xref: /linux/net/socket.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read =		new_sync_read,
144 	.write =	new_sync_write,
145 	.read_iter =	sock_read_iter,
146 	.write_iter =	sock_write_iter,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 				       struct msghdr *msg, size_t size)
615 {
616 	return sock->ops->sendmsg(iocb, sock, msg, size);
617 }
618 
619 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
620 				 struct msghdr *msg, size_t size)
621 {
622 	int err = security_socket_sendmsg(sock, msg, size);
623 
624 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
625 }
626 
627 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
628 			   size_t size, bool nosec)
629 {
630 	struct kiocb iocb;
631 	int ret;
632 
633 	init_sync_kiocb(&iocb, NULL);
634 	ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
635 		      __sock_sendmsg(&iocb, sock, msg, size);
636 	if (-EIOCBQUEUED == ret)
637 		ret = wait_on_sync_kiocb(&iocb);
638 	return ret;
639 }
640 
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
642 {
643 	return do_sock_sendmsg(sock, msg, size, false);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
648 {
649 	return do_sock_sendmsg(sock, msg, size, true);
650 }
651 
652 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
653 		   struct kvec *vec, size_t num, size_t size)
654 {
655 	mm_segment_t oldfs = get_fs();
656 	int result;
657 
658 	set_fs(KERNEL_DS);
659 	/*
660 	 * the following is safe, since for compiler definitions of kvec and
661 	 * iovec are identical, yielding the same in-core layout and alignment
662 	 */
663 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
664 	result = sock_sendmsg(sock, msg, size);
665 	set_fs(oldfs);
666 	return result;
667 }
668 EXPORT_SYMBOL(kernel_sendmsg);
669 
670 /*
671  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
672  */
673 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
674 	struct sk_buff *skb)
675 {
676 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
677 	struct scm_timestamping tss;
678 	int empty = 1;
679 	struct skb_shared_hwtstamps *shhwtstamps =
680 		skb_hwtstamps(skb);
681 
682 	/* Race occurred between timestamp enabling and packet
683 	   receiving.  Fill in the current time for now. */
684 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
685 		__net_timestamp(skb);
686 
687 	if (need_software_tstamp) {
688 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
689 			struct timeval tv;
690 			skb_get_timestamp(skb, &tv);
691 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
692 				 sizeof(tv), &tv);
693 		} else {
694 			struct timespec ts;
695 			skb_get_timestampns(skb, &ts);
696 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
697 				 sizeof(ts), &ts);
698 		}
699 	}
700 
701 	memset(&tss, 0, sizeof(tss));
702 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
703 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
704 		empty = 0;
705 	if (shhwtstamps &&
706 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
707 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
708 		empty = 0;
709 	if (!empty)
710 		put_cmsg(msg, SOL_SOCKET,
711 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
712 }
713 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
714 
715 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
716 	struct sk_buff *skb)
717 {
718 	int ack;
719 
720 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
721 		return;
722 	if (!skb->wifi_acked_valid)
723 		return;
724 
725 	ack = skb->wifi_acked;
726 
727 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
728 }
729 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
730 
731 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
732 				   struct sk_buff *skb)
733 {
734 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
735 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
736 			sizeof(__u32), &skb->dropcount);
737 }
738 
739 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
740 	struct sk_buff *skb)
741 {
742 	sock_recv_timestamp(msg, sk, skb);
743 	sock_recv_drops(msg, sk, skb);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
746 
747 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
748 				       struct msghdr *msg, size_t size, int flags)
749 {
750 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
751 }
752 
753 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
754 				 struct msghdr *msg, size_t size, int flags)
755 {
756 	int err = security_socket_recvmsg(sock, msg, size, flags);
757 
758 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
759 }
760 
761 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
762 		 size_t size, int flags)
763 {
764 	struct kiocb iocb;
765 	int ret;
766 
767 	init_sync_kiocb(&iocb, NULL);
768 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
769 	if (-EIOCBQUEUED == ret)
770 		ret = wait_on_sync_kiocb(&iocb);
771 	return ret;
772 }
773 EXPORT_SYMBOL(sock_recvmsg);
774 
775 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
776 			      size_t size, int flags)
777 {
778 	struct kiocb iocb;
779 	int ret;
780 
781 	init_sync_kiocb(&iocb, NULL);
782 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
783 	if (-EIOCBQUEUED == ret)
784 		ret = wait_on_sync_kiocb(&iocb);
785 	return ret;
786 }
787 
788 /**
789  * kernel_recvmsg - Receive a message from a socket (kernel space)
790  * @sock:       The socket to receive the message from
791  * @msg:        Received message
792  * @vec:        Input s/g array for message data
793  * @num:        Size of input s/g array
794  * @size:       Number of bytes to read
795  * @flags:      Message flags (MSG_DONTWAIT, etc...)
796  *
797  * On return the msg structure contains the scatter/gather array passed in the
798  * vec argument. The array is modified so that it consists of the unfilled
799  * portion of the original array.
800  *
801  * The returned value is the total number of bytes received, or an error.
802  */
803 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
804 		   struct kvec *vec, size_t num, size_t size, int flags)
805 {
806 	mm_segment_t oldfs = get_fs();
807 	int result;
808 
809 	set_fs(KERNEL_DS);
810 	/*
811 	 * the following is safe, since for compiler definitions of kvec and
812 	 * iovec are identical, yielding the same in-core layout and alignment
813 	 */
814 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
815 	result = sock_recvmsg(sock, msg, size, flags);
816 	set_fs(oldfs);
817 	return result;
818 }
819 EXPORT_SYMBOL(kernel_recvmsg);
820 
821 static ssize_t sock_sendpage(struct file *file, struct page *page,
822 			     int offset, size_t size, loff_t *ppos, int more)
823 {
824 	struct socket *sock;
825 	int flags;
826 
827 	sock = file->private_data;
828 
829 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
830 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
831 	flags |= more;
832 
833 	return kernel_sendpage(sock, page, offset, size, flags);
834 }
835 
836 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
837 				struct pipe_inode_info *pipe, size_t len,
838 				unsigned int flags)
839 {
840 	struct socket *sock = file->private_data;
841 
842 	if (unlikely(!sock->ops->splice_read))
843 		return -EINVAL;
844 
845 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
846 }
847 
848 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
849 {
850 	struct file *file = iocb->ki_filp;
851 	struct socket *sock = file->private_data;
852 	struct msghdr msg = {.msg_iter = *to};
853 	ssize_t res;
854 
855 	if (file->f_flags & O_NONBLOCK)
856 		msg.msg_flags = MSG_DONTWAIT;
857 
858 	if (iocb->ki_pos != 0)
859 		return -ESPIPE;
860 
861 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
862 		return 0;
863 
864 	res = __sock_recvmsg(iocb, sock, &msg,
865 			     iocb->ki_nbytes, msg.msg_flags);
866 	*to = msg.msg_iter;
867 	return res;
868 }
869 
870 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
871 {
872 	struct file *file = iocb->ki_filp;
873 	struct socket *sock = file->private_data;
874 	struct msghdr msg = {.msg_iter = *from};
875 	ssize_t res;
876 
877 	if (iocb->ki_pos != 0)
878 		return -ESPIPE;
879 
880 	if (file->f_flags & O_NONBLOCK)
881 		msg.msg_flags = MSG_DONTWAIT;
882 
883 	if (sock->type == SOCK_SEQPACKET)
884 		msg.msg_flags |= MSG_EOR;
885 
886 	res = __sock_sendmsg(iocb, sock, &msg, iocb->ki_nbytes);
887 	*from = msg.msg_iter;
888 	return res;
889 }
890 
891 /*
892  * Atomic setting of ioctl hooks to avoid race
893  * with module unload.
894  */
895 
896 static DEFINE_MUTEX(br_ioctl_mutex);
897 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
898 
899 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
900 {
901 	mutex_lock(&br_ioctl_mutex);
902 	br_ioctl_hook = hook;
903 	mutex_unlock(&br_ioctl_mutex);
904 }
905 EXPORT_SYMBOL(brioctl_set);
906 
907 static DEFINE_MUTEX(vlan_ioctl_mutex);
908 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
909 
910 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
911 {
912 	mutex_lock(&vlan_ioctl_mutex);
913 	vlan_ioctl_hook = hook;
914 	mutex_unlock(&vlan_ioctl_mutex);
915 }
916 EXPORT_SYMBOL(vlan_ioctl_set);
917 
918 static DEFINE_MUTEX(dlci_ioctl_mutex);
919 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
920 
921 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
922 {
923 	mutex_lock(&dlci_ioctl_mutex);
924 	dlci_ioctl_hook = hook;
925 	mutex_unlock(&dlci_ioctl_mutex);
926 }
927 EXPORT_SYMBOL(dlci_ioctl_set);
928 
929 static long sock_do_ioctl(struct net *net, struct socket *sock,
930 				 unsigned int cmd, unsigned long arg)
931 {
932 	int err;
933 	void __user *argp = (void __user *)arg;
934 
935 	err = sock->ops->ioctl(sock, cmd, arg);
936 
937 	/*
938 	 * If this ioctl is unknown try to hand it down
939 	 * to the NIC driver.
940 	 */
941 	if (err == -ENOIOCTLCMD)
942 		err = dev_ioctl(net, cmd, argp);
943 
944 	return err;
945 }
946 
947 /*
948  *	With an ioctl, arg may well be a user mode pointer, but we don't know
949  *	what to do with it - that's up to the protocol still.
950  */
951 
952 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
953 {
954 	struct socket *sock;
955 	struct sock *sk;
956 	void __user *argp = (void __user *)arg;
957 	int pid, err;
958 	struct net *net;
959 
960 	sock = file->private_data;
961 	sk = sock->sk;
962 	net = sock_net(sk);
963 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
964 		err = dev_ioctl(net, cmd, argp);
965 	} else
966 #ifdef CONFIG_WEXT_CORE
967 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
968 		err = dev_ioctl(net, cmd, argp);
969 	} else
970 #endif
971 		switch (cmd) {
972 		case FIOSETOWN:
973 		case SIOCSPGRP:
974 			err = -EFAULT;
975 			if (get_user(pid, (int __user *)argp))
976 				break;
977 			f_setown(sock->file, pid, 1);
978 			err = 0;
979 			break;
980 		case FIOGETOWN:
981 		case SIOCGPGRP:
982 			err = put_user(f_getown(sock->file),
983 				       (int __user *)argp);
984 			break;
985 		case SIOCGIFBR:
986 		case SIOCSIFBR:
987 		case SIOCBRADDBR:
988 		case SIOCBRDELBR:
989 			err = -ENOPKG;
990 			if (!br_ioctl_hook)
991 				request_module("bridge");
992 
993 			mutex_lock(&br_ioctl_mutex);
994 			if (br_ioctl_hook)
995 				err = br_ioctl_hook(net, cmd, argp);
996 			mutex_unlock(&br_ioctl_mutex);
997 			break;
998 		case SIOCGIFVLAN:
999 		case SIOCSIFVLAN:
1000 			err = -ENOPKG;
1001 			if (!vlan_ioctl_hook)
1002 				request_module("8021q");
1003 
1004 			mutex_lock(&vlan_ioctl_mutex);
1005 			if (vlan_ioctl_hook)
1006 				err = vlan_ioctl_hook(net, argp);
1007 			mutex_unlock(&vlan_ioctl_mutex);
1008 			break;
1009 		case SIOCADDDLCI:
1010 		case SIOCDELDLCI:
1011 			err = -ENOPKG;
1012 			if (!dlci_ioctl_hook)
1013 				request_module("dlci");
1014 
1015 			mutex_lock(&dlci_ioctl_mutex);
1016 			if (dlci_ioctl_hook)
1017 				err = dlci_ioctl_hook(cmd, argp);
1018 			mutex_unlock(&dlci_ioctl_mutex);
1019 			break;
1020 		default:
1021 			err = sock_do_ioctl(net, sock, cmd, arg);
1022 			break;
1023 		}
1024 	return err;
1025 }
1026 
1027 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1028 {
1029 	int err;
1030 	struct socket *sock = NULL;
1031 
1032 	err = security_socket_create(family, type, protocol, 1);
1033 	if (err)
1034 		goto out;
1035 
1036 	sock = sock_alloc();
1037 	if (!sock) {
1038 		err = -ENOMEM;
1039 		goto out;
1040 	}
1041 
1042 	sock->type = type;
1043 	err = security_socket_post_create(sock, family, type, protocol, 1);
1044 	if (err)
1045 		goto out_release;
1046 
1047 out:
1048 	*res = sock;
1049 	return err;
1050 out_release:
1051 	sock_release(sock);
1052 	sock = NULL;
1053 	goto out;
1054 }
1055 EXPORT_SYMBOL(sock_create_lite);
1056 
1057 /* No kernel lock held - perfect */
1058 static unsigned int sock_poll(struct file *file, poll_table *wait)
1059 {
1060 	unsigned int busy_flag = 0;
1061 	struct socket *sock;
1062 
1063 	/*
1064 	 *      We can't return errors to poll, so it's either yes or no.
1065 	 */
1066 	sock = file->private_data;
1067 
1068 	if (sk_can_busy_loop(sock->sk)) {
1069 		/* this socket can poll_ll so tell the system call */
1070 		busy_flag = POLL_BUSY_LOOP;
1071 
1072 		/* once, only if requested by syscall */
1073 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1074 			sk_busy_loop(sock->sk, 1);
1075 	}
1076 
1077 	return busy_flag | sock->ops->poll(file, sock, wait);
1078 }
1079 
1080 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1081 {
1082 	struct socket *sock = file->private_data;
1083 
1084 	return sock->ops->mmap(file, sock, vma);
1085 }
1086 
1087 static int sock_close(struct inode *inode, struct file *filp)
1088 {
1089 	sock_release(SOCKET_I(inode));
1090 	return 0;
1091 }
1092 
1093 /*
1094  *	Update the socket async list
1095  *
1096  *	Fasync_list locking strategy.
1097  *
1098  *	1. fasync_list is modified only under process context socket lock
1099  *	   i.e. under semaphore.
1100  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1101  *	   or under socket lock
1102  */
1103 
1104 static int sock_fasync(int fd, struct file *filp, int on)
1105 {
1106 	struct socket *sock = filp->private_data;
1107 	struct sock *sk = sock->sk;
1108 	struct socket_wq *wq;
1109 
1110 	if (sk == NULL)
1111 		return -EINVAL;
1112 
1113 	lock_sock(sk);
1114 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1115 	fasync_helper(fd, filp, on, &wq->fasync_list);
1116 
1117 	if (!wq->fasync_list)
1118 		sock_reset_flag(sk, SOCK_FASYNC);
1119 	else
1120 		sock_set_flag(sk, SOCK_FASYNC);
1121 
1122 	release_sock(sk);
1123 	return 0;
1124 }
1125 
1126 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1127 
1128 int sock_wake_async(struct socket *sock, int how, int band)
1129 {
1130 	struct socket_wq *wq;
1131 
1132 	if (!sock)
1133 		return -1;
1134 	rcu_read_lock();
1135 	wq = rcu_dereference(sock->wq);
1136 	if (!wq || !wq->fasync_list) {
1137 		rcu_read_unlock();
1138 		return -1;
1139 	}
1140 	switch (how) {
1141 	case SOCK_WAKE_WAITD:
1142 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1143 			break;
1144 		goto call_kill;
1145 	case SOCK_WAKE_SPACE:
1146 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1147 			break;
1148 		/* fall through */
1149 	case SOCK_WAKE_IO:
1150 call_kill:
1151 		kill_fasync(&wq->fasync_list, SIGIO, band);
1152 		break;
1153 	case SOCK_WAKE_URG:
1154 		kill_fasync(&wq->fasync_list, SIGURG, band);
1155 	}
1156 	rcu_read_unlock();
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL(sock_wake_async);
1160 
1161 int __sock_create(struct net *net, int family, int type, int protocol,
1162 			 struct socket **res, int kern)
1163 {
1164 	int err;
1165 	struct socket *sock;
1166 	const struct net_proto_family *pf;
1167 
1168 	/*
1169 	 *      Check protocol is in range
1170 	 */
1171 	if (family < 0 || family >= NPROTO)
1172 		return -EAFNOSUPPORT;
1173 	if (type < 0 || type >= SOCK_MAX)
1174 		return -EINVAL;
1175 
1176 	/* Compatibility.
1177 
1178 	   This uglymoron is moved from INET layer to here to avoid
1179 	   deadlock in module load.
1180 	 */
1181 	if (family == PF_INET && type == SOCK_PACKET) {
1182 		static int warned;
1183 		if (!warned) {
1184 			warned = 1;
1185 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1186 				current->comm);
1187 		}
1188 		family = PF_PACKET;
1189 	}
1190 
1191 	err = security_socket_create(family, type, protocol, kern);
1192 	if (err)
1193 		return err;
1194 
1195 	/*
1196 	 *	Allocate the socket and allow the family to set things up. if
1197 	 *	the protocol is 0, the family is instructed to select an appropriate
1198 	 *	default.
1199 	 */
1200 	sock = sock_alloc();
1201 	if (!sock) {
1202 		net_warn_ratelimited("socket: no more sockets\n");
1203 		return -ENFILE;	/* Not exactly a match, but its the
1204 				   closest posix thing */
1205 	}
1206 
1207 	sock->type = type;
1208 
1209 #ifdef CONFIG_MODULES
1210 	/* Attempt to load a protocol module if the find failed.
1211 	 *
1212 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1213 	 * requested real, full-featured networking support upon configuration.
1214 	 * Otherwise module support will break!
1215 	 */
1216 	if (rcu_access_pointer(net_families[family]) == NULL)
1217 		request_module("net-pf-%d", family);
1218 #endif
1219 
1220 	rcu_read_lock();
1221 	pf = rcu_dereference(net_families[family]);
1222 	err = -EAFNOSUPPORT;
1223 	if (!pf)
1224 		goto out_release;
1225 
1226 	/*
1227 	 * We will call the ->create function, that possibly is in a loadable
1228 	 * module, so we have to bump that loadable module refcnt first.
1229 	 */
1230 	if (!try_module_get(pf->owner))
1231 		goto out_release;
1232 
1233 	/* Now protected by module ref count */
1234 	rcu_read_unlock();
1235 
1236 	err = pf->create(net, sock, protocol, kern);
1237 	if (err < 0)
1238 		goto out_module_put;
1239 
1240 	/*
1241 	 * Now to bump the refcnt of the [loadable] module that owns this
1242 	 * socket at sock_release time we decrement its refcnt.
1243 	 */
1244 	if (!try_module_get(sock->ops->owner))
1245 		goto out_module_busy;
1246 
1247 	/*
1248 	 * Now that we're done with the ->create function, the [loadable]
1249 	 * module can have its refcnt decremented
1250 	 */
1251 	module_put(pf->owner);
1252 	err = security_socket_post_create(sock, family, type, protocol, kern);
1253 	if (err)
1254 		goto out_sock_release;
1255 	*res = sock;
1256 
1257 	return 0;
1258 
1259 out_module_busy:
1260 	err = -EAFNOSUPPORT;
1261 out_module_put:
1262 	sock->ops = NULL;
1263 	module_put(pf->owner);
1264 out_sock_release:
1265 	sock_release(sock);
1266 	return err;
1267 
1268 out_release:
1269 	rcu_read_unlock();
1270 	goto out_sock_release;
1271 }
1272 EXPORT_SYMBOL(__sock_create);
1273 
1274 int sock_create(int family, int type, int protocol, struct socket **res)
1275 {
1276 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1277 }
1278 EXPORT_SYMBOL(sock_create);
1279 
1280 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1281 {
1282 	return __sock_create(&init_net, family, type, protocol, res, 1);
1283 }
1284 EXPORT_SYMBOL(sock_create_kern);
1285 
1286 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1287 {
1288 	int retval;
1289 	struct socket *sock;
1290 	int flags;
1291 
1292 	/* Check the SOCK_* constants for consistency.  */
1293 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1294 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1295 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1296 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1297 
1298 	flags = type & ~SOCK_TYPE_MASK;
1299 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300 		return -EINVAL;
1301 	type &= SOCK_TYPE_MASK;
1302 
1303 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305 
1306 	retval = sock_create(family, type, protocol, &sock);
1307 	if (retval < 0)
1308 		goto out;
1309 
1310 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1311 	if (retval < 0)
1312 		goto out_release;
1313 
1314 out:
1315 	/* It may be already another descriptor 8) Not kernel problem. */
1316 	return retval;
1317 
1318 out_release:
1319 	sock_release(sock);
1320 	return retval;
1321 }
1322 
1323 /*
1324  *	Create a pair of connected sockets.
1325  */
1326 
1327 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1328 		int __user *, usockvec)
1329 {
1330 	struct socket *sock1, *sock2;
1331 	int fd1, fd2, err;
1332 	struct file *newfile1, *newfile2;
1333 	int flags;
1334 
1335 	flags = type & ~SOCK_TYPE_MASK;
1336 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337 		return -EINVAL;
1338 	type &= SOCK_TYPE_MASK;
1339 
1340 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342 
1343 	/*
1344 	 * Obtain the first socket and check if the underlying protocol
1345 	 * supports the socketpair call.
1346 	 */
1347 
1348 	err = sock_create(family, type, protocol, &sock1);
1349 	if (err < 0)
1350 		goto out;
1351 
1352 	err = sock_create(family, type, protocol, &sock2);
1353 	if (err < 0)
1354 		goto out_release_1;
1355 
1356 	err = sock1->ops->socketpair(sock1, sock2);
1357 	if (err < 0)
1358 		goto out_release_both;
1359 
1360 	fd1 = get_unused_fd_flags(flags);
1361 	if (unlikely(fd1 < 0)) {
1362 		err = fd1;
1363 		goto out_release_both;
1364 	}
1365 
1366 	fd2 = get_unused_fd_flags(flags);
1367 	if (unlikely(fd2 < 0)) {
1368 		err = fd2;
1369 		goto out_put_unused_1;
1370 	}
1371 
1372 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1373 	if (unlikely(IS_ERR(newfile1))) {
1374 		err = PTR_ERR(newfile1);
1375 		goto out_put_unused_both;
1376 	}
1377 
1378 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1379 	if (IS_ERR(newfile2)) {
1380 		err = PTR_ERR(newfile2);
1381 		goto out_fput_1;
1382 	}
1383 
1384 	err = put_user(fd1, &usockvec[0]);
1385 	if (err)
1386 		goto out_fput_both;
1387 
1388 	err = put_user(fd2, &usockvec[1]);
1389 	if (err)
1390 		goto out_fput_both;
1391 
1392 	audit_fd_pair(fd1, fd2);
1393 
1394 	fd_install(fd1, newfile1);
1395 	fd_install(fd2, newfile2);
1396 	/* fd1 and fd2 may be already another descriptors.
1397 	 * Not kernel problem.
1398 	 */
1399 
1400 	return 0;
1401 
1402 out_fput_both:
1403 	fput(newfile2);
1404 	fput(newfile1);
1405 	put_unused_fd(fd2);
1406 	put_unused_fd(fd1);
1407 	goto out;
1408 
1409 out_fput_1:
1410 	fput(newfile1);
1411 	put_unused_fd(fd2);
1412 	put_unused_fd(fd1);
1413 	sock_release(sock2);
1414 	goto out;
1415 
1416 out_put_unused_both:
1417 	put_unused_fd(fd2);
1418 out_put_unused_1:
1419 	put_unused_fd(fd1);
1420 out_release_both:
1421 	sock_release(sock2);
1422 out_release_1:
1423 	sock_release(sock1);
1424 out:
1425 	return err;
1426 }
1427 
1428 /*
1429  *	Bind a name to a socket. Nothing much to do here since it's
1430  *	the protocol's responsibility to handle the local address.
1431  *
1432  *	We move the socket address to kernel space before we call
1433  *	the protocol layer (having also checked the address is ok).
1434  */
1435 
1436 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1437 {
1438 	struct socket *sock;
1439 	struct sockaddr_storage address;
1440 	int err, fput_needed;
1441 
1442 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1443 	if (sock) {
1444 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1445 		if (err >= 0) {
1446 			err = security_socket_bind(sock,
1447 						   (struct sockaddr *)&address,
1448 						   addrlen);
1449 			if (!err)
1450 				err = sock->ops->bind(sock,
1451 						      (struct sockaddr *)
1452 						      &address, addrlen);
1453 		}
1454 		fput_light(sock->file, fput_needed);
1455 	}
1456 	return err;
1457 }
1458 
1459 /*
1460  *	Perform a listen. Basically, we allow the protocol to do anything
1461  *	necessary for a listen, and if that works, we mark the socket as
1462  *	ready for listening.
1463  */
1464 
1465 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1466 {
1467 	struct socket *sock;
1468 	int err, fput_needed;
1469 	int somaxconn;
1470 
1471 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1472 	if (sock) {
1473 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1474 		if ((unsigned int)backlog > somaxconn)
1475 			backlog = somaxconn;
1476 
1477 		err = security_socket_listen(sock, backlog);
1478 		if (!err)
1479 			err = sock->ops->listen(sock, backlog);
1480 
1481 		fput_light(sock->file, fput_needed);
1482 	}
1483 	return err;
1484 }
1485 
1486 /*
1487  *	For accept, we attempt to create a new socket, set up the link
1488  *	with the client, wake up the client, then return the new
1489  *	connected fd. We collect the address of the connector in kernel
1490  *	space and move it to user at the very end. This is unclean because
1491  *	we open the socket then return an error.
1492  *
1493  *	1003.1g adds the ability to recvmsg() to query connection pending
1494  *	status to recvmsg. We need to add that support in a way thats
1495  *	clean when we restucture accept also.
1496  */
1497 
1498 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1499 		int __user *, upeer_addrlen, int, flags)
1500 {
1501 	struct socket *sock, *newsock;
1502 	struct file *newfile;
1503 	int err, len, newfd, fput_needed;
1504 	struct sockaddr_storage address;
1505 
1506 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1507 		return -EINVAL;
1508 
1509 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511 
1512 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1513 	if (!sock)
1514 		goto out;
1515 
1516 	err = -ENFILE;
1517 	newsock = sock_alloc();
1518 	if (!newsock)
1519 		goto out_put;
1520 
1521 	newsock->type = sock->type;
1522 	newsock->ops = sock->ops;
1523 
1524 	/*
1525 	 * We don't need try_module_get here, as the listening socket (sock)
1526 	 * has the protocol module (sock->ops->owner) held.
1527 	 */
1528 	__module_get(newsock->ops->owner);
1529 
1530 	newfd = get_unused_fd_flags(flags);
1531 	if (unlikely(newfd < 0)) {
1532 		err = newfd;
1533 		sock_release(newsock);
1534 		goto out_put;
1535 	}
1536 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1537 	if (unlikely(IS_ERR(newfile))) {
1538 		err = PTR_ERR(newfile);
1539 		put_unused_fd(newfd);
1540 		sock_release(newsock);
1541 		goto out_put;
1542 	}
1543 
1544 	err = security_socket_accept(sock, newsock);
1545 	if (err)
1546 		goto out_fd;
1547 
1548 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1549 	if (err < 0)
1550 		goto out_fd;
1551 
1552 	if (upeer_sockaddr) {
1553 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1554 					  &len, 2) < 0) {
1555 			err = -ECONNABORTED;
1556 			goto out_fd;
1557 		}
1558 		err = move_addr_to_user(&address,
1559 					len, upeer_sockaddr, upeer_addrlen);
1560 		if (err < 0)
1561 			goto out_fd;
1562 	}
1563 
1564 	/* File flags are not inherited via accept() unlike another OSes. */
1565 
1566 	fd_install(newfd, newfile);
1567 	err = newfd;
1568 
1569 out_put:
1570 	fput_light(sock->file, fput_needed);
1571 out:
1572 	return err;
1573 out_fd:
1574 	fput(newfile);
1575 	put_unused_fd(newfd);
1576 	goto out_put;
1577 }
1578 
1579 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1580 		int __user *, upeer_addrlen)
1581 {
1582 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1583 }
1584 
1585 /*
1586  *	Attempt to connect to a socket with the server address.  The address
1587  *	is in user space so we verify it is OK and move it to kernel space.
1588  *
1589  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1590  *	break bindings
1591  *
1592  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1593  *	other SEQPACKET protocols that take time to connect() as it doesn't
1594  *	include the -EINPROGRESS status for such sockets.
1595  */
1596 
1597 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1598 		int, addrlen)
1599 {
1600 	struct socket *sock;
1601 	struct sockaddr_storage address;
1602 	int err, fput_needed;
1603 
1604 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1605 	if (!sock)
1606 		goto out;
1607 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1608 	if (err < 0)
1609 		goto out_put;
1610 
1611 	err =
1612 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1613 	if (err)
1614 		goto out_put;
1615 
1616 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1617 				 sock->file->f_flags);
1618 out_put:
1619 	fput_light(sock->file, fput_needed);
1620 out:
1621 	return err;
1622 }
1623 
1624 /*
1625  *	Get the local address ('name') of a socket object. Move the obtained
1626  *	name to user space.
1627  */
1628 
1629 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1630 		int __user *, usockaddr_len)
1631 {
1632 	struct socket *sock;
1633 	struct sockaddr_storage address;
1634 	int len, err, fput_needed;
1635 
1636 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1637 	if (!sock)
1638 		goto out;
1639 
1640 	err = security_socket_getsockname(sock);
1641 	if (err)
1642 		goto out_put;
1643 
1644 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1645 	if (err)
1646 		goto out_put;
1647 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1648 
1649 out_put:
1650 	fput_light(sock->file, fput_needed);
1651 out:
1652 	return err;
1653 }
1654 
1655 /*
1656  *	Get the remote address ('name') of a socket object. Move the obtained
1657  *	name to user space.
1658  */
1659 
1660 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1661 		int __user *, usockaddr_len)
1662 {
1663 	struct socket *sock;
1664 	struct sockaddr_storage address;
1665 	int len, err, fput_needed;
1666 
1667 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 	if (sock != NULL) {
1669 		err = security_socket_getpeername(sock);
1670 		if (err) {
1671 			fput_light(sock->file, fput_needed);
1672 			return err;
1673 		}
1674 
1675 		err =
1676 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1677 				       1);
1678 		if (!err)
1679 			err = move_addr_to_user(&address, len, usockaddr,
1680 						usockaddr_len);
1681 		fput_light(sock->file, fput_needed);
1682 	}
1683 	return err;
1684 }
1685 
1686 /*
1687  *	Send a datagram to a given address. We move the address into kernel
1688  *	space and check the user space data area is readable before invoking
1689  *	the protocol.
1690  */
1691 
1692 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1693 		unsigned int, flags, struct sockaddr __user *, addr,
1694 		int, addr_len)
1695 {
1696 	struct socket *sock;
1697 	struct sockaddr_storage address;
1698 	int err;
1699 	struct msghdr msg;
1700 	struct iovec iov;
1701 	int fput_needed;
1702 
1703 	if (len > INT_MAX)
1704 		len = INT_MAX;
1705 	if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1706 		return -EFAULT;
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (!sock)
1709 		goto out;
1710 
1711 	iov.iov_base = buff;
1712 	iov.iov_len = len;
1713 	msg.msg_name = NULL;
1714 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1715 	msg.msg_control = NULL;
1716 	msg.msg_controllen = 0;
1717 	msg.msg_namelen = 0;
1718 	if (addr) {
1719 		err = move_addr_to_kernel(addr, addr_len, &address);
1720 		if (err < 0)
1721 			goto out_put;
1722 		msg.msg_name = (struct sockaddr *)&address;
1723 		msg.msg_namelen = addr_len;
1724 	}
1725 	if (sock->file->f_flags & O_NONBLOCK)
1726 		flags |= MSG_DONTWAIT;
1727 	msg.msg_flags = flags;
1728 	err = sock_sendmsg(sock, &msg, len);
1729 
1730 out_put:
1731 	fput_light(sock->file, fput_needed);
1732 out:
1733 	return err;
1734 }
1735 
1736 /*
1737  *	Send a datagram down a socket.
1738  */
1739 
1740 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1741 		unsigned int, flags)
1742 {
1743 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1744 }
1745 
1746 /*
1747  *	Receive a frame from the socket and optionally record the address of the
1748  *	sender. We verify the buffers are writable and if needed move the
1749  *	sender address from kernel to user space.
1750  */
1751 
1752 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1753 		unsigned int, flags, struct sockaddr __user *, addr,
1754 		int __user *, addr_len)
1755 {
1756 	struct socket *sock;
1757 	struct iovec iov;
1758 	struct msghdr msg;
1759 	struct sockaddr_storage address;
1760 	int err, err2;
1761 	int fput_needed;
1762 
1763 	if (size > INT_MAX)
1764 		size = INT_MAX;
1765 	if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1766 		return -EFAULT;
1767 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 	if (!sock)
1769 		goto out;
1770 
1771 	msg.msg_control = NULL;
1772 	msg.msg_controllen = 0;
1773 	iov.iov_len = size;
1774 	iov.iov_base = ubuf;
1775 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1776 	/* Save some cycles and don't copy the address if not needed */
1777 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1778 	/* We assume all kernel code knows the size of sockaddr_storage */
1779 	msg.msg_namelen = 0;
1780 	if (sock->file->f_flags & O_NONBLOCK)
1781 		flags |= MSG_DONTWAIT;
1782 	err = sock_recvmsg(sock, &msg, size, flags);
1783 
1784 	if (err >= 0 && addr != NULL) {
1785 		err2 = move_addr_to_user(&address,
1786 					 msg.msg_namelen, addr, addr_len);
1787 		if (err2 < 0)
1788 			err = err2;
1789 	}
1790 
1791 	fput_light(sock->file, fput_needed);
1792 out:
1793 	return err;
1794 }
1795 
1796 /*
1797  *	Receive a datagram from a socket.
1798  */
1799 
1800 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1801 		unsigned int, flags)
1802 {
1803 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1804 }
1805 
1806 /*
1807  *	Set a socket option. Because we don't know the option lengths we have
1808  *	to pass the user mode parameter for the protocols to sort out.
1809  */
1810 
1811 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1812 		char __user *, optval, int, optlen)
1813 {
1814 	int err, fput_needed;
1815 	struct socket *sock;
1816 
1817 	if (optlen < 0)
1818 		return -EINVAL;
1819 
1820 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1821 	if (sock != NULL) {
1822 		err = security_socket_setsockopt(sock, level, optname);
1823 		if (err)
1824 			goto out_put;
1825 
1826 		if (level == SOL_SOCKET)
1827 			err =
1828 			    sock_setsockopt(sock, level, optname, optval,
1829 					    optlen);
1830 		else
1831 			err =
1832 			    sock->ops->setsockopt(sock, level, optname, optval,
1833 						  optlen);
1834 out_put:
1835 		fput_light(sock->file, fput_needed);
1836 	}
1837 	return err;
1838 }
1839 
1840 /*
1841  *	Get a socket option. Because we don't know the option lengths we have
1842  *	to pass a user mode parameter for the protocols to sort out.
1843  */
1844 
1845 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1846 		char __user *, optval, int __user *, optlen)
1847 {
1848 	int err, fput_needed;
1849 	struct socket *sock;
1850 
1851 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1852 	if (sock != NULL) {
1853 		err = security_socket_getsockopt(sock, level, optname);
1854 		if (err)
1855 			goto out_put;
1856 
1857 		if (level == SOL_SOCKET)
1858 			err =
1859 			    sock_getsockopt(sock, level, optname, optval,
1860 					    optlen);
1861 		else
1862 			err =
1863 			    sock->ops->getsockopt(sock, level, optname, optval,
1864 						  optlen);
1865 out_put:
1866 		fput_light(sock->file, fput_needed);
1867 	}
1868 	return err;
1869 }
1870 
1871 /*
1872  *	Shutdown a socket.
1873  */
1874 
1875 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1876 {
1877 	int err, fput_needed;
1878 	struct socket *sock;
1879 
1880 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1881 	if (sock != NULL) {
1882 		err = security_socket_shutdown(sock, how);
1883 		if (!err)
1884 			err = sock->ops->shutdown(sock, how);
1885 		fput_light(sock->file, fput_needed);
1886 	}
1887 	return err;
1888 }
1889 
1890 /* A couple of helpful macros for getting the address of the 32/64 bit
1891  * fields which are the same type (int / unsigned) on our platforms.
1892  */
1893 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1894 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1895 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1896 
1897 struct used_address {
1898 	struct sockaddr_storage name;
1899 	unsigned int name_len;
1900 };
1901 
1902 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1903 				     struct user_msghdr __user *umsg,
1904 				     struct sockaddr __user **save_addr,
1905 				     struct iovec **iov)
1906 {
1907 	struct sockaddr __user *uaddr;
1908 	struct iovec __user *uiov;
1909 	size_t nr_segs;
1910 	ssize_t err;
1911 
1912 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1913 	    __get_user(uaddr, &umsg->msg_name) ||
1914 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1915 	    __get_user(uiov, &umsg->msg_iov) ||
1916 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1917 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1918 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1919 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1920 		return -EFAULT;
1921 
1922 	if (!uaddr)
1923 		kmsg->msg_namelen = 0;
1924 
1925 	if (kmsg->msg_namelen < 0)
1926 		return -EINVAL;
1927 
1928 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1929 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1930 
1931 	if (save_addr)
1932 		*save_addr = uaddr;
1933 
1934 	if (uaddr && kmsg->msg_namelen) {
1935 		if (!save_addr) {
1936 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1937 						  kmsg->msg_name);
1938 			if (err < 0)
1939 				return err;
1940 		}
1941 	} else {
1942 		kmsg->msg_name = NULL;
1943 		kmsg->msg_namelen = 0;
1944 	}
1945 
1946 	if (nr_segs > UIO_MAXIOV)
1947 		return -EMSGSIZE;
1948 
1949 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
1950 				    uiov, nr_segs,
1951 				    UIO_FASTIOV, *iov, iov);
1952 	if (err >= 0)
1953 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
1954 			      *iov, nr_segs, err);
1955 	return err;
1956 }
1957 
1958 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1959 			 struct msghdr *msg_sys, unsigned int flags,
1960 			 struct used_address *used_address)
1961 {
1962 	struct compat_msghdr __user *msg_compat =
1963 	    (struct compat_msghdr __user *)msg;
1964 	struct sockaddr_storage address;
1965 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1966 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1967 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1968 	/* 20 is size of ipv6_pktinfo */
1969 	unsigned char *ctl_buf = ctl;
1970 	int ctl_len, total_len;
1971 	ssize_t err;
1972 
1973 	msg_sys->msg_name = &address;
1974 
1975 	if (MSG_CMSG_COMPAT & flags)
1976 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1977 	else
1978 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1979 	if (err < 0)
1980 		goto out_freeiov;
1981 	total_len = err;
1982 
1983 	err = -ENOBUFS;
1984 
1985 	if (msg_sys->msg_controllen > INT_MAX)
1986 		goto out_freeiov;
1987 	ctl_len = msg_sys->msg_controllen;
1988 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1989 		err =
1990 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1991 						     sizeof(ctl));
1992 		if (err)
1993 			goto out_freeiov;
1994 		ctl_buf = msg_sys->msg_control;
1995 		ctl_len = msg_sys->msg_controllen;
1996 	} else if (ctl_len) {
1997 		if (ctl_len > sizeof(ctl)) {
1998 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1999 			if (ctl_buf == NULL)
2000 				goto out_freeiov;
2001 		}
2002 		err = -EFAULT;
2003 		/*
2004 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2005 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2006 		 * checking falls down on this.
2007 		 */
2008 		if (copy_from_user(ctl_buf,
2009 				   (void __user __force *)msg_sys->msg_control,
2010 				   ctl_len))
2011 			goto out_freectl;
2012 		msg_sys->msg_control = ctl_buf;
2013 	}
2014 	msg_sys->msg_flags = flags;
2015 
2016 	if (sock->file->f_flags & O_NONBLOCK)
2017 		msg_sys->msg_flags |= MSG_DONTWAIT;
2018 	/*
2019 	 * If this is sendmmsg() and current destination address is same as
2020 	 * previously succeeded address, omit asking LSM's decision.
2021 	 * used_address->name_len is initialized to UINT_MAX so that the first
2022 	 * destination address never matches.
2023 	 */
2024 	if (used_address && msg_sys->msg_name &&
2025 	    used_address->name_len == msg_sys->msg_namelen &&
2026 	    !memcmp(&used_address->name, msg_sys->msg_name,
2027 		    used_address->name_len)) {
2028 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2029 		goto out_freectl;
2030 	}
2031 	err = sock_sendmsg(sock, msg_sys, total_len);
2032 	/*
2033 	 * If this is sendmmsg() and sending to current destination address was
2034 	 * successful, remember it.
2035 	 */
2036 	if (used_address && err >= 0) {
2037 		used_address->name_len = msg_sys->msg_namelen;
2038 		if (msg_sys->msg_name)
2039 			memcpy(&used_address->name, msg_sys->msg_name,
2040 			       used_address->name_len);
2041 	}
2042 
2043 out_freectl:
2044 	if (ctl_buf != ctl)
2045 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2046 out_freeiov:
2047 	if (iov != iovstack)
2048 		kfree(iov);
2049 	return err;
2050 }
2051 
2052 /*
2053  *	BSD sendmsg interface
2054  */
2055 
2056 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2057 {
2058 	int fput_needed, err;
2059 	struct msghdr msg_sys;
2060 	struct socket *sock;
2061 
2062 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2063 	if (!sock)
2064 		goto out;
2065 
2066 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2067 
2068 	fput_light(sock->file, fput_needed);
2069 out:
2070 	return err;
2071 }
2072 
2073 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2074 {
2075 	if (flags & MSG_CMSG_COMPAT)
2076 		return -EINVAL;
2077 	return __sys_sendmsg(fd, msg, flags);
2078 }
2079 
2080 /*
2081  *	Linux sendmmsg interface
2082  */
2083 
2084 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2085 		   unsigned int flags)
2086 {
2087 	int fput_needed, err, datagrams;
2088 	struct socket *sock;
2089 	struct mmsghdr __user *entry;
2090 	struct compat_mmsghdr __user *compat_entry;
2091 	struct msghdr msg_sys;
2092 	struct used_address used_address;
2093 
2094 	if (vlen > UIO_MAXIOV)
2095 		vlen = UIO_MAXIOV;
2096 
2097 	datagrams = 0;
2098 
2099 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2100 	if (!sock)
2101 		return err;
2102 
2103 	used_address.name_len = UINT_MAX;
2104 	entry = mmsg;
2105 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2106 	err = 0;
2107 
2108 	while (datagrams < vlen) {
2109 		if (MSG_CMSG_COMPAT & flags) {
2110 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2111 					     &msg_sys, flags, &used_address);
2112 			if (err < 0)
2113 				break;
2114 			err = __put_user(err, &compat_entry->msg_len);
2115 			++compat_entry;
2116 		} else {
2117 			err = ___sys_sendmsg(sock,
2118 					     (struct user_msghdr __user *)entry,
2119 					     &msg_sys, flags, &used_address);
2120 			if (err < 0)
2121 				break;
2122 			err = put_user(err, &entry->msg_len);
2123 			++entry;
2124 		}
2125 
2126 		if (err)
2127 			break;
2128 		++datagrams;
2129 	}
2130 
2131 	fput_light(sock->file, fput_needed);
2132 
2133 	/* We only return an error if no datagrams were able to be sent */
2134 	if (datagrams != 0)
2135 		return datagrams;
2136 
2137 	return err;
2138 }
2139 
2140 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2141 		unsigned int, vlen, unsigned int, flags)
2142 {
2143 	if (flags & MSG_CMSG_COMPAT)
2144 		return -EINVAL;
2145 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2146 }
2147 
2148 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2149 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2150 {
2151 	struct compat_msghdr __user *msg_compat =
2152 	    (struct compat_msghdr __user *)msg;
2153 	struct iovec iovstack[UIO_FASTIOV];
2154 	struct iovec *iov = iovstack;
2155 	unsigned long cmsg_ptr;
2156 	int total_len, len;
2157 	ssize_t err;
2158 
2159 	/* kernel mode address */
2160 	struct sockaddr_storage addr;
2161 
2162 	/* user mode address pointers */
2163 	struct sockaddr __user *uaddr;
2164 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2165 
2166 	msg_sys->msg_name = &addr;
2167 
2168 	if (MSG_CMSG_COMPAT & flags)
2169 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2170 	else
2171 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2172 	if (err < 0)
2173 		goto out_freeiov;
2174 	total_len = err;
2175 
2176 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2177 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2178 
2179 	/* We assume all kernel code knows the size of sockaddr_storage */
2180 	msg_sys->msg_namelen = 0;
2181 
2182 	if (sock->file->f_flags & O_NONBLOCK)
2183 		flags |= MSG_DONTWAIT;
2184 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2185 							  total_len, flags);
2186 	if (err < 0)
2187 		goto out_freeiov;
2188 	len = err;
2189 
2190 	if (uaddr != NULL) {
2191 		err = move_addr_to_user(&addr,
2192 					msg_sys->msg_namelen, uaddr,
2193 					uaddr_len);
2194 		if (err < 0)
2195 			goto out_freeiov;
2196 	}
2197 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2198 			 COMPAT_FLAGS(msg));
2199 	if (err)
2200 		goto out_freeiov;
2201 	if (MSG_CMSG_COMPAT & flags)
2202 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2203 				 &msg_compat->msg_controllen);
2204 	else
2205 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2206 				 &msg->msg_controllen);
2207 	if (err)
2208 		goto out_freeiov;
2209 	err = len;
2210 
2211 out_freeiov:
2212 	if (iov != iovstack)
2213 		kfree(iov);
2214 	return err;
2215 }
2216 
2217 /*
2218  *	BSD recvmsg interface
2219  */
2220 
2221 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2222 {
2223 	int fput_needed, err;
2224 	struct msghdr msg_sys;
2225 	struct socket *sock;
2226 
2227 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228 	if (!sock)
2229 		goto out;
2230 
2231 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2232 
2233 	fput_light(sock->file, fput_needed);
2234 out:
2235 	return err;
2236 }
2237 
2238 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2239 		unsigned int, flags)
2240 {
2241 	if (flags & MSG_CMSG_COMPAT)
2242 		return -EINVAL;
2243 	return __sys_recvmsg(fd, msg, flags);
2244 }
2245 
2246 /*
2247  *     Linux recvmmsg interface
2248  */
2249 
2250 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2251 		   unsigned int flags, struct timespec *timeout)
2252 {
2253 	int fput_needed, err, datagrams;
2254 	struct socket *sock;
2255 	struct mmsghdr __user *entry;
2256 	struct compat_mmsghdr __user *compat_entry;
2257 	struct msghdr msg_sys;
2258 	struct timespec end_time;
2259 
2260 	if (timeout &&
2261 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2262 				    timeout->tv_nsec))
2263 		return -EINVAL;
2264 
2265 	datagrams = 0;
2266 
2267 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2268 	if (!sock)
2269 		return err;
2270 
2271 	err = sock_error(sock->sk);
2272 	if (err)
2273 		goto out_put;
2274 
2275 	entry = mmsg;
2276 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2277 
2278 	while (datagrams < vlen) {
2279 		/*
2280 		 * No need to ask LSM for more than the first datagram.
2281 		 */
2282 		if (MSG_CMSG_COMPAT & flags) {
2283 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2284 					     &msg_sys, flags & ~MSG_WAITFORONE,
2285 					     datagrams);
2286 			if (err < 0)
2287 				break;
2288 			err = __put_user(err, &compat_entry->msg_len);
2289 			++compat_entry;
2290 		} else {
2291 			err = ___sys_recvmsg(sock,
2292 					     (struct user_msghdr __user *)entry,
2293 					     &msg_sys, flags & ~MSG_WAITFORONE,
2294 					     datagrams);
2295 			if (err < 0)
2296 				break;
2297 			err = put_user(err, &entry->msg_len);
2298 			++entry;
2299 		}
2300 
2301 		if (err)
2302 			break;
2303 		++datagrams;
2304 
2305 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2306 		if (flags & MSG_WAITFORONE)
2307 			flags |= MSG_DONTWAIT;
2308 
2309 		if (timeout) {
2310 			ktime_get_ts(timeout);
2311 			*timeout = timespec_sub(end_time, *timeout);
2312 			if (timeout->tv_sec < 0) {
2313 				timeout->tv_sec = timeout->tv_nsec = 0;
2314 				break;
2315 			}
2316 
2317 			/* Timeout, return less than vlen datagrams */
2318 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2319 				break;
2320 		}
2321 
2322 		/* Out of band data, return right away */
2323 		if (msg_sys.msg_flags & MSG_OOB)
2324 			break;
2325 	}
2326 
2327 out_put:
2328 	fput_light(sock->file, fput_needed);
2329 
2330 	if (err == 0)
2331 		return datagrams;
2332 
2333 	if (datagrams != 0) {
2334 		/*
2335 		 * We may return less entries than requested (vlen) if the
2336 		 * sock is non block and there aren't enough datagrams...
2337 		 */
2338 		if (err != -EAGAIN) {
2339 			/*
2340 			 * ... or  if recvmsg returns an error after we
2341 			 * received some datagrams, where we record the
2342 			 * error to return on the next call or if the
2343 			 * app asks about it using getsockopt(SO_ERROR).
2344 			 */
2345 			sock->sk->sk_err = -err;
2346 		}
2347 
2348 		return datagrams;
2349 	}
2350 
2351 	return err;
2352 }
2353 
2354 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2355 		unsigned int, vlen, unsigned int, flags,
2356 		struct timespec __user *, timeout)
2357 {
2358 	int datagrams;
2359 	struct timespec timeout_sys;
2360 
2361 	if (flags & MSG_CMSG_COMPAT)
2362 		return -EINVAL;
2363 
2364 	if (!timeout)
2365 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2366 
2367 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2368 		return -EFAULT;
2369 
2370 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2371 
2372 	if (datagrams > 0 &&
2373 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2374 		datagrams = -EFAULT;
2375 
2376 	return datagrams;
2377 }
2378 
2379 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2380 /* Argument list sizes for sys_socketcall */
2381 #define AL(x) ((x) * sizeof(unsigned long))
2382 static const unsigned char nargs[21] = {
2383 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2384 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2385 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2386 	AL(4), AL(5), AL(4)
2387 };
2388 
2389 #undef AL
2390 
2391 /*
2392  *	System call vectors.
2393  *
2394  *	Argument checking cleaned up. Saved 20% in size.
2395  *  This function doesn't need to set the kernel lock because
2396  *  it is set by the callees.
2397  */
2398 
2399 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2400 {
2401 	unsigned long a[AUDITSC_ARGS];
2402 	unsigned long a0, a1;
2403 	int err;
2404 	unsigned int len;
2405 
2406 	if (call < 1 || call > SYS_SENDMMSG)
2407 		return -EINVAL;
2408 
2409 	len = nargs[call];
2410 	if (len > sizeof(a))
2411 		return -EINVAL;
2412 
2413 	/* copy_from_user should be SMP safe. */
2414 	if (copy_from_user(a, args, len))
2415 		return -EFAULT;
2416 
2417 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2418 	if (err)
2419 		return err;
2420 
2421 	a0 = a[0];
2422 	a1 = a[1];
2423 
2424 	switch (call) {
2425 	case SYS_SOCKET:
2426 		err = sys_socket(a0, a1, a[2]);
2427 		break;
2428 	case SYS_BIND:
2429 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2430 		break;
2431 	case SYS_CONNECT:
2432 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2433 		break;
2434 	case SYS_LISTEN:
2435 		err = sys_listen(a0, a1);
2436 		break;
2437 	case SYS_ACCEPT:
2438 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2439 				  (int __user *)a[2], 0);
2440 		break;
2441 	case SYS_GETSOCKNAME:
2442 		err =
2443 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2444 				    (int __user *)a[2]);
2445 		break;
2446 	case SYS_GETPEERNAME:
2447 		err =
2448 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2449 				    (int __user *)a[2]);
2450 		break;
2451 	case SYS_SOCKETPAIR:
2452 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2453 		break;
2454 	case SYS_SEND:
2455 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2456 		break;
2457 	case SYS_SENDTO:
2458 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2459 				 (struct sockaddr __user *)a[4], a[5]);
2460 		break;
2461 	case SYS_RECV:
2462 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2463 		break;
2464 	case SYS_RECVFROM:
2465 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2466 				   (struct sockaddr __user *)a[4],
2467 				   (int __user *)a[5]);
2468 		break;
2469 	case SYS_SHUTDOWN:
2470 		err = sys_shutdown(a0, a1);
2471 		break;
2472 	case SYS_SETSOCKOPT:
2473 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2474 		break;
2475 	case SYS_GETSOCKOPT:
2476 		err =
2477 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2478 				   (int __user *)a[4]);
2479 		break;
2480 	case SYS_SENDMSG:
2481 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2482 		break;
2483 	case SYS_SENDMMSG:
2484 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2485 		break;
2486 	case SYS_RECVMSG:
2487 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2488 		break;
2489 	case SYS_RECVMMSG:
2490 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2491 				   (struct timespec __user *)a[4]);
2492 		break;
2493 	case SYS_ACCEPT4:
2494 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2495 				  (int __user *)a[2], a[3]);
2496 		break;
2497 	default:
2498 		err = -EINVAL;
2499 		break;
2500 	}
2501 	return err;
2502 }
2503 
2504 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2505 
2506 /**
2507  *	sock_register - add a socket protocol handler
2508  *	@ops: description of protocol
2509  *
2510  *	This function is called by a protocol handler that wants to
2511  *	advertise its address family, and have it linked into the
2512  *	socket interface. The value ops->family corresponds to the
2513  *	socket system call protocol family.
2514  */
2515 int sock_register(const struct net_proto_family *ops)
2516 {
2517 	int err;
2518 
2519 	if (ops->family >= NPROTO) {
2520 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2521 		return -ENOBUFS;
2522 	}
2523 
2524 	spin_lock(&net_family_lock);
2525 	if (rcu_dereference_protected(net_families[ops->family],
2526 				      lockdep_is_held(&net_family_lock)))
2527 		err = -EEXIST;
2528 	else {
2529 		rcu_assign_pointer(net_families[ops->family], ops);
2530 		err = 0;
2531 	}
2532 	spin_unlock(&net_family_lock);
2533 
2534 	pr_info("NET: Registered protocol family %d\n", ops->family);
2535 	return err;
2536 }
2537 EXPORT_SYMBOL(sock_register);
2538 
2539 /**
2540  *	sock_unregister - remove a protocol handler
2541  *	@family: protocol family to remove
2542  *
2543  *	This function is called by a protocol handler that wants to
2544  *	remove its address family, and have it unlinked from the
2545  *	new socket creation.
2546  *
2547  *	If protocol handler is a module, then it can use module reference
2548  *	counts to protect against new references. If protocol handler is not
2549  *	a module then it needs to provide its own protection in
2550  *	the ops->create routine.
2551  */
2552 void sock_unregister(int family)
2553 {
2554 	BUG_ON(family < 0 || family >= NPROTO);
2555 
2556 	spin_lock(&net_family_lock);
2557 	RCU_INIT_POINTER(net_families[family], NULL);
2558 	spin_unlock(&net_family_lock);
2559 
2560 	synchronize_rcu();
2561 
2562 	pr_info("NET: Unregistered protocol family %d\n", family);
2563 }
2564 EXPORT_SYMBOL(sock_unregister);
2565 
2566 static int __init sock_init(void)
2567 {
2568 	int err;
2569 	/*
2570 	 *      Initialize the network sysctl infrastructure.
2571 	 */
2572 	err = net_sysctl_init();
2573 	if (err)
2574 		goto out;
2575 
2576 	/*
2577 	 *      Initialize skbuff SLAB cache
2578 	 */
2579 	skb_init();
2580 
2581 	/*
2582 	 *      Initialize the protocols module.
2583 	 */
2584 
2585 	init_inodecache();
2586 
2587 	err = register_filesystem(&sock_fs_type);
2588 	if (err)
2589 		goto out_fs;
2590 	sock_mnt = kern_mount(&sock_fs_type);
2591 	if (IS_ERR(sock_mnt)) {
2592 		err = PTR_ERR(sock_mnt);
2593 		goto out_mount;
2594 	}
2595 
2596 	/* The real protocol initialization is performed in later initcalls.
2597 	 */
2598 
2599 #ifdef CONFIG_NETFILTER
2600 	err = netfilter_init();
2601 	if (err)
2602 		goto out;
2603 #endif
2604 
2605 	ptp_classifier_init();
2606 
2607 out:
2608 	return err;
2609 
2610 out_mount:
2611 	unregister_filesystem(&sock_fs_type);
2612 out_fs:
2613 	goto out;
2614 }
2615 
2616 core_initcall(sock_init);	/* early initcall */
2617 
2618 #ifdef CONFIG_PROC_FS
2619 void socket_seq_show(struct seq_file *seq)
2620 {
2621 	int cpu;
2622 	int counter = 0;
2623 
2624 	for_each_possible_cpu(cpu)
2625 	    counter += per_cpu(sockets_in_use, cpu);
2626 
2627 	/* It can be negative, by the way. 8) */
2628 	if (counter < 0)
2629 		counter = 0;
2630 
2631 	seq_printf(seq, "sockets: used %d\n", counter);
2632 }
2633 #endif				/* CONFIG_PROC_FS */
2634 
2635 #ifdef CONFIG_COMPAT
2636 static int do_siocgstamp(struct net *net, struct socket *sock,
2637 			 unsigned int cmd, void __user *up)
2638 {
2639 	mm_segment_t old_fs = get_fs();
2640 	struct timeval ktv;
2641 	int err;
2642 
2643 	set_fs(KERNEL_DS);
2644 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2645 	set_fs(old_fs);
2646 	if (!err)
2647 		err = compat_put_timeval(&ktv, up);
2648 
2649 	return err;
2650 }
2651 
2652 static int do_siocgstampns(struct net *net, struct socket *sock,
2653 			   unsigned int cmd, void __user *up)
2654 {
2655 	mm_segment_t old_fs = get_fs();
2656 	struct timespec kts;
2657 	int err;
2658 
2659 	set_fs(KERNEL_DS);
2660 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2661 	set_fs(old_fs);
2662 	if (!err)
2663 		err = compat_put_timespec(&kts, up);
2664 
2665 	return err;
2666 }
2667 
2668 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2669 {
2670 	struct ifreq __user *uifr;
2671 	int err;
2672 
2673 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2674 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2675 		return -EFAULT;
2676 
2677 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2678 	if (err)
2679 		return err;
2680 
2681 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2682 		return -EFAULT;
2683 
2684 	return 0;
2685 }
2686 
2687 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2688 {
2689 	struct compat_ifconf ifc32;
2690 	struct ifconf ifc;
2691 	struct ifconf __user *uifc;
2692 	struct compat_ifreq __user *ifr32;
2693 	struct ifreq __user *ifr;
2694 	unsigned int i, j;
2695 	int err;
2696 
2697 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2698 		return -EFAULT;
2699 
2700 	memset(&ifc, 0, sizeof(ifc));
2701 	if (ifc32.ifcbuf == 0) {
2702 		ifc32.ifc_len = 0;
2703 		ifc.ifc_len = 0;
2704 		ifc.ifc_req = NULL;
2705 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2706 	} else {
2707 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2708 			sizeof(struct ifreq);
2709 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2710 		ifc.ifc_len = len;
2711 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2712 		ifr32 = compat_ptr(ifc32.ifcbuf);
2713 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2714 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2715 				return -EFAULT;
2716 			ifr++;
2717 			ifr32++;
2718 		}
2719 	}
2720 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2721 		return -EFAULT;
2722 
2723 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2724 	if (err)
2725 		return err;
2726 
2727 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2728 		return -EFAULT;
2729 
2730 	ifr = ifc.ifc_req;
2731 	ifr32 = compat_ptr(ifc32.ifcbuf);
2732 	for (i = 0, j = 0;
2733 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2734 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2735 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2736 			return -EFAULT;
2737 		ifr32++;
2738 		ifr++;
2739 	}
2740 
2741 	if (ifc32.ifcbuf == 0) {
2742 		/* Translate from 64-bit structure multiple to
2743 		 * a 32-bit one.
2744 		 */
2745 		i = ifc.ifc_len;
2746 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2747 		ifc32.ifc_len = i;
2748 	} else {
2749 		ifc32.ifc_len = i;
2750 	}
2751 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2752 		return -EFAULT;
2753 
2754 	return 0;
2755 }
2756 
2757 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2758 {
2759 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2760 	bool convert_in = false, convert_out = false;
2761 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2762 	struct ethtool_rxnfc __user *rxnfc;
2763 	struct ifreq __user *ifr;
2764 	u32 rule_cnt = 0, actual_rule_cnt;
2765 	u32 ethcmd;
2766 	u32 data;
2767 	int ret;
2768 
2769 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2770 		return -EFAULT;
2771 
2772 	compat_rxnfc = compat_ptr(data);
2773 
2774 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2775 		return -EFAULT;
2776 
2777 	/* Most ethtool structures are defined without padding.
2778 	 * Unfortunately struct ethtool_rxnfc is an exception.
2779 	 */
2780 	switch (ethcmd) {
2781 	default:
2782 		break;
2783 	case ETHTOOL_GRXCLSRLALL:
2784 		/* Buffer size is variable */
2785 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2786 			return -EFAULT;
2787 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2788 			return -ENOMEM;
2789 		buf_size += rule_cnt * sizeof(u32);
2790 		/* fall through */
2791 	case ETHTOOL_GRXRINGS:
2792 	case ETHTOOL_GRXCLSRLCNT:
2793 	case ETHTOOL_GRXCLSRULE:
2794 	case ETHTOOL_SRXCLSRLINS:
2795 		convert_out = true;
2796 		/* fall through */
2797 	case ETHTOOL_SRXCLSRLDEL:
2798 		buf_size += sizeof(struct ethtool_rxnfc);
2799 		convert_in = true;
2800 		break;
2801 	}
2802 
2803 	ifr = compat_alloc_user_space(buf_size);
2804 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2805 
2806 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2807 		return -EFAULT;
2808 
2809 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2810 		     &ifr->ifr_ifru.ifru_data))
2811 		return -EFAULT;
2812 
2813 	if (convert_in) {
2814 		/* We expect there to be holes between fs.m_ext and
2815 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2816 		 */
2817 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2818 			     sizeof(compat_rxnfc->fs.m_ext) !=
2819 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2820 			     sizeof(rxnfc->fs.m_ext));
2821 		BUILD_BUG_ON(
2822 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2823 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2824 			offsetof(struct ethtool_rxnfc, fs.location) -
2825 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2826 
2827 		if (copy_in_user(rxnfc, compat_rxnfc,
2828 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2829 				 (void __user *)rxnfc) ||
2830 		    copy_in_user(&rxnfc->fs.ring_cookie,
2831 				 &compat_rxnfc->fs.ring_cookie,
2832 				 (void __user *)(&rxnfc->fs.location + 1) -
2833 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2834 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2835 				 sizeof(rxnfc->rule_cnt)))
2836 			return -EFAULT;
2837 	}
2838 
2839 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2840 	if (ret)
2841 		return ret;
2842 
2843 	if (convert_out) {
2844 		if (copy_in_user(compat_rxnfc, rxnfc,
2845 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2846 				 (const void __user *)rxnfc) ||
2847 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2848 				 &rxnfc->fs.ring_cookie,
2849 				 (const void __user *)(&rxnfc->fs.location + 1) -
2850 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2851 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2852 				 sizeof(rxnfc->rule_cnt)))
2853 			return -EFAULT;
2854 
2855 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2856 			/* As an optimisation, we only copy the actual
2857 			 * number of rules that the underlying
2858 			 * function returned.  Since Mallory might
2859 			 * change the rule count in user memory, we
2860 			 * check that it is less than the rule count
2861 			 * originally given (as the user buffer size),
2862 			 * which has been range-checked.
2863 			 */
2864 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2865 				return -EFAULT;
2866 			if (actual_rule_cnt < rule_cnt)
2867 				rule_cnt = actual_rule_cnt;
2868 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2869 					 &rxnfc->rule_locs[0],
2870 					 rule_cnt * sizeof(u32)))
2871 				return -EFAULT;
2872 		}
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2879 {
2880 	void __user *uptr;
2881 	compat_uptr_t uptr32;
2882 	struct ifreq __user *uifr;
2883 
2884 	uifr = compat_alloc_user_space(sizeof(*uifr));
2885 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2886 		return -EFAULT;
2887 
2888 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2889 		return -EFAULT;
2890 
2891 	uptr = compat_ptr(uptr32);
2892 
2893 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2894 		return -EFAULT;
2895 
2896 	return dev_ioctl(net, SIOCWANDEV, uifr);
2897 }
2898 
2899 static int bond_ioctl(struct net *net, unsigned int cmd,
2900 			 struct compat_ifreq __user *ifr32)
2901 {
2902 	struct ifreq kifr;
2903 	mm_segment_t old_fs;
2904 	int err;
2905 
2906 	switch (cmd) {
2907 	case SIOCBONDENSLAVE:
2908 	case SIOCBONDRELEASE:
2909 	case SIOCBONDSETHWADDR:
2910 	case SIOCBONDCHANGEACTIVE:
2911 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2912 			return -EFAULT;
2913 
2914 		old_fs = get_fs();
2915 		set_fs(KERNEL_DS);
2916 		err = dev_ioctl(net, cmd,
2917 				(struct ifreq __user __force *) &kifr);
2918 		set_fs(old_fs);
2919 
2920 		return err;
2921 	default:
2922 		return -ENOIOCTLCMD;
2923 	}
2924 }
2925 
2926 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2927 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2928 				 struct compat_ifreq __user *u_ifreq32)
2929 {
2930 	struct ifreq __user *u_ifreq64;
2931 	char tmp_buf[IFNAMSIZ];
2932 	void __user *data64;
2933 	u32 data32;
2934 
2935 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2936 			   IFNAMSIZ))
2937 		return -EFAULT;
2938 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2939 		return -EFAULT;
2940 	data64 = compat_ptr(data32);
2941 
2942 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2943 
2944 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2945 			 IFNAMSIZ))
2946 		return -EFAULT;
2947 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2948 		return -EFAULT;
2949 
2950 	return dev_ioctl(net, cmd, u_ifreq64);
2951 }
2952 
2953 static int dev_ifsioc(struct net *net, struct socket *sock,
2954 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2955 {
2956 	struct ifreq __user *uifr;
2957 	int err;
2958 
2959 	uifr = compat_alloc_user_space(sizeof(*uifr));
2960 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2961 		return -EFAULT;
2962 
2963 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2964 
2965 	if (!err) {
2966 		switch (cmd) {
2967 		case SIOCGIFFLAGS:
2968 		case SIOCGIFMETRIC:
2969 		case SIOCGIFMTU:
2970 		case SIOCGIFMEM:
2971 		case SIOCGIFHWADDR:
2972 		case SIOCGIFINDEX:
2973 		case SIOCGIFADDR:
2974 		case SIOCGIFBRDADDR:
2975 		case SIOCGIFDSTADDR:
2976 		case SIOCGIFNETMASK:
2977 		case SIOCGIFPFLAGS:
2978 		case SIOCGIFTXQLEN:
2979 		case SIOCGMIIPHY:
2980 		case SIOCGMIIREG:
2981 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2982 				err = -EFAULT;
2983 			break;
2984 		}
2985 	}
2986 	return err;
2987 }
2988 
2989 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2990 			struct compat_ifreq __user *uifr32)
2991 {
2992 	struct ifreq ifr;
2993 	struct compat_ifmap __user *uifmap32;
2994 	mm_segment_t old_fs;
2995 	int err;
2996 
2997 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2998 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2999 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3000 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3001 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3002 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3003 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3004 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3005 	if (err)
3006 		return -EFAULT;
3007 
3008 	old_fs = get_fs();
3009 	set_fs(KERNEL_DS);
3010 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3011 	set_fs(old_fs);
3012 
3013 	if (cmd == SIOCGIFMAP && !err) {
3014 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3015 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3016 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3017 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3018 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3019 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3020 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3021 		if (err)
3022 			err = -EFAULT;
3023 	}
3024 	return err;
3025 }
3026 
3027 struct rtentry32 {
3028 	u32		rt_pad1;
3029 	struct sockaddr rt_dst;         /* target address               */
3030 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3031 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3032 	unsigned short	rt_flags;
3033 	short		rt_pad2;
3034 	u32		rt_pad3;
3035 	unsigned char	rt_tos;
3036 	unsigned char	rt_class;
3037 	short		rt_pad4;
3038 	short		rt_metric;      /* +1 for binary compatibility! */
3039 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3040 	u32		rt_mtu;         /* per route MTU/Window         */
3041 	u32		rt_window;      /* Window clamping              */
3042 	unsigned short  rt_irtt;        /* Initial RTT                  */
3043 };
3044 
3045 struct in6_rtmsg32 {
3046 	struct in6_addr		rtmsg_dst;
3047 	struct in6_addr		rtmsg_src;
3048 	struct in6_addr		rtmsg_gateway;
3049 	u32			rtmsg_type;
3050 	u16			rtmsg_dst_len;
3051 	u16			rtmsg_src_len;
3052 	u32			rtmsg_metric;
3053 	u32			rtmsg_info;
3054 	u32			rtmsg_flags;
3055 	s32			rtmsg_ifindex;
3056 };
3057 
3058 static int routing_ioctl(struct net *net, struct socket *sock,
3059 			 unsigned int cmd, void __user *argp)
3060 {
3061 	int ret;
3062 	void *r = NULL;
3063 	struct in6_rtmsg r6;
3064 	struct rtentry r4;
3065 	char devname[16];
3066 	u32 rtdev;
3067 	mm_segment_t old_fs = get_fs();
3068 
3069 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3070 		struct in6_rtmsg32 __user *ur6 = argp;
3071 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3072 			3 * sizeof(struct in6_addr));
3073 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3074 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3075 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3076 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3077 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3078 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3079 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3080 
3081 		r = (void *) &r6;
3082 	} else { /* ipv4 */
3083 		struct rtentry32 __user *ur4 = argp;
3084 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3085 					3 * sizeof(struct sockaddr));
3086 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3087 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3088 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3089 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3090 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3091 		ret |= get_user(rtdev, &(ur4->rt_dev));
3092 		if (rtdev) {
3093 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3094 			r4.rt_dev = (char __user __force *)devname;
3095 			devname[15] = 0;
3096 		} else
3097 			r4.rt_dev = NULL;
3098 
3099 		r = (void *) &r4;
3100 	}
3101 
3102 	if (ret) {
3103 		ret = -EFAULT;
3104 		goto out;
3105 	}
3106 
3107 	set_fs(KERNEL_DS);
3108 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109 	set_fs(old_fs);
3110 
3111 out:
3112 	return ret;
3113 }
3114 
3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3116  * for some operations; this forces use of the newer bridge-utils that
3117  * use compatible ioctls
3118  */
3119 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3120 {
3121 	compat_ulong_t tmp;
3122 
3123 	if (get_user(tmp, argp))
3124 		return -EFAULT;
3125 	if (tmp == BRCTL_GET_VERSION)
3126 		return BRCTL_VERSION + 1;
3127 	return -EINVAL;
3128 }
3129 
3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3131 			 unsigned int cmd, unsigned long arg)
3132 {
3133 	void __user *argp = compat_ptr(arg);
3134 	struct sock *sk = sock->sk;
3135 	struct net *net = sock_net(sk);
3136 
3137 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3138 		return compat_ifr_data_ioctl(net, cmd, argp);
3139 
3140 	switch (cmd) {
3141 	case SIOCSIFBR:
3142 	case SIOCGIFBR:
3143 		return old_bridge_ioctl(argp);
3144 	case SIOCGIFNAME:
3145 		return dev_ifname32(net, argp);
3146 	case SIOCGIFCONF:
3147 		return dev_ifconf(net, argp);
3148 	case SIOCETHTOOL:
3149 		return ethtool_ioctl(net, argp);
3150 	case SIOCWANDEV:
3151 		return compat_siocwandev(net, argp);
3152 	case SIOCGIFMAP:
3153 	case SIOCSIFMAP:
3154 		return compat_sioc_ifmap(net, cmd, argp);
3155 	case SIOCBONDENSLAVE:
3156 	case SIOCBONDRELEASE:
3157 	case SIOCBONDSETHWADDR:
3158 	case SIOCBONDCHANGEACTIVE:
3159 		return bond_ioctl(net, cmd, argp);
3160 	case SIOCADDRT:
3161 	case SIOCDELRT:
3162 		return routing_ioctl(net, sock, cmd, argp);
3163 	case SIOCGSTAMP:
3164 		return do_siocgstamp(net, sock, cmd, argp);
3165 	case SIOCGSTAMPNS:
3166 		return do_siocgstampns(net, sock, cmd, argp);
3167 	case SIOCBONDSLAVEINFOQUERY:
3168 	case SIOCBONDINFOQUERY:
3169 	case SIOCSHWTSTAMP:
3170 	case SIOCGHWTSTAMP:
3171 		return compat_ifr_data_ioctl(net, cmd, argp);
3172 
3173 	case FIOSETOWN:
3174 	case SIOCSPGRP:
3175 	case FIOGETOWN:
3176 	case SIOCGPGRP:
3177 	case SIOCBRADDBR:
3178 	case SIOCBRDELBR:
3179 	case SIOCGIFVLAN:
3180 	case SIOCSIFVLAN:
3181 	case SIOCADDDLCI:
3182 	case SIOCDELDLCI:
3183 		return sock_ioctl(file, cmd, arg);
3184 
3185 	case SIOCGIFFLAGS:
3186 	case SIOCSIFFLAGS:
3187 	case SIOCGIFMETRIC:
3188 	case SIOCSIFMETRIC:
3189 	case SIOCGIFMTU:
3190 	case SIOCSIFMTU:
3191 	case SIOCGIFMEM:
3192 	case SIOCSIFMEM:
3193 	case SIOCGIFHWADDR:
3194 	case SIOCSIFHWADDR:
3195 	case SIOCADDMULTI:
3196 	case SIOCDELMULTI:
3197 	case SIOCGIFINDEX:
3198 	case SIOCGIFADDR:
3199 	case SIOCSIFADDR:
3200 	case SIOCSIFHWBROADCAST:
3201 	case SIOCDIFADDR:
3202 	case SIOCGIFBRDADDR:
3203 	case SIOCSIFBRDADDR:
3204 	case SIOCGIFDSTADDR:
3205 	case SIOCSIFDSTADDR:
3206 	case SIOCGIFNETMASK:
3207 	case SIOCSIFNETMASK:
3208 	case SIOCSIFPFLAGS:
3209 	case SIOCGIFPFLAGS:
3210 	case SIOCGIFTXQLEN:
3211 	case SIOCSIFTXQLEN:
3212 	case SIOCBRADDIF:
3213 	case SIOCBRDELIF:
3214 	case SIOCSIFNAME:
3215 	case SIOCGMIIPHY:
3216 	case SIOCGMIIREG:
3217 	case SIOCSMIIREG:
3218 		return dev_ifsioc(net, sock, cmd, argp);
3219 
3220 	case SIOCSARP:
3221 	case SIOCGARP:
3222 	case SIOCDARP:
3223 	case SIOCATMARK:
3224 		return sock_do_ioctl(net, sock, cmd, arg);
3225 	}
3226 
3227 	return -ENOIOCTLCMD;
3228 }
3229 
3230 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3231 			      unsigned long arg)
3232 {
3233 	struct socket *sock = file->private_data;
3234 	int ret = -ENOIOCTLCMD;
3235 	struct sock *sk;
3236 	struct net *net;
3237 
3238 	sk = sock->sk;
3239 	net = sock_net(sk);
3240 
3241 	if (sock->ops->compat_ioctl)
3242 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243 
3244 	if (ret == -ENOIOCTLCMD &&
3245 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3247 
3248 	if (ret == -ENOIOCTLCMD)
3249 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250 
3251 	return ret;
3252 }
3253 #endif
3254 
3255 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256 {
3257 	return sock->ops->bind(sock, addr, addrlen);
3258 }
3259 EXPORT_SYMBOL(kernel_bind);
3260 
3261 int kernel_listen(struct socket *sock, int backlog)
3262 {
3263 	return sock->ops->listen(sock, backlog);
3264 }
3265 EXPORT_SYMBOL(kernel_listen);
3266 
3267 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268 {
3269 	struct sock *sk = sock->sk;
3270 	int err;
3271 
3272 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273 			       newsock);
3274 	if (err < 0)
3275 		goto done;
3276 
3277 	err = sock->ops->accept(sock, *newsock, flags);
3278 	if (err < 0) {
3279 		sock_release(*newsock);
3280 		*newsock = NULL;
3281 		goto done;
3282 	}
3283 
3284 	(*newsock)->ops = sock->ops;
3285 	__module_get((*newsock)->ops->owner);
3286 
3287 done:
3288 	return err;
3289 }
3290 EXPORT_SYMBOL(kernel_accept);
3291 
3292 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293 		   int flags)
3294 {
3295 	return sock->ops->connect(sock, addr, addrlen, flags);
3296 }
3297 EXPORT_SYMBOL(kernel_connect);
3298 
3299 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300 			 int *addrlen)
3301 {
3302 	return sock->ops->getname(sock, addr, addrlen, 0);
3303 }
3304 EXPORT_SYMBOL(kernel_getsockname);
3305 
3306 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307 			 int *addrlen)
3308 {
3309 	return sock->ops->getname(sock, addr, addrlen, 1);
3310 }
3311 EXPORT_SYMBOL(kernel_getpeername);
3312 
3313 int kernel_getsockopt(struct socket *sock, int level, int optname,
3314 			char *optval, int *optlen)
3315 {
3316 	mm_segment_t oldfs = get_fs();
3317 	char __user *uoptval;
3318 	int __user *uoptlen;
3319 	int err;
3320 
3321 	uoptval = (char __user __force *) optval;
3322 	uoptlen = (int __user __force *) optlen;
3323 
3324 	set_fs(KERNEL_DS);
3325 	if (level == SOL_SOCKET)
3326 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327 	else
3328 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329 					    uoptlen);
3330 	set_fs(oldfs);
3331 	return err;
3332 }
3333 EXPORT_SYMBOL(kernel_getsockopt);
3334 
3335 int kernel_setsockopt(struct socket *sock, int level, int optname,
3336 			char *optval, unsigned int optlen)
3337 {
3338 	mm_segment_t oldfs = get_fs();
3339 	char __user *uoptval;
3340 	int err;
3341 
3342 	uoptval = (char __user __force *) optval;
3343 
3344 	set_fs(KERNEL_DS);
3345 	if (level == SOL_SOCKET)
3346 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347 	else
3348 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349 					    optlen);
3350 	set_fs(oldfs);
3351 	return err;
3352 }
3353 EXPORT_SYMBOL(kernel_setsockopt);
3354 
3355 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356 		    size_t size, int flags)
3357 {
3358 	if (sock->ops->sendpage)
3359 		return sock->ops->sendpage(sock, page, offset, size, flags);
3360 
3361 	return sock_no_sendpage(sock, page, offset, size, flags);
3362 }
3363 EXPORT_SYMBOL(kernel_sendpage);
3364 
3365 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3366 {
3367 	mm_segment_t oldfs = get_fs();
3368 	int err;
3369 
3370 	set_fs(KERNEL_DS);
3371 	err = sock->ops->ioctl(sock, cmd, arg);
3372 	set_fs(oldfs);
3373 
3374 	return err;
3375 }
3376 EXPORT_SYMBOL(kernel_sock_ioctl);
3377 
3378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3379 {
3380 	return sock->ops->shutdown(sock, how);
3381 }
3382 EXPORT_SYMBOL(kernel_sock_shutdown);
3383