1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read = new_sync_read, 144 .write = new_sync_write, 145 .read_iter = sock_read_iter, 146 .write_iter = sock_write_iter, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct fd f = fdget(fd); 453 struct socket *sock; 454 455 *err = -EBADF; 456 if (f.file) { 457 sock = sock_from_file(f.file, err); 458 if (likely(sock)) { 459 *fput_needed = f.flags; 460 return sock; 461 } 462 fdput(f); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 582 return; 583 584 this_cpu_sub(sockets_in_use, 1); 585 if (!sock->file) { 586 iput(SOCK_INODE(sock)); 587 return; 588 } 589 sock->file = NULL; 590 } 591 EXPORT_SYMBOL(sock_release); 592 593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 594 { 595 u8 flags = *tx_flags; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 598 flags |= SKBTX_HW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 601 flags |= SKBTX_SW_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 604 flags |= SKBTX_SCHED_TSTAMP; 605 606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 607 flags |= SKBTX_ACK_TSTAMP; 608 609 *tx_flags = flags; 610 } 611 EXPORT_SYMBOL(__sock_tx_timestamp); 612 613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 614 struct msghdr *msg, size_t size) 615 { 616 return sock->ops->sendmsg(iocb, sock, msg, size); 617 } 618 619 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 620 struct msghdr *msg, size_t size) 621 { 622 int err = security_socket_sendmsg(sock, msg, size); 623 624 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 625 } 626 627 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg, 628 size_t size, bool nosec) 629 { 630 struct kiocb iocb; 631 int ret; 632 633 init_sync_kiocb(&iocb, NULL); 634 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) : 635 __sock_sendmsg(&iocb, sock, msg, size); 636 if (-EIOCBQUEUED == ret) 637 ret = wait_on_sync_kiocb(&iocb); 638 return ret; 639 } 640 641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 642 { 643 return do_sock_sendmsg(sock, msg, size, false); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 648 { 649 return do_sock_sendmsg(sock, msg, size, true); 650 } 651 652 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 653 struct kvec *vec, size_t num, size_t size) 654 { 655 mm_segment_t oldfs = get_fs(); 656 int result; 657 658 set_fs(KERNEL_DS); 659 /* 660 * the following is safe, since for compiler definitions of kvec and 661 * iovec are identical, yielding the same in-core layout and alignment 662 */ 663 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size); 664 result = sock_sendmsg(sock, msg, size); 665 set_fs(oldfs); 666 return result; 667 } 668 EXPORT_SYMBOL(kernel_sendmsg); 669 670 /* 671 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 672 */ 673 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 674 struct sk_buff *skb) 675 { 676 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 677 struct scm_timestamping tss; 678 int empty = 1; 679 struct skb_shared_hwtstamps *shhwtstamps = 680 skb_hwtstamps(skb); 681 682 /* Race occurred between timestamp enabling and packet 683 receiving. Fill in the current time for now. */ 684 if (need_software_tstamp && skb->tstamp.tv64 == 0) 685 __net_timestamp(skb); 686 687 if (need_software_tstamp) { 688 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 689 struct timeval tv; 690 skb_get_timestamp(skb, &tv); 691 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 692 sizeof(tv), &tv); 693 } else { 694 struct timespec ts; 695 skb_get_timestampns(skb, &ts); 696 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 697 sizeof(ts), &ts); 698 } 699 } 700 701 memset(&tss, 0, sizeof(tss)); 702 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 703 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 704 empty = 0; 705 if (shhwtstamps && 706 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 707 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 708 empty = 0; 709 if (!empty) 710 put_cmsg(msg, SOL_SOCKET, 711 SCM_TIMESTAMPING, sizeof(tss), &tss); 712 } 713 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 714 715 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 716 struct sk_buff *skb) 717 { 718 int ack; 719 720 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 721 return; 722 if (!skb->wifi_acked_valid) 723 return; 724 725 ack = skb->wifi_acked; 726 727 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 728 } 729 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 730 731 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 732 struct sk_buff *skb) 733 { 734 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 735 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 736 sizeof(__u32), &skb->dropcount); 737 } 738 739 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 740 struct sk_buff *skb) 741 { 742 sock_recv_timestamp(msg, sk, skb); 743 sock_recv_drops(msg, sk, skb); 744 } 745 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 746 747 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 748 struct msghdr *msg, size_t size, int flags) 749 { 750 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 751 } 752 753 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 754 struct msghdr *msg, size_t size, int flags) 755 { 756 int err = security_socket_recvmsg(sock, msg, size, flags); 757 758 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 759 } 760 761 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 762 size_t size, int flags) 763 { 764 struct kiocb iocb; 765 int ret; 766 767 init_sync_kiocb(&iocb, NULL); 768 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 769 if (-EIOCBQUEUED == ret) 770 ret = wait_on_sync_kiocb(&iocb); 771 return ret; 772 } 773 EXPORT_SYMBOL(sock_recvmsg); 774 775 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 776 size_t size, int flags) 777 { 778 struct kiocb iocb; 779 int ret; 780 781 init_sync_kiocb(&iocb, NULL); 782 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 783 if (-EIOCBQUEUED == ret) 784 ret = wait_on_sync_kiocb(&iocb); 785 return ret; 786 } 787 788 /** 789 * kernel_recvmsg - Receive a message from a socket (kernel space) 790 * @sock: The socket to receive the message from 791 * @msg: Received message 792 * @vec: Input s/g array for message data 793 * @num: Size of input s/g array 794 * @size: Number of bytes to read 795 * @flags: Message flags (MSG_DONTWAIT, etc...) 796 * 797 * On return the msg structure contains the scatter/gather array passed in the 798 * vec argument. The array is modified so that it consists of the unfilled 799 * portion of the original array. 800 * 801 * The returned value is the total number of bytes received, or an error. 802 */ 803 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 804 struct kvec *vec, size_t num, size_t size, int flags) 805 { 806 mm_segment_t oldfs = get_fs(); 807 int result; 808 809 set_fs(KERNEL_DS); 810 /* 811 * the following is safe, since for compiler definitions of kvec and 812 * iovec are identical, yielding the same in-core layout and alignment 813 */ 814 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size); 815 result = sock_recvmsg(sock, msg, size, flags); 816 set_fs(oldfs); 817 return result; 818 } 819 EXPORT_SYMBOL(kernel_recvmsg); 820 821 static ssize_t sock_sendpage(struct file *file, struct page *page, 822 int offset, size_t size, loff_t *ppos, int more) 823 { 824 struct socket *sock; 825 int flags; 826 827 sock = file->private_data; 828 829 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 830 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 831 flags |= more; 832 833 return kernel_sendpage(sock, page, offset, size, flags); 834 } 835 836 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 837 struct pipe_inode_info *pipe, size_t len, 838 unsigned int flags) 839 { 840 struct socket *sock = file->private_data; 841 842 if (unlikely(!sock->ops->splice_read)) 843 return -EINVAL; 844 845 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 846 } 847 848 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 849 { 850 struct file *file = iocb->ki_filp; 851 struct socket *sock = file->private_data; 852 struct msghdr msg = {.msg_iter = *to}; 853 ssize_t res; 854 855 if (file->f_flags & O_NONBLOCK) 856 msg.msg_flags = MSG_DONTWAIT; 857 858 if (iocb->ki_pos != 0) 859 return -ESPIPE; 860 861 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 862 return 0; 863 864 res = __sock_recvmsg(iocb, sock, &msg, 865 iocb->ki_nbytes, msg.msg_flags); 866 *to = msg.msg_iter; 867 return res; 868 } 869 870 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 871 { 872 struct file *file = iocb->ki_filp; 873 struct socket *sock = file->private_data; 874 struct msghdr msg = {.msg_iter = *from}; 875 ssize_t res; 876 877 if (iocb->ki_pos != 0) 878 return -ESPIPE; 879 880 if (file->f_flags & O_NONBLOCK) 881 msg.msg_flags = MSG_DONTWAIT; 882 883 if (sock->type == SOCK_SEQPACKET) 884 msg.msg_flags |= MSG_EOR; 885 886 res = __sock_sendmsg(iocb, sock, &msg, iocb->ki_nbytes); 887 *from = msg.msg_iter; 888 return res; 889 } 890 891 /* 892 * Atomic setting of ioctl hooks to avoid race 893 * with module unload. 894 */ 895 896 static DEFINE_MUTEX(br_ioctl_mutex); 897 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 898 899 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 900 { 901 mutex_lock(&br_ioctl_mutex); 902 br_ioctl_hook = hook; 903 mutex_unlock(&br_ioctl_mutex); 904 } 905 EXPORT_SYMBOL(brioctl_set); 906 907 static DEFINE_MUTEX(vlan_ioctl_mutex); 908 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 909 910 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 911 { 912 mutex_lock(&vlan_ioctl_mutex); 913 vlan_ioctl_hook = hook; 914 mutex_unlock(&vlan_ioctl_mutex); 915 } 916 EXPORT_SYMBOL(vlan_ioctl_set); 917 918 static DEFINE_MUTEX(dlci_ioctl_mutex); 919 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 920 921 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 922 { 923 mutex_lock(&dlci_ioctl_mutex); 924 dlci_ioctl_hook = hook; 925 mutex_unlock(&dlci_ioctl_mutex); 926 } 927 EXPORT_SYMBOL(dlci_ioctl_set); 928 929 static long sock_do_ioctl(struct net *net, struct socket *sock, 930 unsigned int cmd, unsigned long arg) 931 { 932 int err; 933 void __user *argp = (void __user *)arg; 934 935 err = sock->ops->ioctl(sock, cmd, arg); 936 937 /* 938 * If this ioctl is unknown try to hand it down 939 * to the NIC driver. 940 */ 941 if (err == -ENOIOCTLCMD) 942 err = dev_ioctl(net, cmd, argp); 943 944 return err; 945 } 946 947 /* 948 * With an ioctl, arg may well be a user mode pointer, but we don't know 949 * what to do with it - that's up to the protocol still. 950 */ 951 952 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 953 { 954 struct socket *sock; 955 struct sock *sk; 956 void __user *argp = (void __user *)arg; 957 int pid, err; 958 struct net *net; 959 960 sock = file->private_data; 961 sk = sock->sk; 962 net = sock_net(sk); 963 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 964 err = dev_ioctl(net, cmd, argp); 965 } else 966 #ifdef CONFIG_WEXT_CORE 967 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 968 err = dev_ioctl(net, cmd, argp); 969 } else 970 #endif 971 switch (cmd) { 972 case FIOSETOWN: 973 case SIOCSPGRP: 974 err = -EFAULT; 975 if (get_user(pid, (int __user *)argp)) 976 break; 977 f_setown(sock->file, pid, 1); 978 err = 0; 979 break; 980 case FIOGETOWN: 981 case SIOCGPGRP: 982 err = put_user(f_getown(sock->file), 983 (int __user *)argp); 984 break; 985 case SIOCGIFBR: 986 case SIOCSIFBR: 987 case SIOCBRADDBR: 988 case SIOCBRDELBR: 989 err = -ENOPKG; 990 if (!br_ioctl_hook) 991 request_module("bridge"); 992 993 mutex_lock(&br_ioctl_mutex); 994 if (br_ioctl_hook) 995 err = br_ioctl_hook(net, cmd, argp); 996 mutex_unlock(&br_ioctl_mutex); 997 break; 998 case SIOCGIFVLAN: 999 case SIOCSIFVLAN: 1000 err = -ENOPKG; 1001 if (!vlan_ioctl_hook) 1002 request_module("8021q"); 1003 1004 mutex_lock(&vlan_ioctl_mutex); 1005 if (vlan_ioctl_hook) 1006 err = vlan_ioctl_hook(net, argp); 1007 mutex_unlock(&vlan_ioctl_mutex); 1008 break; 1009 case SIOCADDDLCI: 1010 case SIOCDELDLCI: 1011 err = -ENOPKG; 1012 if (!dlci_ioctl_hook) 1013 request_module("dlci"); 1014 1015 mutex_lock(&dlci_ioctl_mutex); 1016 if (dlci_ioctl_hook) 1017 err = dlci_ioctl_hook(cmd, argp); 1018 mutex_unlock(&dlci_ioctl_mutex); 1019 break; 1020 default: 1021 err = sock_do_ioctl(net, sock, cmd, arg); 1022 break; 1023 } 1024 return err; 1025 } 1026 1027 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1028 { 1029 int err; 1030 struct socket *sock = NULL; 1031 1032 err = security_socket_create(family, type, protocol, 1); 1033 if (err) 1034 goto out; 1035 1036 sock = sock_alloc(); 1037 if (!sock) { 1038 err = -ENOMEM; 1039 goto out; 1040 } 1041 1042 sock->type = type; 1043 err = security_socket_post_create(sock, family, type, protocol, 1); 1044 if (err) 1045 goto out_release; 1046 1047 out: 1048 *res = sock; 1049 return err; 1050 out_release: 1051 sock_release(sock); 1052 sock = NULL; 1053 goto out; 1054 } 1055 EXPORT_SYMBOL(sock_create_lite); 1056 1057 /* No kernel lock held - perfect */ 1058 static unsigned int sock_poll(struct file *file, poll_table *wait) 1059 { 1060 unsigned int busy_flag = 0; 1061 struct socket *sock; 1062 1063 /* 1064 * We can't return errors to poll, so it's either yes or no. 1065 */ 1066 sock = file->private_data; 1067 1068 if (sk_can_busy_loop(sock->sk)) { 1069 /* this socket can poll_ll so tell the system call */ 1070 busy_flag = POLL_BUSY_LOOP; 1071 1072 /* once, only if requested by syscall */ 1073 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1074 sk_busy_loop(sock->sk, 1); 1075 } 1076 1077 return busy_flag | sock->ops->poll(file, sock, wait); 1078 } 1079 1080 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1081 { 1082 struct socket *sock = file->private_data; 1083 1084 return sock->ops->mmap(file, sock, vma); 1085 } 1086 1087 static int sock_close(struct inode *inode, struct file *filp) 1088 { 1089 sock_release(SOCKET_I(inode)); 1090 return 0; 1091 } 1092 1093 /* 1094 * Update the socket async list 1095 * 1096 * Fasync_list locking strategy. 1097 * 1098 * 1. fasync_list is modified only under process context socket lock 1099 * i.e. under semaphore. 1100 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1101 * or under socket lock 1102 */ 1103 1104 static int sock_fasync(int fd, struct file *filp, int on) 1105 { 1106 struct socket *sock = filp->private_data; 1107 struct sock *sk = sock->sk; 1108 struct socket_wq *wq; 1109 1110 if (sk == NULL) 1111 return -EINVAL; 1112 1113 lock_sock(sk); 1114 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1115 fasync_helper(fd, filp, on, &wq->fasync_list); 1116 1117 if (!wq->fasync_list) 1118 sock_reset_flag(sk, SOCK_FASYNC); 1119 else 1120 sock_set_flag(sk, SOCK_FASYNC); 1121 1122 release_sock(sk); 1123 return 0; 1124 } 1125 1126 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1127 1128 int sock_wake_async(struct socket *sock, int how, int band) 1129 { 1130 struct socket_wq *wq; 1131 1132 if (!sock) 1133 return -1; 1134 rcu_read_lock(); 1135 wq = rcu_dereference(sock->wq); 1136 if (!wq || !wq->fasync_list) { 1137 rcu_read_unlock(); 1138 return -1; 1139 } 1140 switch (how) { 1141 case SOCK_WAKE_WAITD: 1142 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1143 break; 1144 goto call_kill; 1145 case SOCK_WAKE_SPACE: 1146 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1147 break; 1148 /* fall through */ 1149 case SOCK_WAKE_IO: 1150 call_kill: 1151 kill_fasync(&wq->fasync_list, SIGIO, band); 1152 break; 1153 case SOCK_WAKE_URG: 1154 kill_fasync(&wq->fasync_list, SIGURG, band); 1155 } 1156 rcu_read_unlock(); 1157 return 0; 1158 } 1159 EXPORT_SYMBOL(sock_wake_async); 1160 1161 int __sock_create(struct net *net, int family, int type, int protocol, 1162 struct socket **res, int kern) 1163 { 1164 int err; 1165 struct socket *sock; 1166 const struct net_proto_family *pf; 1167 1168 /* 1169 * Check protocol is in range 1170 */ 1171 if (family < 0 || family >= NPROTO) 1172 return -EAFNOSUPPORT; 1173 if (type < 0 || type >= SOCK_MAX) 1174 return -EINVAL; 1175 1176 /* Compatibility. 1177 1178 This uglymoron is moved from INET layer to here to avoid 1179 deadlock in module load. 1180 */ 1181 if (family == PF_INET && type == SOCK_PACKET) { 1182 static int warned; 1183 if (!warned) { 1184 warned = 1; 1185 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1186 current->comm); 1187 } 1188 family = PF_PACKET; 1189 } 1190 1191 err = security_socket_create(family, type, protocol, kern); 1192 if (err) 1193 return err; 1194 1195 /* 1196 * Allocate the socket and allow the family to set things up. if 1197 * the protocol is 0, the family is instructed to select an appropriate 1198 * default. 1199 */ 1200 sock = sock_alloc(); 1201 if (!sock) { 1202 net_warn_ratelimited("socket: no more sockets\n"); 1203 return -ENFILE; /* Not exactly a match, but its the 1204 closest posix thing */ 1205 } 1206 1207 sock->type = type; 1208 1209 #ifdef CONFIG_MODULES 1210 /* Attempt to load a protocol module if the find failed. 1211 * 1212 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1213 * requested real, full-featured networking support upon configuration. 1214 * Otherwise module support will break! 1215 */ 1216 if (rcu_access_pointer(net_families[family]) == NULL) 1217 request_module("net-pf-%d", family); 1218 #endif 1219 1220 rcu_read_lock(); 1221 pf = rcu_dereference(net_families[family]); 1222 err = -EAFNOSUPPORT; 1223 if (!pf) 1224 goto out_release; 1225 1226 /* 1227 * We will call the ->create function, that possibly is in a loadable 1228 * module, so we have to bump that loadable module refcnt first. 1229 */ 1230 if (!try_module_get(pf->owner)) 1231 goto out_release; 1232 1233 /* Now protected by module ref count */ 1234 rcu_read_unlock(); 1235 1236 err = pf->create(net, sock, protocol, kern); 1237 if (err < 0) 1238 goto out_module_put; 1239 1240 /* 1241 * Now to bump the refcnt of the [loadable] module that owns this 1242 * socket at sock_release time we decrement its refcnt. 1243 */ 1244 if (!try_module_get(sock->ops->owner)) 1245 goto out_module_busy; 1246 1247 /* 1248 * Now that we're done with the ->create function, the [loadable] 1249 * module can have its refcnt decremented 1250 */ 1251 module_put(pf->owner); 1252 err = security_socket_post_create(sock, family, type, protocol, kern); 1253 if (err) 1254 goto out_sock_release; 1255 *res = sock; 1256 1257 return 0; 1258 1259 out_module_busy: 1260 err = -EAFNOSUPPORT; 1261 out_module_put: 1262 sock->ops = NULL; 1263 module_put(pf->owner); 1264 out_sock_release: 1265 sock_release(sock); 1266 return err; 1267 1268 out_release: 1269 rcu_read_unlock(); 1270 goto out_sock_release; 1271 } 1272 EXPORT_SYMBOL(__sock_create); 1273 1274 int sock_create(int family, int type, int protocol, struct socket **res) 1275 { 1276 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1277 } 1278 EXPORT_SYMBOL(sock_create); 1279 1280 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1281 { 1282 return __sock_create(&init_net, family, type, protocol, res, 1); 1283 } 1284 EXPORT_SYMBOL(sock_create_kern); 1285 1286 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1287 { 1288 int retval; 1289 struct socket *sock; 1290 int flags; 1291 1292 /* Check the SOCK_* constants for consistency. */ 1293 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1294 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1295 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1296 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1297 1298 flags = type & ~SOCK_TYPE_MASK; 1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1300 return -EINVAL; 1301 type &= SOCK_TYPE_MASK; 1302 1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1305 1306 retval = sock_create(family, type, protocol, &sock); 1307 if (retval < 0) 1308 goto out; 1309 1310 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1311 if (retval < 0) 1312 goto out_release; 1313 1314 out: 1315 /* It may be already another descriptor 8) Not kernel problem. */ 1316 return retval; 1317 1318 out_release: 1319 sock_release(sock); 1320 return retval; 1321 } 1322 1323 /* 1324 * Create a pair of connected sockets. 1325 */ 1326 1327 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1328 int __user *, usockvec) 1329 { 1330 struct socket *sock1, *sock2; 1331 int fd1, fd2, err; 1332 struct file *newfile1, *newfile2; 1333 int flags; 1334 1335 flags = type & ~SOCK_TYPE_MASK; 1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1337 return -EINVAL; 1338 type &= SOCK_TYPE_MASK; 1339 1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1342 1343 /* 1344 * Obtain the first socket and check if the underlying protocol 1345 * supports the socketpair call. 1346 */ 1347 1348 err = sock_create(family, type, protocol, &sock1); 1349 if (err < 0) 1350 goto out; 1351 1352 err = sock_create(family, type, protocol, &sock2); 1353 if (err < 0) 1354 goto out_release_1; 1355 1356 err = sock1->ops->socketpair(sock1, sock2); 1357 if (err < 0) 1358 goto out_release_both; 1359 1360 fd1 = get_unused_fd_flags(flags); 1361 if (unlikely(fd1 < 0)) { 1362 err = fd1; 1363 goto out_release_both; 1364 } 1365 1366 fd2 = get_unused_fd_flags(flags); 1367 if (unlikely(fd2 < 0)) { 1368 err = fd2; 1369 goto out_put_unused_1; 1370 } 1371 1372 newfile1 = sock_alloc_file(sock1, flags, NULL); 1373 if (unlikely(IS_ERR(newfile1))) { 1374 err = PTR_ERR(newfile1); 1375 goto out_put_unused_both; 1376 } 1377 1378 newfile2 = sock_alloc_file(sock2, flags, NULL); 1379 if (IS_ERR(newfile2)) { 1380 err = PTR_ERR(newfile2); 1381 goto out_fput_1; 1382 } 1383 1384 err = put_user(fd1, &usockvec[0]); 1385 if (err) 1386 goto out_fput_both; 1387 1388 err = put_user(fd2, &usockvec[1]); 1389 if (err) 1390 goto out_fput_both; 1391 1392 audit_fd_pair(fd1, fd2); 1393 1394 fd_install(fd1, newfile1); 1395 fd_install(fd2, newfile2); 1396 /* fd1 and fd2 may be already another descriptors. 1397 * Not kernel problem. 1398 */ 1399 1400 return 0; 1401 1402 out_fput_both: 1403 fput(newfile2); 1404 fput(newfile1); 1405 put_unused_fd(fd2); 1406 put_unused_fd(fd1); 1407 goto out; 1408 1409 out_fput_1: 1410 fput(newfile1); 1411 put_unused_fd(fd2); 1412 put_unused_fd(fd1); 1413 sock_release(sock2); 1414 goto out; 1415 1416 out_put_unused_both: 1417 put_unused_fd(fd2); 1418 out_put_unused_1: 1419 put_unused_fd(fd1); 1420 out_release_both: 1421 sock_release(sock2); 1422 out_release_1: 1423 sock_release(sock1); 1424 out: 1425 return err; 1426 } 1427 1428 /* 1429 * Bind a name to a socket. Nothing much to do here since it's 1430 * the protocol's responsibility to handle the local address. 1431 * 1432 * We move the socket address to kernel space before we call 1433 * the protocol layer (having also checked the address is ok). 1434 */ 1435 1436 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1437 { 1438 struct socket *sock; 1439 struct sockaddr_storage address; 1440 int err, fput_needed; 1441 1442 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1443 if (sock) { 1444 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1445 if (err >= 0) { 1446 err = security_socket_bind(sock, 1447 (struct sockaddr *)&address, 1448 addrlen); 1449 if (!err) 1450 err = sock->ops->bind(sock, 1451 (struct sockaddr *) 1452 &address, addrlen); 1453 } 1454 fput_light(sock->file, fput_needed); 1455 } 1456 return err; 1457 } 1458 1459 /* 1460 * Perform a listen. Basically, we allow the protocol to do anything 1461 * necessary for a listen, and if that works, we mark the socket as 1462 * ready for listening. 1463 */ 1464 1465 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1466 { 1467 struct socket *sock; 1468 int err, fput_needed; 1469 int somaxconn; 1470 1471 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1472 if (sock) { 1473 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1474 if ((unsigned int)backlog > somaxconn) 1475 backlog = somaxconn; 1476 1477 err = security_socket_listen(sock, backlog); 1478 if (!err) 1479 err = sock->ops->listen(sock, backlog); 1480 1481 fput_light(sock->file, fput_needed); 1482 } 1483 return err; 1484 } 1485 1486 /* 1487 * For accept, we attempt to create a new socket, set up the link 1488 * with the client, wake up the client, then return the new 1489 * connected fd. We collect the address of the connector in kernel 1490 * space and move it to user at the very end. This is unclean because 1491 * we open the socket then return an error. 1492 * 1493 * 1003.1g adds the ability to recvmsg() to query connection pending 1494 * status to recvmsg. We need to add that support in a way thats 1495 * clean when we restucture accept also. 1496 */ 1497 1498 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1499 int __user *, upeer_addrlen, int, flags) 1500 { 1501 struct socket *sock, *newsock; 1502 struct file *newfile; 1503 int err, len, newfd, fput_needed; 1504 struct sockaddr_storage address; 1505 1506 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1507 return -EINVAL; 1508 1509 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1510 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1511 1512 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1513 if (!sock) 1514 goto out; 1515 1516 err = -ENFILE; 1517 newsock = sock_alloc(); 1518 if (!newsock) 1519 goto out_put; 1520 1521 newsock->type = sock->type; 1522 newsock->ops = sock->ops; 1523 1524 /* 1525 * We don't need try_module_get here, as the listening socket (sock) 1526 * has the protocol module (sock->ops->owner) held. 1527 */ 1528 __module_get(newsock->ops->owner); 1529 1530 newfd = get_unused_fd_flags(flags); 1531 if (unlikely(newfd < 0)) { 1532 err = newfd; 1533 sock_release(newsock); 1534 goto out_put; 1535 } 1536 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1537 if (unlikely(IS_ERR(newfile))) { 1538 err = PTR_ERR(newfile); 1539 put_unused_fd(newfd); 1540 sock_release(newsock); 1541 goto out_put; 1542 } 1543 1544 err = security_socket_accept(sock, newsock); 1545 if (err) 1546 goto out_fd; 1547 1548 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1549 if (err < 0) 1550 goto out_fd; 1551 1552 if (upeer_sockaddr) { 1553 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1554 &len, 2) < 0) { 1555 err = -ECONNABORTED; 1556 goto out_fd; 1557 } 1558 err = move_addr_to_user(&address, 1559 len, upeer_sockaddr, upeer_addrlen); 1560 if (err < 0) 1561 goto out_fd; 1562 } 1563 1564 /* File flags are not inherited via accept() unlike another OSes. */ 1565 1566 fd_install(newfd, newfile); 1567 err = newfd; 1568 1569 out_put: 1570 fput_light(sock->file, fput_needed); 1571 out: 1572 return err; 1573 out_fd: 1574 fput(newfile); 1575 put_unused_fd(newfd); 1576 goto out_put; 1577 } 1578 1579 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1580 int __user *, upeer_addrlen) 1581 { 1582 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1583 } 1584 1585 /* 1586 * Attempt to connect to a socket with the server address. The address 1587 * is in user space so we verify it is OK and move it to kernel space. 1588 * 1589 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1590 * break bindings 1591 * 1592 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1593 * other SEQPACKET protocols that take time to connect() as it doesn't 1594 * include the -EINPROGRESS status for such sockets. 1595 */ 1596 1597 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1598 int, addrlen) 1599 { 1600 struct socket *sock; 1601 struct sockaddr_storage address; 1602 int err, fput_needed; 1603 1604 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1605 if (!sock) 1606 goto out; 1607 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1608 if (err < 0) 1609 goto out_put; 1610 1611 err = 1612 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1613 if (err) 1614 goto out_put; 1615 1616 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1617 sock->file->f_flags); 1618 out_put: 1619 fput_light(sock->file, fput_needed); 1620 out: 1621 return err; 1622 } 1623 1624 /* 1625 * Get the local address ('name') of a socket object. Move the obtained 1626 * name to user space. 1627 */ 1628 1629 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1630 int __user *, usockaddr_len) 1631 { 1632 struct socket *sock; 1633 struct sockaddr_storage address; 1634 int len, err, fput_needed; 1635 1636 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1637 if (!sock) 1638 goto out; 1639 1640 err = security_socket_getsockname(sock); 1641 if (err) 1642 goto out_put; 1643 1644 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1645 if (err) 1646 goto out_put; 1647 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1648 1649 out_put: 1650 fput_light(sock->file, fput_needed); 1651 out: 1652 return err; 1653 } 1654 1655 /* 1656 * Get the remote address ('name') of a socket object. Move the obtained 1657 * name to user space. 1658 */ 1659 1660 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1661 int __user *, usockaddr_len) 1662 { 1663 struct socket *sock; 1664 struct sockaddr_storage address; 1665 int len, err, fput_needed; 1666 1667 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1668 if (sock != NULL) { 1669 err = security_socket_getpeername(sock); 1670 if (err) { 1671 fput_light(sock->file, fput_needed); 1672 return err; 1673 } 1674 1675 err = 1676 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1677 1); 1678 if (!err) 1679 err = move_addr_to_user(&address, len, usockaddr, 1680 usockaddr_len); 1681 fput_light(sock->file, fput_needed); 1682 } 1683 return err; 1684 } 1685 1686 /* 1687 * Send a datagram to a given address. We move the address into kernel 1688 * space and check the user space data area is readable before invoking 1689 * the protocol. 1690 */ 1691 1692 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1693 unsigned int, flags, struct sockaddr __user *, addr, 1694 int, addr_len) 1695 { 1696 struct socket *sock; 1697 struct sockaddr_storage address; 1698 int err; 1699 struct msghdr msg; 1700 struct iovec iov; 1701 int fput_needed; 1702 1703 if (len > INT_MAX) 1704 len = INT_MAX; 1705 if (unlikely(!access_ok(VERIFY_READ, buff, len))) 1706 return -EFAULT; 1707 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1708 if (!sock) 1709 goto out; 1710 1711 iov.iov_base = buff; 1712 iov.iov_len = len; 1713 msg.msg_name = NULL; 1714 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len); 1715 msg.msg_control = NULL; 1716 msg.msg_controllen = 0; 1717 msg.msg_namelen = 0; 1718 if (addr) { 1719 err = move_addr_to_kernel(addr, addr_len, &address); 1720 if (err < 0) 1721 goto out_put; 1722 msg.msg_name = (struct sockaddr *)&address; 1723 msg.msg_namelen = addr_len; 1724 } 1725 if (sock->file->f_flags & O_NONBLOCK) 1726 flags |= MSG_DONTWAIT; 1727 msg.msg_flags = flags; 1728 err = sock_sendmsg(sock, &msg, len); 1729 1730 out_put: 1731 fput_light(sock->file, fput_needed); 1732 out: 1733 return err; 1734 } 1735 1736 /* 1737 * Send a datagram down a socket. 1738 */ 1739 1740 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1741 unsigned int, flags) 1742 { 1743 return sys_sendto(fd, buff, len, flags, NULL, 0); 1744 } 1745 1746 /* 1747 * Receive a frame from the socket and optionally record the address of the 1748 * sender. We verify the buffers are writable and if needed move the 1749 * sender address from kernel to user space. 1750 */ 1751 1752 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1753 unsigned int, flags, struct sockaddr __user *, addr, 1754 int __user *, addr_len) 1755 { 1756 struct socket *sock; 1757 struct iovec iov; 1758 struct msghdr msg; 1759 struct sockaddr_storage address; 1760 int err, err2; 1761 int fput_needed; 1762 1763 if (size > INT_MAX) 1764 size = INT_MAX; 1765 if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size))) 1766 return -EFAULT; 1767 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1768 if (!sock) 1769 goto out; 1770 1771 msg.msg_control = NULL; 1772 msg.msg_controllen = 0; 1773 iov.iov_len = size; 1774 iov.iov_base = ubuf; 1775 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size); 1776 /* Save some cycles and don't copy the address if not needed */ 1777 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1778 /* We assume all kernel code knows the size of sockaddr_storage */ 1779 msg.msg_namelen = 0; 1780 if (sock->file->f_flags & O_NONBLOCK) 1781 flags |= MSG_DONTWAIT; 1782 err = sock_recvmsg(sock, &msg, size, flags); 1783 1784 if (err >= 0 && addr != NULL) { 1785 err2 = move_addr_to_user(&address, 1786 msg.msg_namelen, addr, addr_len); 1787 if (err2 < 0) 1788 err = err2; 1789 } 1790 1791 fput_light(sock->file, fput_needed); 1792 out: 1793 return err; 1794 } 1795 1796 /* 1797 * Receive a datagram from a socket. 1798 */ 1799 1800 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1801 unsigned int, flags) 1802 { 1803 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1804 } 1805 1806 /* 1807 * Set a socket option. Because we don't know the option lengths we have 1808 * to pass the user mode parameter for the protocols to sort out. 1809 */ 1810 1811 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1812 char __user *, optval, int, optlen) 1813 { 1814 int err, fput_needed; 1815 struct socket *sock; 1816 1817 if (optlen < 0) 1818 return -EINVAL; 1819 1820 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1821 if (sock != NULL) { 1822 err = security_socket_setsockopt(sock, level, optname); 1823 if (err) 1824 goto out_put; 1825 1826 if (level == SOL_SOCKET) 1827 err = 1828 sock_setsockopt(sock, level, optname, optval, 1829 optlen); 1830 else 1831 err = 1832 sock->ops->setsockopt(sock, level, optname, optval, 1833 optlen); 1834 out_put: 1835 fput_light(sock->file, fput_needed); 1836 } 1837 return err; 1838 } 1839 1840 /* 1841 * Get a socket option. Because we don't know the option lengths we have 1842 * to pass a user mode parameter for the protocols to sort out. 1843 */ 1844 1845 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1846 char __user *, optval, int __user *, optlen) 1847 { 1848 int err, fput_needed; 1849 struct socket *sock; 1850 1851 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1852 if (sock != NULL) { 1853 err = security_socket_getsockopt(sock, level, optname); 1854 if (err) 1855 goto out_put; 1856 1857 if (level == SOL_SOCKET) 1858 err = 1859 sock_getsockopt(sock, level, optname, optval, 1860 optlen); 1861 else 1862 err = 1863 sock->ops->getsockopt(sock, level, optname, optval, 1864 optlen); 1865 out_put: 1866 fput_light(sock->file, fput_needed); 1867 } 1868 return err; 1869 } 1870 1871 /* 1872 * Shutdown a socket. 1873 */ 1874 1875 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1876 { 1877 int err, fput_needed; 1878 struct socket *sock; 1879 1880 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1881 if (sock != NULL) { 1882 err = security_socket_shutdown(sock, how); 1883 if (!err) 1884 err = sock->ops->shutdown(sock, how); 1885 fput_light(sock->file, fput_needed); 1886 } 1887 return err; 1888 } 1889 1890 /* A couple of helpful macros for getting the address of the 32/64 bit 1891 * fields which are the same type (int / unsigned) on our platforms. 1892 */ 1893 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1894 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1895 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1896 1897 struct used_address { 1898 struct sockaddr_storage name; 1899 unsigned int name_len; 1900 }; 1901 1902 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg, 1903 struct user_msghdr __user *umsg, 1904 struct sockaddr __user **save_addr, 1905 struct iovec **iov) 1906 { 1907 struct sockaddr __user *uaddr; 1908 struct iovec __user *uiov; 1909 size_t nr_segs; 1910 ssize_t err; 1911 1912 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1913 __get_user(uaddr, &umsg->msg_name) || 1914 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1915 __get_user(uiov, &umsg->msg_iov) || 1916 __get_user(nr_segs, &umsg->msg_iovlen) || 1917 __get_user(kmsg->msg_control, &umsg->msg_control) || 1918 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1919 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1920 return -EFAULT; 1921 1922 if (!uaddr) 1923 kmsg->msg_namelen = 0; 1924 1925 if (kmsg->msg_namelen < 0) 1926 return -EINVAL; 1927 1928 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1929 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1930 1931 if (save_addr) 1932 *save_addr = uaddr; 1933 1934 if (uaddr && kmsg->msg_namelen) { 1935 if (!save_addr) { 1936 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1937 kmsg->msg_name); 1938 if (err < 0) 1939 return err; 1940 } 1941 } else { 1942 kmsg->msg_name = NULL; 1943 kmsg->msg_namelen = 0; 1944 } 1945 1946 if (nr_segs > UIO_MAXIOV) 1947 return -EMSGSIZE; 1948 1949 err = rw_copy_check_uvector(save_addr ? READ : WRITE, 1950 uiov, nr_segs, 1951 UIO_FASTIOV, *iov, iov); 1952 if (err >= 0) 1953 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE, 1954 *iov, nr_segs, err); 1955 return err; 1956 } 1957 1958 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1959 struct msghdr *msg_sys, unsigned int flags, 1960 struct used_address *used_address) 1961 { 1962 struct compat_msghdr __user *msg_compat = 1963 (struct compat_msghdr __user *)msg; 1964 struct sockaddr_storage address; 1965 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1966 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1967 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1968 /* 20 is size of ipv6_pktinfo */ 1969 unsigned char *ctl_buf = ctl; 1970 int ctl_len, total_len; 1971 ssize_t err; 1972 1973 msg_sys->msg_name = &address; 1974 1975 if (MSG_CMSG_COMPAT & flags) 1976 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1977 else 1978 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1979 if (err < 0) 1980 goto out_freeiov; 1981 total_len = err; 1982 1983 err = -ENOBUFS; 1984 1985 if (msg_sys->msg_controllen > INT_MAX) 1986 goto out_freeiov; 1987 ctl_len = msg_sys->msg_controllen; 1988 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1989 err = 1990 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1991 sizeof(ctl)); 1992 if (err) 1993 goto out_freeiov; 1994 ctl_buf = msg_sys->msg_control; 1995 ctl_len = msg_sys->msg_controllen; 1996 } else if (ctl_len) { 1997 if (ctl_len > sizeof(ctl)) { 1998 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1999 if (ctl_buf == NULL) 2000 goto out_freeiov; 2001 } 2002 err = -EFAULT; 2003 /* 2004 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2005 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2006 * checking falls down on this. 2007 */ 2008 if (copy_from_user(ctl_buf, 2009 (void __user __force *)msg_sys->msg_control, 2010 ctl_len)) 2011 goto out_freectl; 2012 msg_sys->msg_control = ctl_buf; 2013 } 2014 msg_sys->msg_flags = flags; 2015 2016 if (sock->file->f_flags & O_NONBLOCK) 2017 msg_sys->msg_flags |= MSG_DONTWAIT; 2018 /* 2019 * If this is sendmmsg() and current destination address is same as 2020 * previously succeeded address, omit asking LSM's decision. 2021 * used_address->name_len is initialized to UINT_MAX so that the first 2022 * destination address never matches. 2023 */ 2024 if (used_address && msg_sys->msg_name && 2025 used_address->name_len == msg_sys->msg_namelen && 2026 !memcmp(&used_address->name, msg_sys->msg_name, 2027 used_address->name_len)) { 2028 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2029 goto out_freectl; 2030 } 2031 err = sock_sendmsg(sock, msg_sys, total_len); 2032 /* 2033 * If this is sendmmsg() and sending to current destination address was 2034 * successful, remember it. 2035 */ 2036 if (used_address && err >= 0) { 2037 used_address->name_len = msg_sys->msg_namelen; 2038 if (msg_sys->msg_name) 2039 memcpy(&used_address->name, msg_sys->msg_name, 2040 used_address->name_len); 2041 } 2042 2043 out_freectl: 2044 if (ctl_buf != ctl) 2045 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2046 out_freeiov: 2047 if (iov != iovstack) 2048 kfree(iov); 2049 return err; 2050 } 2051 2052 /* 2053 * BSD sendmsg interface 2054 */ 2055 2056 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2057 { 2058 int fput_needed, err; 2059 struct msghdr msg_sys; 2060 struct socket *sock; 2061 2062 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2063 if (!sock) 2064 goto out; 2065 2066 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2067 2068 fput_light(sock->file, fput_needed); 2069 out: 2070 return err; 2071 } 2072 2073 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2074 { 2075 if (flags & MSG_CMSG_COMPAT) 2076 return -EINVAL; 2077 return __sys_sendmsg(fd, msg, flags); 2078 } 2079 2080 /* 2081 * Linux sendmmsg interface 2082 */ 2083 2084 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2085 unsigned int flags) 2086 { 2087 int fput_needed, err, datagrams; 2088 struct socket *sock; 2089 struct mmsghdr __user *entry; 2090 struct compat_mmsghdr __user *compat_entry; 2091 struct msghdr msg_sys; 2092 struct used_address used_address; 2093 2094 if (vlen > UIO_MAXIOV) 2095 vlen = UIO_MAXIOV; 2096 2097 datagrams = 0; 2098 2099 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2100 if (!sock) 2101 return err; 2102 2103 used_address.name_len = UINT_MAX; 2104 entry = mmsg; 2105 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2106 err = 0; 2107 2108 while (datagrams < vlen) { 2109 if (MSG_CMSG_COMPAT & flags) { 2110 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2111 &msg_sys, flags, &used_address); 2112 if (err < 0) 2113 break; 2114 err = __put_user(err, &compat_entry->msg_len); 2115 ++compat_entry; 2116 } else { 2117 err = ___sys_sendmsg(sock, 2118 (struct user_msghdr __user *)entry, 2119 &msg_sys, flags, &used_address); 2120 if (err < 0) 2121 break; 2122 err = put_user(err, &entry->msg_len); 2123 ++entry; 2124 } 2125 2126 if (err) 2127 break; 2128 ++datagrams; 2129 } 2130 2131 fput_light(sock->file, fput_needed); 2132 2133 /* We only return an error if no datagrams were able to be sent */ 2134 if (datagrams != 0) 2135 return datagrams; 2136 2137 return err; 2138 } 2139 2140 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2141 unsigned int, vlen, unsigned int, flags) 2142 { 2143 if (flags & MSG_CMSG_COMPAT) 2144 return -EINVAL; 2145 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2146 } 2147 2148 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2149 struct msghdr *msg_sys, unsigned int flags, int nosec) 2150 { 2151 struct compat_msghdr __user *msg_compat = 2152 (struct compat_msghdr __user *)msg; 2153 struct iovec iovstack[UIO_FASTIOV]; 2154 struct iovec *iov = iovstack; 2155 unsigned long cmsg_ptr; 2156 int total_len, len; 2157 ssize_t err; 2158 2159 /* kernel mode address */ 2160 struct sockaddr_storage addr; 2161 2162 /* user mode address pointers */ 2163 struct sockaddr __user *uaddr; 2164 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2165 2166 msg_sys->msg_name = &addr; 2167 2168 if (MSG_CMSG_COMPAT & flags) 2169 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2170 else 2171 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2172 if (err < 0) 2173 goto out_freeiov; 2174 total_len = err; 2175 2176 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2177 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2178 2179 /* We assume all kernel code knows the size of sockaddr_storage */ 2180 msg_sys->msg_namelen = 0; 2181 2182 if (sock->file->f_flags & O_NONBLOCK) 2183 flags |= MSG_DONTWAIT; 2184 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2185 total_len, flags); 2186 if (err < 0) 2187 goto out_freeiov; 2188 len = err; 2189 2190 if (uaddr != NULL) { 2191 err = move_addr_to_user(&addr, 2192 msg_sys->msg_namelen, uaddr, 2193 uaddr_len); 2194 if (err < 0) 2195 goto out_freeiov; 2196 } 2197 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2198 COMPAT_FLAGS(msg)); 2199 if (err) 2200 goto out_freeiov; 2201 if (MSG_CMSG_COMPAT & flags) 2202 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2203 &msg_compat->msg_controllen); 2204 else 2205 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2206 &msg->msg_controllen); 2207 if (err) 2208 goto out_freeiov; 2209 err = len; 2210 2211 out_freeiov: 2212 if (iov != iovstack) 2213 kfree(iov); 2214 return err; 2215 } 2216 2217 /* 2218 * BSD recvmsg interface 2219 */ 2220 2221 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2222 { 2223 int fput_needed, err; 2224 struct msghdr msg_sys; 2225 struct socket *sock; 2226 2227 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2228 if (!sock) 2229 goto out; 2230 2231 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2232 2233 fput_light(sock->file, fput_needed); 2234 out: 2235 return err; 2236 } 2237 2238 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2239 unsigned int, flags) 2240 { 2241 if (flags & MSG_CMSG_COMPAT) 2242 return -EINVAL; 2243 return __sys_recvmsg(fd, msg, flags); 2244 } 2245 2246 /* 2247 * Linux recvmmsg interface 2248 */ 2249 2250 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2251 unsigned int flags, struct timespec *timeout) 2252 { 2253 int fput_needed, err, datagrams; 2254 struct socket *sock; 2255 struct mmsghdr __user *entry; 2256 struct compat_mmsghdr __user *compat_entry; 2257 struct msghdr msg_sys; 2258 struct timespec end_time; 2259 2260 if (timeout && 2261 poll_select_set_timeout(&end_time, timeout->tv_sec, 2262 timeout->tv_nsec)) 2263 return -EINVAL; 2264 2265 datagrams = 0; 2266 2267 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2268 if (!sock) 2269 return err; 2270 2271 err = sock_error(sock->sk); 2272 if (err) 2273 goto out_put; 2274 2275 entry = mmsg; 2276 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2277 2278 while (datagrams < vlen) { 2279 /* 2280 * No need to ask LSM for more than the first datagram. 2281 */ 2282 if (MSG_CMSG_COMPAT & flags) { 2283 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2284 &msg_sys, flags & ~MSG_WAITFORONE, 2285 datagrams); 2286 if (err < 0) 2287 break; 2288 err = __put_user(err, &compat_entry->msg_len); 2289 ++compat_entry; 2290 } else { 2291 err = ___sys_recvmsg(sock, 2292 (struct user_msghdr __user *)entry, 2293 &msg_sys, flags & ~MSG_WAITFORONE, 2294 datagrams); 2295 if (err < 0) 2296 break; 2297 err = put_user(err, &entry->msg_len); 2298 ++entry; 2299 } 2300 2301 if (err) 2302 break; 2303 ++datagrams; 2304 2305 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2306 if (flags & MSG_WAITFORONE) 2307 flags |= MSG_DONTWAIT; 2308 2309 if (timeout) { 2310 ktime_get_ts(timeout); 2311 *timeout = timespec_sub(end_time, *timeout); 2312 if (timeout->tv_sec < 0) { 2313 timeout->tv_sec = timeout->tv_nsec = 0; 2314 break; 2315 } 2316 2317 /* Timeout, return less than vlen datagrams */ 2318 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2319 break; 2320 } 2321 2322 /* Out of band data, return right away */ 2323 if (msg_sys.msg_flags & MSG_OOB) 2324 break; 2325 } 2326 2327 out_put: 2328 fput_light(sock->file, fput_needed); 2329 2330 if (err == 0) 2331 return datagrams; 2332 2333 if (datagrams != 0) { 2334 /* 2335 * We may return less entries than requested (vlen) if the 2336 * sock is non block and there aren't enough datagrams... 2337 */ 2338 if (err != -EAGAIN) { 2339 /* 2340 * ... or if recvmsg returns an error after we 2341 * received some datagrams, where we record the 2342 * error to return on the next call or if the 2343 * app asks about it using getsockopt(SO_ERROR). 2344 */ 2345 sock->sk->sk_err = -err; 2346 } 2347 2348 return datagrams; 2349 } 2350 2351 return err; 2352 } 2353 2354 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2355 unsigned int, vlen, unsigned int, flags, 2356 struct timespec __user *, timeout) 2357 { 2358 int datagrams; 2359 struct timespec timeout_sys; 2360 2361 if (flags & MSG_CMSG_COMPAT) 2362 return -EINVAL; 2363 2364 if (!timeout) 2365 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2366 2367 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2368 return -EFAULT; 2369 2370 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2371 2372 if (datagrams > 0 && 2373 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2374 datagrams = -EFAULT; 2375 2376 return datagrams; 2377 } 2378 2379 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2380 /* Argument list sizes for sys_socketcall */ 2381 #define AL(x) ((x) * sizeof(unsigned long)) 2382 static const unsigned char nargs[21] = { 2383 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2384 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2385 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2386 AL(4), AL(5), AL(4) 2387 }; 2388 2389 #undef AL 2390 2391 /* 2392 * System call vectors. 2393 * 2394 * Argument checking cleaned up. Saved 20% in size. 2395 * This function doesn't need to set the kernel lock because 2396 * it is set by the callees. 2397 */ 2398 2399 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2400 { 2401 unsigned long a[AUDITSC_ARGS]; 2402 unsigned long a0, a1; 2403 int err; 2404 unsigned int len; 2405 2406 if (call < 1 || call > SYS_SENDMMSG) 2407 return -EINVAL; 2408 2409 len = nargs[call]; 2410 if (len > sizeof(a)) 2411 return -EINVAL; 2412 2413 /* copy_from_user should be SMP safe. */ 2414 if (copy_from_user(a, args, len)) 2415 return -EFAULT; 2416 2417 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2418 if (err) 2419 return err; 2420 2421 a0 = a[0]; 2422 a1 = a[1]; 2423 2424 switch (call) { 2425 case SYS_SOCKET: 2426 err = sys_socket(a0, a1, a[2]); 2427 break; 2428 case SYS_BIND: 2429 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2430 break; 2431 case SYS_CONNECT: 2432 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2433 break; 2434 case SYS_LISTEN: 2435 err = sys_listen(a0, a1); 2436 break; 2437 case SYS_ACCEPT: 2438 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2439 (int __user *)a[2], 0); 2440 break; 2441 case SYS_GETSOCKNAME: 2442 err = 2443 sys_getsockname(a0, (struct sockaddr __user *)a1, 2444 (int __user *)a[2]); 2445 break; 2446 case SYS_GETPEERNAME: 2447 err = 2448 sys_getpeername(a0, (struct sockaddr __user *)a1, 2449 (int __user *)a[2]); 2450 break; 2451 case SYS_SOCKETPAIR: 2452 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2453 break; 2454 case SYS_SEND: 2455 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2456 break; 2457 case SYS_SENDTO: 2458 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2459 (struct sockaddr __user *)a[4], a[5]); 2460 break; 2461 case SYS_RECV: 2462 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2463 break; 2464 case SYS_RECVFROM: 2465 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2466 (struct sockaddr __user *)a[4], 2467 (int __user *)a[5]); 2468 break; 2469 case SYS_SHUTDOWN: 2470 err = sys_shutdown(a0, a1); 2471 break; 2472 case SYS_SETSOCKOPT: 2473 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2474 break; 2475 case SYS_GETSOCKOPT: 2476 err = 2477 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2478 (int __user *)a[4]); 2479 break; 2480 case SYS_SENDMSG: 2481 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2482 break; 2483 case SYS_SENDMMSG: 2484 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2485 break; 2486 case SYS_RECVMSG: 2487 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2488 break; 2489 case SYS_RECVMMSG: 2490 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2491 (struct timespec __user *)a[4]); 2492 break; 2493 case SYS_ACCEPT4: 2494 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2495 (int __user *)a[2], a[3]); 2496 break; 2497 default: 2498 err = -EINVAL; 2499 break; 2500 } 2501 return err; 2502 } 2503 2504 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2505 2506 /** 2507 * sock_register - add a socket protocol handler 2508 * @ops: description of protocol 2509 * 2510 * This function is called by a protocol handler that wants to 2511 * advertise its address family, and have it linked into the 2512 * socket interface. The value ops->family corresponds to the 2513 * socket system call protocol family. 2514 */ 2515 int sock_register(const struct net_proto_family *ops) 2516 { 2517 int err; 2518 2519 if (ops->family >= NPROTO) { 2520 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2521 return -ENOBUFS; 2522 } 2523 2524 spin_lock(&net_family_lock); 2525 if (rcu_dereference_protected(net_families[ops->family], 2526 lockdep_is_held(&net_family_lock))) 2527 err = -EEXIST; 2528 else { 2529 rcu_assign_pointer(net_families[ops->family], ops); 2530 err = 0; 2531 } 2532 spin_unlock(&net_family_lock); 2533 2534 pr_info("NET: Registered protocol family %d\n", ops->family); 2535 return err; 2536 } 2537 EXPORT_SYMBOL(sock_register); 2538 2539 /** 2540 * sock_unregister - remove a protocol handler 2541 * @family: protocol family to remove 2542 * 2543 * This function is called by a protocol handler that wants to 2544 * remove its address family, and have it unlinked from the 2545 * new socket creation. 2546 * 2547 * If protocol handler is a module, then it can use module reference 2548 * counts to protect against new references. If protocol handler is not 2549 * a module then it needs to provide its own protection in 2550 * the ops->create routine. 2551 */ 2552 void sock_unregister(int family) 2553 { 2554 BUG_ON(family < 0 || family >= NPROTO); 2555 2556 spin_lock(&net_family_lock); 2557 RCU_INIT_POINTER(net_families[family], NULL); 2558 spin_unlock(&net_family_lock); 2559 2560 synchronize_rcu(); 2561 2562 pr_info("NET: Unregistered protocol family %d\n", family); 2563 } 2564 EXPORT_SYMBOL(sock_unregister); 2565 2566 static int __init sock_init(void) 2567 { 2568 int err; 2569 /* 2570 * Initialize the network sysctl infrastructure. 2571 */ 2572 err = net_sysctl_init(); 2573 if (err) 2574 goto out; 2575 2576 /* 2577 * Initialize skbuff SLAB cache 2578 */ 2579 skb_init(); 2580 2581 /* 2582 * Initialize the protocols module. 2583 */ 2584 2585 init_inodecache(); 2586 2587 err = register_filesystem(&sock_fs_type); 2588 if (err) 2589 goto out_fs; 2590 sock_mnt = kern_mount(&sock_fs_type); 2591 if (IS_ERR(sock_mnt)) { 2592 err = PTR_ERR(sock_mnt); 2593 goto out_mount; 2594 } 2595 2596 /* The real protocol initialization is performed in later initcalls. 2597 */ 2598 2599 #ifdef CONFIG_NETFILTER 2600 err = netfilter_init(); 2601 if (err) 2602 goto out; 2603 #endif 2604 2605 ptp_classifier_init(); 2606 2607 out: 2608 return err; 2609 2610 out_mount: 2611 unregister_filesystem(&sock_fs_type); 2612 out_fs: 2613 goto out; 2614 } 2615 2616 core_initcall(sock_init); /* early initcall */ 2617 2618 #ifdef CONFIG_PROC_FS 2619 void socket_seq_show(struct seq_file *seq) 2620 { 2621 int cpu; 2622 int counter = 0; 2623 2624 for_each_possible_cpu(cpu) 2625 counter += per_cpu(sockets_in_use, cpu); 2626 2627 /* It can be negative, by the way. 8) */ 2628 if (counter < 0) 2629 counter = 0; 2630 2631 seq_printf(seq, "sockets: used %d\n", counter); 2632 } 2633 #endif /* CONFIG_PROC_FS */ 2634 2635 #ifdef CONFIG_COMPAT 2636 static int do_siocgstamp(struct net *net, struct socket *sock, 2637 unsigned int cmd, void __user *up) 2638 { 2639 mm_segment_t old_fs = get_fs(); 2640 struct timeval ktv; 2641 int err; 2642 2643 set_fs(KERNEL_DS); 2644 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2645 set_fs(old_fs); 2646 if (!err) 2647 err = compat_put_timeval(&ktv, up); 2648 2649 return err; 2650 } 2651 2652 static int do_siocgstampns(struct net *net, struct socket *sock, 2653 unsigned int cmd, void __user *up) 2654 { 2655 mm_segment_t old_fs = get_fs(); 2656 struct timespec kts; 2657 int err; 2658 2659 set_fs(KERNEL_DS); 2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2661 set_fs(old_fs); 2662 if (!err) 2663 err = compat_put_timespec(&kts, up); 2664 2665 return err; 2666 } 2667 2668 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2669 { 2670 struct ifreq __user *uifr; 2671 int err; 2672 2673 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2674 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2675 return -EFAULT; 2676 2677 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2678 if (err) 2679 return err; 2680 2681 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2682 return -EFAULT; 2683 2684 return 0; 2685 } 2686 2687 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2688 { 2689 struct compat_ifconf ifc32; 2690 struct ifconf ifc; 2691 struct ifconf __user *uifc; 2692 struct compat_ifreq __user *ifr32; 2693 struct ifreq __user *ifr; 2694 unsigned int i, j; 2695 int err; 2696 2697 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2698 return -EFAULT; 2699 2700 memset(&ifc, 0, sizeof(ifc)); 2701 if (ifc32.ifcbuf == 0) { 2702 ifc32.ifc_len = 0; 2703 ifc.ifc_len = 0; 2704 ifc.ifc_req = NULL; 2705 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2706 } else { 2707 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2708 sizeof(struct ifreq); 2709 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2710 ifc.ifc_len = len; 2711 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2712 ifr32 = compat_ptr(ifc32.ifcbuf); 2713 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2714 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2715 return -EFAULT; 2716 ifr++; 2717 ifr32++; 2718 } 2719 } 2720 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2721 return -EFAULT; 2722 2723 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2724 if (err) 2725 return err; 2726 2727 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2728 return -EFAULT; 2729 2730 ifr = ifc.ifc_req; 2731 ifr32 = compat_ptr(ifc32.ifcbuf); 2732 for (i = 0, j = 0; 2733 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2734 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2735 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2736 return -EFAULT; 2737 ifr32++; 2738 ifr++; 2739 } 2740 2741 if (ifc32.ifcbuf == 0) { 2742 /* Translate from 64-bit structure multiple to 2743 * a 32-bit one. 2744 */ 2745 i = ifc.ifc_len; 2746 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2747 ifc32.ifc_len = i; 2748 } else { 2749 ifc32.ifc_len = i; 2750 } 2751 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2752 return -EFAULT; 2753 2754 return 0; 2755 } 2756 2757 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2758 { 2759 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2760 bool convert_in = false, convert_out = false; 2761 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2762 struct ethtool_rxnfc __user *rxnfc; 2763 struct ifreq __user *ifr; 2764 u32 rule_cnt = 0, actual_rule_cnt; 2765 u32 ethcmd; 2766 u32 data; 2767 int ret; 2768 2769 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2770 return -EFAULT; 2771 2772 compat_rxnfc = compat_ptr(data); 2773 2774 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2775 return -EFAULT; 2776 2777 /* Most ethtool structures are defined without padding. 2778 * Unfortunately struct ethtool_rxnfc is an exception. 2779 */ 2780 switch (ethcmd) { 2781 default: 2782 break; 2783 case ETHTOOL_GRXCLSRLALL: 2784 /* Buffer size is variable */ 2785 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2786 return -EFAULT; 2787 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2788 return -ENOMEM; 2789 buf_size += rule_cnt * sizeof(u32); 2790 /* fall through */ 2791 case ETHTOOL_GRXRINGS: 2792 case ETHTOOL_GRXCLSRLCNT: 2793 case ETHTOOL_GRXCLSRULE: 2794 case ETHTOOL_SRXCLSRLINS: 2795 convert_out = true; 2796 /* fall through */ 2797 case ETHTOOL_SRXCLSRLDEL: 2798 buf_size += sizeof(struct ethtool_rxnfc); 2799 convert_in = true; 2800 break; 2801 } 2802 2803 ifr = compat_alloc_user_space(buf_size); 2804 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2805 2806 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2807 return -EFAULT; 2808 2809 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2810 &ifr->ifr_ifru.ifru_data)) 2811 return -EFAULT; 2812 2813 if (convert_in) { 2814 /* We expect there to be holes between fs.m_ext and 2815 * fs.ring_cookie and at the end of fs, but nowhere else. 2816 */ 2817 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2818 sizeof(compat_rxnfc->fs.m_ext) != 2819 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2820 sizeof(rxnfc->fs.m_ext)); 2821 BUILD_BUG_ON( 2822 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2823 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2824 offsetof(struct ethtool_rxnfc, fs.location) - 2825 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2826 2827 if (copy_in_user(rxnfc, compat_rxnfc, 2828 (void __user *)(&rxnfc->fs.m_ext + 1) - 2829 (void __user *)rxnfc) || 2830 copy_in_user(&rxnfc->fs.ring_cookie, 2831 &compat_rxnfc->fs.ring_cookie, 2832 (void __user *)(&rxnfc->fs.location + 1) - 2833 (void __user *)&rxnfc->fs.ring_cookie) || 2834 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2835 sizeof(rxnfc->rule_cnt))) 2836 return -EFAULT; 2837 } 2838 2839 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2840 if (ret) 2841 return ret; 2842 2843 if (convert_out) { 2844 if (copy_in_user(compat_rxnfc, rxnfc, 2845 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2846 (const void __user *)rxnfc) || 2847 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2848 &rxnfc->fs.ring_cookie, 2849 (const void __user *)(&rxnfc->fs.location + 1) - 2850 (const void __user *)&rxnfc->fs.ring_cookie) || 2851 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2852 sizeof(rxnfc->rule_cnt))) 2853 return -EFAULT; 2854 2855 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2856 /* As an optimisation, we only copy the actual 2857 * number of rules that the underlying 2858 * function returned. Since Mallory might 2859 * change the rule count in user memory, we 2860 * check that it is less than the rule count 2861 * originally given (as the user buffer size), 2862 * which has been range-checked. 2863 */ 2864 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2865 return -EFAULT; 2866 if (actual_rule_cnt < rule_cnt) 2867 rule_cnt = actual_rule_cnt; 2868 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2869 &rxnfc->rule_locs[0], 2870 rule_cnt * sizeof(u32))) 2871 return -EFAULT; 2872 } 2873 } 2874 2875 return 0; 2876 } 2877 2878 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2879 { 2880 void __user *uptr; 2881 compat_uptr_t uptr32; 2882 struct ifreq __user *uifr; 2883 2884 uifr = compat_alloc_user_space(sizeof(*uifr)); 2885 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2886 return -EFAULT; 2887 2888 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2889 return -EFAULT; 2890 2891 uptr = compat_ptr(uptr32); 2892 2893 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2894 return -EFAULT; 2895 2896 return dev_ioctl(net, SIOCWANDEV, uifr); 2897 } 2898 2899 static int bond_ioctl(struct net *net, unsigned int cmd, 2900 struct compat_ifreq __user *ifr32) 2901 { 2902 struct ifreq kifr; 2903 mm_segment_t old_fs; 2904 int err; 2905 2906 switch (cmd) { 2907 case SIOCBONDENSLAVE: 2908 case SIOCBONDRELEASE: 2909 case SIOCBONDSETHWADDR: 2910 case SIOCBONDCHANGEACTIVE: 2911 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2912 return -EFAULT; 2913 2914 old_fs = get_fs(); 2915 set_fs(KERNEL_DS); 2916 err = dev_ioctl(net, cmd, 2917 (struct ifreq __user __force *) &kifr); 2918 set_fs(old_fs); 2919 2920 return err; 2921 default: 2922 return -ENOIOCTLCMD; 2923 } 2924 } 2925 2926 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2927 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2928 struct compat_ifreq __user *u_ifreq32) 2929 { 2930 struct ifreq __user *u_ifreq64; 2931 char tmp_buf[IFNAMSIZ]; 2932 void __user *data64; 2933 u32 data32; 2934 2935 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2936 IFNAMSIZ)) 2937 return -EFAULT; 2938 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2939 return -EFAULT; 2940 data64 = compat_ptr(data32); 2941 2942 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2943 2944 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2945 IFNAMSIZ)) 2946 return -EFAULT; 2947 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2948 return -EFAULT; 2949 2950 return dev_ioctl(net, cmd, u_ifreq64); 2951 } 2952 2953 static int dev_ifsioc(struct net *net, struct socket *sock, 2954 unsigned int cmd, struct compat_ifreq __user *uifr32) 2955 { 2956 struct ifreq __user *uifr; 2957 int err; 2958 2959 uifr = compat_alloc_user_space(sizeof(*uifr)); 2960 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2961 return -EFAULT; 2962 2963 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2964 2965 if (!err) { 2966 switch (cmd) { 2967 case SIOCGIFFLAGS: 2968 case SIOCGIFMETRIC: 2969 case SIOCGIFMTU: 2970 case SIOCGIFMEM: 2971 case SIOCGIFHWADDR: 2972 case SIOCGIFINDEX: 2973 case SIOCGIFADDR: 2974 case SIOCGIFBRDADDR: 2975 case SIOCGIFDSTADDR: 2976 case SIOCGIFNETMASK: 2977 case SIOCGIFPFLAGS: 2978 case SIOCGIFTXQLEN: 2979 case SIOCGMIIPHY: 2980 case SIOCGMIIREG: 2981 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2982 err = -EFAULT; 2983 break; 2984 } 2985 } 2986 return err; 2987 } 2988 2989 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2990 struct compat_ifreq __user *uifr32) 2991 { 2992 struct ifreq ifr; 2993 struct compat_ifmap __user *uifmap32; 2994 mm_segment_t old_fs; 2995 int err; 2996 2997 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2998 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2999 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3000 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3001 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3002 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3003 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3004 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3005 if (err) 3006 return -EFAULT; 3007 3008 old_fs = get_fs(); 3009 set_fs(KERNEL_DS); 3010 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3011 set_fs(old_fs); 3012 3013 if (cmd == SIOCGIFMAP && !err) { 3014 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3015 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3016 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3017 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3018 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3019 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3020 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3021 if (err) 3022 err = -EFAULT; 3023 } 3024 return err; 3025 } 3026 3027 struct rtentry32 { 3028 u32 rt_pad1; 3029 struct sockaddr rt_dst; /* target address */ 3030 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3031 struct sockaddr rt_genmask; /* target network mask (IP) */ 3032 unsigned short rt_flags; 3033 short rt_pad2; 3034 u32 rt_pad3; 3035 unsigned char rt_tos; 3036 unsigned char rt_class; 3037 short rt_pad4; 3038 short rt_metric; /* +1 for binary compatibility! */ 3039 /* char * */ u32 rt_dev; /* forcing the device at add */ 3040 u32 rt_mtu; /* per route MTU/Window */ 3041 u32 rt_window; /* Window clamping */ 3042 unsigned short rt_irtt; /* Initial RTT */ 3043 }; 3044 3045 struct in6_rtmsg32 { 3046 struct in6_addr rtmsg_dst; 3047 struct in6_addr rtmsg_src; 3048 struct in6_addr rtmsg_gateway; 3049 u32 rtmsg_type; 3050 u16 rtmsg_dst_len; 3051 u16 rtmsg_src_len; 3052 u32 rtmsg_metric; 3053 u32 rtmsg_info; 3054 u32 rtmsg_flags; 3055 s32 rtmsg_ifindex; 3056 }; 3057 3058 static int routing_ioctl(struct net *net, struct socket *sock, 3059 unsigned int cmd, void __user *argp) 3060 { 3061 int ret; 3062 void *r = NULL; 3063 struct in6_rtmsg r6; 3064 struct rtentry r4; 3065 char devname[16]; 3066 u32 rtdev; 3067 mm_segment_t old_fs = get_fs(); 3068 3069 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3070 struct in6_rtmsg32 __user *ur6 = argp; 3071 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3072 3 * sizeof(struct in6_addr)); 3073 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3074 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3075 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3076 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3077 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3078 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3079 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3080 3081 r = (void *) &r6; 3082 } else { /* ipv4 */ 3083 struct rtentry32 __user *ur4 = argp; 3084 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3085 3 * sizeof(struct sockaddr)); 3086 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3087 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3088 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3089 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3090 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3091 ret |= get_user(rtdev, &(ur4->rt_dev)); 3092 if (rtdev) { 3093 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3094 r4.rt_dev = (char __user __force *)devname; 3095 devname[15] = 0; 3096 } else 3097 r4.rt_dev = NULL; 3098 3099 r = (void *) &r4; 3100 } 3101 3102 if (ret) { 3103 ret = -EFAULT; 3104 goto out; 3105 } 3106 3107 set_fs(KERNEL_DS); 3108 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3109 set_fs(old_fs); 3110 3111 out: 3112 return ret; 3113 } 3114 3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3116 * for some operations; this forces use of the newer bridge-utils that 3117 * use compatible ioctls 3118 */ 3119 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3120 { 3121 compat_ulong_t tmp; 3122 3123 if (get_user(tmp, argp)) 3124 return -EFAULT; 3125 if (tmp == BRCTL_GET_VERSION) 3126 return BRCTL_VERSION + 1; 3127 return -EINVAL; 3128 } 3129 3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3131 unsigned int cmd, unsigned long arg) 3132 { 3133 void __user *argp = compat_ptr(arg); 3134 struct sock *sk = sock->sk; 3135 struct net *net = sock_net(sk); 3136 3137 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3138 return compat_ifr_data_ioctl(net, cmd, argp); 3139 3140 switch (cmd) { 3141 case SIOCSIFBR: 3142 case SIOCGIFBR: 3143 return old_bridge_ioctl(argp); 3144 case SIOCGIFNAME: 3145 return dev_ifname32(net, argp); 3146 case SIOCGIFCONF: 3147 return dev_ifconf(net, argp); 3148 case SIOCETHTOOL: 3149 return ethtool_ioctl(net, argp); 3150 case SIOCWANDEV: 3151 return compat_siocwandev(net, argp); 3152 case SIOCGIFMAP: 3153 case SIOCSIFMAP: 3154 return compat_sioc_ifmap(net, cmd, argp); 3155 case SIOCBONDENSLAVE: 3156 case SIOCBONDRELEASE: 3157 case SIOCBONDSETHWADDR: 3158 case SIOCBONDCHANGEACTIVE: 3159 return bond_ioctl(net, cmd, argp); 3160 case SIOCADDRT: 3161 case SIOCDELRT: 3162 return routing_ioctl(net, sock, cmd, argp); 3163 case SIOCGSTAMP: 3164 return do_siocgstamp(net, sock, cmd, argp); 3165 case SIOCGSTAMPNS: 3166 return do_siocgstampns(net, sock, cmd, argp); 3167 case SIOCBONDSLAVEINFOQUERY: 3168 case SIOCBONDINFOQUERY: 3169 case SIOCSHWTSTAMP: 3170 case SIOCGHWTSTAMP: 3171 return compat_ifr_data_ioctl(net, cmd, argp); 3172 3173 case FIOSETOWN: 3174 case SIOCSPGRP: 3175 case FIOGETOWN: 3176 case SIOCGPGRP: 3177 case SIOCBRADDBR: 3178 case SIOCBRDELBR: 3179 case SIOCGIFVLAN: 3180 case SIOCSIFVLAN: 3181 case SIOCADDDLCI: 3182 case SIOCDELDLCI: 3183 return sock_ioctl(file, cmd, arg); 3184 3185 case SIOCGIFFLAGS: 3186 case SIOCSIFFLAGS: 3187 case SIOCGIFMETRIC: 3188 case SIOCSIFMETRIC: 3189 case SIOCGIFMTU: 3190 case SIOCSIFMTU: 3191 case SIOCGIFMEM: 3192 case SIOCSIFMEM: 3193 case SIOCGIFHWADDR: 3194 case SIOCSIFHWADDR: 3195 case SIOCADDMULTI: 3196 case SIOCDELMULTI: 3197 case SIOCGIFINDEX: 3198 case SIOCGIFADDR: 3199 case SIOCSIFADDR: 3200 case SIOCSIFHWBROADCAST: 3201 case SIOCDIFADDR: 3202 case SIOCGIFBRDADDR: 3203 case SIOCSIFBRDADDR: 3204 case SIOCGIFDSTADDR: 3205 case SIOCSIFDSTADDR: 3206 case SIOCGIFNETMASK: 3207 case SIOCSIFNETMASK: 3208 case SIOCSIFPFLAGS: 3209 case SIOCGIFPFLAGS: 3210 case SIOCGIFTXQLEN: 3211 case SIOCSIFTXQLEN: 3212 case SIOCBRADDIF: 3213 case SIOCBRDELIF: 3214 case SIOCSIFNAME: 3215 case SIOCGMIIPHY: 3216 case SIOCGMIIREG: 3217 case SIOCSMIIREG: 3218 return dev_ifsioc(net, sock, cmd, argp); 3219 3220 case SIOCSARP: 3221 case SIOCGARP: 3222 case SIOCDARP: 3223 case SIOCATMARK: 3224 return sock_do_ioctl(net, sock, cmd, arg); 3225 } 3226 3227 return -ENOIOCTLCMD; 3228 } 3229 3230 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3231 unsigned long arg) 3232 { 3233 struct socket *sock = file->private_data; 3234 int ret = -ENOIOCTLCMD; 3235 struct sock *sk; 3236 struct net *net; 3237 3238 sk = sock->sk; 3239 net = sock_net(sk); 3240 3241 if (sock->ops->compat_ioctl) 3242 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3243 3244 if (ret == -ENOIOCTLCMD && 3245 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3246 ret = compat_wext_handle_ioctl(net, cmd, arg); 3247 3248 if (ret == -ENOIOCTLCMD) 3249 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3250 3251 return ret; 3252 } 3253 #endif 3254 3255 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3256 { 3257 return sock->ops->bind(sock, addr, addrlen); 3258 } 3259 EXPORT_SYMBOL(kernel_bind); 3260 3261 int kernel_listen(struct socket *sock, int backlog) 3262 { 3263 return sock->ops->listen(sock, backlog); 3264 } 3265 EXPORT_SYMBOL(kernel_listen); 3266 3267 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3268 { 3269 struct sock *sk = sock->sk; 3270 int err; 3271 3272 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3273 newsock); 3274 if (err < 0) 3275 goto done; 3276 3277 err = sock->ops->accept(sock, *newsock, flags); 3278 if (err < 0) { 3279 sock_release(*newsock); 3280 *newsock = NULL; 3281 goto done; 3282 } 3283 3284 (*newsock)->ops = sock->ops; 3285 __module_get((*newsock)->ops->owner); 3286 3287 done: 3288 return err; 3289 } 3290 EXPORT_SYMBOL(kernel_accept); 3291 3292 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3293 int flags) 3294 { 3295 return sock->ops->connect(sock, addr, addrlen, flags); 3296 } 3297 EXPORT_SYMBOL(kernel_connect); 3298 3299 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3300 int *addrlen) 3301 { 3302 return sock->ops->getname(sock, addr, addrlen, 0); 3303 } 3304 EXPORT_SYMBOL(kernel_getsockname); 3305 3306 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3307 int *addrlen) 3308 { 3309 return sock->ops->getname(sock, addr, addrlen, 1); 3310 } 3311 EXPORT_SYMBOL(kernel_getpeername); 3312 3313 int kernel_getsockopt(struct socket *sock, int level, int optname, 3314 char *optval, int *optlen) 3315 { 3316 mm_segment_t oldfs = get_fs(); 3317 char __user *uoptval; 3318 int __user *uoptlen; 3319 int err; 3320 3321 uoptval = (char __user __force *) optval; 3322 uoptlen = (int __user __force *) optlen; 3323 3324 set_fs(KERNEL_DS); 3325 if (level == SOL_SOCKET) 3326 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3327 else 3328 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3329 uoptlen); 3330 set_fs(oldfs); 3331 return err; 3332 } 3333 EXPORT_SYMBOL(kernel_getsockopt); 3334 3335 int kernel_setsockopt(struct socket *sock, int level, int optname, 3336 char *optval, unsigned int optlen) 3337 { 3338 mm_segment_t oldfs = get_fs(); 3339 char __user *uoptval; 3340 int err; 3341 3342 uoptval = (char __user __force *) optval; 3343 3344 set_fs(KERNEL_DS); 3345 if (level == SOL_SOCKET) 3346 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3347 else 3348 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3349 optlen); 3350 set_fs(oldfs); 3351 return err; 3352 } 3353 EXPORT_SYMBOL(kernel_setsockopt); 3354 3355 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3356 size_t size, int flags) 3357 { 3358 if (sock->ops->sendpage) 3359 return sock->ops->sendpage(sock, page, offset, size, flags); 3360 3361 return sock_no_sendpage(sock, page, offset, size, flags); 3362 } 3363 EXPORT_SYMBOL(kernel_sendpage); 3364 3365 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3366 { 3367 mm_segment_t oldfs = get_fs(); 3368 int err; 3369 3370 set_fs(KERNEL_DS); 3371 err = sock->ops->ioctl(sock, cmd, arg); 3372 set_fs(oldfs); 3373 3374 return err; 3375 } 3376 EXPORT_SYMBOL(kernel_sock_ioctl); 3377 3378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3379 { 3380 return sock->ops->shutdown(sock, how); 3381 } 3382 EXPORT_SYMBOL(kernel_sock_shutdown); 3383