626 
627 	return sock;
628 }
629 EXPORT_SYMBOL(sock_alloc);
630 
631 static void __sock_release(struct socket *sock, struct inode *inode)
632 {
633 	const struct proto_ops *ops = READ_ONCE(sock->ops);
634 
635 	if (ops) {
636 		struct module *owner = ops->owner;
637 
638 		if (inode)
639 			inode_lock(inode);
640 		ops->release(sock);
641 		sock->sk = NULL;
642 		if (inode)
643 			inode_unlock(inode);
644 		sock->ops = NULL;
645 		module_put(owner);
646 	}
647 
648 	if (sock->wq.fasync_list)
649 		pr_err("%s: fasync list not empty!\n", __func__);
650 
651 	if (!sock->file) {
652 		iput(SOCK_INODE(sock));
653 		return;
654 	}
655 	sock->file = NULL;
656 }
657 
658 /**
659  *	sock_release - close a socket
660  *	@sock: socket to close
661  *
662  *	The socket is released from the protocol stack if it has a release
663  *	callback, and the inode is then released if the socket is bound to
664  *	an inode not a file.
665  */
666 void sock_release(struct socket *sock)
667 {
668 	__sock_release(sock, NULL);
669 }
670 EXPORT_SYMBOL(sock_release);
671 
672 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
673 {
674 	u8 flags = *tx_flags;
675 
676 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
677 		flags |= SKBTX_HW_TSTAMP;
678 
679 		/* PTP hardware clocks can provide a free running cycle counter
680 		 * as a time base for virtual clocks. Tell driver to use the
681 		 * free running cycle counter for timestamp if socket is bound
682 		 * to virtual clock.
683 		 */
684 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
685 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
686 	}
687 
688 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 		flags |= SKBTX_SW_TSTAMP;
690 
691 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 		flags |= SKBTX_SCHED_TSTAMP;
693 
694 	*tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697 
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 					   size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 					    size_t));
702 
703 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
704 						 int flags)
705 {
706 	trace_sock_send_length(sk, ret, 0);
707 }
708 
709 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
710 {
711 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
712 				     inet_sendmsg, sock, msg,
713 				     msg_data_left(msg));
714 	BUG_ON(ret == -EIOCBQUEUED);
715 
716 	if (trace_sock_send_length_enabled())
717 		call_trace_sock_send_length(sock->sk, ret, 0);
718 	return ret;
719 }
720 
721 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
722 {
723 	int err = security_socket_sendmsg(sock, msg,
724 					  msg_data_left(msg));
725 
726 	return err ?: sock_sendmsg_nosec(sock, msg);
727 }
728 
729 /**
730  *	sock_sendmsg - send a message through @sock
731  *	@sock: socket
732  *	@msg: message to send
733  *
734  *	Sends @msg through @sock, passing through LSM.
735  *	Returns the number of bytes sent, or an error code.
736  */
737 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
740 	struct sockaddr_storage address;
741 	int save_len = msg->msg_namelen;
742 	int ret;
743 
744 	if (msg->msg_name) {
745 		memcpy(&address, msg->msg_name, msg->msg_namelen);
746 		msg->msg_name = &address;
747 	}
748 
749 	ret = __sock_sendmsg(sock, msg);
750 	msg->msg_name = save_addr;
751 	msg->msg_namelen = save_len;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL(sock_sendmsg);
756 
757 /**
758  *	kernel_sendmsg - send a message through @sock (kernel-space)
759  *	@sock: socket
760  *	@msg: message header
761  *	@vec: kernel vec
762  *	@num: vec array length
763  *	@size: total message data size
764  *
765  *	Builds the message data with @vec and sends it through @sock.
766  *	Returns the number of bytes sent, or an error code.
767  */
768 
769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 		   struct kvec *vec, size_t num, size_t size)
771 {
772 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 	return sock_sendmsg(sock, msg);
774 }
775 EXPORT_SYMBOL(kernel_sendmsg);
776 
777 /**
778  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
779  *	@sk: sock
780  *	@msg: message header
781  *	@vec: output s/g array
782  *	@num: output s/g array length
783  *	@size: total message data size
784  *
785  *	Builds the message data with @vec and sends it through @sock.
786  *	Returns the number of bytes sent, or an error code.
787  *	Caller must hold @sk.
788  */
789 
790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 			  struct kvec *vec, size_t num, size_t size)
792 {
793 	struct socket *sock = sk->sk_socket;
794 	const struct proto_ops *ops = READ_ONCE(sock->ops);
795 
796 	if (!ops->sendmsg_locked)
797 		return sock_no_sendmsg_locked(sk, msg, size);
798 
799 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800 
801 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802 }
803 EXPORT_SYMBOL(kernel_sendmsg_locked);
804 
805 static bool skb_is_err_queue(const struct sk_buff *skb)
806 {
807 	/* pkt_type of skbs enqueued on the error queue are set to
808 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 	 * in recvmsg, since skbs received on a local socket will never
810 	 * have a pkt_type of PACKET_OUTGOING.
811 	 */
812 	return skb->pkt_type == PACKET_OUTGOING;
813 }
814 
815 /* On transmit, software and hardware timestamps are returned independently.
816  * As the two skb clones share the hardware timestamp, which may be updated
817  * before the software timestamp is received, a hardware TX timestamp may be
818  * returned only if there is no software TX timestamp. Ignore false software
819  * timestamps, which may be made in the __sock_recv_timestamp() call when the
820  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821  * hardware timestamp.
822  */
823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824 {
825 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826 }
827 
828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829 {
830 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 	struct net_device *orig_dev;
833 	ktime_t hwtstamp;
834 
835 	rcu_read_lock();
836 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 	if (orig_dev) {
838 		*if_index = orig_dev->ifindex;
839 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 	} else {
841 		hwtstamp = shhwtstamps->hwtstamp;
842 	}
843 	rcu_read_unlock();
844 
845 	return hwtstamp;
846 }
847 
848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 			   int if_index)
850 {
851 	struct scm_ts_pktinfo ts_pktinfo;
852 	struct net_device *orig_dev;
853 
854 	if (!skb_mac_header_was_set(skb))
855 		return;
856 
857 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858 
859 	if (!if_index) {
860 		rcu_read_lock();
861 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 		if (orig_dev)
863 			if_index = orig_dev->ifindex;
864 		rcu_read_unlock();
865 	}
866 	ts_pktinfo.if_index = if_index;
867 
868 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 		 sizeof(ts_pktinfo), &ts_pktinfo);
871 }
872 
873 /*
874  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875  */
876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 	struct sk_buff *skb)
878 {
879 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 	struct scm_timestamping_internal tss;
882 	int empty = 1, false_tstamp = 0;
883 	struct skb_shared_hwtstamps *shhwtstamps =
884 		skb_hwtstamps(skb);
885 	int if_index;
886 	ktime_t hwtstamp;
887 	u32 tsflags;
888 
889 	/* Race occurred between timestamp enabling and packet
890 	   receiving.  Fill in the current time for now. */
891 	if (need_software_tstamp && skb->tstamp == 0) {
892 		__net_timestamp(skb);
893 		false_tstamp = 1;
894 	}
895 
896 	if (need_software_tstamp) {
897 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 			if (new_tstamp) {
899 				struct __kernel_sock_timeval tv;
900 
901 				skb_get_new_timestamp(skb, &tv);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 					 sizeof(tv), &tv);
904 			} else {
905 				struct __kernel_old_timeval tv;
906 
907 				skb_get_timestamp(skb, &tv);
908 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 					 sizeof(tv), &tv);
910 			}
911 		} else {
912 			if (new_tstamp) {
913 				struct __kernel_timespec ts;
914 
915 				skb_get_new_timestampns(skb, &ts);
916 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 					 sizeof(ts), &ts);
918 			} else {
919 				struct __kernel_old_timespec ts;
920 
921 				skb_get_timestampns(skb, &ts);
922 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 					 sizeof(ts), &ts);
924 			}
925 		}
926 	}
927 
928 	memset(&tss, 0, sizeof(tss));
929 	tsflags = READ_ONCE(sk->sk_tsflags);
930 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
931 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
932 	      skb_is_err_queue(skb) ||
933 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
934 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
935 		empty = 0;
936 	if (shhwtstamps &&
937 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
938 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
939 	      skb_is_err_queue(skb) ||
940 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
941 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
942 		if_index = 0;
943 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
944 			hwtstamp = get_timestamp(sk, skb, &if_index);
945 		else
946 			hwtstamp = shhwtstamps->hwtstamp;
947 
948 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
949 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
950 							 READ_ONCE(sk->sk_bind_phc));
951 
952 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
953 			empty = 0;
954 
955 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
956 			    !skb_is_err_queue(skb))
957 				put_ts_pktinfo(msg, skb, if_index);
958 		}
959 	}
960 	if (!empty) {
961 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
962 			put_cmsg_scm_timestamping64(msg, &tss);
963 		else
964 			put_cmsg_scm_timestamping(msg, &tss);
965 
966 		if (skb_is_err_queue(skb) && skb->len &&
967 		    SKB_EXT_ERR(skb)->opt_stats)
968 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
969 				 skb->len, skb->data);
970 	}
971 }
972 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
973 
974 #ifdef CONFIG_WIRELESS
975 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
976 	struct sk_buff *skb)
977 {
978 	int ack;
979 
980 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
981 		return;
982 	if (!skb->wifi_acked_valid)
983 		return;
984 
985 	ack = skb->wifi_acked;
986 
987 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
988 }
989 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
990 #endif
991 
992 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
993 				   struct sk_buff *skb)
994 {
995 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
996 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
997 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
998 }
999 
1000 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001 			   struct sk_buff *skb)
1002 {
1003 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005 		__u32 mark = skb->mark;
1006 
1007 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008 	}
1009 }
1010 
1011 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012 		       struct sk_buff *skb)
1013 {
1014 	sock_recv_timestamp(msg, sk, skb);
1015 	sock_recv_drops(msg, sk, skb);
1016 	sock_recv_mark(msg, sk, skb);
1017 }
1018 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1019 
1020 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021 					   size_t, int));
1022 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023 					    size_t, int));
1024 
1025 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1026 {
1027 	trace_sock_recv_length(sk, ret, flags);
1028 }
1029 
1030 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031 				     int flags)
1032 {
1033 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034 				     inet6_recvmsg,
1035 				     inet_recvmsg, sock, msg,
1036 				     msg_data_left(msg), flags);
1037 	if (trace_sock_recv_length_enabled())
1038 		call_trace_sock_recv_length(sock->sk, ret, flags);
1039 	return ret;
1040 }
1041 
1042 /**
1043  *	sock_recvmsg - receive a message from @sock
1044  *	@sock: socket
1045  *	@msg: message to receive
1046  *	@flags: message flags
1047  *
1048  *	Receives @msg from @sock, passing through LSM. Returns the total number
1049  *	of bytes received, or an error.
1050  */
1051 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052 {
1053 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1054 
1055 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1056 }
1057 EXPORT_SYMBOL(sock_recvmsg);
1058 
1059 /**
1060  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1061  *	@sock: The socket to receive the message from
1062  *	@msg: Received message
1063  *	@vec: Input s/g array for message data
1064  *	@num: Size of input s/g array
1065  *	@size: Number of bytes to read
1066  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1067  *
1068  *	On return the msg structure contains the scatter/gather array passed in the
1069  *	vec argument. The array is modified so that it consists of the unfilled
1070  *	portion of the original array.
1071  *
1072  *	The returned value is the total number of bytes received, or an error.
1073  */
1074 
1075 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076 		   struct kvec *vec, size_t num, size_t size, int flags)
1077 {
1078 	msg->msg_control_is_user = false;
1079 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080 	return sock_recvmsg(sock, msg, flags);
1081 }
1082 EXPORT_SYMBOL(kernel_recvmsg);
1083 
1084 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085 				struct pipe_inode_info *pipe, size_t len,
1086 				unsigned int flags)
1087 {
1088 	struct socket *sock = file->private_data;
1089 	const struct proto_ops *ops;
1090 
1091 	ops = READ_ONCE(sock->ops);
1092 	if (unlikely(!ops->splice_read))
1093 		return copy_splice_read(file, ppos, pipe, len, flags);
1094 
1095 	return ops->splice_read(sock, ppos, pipe, len, flags);
1096 }
1097 
1098 static void sock_splice_eof(struct file *file)
1099 {
1100 	struct socket *sock = file->private_data;
1101 	const struct proto_ops *ops;
1102 
1103 	ops = READ_ONCE(sock->ops);
1104 	if (ops->splice_eof)
1105 		ops->splice_eof(sock);
1106 }
1107 
1108 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1109 {
1110 	struct file *file = iocb->ki_filp;
1111 	struct socket *sock = file->private_data;
1112 	struct msghdr msg = {.msg_iter = *to,
1113 			     .msg_iocb = iocb};
1114 	ssize_t res;
1115 
1116 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117 		msg.msg_flags = MSG_DONTWAIT;
1118 
1119 	if (iocb->ki_pos != 0)
1120 		return -ESPIPE;
1121 
1122 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1123 		return 0;
1124 
1125 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126 	*to = msg.msg_iter;
1127 	return res;
1128 }
1129 
1130 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1131 {
1132 	struct file *file = iocb->ki_filp;
1133 	struct socket *sock = file->private_data;
1134 	struct msghdr msg = {.msg_iter = *from,
1135 			     .msg_iocb = iocb};
1136 	ssize_t res;
1137 
1138 	if (iocb->ki_pos != 0)
1139 		return -ESPIPE;
1140 
1141 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142 		msg.msg_flags = MSG_DONTWAIT;
1143 
1144 	if (sock->type == SOCK_SEQPACKET)
1145 		msg.msg_flags |= MSG_EOR;
1146 
1147 	res = __sock_sendmsg(sock, &msg);
1148 	*from = msg.msg_iter;
1149 	return res;
1150 }
1151 
1152 /*
1153  * Atomic setting of ioctl hooks to avoid race
1154  * with module unload.
1155  */
1156 
1157 static DEFINE_MUTEX(br_ioctl_mutex);
1158 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159 			    unsigned int cmd, struct ifreq *ifr,
1160 			    void __user *uarg);
1161 
1162 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163 			     unsigned int cmd, struct ifreq *ifr,
1164 			     void __user *uarg))
1165 {
1166 	mutex_lock(&br_ioctl_mutex);
1167 	br_ioctl_hook = hook;
1168 	mutex_unlock(&br_ioctl_mutex);
1169 }
1170 EXPORT_SYMBOL(brioctl_set);
1171 
1172 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173 		  struct ifreq *ifr, void __user *uarg)
1174 {
1175 	int err = -ENOPKG;
1176 
1177 	if (!br_ioctl_hook)
1178 		request_module("bridge");
1179 
1180 	mutex_lock(&br_ioctl_mutex);
1181 	if (br_ioctl_hook)
1182 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183 	mutex_unlock(&br_ioctl_mutex);
1184 
1185 	return err;
1186 }
1187 
1188 static DEFINE_MUTEX(vlan_ioctl_mutex);
1189 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190 
1191 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192 {
1193 	mutex_lock(&vlan_ioctl_mutex);
1194 	vlan_ioctl_hook = hook;
1195 	mutex_unlock(&vlan_ioctl_mutex);
1196 }
1197 EXPORT_SYMBOL(vlan_ioctl_set);
1198 
1199 static long sock_do_ioctl(struct net *net, struct socket *sock,
1200 			  unsigned int cmd, unsigned long arg)
1201 {
1202 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1203 	struct ifreq ifr;
1204 	bool need_copyout;
1205 	int err;
1206 	void __user *argp = (void __user *)arg;
1207 	void __user *data;
1208 
1209 	err = ops->ioctl(sock, cmd, arg);
1210 
1211 	/*
1212 	 * If this ioctl is unknown try to hand it down
1213 	 * to the NIC driver.
1214 	 */
1215 	if (err != -ENOIOCTLCMD)
1216 		return err;
1217 
1218 	if (!is_socket_ioctl_cmd(cmd))
1219 		return -ENOTTY;
1220 
1221 	if (get_user_ifreq(&ifr, &data, argp))
1222 		return -EFAULT;
1223 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224 	if (!err && need_copyout)
1225 		if (put_user_ifreq(&ifr, argp))
1226 			return -EFAULT;
1227 
1228 	return err;
1229 }
1230 
1231 /*
1232  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1233  *	what to do with it - that's up to the protocol still.
1234  */
1235 
1236 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237 {
1238 	const struct proto_ops  *ops;
1239 	struct socket *sock;
1240 	struct sock *sk;
1241 	void __user *argp = (void __user *)arg;
1242 	int pid, err;
1243 	struct net *net;
1244 
1245 	sock = file->private_data;
1246 	ops = READ_ONCE(sock->ops);
1247 	sk = sock->sk;
1248 	net = sock_net(sk);
1249 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250 		struct ifreq ifr;
1251 		void __user *data;
1252 		bool need_copyout;
1253 		if (get_user_ifreq(&ifr, &data, argp))
1254 			return -EFAULT;
1255 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 		if (!err && need_copyout)
1257 			if (put_user_ifreq(&ifr, argp))
1258 				return -EFAULT;
1259 	} else
1260 #ifdef CONFIG_WEXT_CORE
1261 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262 		err = wext_handle_ioctl(net, cmd, argp);
1263 	} else
1264 #endif
1265 		switch (cmd) {
1266 		case FIOSETOWN:
1267 		case SIOCSPGRP:
1268 			err = -EFAULT;
1269 			if (get_user(pid, (int __user *)argp))
1270 				break;
1271 			err = f_setown(sock->file, pid, 1);
1272 			break;
1273 		case FIOGETOWN:
1274 		case SIOCGPGRP:
1275 			err = put_user(f_getown(sock->file),
1276 				       (int __user *)argp);
1277 			break;
1278 		case SIOCGIFBR:
1279 		case SIOCSIFBR:
1280 		case SIOCBRADDBR:
1281 		case SIOCBRDELBR:
1282 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1283 			break;
1284 		case SIOCGIFVLAN:
1285 		case SIOCSIFVLAN:
1286 			err = -ENOPKG;
1287 			if (!vlan_ioctl_hook)
1288 				request_module("8021q");
1289 
1290 			mutex_lock(&vlan_ioctl_mutex);
1291 			if (vlan_ioctl_hook)
1292 				err = vlan_ioctl_hook(net, argp);
1293 			mutex_unlock(&vlan_ioctl_mutex);
1294 			break;
1295 		case SIOCGSKNS:
1296 			err = -EPERM;
1297 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298 				break;
1299 
1300 			err = open_related_ns(&net->ns, get_net_ns);
1301 			break;
1302 		case SIOCGSTAMP_OLD:
1303 		case SIOCGSTAMPNS_OLD:
1304 			if (!ops->gettstamp) {
1305 				err = -ENOIOCTLCMD;
1306 				break;
1307 			}
1308 			err = ops->gettstamp(sock, argp,
1309 					     cmd == SIOCGSTAMP_OLD,
1310 					     !IS_ENABLED(CONFIG_64BIT));
1311 			break;
1312 		case SIOCGSTAMP_NEW:
1313 		case SIOCGSTAMPNS_NEW:
1314 			if (!ops->gettstamp) {
1315 				err = -ENOIOCTLCMD;
1316 				break;
1317 			}
1318 			err = ops->gettstamp(sock, argp,
1319 					     cmd == SIOCGSTAMP_NEW,
1320 					     false);
1321 			break;
1322 
1323 		case SIOCGIFCONF:
1324 			err = dev_ifconf(net, argp);
1325 			break;
1326 
1327 		default:
1328 			err = sock_do_ioctl(net, sock, cmd, arg);
1329 			break;
1330 		}
1331 	return err;
1332 }
1333 
1334 /**
1335  *	sock_create_lite - creates a socket
1336  *	@family: protocol family (AF_INET, ...)
1337  *	@type: communication type (SOCK_STREAM, ...)
1338  *	@protocol: protocol (0, ...)
1339  *	@res: new socket
1340  *
1341  *	Creates a new socket and assigns it to @res, passing through LSM.
1342  *	The new socket initialization is not complete, see kernel_accept().
1343  *	Returns 0 or an error. On failure @res is set to %NULL.
1344  *	This function internally uses GFP_KERNEL.
1345  */
1346 
1347 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348 {
1349 	int err;
1350 	struct socket *sock = NULL;
1351 
1352 	err = security_socket_create(family, type, protocol, 1);
1353 	if (err)
1354 		goto out;
1355 
1356 	sock = sock_alloc();
1357 	if (!sock) {
1358 		err = -ENOMEM;
1359 		goto out;
1360 	}
1361 
1362 	sock->type = type;
1363 	err = security_socket_post_create(sock, family, type, protocol, 1);
1364 	if (err)
1365 		goto out_release;
1366 
1367 out:
1368 	*res = sock;
1369 	return err;
1370 out_release:
1371 	sock_release(sock);
1372 	sock = NULL;
1373 	goto out;
1374 }
1375 EXPORT_SYMBOL(sock_create_lite);
1376 
1377 /* No kernel lock held - perfect */
1378 static __poll_t sock_poll(struct file *file, poll_table *wait)
1379 {
1380 	struct socket *sock = file->private_data;
1381 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1382 	__poll_t events = poll_requested_events(wait), flag = 0;
1383 
1384 	if (!ops->poll)
1385 		return 0;
1386 
1387 	if (sk_can_busy_loop(sock->sk)) {
1388 		/* poll once if requested by the syscall */
1389 		if (events & POLL_BUSY_LOOP)
1390 			sk_busy_loop(sock->sk, 1);
1391 
1392 		/* if this socket can poll_ll, tell the system call */
1393 		flag = POLL_BUSY_LOOP;
1394 	}
1395 
1396 	return ops->poll(file, sock, wait) | flag;
1397 }
1398 
1399 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400 {
1401 	struct socket *sock = file->private_data;
1402 
1403 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404 }
1405 
1406 static int sock_close(struct inode *inode, struct file *filp)
1407 {
1408 	__sock_release(SOCKET_I(inode), inode);
1409 	return 0;
1410 }
1411 
1412 /*
1413  *	Update the socket async list
1414  *
1415  *	Fasync_list locking strategy.
1416  *
1417  *	1. fasync_list is modified only under process context socket lock
1418  *	   i.e. under semaphore.
1419  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420  *	   or under socket lock
1421  */
1422 
1423 static int sock_fasync(int fd, struct file *filp, int on)
1424 {
1425 	struct socket *sock = filp->private_data;
1426 	struct sock *sk = sock->sk;
1427 	struct socket_wq *wq = &sock->wq;
1428 
1429 	if (sk == NULL)
1430 		return -EINVAL;
1431 
1432 	lock_sock(sk);
1433 	fasync_helper(fd, filp, on, &wq->fasync_list);
1434 
1435 	if (!wq->fasync_list)
1436 		sock_reset_flag(sk, SOCK_FASYNC);
1437 	else
1438 		sock_set_flag(sk, SOCK_FASYNC);
1439 
1440 	release_sock(sk);
1441 	return 0;
1442 }
1443 
1444 /* This function may be called only under rcu_lock */
1445 
1446 int sock_wake_async(struct socket_wq *wq, int how, int band)
1447 {
1448 	if (!wq || !wq->fasync_list)
1449 		return -1;
1450 
1451 	switch (how) {
1452 	case SOCK_WAKE_WAITD:
1453 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454 			break;
1455 		goto call_kill;
1456 	case SOCK_WAKE_SPACE:
1457 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458 			break;
1459 		fallthrough;
1460 	case SOCK_WAKE_IO:
1461 call_kill:
1462 		kill_fasync(&wq->fasync_list, SIGIO, band);
1463 		break;
1464 	case SOCK_WAKE_URG:
1465 		kill_fasync(&wq->fasync_list, SIGURG, band);
1466 	}
1467 
1468 	return 0;
1469 }
1470 EXPORT_SYMBOL(sock_wake_async);
1471 
1472 /**
1473  *	__sock_create - creates a socket
1474  *	@net: net namespace
1475  *	@family: protocol family (AF_INET, ...)
1476  *	@type: communication type (SOCK_STREAM, ...)
1477  *	@protocol: protocol (0, ...)
1478  *	@res: new socket
1479  *	@kern: boolean for kernel space sockets
1480  *
1481  *	Creates a new socket and assigns it to @res, passing through LSM.
1482  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483  *	be set to true if the socket resides in kernel space.
1484  *	This function internally uses GFP_KERNEL.
1485  */
1486 
1487 int __sock_create(struct net *net, int family, int type, int protocol,
1488 			 struct socket **res, int kern)
1489 {
1490 	int err;
1491 	struct socket *sock;
1492 	const struct net_proto_family *pf;
1493 
1494 	/*
1495 	 *      Check protocol is in range
1496 	 */
1497 	if (family < 0 || family >= NPROTO)
1498 		return -EAFNOSUPPORT;
1499 	if (type < 0 || type >= SOCK_MAX)
1500 		return -EINVAL;
1501 
1502 	/* Compatibility.
1503 
1504 	   This uglymoron is moved from INET layer to here to avoid
1505 	   deadlock in module load.
1506 	 */
1507 	if (family == PF_INET && type == SOCK_PACKET) {
1508 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509 			     current->comm);
1510 		family = PF_PACKET;
1511 	}
1512 
1513 	err = security_socket_create(family, type, protocol, kern);
1514 	if (err)
1515 		return err;
1516 
1517 	/*
1518 	 *	Allocate the socket and allow the family to set things up. if
1519 	 *	the protocol is 0, the family is instructed to select an appropriate
1520 	 *	default.
1521 	 */
1522 	sock = sock_alloc();
1523 	if (!sock) {
1524 		net_warn_ratelimited("socket: no more sockets\n");
1525 		return -ENFILE;	/* Not exactly a match, but its the
1526 				   closest posix thing */
1527 	}
1528 
1529 	sock->type = type;
1530 
1531 #ifdef CONFIG_MODULES
1532 	/* Attempt to load a protocol module if the find failed.
1533 	 *
1534 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535 	 * requested real, full-featured networking support upon configuration.
1536 	 * Otherwise module support will break!
1537 	 */
1538 	if (rcu_access_pointer(net_families[family]) == NULL)
1539 		request_module("net-pf-%d", family);
1540 #endif
1541 
1542 	rcu_read_lock();
1543 	pf = rcu_dereference(net_families[family]);
1544 	err = -EAFNOSUPPORT;
1545 	if (!pf)
1546 		goto out_release;
1547 
1548 	/*
1549 	 * We will call the ->create function, that possibly is in a loadable
1550 	 * module, so we have to bump that loadable module refcnt first.
1551 	 */
1552 	if (!try_module_get(pf->owner))
1553 		goto out_release;
1554 
1555 	/* Now protected by module ref count */
1556 	rcu_read_unlock();
1557 
1558 	err = pf->create(net, sock, protocol, kern);
1559 	if (err < 0) {
1560 		/* ->create should release the allocated sock->sk object on error
1561 		 * but it may leave the dangling pointer
1562 		 */
1563 		sock->sk = NULL;
1564 		goto out_module_put;
1565 	}
1566 
1567 	/*
1568 	 * Now to bump the refcnt of the [loadable] module that owns this
1569 	 * socket at sock_release time we decrement its refcnt.
1570 	 */
1571 	if (!try_module_get(sock->ops->owner))
1572 		goto out_module_busy;
1573 
1574 	/*
1575 	 * Now that we're done with the ->create function, the [loadable]
1576 	 * module can have its refcnt decremented
1577 	 */
1578 	module_put(pf->owner);
1579 	err = security_socket_post_create(sock, family, type, protocol, kern);
1580 	if (err)
1581 		goto out_sock_release;
1582 	*res = sock;
1583 
1584 	return 0;
1585 
1586 out_module_busy:
1587 	err = -EAFNOSUPPORT;
1588 out_module_put:
1589 	sock->ops = NULL;
1590 	module_put(pf->owner);
1591 out_sock_release:
1592 	sock_release(sock);
1593 	return err;
1594 
1595 out_release:
1596 	rcu_read_unlock();
1597 	goto out_sock_release;
1598 }
1599 EXPORT_SYMBOL(__sock_create);
1600 
1601 /**
1602  *	sock_create - creates a socket
1603  *	@family: protocol family (AF_INET, ...)
1604  *	@type: communication type (SOCK_STREAM, ...)
1605  *	@protocol: protocol (0, ...)
1606  *	@res: new socket
1607  *
1608  *	A wrapper around __sock_create().
1609  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1610  */
1611 
1612 int sock_create(int family, int type, int protocol, struct socket **res)
1613 {
1614 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1615 }
1616 EXPORT_SYMBOL(sock_create);
1617 
1618 /**
1619  *	sock_create_kern - creates a socket (kernel space)
1620  *	@net: net namespace
1621  *	@family: protocol family (AF_INET, ...)
1622  *	@type: communication type (SOCK_STREAM, ...)
1623  *	@protocol: protocol (0, ...)
1624  *	@res: new socket
1625  *
1626  *	A wrapper around __sock_create().
1627  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1628  */
1629 
1630 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1631 {
1632 	return __sock_create(net, family, type, protocol, res, 1);
1633 }
1634 EXPORT_SYMBOL(sock_create_kern);
1635 
1636 static struct socket *__sys_socket_create(int family, int type, int protocol)
1637 {
1638 	struct socket *sock;
1639 	int retval;
1640 
1641 	/* Check the SOCK_* constants for consistency.  */
1642 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1643 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1644 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1645 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1646 
1647 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1648 		return ERR_PTR(-EINVAL);
1649 	type &= SOCK_TYPE_MASK;
1650 
1651 	retval = sock_create(family, type, protocol, &sock);
1652 	if (retval < 0)
1653 		return ERR_PTR(retval);
1654 
1655 	return sock;
1656 }
1657 
1658 struct file *__sys_socket_file(int family, int type, int protocol)
1659 {
1660 	struct socket *sock;
1661 	int flags;
1662 
1663 	sock = __sys_socket_create(family, type, protocol);
1664 	if (IS_ERR(sock))
1665 		return ERR_CAST(sock);
1666 
1667 	flags = type & ~SOCK_TYPE_MASK;
1668 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670 
1671 	return sock_alloc_file(sock, flags, NULL);
1672 }
1673 
1674 /*	A hook for bpf progs to attach to and update socket protocol.
1675  *
1676  *	A static noinline declaration here could cause the compiler to
1677  *	optimize away the function. A global noinline declaration will
1678  *	keep the definition, but may optimize away the callsite.
1679  *	Therefore, __weak is needed to ensure that the call is still
1680  *	emitted, by telling the compiler that we don't know what the
1681  *	function might eventually be.
1682  */
1683 
1684 __bpf_hook_start();
1685 
1686 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1687 {
1688 	return protocol;
1689 }
1690 
1691 __bpf_hook_end();
1692 
1693 int __sys_socket(int family, int type, int protocol)
1694 {
1695 	struct socket *sock;
1696 	int flags;
1697 
1698 	sock = __sys_socket_create(family, type,
1699 				   update_socket_protocol(family, type, protocol));
1700 	if (IS_ERR(sock))
1701 		return PTR_ERR(sock);
1702 
1703 	flags = type & ~SOCK_TYPE_MASK;
1704 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1705 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1706 
1707 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1708 }
1709 
1710 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1711 {
1712 	return __sys_socket(family, type, protocol);
1713 }
1714 
1715 /*
1716  *	Create a pair of connected sockets.
1717  */
1718 
1719 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1720 {
1721 	struct socket *sock1, *sock2;
1722 	int fd1, fd2, err;
1723 	struct file *newfile1, *newfile2;
1724 	int flags;
1725 
1726 	flags = type & ~SOCK_TYPE_MASK;
1727 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1728 		return -EINVAL;
1729 	type &= SOCK_TYPE_MASK;
1730 
1731 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1732 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1733 
1734 	/*
1735 	 * reserve descriptors and make sure we won't fail
1736 	 * to return them to userland.
1737 	 */
1738 	fd1 = get_unused_fd_flags(flags);
1739 	if (unlikely(fd1 < 0))
1740 		return fd1;
1741 
1742 	fd2 = get_unused_fd_flags(flags);
1743 	if (unlikely(fd2 < 0)) {
1744 		put_unused_fd(fd1);
1745 		return fd2;
1746 	}
1747 
1748 	err = put_user(fd1, &usockvec[0]);
1749 	if (err)
1750 		goto out;
1751 
1752 	err = put_user(fd2, &usockvec[1]);
1753 	if (err)
1754 		goto out;
1755 
1756 	/*
1757 	 * Obtain the first socket and check if the underlying protocol
1758 	 * supports the socketpair call.
1759 	 */
1760 
1761 	err = sock_create(family, type, protocol, &sock1);
1762 	if (unlikely(err < 0))
1763 		goto out;
1764 
1765 	err = sock_create(family, type, protocol, &sock2);
1766 	if (unlikely(err < 0)) {
1767 		sock_release(sock1);
1768 		goto out;
1769 	}
1770 
1771 	err = security_socket_socketpair(sock1, sock2);
1772 	if (unlikely(err)) {
1773 		sock_release(sock2);
1774 		sock_release(sock1);
1775 		goto out;
1776 	}
1777 
1778 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1779 	if (unlikely(err < 0)) {
1780 		sock_release(sock2);
1781 		sock_release(sock1);
1782 		goto out;
1783 	}
1784 
1785 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1786 	if (IS_ERR(newfile1)) {
1787 		err = PTR_ERR(newfile1);
1788 		sock_release(sock2);
1789 		goto out;
1790 	}
1791 
1792 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1793 	if (IS_ERR(newfile2)) {
1794 		err = PTR_ERR(newfile2);
1795 		fput(newfile1);
1796 		goto out;
1797 	}
1798 
1799 	audit_fd_pair(fd1, fd2);
1800 
1801 	fd_install(fd1, newfile1);
1802 	fd_install(fd2, newfile2);
1803 	return 0;
1804 
1805 out:
1806 	put_unused_fd(fd2);
1807 	put_unused_fd(fd1);
1808 	return err;
1809 }
1810 
1811 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1812 		int __user *, usockvec)
1813 {
1814 	return __sys_socketpair(family, type, protocol, usockvec);
1815 }
1816 
1817 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1818 		      int addrlen)
1819 {
1820 	int err;
1821 
1822 	err = security_socket_bind(sock, (struct sockaddr *)address,
1823 				   addrlen);
1824 	if (!err)
1825 		err = READ_ONCE(sock->ops)->bind(sock,
1826 						 (struct sockaddr *)address,
1827 						 addrlen);
1828 	return err;
1829 }
1830 
1831 /*
1832  *	Bind a name to a socket. Nothing much to do here since it's
1833  *	the protocol's responsibility to handle the local address.
1834  *
1835  *	We move the socket address to kernel space before we call
1836  *	the protocol layer (having also checked the address is ok).
1837  */
1838 
1839 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1840 {
1841 	struct socket *sock;
1842 	struct sockaddr_storage address;
1843 	CLASS(fd, f)(fd);
1844 	int err;
1845 
1846 	if (fd_empty(f))
1847 		return -EBADF;
1848 	sock = sock_from_file(fd_file(f));
1849 	if (unlikely(!sock))
1850 		return -ENOTSOCK;
1851 
1852 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1853 	if (unlikely(err))
1854 		return err;
1855 
1856 	return __sys_bind_socket(sock, &address, addrlen);
1857 }
1858 
1859 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1860 {
1861 	return __sys_bind(fd, umyaddr, addrlen);
1862 }
1863 
1864 /*
1865  *	Perform a listen. Basically, we allow the protocol to do anything
1866  *	necessary for a listen, and if that works, we mark the socket as
1867  *	ready for listening.
1868  */
1869 int __sys_listen_socket(struct socket *sock, int backlog)
1870 {
1871 	int somaxconn, err;
1872 
1873 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1874 	if ((unsigned int)backlog > somaxconn)
1875 		backlog = somaxconn;
1876 
1877 	err = security_socket_listen(sock, backlog);
1878 	if (!err)
1879 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1880 	return err;
1881 }
1882 
1883 int __sys_listen(int fd, int backlog)
1884 {
1885 	CLASS(fd, f)(fd);
1886 	struct socket *sock;
1887 
1888 	if (fd_empty(f))
1889 		return -EBADF;
1890 	sock = sock_from_file(fd_file(f));
1891 	if (unlikely(!sock))
1892 		return -ENOTSOCK;
1893 
1894 	return __sys_listen_socket(sock, backlog);
1895 }
1896 
1897 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1898 {
1899 	return __sys_listen(fd, backlog);
1900 }
1901 
1902 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1903 		       struct sockaddr __user *upeer_sockaddr,
1904 		       int __user *upeer_addrlen, int flags)
1905 {
1906 	struct socket *sock, *newsock;
1907 	struct file *newfile;
1908 	int err, len;
1909 	struct sockaddr_storage address;
1910 	const struct proto_ops *ops;
1911 
1912 	sock = sock_from_file(file);
1913 	if (!sock)
1914 		return ERR_PTR(-ENOTSOCK);
1915 
1916 	newsock = sock_alloc();
1917 	if (!newsock)
1918 		return ERR_PTR(-ENFILE);
1919 	ops = READ_ONCE(sock->ops);
1920 
1921 	newsock->type = sock->type;
1922 	newsock->ops = ops;
1923 
1924 	/*
1925 	 * We don't need try_module_get here, as the listening socket (sock)
1926 	 * has the protocol module (sock->ops->owner) held.
1927 	 */
1928 	__module_get(ops->owner);
1929 
1930 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1931 	if (IS_ERR(newfile))
1932 		return newfile;
1933 
1934 	err = security_socket_accept(sock, newsock);
1935 	if (err)
1936 		goto out_fd;
1937 
1938 	arg->flags |= sock->file->f_flags;
1939 	err = ops->accept(sock, newsock, arg);
1940 	if (err < 0)
1941 		goto out_fd;
1942 
1943 	if (upeer_sockaddr) {
1944 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1945 		if (len < 0) {
1946 			err = -ECONNABORTED;
1947 			goto out_fd;
1948 		}
1949 		err = move_addr_to_user(&address,
1950 					len, upeer_sockaddr, upeer_addrlen);
1951 		if (err < 0)
1952 			goto out_fd;
1953 	}
1954 
1955 	/* File flags are not inherited via accept() unlike another OSes. */
1956 	return newfile;
1957 out_fd:
1958 	fput(newfile);
1959 	return ERR_PTR(err);
1960 }
1961 
1962 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1963 			      int __user *upeer_addrlen, int flags)
1964 {
1965 	struct proto_accept_arg arg = { };
1966 	struct file *newfile;
1967 	int newfd;
1968 
1969 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1970 		return -EINVAL;
1971 
1972 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1973 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1974 
1975 	newfd = get_unused_fd_flags(flags);
1976 	if (unlikely(newfd < 0))
1977 		return newfd;
1978 
1979 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1980 			    flags);
1981 	if (IS_ERR(newfile)) {
1982 		put_unused_fd(newfd);
1983 		return PTR_ERR(newfile);
1984 	}
1985 	fd_install(newfd, newfile);
1986 	return newfd;
1987 }
1988 
1989 /*
1990  *	For accept, we attempt to create a new socket, set up the link
1991  *	with the client, wake up the client, then return the new
1992  *	connected fd. We collect the address of the connector in kernel
1993  *	space and move it to user at the very end. This is unclean because
1994  *	we open the socket then return an error.
1995  *
1996  *	1003.1g adds the ability to recvmsg() to query connection pending
1997  *	status to recvmsg. We need to add that support in a way thats
1998  *	clean when we restructure accept also.
1999  */
2000 
2001 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2002 		  int __user *upeer_addrlen, int flags)
2003 {
2004 	CLASS(fd, f)(fd);
2005 
2006 	if (fd_empty(f))
2007 		return -EBADF;
2008 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2009 					 upeer_addrlen, flags);
2010 }
2011 
2012 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2013 		int __user *, upeer_addrlen, int, flags)
2014 {
2015 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2016 }
2017 
2018 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2019 		int __user *, upeer_addrlen)
2020 {
2021 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2022 }
2023 
2024 /*
2025  *	Attempt to connect to a socket with the server address.  The address
2026  *	is in user space so we verify it is OK and move it to kernel space.
2027  *
2028  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2029  *	break bindings
2030  *
2031  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2032  *	other SEQPACKET protocols that take time to connect() as it doesn't
2033  *	include the -EINPROGRESS status for such sockets.
2034  */
2035 
2036 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2037 		       int addrlen, int file_flags)
2038 {
2039 	struct socket *sock;
2040 	int err;
2041 
2042 	sock = sock_from_file(file);
2043 	if (!sock) {
2044 		err = -ENOTSOCK;
2045 		goto out;
2046 	}
2047 
2048 	err =
2049 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2050 	if (err)
2051 		goto out;
2052 
2053 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2054 				addrlen, sock->file->f_flags | file_flags);
2055 out:
2056 	return err;
2057 }
2058 
2059 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2060 {
2061 	struct sockaddr_storage address;
2062 	CLASS(fd, f)(fd);
2063 	int ret;
2064 
2065 	if (fd_empty(f))
2066 		return -EBADF;
2067 
2068 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2069 	if (ret)
2070 		return ret;
2071 
2072 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2073 }
2074 
2075 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2076 		int, addrlen)
2077 {
2078 	return __sys_connect(fd, uservaddr, addrlen);
2079 }
2080 
2081 /*
2082  *	Get the local address ('name') of a socket object. Move the obtained
2083  *	name to user space.
2084  */
2085 
2086 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2087 		      int __user *usockaddr_len)
2088 {
2089 	struct socket *sock;
2090 	struct sockaddr_storage address;
2091 	CLASS(fd, f)(fd);
2092 	int err;
2093 
2094 	if (fd_empty(f))
2095 		return -EBADF;
2096 	sock = sock_from_file(fd_file(f));
2097 	if (unlikely(!sock))
2098 		return -ENOTSOCK;
2099 
2100 	err = security_socket_getsockname(sock);
2101 	if (err)
2102 		return err;
2103 
2104 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2105 	if (err < 0)
2106 		return err;
2107 
2108 	/* "err" is actually length in this case */
2109 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2110 }
2111 
2112 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2113 		int __user *, usockaddr_len)
2114 {
2115 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2116 }
2117 
2118 /*
2119  *	Get the remote address ('name') of a socket object. Move the obtained
2120  *	name to user space.
2121  */
2122 
2123 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2124 		      int __user *usockaddr_len)
2125 {
2126 	struct socket *sock;
2127 	struct sockaddr_storage address;
2128 	CLASS(fd, f)(fd);
2129 	int err;
2130 
2131 	if (fd_empty(f))
2132 		return -EBADF;
2133 	sock = sock_from_file(fd_file(f));
2134 	if (unlikely(!sock))
2135 		return -ENOTSOCK;
2136 
2137 	err = security_socket_getpeername(sock);
2138 	if (err)
2139 		return err;
2140 
2141 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2142 	if (err < 0)
2143 		return err;
2144 
2145 	/* "err" is actually length in this case */
2146 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2147 }
2148 
2149 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2150 		int __user *, usockaddr_len)
2151 {
2152 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2153 }
2154 
2155 /*
2156  *	Send a datagram to a given address. We move the address into kernel
2157  *	space and check the user space data area is readable before invoking
2158  *	the protocol.
2159  */
2160 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2161 		 struct sockaddr __user *addr,  int addr_len)
2162 {
2163 	struct socket *sock;
2164 	struct sockaddr_storage address;
2165 	int err;
2166 	struct msghdr msg;
2167 
2168 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2169 	if (unlikely(err))
2170 		return err;
2171 
2172 	CLASS(fd, f)(fd);
2173 	if (fd_empty(f))
2174 		return -EBADF;
2175 	sock = sock_from_file(fd_file(f));
2176 	if (unlikely(!sock))
2177 		return -ENOTSOCK;
2178 
2179 	msg.msg_name = NULL;
2180 	msg.msg_control = NULL;
2181 	msg.msg_controllen = 0;
2182 	msg.msg_namelen = 0;
2183 	msg.msg_ubuf = NULL;
2184 	if (addr) {
2185 		err = move_addr_to_kernel(addr, addr_len, &address);
2186 		if (err < 0)
2187 			return err;
2188 		msg.msg_name = (struct sockaddr *)&address;
2189 		msg.msg_namelen = addr_len;
2190 	}
2191 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2192 	if (sock->file->f_flags & O_NONBLOCK)
2193 		flags |= MSG_DONTWAIT;
2194 	msg.msg_flags = flags;
2195 	return __sock_sendmsg(sock, &msg);
2196 }
2197 
2198 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2199 		unsigned int, flags, struct sockaddr __user *, addr,
2200 		int, addr_len)
2201 {
2202 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2203 }
2204 
2205 /*
2206  *	Send a datagram down a socket.
2207  */
2208 
2209 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2210 		unsigned int, flags)
2211 {
2212 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2213 }
2214 
2215 /*
2216  *	Receive a frame from the socket and optionally record the address of the
2217  *	sender. We verify the buffers are writable and if needed move the
2218  *	sender address from kernel to user space.
2219  */
2220 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2221 		   struct sockaddr __user *addr, int __user *addr_len)
2222 {
2223 	struct sockaddr_storage address;
2224 	struct msghdr msg = {
2225 		/* Save some cycles and don't copy the address if not needed */
2226 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2227 	};
2228 	struct socket *sock;
2229 	int err, err2;
2230 
2231 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2232 	if (unlikely(err))
2233 		return err;
2234 
2235 	CLASS(fd, f)(fd);
2236 
2237 	if (fd_empty(f))
2238 		return -EBADF;
2239 	sock = sock_from_file(fd_file(f));
2240 	if (unlikely(!sock))
2241 		return -ENOTSOCK;
2242 
2243 	if (sock->file->f_flags & O_NONBLOCK)
2244 		flags |= MSG_DONTWAIT;
2245 	err = sock_recvmsg(sock, &msg, flags);
2246 
2247 	if (err >= 0 && addr != NULL) {
2248 		err2 = move_addr_to_user(&address,
2249 					 msg.msg_namelen, addr, addr_len);
2250 		if (err2 < 0)
2251 			err = err2;
2252 	}
2253 	return err;
2254 }
2255 
2256 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2257 		unsigned int, flags, struct sockaddr __user *, addr,
2258 		int __user *, addr_len)
2259 {
2260 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2261 }
2262 
2263 /*
2264  *	Receive a datagram from a socket.
2265  */
2266 
2267 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2268 		unsigned int, flags)
2269 {
2270 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2271 }
2272 
2273 static bool sock_use_custom_sol_socket(const struct socket *sock)
2274 {
2275 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2276 }
2277 
2278 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2279 		       int optname, sockptr_t optval, int optlen)
2280 {
2281 	const struct proto_ops *ops;
2282 	char *kernel_optval = NULL;
2283 	int err;
2284 
2285 	if (optlen < 0)
2286 		return -EINVAL;
2287 
2288 	err = security_socket_setsockopt(sock, level, optname);
2289 	if (err)
2290 		goto out_put;
2291 
2292 	if (!compat)
2293 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2294 						     optval, &optlen,
2295 						     &kernel_optval);
2296 	if (err < 0)
2297 		goto out_put;
2298 	if (err > 0) {
2299 		err = 0;
2300 		goto out_put;
2301 	}
2302 
2303 	if (kernel_optval)
2304 		optval = KERNEL_SOCKPTR(kernel_optval);
2305 	ops = READ_ONCE(sock->ops);
2306 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2307 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2308 	else if (unlikely(!ops->setsockopt))
2309 		err = -EOPNOTSUPP;
2310 	else
2311 		err = ops->setsockopt(sock, level, optname, optval,
2312 					    optlen);
2313 	kfree(kernel_optval);
2314 out_put:
2315 	return err;
2316 }
2317 EXPORT_SYMBOL(do_sock_setsockopt);
2318 
2319 /* Set a socket option. Because we don't know the option lengths we have
2320  * to pass the user mode parameter for the protocols to sort out.
2321  */
2322 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2323 		     int optlen)
2324 {
2325 	sockptr_t optval = USER_SOCKPTR(user_optval);
2326 	bool compat = in_compat_syscall();
2327 	struct socket *sock;
2328 	CLASS(fd, f)(fd);
2329 
2330 	if (fd_empty(f))
2331 		return -EBADF;
2332 	sock = sock_from_file(fd_file(f));
2333 	if (unlikely(!sock))
2334 		return -ENOTSOCK;
2335 
2336 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2337 }
2338 
2339 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2340 		char __user *, optval, int, optlen)
2341 {
2342 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2343 }
2344 
2345 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2346 							 int optname));
2347 
2348 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2349 		       int optname, sockptr_t optval, sockptr_t optlen)
2350 {
2351 	int max_optlen __maybe_unused = 0;
2352 	const struct proto_ops *ops;
2353 	int err;
2354 
2355 	err = security_socket_getsockopt(sock, level, optname);
2356 	if (err)
2357 		return err;
2358 
2359 	if (!compat)
2360 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2361 
2362 	ops = READ_ONCE(sock->ops);
2363 	if (level == SOL_SOCKET) {
2364 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2365 	} else if (unlikely(!ops->getsockopt)) {
2366 		err = -EOPNOTSUPP;
2367 	} else {
2368 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2369 			      "Invalid argument type"))
2370 			return -EOPNOTSUPP;
2371 
2372 		err = ops->getsockopt(sock, level, optname, optval.user,
2373 				      optlen.user);
2374 	}
2375 
2376 	if (!compat)
2377 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2378 						     optval, optlen, max_optlen,
2379 						     err);
2380 
2381 	return err;
2382 }
2383 EXPORT_SYMBOL(do_sock_getsockopt);
2384 
2385 /*
2386  *	Get a socket option. Because we don't know the option lengths we have
2387  *	to pass a user mode parameter for the protocols to sort out.
2388  */
2389 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2390 		int __user *optlen)
2391 {
2392 	struct socket *sock;
2393 	CLASS(fd, f)(fd);
2394 
2395 	if (fd_empty(f))
2396 		return -EBADF;
2397 	sock = sock_from_file(fd_file(f));
2398 	if (unlikely(!sock))
2399 		return -ENOTSOCK;
2400 
2401 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2402 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2403 }
2404 
2405 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2406 		char __user *, optval, int __user *, optlen)
2407 {
2408 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2409 }
2410 
2411 /*
2412  *	Shutdown a socket.
2413  */
2414 
2415 int __sys_shutdown_sock(struct socket *sock, int how)
2416 {
2417 	int err;
2418 
2419 	err = security_socket_shutdown(sock, how);
2420 	if (!err)
2421 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2422 
2423 	return err;
2424 }
2425 
2426 int __sys_shutdown(int fd, int how)
2427 {
2428 	struct socket *sock;
2429 	CLASS(fd, f)(fd);
2430 
2431 	if (fd_empty(f))
2432 		return -EBADF;
2433 	sock = sock_from_file(fd_file(f));
2434 	if (unlikely(!sock))
2435 		return -ENOTSOCK;
2436 
2437 	return __sys_shutdown_sock(sock, how);
2438 }
2439 
2440 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2441 {
2442 	return __sys_shutdown(fd, how);
2443 }
2444 
2445 /* A couple of helpful macros for getting the address of the 32/64 bit
2446  * fields which are the same type (int / unsigned) on our platforms.
2447  */
2448 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2449 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2450 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2451 
2452 struct used_address {
2453 	struct sockaddr_storage name;
2454 	unsigned int name_len;
2455 };
2456 
2457 int __copy_msghdr(struct msghdr *kmsg,
2458 		  struct user_msghdr *msg,
2459 		  struct sockaddr __user **save_addr)
2460 {
2461 	ssize_t err;
2462 
2463 	kmsg->msg_control_is_user = true;
2464 	kmsg->msg_get_inq = 0;
2465 	kmsg->msg_control_user = msg->msg_control;
2466 	kmsg->msg_controllen = msg->msg_controllen;
2467 	kmsg->msg_flags = msg->msg_flags;
2468 
2469 	kmsg->msg_namelen = msg->msg_namelen;
2470 	if (!msg->msg_name)
2471 		kmsg->msg_namelen = 0;
2472 
2473 	if (kmsg->msg_namelen < 0)
2474 		return -EINVAL;
2475 
2476 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2477 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2478 
2479 	if (save_addr)
2480 		*save_addr = msg->msg_name;
2481 
2482 	if (msg->msg_name && kmsg->msg_namelen) {
2483 		if (!save_addr) {
2484 			err = move_addr_to_kernel(msg->msg_name,
2485 						  kmsg->msg_namelen,
2486 						  kmsg->msg_name);
2487 			if (err < 0)
2488 				return err;
2489 		}
2490 	} else {
2491 		kmsg->msg_name = NULL;
2492 		kmsg->msg_namelen = 0;
2493 	}
2494 
2495 	if (msg->msg_iovlen > UIO_MAXIOV)
2496 		return -EMSGSIZE;
2497 
2498 	kmsg->msg_iocb = NULL;
2499 	kmsg->msg_ubuf = NULL;
2500 	return 0;
2501 }
2502 
2503 static int copy_msghdr_from_user(struct msghdr *kmsg,
2504 				 struct user_msghdr __user *umsg,
2505 				 struct sockaddr __user **save_addr,
2506 				 struct iovec **iov)
2507 {
2508 	struct user_msghdr msg;
2509 	ssize_t err;
2510 
2511 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2512 		return -EFAULT;
2513 
2514 	err = __copy_msghdr(kmsg, &msg, save_addr);
2515 	if (err)
2516 		return err;
2517 
2518 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2519 			    msg.msg_iov, msg.msg_iovlen,
2520 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2521 	return err < 0 ? err : 0;
2522 }
2523 
2524 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2525 			   unsigned int flags, struct used_address *used_address,
2526 			   unsigned int allowed_msghdr_flags)
2527 {
2528 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2529 				__aligned(sizeof(__kernel_size_t));
2530 	/* 20 is size of ipv6_pktinfo */
2531 	unsigned char *ctl_buf = ctl;
2532 	int ctl_len;
2533 	ssize_t err;
2534 
2535 	err = -ENOBUFS;
2536 
2537 	if (msg_sys->msg_controllen > INT_MAX)
2538 		goto out;
2539 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2540 	ctl_len = msg_sys->msg_controllen;
2541 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2542 		err =
2543 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2544 						     sizeof(ctl));
2545 		if (err)
2546 			goto out;
2547 		ctl_buf = msg_sys->msg_control;
2548 		ctl_len = msg_sys->msg_controllen;
2549 	} else if (ctl_len) {
2550 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2551 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2552 		if (ctl_len > sizeof(ctl)) {
2553 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2554 			if (ctl_buf == NULL)
2555 				goto out;
2556 		}
2557 		err = -EFAULT;
2558 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2559 			goto out_freectl;
2560 		msg_sys->msg_control = ctl_buf;
2561 		msg_sys->msg_control_is_user = false;
2562 	}
2563 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2564 	msg_sys->msg_flags = flags;
2565 
2566 	if (sock->file->f_flags & O_NONBLOCK)
2567 		msg_sys->msg_flags |= MSG_DONTWAIT;
2568 	/*
2569 	 * If this is sendmmsg() and current destination address is same as
2570 	 * previously succeeded address, omit asking LSM's decision.
2571 	 * used_address->name_len is initialized to UINT_MAX so that the first
2572 	 * destination address never matches.
2573 	 */
2574 	if (used_address && msg_sys->msg_name &&
2575 	    used_address->name_len == msg_sys->msg_namelen &&
2576 	    !memcmp(&used_address->name, msg_sys->msg_name,
2577 		    used_address->name_len)) {
2578 		err = sock_sendmsg_nosec(sock, msg_sys);
2579 		goto out_freectl;
2580 	}
2581 	err = __sock_sendmsg(sock, msg_sys);
2582 	/*
2583 	 * If this is sendmmsg() and sending to current destination address was
2584 	 * successful, remember it.
2585 	 */
2586 	if (used_address && err >= 0) {
2587 		used_address->name_len = msg_sys->msg_namelen;
2588 		if (msg_sys->msg_name)
2589 			memcpy(&used_address->name, msg_sys->msg_name,
2590 			       used_address->name_len);
2591 	}
2592 
2593 out_freectl:
2594 	if (ctl_buf != ctl)
2595 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2596 out:
2597 	return err;
2598 }
2599 
2600 static int sendmsg_copy_msghdr(struct msghdr *msg,
2601 			       struct user_msghdr __user *umsg, unsigned flags,
2602 			       struct iovec **iov)
2603 {
2604 	int err;
2605 
2606 	if (flags & MSG_CMSG_COMPAT) {
2607 		struct compat_msghdr __user *msg_compat;
2608 
2609 		msg_compat = (struct compat_msghdr __user *) umsg;
2610 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2611 	} else {
2612 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2613 	}
2614 	if (err < 0)
2615 		return err;
2616 
2617 	return 0;
2618 }
2619 
2620 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2621 			 struct msghdr *msg_sys, unsigned int flags,
2622 			 struct used_address *used_address,
2623 			 unsigned int allowed_msghdr_flags)
2624 {
2625 	struct sockaddr_storage address;
2626 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2627 	ssize_t err;
2628 
2629 	msg_sys->msg_name = &address;
2630 
2631 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2632 	if (err < 0)
2633 		return err;
2634 
2635 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2636 				allowed_msghdr_flags);
2637 	kfree(iov);
2638 	return err;
2639 }
2640 
2641 /*
2642  *	BSD sendmsg interface
2643  */
2644 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2645 			unsigned int flags)
2646 {
2647 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2648 }
2649 
2650 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2651 		   bool forbid_cmsg_compat)
2652 {
2653 	struct msghdr msg_sys;
2654 	struct socket *sock;
2655 
2656 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2657 		return -EINVAL;
2658 
2659 	CLASS(fd, f)(fd);
2660 
2661 	if (fd_empty(f))
2662 		return -EBADF;
2663 	sock = sock_from_file(fd_file(f));
2664 	if (unlikely(!sock))
2665 		return -ENOTSOCK;
2666 
2667 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2668 }
2669 
2670 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2671 {
2672 	return __sys_sendmsg(fd, msg, flags, true);
2673 }
2674 
2675 /*
2676  *	Linux sendmmsg interface
2677  */
2678 
2679 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2680 		   unsigned int flags, bool forbid_cmsg_compat)
2681 {
2682 	int err, datagrams;
2683 	struct socket *sock;
2684 	struct mmsghdr __user *entry;
2685 	struct compat_mmsghdr __user *compat_entry;
2686 	struct msghdr msg_sys;
2687 	struct used_address used_address;
2688 	unsigned int oflags = flags;
2689 
2690 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2691 		return -EINVAL;
2692 
2693 	if (vlen > UIO_MAXIOV)
2694 		vlen = UIO_MAXIOV;
2695 
2696 	datagrams = 0;
2697 
2698 	CLASS(fd, f)(fd);
2699 
2700 	if (fd_empty(f))
2701 		return -EBADF;
2702 	sock = sock_from_file(fd_file(f));
2703 	if (unlikely(!sock))
2704 		return -ENOTSOCK;
2705 
2706 	used_address.name_len = UINT_MAX;
2707 	entry = mmsg;
2708 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2709 	err = 0;
2710 	flags |= MSG_BATCH;
2711 
2712 	while (datagrams < vlen) {
2713 		if (datagrams == vlen - 1)
2714 			flags = oflags;
2715 
2716 		if (MSG_CMSG_COMPAT & flags) {
2717 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2718 					     &msg_sys, flags, &used_address, MSG_EOR);
2719 			if (err < 0)
2720 				break;
2721 			err = __put_user(err, &compat_entry->msg_len);
2722 			++compat_entry;
2723 		} else {
2724 			err = ___sys_sendmsg(sock,
2725 					     (struct user_msghdr __user *)entry,
2726 					     &msg_sys, flags, &used_address, MSG_EOR);
2727 			if (err < 0)
2728 				break;
2729 			err = put_user(err, &entry->msg_len);
2730 			++entry;
2731 		}
2732 
2733 		if (err)
2734 			break;
2735 		++datagrams;
2736 		if (msg_data_left(&msg_sys))
2737 			break;
2738 		cond_resched();
2739 	}
2740 
2741 	/* We only return an error if no datagrams were able to be sent */
2742 	if (datagrams != 0)
2743 		return datagrams;
2744 
2745 	return err;
2746 }
2747 
2748 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2749 		unsigned int, vlen, unsigned int, flags)
2750 {
2751 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2752 }
2753 
2754 static int recvmsg_copy_msghdr(struct msghdr *msg,
2755 			       struct user_msghdr __user *umsg, unsigned flags,
2756 			       struct sockaddr __user **uaddr,
2757 			       struct iovec **iov)
2758 {
2759 	ssize_t err;
2760 
2761 	if (MSG_CMSG_COMPAT & flags) {
2762 		struct compat_msghdr __user *msg_compat;
2763 
2764 		msg_compat = (struct compat_msghdr __user *) umsg;
2765 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2766 	} else {
2767 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2768 	}
2769 	if (err < 0)
2770 		return err;
2771 
2772 	return 0;
2773 }
2774 
2775 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2776 			   struct user_msghdr __user *msg,
2777 			   struct sockaddr __user *uaddr,
2778 			   unsigned int flags, int nosec)
2779 {
2780 	struct compat_msghdr __user *msg_compat =
2781 					(struct compat_msghdr __user *) msg;
2782 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2783 	struct sockaddr_storage addr;
2784 	unsigned long cmsg_ptr;
2785 	int len;
2786 	ssize_t err;
2787 
2788 	msg_sys->msg_name = &addr;
2789 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2790 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2791 
2792 	/* We assume all kernel code knows the size of sockaddr_storage */
2793 	msg_sys->msg_namelen = 0;
2794 
2795 	if (sock->file->f_flags & O_NONBLOCK)
2796 		flags |= MSG_DONTWAIT;
2797 
2798 	if (unlikely(nosec))
2799 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2800 	else
2801 		err = sock_recvmsg(sock, msg_sys, flags);
2802 
2803 	if (err < 0)
2804 		goto out;
2805 	len = err;
2806 
2807 	if (uaddr != NULL) {
2808 		err = move_addr_to_user(&addr,
2809 					msg_sys->msg_namelen, uaddr,
2810 					uaddr_len);
2811 		if (err < 0)
2812 			goto out;
2813 	}
2814 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2815 			 COMPAT_FLAGS(msg));
2816 	if (err)
2817 		goto out;
2818 	if (MSG_CMSG_COMPAT & flags)
2819 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2820 				 &msg_compat->msg_controllen);
2821 	else
2822 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2823 				 &msg->msg_controllen);
2824 	if (err)
2825 		goto out;
2826 	err = len;
2827 out:
2828 	return err;
2829 }
2830 
2831 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2832 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2833 {
2834 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2835 	/* user mode address pointers */
2836 	struct sockaddr __user *uaddr;
2837 	ssize_t err;
2838 
2839 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2840 	if (err < 0)
2841 		return err;
2842 
2843 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2844 	kfree(iov);
2845 	return err;
2846 }
2847 
2848 /*
2849  *	BSD recvmsg interface
2850  */
2851 
2852 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2853 			struct user_msghdr __user *umsg,
2854 			struct sockaddr __user *uaddr, unsigned int flags)
2855 {
2856 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2857 }
2858 
2859 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2860 		   bool forbid_cmsg_compat)
2861 {
2862 	struct msghdr msg_sys;
2863 	struct socket *sock;
2864 
2865 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2866 		return -EINVAL;
2867 
2868 	CLASS(fd, f)(fd);
2869 
2870 	if (fd_empty(f))
2871 		return -EBADF;
2872 	sock = sock_from_file(fd_file(f));
2873 	if (unlikely(!sock))
2874 		return -ENOTSOCK;
2875 
2876 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2877 }
2878 
2879 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2880 		unsigned int, flags)
2881 {
2882 	return __sys_recvmsg(fd, msg, flags, true);
2883 }
2884 
2885 /*
2886  *     Linux recvmmsg interface
2887  */
2888 
2889 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2890 			  unsigned int vlen, unsigned int flags,
2891 			  struct timespec64 *timeout)
2892 {
2893 	int err = 0, datagrams;
2894 	struct socket *sock;
2895 	struct mmsghdr __user *entry;
2896 	struct compat_mmsghdr __user *compat_entry;
2897 	struct msghdr msg_sys;
2898 	struct timespec64 end_time;
2899 	struct timespec64 timeout64;
2900 
2901 	if (timeout &&
2902 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2903 				    timeout->tv_nsec))
2904 		return -EINVAL;
2905 
2906 	datagrams = 0;
2907 
2908 	CLASS(fd, f)(fd);
2909 
2910 	if (fd_empty(f))
2911 		return -EBADF;
2912 	sock = sock_from_file(fd_file(f));
2913 	if (unlikely(!sock))
2914 		return -ENOTSOCK;
2915 
2916 	if (likely(!(flags & MSG_ERRQUEUE))) {
2917 		err = sock_error(sock->sk);
2918 		if (err)
2919 			return err;
2920 	}
2921 
2922 	entry = mmsg;
2923 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2924 
2925 	while (datagrams < vlen) {
2926 		/*
2927 		 * No need to ask LSM for more than the first datagram.
2928 		 */
2929 		if (MSG_CMSG_COMPAT & flags) {
2930 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2931 					     &msg_sys, flags & ~MSG_WAITFORONE,
2932 					     datagrams);
2933 			if (err < 0)
2934 				break;
2935 			err = __put_user(err, &compat_entry->msg_len);
2936 			++compat_entry;
2937 		} else {
2938 			err = ___sys_recvmsg(sock,
2939 					     (struct user_msghdr __user *)entry,
2940 					     &msg_sys, flags & ~MSG_WAITFORONE,
2941 					     datagrams);
2942 			if (err < 0)
2943 				break;
2944 			err = put_user(err, &entry->msg_len);
2945 			++entry;
2946 		}
2947 
2948 		if (err)
2949 			break;
2950 		++datagrams;
2951 
2952 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2953 		if (flags & MSG_WAITFORONE)
2954 			flags |= MSG_DONTWAIT;
2955 
2956 		if (timeout) {
2957 			ktime_get_ts64(&timeout64);
2958 			*timeout = timespec64_sub(end_time, timeout64);
2959 			if (timeout->tv_sec < 0) {
2960 				timeout->tv_sec = timeout->tv_nsec = 0;
2961 				break;
2962 			}
2963 
2964 			/* Timeout, return less than vlen datagrams */
2965 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2966 				break;
2967 		}
2968 
2969 		/* Out of band data, return right away */
2970 		if (msg_sys.msg_flags & MSG_OOB)
2971 			break;
2972 		cond_resched();
2973 	}
2974 
2975 	if (err == 0)
2976 		return datagrams;
2977 
2978 	if (datagrams == 0)
2979 		return err;
2980 
2981 	/*
2982 	 * We may return less entries than requested (vlen) if the
2983 	 * sock is non block and there aren't enough datagrams...
2984 	 */
2985 	if (err != -EAGAIN) {
2986 		/*
2987 		 * ... or  if recvmsg returns an error after we
2988 		 * received some datagrams, where we record the
2989 		 * error to return on the next call or if the
2990 		 * app asks about it using getsockopt(SO_ERROR).
2991 		 */
2992 		WRITE_ONCE(sock->sk->sk_err, -err);
2993 	}
2994 	return datagrams;
2995 }
2996 
2997 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2998 		   unsigned int vlen, unsigned int flags,
2999 		   struct __kernel_timespec __user *timeout,
3000 		   struct old_timespec32 __user *timeout32)
3001 {
3002 	int datagrams;
3003 	struct timespec64 timeout_sys;
3004 
3005 	if (timeout && get_timespec64(&timeout_sys, timeout))
3006 		return -EFAULT;
3007 
3008 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3009 		return -EFAULT;
3010 
3011 	if (!timeout && !timeout32)
3012 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3013 
3014 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3015 
3016 	if (datagrams <= 0)
3017 		return datagrams;
3018 
3019 	if (timeout && put_timespec64(&timeout_sys, timeout))
3020 		datagrams = -EFAULT;
3021 
3022 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3023 		datagrams = -EFAULT;
3024 
3025 	return datagrams;
3026 }
3027 
3028 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3029 		unsigned int, vlen, unsigned int, flags,
3030 		struct __kernel_timespec __user *, timeout)
3031 {
3032 	if (flags & MSG_CMSG_COMPAT)
3033 		return -EINVAL;
3034 
3035 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3036 }
3037 
3038 #ifdef CONFIG_COMPAT_32BIT_TIME
3039 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3040 		unsigned int, vlen, unsigned int, flags,
3041 		struct old_timespec32 __user *, timeout)
3042 {
3043 	if (flags & MSG_CMSG_COMPAT)
3044 		return -EINVAL;
3045 
3046 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3047 }
3048 #endif
3049 
3050 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3051 /* Argument list sizes for sys_socketcall */
3052 #define AL(x) ((x) * sizeof(unsigned long))
3053 static const unsigned char nargs[21] = {
3054 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3055 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3056 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3057 	AL(4), AL(5), AL(4)
3058 };
3059 
3060 #undef AL
3061 
3062 /*
3063  *	System call vectors.
3064  *
3065  *	Argument checking cleaned up. Saved 20% in size.
3066  *  This function doesn't need to set the kernel lock because
3067  *  it is set by the callees.
3068  */
3069 
3070 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3071 {
3072 	unsigned long a[AUDITSC_ARGS];
3073 	unsigned long a0, a1;
3074 	int err;
3075 	unsigned int len;
3076 
3077 	if (call < 1 || call > SYS_SENDMMSG)
3078 		return -EINVAL;
3079 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3080 
3081 	len = nargs[call];
3082 	if (len > sizeof(a))
3083 		return -EINVAL;
3084 
3085 	/* copy_from_user should be SMP safe. */
3086 	if (copy_from_user(a, args, len))
3087 		return -EFAULT;
3088 
3089 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3090 	if (err)
3091 		return err;
3092 
3093 	a0 = a[0];
3094 	a1 = a[1];
3095 
3096 	switch (call) {
3097 	case SYS_SOCKET:
3098 		err = __sys_socket(a0, a1, a[2]);
3099 		break;
3100 	case SYS_BIND:
3101 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3102 		break;
3103 	case SYS_CONNECT:
3104 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3105 		break;
3106 	case SYS_LISTEN:
3107 		err = __sys_listen(a0, a1);
3108 		break;
3109 	case SYS_ACCEPT:
3110 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3111 				    (int __user *)a[2], 0);
3112 		break;
3113 	case SYS_GETSOCKNAME:
3114 		err =
3115 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3116 				      (int __user *)a[2]);
3117 		break;
3118 	case SYS_GETPEERNAME:
3119 		err =
3120 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3121 				      (int __user *)a[2]);
3122 		break;
3123 	case SYS_SOCKETPAIR:
3124 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3125 		break;
3126 	case SYS_SEND:
3127 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3128 				   NULL, 0);
3129 		break;
3130 	case SYS_SENDTO:
3131 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3132 				   (struct sockaddr __user *)a[4], a[5]);
3133 		break;
3134 	case SYS_RECV:
3135 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3136 				     NULL, NULL);
3137 		break;
3138 	case SYS_RECVFROM:
3139 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3140 				     (struct sockaddr __user *)a[4],
3141 				     (int __user *)a[5]);
3142 		break;
3143 	case SYS_SHUTDOWN:
3144 		err = __sys_shutdown(a0, a1);
3145 		break;
3146 	case SYS_SETSOCKOPT:
3147 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3148 				       a[4]);
3149 		break;
3150 	case SYS_GETSOCKOPT:
3151 		err =
3152 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3153 				     (int __user *)a[4]);
3154 		break;
3155 	case SYS_SENDMSG:
3156 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3157 				    a[2], true);
3158 		break;
3159 	case SYS_SENDMMSG:
3160 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3161 				     a[3], true);
3162 		break;
3163 	case SYS_RECVMSG:
3164 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3165 				    a[2], true);
3166 		break;
3167 	case SYS_RECVMMSG:
3168 		if (IS_ENABLED(CONFIG_64BIT))
3169 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3170 					     a[2], a[3],
3171 					     (struct __kernel_timespec __user *)a[4],
3172 					     NULL);
3173 		else
3174 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3175 					     a[2], a[3], NULL,
3176 					     (struct old_timespec32 __user *)a[4]);
3177 		break;
3178 	case SYS_ACCEPT4:
3179 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3180 				    (int __user *)a[2], a[3]);
3181 		break;
3182 	default:
3183 		err = -EINVAL;
3184 		break;
3185 	}
3186 	return err;
3187 }
3188 
3189 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3190 
3191 /**
3192  *	sock_register - add a socket protocol handler
3193  *	@ops: description of protocol
3194  *
3195  *	This function is called by a protocol handler that wants to
3196  *	advertise its address family, and have it linked into the
3197  *	socket interface. The value ops->family corresponds to the
3198  *	socket system call protocol family.
3199  */
3200 int sock_register(const struct net_proto_family *ops)
3201 {
3202 	int err;
3203 
3204 	if (ops->family >= NPROTO) {
3205 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3206 		return -ENOBUFS;
3207 	}
3208 
3209 	spin_lock(&net_family_lock);
3210 	if (rcu_dereference_protected(net_families[ops->family],
3211 				      lockdep_is_held(&net_family_lock)))
3212 		err = -EEXIST;
3213 	else {
3214 		rcu_assign_pointer(net_families[ops->family], ops);
3215 		err = 0;
3216 	}
3217 	spin_unlock(&net_family_lock);
3218 
3219 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3220 	return err;
3221 }
3222 EXPORT_SYMBOL(sock_register);
3223 
3224 /**
3225  *	sock_unregister - remove a protocol handler
3226  *	@family: protocol family to remove
3227  *
3228  *	This function is called by a protocol handler that wants to
3229  *	remove its address family, and have it unlinked from the
3230  *	new socket creation.
3231  *
3232  *	If protocol handler is a module, then it can use module reference
3233  *	counts to protect against new references. If protocol handler is not
3234  *	a module then it needs to provide its own protection in
3235  *	the ops->create routine.
3236  */
3237 void sock_unregister(int family)
3238 {
3239 	BUG_ON(family < 0 || family >= NPROTO);
3240 
3241 	spin_lock(&net_family_lock);
3242 	RCU_INIT_POINTER(net_families[family], NULL);
3243 	spin_unlock(&net_family_lock);
3244 
3245 	synchronize_rcu();
3246 
3247 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3248 }
3249 EXPORT_SYMBOL(sock_unregister);
3250 
3251 bool sock_is_registered(int family)
3252 {
3253 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3254 }
3255 
3256 static int __init sock_init(void)
3257 {
3258 	int err;
3259 	/*
3260 	 *      Initialize the network sysctl infrastructure.
3261 	 */
3262 	err = net_sysctl_init();
3263 	if (err)
3264 		goto out;
3265 
3266 	/*
3267 	 *      Initialize skbuff SLAB cache
3268 	 */
3269 	skb_init();
3270 
3271 	/*
3272 	 *      Initialize the protocols module.
3273 	 */
3274 
3275 	init_inodecache();
3276 
3277 	err = register_filesystem(&sock_fs_type);
3278 	if (err)
3279 		goto out;
3280 	sock_mnt = kern_mount(&sock_fs_type);
3281 	if (IS_ERR(sock_mnt)) {
3282 		err = PTR_ERR(sock_mnt);
3283 		goto out_mount;
3284 	}
3285 
3286 	/* The real protocol initialization is performed in later initcalls.
3287 	 */
3288 
3289 #ifdef CONFIG_NETFILTER
3290 	err = netfilter_init();
3291 	if (err)
3292 		goto out;
3293 #endif
3294 
3295 	ptp_classifier_init();
3296 
3297 out:
3298 	return err;
3299 
3300 out_mount:
3301 	unregister_filesystem(&sock_fs_type);
3302 	goto out;
3303 }
3304 
3305 core_initcall(sock_init);	/* early initcall */
3306 
3307 #ifdef CONFIG_PROC_FS
3308 void socket_seq_show(struct seq_file *seq)
3309 {
3310 	seq_printf(seq, "sockets: used %d\n",
3311 		   sock_inuse_get(seq->private));
3312 }
3313 #endif				/* CONFIG_PROC_FS */
3314 
3315 /* Handle the fact that while struct ifreq has the same *layout* on
3316  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3317  * which are handled elsewhere, it still has different *size* due to
3318  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3319  * resulting in struct ifreq being 32 and 40 bytes respectively).
3320  * As a result, if the struct happens to be at the end of a page and
3321  * the next page isn't readable/writable, we get a fault. To prevent
3322  * that, copy back and forth to the full size.
3323  */
3324 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3325 {
3326 	if (in_compat_syscall()) {
3327 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3328 
3329 		memset(ifr, 0, sizeof(*ifr));
3330 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3331 			return -EFAULT;
3332 
3333 		if (ifrdata)
3334 			*ifrdata = compat_ptr(ifr32->ifr_data);
3335 
3336 		return 0;
3337 	}
3338 
3339 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3340 		return -EFAULT;
3341 
3342 	if (ifrdata)
3343 		*ifrdata = ifr->ifr_data;
3344 
3345 	return 0;
3346 }
3347 EXPORT_SYMBOL(get_user_ifreq);
3348 
3349 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3350 {
3351 	size_t size = sizeof(*ifr);
3352 
3353 	if (in_compat_syscall())
3354 		size = sizeof(struct compat_ifreq);
3355 
3356 	if (copy_to_user(arg, ifr, size))
3357 		return -EFAULT;
3358 
3359 	return 0;
3360 }
3361 EXPORT_SYMBOL(put_user_ifreq);
3362 
3363 #ifdef CONFIG_COMPAT
3364 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3365 {
3366 	compat_uptr_t uptr32;
3367 	struct ifreq ifr;
3368 	void __user *saved;
3369 	int err;
3370 
3371 	if (get_user_ifreq(&ifr, NULL, uifr32))
3372 		return -EFAULT;
3373 
3374 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3375 		return -EFAULT;
3376 
3377 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3378 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3379 
3380 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3381 	if (!err) {
3382 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3383 		if (put_user_ifreq(&ifr, uifr32))
3384 			err = -EFAULT;
3385 	}
3386 	return err;
3387 }
3388 
3389 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3390 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3391 				 struct compat_ifreq __user *u_ifreq32)
3392 {
3393 	struct ifreq ifreq;
3394 	void __user *data;
3395 
3396 	if (!is_socket_ioctl_cmd(cmd))
3397 		return -ENOTTY;
3398 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3399 		return -EFAULT;
3400 	ifreq.ifr_data = data;
3401 
3402 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3403 }
3404 
3405 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3406 			 unsigned int cmd, unsigned long arg)
3407 {
3408 	void __user *argp = compat_ptr(arg);
3409 	struct sock *sk = sock->sk;
3410 	struct net *net = sock_net(sk);
3411 	const struct proto_ops *ops;
3412 
3413 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3414 		return sock_ioctl(file, cmd, (unsigned long)argp);
3415 
3416 	switch (cmd) {
3417 	case SIOCWANDEV:
3418 		return compat_siocwandev(net, argp);
3419 	case SIOCGSTAMP_OLD:
3420 	case SIOCGSTAMPNS_OLD:
3421 		ops = READ_ONCE(sock->ops);
3422 		if (!ops->gettstamp)
3423 			return -ENOIOCTLCMD;
3424 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3425 				      !COMPAT_USE_64BIT_TIME);
3426 
3427 	case SIOCETHTOOL:
3428 	case SIOCBONDSLAVEINFOQUERY:
3429 	case SIOCBONDINFOQUERY:
3430 	case SIOCSHWTSTAMP:
3431 	case SIOCGHWTSTAMP:
3432 		return compat_ifr_data_ioctl(net, cmd, argp);
3433 
3434 	case FIOSETOWN:
3435 	case SIOCSPGRP:
3436 	case FIOGETOWN:
3437 	case SIOCGPGRP:
3438 	case SIOCBRADDBR:
3439 	case SIOCBRDELBR:
3440 	case SIOCGIFVLAN:
3441 	case SIOCSIFVLAN:
3442 	case SIOCGSKNS:
3443 	case SIOCGSTAMP_NEW:
3444 	case SIOCGSTAMPNS_NEW:
3445 	case SIOCGIFCONF:
3446 	case SIOCSIFBR:
3447 	case SIOCGIFBR:
3448 		return sock_ioctl(file, cmd, arg);
3449 
3450 	case SIOCGIFFLAGS:
3451 	case SIOCSIFFLAGS:
3452 	case SIOCGIFMAP:
3453 	case SIOCSIFMAP:
3454 	case SIOCGIFMETRIC:
3455 	case SIOCSIFMETRIC:
3456 	case SIOCGIFMTU:
3457 	case SIOCSIFMTU:
3458 	case SIOCGIFMEM:
3459 	case SIOCSIFMEM:
3460 	case SIOCGIFHWADDR:
3461 	case SIOCSIFHWADDR:
3462 	case SIOCADDMULTI:
3463 	case SIOCDELMULTI:
3464 	case SIOCGIFINDEX:
3465 	case SIOCGIFADDR:
3466 	case SIOCSIFADDR:
3467 	case SIOCSIFHWBROADCAST:
3468 	case SIOCDIFADDR:
3469 	case SIOCGIFBRDADDR:
3470 	case SIOCSIFBRDADDR:
3471 	case SIOCGIFDSTADDR:
3472 	case SIOCSIFDSTADDR:
3473 	case SIOCGIFNETMASK:
3474 	case SIOCSIFNETMASK:
3475 	case SIOCSIFPFLAGS:
3476 	case SIOCGIFPFLAGS:
3477 	case SIOCGIFTXQLEN:
3478 	case SIOCSIFTXQLEN:
3479 	case SIOCBRADDIF:
3480 	case SIOCBRDELIF:
3481 	case SIOCGIFNAME:
3482 	case SIOCSIFNAME:
3483 	case SIOCGMIIPHY:
3484 	case SIOCGMIIREG:
3485 	case SIOCSMIIREG:
3486 	case SIOCBONDENSLAVE:
3487 	case SIOCBONDRELEASE:
3488 	case SIOCBONDSETHWADDR:
3489 	case SIOCBONDCHANGEACTIVE:
3490 	case SIOCSARP:
3491 	case SIOCGARP:
3492 	case SIOCDARP:
3493 	case SIOCOUTQ:
3494 	case SIOCOUTQNSD:
3495 	case SIOCATMARK:
3496 		return sock_do_ioctl(net, sock, cmd, arg);
3497 	}
3498 
3499 	return -ENOIOCTLCMD;
3500 }
3501 
3502 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3503 			      unsigned long arg)
3504 {
3505 	struct socket *sock = file->private_data;
3506 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3507 	int ret = -ENOIOCTLCMD;
3508 	struct sock *sk;
3509 	struct net *net;
3510 
3511 	sk = sock->sk;
3512 	net = sock_net(sk);
3513 
3514 	if (ops->compat_ioctl)
3515 		ret = ops->compat_ioctl(sock, cmd, arg);
3516 
3517 	if (ret == -ENOIOCTLCMD &&
3518 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3519 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3520 
3521 	if (ret == -ENOIOCTLCMD)
3522 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3523 
3524 	return ret;
3525 }
3526 #endif
3527 
3528 /**
3529  *	kernel_bind - bind an address to a socket (kernel space)
3530  *	@sock: socket
3531  *	@addr: address
3532  *	@addrlen: length of address
3533  *
3534  *	Returns 0 or an error.
3535  */
3536 
3537 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3538 {
3539 	struct sockaddr_storage address;
3540 
3541 	memcpy(&address, addr, addrlen);
3542 
3543 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3544 					  addrlen);
3545 }
3546 EXPORT_SYMBOL(kernel_bind);
3547 
3548 /**
3549  *	kernel_listen - move socket to listening state (kernel space)
3550  *	@sock: socket
3551  *	@backlog: pending connections queue size
3552  *
3553  *	Returns 0 or an error.
3554  */
3555 
3556 int kernel_listen(struct socket *sock, int backlog)
3557 {
3558 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3559 }
3560 EXPORT_SYMBOL(kernel_listen);
3561 
3562 /**
3563  *	kernel_accept - accept a connection (kernel space)
3564  *	@sock: listening socket
3565  *	@newsock: new connected socket
3566  *	@flags: flags
3567  *
3568  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3569  *	If it fails, @newsock is guaranteed to be %NULL.
3570  *	Returns 0 or an error.
3571  */
3572 
3573 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3574 {
3575 	struct sock *sk = sock->sk;
3576 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3577 	struct proto_accept_arg arg = {
3578 		.flags = flags,
3579 		.kern = true,
3580 	};
3581 	int err;
3582 
3583 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3584 			       newsock);
3585 	if (err < 0)
3586 		goto done;
3587 
3588 	err = ops->accept(sock, *newsock, &arg);
3589 	if (err < 0) {
3590 		sock_release(*newsock);
3591 		*newsock = NULL;
3592 		goto done;
3593 	}
3594 
3595 	(*newsock)->ops = ops;
3596 	__module_get(ops->owner);
3597 
3598 done:
3599 	return err;
3600 }
3601 EXPORT_SYMBOL(kernel_accept);
3602 
3603 /**
3604  *	kernel_connect - connect a socket (kernel space)
3605  *	@sock: socket
3606  *	@addr: address
3607  *	@addrlen: address length
3608  *	@flags: flags (O_NONBLOCK, ...)
3609  *
3610  *	For datagram sockets, @addr is the address to which datagrams are sent
3611  *	by default, and the only address from which datagrams are received.
3612  *	For stream sockets, attempts to connect to @addr.
3613  *	Returns 0 or an error code.
3614  */
3615 
3616 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3617 		   int flags)
3618 {
3619 	struct sockaddr_storage address;
3620 
3621 	memcpy(&address, addr, addrlen);
3622 
3623 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3624 					     addrlen, flags);
3625 }
3626 EXPORT_SYMBOL(kernel_connect);
3627 
3628 /**
3629  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3630  *	@sock: socket
3631  *	@addr: address holder
3632  *
3633  * 	Fills the @addr pointer with the address which the socket is bound.
3634  *	Returns the length of the address in bytes or an error code.
3635  */
3636 
3637 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3638 {
3639 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3640 }
3641 EXPORT_SYMBOL(kernel_getsockname);
3642 
3643 /**
3644  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3645  *	@sock: socket
3646  *	@addr: address holder
3647  *
3648  * 	Fills the @addr pointer with the address which the socket is connected.
3649  *	Returns the length of the address in bytes or an error code.
3650  */
3651 
3652 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3653 {
3654 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3655 }
3656 EXPORT_SYMBOL(kernel_getpeername);
3657 
3658 /**
3659  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3660  *	@sock: socket
3661  *	@how: connection part
3662  *
3663  *	Returns 0 or an error.
3664  */
3665 
3666 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3667 {
3668 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3669 }
3670 EXPORT_SYMBOL(kernel_sock_shutdown);
3671 
3672 /**
3673  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3674  *	@sk: socket
3675  *
3676  *	This routine returns the IP overhead imposed by a socket i.e.
3677  *	the length of the underlying IP header, depending on whether
3678  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3679  *	on at the socket. Assumes that the caller has a lock on the socket.
3680  */
3681 
3682 u32 kernel_sock_ip_overhead(struct sock *sk)
3683 {
3684 	struct inet_sock *inet;
3685 	struct ip_options_rcu *opt;
3686 	u32 overhead = 0;
3687 #if IS_ENABLED(CONFIG_IPV6)
3688 	struct ipv6_pinfo *np;
3689 	struct ipv6_txoptions *optv6 = NULL;
3690 #endif /* IS_ENABLED(CONFIG_IPV6) */
3691 
3692 	if (!sk)
3693 		return overhead;
3694 
3695 	switch (sk->sk_family) {
3696 	case AF_INET:
3697 		inet = inet_sk(sk);
3698 		overhead += sizeof(struct iphdr);
3699 		opt = rcu_dereference_protected(inet->inet_opt,
3700 						sock_owned_by_user(sk));
3701 		if (opt)
3702 			overhead += opt->opt.optlen;
3703 		return overhead;
3704 #if IS_ENABLED(CONFIG_IPV6)
3705 	case AF_INET6:
3706 		np = inet6_sk(sk);
3707 		overhead += sizeof(struct ipv6hdr);
3708 		if (np)
3709 			optv6 = rcu_dereference_protected(np->opt,
3710 							  sock_owned_by_user(sk));
3711 		if (optv6)
3712 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3713 		return overhead;
3714 #endif /* IS_ENABLED(CONFIG_IPV6) */
3715 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3716 		return overhead;
3717 	}
3718 }
3719 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3720