xref: /linux/net/socket.c (revision 2bc46b3ad3c15165f91459b07ff8682478683194)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 			 int flags, const char *dev_name, void *data)
325 {
326 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 		&sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333 	.name =		"sockfs",
334 	.mount =	sockfs_mount,
335 	.kill_sb =	kill_anon_super,
336 };
337 
338 /*
339  *	Obtains the first available file descriptor and sets it up for use.
340  *
341  *	These functions create file structures and maps them to fd space
342  *	of the current process. On success it returns file descriptor
343  *	and file struct implicitly stored in sock->file.
344  *	Note that another thread may close file descriptor before we return
345  *	from this function. We use the fact that now we do not refer
346  *	to socket after mapping. If one day we will need it, this
347  *	function will increment ref. count on file by 1.
348  *
349  *	In any case returned fd MAY BE not valid!
350  *	This race condition is unavoidable
351  *	with shared fd spaces, we cannot solve it inside kernel,
352  *	but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 	struct qstr name = { .name = "" };
358 	struct path path;
359 	struct file *file;
360 
361 	if (dname) {
362 		name.name = dname;
363 		name.len = strlen(name.name);
364 	} else if (sock->sk) {
365 		name.name = sock->sk->sk_prot_creator->name;
366 		name.len = strlen(name.name);
367 	}
368 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 	if (unlikely(!path.dentry))
370 		return ERR_PTR(-ENOMEM);
371 	path.mnt = mntget(sock_mnt);
372 
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 
375 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 		  &socket_file_ops);
377 	if (IS_ERR(file)) {
378 		/* drop dentry, keep inode */
379 		ihold(d_inode(path.dentry));
380 		path_put(&path);
381 		return file;
382 	}
383 
384 	sock->file = file;
385 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 	file->private_data = sock;
387 	return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390 
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 	struct file *newfile;
394 	int fd = get_unused_fd_flags(flags);
395 	if (unlikely(fd < 0))
396 		return fd;
397 
398 	newfile = sock_alloc_file(sock, flags, NULL);
399 	if (likely(!IS_ERR(newfile))) {
400 		fd_install(fd, newfile);
401 		return fd;
402 	}
403 
404 	put_unused_fd(fd);
405 	return PTR_ERR(newfile);
406 }
407 
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 	if (file->f_op == &socket_file_ops)
411 		return file->private_data;	/* set in sock_map_fd */
412 
413 	*err = -ENOTSOCK;
414 	return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417 
418 /**
419  *	sockfd_lookup - Go from a file number to its socket slot
420  *	@fd: file handle
421  *	@err: pointer to an error code return
422  *
423  *	The file handle passed in is locked and the socket it is bound
424  *	too is returned. If an error occurs the err pointer is overwritten
425  *	with a negative errno code and NULL is returned. The function checks
426  *	for both invalid handles and passing a handle which is not a socket.
427  *
428  *	On a success the socket object pointer is returned.
429  */
430 
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 	struct file *file;
434 	struct socket *sock;
435 
436 	file = fget(fd);
437 	if (!file) {
438 		*err = -EBADF;
439 		return NULL;
440 	}
441 
442 	sock = sock_from_file(file, err);
443 	if (!sock)
444 		fput(file);
445 	return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448 
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 	struct fd f = fdget(fd);
452 	struct socket *sock;
453 
454 	*err = -EBADF;
455 	if (f.file) {
456 		sock = sock_from_file(f.file, err);
457 		if (likely(sock)) {
458 			*fput_needed = f.flags;
459 			return sock;
460 		}
461 		fdput(f);
462 	}
463 	return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry, struct inode *inode,
470 			       const char *name, void *value, size_t size)
471 {
472 	const char *proto_name;
473 	size_t proto_size;
474 	int error;
475 
476 	error = -ENODATA;
477 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 		proto_name = dentry->d_name.name;
479 		proto_size = strlen(proto_name);
480 
481 		if (value) {
482 			error = -ERANGE;
483 			if (proto_size + 1 > size)
484 				goto out;
485 
486 			strncpy(value, proto_name, proto_size + 1);
487 		}
488 		error = proto_size + 1;
489 	}
490 
491 out:
492 	return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 				size_t size)
497 {
498 	ssize_t len;
499 	ssize_t used = 0;
500 
501 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 	if (len < 0)
503 		return len;
504 	used += len;
505 	if (buffer) {
506 		if (size < used)
507 			return -ERANGE;
508 		buffer += len;
509 	}
510 
511 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 	used += len;
513 	if (buffer) {
514 		if (size < used)
515 			return -ERANGE;
516 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 		buffer += len;
518 	}
519 
520 	return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524 	.getxattr = sockfs_getxattr,
525 	.listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *	sock_alloc	-	allocate a socket
530  *
531  *	Allocate a new inode and socket object. The two are bound together
532  *	and initialised. The socket is then returned. If we are out of inodes
533  *	NULL is returned.
534  */
535 
536 struct socket *sock_alloc(void)
537 {
538 	struct inode *inode;
539 	struct socket *sock;
540 
541 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 	if (!inode)
543 		return NULL;
544 
545 	sock = SOCKET_I(inode);
546 
547 	kmemcheck_annotate_bitfield(sock, type);
548 	inode->i_ino = get_next_ino();
549 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 	inode->i_uid = current_fsuid();
551 	inode->i_gid = current_fsgid();
552 	inode->i_op = &sockfs_inode_ops;
553 
554 	this_cpu_add(sockets_in_use, 1);
555 	return sock;
556 }
557 EXPORT_SYMBOL(sock_alloc);
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	this_cpu_sub(sockets_in_use, 1);
582 	if (!sock->file) {
583 		iput(SOCK_INODE(sock));
584 		return;
585 	}
586 	sock->file = NULL;
587 }
588 EXPORT_SYMBOL(sock_release);
589 
590 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
591 {
592 	u8 flags = *tx_flags;
593 
594 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 		flags |= SKBTX_HW_TSTAMP;
596 
597 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 		flags |= SKBTX_SW_TSTAMP;
599 
600 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 		flags |= SKBTX_SCHED_TSTAMP;
602 
603 	*tx_flags = flags;
604 }
605 EXPORT_SYMBOL(__sock_tx_timestamp);
606 
607 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
608 {
609 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
610 	BUG_ON(ret == -EIOCBQUEUED);
611 	return ret;
612 }
613 
614 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
615 {
616 	int err = security_socket_sendmsg(sock, msg,
617 					  msg_data_left(msg));
618 
619 	return err ?: sock_sendmsg_nosec(sock, msg);
620 }
621 EXPORT_SYMBOL(sock_sendmsg);
622 
623 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
624 		   struct kvec *vec, size_t num, size_t size)
625 {
626 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
627 	return sock_sendmsg(sock, msg);
628 }
629 EXPORT_SYMBOL(kernel_sendmsg);
630 
631 /*
632  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
633  */
634 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
635 	struct sk_buff *skb)
636 {
637 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
638 	struct scm_timestamping tss;
639 	int empty = 1;
640 	struct skb_shared_hwtstamps *shhwtstamps =
641 		skb_hwtstamps(skb);
642 
643 	/* Race occurred between timestamp enabling and packet
644 	   receiving.  Fill in the current time for now. */
645 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
646 		__net_timestamp(skb);
647 
648 	if (need_software_tstamp) {
649 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
650 			struct timeval tv;
651 			skb_get_timestamp(skb, &tv);
652 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
653 				 sizeof(tv), &tv);
654 		} else {
655 			struct timespec ts;
656 			skb_get_timestampns(skb, &ts);
657 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 				 sizeof(ts), &ts);
659 		}
660 	}
661 
662 	memset(&tss, 0, sizeof(tss));
663 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
664 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
665 		empty = 0;
666 	if (shhwtstamps &&
667 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
668 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
669 		empty = 0;
670 	if (!empty)
671 		put_cmsg(msg, SOL_SOCKET,
672 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
673 }
674 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
675 
676 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
677 	struct sk_buff *skb)
678 {
679 	int ack;
680 
681 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
682 		return;
683 	if (!skb->wifi_acked_valid)
684 		return;
685 
686 	ack = skb->wifi_acked;
687 
688 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
689 }
690 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
691 
692 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
693 				   struct sk_buff *skb)
694 {
695 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
696 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
697 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
698 }
699 
700 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
701 	struct sk_buff *skb)
702 {
703 	sock_recv_timestamp(msg, sk, skb);
704 	sock_recv_drops(msg, sk, skb);
705 }
706 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
707 
708 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
709 				     int flags)
710 {
711 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
712 }
713 
714 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
715 {
716 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
717 
718 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
719 }
720 EXPORT_SYMBOL(sock_recvmsg);
721 
722 /**
723  * kernel_recvmsg - Receive a message from a socket (kernel space)
724  * @sock:       The socket to receive the message from
725  * @msg:        Received message
726  * @vec:        Input s/g array for message data
727  * @num:        Size of input s/g array
728  * @size:       Number of bytes to read
729  * @flags:      Message flags (MSG_DONTWAIT, etc...)
730  *
731  * On return the msg structure contains the scatter/gather array passed in the
732  * vec argument. The array is modified so that it consists of the unfilled
733  * portion of the original array.
734  *
735  * The returned value is the total number of bytes received, or an error.
736  */
737 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
738 		   struct kvec *vec, size_t num, size_t size, int flags)
739 {
740 	mm_segment_t oldfs = get_fs();
741 	int result;
742 
743 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
744 	set_fs(KERNEL_DS);
745 	result = sock_recvmsg(sock, msg, flags);
746 	set_fs(oldfs);
747 	return result;
748 }
749 EXPORT_SYMBOL(kernel_recvmsg);
750 
751 static ssize_t sock_sendpage(struct file *file, struct page *page,
752 			     int offset, size_t size, loff_t *ppos, int more)
753 {
754 	struct socket *sock;
755 	int flags;
756 
757 	sock = file->private_data;
758 
759 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
760 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
761 	flags |= more;
762 
763 	return kernel_sendpage(sock, page, offset, size, flags);
764 }
765 
766 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
767 				struct pipe_inode_info *pipe, size_t len,
768 				unsigned int flags)
769 {
770 	struct socket *sock = file->private_data;
771 
772 	if (unlikely(!sock->ops->splice_read))
773 		return -EINVAL;
774 
775 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
776 }
777 
778 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
779 {
780 	struct file *file = iocb->ki_filp;
781 	struct socket *sock = file->private_data;
782 	struct msghdr msg = {.msg_iter = *to,
783 			     .msg_iocb = iocb};
784 	ssize_t res;
785 
786 	if (file->f_flags & O_NONBLOCK)
787 		msg.msg_flags = MSG_DONTWAIT;
788 
789 	if (iocb->ki_pos != 0)
790 		return -ESPIPE;
791 
792 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
793 		return 0;
794 
795 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
796 	*to = msg.msg_iter;
797 	return res;
798 }
799 
800 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
801 {
802 	struct file *file = iocb->ki_filp;
803 	struct socket *sock = file->private_data;
804 	struct msghdr msg = {.msg_iter = *from,
805 			     .msg_iocb = iocb};
806 	ssize_t res;
807 
808 	if (iocb->ki_pos != 0)
809 		return -ESPIPE;
810 
811 	if (file->f_flags & O_NONBLOCK)
812 		msg.msg_flags = MSG_DONTWAIT;
813 
814 	if (sock->type == SOCK_SEQPACKET)
815 		msg.msg_flags |= MSG_EOR;
816 
817 	res = sock_sendmsg(sock, &msg);
818 	*from = msg.msg_iter;
819 	return res;
820 }
821 
822 /*
823  * Atomic setting of ioctl hooks to avoid race
824  * with module unload.
825  */
826 
827 static DEFINE_MUTEX(br_ioctl_mutex);
828 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
829 
830 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
831 {
832 	mutex_lock(&br_ioctl_mutex);
833 	br_ioctl_hook = hook;
834 	mutex_unlock(&br_ioctl_mutex);
835 }
836 EXPORT_SYMBOL(brioctl_set);
837 
838 static DEFINE_MUTEX(vlan_ioctl_mutex);
839 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
840 
841 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
842 {
843 	mutex_lock(&vlan_ioctl_mutex);
844 	vlan_ioctl_hook = hook;
845 	mutex_unlock(&vlan_ioctl_mutex);
846 }
847 EXPORT_SYMBOL(vlan_ioctl_set);
848 
849 static DEFINE_MUTEX(dlci_ioctl_mutex);
850 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
851 
852 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
853 {
854 	mutex_lock(&dlci_ioctl_mutex);
855 	dlci_ioctl_hook = hook;
856 	mutex_unlock(&dlci_ioctl_mutex);
857 }
858 EXPORT_SYMBOL(dlci_ioctl_set);
859 
860 static long sock_do_ioctl(struct net *net, struct socket *sock,
861 				 unsigned int cmd, unsigned long arg)
862 {
863 	int err;
864 	void __user *argp = (void __user *)arg;
865 
866 	err = sock->ops->ioctl(sock, cmd, arg);
867 
868 	/*
869 	 * If this ioctl is unknown try to hand it down
870 	 * to the NIC driver.
871 	 */
872 	if (err == -ENOIOCTLCMD)
873 		err = dev_ioctl(net, cmd, argp);
874 
875 	return err;
876 }
877 
878 /*
879  *	With an ioctl, arg may well be a user mode pointer, but we don't know
880  *	what to do with it - that's up to the protocol still.
881  */
882 
883 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
884 {
885 	struct socket *sock;
886 	struct sock *sk;
887 	void __user *argp = (void __user *)arg;
888 	int pid, err;
889 	struct net *net;
890 
891 	sock = file->private_data;
892 	sk = sock->sk;
893 	net = sock_net(sk);
894 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
895 		err = dev_ioctl(net, cmd, argp);
896 	} else
897 #ifdef CONFIG_WEXT_CORE
898 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
899 		err = dev_ioctl(net, cmd, argp);
900 	} else
901 #endif
902 		switch (cmd) {
903 		case FIOSETOWN:
904 		case SIOCSPGRP:
905 			err = -EFAULT;
906 			if (get_user(pid, (int __user *)argp))
907 				break;
908 			f_setown(sock->file, pid, 1);
909 			err = 0;
910 			break;
911 		case FIOGETOWN:
912 		case SIOCGPGRP:
913 			err = put_user(f_getown(sock->file),
914 				       (int __user *)argp);
915 			break;
916 		case SIOCGIFBR:
917 		case SIOCSIFBR:
918 		case SIOCBRADDBR:
919 		case SIOCBRDELBR:
920 			err = -ENOPKG;
921 			if (!br_ioctl_hook)
922 				request_module("bridge");
923 
924 			mutex_lock(&br_ioctl_mutex);
925 			if (br_ioctl_hook)
926 				err = br_ioctl_hook(net, cmd, argp);
927 			mutex_unlock(&br_ioctl_mutex);
928 			break;
929 		case SIOCGIFVLAN:
930 		case SIOCSIFVLAN:
931 			err = -ENOPKG;
932 			if (!vlan_ioctl_hook)
933 				request_module("8021q");
934 
935 			mutex_lock(&vlan_ioctl_mutex);
936 			if (vlan_ioctl_hook)
937 				err = vlan_ioctl_hook(net, argp);
938 			mutex_unlock(&vlan_ioctl_mutex);
939 			break;
940 		case SIOCADDDLCI:
941 		case SIOCDELDLCI:
942 			err = -ENOPKG;
943 			if (!dlci_ioctl_hook)
944 				request_module("dlci");
945 
946 			mutex_lock(&dlci_ioctl_mutex);
947 			if (dlci_ioctl_hook)
948 				err = dlci_ioctl_hook(cmd, argp);
949 			mutex_unlock(&dlci_ioctl_mutex);
950 			break;
951 		default:
952 			err = sock_do_ioctl(net, sock, cmd, arg);
953 			break;
954 		}
955 	return err;
956 }
957 
958 int sock_create_lite(int family, int type, int protocol, struct socket **res)
959 {
960 	int err;
961 	struct socket *sock = NULL;
962 
963 	err = security_socket_create(family, type, protocol, 1);
964 	if (err)
965 		goto out;
966 
967 	sock = sock_alloc();
968 	if (!sock) {
969 		err = -ENOMEM;
970 		goto out;
971 	}
972 
973 	sock->type = type;
974 	err = security_socket_post_create(sock, family, type, protocol, 1);
975 	if (err)
976 		goto out_release;
977 
978 out:
979 	*res = sock;
980 	return err;
981 out_release:
982 	sock_release(sock);
983 	sock = NULL;
984 	goto out;
985 }
986 EXPORT_SYMBOL(sock_create_lite);
987 
988 /* No kernel lock held - perfect */
989 static unsigned int sock_poll(struct file *file, poll_table *wait)
990 {
991 	unsigned int busy_flag = 0;
992 	struct socket *sock;
993 
994 	/*
995 	 *      We can't return errors to poll, so it's either yes or no.
996 	 */
997 	sock = file->private_data;
998 
999 	if (sk_can_busy_loop(sock->sk)) {
1000 		/* this socket can poll_ll so tell the system call */
1001 		busy_flag = POLL_BUSY_LOOP;
1002 
1003 		/* once, only if requested by syscall */
1004 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1005 			sk_busy_loop(sock->sk, 1);
1006 	}
1007 
1008 	return busy_flag | sock->ops->poll(file, sock, wait);
1009 }
1010 
1011 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1012 {
1013 	struct socket *sock = file->private_data;
1014 
1015 	return sock->ops->mmap(file, sock, vma);
1016 }
1017 
1018 static int sock_close(struct inode *inode, struct file *filp)
1019 {
1020 	sock_release(SOCKET_I(inode));
1021 	return 0;
1022 }
1023 
1024 /*
1025  *	Update the socket async list
1026  *
1027  *	Fasync_list locking strategy.
1028  *
1029  *	1. fasync_list is modified only under process context socket lock
1030  *	   i.e. under semaphore.
1031  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1032  *	   or under socket lock
1033  */
1034 
1035 static int sock_fasync(int fd, struct file *filp, int on)
1036 {
1037 	struct socket *sock = filp->private_data;
1038 	struct sock *sk = sock->sk;
1039 	struct socket_wq *wq;
1040 
1041 	if (sk == NULL)
1042 		return -EINVAL;
1043 
1044 	lock_sock(sk);
1045 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1046 	fasync_helper(fd, filp, on, &wq->fasync_list);
1047 
1048 	if (!wq->fasync_list)
1049 		sock_reset_flag(sk, SOCK_FASYNC);
1050 	else
1051 		sock_set_flag(sk, SOCK_FASYNC);
1052 
1053 	release_sock(sk);
1054 	return 0;
1055 }
1056 
1057 /* This function may be called only under rcu_lock */
1058 
1059 int sock_wake_async(struct socket_wq *wq, int how, int band)
1060 {
1061 	if (!wq || !wq->fasync_list)
1062 		return -1;
1063 
1064 	switch (how) {
1065 	case SOCK_WAKE_WAITD:
1066 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1067 			break;
1068 		goto call_kill;
1069 	case SOCK_WAKE_SPACE:
1070 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1071 			break;
1072 		/* fall through */
1073 	case SOCK_WAKE_IO:
1074 call_kill:
1075 		kill_fasync(&wq->fasync_list, SIGIO, band);
1076 		break;
1077 	case SOCK_WAKE_URG:
1078 		kill_fasync(&wq->fasync_list, SIGURG, band);
1079 	}
1080 
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL(sock_wake_async);
1084 
1085 int __sock_create(struct net *net, int family, int type, int protocol,
1086 			 struct socket **res, int kern)
1087 {
1088 	int err;
1089 	struct socket *sock;
1090 	const struct net_proto_family *pf;
1091 
1092 	/*
1093 	 *      Check protocol is in range
1094 	 */
1095 	if (family < 0 || family >= NPROTO)
1096 		return -EAFNOSUPPORT;
1097 	if (type < 0 || type >= SOCK_MAX)
1098 		return -EINVAL;
1099 
1100 	/* Compatibility.
1101 
1102 	   This uglymoron is moved from INET layer to here to avoid
1103 	   deadlock in module load.
1104 	 */
1105 	if (family == PF_INET && type == SOCK_PACKET) {
1106 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1107 			     current->comm);
1108 		family = PF_PACKET;
1109 	}
1110 
1111 	err = security_socket_create(family, type, protocol, kern);
1112 	if (err)
1113 		return err;
1114 
1115 	/*
1116 	 *	Allocate the socket and allow the family to set things up. if
1117 	 *	the protocol is 0, the family is instructed to select an appropriate
1118 	 *	default.
1119 	 */
1120 	sock = sock_alloc();
1121 	if (!sock) {
1122 		net_warn_ratelimited("socket: no more sockets\n");
1123 		return -ENFILE;	/* Not exactly a match, but its the
1124 				   closest posix thing */
1125 	}
1126 
1127 	sock->type = type;
1128 
1129 #ifdef CONFIG_MODULES
1130 	/* Attempt to load a protocol module if the find failed.
1131 	 *
1132 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1133 	 * requested real, full-featured networking support upon configuration.
1134 	 * Otherwise module support will break!
1135 	 */
1136 	if (rcu_access_pointer(net_families[family]) == NULL)
1137 		request_module("net-pf-%d", family);
1138 #endif
1139 
1140 	rcu_read_lock();
1141 	pf = rcu_dereference(net_families[family]);
1142 	err = -EAFNOSUPPORT;
1143 	if (!pf)
1144 		goto out_release;
1145 
1146 	/*
1147 	 * We will call the ->create function, that possibly is in a loadable
1148 	 * module, so we have to bump that loadable module refcnt first.
1149 	 */
1150 	if (!try_module_get(pf->owner))
1151 		goto out_release;
1152 
1153 	/* Now protected by module ref count */
1154 	rcu_read_unlock();
1155 
1156 	err = pf->create(net, sock, protocol, kern);
1157 	if (err < 0)
1158 		goto out_module_put;
1159 
1160 	/*
1161 	 * Now to bump the refcnt of the [loadable] module that owns this
1162 	 * socket at sock_release time we decrement its refcnt.
1163 	 */
1164 	if (!try_module_get(sock->ops->owner))
1165 		goto out_module_busy;
1166 
1167 	/*
1168 	 * Now that we're done with the ->create function, the [loadable]
1169 	 * module can have its refcnt decremented
1170 	 */
1171 	module_put(pf->owner);
1172 	err = security_socket_post_create(sock, family, type, protocol, kern);
1173 	if (err)
1174 		goto out_sock_release;
1175 	*res = sock;
1176 
1177 	return 0;
1178 
1179 out_module_busy:
1180 	err = -EAFNOSUPPORT;
1181 out_module_put:
1182 	sock->ops = NULL;
1183 	module_put(pf->owner);
1184 out_sock_release:
1185 	sock_release(sock);
1186 	return err;
1187 
1188 out_release:
1189 	rcu_read_unlock();
1190 	goto out_sock_release;
1191 }
1192 EXPORT_SYMBOL(__sock_create);
1193 
1194 int sock_create(int family, int type, int protocol, struct socket **res)
1195 {
1196 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1197 }
1198 EXPORT_SYMBOL(sock_create);
1199 
1200 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1201 {
1202 	return __sock_create(net, family, type, protocol, res, 1);
1203 }
1204 EXPORT_SYMBOL(sock_create_kern);
1205 
1206 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1207 {
1208 	int retval;
1209 	struct socket *sock;
1210 	int flags;
1211 
1212 	/* Check the SOCK_* constants for consistency.  */
1213 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1214 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1215 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1216 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1217 
1218 	flags = type & ~SOCK_TYPE_MASK;
1219 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1220 		return -EINVAL;
1221 	type &= SOCK_TYPE_MASK;
1222 
1223 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1224 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1225 
1226 	retval = sock_create(family, type, protocol, &sock);
1227 	if (retval < 0)
1228 		goto out;
1229 
1230 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1231 	if (retval < 0)
1232 		goto out_release;
1233 
1234 out:
1235 	/* It may be already another descriptor 8) Not kernel problem. */
1236 	return retval;
1237 
1238 out_release:
1239 	sock_release(sock);
1240 	return retval;
1241 }
1242 
1243 /*
1244  *	Create a pair of connected sockets.
1245  */
1246 
1247 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1248 		int __user *, usockvec)
1249 {
1250 	struct socket *sock1, *sock2;
1251 	int fd1, fd2, err;
1252 	struct file *newfile1, *newfile2;
1253 	int flags;
1254 
1255 	flags = type & ~SOCK_TYPE_MASK;
1256 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1257 		return -EINVAL;
1258 	type &= SOCK_TYPE_MASK;
1259 
1260 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1261 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1262 
1263 	/*
1264 	 * Obtain the first socket and check if the underlying protocol
1265 	 * supports the socketpair call.
1266 	 */
1267 
1268 	err = sock_create(family, type, protocol, &sock1);
1269 	if (err < 0)
1270 		goto out;
1271 
1272 	err = sock_create(family, type, protocol, &sock2);
1273 	if (err < 0)
1274 		goto out_release_1;
1275 
1276 	err = sock1->ops->socketpair(sock1, sock2);
1277 	if (err < 0)
1278 		goto out_release_both;
1279 
1280 	fd1 = get_unused_fd_flags(flags);
1281 	if (unlikely(fd1 < 0)) {
1282 		err = fd1;
1283 		goto out_release_both;
1284 	}
1285 
1286 	fd2 = get_unused_fd_flags(flags);
1287 	if (unlikely(fd2 < 0)) {
1288 		err = fd2;
1289 		goto out_put_unused_1;
1290 	}
1291 
1292 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1293 	if (IS_ERR(newfile1)) {
1294 		err = PTR_ERR(newfile1);
1295 		goto out_put_unused_both;
1296 	}
1297 
1298 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1299 	if (IS_ERR(newfile2)) {
1300 		err = PTR_ERR(newfile2);
1301 		goto out_fput_1;
1302 	}
1303 
1304 	err = put_user(fd1, &usockvec[0]);
1305 	if (err)
1306 		goto out_fput_both;
1307 
1308 	err = put_user(fd2, &usockvec[1]);
1309 	if (err)
1310 		goto out_fput_both;
1311 
1312 	audit_fd_pair(fd1, fd2);
1313 
1314 	fd_install(fd1, newfile1);
1315 	fd_install(fd2, newfile2);
1316 	/* fd1 and fd2 may be already another descriptors.
1317 	 * Not kernel problem.
1318 	 */
1319 
1320 	return 0;
1321 
1322 out_fput_both:
1323 	fput(newfile2);
1324 	fput(newfile1);
1325 	put_unused_fd(fd2);
1326 	put_unused_fd(fd1);
1327 	goto out;
1328 
1329 out_fput_1:
1330 	fput(newfile1);
1331 	put_unused_fd(fd2);
1332 	put_unused_fd(fd1);
1333 	sock_release(sock2);
1334 	goto out;
1335 
1336 out_put_unused_both:
1337 	put_unused_fd(fd2);
1338 out_put_unused_1:
1339 	put_unused_fd(fd1);
1340 out_release_both:
1341 	sock_release(sock2);
1342 out_release_1:
1343 	sock_release(sock1);
1344 out:
1345 	return err;
1346 }
1347 
1348 /*
1349  *	Bind a name to a socket. Nothing much to do here since it's
1350  *	the protocol's responsibility to handle the local address.
1351  *
1352  *	We move the socket address to kernel space before we call
1353  *	the protocol layer (having also checked the address is ok).
1354  */
1355 
1356 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1357 {
1358 	struct socket *sock;
1359 	struct sockaddr_storage address;
1360 	int err, fput_needed;
1361 
1362 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1363 	if (sock) {
1364 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1365 		if (err >= 0) {
1366 			err = security_socket_bind(sock,
1367 						   (struct sockaddr *)&address,
1368 						   addrlen);
1369 			if (!err)
1370 				err = sock->ops->bind(sock,
1371 						      (struct sockaddr *)
1372 						      &address, addrlen);
1373 		}
1374 		fput_light(sock->file, fput_needed);
1375 	}
1376 	return err;
1377 }
1378 
1379 /*
1380  *	Perform a listen. Basically, we allow the protocol to do anything
1381  *	necessary for a listen, and if that works, we mark the socket as
1382  *	ready for listening.
1383  */
1384 
1385 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1386 {
1387 	struct socket *sock;
1388 	int err, fput_needed;
1389 	int somaxconn;
1390 
1391 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1392 	if (sock) {
1393 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1394 		if ((unsigned int)backlog > somaxconn)
1395 			backlog = somaxconn;
1396 
1397 		err = security_socket_listen(sock, backlog);
1398 		if (!err)
1399 			err = sock->ops->listen(sock, backlog);
1400 
1401 		fput_light(sock->file, fput_needed);
1402 	}
1403 	return err;
1404 }
1405 
1406 /*
1407  *	For accept, we attempt to create a new socket, set up the link
1408  *	with the client, wake up the client, then return the new
1409  *	connected fd. We collect the address of the connector in kernel
1410  *	space and move it to user at the very end. This is unclean because
1411  *	we open the socket then return an error.
1412  *
1413  *	1003.1g adds the ability to recvmsg() to query connection pending
1414  *	status to recvmsg. We need to add that support in a way thats
1415  *	clean when we restucture accept also.
1416  */
1417 
1418 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1419 		int __user *, upeer_addrlen, int, flags)
1420 {
1421 	struct socket *sock, *newsock;
1422 	struct file *newfile;
1423 	int err, len, newfd, fput_needed;
1424 	struct sockaddr_storage address;
1425 
1426 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1427 		return -EINVAL;
1428 
1429 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431 
1432 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 	if (!sock)
1434 		goto out;
1435 
1436 	err = -ENFILE;
1437 	newsock = sock_alloc();
1438 	if (!newsock)
1439 		goto out_put;
1440 
1441 	newsock->type = sock->type;
1442 	newsock->ops = sock->ops;
1443 
1444 	/*
1445 	 * We don't need try_module_get here, as the listening socket (sock)
1446 	 * has the protocol module (sock->ops->owner) held.
1447 	 */
1448 	__module_get(newsock->ops->owner);
1449 
1450 	newfd = get_unused_fd_flags(flags);
1451 	if (unlikely(newfd < 0)) {
1452 		err = newfd;
1453 		sock_release(newsock);
1454 		goto out_put;
1455 	}
1456 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1457 	if (IS_ERR(newfile)) {
1458 		err = PTR_ERR(newfile);
1459 		put_unused_fd(newfd);
1460 		sock_release(newsock);
1461 		goto out_put;
1462 	}
1463 
1464 	err = security_socket_accept(sock, newsock);
1465 	if (err)
1466 		goto out_fd;
1467 
1468 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1469 	if (err < 0)
1470 		goto out_fd;
1471 
1472 	if (upeer_sockaddr) {
1473 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1474 					  &len, 2) < 0) {
1475 			err = -ECONNABORTED;
1476 			goto out_fd;
1477 		}
1478 		err = move_addr_to_user(&address,
1479 					len, upeer_sockaddr, upeer_addrlen);
1480 		if (err < 0)
1481 			goto out_fd;
1482 	}
1483 
1484 	/* File flags are not inherited via accept() unlike another OSes. */
1485 
1486 	fd_install(newfd, newfile);
1487 	err = newfd;
1488 
1489 out_put:
1490 	fput_light(sock->file, fput_needed);
1491 out:
1492 	return err;
1493 out_fd:
1494 	fput(newfile);
1495 	put_unused_fd(newfd);
1496 	goto out_put;
1497 }
1498 
1499 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1500 		int __user *, upeer_addrlen)
1501 {
1502 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1503 }
1504 
1505 /*
1506  *	Attempt to connect to a socket with the server address.  The address
1507  *	is in user space so we verify it is OK and move it to kernel space.
1508  *
1509  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1510  *	break bindings
1511  *
1512  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1513  *	other SEQPACKET protocols that take time to connect() as it doesn't
1514  *	include the -EINPROGRESS status for such sockets.
1515  */
1516 
1517 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1518 		int, addrlen)
1519 {
1520 	struct socket *sock;
1521 	struct sockaddr_storage address;
1522 	int err, fput_needed;
1523 
1524 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 	if (!sock)
1526 		goto out;
1527 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1528 	if (err < 0)
1529 		goto out_put;
1530 
1531 	err =
1532 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1533 	if (err)
1534 		goto out_put;
1535 
1536 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1537 				 sock->file->f_flags);
1538 out_put:
1539 	fput_light(sock->file, fput_needed);
1540 out:
1541 	return err;
1542 }
1543 
1544 /*
1545  *	Get the local address ('name') of a socket object. Move the obtained
1546  *	name to user space.
1547  */
1548 
1549 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1550 		int __user *, usockaddr_len)
1551 {
1552 	struct socket *sock;
1553 	struct sockaddr_storage address;
1554 	int len, err, fput_needed;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 
1560 	err = security_socket_getsockname(sock);
1561 	if (err)
1562 		goto out_put;
1563 
1564 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1565 	if (err)
1566 		goto out_put;
1567 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1568 
1569 out_put:
1570 	fput_light(sock->file, fput_needed);
1571 out:
1572 	return err;
1573 }
1574 
1575 /*
1576  *	Get the remote address ('name') of a socket object. Move the obtained
1577  *	name to user space.
1578  */
1579 
1580 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1581 		int __user *, usockaddr_len)
1582 {
1583 	struct socket *sock;
1584 	struct sockaddr_storage address;
1585 	int len, err, fput_needed;
1586 
1587 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 	if (sock != NULL) {
1589 		err = security_socket_getpeername(sock);
1590 		if (err) {
1591 			fput_light(sock->file, fput_needed);
1592 			return err;
1593 		}
1594 
1595 		err =
1596 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1597 				       1);
1598 		if (!err)
1599 			err = move_addr_to_user(&address, len, usockaddr,
1600 						usockaddr_len);
1601 		fput_light(sock->file, fput_needed);
1602 	}
1603 	return err;
1604 }
1605 
1606 /*
1607  *	Send a datagram to a given address. We move the address into kernel
1608  *	space and check the user space data area is readable before invoking
1609  *	the protocol.
1610  */
1611 
1612 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1613 		unsigned int, flags, struct sockaddr __user *, addr,
1614 		int, addr_len)
1615 {
1616 	struct socket *sock;
1617 	struct sockaddr_storage address;
1618 	int err;
1619 	struct msghdr msg;
1620 	struct iovec iov;
1621 	int fput_needed;
1622 
1623 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1624 	if (unlikely(err))
1625 		return err;
1626 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 	if (!sock)
1628 		goto out;
1629 
1630 	msg.msg_name = NULL;
1631 	msg.msg_control = NULL;
1632 	msg.msg_controllen = 0;
1633 	msg.msg_namelen = 0;
1634 	if (addr) {
1635 		err = move_addr_to_kernel(addr, addr_len, &address);
1636 		if (err < 0)
1637 			goto out_put;
1638 		msg.msg_name = (struct sockaddr *)&address;
1639 		msg.msg_namelen = addr_len;
1640 	}
1641 	if (sock->file->f_flags & O_NONBLOCK)
1642 		flags |= MSG_DONTWAIT;
1643 	msg.msg_flags = flags;
1644 	err = sock_sendmsg(sock, &msg);
1645 
1646 out_put:
1647 	fput_light(sock->file, fput_needed);
1648 out:
1649 	return err;
1650 }
1651 
1652 /*
1653  *	Send a datagram down a socket.
1654  */
1655 
1656 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1657 		unsigned int, flags)
1658 {
1659 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1660 }
1661 
1662 /*
1663  *	Receive a frame from the socket and optionally record the address of the
1664  *	sender. We verify the buffers are writable and if needed move the
1665  *	sender address from kernel to user space.
1666  */
1667 
1668 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1669 		unsigned int, flags, struct sockaddr __user *, addr,
1670 		int __user *, addr_len)
1671 {
1672 	struct socket *sock;
1673 	struct iovec iov;
1674 	struct msghdr msg;
1675 	struct sockaddr_storage address;
1676 	int err, err2;
1677 	int fput_needed;
1678 
1679 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1680 	if (unlikely(err))
1681 		return err;
1682 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 	if (!sock)
1684 		goto out;
1685 
1686 	msg.msg_control = NULL;
1687 	msg.msg_controllen = 0;
1688 	/* Save some cycles and don't copy the address if not needed */
1689 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1690 	/* We assume all kernel code knows the size of sockaddr_storage */
1691 	msg.msg_namelen = 0;
1692 	msg.msg_iocb = NULL;
1693 	if (sock->file->f_flags & O_NONBLOCK)
1694 		flags |= MSG_DONTWAIT;
1695 	err = sock_recvmsg(sock, &msg, flags);
1696 
1697 	if (err >= 0 && addr != NULL) {
1698 		err2 = move_addr_to_user(&address,
1699 					 msg.msg_namelen, addr, addr_len);
1700 		if (err2 < 0)
1701 			err = err2;
1702 	}
1703 
1704 	fput_light(sock->file, fput_needed);
1705 out:
1706 	return err;
1707 }
1708 
1709 /*
1710  *	Receive a datagram from a socket.
1711  */
1712 
1713 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1714 		unsigned int, flags)
1715 {
1716 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1717 }
1718 
1719 /*
1720  *	Set a socket option. Because we don't know the option lengths we have
1721  *	to pass the user mode parameter for the protocols to sort out.
1722  */
1723 
1724 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1725 		char __user *, optval, int, optlen)
1726 {
1727 	int err, fput_needed;
1728 	struct socket *sock;
1729 
1730 	if (optlen < 0)
1731 		return -EINVAL;
1732 
1733 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 	if (sock != NULL) {
1735 		err = security_socket_setsockopt(sock, level, optname);
1736 		if (err)
1737 			goto out_put;
1738 
1739 		if (level == SOL_SOCKET)
1740 			err =
1741 			    sock_setsockopt(sock, level, optname, optval,
1742 					    optlen);
1743 		else
1744 			err =
1745 			    sock->ops->setsockopt(sock, level, optname, optval,
1746 						  optlen);
1747 out_put:
1748 		fput_light(sock->file, fput_needed);
1749 	}
1750 	return err;
1751 }
1752 
1753 /*
1754  *	Get a socket option. Because we don't know the option lengths we have
1755  *	to pass a user mode parameter for the protocols to sort out.
1756  */
1757 
1758 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1759 		char __user *, optval, int __user *, optlen)
1760 {
1761 	int err, fput_needed;
1762 	struct socket *sock;
1763 
1764 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 	if (sock != NULL) {
1766 		err = security_socket_getsockopt(sock, level, optname);
1767 		if (err)
1768 			goto out_put;
1769 
1770 		if (level == SOL_SOCKET)
1771 			err =
1772 			    sock_getsockopt(sock, level, optname, optval,
1773 					    optlen);
1774 		else
1775 			err =
1776 			    sock->ops->getsockopt(sock, level, optname, optval,
1777 						  optlen);
1778 out_put:
1779 		fput_light(sock->file, fput_needed);
1780 	}
1781 	return err;
1782 }
1783 
1784 /*
1785  *	Shutdown a socket.
1786  */
1787 
1788 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1789 {
1790 	int err, fput_needed;
1791 	struct socket *sock;
1792 
1793 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 	if (sock != NULL) {
1795 		err = security_socket_shutdown(sock, how);
1796 		if (!err)
1797 			err = sock->ops->shutdown(sock, how);
1798 		fput_light(sock->file, fput_needed);
1799 	}
1800 	return err;
1801 }
1802 
1803 /* A couple of helpful macros for getting the address of the 32/64 bit
1804  * fields which are the same type (int / unsigned) on our platforms.
1805  */
1806 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1807 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1808 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1809 
1810 struct used_address {
1811 	struct sockaddr_storage name;
1812 	unsigned int name_len;
1813 };
1814 
1815 static int copy_msghdr_from_user(struct msghdr *kmsg,
1816 				 struct user_msghdr __user *umsg,
1817 				 struct sockaddr __user **save_addr,
1818 				 struct iovec **iov)
1819 {
1820 	struct sockaddr __user *uaddr;
1821 	struct iovec __user *uiov;
1822 	size_t nr_segs;
1823 	ssize_t err;
1824 
1825 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1826 	    __get_user(uaddr, &umsg->msg_name) ||
1827 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1828 	    __get_user(uiov, &umsg->msg_iov) ||
1829 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1830 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1831 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1832 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1833 		return -EFAULT;
1834 
1835 	if (!uaddr)
1836 		kmsg->msg_namelen = 0;
1837 
1838 	if (kmsg->msg_namelen < 0)
1839 		return -EINVAL;
1840 
1841 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1842 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1843 
1844 	if (save_addr)
1845 		*save_addr = uaddr;
1846 
1847 	if (uaddr && kmsg->msg_namelen) {
1848 		if (!save_addr) {
1849 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1850 						  kmsg->msg_name);
1851 			if (err < 0)
1852 				return err;
1853 		}
1854 	} else {
1855 		kmsg->msg_name = NULL;
1856 		kmsg->msg_namelen = 0;
1857 	}
1858 
1859 	if (nr_segs > UIO_MAXIOV)
1860 		return -EMSGSIZE;
1861 
1862 	kmsg->msg_iocb = NULL;
1863 
1864 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1865 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1866 }
1867 
1868 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1869 			 struct msghdr *msg_sys, unsigned int flags,
1870 			 struct used_address *used_address,
1871 			 unsigned int allowed_msghdr_flags)
1872 {
1873 	struct compat_msghdr __user *msg_compat =
1874 	    (struct compat_msghdr __user *)msg;
1875 	struct sockaddr_storage address;
1876 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879 	/* 20 is size of ipv6_pktinfo */
1880 	unsigned char *ctl_buf = ctl;
1881 	int ctl_len;
1882 	ssize_t err;
1883 
1884 	msg_sys->msg_name = &address;
1885 
1886 	if (MSG_CMSG_COMPAT & flags)
1887 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1888 	else
1889 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1890 	if (err < 0)
1891 		return err;
1892 
1893 	err = -ENOBUFS;
1894 
1895 	if (msg_sys->msg_controllen > INT_MAX)
1896 		goto out_freeiov;
1897 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1898 	ctl_len = msg_sys->msg_controllen;
1899 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1900 		err =
1901 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1902 						     sizeof(ctl));
1903 		if (err)
1904 			goto out_freeiov;
1905 		ctl_buf = msg_sys->msg_control;
1906 		ctl_len = msg_sys->msg_controllen;
1907 	} else if (ctl_len) {
1908 		if (ctl_len > sizeof(ctl)) {
1909 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1910 			if (ctl_buf == NULL)
1911 				goto out_freeiov;
1912 		}
1913 		err = -EFAULT;
1914 		/*
1915 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1916 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1917 		 * checking falls down on this.
1918 		 */
1919 		if (copy_from_user(ctl_buf,
1920 				   (void __user __force *)msg_sys->msg_control,
1921 				   ctl_len))
1922 			goto out_freectl;
1923 		msg_sys->msg_control = ctl_buf;
1924 	}
1925 	msg_sys->msg_flags = flags;
1926 
1927 	if (sock->file->f_flags & O_NONBLOCK)
1928 		msg_sys->msg_flags |= MSG_DONTWAIT;
1929 	/*
1930 	 * If this is sendmmsg() and current destination address is same as
1931 	 * previously succeeded address, omit asking LSM's decision.
1932 	 * used_address->name_len is initialized to UINT_MAX so that the first
1933 	 * destination address never matches.
1934 	 */
1935 	if (used_address && msg_sys->msg_name &&
1936 	    used_address->name_len == msg_sys->msg_namelen &&
1937 	    !memcmp(&used_address->name, msg_sys->msg_name,
1938 		    used_address->name_len)) {
1939 		err = sock_sendmsg_nosec(sock, msg_sys);
1940 		goto out_freectl;
1941 	}
1942 	err = sock_sendmsg(sock, msg_sys);
1943 	/*
1944 	 * If this is sendmmsg() and sending to current destination address was
1945 	 * successful, remember it.
1946 	 */
1947 	if (used_address && err >= 0) {
1948 		used_address->name_len = msg_sys->msg_namelen;
1949 		if (msg_sys->msg_name)
1950 			memcpy(&used_address->name, msg_sys->msg_name,
1951 			       used_address->name_len);
1952 	}
1953 
1954 out_freectl:
1955 	if (ctl_buf != ctl)
1956 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 	kfree(iov);
1959 	return err;
1960 }
1961 
1962 /*
1963  *	BSD sendmsg interface
1964  */
1965 
1966 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1967 {
1968 	int fput_needed, err;
1969 	struct msghdr msg_sys;
1970 	struct socket *sock;
1971 
1972 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 	if (!sock)
1974 		goto out;
1975 
1976 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1977 
1978 	fput_light(sock->file, fput_needed);
1979 out:
1980 	return err;
1981 }
1982 
1983 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1984 {
1985 	if (flags & MSG_CMSG_COMPAT)
1986 		return -EINVAL;
1987 	return __sys_sendmsg(fd, msg, flags);
1988 }
1989 
1990 /*
1991  *	Linux sendmmsg interface
1992  */
1993 
1994 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1995 		   unsigned int flags)
1996 {
1997 	int fput_needed, err, datagrams;
1998 	struct socket *sock;
1999 	struct mmsghdr __user *entry;
2000 	struct compat_mmsghdr __user *compat_entry;
2001 	struct msghdr msg_sys;
2002 	struct used_address used_address;
2003 	unsigned int oflags = flags;
2004 
2005 	if (vlen > UIO_MAXIOV)
2006 		vlen = UIO_MAXIOV;
2007 
2008 	datagrams = 0;
2009 
2010 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 	if (!sock)
2012 		return err;
2013 
2014 	used_address.name_len = UINT_MAX;
2015 	entry = mmsg;
2016 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2017 	err = 0;
2018 	flags |= MSG_BATCH;
2019 
2020 	while (datagrams < vlen) {
2021 		if (datagrams == vlen - 1)
2022 			flags = oflags;
2023 
2024 		if (MSG_CMSG_COMPAT & flags) {
2025 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 					     &msg_sys, flags, &used_address, MSG_EOR);
2027 			if (err < 0)
2028 				break;
2029 			err = __put_user(err, &compat_entry->msg_len);
2030 			++compat_entry;
2031 		} else {
2032 			err = ___sys_sendmsg(sock,
2033 					     (struct user_msghdr __user *)entry,
2034 					     &msg_sys, flags, &used_address, MSG_EOR);
2035 			if (err < 0)
2036 				break;
2037 			err = put_user(err, &entry->msg_len);
2038 			++entry;
2039 		}
2040 
2041 		if (err)
2042 			break;
2043 		++datagrams;
2044 		cond_resched();
2045 	}
2046 
2047 	fput_light(sock->file, fput_needed);
2048 
2049 	/* We only return an error if no datagrams were able to be sent */
2050 	if (datagrams != 0)
2051 		return datagrams;
2052 
2053 	return err;
2054 }
2055 
2056 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057 		unsigned int, vlen, unsigned int, flags)
2058 {
2059 	if (flags & MSG_CMSG_COMPAT)
2060 		return -EINVAL;
2061 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062 }
2063 
2064 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2066 {
2067 	struct compat_msghdr __user *msg_compat =
2068 	    (struct compat_msghdr __user *)msg;
2069 	struct iovec iovstack[UIO_FASTIOV];
2070 	struct iovec *iov = iovstack;
2071 	unsigned long cmsg_ptr;
2072 	int len;
2073 	ssize_t err;
2074 
2075 	/* kernel mode address */
2076 	struct sockaddr_storage addr;
2077 
2078 	/* user mode address pointers */
2079 	struct sockaddr __user *uaddr;
2080 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081 
2082 	msg_sys->msg_name = &addr;
2083 
2084 	if (MSG_CMSG_COMPAT & flags)
2085 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086 	else
2087 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088 	if (err < 0)
2089 		return err;
2090 
2091 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2092 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2093 
2094 	/* We assume all kernel code knows the size of sockaddr_storage */
2095 	msg_sys->msg_namelen = 0;
2096 
2097 	if (sock->file->f_flags & O_NONBLOCK)
2098 		flags |= MSG_DONTWAIT;
2099 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2100 	if (err < 0)
2101 		goto out_freeiov;
2102 	len = err;
2103 
2104 	if (uaddr != NULL) {
2105 		err = move_addr_to_user(&addr,
2106 					msg_sys->msg_namelen, uaddr,
2107 					uaddr_len);
2108 		if (err < 0)
2109 			goto out_freeiov;
2110 	}
2111 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2112 			 COMPAT_FLAGS(msg));
2113 	if (err)
2114 		goto out_freeiov;
2115 	if (MSG_CMSG_COMPAT & flags)
2116 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2117 				 &msg_compat->msg_controllen);
2118 	else
2119 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2120 				 &msg->msg_controllen);
2121 	if (err)
2122 		goto out_freeiov;
2123 	err = len;
2124 
2125 out_freeiov:
2126 	kfree(iov);
2127 	return err;
2128 }
2129 
2130 /*
2131  *	BSD recvmsg interface
2132  */
2133 
2134 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2135 {
2136 	int fput_needed, err;
2137 	struct msghdr msg_sys;
2138 	struct socket *sock;
2139 
2140 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 	if (!sock)
2142 		goto out;
2143 
2144 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2145 
2146 	fput_light(sock->file, fput_needed);
2147 out:
2148 	return err;
2149 }
2150 
2151 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2152 		unsigned int, flags)
2153 {
2154 	if (flags & MSG_CMSG_COMPAT)
2155 		return -EINVAL;
2156 	return __sys_recvmsg(fd, msg, flags);
2157 }
2158 
2159 /*
2160  *     Linux recvmmsg interface
2161  */
2162 
2163 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2164 		   unsigned int flags, struct timespec *timeout)
2165 {
2166 	int fput_needed, err, datagrams;
2167 	struct socket *sock;
2168 	struct mmsghdr __user *entry;
2169 	struct compat_mmsghdr __user *compat_entry;
2170 	struct msghdr msg_sys;
2171 	struct timespec64 end_time;
2172 	struct timespec64 timeout64;
2173 
2174 	if (timeout &&
2175 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2176 				    timeout->tv_nsec))
2177 		return -EINVAL;
2178 
2179 	datagrams = 0;
2180 
2181 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 	if (!sock)
2183 		return err;
2184 
2185 	err = sock_error(sock->sk);
2186 	if (err)
2187 		goto out_put;
2188 
2189 	entry = mmsg;
2190 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2191 
2192 	while (datagrams < vlen) {
2193 		/*
2194 		 * No need to ask LSM for more than the first datagram.
2195 		 */
2196 		if (MSG_CMSG_COMPAT & flags) {
2197 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2198 					     &msg_sys, flags & ~MSG_WAITFORONE,
2199 					     datagrams);
2200 			if (err < 0)
2201 				break;
2202 			err = __put_user(err, &compat_entry->msg_len);
2203 			++compat_entry;
2204 		} else {
2205 			err = ___sys_recvmsg(sock,
2206 					     (struct user_msghdr __user *)entry,
2207 					     &msg_sys, flags & ~MSG_WAITFORONE,
2208 					     datagrams);
2209 			if (err < 0)
2210 				break;
2211 			err = put_user(err, &entry->msg_len);
2212 			++entry;
2213 		}
2214 
2215 		if (err)
2216 			break;
2217 		++datagrams;
2218 
2219 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2220 		if (flags & MSG_WAITFORONE)
2221 			flags |= MSG_DONTWAIT;
2222 
2223 		if (timeout) {
2224 			ktime_get_ts64(&timeout64);
2225 			*timeout = timespec64_to_timespec(
2226 					timespec64_sub(end_time, timeout64));
2227 			if (timeout->tv_sec < 0) {
2228 				timeout->tv_sec = timeout->tv_nsec = 0;
2229 				break;
2230 			}
2231 
2232 			/* Timeout, return less than vlen datagrams */
2233 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2234 				break;
2235 		}
2236 
2237 		/* Out of band data, return right away */
2238 		if (msg_sys.msg_flags & MSG_OOB)
2239 			break;
2240 		cond_resched();
2241 	}
2242 
2243 	if (err == 0)
2244 		goto out_put;
2245 
2246 	if (datagrams == 0) {
2247 		datagrams = err;
2248 		goto out_put;
2249 	}
2250 
2251 	/*
2252 	 * We may return less entries than requested (vlen) if the
2253 	 * sock is non block and there aren't enough datagrams...
2254 	 */
2255 	if (err != -EAGAIN) {
2256 		/*
2257 		 * ... or  if recvmsg returns an error after we
2258 		 * received some datagrams, where we record the
2259 		 * error to return on the next call or if the
2260 		 * app asks about it using getsockopt(SO_ERROR).
2261 		 */
2262 		sock->sk->sk_err = -err;
2263 	}
2264 out_put:
2265 	fput_light(sock->file, fput_needed);
2266 
2267 	return datagrams;
2268 }
2269 
2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 		unsigned int, vlen, unsigned int, flags,
2272 		struct timespec __user *, timeout)
2273 {
2274 	int datagrams;
2275 	struct timespec timeout_sys;
2276 
2277 	if (flags & MSG_CMSG_COMPAT)
2278 		return -EINVAL;
2279 
2280 	if (!timeout)
2281 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282 
2283 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284 		return -EFAULT;
2285 
2286 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287 
2288 	if (datagrams > 0 &&
2289 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290 		datagrams = -EFAULT;
2291 
2292 	return datagrams;
2293 }
2294 
2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2296 /* Argument list sizes for sys_socketcall */
2297 #define AL(x) ((x) * sizeof(unsigned long))
2298 static const unsigned char nargs[21] = {
2299 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302 	AL(4), AL(5), AL(4)
2303 };
2304 
2305 #undef AL
2306 
2307 /*
2308  *	System call vectors.
2309  *
2310  *	Argument checking cleaned up. Saved 20% in size.
2311  *  This function doesn't need to set the kernel lock because
2312  *  it is set by the callees.
2313  */
2314 
2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316 {
2317 	unsigned long a[AUDITSC_ARGS];
2318 	unsigned long a0, a1;
2319 	int err;
2320 	unsigned int len;
2321 
2322 	if (call < 1 || call > SYS_SENDMMSG)
2323 		return -EINVAL;
2324 
2325 	len = nargs[call];
2326 	if (len > sizeof(a))
2327 		return -EINVAL;
2328 
2329 	/* copy_from_user should be SMP safe. */
2330 	if (copy_from_user(a, args, len))
2331 		return -EFAULT;
2332 
2333 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334 	if (err)
2335 		return err;
2336 
2337 	a0 = a[0];
2338 	a1 = a[1];
2339 
2340 	switch (call) {
2341 	case SYS_SOCKET:
2342 		err = sys_socket(a0, a1, a[2]);
2343 		break;
2344 	case SYS_BIND:
2345 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346 		break;
2347 	case SYS_CONNECT:
2348 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349 		break;
2350 	case SYS_LISTEN:
2351 		err = sys_listen(a0, a1);
2352 		break;
2353 	case SYS_ACCEPT:
2354 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355 				  (int __user *)a[2], 0);
2356 		break;
2357 	case SYS_GETSOCKNAME:
2358 		err =
2359 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2360 				    (int __user *)a[2]);
2361 		break;
2362 	case SYS_GETPEERNAME:
2363 		err =
2364 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2365 				    (int __user *)a[2]);
2366 		break;
2367 	case SYS_SOCKETPAIR:
2368 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369 		break;
2370 	case SYS_SEND:
2371 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372 		break;
2373 	case SYS_SENDTO:
2374 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375 				 (struct sockaddr __user *)a[4], a[5]);
2376 		break;
2377 	case SYS_RECV:
2378 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379 		break;
2380 	case SYS_RECVFROM:
2381 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382 				   (struct sockaddr __user *)a[4],
2383 				   (int __user *)a[5]);
2384 		break;
2385 	case SYS_SHUTDOWN:
2386 		err = sys_shutdown(a0, a1);
2387 		break;
2388 	case SYS_SETSOCKOPT:
2389 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390 		break;
2391 	case SYS_GETSOCKOPT:
2392 		err =
2393 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394 				   (int __user *)a[4]);
2395 		break;
2396 	case SYS_SENDMSG:
2397 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398 		break;
2399 	case SYS_SENDMMSG:
2400 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401 		break;
2402 	case SYS_RECVMSG:
2403 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 		break;
2405 	case SYS_RECVMMSG:
2406 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407 				   (struct timespec __user *)a[4]);
2408 		break;
2409 	case SYS_ACCEPT4:
2410 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411 				  (int __user *)a[2], a[3]);
2412 		break;
2413 	default:
2414 		err = -EINVAL;
2415 		break;
2416 	}
2417 	return err;
2418 }
2419 
2420 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2421 
2422 /**
2423  *	sock_register - add a socket protocol handler
2424  *	@ops: description of protocol
2425  *
2426  *	This function is called by a protocol handler that wants to
2427  *	advertise its address family, and have it linked into the
2428  *	socket interface. The value ops->family corresponds to the
2429  *	socket system call protocol family.
2430  */
2431 int sock_register(const struct net_proto_family *ops)
2432 {
2433 	int err;
2434 
2435 	if (ops->family >= NPROTO) {
2436 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437 		return -ENOBUFS;
2438 	}
2439 
2440 	spin_lock(&net_family_lock);
2441 	if (rcu_dereference_protected(net_families[ops->family],
2442 				      lockdep_is_held(&net_family_lock)))
2443 		err = -EEXIST;
2444 	else {
2445 		rcu_assign_pointer(net_families[ops->family], ops);
2446 		err = 0;
2447 	}
2448 	spin_unlock(&net_family_lock);
2449 
2450 	pr_info("NET: Registered protocol family %d\n", ops->family);
2451 	return err;
2452 }
2453 EXPORT_SYMBOL(sock_register);
2454 
2455 /**
2456  *	sock_unregister - remove a protocol handler
2457  *	@family: protocol family to remove
2458  *
2459  *	This function is called by a protocol handler that wants to
2460  *	remove its address family, and have it unlinked from the
2461  *	new socket creation.
2462  *
2463  *	If protocol handler is a module, then it can use module reference
2464  *	counts to protect against new references. If protocol handler is not
2465  *	a module then it needs to provide its own protection in
2466  *	the ops->create routine.
2467  */
2468 void sock_unregister(int family)
2469 {
2470 	BUG_ON(family < 0 || family >= NPROTO);
2471 
2472 	spin_lock(&net_family_lock);
2473 	RCU_INIT_POINTER(net_families[family], NULL);
2474 	spin_unlock(&net_family_lock);
2475 
2476 	synchronize_rcu();
2477 
2478 	pr_info("NET: Unregistered protocol family %d\n", family);
2479 }
2480 EXPORT_SYMBOL(sock_unregister);
2481 
2482 static int __init sock_init(void)
2483 {
2484 	int err;
2485 	/*
2486 	 *      Initialize the network sysctl infrastructure.
2487 	 */
2488 	err = net_sysctl_init();
2489 	if (err)
2490 		goto out;
2491 
2492 	/*
2493 	 *      Initialize skbuff SLAB cache
2494 	 */
2495 	skb_init();
2496 
2497 	/*
2498 	 *      Initialize the protocols module.
2499 	 */
2500 
2501 	init_inodecache();
2502 
2503 	err = register_filesystem(&sock_fs_type);
2504 	if (err)
2505 		goto out_fs;
2506 	sock_mnt = kern_mount(&sock_fs_type);
2507 	if (IS_ERR(sock_mnt)) {
2508 		err = PTR_ERR(sock_mnt);
2509 		goto out_mount;
2510 	}
2511 
2512 	/* The real protocol initialization is performed in later initcalls.
2513 	 */
2514 
2515 #ifdef CONFIG_NETFILTER
2516 	err = netfilter_init();
2517 	if (err)
2518 		goto out;
2519 #endif
2520 
2521 	ptp_classifier_init();
2522 
2523 out:
2524 	return err;
2525 
2526 out_mount:
2527 	unregister_filesystem(&sock_fs_type);
2528 out_fs:
2529 	goto out;
2530 }
2531 
2532 core_initcall(sock_init);	/* early initcall */
2533 
2534 #ifdef CONFIG_PROC_FS
2535 void socket_seq_show(struct seq_file *seq)
2536 {
2537 	int cpu;
2538 	int counter = 0;
2539 
2540 	for_each_possible_cpu(cpu)
2541 	    counter += per_cpu(sockets_in_use, cpu);
2542 
2543 	/* It can be negative, by the way. 8) */
2544 	if (counter < 0)
2545 		counter = 0;
2546 
2547 	seq_printf(seq, "sockets: used %d\n", counter);
2548 }
2549 #endif				/* CONFIG_PROC_FS */
2550 
2551 #ifdef CONFIG_COMPAT
2552 static int do_siocgstamp(struct net *net, struct socket *sock,
2553 			 unsigned int cmd, void __user *up)
2554 {
2555 	mm_segment_t old_fs = get_fs();
2556 	struct timeval ktv;
2557 	int err;
2558 
2559 	set_fs(KERNEL_DS);
2560 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2561 	set_fs(old_fs);
2562 	if (!err)
2563 		err = compat_put_timeval(&ktv, up);
2564 
2565 	return err;
2566 }
2567 
2568 static int do_siocgstampns(struct net *net, struct socket *sock,
2569 			   unsigned int cmd, void __user *up)
2570 {
2571 	mm_segment_t old_fs = get_fs();
2572 	struct timespec kts;
2573 	int err;
2574 
2575 	set_fs(KERNEL_DS);
2576 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2577 	set_fs(old_fs);
2578 	if (!err)
2579 		err = compat_put_timespec(&kts, up);
2580 
2581 	return err;
2582 }
2583 
2584 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2585 {
2586 	struct ifreq __user *uifr;
2587 	int err;
2588 
2589 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2590 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2591 		return -EFAULT;
2592 
2593 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2594 	if (err)
2595 		return err;
2596 
2597 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2598 		return -EFAULT;
2599 
2600 	return 0;
2601 }
2602 
2603 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2604 {
2605 	struct compat_ifconf ifc32;
2606 	struct ifconf ifc;
2607 	struct ifconf __user *uifc;
2608 	struct compat_ifreq __user *ifr32;
2609 	struct ifreq __user *ifr;
2610 	unsigned int i, j;
2611 	int err;
2612 
2613 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2614 		return -EFAULT;
2615 
2616 	memset(&ifc, 0, sizeof(ifc));
2617 	if (ifc32.ifcbuf == 0) {
2618 		ifc32.ifc_len = 0;
2619 		ifc.ifc_len = 0;
2620 		ifc.ifc_req = NULL;
2621 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2622 	} else {
2623 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2624 			sizeof(struct ifreq);
2625 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2626 		ifc.ifc_len = len;
2627 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2628 		ifr32 = compat_ptr(ifc32.ifcbuf);
2629 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2630 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2631 				return -EFAULT;
2632 			ifr++;
2633 			ifr32++;
2634 		}
2635 	}
2636 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2637 		return -EFAULT;
2638 
2639 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2640 	if (err)
2641 		return err;
2642 
2643 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2644 		return -EFAULT;
2645 
2646 	ifr = ifc.ifc_req;
2647 	ifr32 = compat_ptr(ifc32.ifcbuf);
2648 	for (i = 0, j = 0;
2649 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2650 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2651 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2652 			return -EFAULT;
2653 		ifr32++;
2654 		ifr++;
2655 	}
2656 
2657 	if (ifc32.ifcbuf == 0) {
2658 		/* Translate from 64-bit structure multiple to
2659 		 * a 32-bit one.
2660 		 */
2661 		i = ifc.ifc_len;
2662 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2663 		ifc32.ifc_len = i;
2664 	} else {
2665 		ifc32.ifc_len = i;
2666 	}
2667 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2668 		return -EFAULT;
2669 
2670 	return 0;
2671 }
2672 
2673 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2674 {
2675 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2676 	bool convert_in = false, convert_out = false;
2677 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2678 	struct ethtool_rxnfc __user *rxnfc;
2679 	struct ifreq __user *ifr;
2680 	u32 rule_cnt = 0, actual_rule_cnt;
2681 	u32 ethcmd;
2682 	u32 data;
2683 	int ret;
2684 
2685 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 		return -EFAULT;
2687 
2688 	compat_rxnfc = compat_ptr(data);
2689 
2690 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2691 		return -EFAULT;
2692 
2693 	/* Most ethtool structures are defined without padding.
2694 	 * Unfortunately struct ethtool_rxnfc is an exception.
2695 	 */
2696 	switch (ethcmd) {
2697 	default:
2698 		break;
2699 	case ETHTOOL_GRXCLSRLALL:
2700 		/* Buffer size is variable */
2701 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2702 			return -EFAULT;
2703 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2704 			return -ENOMEM;
2705 		buf_size += rule_cnt * sizeof(u32);
2706 		/* fall through */
2707 	case ETHTOOL_GRXRINGS:
2708 	case ETHTOOL_GRXCLSRLCNT:
2709 	case ETHTOOL_GRXCLSRULE:
2710 	case ETHTOOL_SRXCLSRLINS:
2711 		convert_out = true;
2712 		/* fall through */
2713 	case ETHTOOL_SRXCLSRLDEL:
2714 		buf_size += sizeof(struct ethtool_rxnfc);
2715 		convert_in = true;
2716 		break;
2717 	}
2718 
2719 	ifr = compat_alloc_user_space(buf_size);
2720 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2721 
2722 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2723 		return -EFAULT;
2724 
2725 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2726 		     &ifr->ifr_ifru.ifru_data))
2727 		return -EFAULT;
2728 
2729 	if (convert_in) {
2730 		/* We expect there to be holes between fs.m_ext and
2731 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2732 		 */
2733 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2734 			     sizeof(compat_rxnfc->fs.m_ext) !=
2735 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2736 			     sizeof(rxnfc->fs.m_ext));
2737 		BUILD_BUG_ON(
2738 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2739 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2740 			offsetof(struct ethtool_rxnfc, fs.location) -
2741 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2742 
2743 		if (copy_in_user(rxnfc, compat_rxnfc,
2744 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2745 				 (void __user *)rxnfc) ||
2746 		    copy_in_user(&rxnfc->fs.ring_cookie,
2747 				 &compat_rxnfc->fs.ring_cookie,
2748 				 (void __user *)(&rxnfc->fs.location + 1) -
2749 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2750 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2751 				 sizeof(rxnfc->rule_cnt)))
2752 			return -EFAULT;
2753 	}
2754 
2755 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2756 	if (ret)
2757 		return ret;
2758 
2759 	if (convert_out) {
2760 		if (copy_in_user(compat_rxnfc, rxnfc,
2761 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2762 				 (const void __user *)rxnfc) ||
2763 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2764 				 &rxnfc->fs.ring_cookie,
2765 				 (const void __user *)(&rxnfc->fs.location + 1) -
2766 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2767 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2768 				 sizeof(rxnfc->rule_cnt)))
2769 			return -EFAULT;
2770 
2771 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2772 			/* As an optimisation, we only copy the actual
2773 			 * number of rules that the underlying
2774 			 * function returned.  Since Mallory might
2775 			 * change the rule count in user memory, we
2776 			 * check that it is less than the rule count
2777 			 * originally given (as the user buffer size),
2778 			 * which has been range-checked.
2779 			 */
2780 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2781 				return -EFAULT;
2782 			if (actual_rule_cnt < rule_cnt)
2783 				rule_cnt = actual_rule_cnt;
2784 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2785 					 &rxnfc->rule_locs[0],
2786 					 rule_cnt * sizeof(u32)))
2787 				return -EFAULT;
2788 		}
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2795 {
2796 	void __user *uptr;
2797 	compat_uptr_t uptr32;
2798 	struct ifreq __user *uifr;
2799 
2800 	uifr = compat_alloc_user_space(sizeof(*uifr));
2801 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2802 		return -EFAULT;
2803 
2804 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2805 		return -EFAULT;
2806 
2807 	uptr = compat_ptr(uptr32);
2808 
2809 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2810 		return -EFAULT;
2811 
2812 	return dev_ioctl(net, SIOCWANDEV, uifr);
2813 }
2814 
2815 static int bond_ioctl(struct net *net, unsigned int cmd,
2816 			 struct compat_ifreq __user *ifr32)
2817 {
2818 	struct ifreq kifr;
2819 	mm_segment_t old_fs;
2820 	int err;
2821 
2822 	switch (cmd) {
2823 	case SIOCBONDENSLAVE:
2824 	case SIOCBONDRELEASE:
2825 	case SIOCBONDSETHWADDR:
2826 	case SIOCBONDCHANGEACTIVE:
2827 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2828 			return -EFAULT;
2829 
2830 		old_fs = get_fs();
2831 		set_fs(KERNEL_DS);
2832 		err = dev_ioctl(net, cmd,
2833 				(struct ifreq __user __force *) &kifr);
2834 		set_fs(old_fs);
2835 
2836 		return err;
2837 	default:
2838 		return -ENOIOCTLCMD;
2839 	}
2840 }
2841 
2842 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2843 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2844 				 struct compat_ifreq __user *u_ifreq32)
2845 {
2846 	struct ifreq __user *u_ifreq64;
2847 	char tmp_buf[IFNAMSIZ];
2848 	void __user *data64;
2849 	u32 data32;
2850 
2851 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2852 			   IFNAMSIZ))
2853 		return -EFAULT;
2854 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2855 		return -EFAULT;
2856 	data64 = compat_ptr(data32);
2857 
2858 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2859 
2860 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2861 			 IFNAMSIZ))
2862 		return -EFAULT;
2863 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2864 		return -EFAULT;
2865 
2866 	return dev_ioctl(net, cmd, u_ifreq64);
2867 }
2868 
2869 static int dev_ifsioc(struct net *net, struct socket *sock,
2870 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2871 {
2872 	struct ifreq __user *uifr;
2873 	int err;
2874 
2875 	uifr = compat_alloc_user_space(sizeof(*uifr));
2876 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2877 		return -EFAULT;
2878 
2879 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2880 
2881 	if (!err) {
2882 		switch (cmd) {
2883 		case SIOCGIFFLAGS:
2884 		case SIOCGIFMETRIC:
2885 		case SIOCGIFMTU:
2886 		case SIOCGIFMEM:
2887 		case SIOCGIFHWADDR:
2888 		case SIOCGIFINDEX:
2889 		case SIOCGIFADDR:
2890 		case SIOCGIFBRDADDR:
2891 		case SIOCGIFDSTADDR:
2892 		case SIOCGIFNETMASK:
2893 		case SIOCGIFPFLAGS:
2894 		case SIOCGIFTXQLEN:
2895 		case SIOCGMIIPHY:
2896 		case SIOCGMIIREG:
2897 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2898 				err = -EFAULT;
2899 			break;
2900 		}
2901 	}
2902 	return err;
2903 }
2904 
2905 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2906 			struct compat_ifreq __user *uifr32)
2907 {
2908 	struct ifreq ifr;
2909 	struct compat_ifmap __user *uifmap32;
2910 	mm_segment_t old_fs;
2911 	int err;
2912 
2913 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2914 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2915 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2916 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2917 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2918 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2919 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2920 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2921 	if (err)
2922 		return -EFAULT;
2923 
2924 	old_fs = get_fs();
2925 	set_fs(KERNEL_DS);
2926 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2927 	set_fs(old_fs);
2928 
2929 	if (cmd == SIOCGIFMAP && !err) {
2930 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2931 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2935 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2936 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2937 		if (err)
2938 			err = -EFAULT;
2939 	}
2940 	return err;
2941 }
2942 
2943 struct rtentry32 {
2944 	u32		rt_pad1;
2945 	struct sockaddr rt_dst;         /* target address               */
2946 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2947 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2948 	unsigned short	rt_flags;
2949 	short		rt_pad2;
2950 	u32		rt_pad3;
2951 	unsigned char	rt_tos;
2952 	unsigned char	rt_class;
2953 	short		rt_pad4;
2954 	short		rt_metric;      /* +1 for binary compatibility! */
2955 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2956 	u32		rt_mtu;         /* per route MTU/Window         */
2957 	u32		rt_window;      /* Window clamping              */
2958 	unsigned short  rt_irtt;        /* Initial RTT                  */
2959 };
2960 
2961 struct in6_rtmsg32 {
2962 	struct in6_addr		rtmsg_dst;
2963 	struct in6_addr		rtmsg_src;
2964 	struct in6_addr		rtmsg_gateway;
2965 	u32			rtmsg_type;
2966 	u16			rtmsg_dst_len;
2967 	u16			rtmsg_src_len;
2968 	u32			rtmsg_metric;
2969 	u32			rtmsg_info;
2970 	u32			rtmsg_flags;
2971 	s32			rtmsg_ifindex;
2972 };
2973 
2974 static int routing_ioctl(struct net *net, struct socket *sock,
2975 			 unsigned int cmd, void __user *argp)
2976 {
2977 	int ret;
2978 	void *r = NULL;
2979 	struct in6_rtmsg r6;
2980 	struct rtentry r4;
2981 	char devname[16];
2982 	u32 rtdev;
2983 	mm_segment_t old_fs = get_fs();
2984 
2985 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2986 		struct in6_rtmsg32 __user *ur6 = argp;
2987 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2988 			3 * sizeof(struct in6_addr));
2989 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2990 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2991 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2992 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2993 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2994 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2995 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2996 
2997 		r = (void *) &r6;
2998 	} else { /* ipv4 */
2999 		struct rtentry32 __user *ur4 = argp;
3000 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3001 					3 * sizeof(struct sockaddr));
3002 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3003 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3004 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3005 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3006 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3007 		ret |= get_user(rtdev, &(ur4->rt_dev));
3008 		if (rtdev) {
3009 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3010 			r4.rt_dev = (char __user __force *)devname;
3011 			devname[15] = 0;
3012 		} else
3013 			r4.rt_dev = NULL;
3014 
3015 		r = (void *) &r4;
3016 	}
3017 
3018 	if (ret) {
3019 		ret = -EFAULT;
3020 		goto out;
3021 	}
3022 
3023 	set_fs(KERNEL_DS);
3024 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3025 	set_fs(old_fs);
3026 
3027 out:
3028 	return ret;
3029 }
3030 
3031 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3032  * for some operations; this forces use of the newer bridge-utils that
3033  * use compatible ioctls
3034  */
3035 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3036 {
3037 	compat_ulong_t tmp;
3038 
3039 	if (get_user(tmp, argp))
3040 		return -EFAULT;
3041 	if (tmp == BRCTL_GET_VERSION)
3042 		return BRCTL_VERSION + 1;
3043 	return -EINVAL;
3044 }
3045 
3046 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3047 			 unsigned int cmd, unsigned long arg)
3048 {
3049 	void __user *argp = compat_ptr(arg);
3050 	struct sock *sk = sock->sk;
3051 	struct net *net = sock_net(sk);
3052 
3053 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3054 		return compat_ifr_data_ioctl(net, cmd, argp);
3055 
3056 	switch (cmd) {
3057 	case SIOCSIFBR:
3058 	case SIOCGIFBR:
3059 		return old_bridge_ioctl(argp);
3060 	case SIOCGIFNAME:
3061 		return dev_ifname32(net, argp);
3062 	case SIOCGIFCONF:
3063 		return dev_ifconf(net, argp);
3064 	case SIOCETHTOOL:
3065 		return ethtool_ioctl(net, argp);
3066 	case SIOCWANDEV:
3067 		return compat_siocwandev(net, argp);
3068 	case SIOCGIFMAP:
3069 	case SIOCSIFMAP:
3070 		return compat_sioc_ifmap(net, cmd, argp);
3071 	case SIOCBONDENSLAVE:
3072 	case SIOCBONDRELEASE:
3073 	case SIOCBONDSETHWADDR:
3074 	case SIOCBONDCHANGEACTIVE:
3075 		return bond_ioctl(net, cmd, argp);
3076 	case SIOCADDRT:
3077 	case SIOCDELRT:
3078 		return routing_ioctl(net, sock, cmd, argp);
3079 	case SIOCGSTAMP:
3080 		return do_siocgstamp(net, sock, cmd, argp);
3081 	case SIOCGSTAMPNS:
3082 		return do_siocgstampns(net, sock, cmd, argp);
3083 	case SIOCBONDSLAVEINFOQUERY:
3084 	case SIOCBONDINFOQUERY:
3085 	case SIOCSHWTSTAMP:
3086 	case SIOCGHWTSTAMP:
3087 		return compat_ifr_data_ioctl(net, cmd, argp);
3088 
3089 	case FIOSETOWN:
3090 	case SIOCSPGRP:
3091 	case FIOGETOWN:
3092 	case SIOCGPGRP:
3093 	case SIOCBRADDBR:
3094 	case SIOCBRDELBR:
3095 	case SIOCGIFVLAN:
3096 	case SIOCSIFVLAN:
3097 	case SIOCADDDLCI:
3098 	case SIOCDELDLCI:
3099 		return sock_ioctl(file, cmd, arg);
3100 
3101 	case SIOCGIFFLAGS:
3102 	case SIOCSIFFLAGS:
3103 	case SIOCGIFMETRIC:
3104 	case SIOCSIFMETRIC:
3105 	case SIOCGIFMTU:
3106 	case SIOCSIFMTU:
3107 	case SIOCGIFMEM:
3108 	case SIOCSIFMEM:
3109 	case SIOCGIFHWADDR:
3110 	case SIOCSIFHWADDR:
3111 	case SIOCADDMULTI:
3112 	case SIOCDELMULTI:
3113 	case SIOCGIFINDEX:
3114 	case SIOCGIFADDR:
3115 	case SIOCSIFADDR:
3116 	case SIOCSIFHWBROADCAST:
3117 	case SIOCDIFADDR:
3118 	case SIOCGIFBRDADDR:
3119 	case SIOCSIFBRDADDR:
3120 	case SIOCGIFDSTADDR:
3121 	case SIOCSIFDSTADDR:
3122 	case SIOCGIFNETMASK:
3123 	case SIOCSIFNETMASK:
3124 	case SIOCSIFPFLAGS:
3125 	case SIOCGIFPFLAGS:
3126 	case SIOCGIFTXQLEN:
3127 	case SIOCSIFTXQLEN:
3128 	case SIOCBRADDIF:
3129 	case SIOCBRDELIF:
3130 	case SIOCSIFNAME:
3131 	case SIOCGMIIPHY:
3132 	case SIOCGMIIREG:
3133 	case SIOCSMIIREG:
3134 		return dev_ifsioc(net, sock, cmd, argp);
3135 
3136 	case SIOCSARP:
3137 	case SIOCGARP:
3138 	case SIOCDARP:
3139 	case SIOCATMARK:
3140 		return sock_do_ioctl(net, sock, cmd, arg);
3141 	}
3142 
3143 	return -ENOIOCTLCMD;
3144 }
3145 
3146 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3147 			      unsigned long arg)
3148 {
3149 	struct socket *sock = file->private_data;
3150 	int ret = -ENOIOCTLCMD;
3151 	struct sock *sk;
3152 	struct net *net;
3153 
3154 	sk = sock->sk;
3155 	net = sock_net(sk);
3156 
3157 	if (sock->ops->compat_ioctl)
3158 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3159 
3160 	if (ret == -ENOIOCTLCMD &&
3161 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3162 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3163 
3164 	if (ret == -ENOIOCTLCMD)
3165 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3166 
3167 	return ret;
3168 }
3169 #endif
3170 
3171 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3172 {
3173 	return sock->ops->bind(sock, addr, addrlen);
3174 }
3175 EXPORT_SYMBOL(kernel_bind);
3176 
3177 int kernel_listen(struct socket *sock, int backlog)
3178 {
3179 	return sock->ops->listen(sock, backlog);
3180 }
3181 EXPORT_SYMBOL(kernel_listen);
3182 
3183 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3184 {
3185 	struct sock *sk = sock->sk;
3186 	int err;
3187 
3188 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3189 			       newsock);
3190 	if (err < 0)
3191 		goto done;
3192 
3193 	err = sock->ops->accept(sock, *newsock, flags);
3194 	if (err < 0) {
3195 		sock_release(*newsock);
3196 		*newsock = NULL;
3197 		goto done;
3198 	}
3199 
3200 	(*newsock)->ops = sock->ops;
3201 	__module_get((*newsock)->ops->owner);
3202 
3203 done:
3204 	return err;
3205 }
3206 EXPORT_SYMBOL(kernel_accept);
3207 
3208 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3209 		   int flags)
3210 {
3211 	return sock->ops->connect(sock, addr, addrlen, flags);
3212 }
3213 EXPORT_SYMBOL(kernel_connect);
3214 
3215 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3216 			 int *addrlen)
3217 {
3218 	return sock->ops->getname(sock, addr, addrlen, 0);
3219 }
3220 EXPORT_SYMBOL(kernel_getsockname);
3221 
3222 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3223 			 int *addrlen)
3224 {
3225 	return sock->ops->getname(sock, addr, addrlen, 1);
3226 }
3227 EXPORT_SYMBOL(kernel_getpeername);
3228 
3229 int kernel_getsockopt(struct socket *sock, int level, int optname,
3230 			char *optval, int *optlen)
3231 {
3232 	mm_segment_t oldfs = get_fs();
3233 	char __user *uoptval;
3234 	int __user *uoptlen;
3235 	int err;
3236 
3237 	uoptval = (char __user __force *) optval;
3238 	uoptlen = (int __user __force *) optlen;
3239 
3240 	set_fs(KERNEL_DS);
3241 	if (level == SOL_SOCKET)
3242 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3243 	else
3244 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3245 					    uoptlen);
3246 	set_fs(oldfs);
3247 	return err;
3248 }
3249 EXPORT_SYMBOL(kernel_getsockopt);
3250 
3251 int kernel_setsockopt(struct socket *sock, int level, int optname,
3252 			char *optval, unsigned int optlen)
3253 {
3254 	mm_segment_t oldfs = get_fs();
3255 	char __user *uoptval;
3256 	int err;
3257 
3258 	uoptval = (char __user __force *) optval;
3259 
3260 	set_fs(KERNEL_DS);
3261 	if (level == SOL_SOCKET)
3262 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3263 	else
3264 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3265 					    optlen);
3266 	set_fs(oldfs);
3267 	return err;
3268 }
3269 EXPORT_SYMBOL(kernel_setsockopt);
3270 
3271 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3272 		    size_t size, int flags)
3273 {
3274 	if (sock->ops->sendpage)
3275 		return sock->ops->sendpage(sock, page, offset, size, flags);
3276 
3277 	return sock_no_sendpage(sock, page, offset, size, flags);
3278 }
3279 EXPORT_SYMBOL(kernel_sendpage);
3280 
3281 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3282 {
3283 	mm_segment_t oldfs = get_fs();
3284 	int err;
3285 
3286 	set_fs(KERNEL_DS);
3287 	err = sock->ops->ioctl(sock, cmd, arg);
3288 	set_fs(oldfs);
3289 
3290 	return err;
3291 }
3292 EXPORT_SYMBOL(kernel_sock_ioctl);
3293 
3294 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3295 {
3296 	return sock->ops->shutdown(sock, how);
3297 }
3298 EXPORT_SYMBOL(kernel_sock_shutdown);
3299