xref: /linux/net/socket.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 			 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 			  unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105 
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 			      struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 			      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 			        struct pipe_inode_info *pipe, size_t len,
119 				unsigned int flags);
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static const struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 	.compat_ioctl = compat_sock_ioctl,
135 #endif
136 	.mmap =		sock_mmap,
137 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
138 	.release =	sock_close,
139 	.fasync =	sock_fasync,
140 	.sendpage =	sock_sendpage,
141 	.splice_write = generic_splice_sendpage,
142 	.splice_read =	sock_splice_read,
143 };
144 
145 /*
146  *	The protocol list. Each protocol is registered in here.
147  */
148 
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151 
152 /*
153  *	Statistics counters of the socket lists
154  */
155 
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157 
158 /*
159  * Support routines.
160  * Move socket addresses back and forth across the kernel/user
161  * divide and look after the messy bits.
162  */
163 
164 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
165 					   16 for IP, 16 for IPX,
166 					   24 for IPv6,
167 					   about 80 for AX.25
168 					   must be at least one bigger than
169 					   the AF_UNIX size (see net/unix/af_unix.c
170 					   :unix_mkname()).
171 					 */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 		      int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 #define SOCKFS_MAGIC 0x534F434B
239 
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	init_waitqueue_head(&ei->socket.wait);
250 
251 	ei->socket.fasync_list = NULL;
252 	ei->socket.state = SS_UNCONNECTED;
253 	ei->socket.flags = 0;
254 	ei->socket.ops = NULL;
255 	ei->socket.sk = NULL;
256 	ei->socket.file = NULL;
257 
258 	return &ei->vfs_inode;
259 }
260 
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 	kmem_cache_free(sock_inode_cachep,
264 			container_of(inode, struct socket_alloc, vfs_inode));
265 }
266 
267 static void init_once(void *foo)
268 {
269 	struct socket_alloc *ei = (struct socket_alloc *)foo;
270 
271 	inode_init_once(&ei->vfs_inode);
272 }
273 
274 static int init_inodecache(void)
275 {
276 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 					      sizeof(struct socket_alloc),
278 					      0,
279 					      (SLAB_HWCACHE_ALIGN |
280 					       SLAB_RECLAIM_ACCOUNT |
281 					       SLAB_MEM_SPREAD),
282 					      init_once);
283 	if (sock_inode_cachep == NULL)
284 		return -ENOMEM;
285 	return 0;
286 }
287 
288 static const struct super_operations sockfs_ops = {
289 	.alloc_inode =	sock_alloc_inode,
290 	.destroy_inode =sock_destroy_inode,
291 	.statfs =	simple_statfs,
292 };
293 
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 			 int flags, const char *dev_name, void *data,
296 			 struct vfsmount *mnt)
297 {
298 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 			     mnt);
300 }
301 
302 static struct vfsmount *sock_mnt __read_mostly;
303 
304 static struct file_system_type sock_fs_type = {
305 	.name =		"sockfs",
306 	.get_sb =	sockfs_get_sb,
307 	.kill_sb =	kill_anon_super,
308 };
309 
310 static int sockfs_delete_dentry(struct dentry *dentry)
311 {
312 	/*
313 	 * At creation time, we pretended this dentry was hashed
314 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 	 * At delete time, we restore the truth : not hashed.
316 	 * (so that dput() can proceed correctly)
317 	 */
318 	dentry->d_flags |= DCACHE_UNHASHED;
319 	return 0;
320 }
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static const struct dentry_operations sockfs_dentry_operations = {
332 	.d_delete = sockfs_delete_dentry,
333 	.d_dname  = sockfs_dname,
334 };
335 
336 /*
337  *	Obtains the first available file descriptor and sets it up for use.
338  *
339  *	These functions create file structures and maps them to fd space
340  *	of the current process. On success it returns file descriptor
341  *	and file struct implicitly stored in sock->file.
342  *	Note that another thread may close file descriptor before we return
343  *	from this function. We use the fact that now we do not refer
344  *	to socket after mapping. If one day we will need it, this
345  *	function will increment ref. count on file by 1.
346  *
347  *	In any case returned fd MAY BE not valid!
348  *	This race condition is unavoidable
349  *	with shared fd spaces, we cannot solve it inside kernel,
350  *	but we take care of internal coherence yet.
351  */
352 
353 static int sock_alloc_fd(struct file **filep, int flags)
354 {
355 	int fd;
356 
357 	fd = get_unused_fd_flags(flags);
358 	if (likely(fd >= 0)) {
359 		struct file *file = get_empty_filp();
360 
361 		*filep = file;
362 		if (unlikely(!file)) {
363 			put_unused_fd(fd);
364 			return -ENFILE;
365 		}
366 	} else
367 		*filep = NULL;
368 	return fd;
369 }
370 
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 {
373 	struct dentry *dentry;
374 	struct qstr name = { .name = "" };
375 
376 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 	if (unlikely(!dentry))
378 		return -ENOMEM;
379 
380 	dentry->d_op = &sockfs_dentry_operations;
381 	/*
382 	 * We dont want to push this dentry into global dentry hash table.
383 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 	 * This permits a working /proc/$pid/fd/XXX on sockets
385 	 */
386 	dentry->d_flags &= ~DCACHE_UNHASHED;
387 	d_instantiate(dentry, SOCK_INODE(sock));
388 
389 	sock->file = file;
390 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 		  &socket_file_ops);
392 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 	file->f_pos = 0;
395 	file->private_data = sock;
396 
397 	return 0;
398 }
399 
400 int sock_map_fd(struct socket *sock, int flags)
401 {
402 	struct file *newfile;
403 	int fd = sock_alloc_fd(&newfile, flags);
404 
405 	if (likely(fd >= 0)) {
406 		int err = sock_attach_fd(sock, newfile, flags);
407 
408 		if (unlikely(err < 0)) {
409 			put_filp(newfile);
410 			put_unused_fd(fd);
411 			return err;
412 		}
413 		fd_install(fd, newfile);
414 	}
415 	return fd;
416 }
417 
418 static struct socket *sock_from_file(struct file *file, int *err)
419 {
420 	if (file->f_op == &socket_file_ops)
421 		return file->private_data;	/* set in sock_map_fd */
422 
423 	*err = -ENOTSOCK;
424 	return NULL;
425 }
426 
427 /**
428  *	sockfd_lookup	- 	Go from a file number to its socket slot
429  *	@fd: file handle
430  *	@err: pointer to an error code return
431  *
432  *	The file handle passed in is locked and the socket it is bound
433  *	too is returned. If an error occurs the err pointer is overwritten
434  *	with a negative errno code and NULL is returned. The function checks
435  *	for both invalid handles and passing a handle which is not a socket.
436  *
437  *	On a success the socket object pointer is returned.
438  */
439 
440 struct socket *sockfd_lookup(int fd, int *err)
441 {
442 	struct file *file;
443 	struct socket *sock;
444 
445 	file = fget(fd);
446 	if (!file) {
447 		*err = -EBADF;
448 		return NULL;
449 	}
450 
451 	sock = sock_from_file(file, err);
452 	if (!sock)
453 		fput(file);
454 	return sock;
455 }
456 
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 {
459 	struct file *file;
460 	struct socket *sock;
461 
462 	*err = -EBADF;
463 	file = fget_light(fd, fput_needed);
464 	if (file) {
465 		sock = sock_from_file(file, err);
466 		if (sock)
467 			return sock;
468 		fput_light(file, *fput_needed);
469 	}
470 	return NULL;
471 }
472 
473 /**
474  *	sock_alloc	-	allocate a socket
475  *
476  *	Allocate a new inode and socket object. The two are bound together
477  *	and initialised. The socket is then returned. If we are out of inodes
478  *	NULL is returned.
479  */
480 
481 static struct socket *sock_alloc(void)
482 {
483 	struct inode *inode;
484 	struct socket *sock;
485 
486 	inode = new_inode(sock_mnt->mnt_sb);
487 	if (!inode)
488 		return NULL;
489 
490 	sock = SOCKET_I(inode);
491 
492 	kmemcheck_annotate_bitfield(sock, type);
493 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
494 	inode->i_uid = current_fsuid();
495 	inode->i_gid = current_fsgid();
496 
497 	percpu_add(sockets_in_use, 1);
498 	return sock;
499 }
500 
501 /*
502  *	In theory you can't get an open on this inode, but /proc provides
503  *	a back door. Remember to keep it shut otherwise you'll let the
504  *	creepy crawlies in.
505  */
506 
507 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
508 {
509 	return -ENXIO;
510 }
511 
512 const struct file_operations bad_sock_fops = {
513 	.owner = THIS_MODULE,
514 	.open = sock_no_open,
515 };
516 
517 /**
518  *	sock_release	-	close a socket
519  *	@sock: socket to close
520  *
521  *	The socket is released from the protocol stack if it has a release
522  *	callback, and the inode is then released if the socket is bound to
523  *	an inode not a file.
524  */
525 
526 void sock_release(struct socket *sock)
527 {
528 	if (sock->ops) {
529 		struct module *owner = sock->ops->owner;
530 
531 		sock->ops->release(sock);
532 		sock->ops = NULL;
533 		module_put(owner);
534 	}
535 
536 	if (sock->fasync_list)
537 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 
539 	percpu_sub(sockets_in_use, 1);
540 	if (!sock->file) {
541 		iput(SOCK_INODE(sock));
542 		return;
543 	}
544 	sock->file = NULL;
545 }
546 
547 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
548 		      union skb_shared_tx *shtx)
549 {
550 	shtx->flags = 0;
551 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
552 		shtx->hardware = 1;
553 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
554 		shtx->software = 1;
555 	return 0;
556 }
557 EXPORT_SYMBOL(sock_tx_timestamp);
558 
559 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
560 				 struct msghdr *msg, size_t size)
561 {
562 	struct sock_iocb *si = kiocb_to_siocb(iocb);
563 	int err;
564 
565 	si->sock = sock;
566 	si->scm = NULL;
567 	si->msg = msg;
568 	si->size = size;
569 
570 	err = security_socket_sendmsg(sock, msg, size);
571 	if (err)
572 		return err;
573 
574 	return sock->ops->sendmsg(iocb, sock, msg, size);
575 }
576 
577 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
578 {
579 	struct kiocb iocb;
580 	struct sock_iocb siocb;
581 	int ret;
582 
583 	init_sync_kiocb(&iocb, NULL);
584 	iocb.private = &siocb;
585 	ret = __sock_sendmsg(&iocb, sock, msg, size);
586 	if (-EIOCBQUEUED == ret)
587 		ret = wait_on_sync_kiocb(&iocb);
588 	return ret;
589 }
590 
591 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
592 		   struct kvec *vec, size_t num, size_t size)
593 {
594 	mm_segment_t oldfs = get_fs();
595 	int result;
596 
597 	set_fs(KERNEL_DS);
598 	/*
599 	 * the following is safe, since for compiler definitions of kvec and
600 	 * iovec are identical, yielding the same in-core layout and alignment
601 	 */
602 	msg->msg_iov = (struct iovec *)vec;
603 	msg->msg_iovlen = num;
604 	result = sock_sendmsg(sock, msg, size);
605 	set_fs(oldfs);
606 	return result;
607 }
608 
609 static int ktime2ts(ktime_t kt, struct timespec *ts)
610 {
611 	if (kt.tv64) {
612 		*ts = ktime_to_timespec(kt);
613 		return 1;
614 	} else {
615 		return 0;
616 	}
617 }
618 
619 /*
620  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
621  */
622 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
623 	struct sk_buff *skb)
624 {
625 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
626 	struct timespec ts[3];
627 	int empty = 1;
628 	struct skb_shared_hwtstamps *shhwtstamps =
629 		skb_hwtstamps(skb);
630 
631 	/* Race occurred between timestamp enabling and packet
632 	   receiving.  Fill in the current time for now. */
633 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
634 		__net_timestamp(skb);
635 
636 	if (need_software_tstamp) {
637 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
638 			struct timeval tv;
639 			skb_get_timestamp(skb, &tv);
640 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
641 				 sizeof(tv), &tv);
642 		} else {
643 			struct timespec ts;
644 			skb_get_timestampns(skb, &ts);
645 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
646 				 sizeof(ts), &ts);
647 		}
648 	}
649 
650 
651 	memset(ts, 0, sizeof(ts));
652 	if (skb->tstamp.tv64 &&
653 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
654 		skb_get_timestampns(skb, ts + 0);
655 		empty = 0;
656 	}
657 	if (shhwtstamps) {
658 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
659 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
660 			empty = 0;
661 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
662 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
663 			empty = 0;
664 	}
665 	if (!empty)
666 		put_cmsg(msg, SOL_SOCKET,
667 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
668 }
669 
670 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
671 
672 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
673 				 struct msghdr *msg, size_t size, int flags)
674 {
675 	int err;
676 	struct sock_iocb *si = kiocb_to_siocb(iocb);
677 
678 	si->sock = sock;
679 	si->scm = NULL;
680 	si->msg = msg;
681 	si->size = size;
682 	si->flags = flags;
683 
684 	err = security_socket_recvmsg(sock, msg, size, flags);
685 	if (err)
686 		return err;
687 
688 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
689 }
690 
691 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
692 		 size_t size, int flags)
693 {
694 	struct kiocb iocb;
695 	struct sock_iocb siocb;
696 	int ret;
697 
698 	init_sync_kiocb(&iocb, NULL);
699 	iocb.private = &siocb;
700 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
701 	if (-EIOCBQUEUED == ret)
702 		ret = wait_on_sync_kiocb(&iocb);
703 	return ret;
704 }
705 
706 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
707 		   struct kvec *vec, size_t num, size_t size, int flags)
708 {
709 	mm_segment_t oldfs = get_fs();
710 	int result;
711 
712 	set_fs(KERNEL_DS);
713 	/*
714 	 * the following is safe, since for compiler definitions of kvec and
715 	 * iovec are identical, yielding the same in-core layout and alignment
716 	 */
717 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
718 	result = sock_recvmsg(sock, msg, size, flags);
719 	set_fs(oldfs);
720 	return result;
721 }
722 
723 static void sock_aio_dtor(struct kiocb *iocb)
724 {
725 	kfree(iocb->private);
726 }
727 
728 static ssize_t sock_sendpage(struct file *file, struct page *page,
729 			     int offset, size_t size, loff_t *ppos, int more)
730 {
731 	struct socket *sock;
732 	int flags;
733 
734 	sock = file->private_data;
735 
736 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
737 	if (more)
738 		flags |= MSG_MORE;
739 
740 	return kernel_sendpage(sock, page, offset, size, flags);
741 }
742 
743 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
744 			        struct pipe_inode_info *pipe, size_t len,
745 				unsigned int flags)
746 {
747 	struct socket *sock = file->private_data;
748 
749 	if (unlikely(!sock->ops->splice_read))
750 		return -EINVAL;
751 
752 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
753 }
754 
755 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
756 					 struct sock_iocb *siocb)
757 {
758 	if (!is_sync_kiocb(iocb)) {
759 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
760 		if (!siocb)
761 			return NULL;
762 		iocb->ki_dtor = sock_aio_dtor;
763 	}
764 
765 	siocb->kiocb = iocb;
766 	iocb->private = siocb;
767 	return siocb;
768 }
769 
770 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
771 		struct file *file, const struct iovec *iov,
772 		unsigned long nr_segs)
773 {
774 	struct socket *sock = file->private_data;
775 	size_t size = 0;
776 	int i;
777 
778 	for (i = 0; i < nr_segs; i++)
779 		size += iov[i].iov_len;
780 
781 	msg->msg_name = NULL;
782 	msg->msg_namelen = 0;
783 	msg->msg_control = NULL;
784 	msg->msg_controllen = 0;
785 	msg->msg_iov = (struct iovec *)iov;
786 	msg->msg_iovlen = nr_segs;
787 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
788 
789 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
790 }
791 
792 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
793 				unsigned long nr_segs, loff_t pos)
794 {
795 	struct sock_iocb siocb, *x;
796 
797 	if (pos != 0)
798 		return -ESPIPE;
799 
800 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
801 		return 0;
802 
803 
804 	x = alloc_sock_iocb(iocb, &siocb);
805 	if (!x)
806 		return -ENOMEM;
807 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
808 }
809 
810 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
811 			struct file *file, const struct iovec *iov,
812 			unsigned long nr_segs)
813 {
814 	struct socket *sock = file->private_data;
815 	size_t size = 0;
816 	int i;
817 
818 	for (i = 0; i < nr_segs; i++)
819 		size += iov[i].iov_len;
820 
821 	msg->msg_name = NULL;
822 	msg->msg_namelen = 0;
823 	msg->msg_control = NULL;
824 	msg->msg_controllen = 0;
825 	msg->msg_iov = (struct iovec *)iov;
826 	msg->msg_iovlen = nr_segs;
827 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
828 	if (sock->type == SOCK_SEQPACKET)
829 		msg->msg_flags |= MSG_EOR;
830 
831 	return __sock_sendmsg(iocb, sock, msg, size);
832 }
833 
834 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
835 			  unsigned long nr_segs, loff_t pos)
836 {
837 	struct sock_iocb siocb, *x;
838 
839 	if (pos != 0)
840 		return -ESPIPE;
841 
842 	x = alloc_sock_iocb(iocb, &siocb);
843 	if (!x)
844 		return -ENOMEM;
845 
846 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
847 }
848 
849 /*
850  * Atomic setting of ioctl hooks to avoid race
851  * with module unload.
852  */
853 
854 static DEFINE_MUTEX(br_ioctl_mutex);
855 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
856 
857 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
858 {
859 	mutex_lock(&br_ioctl_mutex);
860 	br_ioctl_hook = hook;
861 	mutex_unlock(&br_ioctl_mutex);
862 }
863 
864 EXPORT_SYMBOL(brioctl_set);
865 
866 static DEFINE_MUTEX(vlan_ioctl_mutex);
867 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
868 
869 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
870 {
871 	mutex_lock(&vlan_ioctl_mutex);
872 	vlan_ioctl_hook = hook;
873 	mutex_unlock(&vlan_ioctl_mutex);
874 }
875 
876 EXPORT_SYMBOL(vlan_ioctl_set);
877 
878 static DEFINE_MUTEX(dlci_ioctl_mutex);
879 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
880 
881 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
882 {
883 	mutex_lock(&dlci_ioctl_mutex);
884 	dlci_ioctl_hook = hook;
885 	mutex_unlock(&dlci_ioctl_mutex);
886 }
887 
888 EXPORT_SYMBOL(dlci_ioctl_set);
889 
890 /*
891  *	With an ioctl, arg may well be a user mode pointer, but we don't know
892  *	what to do with it - that's up to the protocol still.
893  */
894 
895 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
896 {
897 	struct socket *sock;
898 	struct sock *sk;
899 	void __user *argp = (void __user *)arg;
900 	int pid, err;
901 	struct net *net;
902 
903 	sock = file->private_data;
904 	sk = sock->sk;
905 	net = sock_net(sk);
906 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
907 		err = dev_ioctl(net, cmd, argp);
908 	} else
909 #ifdef CONFIG_WIRELESS_EXT
910 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
911 		err = dev_ioctl(net, cmd, argp);
912 	} else
913 #endif				/* CONFIG_WIRELESS_EXT */
914 		switch (cmd) {
915 		case FIOSETOWN:
916 		case SIOCSPGRP:
917 			err = -EFAULT;
918 			if (get_user(pid, (int __user *)argp))
919 				break;
920 			err = f_setown(sock->file, pid, 1);
921 			break;
922 		case FIOGETOWN:
923 		case SIOCGPGRP:
924 			err = put_user(f_getown(sock->file),
925 				       (int __user *)argp);
926 			break;
927 		case SIOCGIFBR:
928 		case SIOCSIFBR:
929 		case SIOCBRADDBR:
930 		case SIOCBRDELBR:
931 			err = -ENOPKG;
932 			if (!br_ioctl_hook)
933 				request_module("bridge");
934 
935 			mutex_lock(&br_ioctl_mutex);
936 			if (br_ioctl_hook)
937 				err = br_ioctl_hook(net, cmd, argp);
938 			mutex_unlock(&br_ioctl_mutex);
939 			break;
940 		case SIOCGIFVLAN:
941 		case SIOCSIFVLAN:
942 			err = -ENOPKG;
943 			if (!vlan_ioctl_hook)
944 				request_module("8021q");
945 
946 			mutex_lock(&vlan_ioctl_mutex);
947 			if (vlan_ioctl_hook)
948 				err = vlan_ioctl_hook(net, argp);
949 			mutex_unlock(&vlan_ioctl_mutex);
950 			break;
951 		case SIOCADDDLCI:
952 		case SIOCDELDLCI:
953 			err = -ENOPKG;
954 			if (!dlci_ioctl_hook)
955 				request_module("dlci");
956 
957 			mutex_lock(&dlci_ioctl_mutex);
958 			if (dlci_ioctl_hook)
959 				err = dlci_ioctl_hook(cmd, argp);
960 			mutex_unlock(&dlci_ioctl_mutex);
961 			break;
962 		default:
963 			err = sock->ops->ioctl(sock, cmd, arg);
964 
965 			/*
966 			 * If this ioctl is unknown try to hand it down
967 			 * to the NIC driver.
968 			 */
969 			if (err == -ENOIOCTLCMD)
970 				err = dev_ioctl(net, cmd, argp);
971 			break;
972 		}
973 	return err;
974 }
975 
976 int sock_create_lite(int family, int type, int protocol, struct socket **res)
977 {
978 	int err;
979 	struct socket *sock = NULL;
980 
981 	err = security_socket_create(family, type, protocol, 1);
982 	if (err)
983 		goto out;
984 
985 	sock = sock_alloc();
986 	if (!sock) {
987 		err = -ENOMEM;
988 		goto out;
989 	}
990 
991 	sock->type = type;
992 	err = security_socket_post_create(sock, family, type, protocol, 1);
993 	if (err)
994 		goto out_release;
995 
996 out:
997 	*res = sock;
998 	return err;
999 out_release:
1000 	sock_release(sock);
1001 	sock = NULL;
1002 	goto out;
1003 }
1004 
1005 /* No kernel lock held - perfect */
1006 static unsigned int sock_poll(struct file *file, poll_table *wait)
1007 {
1008 	struct socket *sock;
1009 
1010 	/*
1011 	 *      We can't return errors to poll, so it's either yes or no.
1012 	 */
1013 	sock = file->private_data;
1014 	return sock->ops->poll(file, sock, wait);
1015 }
1016 
1017 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1018 {
1019 	struct socket *sock = file->private_data;
1020 
1021 	return sock->ops->mmap(file, sock, vma);
1022 }
1023 
1024 static int sock_close(struct inode *inode, struct file *filp)
1025 {
1026 	/*
1027 	 *      It was possible the inode is NULL we were
1028 	 *      closing an unfinished socket.
1029 	 */
1030 
1031 	if (!inode) {
1032 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1033 		return 0;
1034 	}
1035 	sock_release(SOCKET_I(inode));
1036 	return 0;
1037 }
1038 
1039 /*
1040  *	Update the socket async list
1041  *
1042  *	Fasync_list locking strategy.
1043  *
1044  *	1. fasync_list is modified only under process context socket lock
1045  *	   i.e. under semaphore.
1046  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1047  *	   or under socket lock.
1048  *	3. fasync_list can be used from softirq context, so that
1049  *	   modification under socket lock have to be enhanced with
1050  *	   write_lock_bh(&sk->sk_callback_lock).
1051  *							--ANK (990710)
1052  */
1053 
1054 static int sock_fasync(int fd, struct file *filp, int on)
1055 {
1056 	struct fasync_struct *fa, *fna = NULL, **prev;
1057 	struct socket *sock;
1058 	struct sock *sk;
1059 
1060 	if (on) {
1061 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1062 		if (fna == NULL)
1063 			return -ENOMEM;
1064 	}
1065 
1066 	sock = filp->private_data;
1067 
1068 	sk = sock->sk;
1069 	if (sk == NULL) {
1070 		kfree(fna);
1071 		return -EINVAL;
1072 	}
1073 
1074 	lock_sock(sk);
1075 
1076 	spin_lock(&filp->f_lock);
1077 	if (on)
1078 		filp->f_flags |= FASYNC;
1079 	else
1080 		filp->f_flags &= ~FASYNC;
1081 	spin_unlock(&filp->f_lock);
1082 
1083 	prev = &(sock->fasync_list);
1084 
1085 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1086 		if (fa->fa_file == filp)
1087 			break;
1088 
1089 	if (on) {
1090 		if (fa != NULL) {
1091 			write_lock_bh(&sk->sk_callback_lock);
1092 			fa->fa_fd = fd;
1093 			write_unlock_bh(&sk->sk_callback_lock);
1094 
1095 			kfree(fna);
1096 			goto out;
1097 		}
1098 		fna->fa_file = filp;
1099 		fna->fa_fd = fd;
1100 		fna->magic = FASYNC_MAGIC;
1101 		fna->fa_next = sock->fasync_list;
1102 		write_lock_bh(&sk->sk_callback_lock);
1103 		sock->fasync_list = fna;
1104 		write_unlock_bh(&sk->sk_callback_lock);
1105 	} else {
1106 		if (fa != NULL) {
1107 			write_lock_bh(&sk->sk_callback_lock);
1108 			*prev = fa->fa_next;
1109 			write_unlock_bh(&sk->sk_callback_lock);
1110 			kfree(fa);
1111 		}
1112 	}
1113 
1114 out:
1115 	release_sock(sock->sk);
1116 	return 0;
1117 }
1118 
1119 /* This function may be called only under socket lock or callback_lock */
1120 
1121 int sock_wake_async(struct socket *sock, int how, int band)
1122 {
1123 	if (!sock || !sock->fasync_list)
1124 		return -1;
1125 	switch (how) {
1126 	case SOCK_WAKE_WAITD:
1127 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1128 			break;
1129 		goto call_kill;
1130 	case SOCK_WAKE_SPACE:
1131 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1132 			break;
1133 		/* fall through */
1134 	case SOCK_WAKE_IO:
1135 call_kill:
1136 		__kill_fasync(sock->fasync_list, SIGIO, band);
1137 		break;
1138 	case SOCK_WAKE_URG:
1139 		__kill_fasync(sock->fasync_list, SIGURG, band);
1140 	}
1141 	return 0;
1142 }
1143 
1144 static int __sock_create(struct net *net, int family, int type, int protocol,
1145 			 struct socket **res, int kern)
1146 {
1147 	int err;
1148 	struct socket *sock;
1149 	const struct net_proto_family *pf;
1150 
1151 	/*
1152 	 *      Check protocol is in range
1153 	 */
1154 	if (family < 0 || family >= NPROTO)
1155 		return -EAFNOSUPPORT;
1156 	if (type < 0 || type >= SOCK_MAX)
1157 		return -EINVAL;
1158 
1159 	/* Compatibility.
1160 
1161 	   This uglymoron is moved from INET layer to here to avoid
1162 	   deadlock in module load.
1163 	 */
1164 	if (family == PF_INET && type == SOCK_PACKET) {
1165 		static int warned;
1166 		if (!warned) {
1167 			warned = 1;
1168 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1169 			       current->comm);
1170 		}
1171 		family = PF_PACKET;
1172 	}
1173 
1174 	err = security_socket_create(family, type, protocol, kern);
1175 	if (err)
1176 		return err;
1177 
1178 	/*
1179 	 *	Allocate the socket and allow the family to set things up. if
1180 	 *	the protocol is 0, the family is instructed to select an appropriate
1181 	 *	default.
1182 	 */
1183 	sock = sock_alloc();
1184 	if (!sock) {
1185 		if (net_ratelimit())
1186 			printk(KERN_WARNING "socket: no more sockets\n");
1187 		return -ENFILE;	/* Not exactly a match, but its the
1188 				   closest posix thing */
1189 	}
1190 
1191 	sock->type = type;
1192 
1193 #ifdef CONFIG_MODULES
1194 	/* Attempt to load a protocol module if the find failed.
1195 	 *
1196 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1197 	 * requested real, full-featured networking support upon configuration.
1198 	 * Otherwise module support will break!
1199 	 */
1200 	if (net_families[family] == NULL)
1201 		request_module("net-pf-%d", family);
1202 #endif
1203 
1204 	rcu_read_lock();
1205 	pf = rcu_dereference(net_families[family]);
1206 	err = -EAFNOSUPPORT;
1207 	if (!pf)
1208 		goto out_release;
1209 
1210 	/*
1211 	 * We will call the ->create function, that possibly is in a loadable
1212 	 * module, so we have to bump that loadable module refcnt first.
1213 	 */
1214 	if (!try_module_get(pf->owner))
1215 		goto out_release;
1216 
1217 	/* Now protected by module ref count */
1218 	rcu_read_unlock();
1219 
1220 	err = pf->create(net, sock, protocol);
1221 	if (err < 0)
1222 		goto out_module_put;
1223 
1224 	/*
1225 	 * Now to bump the refcnt of the [loadable] module that owns this
1226 	 * socket at sock_release time we decrement its refcnt.
1227 	 */
1228 	if (!try_module_get(sock->ops->owner))
1229 		goto out_module_busy;
1230 
1231 	/*
1232 	 * Now that we're done with the ->create function, the [loadable]
1233 	 * module can have its refcnt decremented
1234 	 */
1235 	module_put(pf->owner);
1236 	err = security_socket_post_create(sock, family, type, protocol, kern);
1237 	if (err)
1238 		goto out_sock_release;
1239 	*res = sock;
1240 
1241 	return 0;
1242 
1243 out_module_busy:
1244 	err = -EAFNOSUPPORT;
1245 out_module_put:
1246 	sock->ops = NULL;
1247 	module_put(pf->owner);
1248 out_sock_release:
1249 	sock_release(sock);
1250 	return err;
1251 
1252 out_release:
1253 	rcu_read_unlock();
1254 	goto out_sock_release;
1255 }
1256 
1257 int sock_create(int family, int type, int protocol, struct socket **res)
1258 {
1259 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1260 }
1261 
1262 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1263 {
1264 	return __sock_create(&init_net, family, type, protocol, res, 1);
1265 }
1266 
1267 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1268 {
1269 	int retval;
1270 	struct socket *sock;
1271 	int flags;
1272 
1273 	/* Check the SOCK_* constants for consistency.  */
1274 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1275 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1276 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1277 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1278 
1279 	flags = type & ~SOCK_TYPE_MASK;
1280 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1281 		return -EINVAL;
1282 	type &= SOCK_TYPE_MASK;
1283 
1284 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1285 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1286 
1287 	retval = sock_create(family, type, protocol, &sock);
1288 	if (retval < 0)
1289 		goto out;
1290 
1291 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1292 	if (retval < 0)
1293 		goto out_release;
1294 
1295 out:
1296 	/* It may be already another descriptor 8) Not kernel problem. */
1297 	return retval;
1298 
1299 out_release:
1300 	sock_release(sock);
1301 	return retval;
1302 }
1303 
1304 /*
1305  *	Create a pair of connected sockets.
1306  */
1307 
1308 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1309 		int __user *, usockvec)
1310 {
1311 	struct socket *sock1, *sock2;
1312 	int fd1, fd2, err;
1313 	struct file *newfile1, *newfile2;
1314 	int flags;
1315 
1316 	flags = type & ~SOCK_TYPE_MASK;
1317 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1318 		return -EINVAL;
1319 	type &= SOCK_TYPE_MASK;
1320 
1321 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1322 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1323 
1324 	/*
1325 	 * Obtain the first socket and check if the underlying protocol
1326 	 * supports the socketpair call.
1327 	 */
1328 
1329 	err = sock_create(family, type, protocol, &sock1);
1330 	if (err < 0)
1331 		goto out;
1332 
1333 	err = sock_create(family, type, protocol, &sock2);
1334 	if (err < 0)
1335 		goto out_release_1;
1336 
1337 	err = sock1->ops->socketpair(sock1, sock2);
1338 	if (err < 0)
1339 		goto out_release_both;
1340 
1341 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1342 	if (unlikely(fd1 < 0)) {
1343 		err = fd1;
1344 		goto out_release_both;
1345 	}
1346 
1347 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1348 	if (unlikely(fd2 < 0)) {
1349 		err = fd2;
1350 		put_filp(newfile1);
1351 		put_unused_fd(fd1);
1352 		goto out_release_both;
1353 	}
1354 
1355 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1356 	if (unlikely(err < 0)) {
1357 		goto out_fd2;
1358 	}
1359 
1360 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1361 	if (unlikely(err < 0)) {
1362 		fput(newfile1);
1363 		goto out_fd1;
1364 	}
1365 
1366 	audit_fd_pair(fd1, fd2);
1367 	fd_install(fd1, newfile1);
1368 	fd_install(fd2, newfile2);
1369 	/* fd1 and fd2 may be already another descriptors.
1370 	 * Not kernel problem.
1371 	 */
1372 
1373 	err = put_user(fd1, &usockvec[0]);
1374 	if (!err)
1375 		err = put_user(fd2, &usockvec[1]);
1376 	if (!err)
1377 		return 0;
1378 
1379 	sys_close(fd2);
1380 	sys_close(fd1);
1381 	return err;
1382 
1383 out_release_both:
1384 	sock_release(sock2);
1385 out_release_1:
1386 	sock_release(sock1);
1387 out:
1388 	return err;
1389 
1390 out_fd2:
1391 	put_filp(newfile1);
1392 	sock_release(sock1);
1393 out_fd1:
1394 	put_filp(newfile2);
1395 	sock_release(sock2);
1396 	put_unused_fd(fd1);
1397 	put_unused_fd(fd2);
1398 	goto out;
1399 }
1400 
1401 /*
1402  *	Bind a name to a socket. Nothing much to do here since it's
1403  *	the protocol's responsibility to handle the local address.
1404  *
1405  *	We move the socket address to kernel space before we call
1406  *	the protocol layer (having also checked the address is ok).
1407  */
1408 
1409 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1410 {
1411 	struct socket *sock;
1412 	struct sockaddr_storage address;
1413 	int err, fput_needed;
1414 
1415 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1416 	if (sock) {
1417 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1418 		if (err >= 0) {
1419 			err = security_socket_bind(sock,
1420 						   (struct sockaddr *)&address,
1421 						   addrlen);
1422 			if (!err)
1423 				err = sock->ops->bind(sock,
1424 						      (struct sockaddr *)
1425 						      &address, addrlen);
1426 		}
1427 		fput_light(sock->file, fput_needed);
1428 	}
1429 	return err;
1430 }
1431 
1432 /*
1433  *	Perform a listen. Basically, we allow the protocol to do anything
1434  *	necessary for a listen, and if that works, we mark the socket as
1435  *	ready for listening.
1436  */
1437 
1438 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1439 {
1440 	struct socket *sock;
1441 	int err, fput_needed;
1442 	int somaxconn;
1443 
1444 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445 	if (sock) {
1446 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1447 		if ((unsigned)backlog > somaxconn)
1448 			backlog = somaxconn;
1449 
1450 		err = security_socket_listen(sock, backlog);
1451 		if (!err)
1452 			err = sock->ops->listen(sock, backlog);
1453 
1454 		fput_light(sock->file, fput_needed);
1455 	}
1456 	return err;
1457 }
1458 
1459 /*
1460  *	For accept, we attempt to create a new socket, set up the link
1461  *	with the client, wake up the client, then return the new
1462  *	connected fd. We collect the address of the connector in kernel
1463  *	space and move it to user at the very end. This is unclean because
1464  *	we open the socket then return an error.
1465  *
1466  *	1003.1g adds the ability to recvmsg() to query connection pending
1467  *	status to recvmsg. We need to add that support in a way thats
1468  *	clean when we restucture accept also.
1469  */
1470 
1471 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1472 		int __user *, upeer_addrlen, int, flags)
1473 {
1474 	struct socket *sock, *newsock;
1475 	struct file *newfile;
1476 	int err, len, newfd, fput_needed;
1477 	struct sockaddr_storage address;
1478 
1479 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1480 		return -EINVAL;
1481 
1482 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1483 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1484 
1485 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1486 	if (!sock)
1487 		goto out;
1488 
1489 	err = -ENFILE;
1490 	if (!(newsock = sock_alloc()))
1491 		goto out_put;
1492 
1493 	newsock->type = sock->type;
1494 	newsock->ops = sock->ops;
1495 
1496 	/*
1497 	 * We don't need try_module_get here, as the listening socket (sock)
1498 	 * has the protocol module (sock->ops->owner) held.
1499 	 */
1500 	__module_get(newsock->ops->owner);
1501 
1502 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1503 	if (unlikely(newfd < 0)) {
1504 		err = newfd;
1505 		sock_release(newsock);
1506 		goto out_put;
1507 	}
1508 
1509 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1510 	if (err < 0)
1511 		goto out_fd_simple;
1512 
1513 	err = security_socket_accept(sock, newsock);
1514 	if (err)
1515 		goto out_fd;
1516 
1517 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1518 	if (err < 0)
1519 		goto out_fd;
1520 
1521 	if (upeer_sockaddr) {
1522 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1523 					  &len, 2) < 0) {
1524 			err = -ECONNABORTED;
1525 			goto out_fd;
1526 		}
1527 		err = move_addr_to_user((struct sockaddr *)&address,
1528 					len, upeer_sockaddr, upeer_addrlen);
1529 		if (err < 0)
1530 			goto out_fd;
1531 	}
1532 
1533 	/* File flags are not inherited via accept() unlike another OSes. */
1534 
1535 	fd_install(newfd, newfile);
1536 	err = newfd;
1537 
1538 out_put:
1539 	fput_light(sock->file, fput_needed);
1540 out:
1541 	return err;
1542 out_fd_simple:
1543 	sock_release(newsock);
1544 	put_filp(newfile);
1545 	put_unused_fd(newfd);
1546 	goto out_put;
1547 out_fd:
1548 	fput(newfile);
1549 	put_unused_fd(newfd);
1550 	goto out_put;
1551 }
1552 
1553 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1554 		int __user *, upeer_addrlen)
1555 {
1556 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1557 }
1558 
1559 /*
1560  *	Attempt to connect to a socket with the server address.  The address
1561  *	is in user space so we verify it is OK and move it to kernel space.
1562  *
1563  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1564  *	break bindings
1565  *
1566  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1567  *	other SEQPACKET protocols that take time to connect() as it doesn't
1568  *	include the -EINPROGRESS status for such sockets.
1569  */
1570 
1571 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1572 		int, addrlen)
1573 {
1574 	struct socket *sock;
1575 	struct sockaddr_storage address;
1576 	int err, fput_needed;
1577 
1578 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1579 	if (!sock)
1580 		goto out;
1581 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1582 	if (err < 0)
1583 		goto out_put;
1584 
1585 	err =
1586 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1587 	if (err)
1588 		goto out_put;
1589 
1590 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1591 				 sock->file->f_flags);
1592 out_put:
1593 	fput_light(sock->file, fput_needed);
1594 out:
1595 	return err;
1596 }
1597 
1598 /*
1599  *	Get the local address ('name') of a socket object. Move the obtained
1600  *	name to user space.
1601  */
1602 
1603 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1604 		int __user *, usockaddr_len)
1605 {
1606 	struct socket *sock;
1607 	struct sockaddr_storage address;
1608 	int len, err, fput_needed;
1609 
1610 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1611 	if (!sock)
1612 		goto out;
1613 
1614 	err = security_socket_getsockname(sock);
1615 	if (err)
1616 		goto out_put;
1617 
1618 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1619 	if (err)
1620 		goto out_put;
1621 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1622 
1623 out_put:
1624 	fput_light(sock->file, fput_needed);
1625 out:
1626 	return err;
1627 }
1628 
1629 /*
1630  *	Get the remote address ('name') of a socket object. Move the obtained
1631  *	name to user space.
1632  */
1633 
1634 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1635 		int __user *, usockaddr_len)
1636 {
1637 	struct socket *sock;
1638 	struct sockaddr_storage address;
1639 	int len, err, fput_needed;
1640 
1641 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1642 	if (sock != NULL) {
1643 		err = security_socket_getpeername(sock);
1644 		if (err) {
1645 			fput_light(sock->file, fput_needed);
1646 			return err;
1647 		}
1648 
1649 		err =
1650 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1651 				       1);
1652 		if (!err)
1653 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1654 						usockaddr_len);
1655 		fput_light(sock->file, fput_needed);
1656 	}
1657 	return err;
1658 }
1659 
1660 /*
1661  *	Send a datagram to a given address. We move the address into kernel
1662  *	space and check the user space data area is readable before invoking
1663  *	the protocol.
1664  */
1665 
1666 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1667 		unsigned, flags, struct sockaddr __user *, addr,
1668 		int, addr_len)
1669 {
1670 	struct socket *sock;
1671 	struct sockaddr_storage address;
1672 	int err;
1673 	struct msghdr msg;
1674 	struct iovec iov;
1675 	int fput_needed;
1676 
1677 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1678 	if (!sock)
1679 		goto out;
1680 
1681 	iov.iov_base = buff;
1682 	iov.iov_len = len;
1683 	msg.msg_name = NULL;
1684 	msg.msg_iov = &iov;
1685 	msg.msg_iovlen = 1;
1686 	msg.msg_control = NULL;
1687 	msg.msg_controllen = 0;
1688 	msg.msg_namelen = 0;
1689 	if (addr) {
1690 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1691 		if (err < 0)
1692 			goto out_put;
1693 		msg.msg_name = (struct sockaddr *)&address;
1694 		msg.msg_namelen = addr_len;
1695 	}
1696 	if (sock->file->f_flags & O_NONBLOCK)
1697 		flags |= MSG_DONTWAIT;
1698 	msg.msg_flags = flags;
1699 	err = sock_sendmsg(sock, &msg, len);
1700 
1701 out_put:
1702 	fput_light(sock->file, fput_needed);
1703 out:
1704 	return err;
1705 }
1706 
1707 /*
1708  *	Send a datagram down a socket.
1709  */
1710 
1711 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1712 		unsigned, flags)
1713 {
1714 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1715 }
1716 
1717 /*
1718  *	Receive a frame from the socket and optionally record the address of the
1719  *	sender. We verify the buffers are writable and if needed move the
1720  *	sender address from kernel to user space.
1721  */
1722 
1723 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1724 		unsigned, flags, struct sockaddr __user *, addr,
1725 		int __user *, addr_len)
1726 {
1727 	struct socket *sock;
1728 	struct iovec iov;
1729 	struct msghdr msg;
1730 	struct sockaddr_storage address;
1731 	int err, err2;
1732 	int fput_needed;
1733 
1734 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 	if (!sock)
1736 		goto out;
1737 
1738 	msg.msg_control = NULL;
1739 	msg.msg_controllen = 0;
1740 	msg.msg_iovlen = 1;
1741 	msg.msg_iov = &iov;
1742 	iov.iov_len = size;
1743 	iov.iov_base = ubuf;
1744 	msg.msg_name = (struct sockaddr *)&address;
1745 	msg.msg_namelen = sizeof(address);
1746 	if (sock->file->f_flags & O_NONBLOCK)
1747 		flags |= MSG_DONTWAIT;
1748 	err = sock_recvmsg(sock, &msg, size, flags);
1749 
1750 	if (err >= 0 && addr != NULL) {
1751 		err2 = move_addr_to_user((struct sockaddr *)&address,
1752 					 msg.msg_namelen, addr, addr_len);
1753 		if (err2 < 0)
1754 			err = err2;
1755 	}
1756 
1757 	fput_light(sock->file, fput_needed);
1758 out:
1759 	return err;
1760 }
1761 
1762 /*
1763  *	Receive a datagram from a socket.
1764  */
1765 
1766 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1767 			 unsigned flags)
1768 {
1769 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1770 }
1771 
1772 /*
1773  *	Set a socket option. Because we don't know the option lengths we have
1774  *	to pass the user mode parameter for the protocols to sort out.
1775  */
1776 
1777 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1778 		char __user *, optval, int, optlen)
1779 {
1780 	int err, fput_needed;
1781 	struct socket *sock;
1782 
1783 	if (optlen < 0)
1784 		return -EINVAL;
1785 
1786 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 	if (sock != NULL) {
1788 		err = security_socket_setsockopt(sock, level, optname);
1789 		if (err)
1790 			goto out_put;
1791 
1792 		if (level == SOL_SOCKET)
1793 			err =
1794 			    sock_setsockopt(sock, level, optname, optval,
1795 					    optlen);
1796 		else
1797 			err =
1798 			    sock->ops->setsockopt(sock, level, optname, optval,
1799 						  optlen);
1800 out_put:
1801 		fput_light(sock->file, fput_needed);
1802 	}
1803 	return err;
1804 }
1805 
1806 /*
1807  *	Get a socket option. Because we don't know the option lengths we have
1808  *	to pass a user mode parameter for the protocols to sort out.
1809  */
1810 
1811 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1812 		char __user *, optval, int __user *, optlen)
1813 {
1814 	int err, fput_needed;
1815 	struct socket *sock;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_getsockopt(sock, level, optname);
1820 		if (err)
1821 			goto out_put;
1822 
1823 		if (level == SOL_SOCKET)
1824 			err =
1825 			    sock_getsockopt(sock, level, optname, optval,
1826 					    optlen);
1827 		else
1828 			err =
1829 			    sock->ops->getsockopt(sock, level, optname, optval,
1830 						  optlen);
1831 out_put:
1832 		fput_light(sock->file, fput_needed);
1833 	}
1834 	return err;
1835 }
1836 
1837 /*
1838  *	Shutdown a socket.
1839  */
1840 
1841 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1842 {
1843 	int err, fput_needed;
1844 	struct socket *sock;
1845 
1846 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1847 	if (sock != NULL) {
1848 		err = security_socket_shutdown(sock, how);
1849 		if (!err)
1850 			err = sock->ops->shutdown(sock, how);
1851 		fput_light(sock->file, fput_needed);
1852 	}
1853 	return err;
1854 }
1855 
1856 /* A couple of helpful macros for getting the address of the 32/64 bit
1857  * fields which are the same type (int / unsigned) on our platforms.
1858  */
1859 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1860 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1861 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1862 
1863 /*
1864  *	BSD sendmsg interface
1865  */
1866 
1867 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1868 {
1869 	struct compat_msghdr __user *msg_compat =
1870 	    (struct compat_msghdr __user *)msg;
1871 	struct socket *sock;
1872 	struct sockaddr_storage address;
1873 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1874 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1875 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1876 	/* 20 is size of ipv6_pktinfo */
1877 	unsigned char *ctl_buf = ctl;
1878 	struct msghdr msg_sys;
1879 	int err, ctl_len, iov_size, total_len;
1880 	int fput_needed;
1881 
1882 	err = -EFAULT;
1883 	if (MSG_CMSG_COMPAT & flags) {
1884 		if (get_compat_msghdr(&msg_sys, msg_compat))
1885 			return -EFAULT;
1886 	}
1887 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1888 		return -EFAULT;
1889 
1890 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 	if (!sock)
1892 		goto out;
1893 
1894 	/* do not move before msg_sys is valid */
1895 	err = -EMSGSIZE;
1896 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1897 		goto out_put;
1898 
1899 	/* Check whether to allocate the iovec area */
1900 	err = -ENOMEM;
1901 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1902 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1903 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1904 		if (!iov)
1905 			goto out_put;
1906 	}
1907 
1908 	/* This will also move the address data into kernel space */
1909 	if (MSG_CMSG_COMPAT & flags) {
1910 		err = verify_compat_iovec(&msg_sys, iov,
1911 					  (struct sockaddr *)&address,
1912 					  VERIFY_READ);
1913 	} else
1914 		err = verify_iovec(&msg_sys, iov,
1915 				   (struct sockaddr *)&address,
1916 				   VERIFY_READ);
1917 	if (err < 0)
1918 		goto out_freeiov;
1919 	total_len = err;
1920 
1921 	err = -ENOBUFS;
1922 
1923 	if (msg_sys.msg_controllen > INT_MAX)
1924 		goto out_freeiov;
1925 	ctl_len = msg_sys.msg_controllen;
1926 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1927 		err =
1928 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1929 						     sizeof(ctl));
1930 		if (err)
1931 			goto out_freeiov;
1932 		ctl_buf = msg_sys.msg_control;
1933 		ctl_len = msg_sys.msg_controllen;
1934 	} else if (ctl_len) {
1935 		if (ctl_len > sizeof(ctl)) {
1936 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1937 			if (ctl_buf == NULL)
1938 				goto out_freeiov;
1939 		}
1940 		err = -EFAULT;
1941 		/*
1942 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1943 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1944 		 * checking falls down on this.
1945 		 */
1946 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1947 				   ctl_len))
1948 			goto out_freectl;
1949 		msg_sys.msg_control = ctl_buf;
1950 	}
1951 	msg_sys.msg_flags = flags;
1952 
1953 	if (sock->file->f_flags & O_NONBLOCK)
1954 		msg_sys.msg_flags |= MSG_DONTWAIT;
1955 	err = sock_sendmsg(sock, &msg_sys, total_len);
1956 
1957 out_freectl:
1958 	if (ctl_buf != ctl)
1959 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1960 out_freeiov:
1961 	if (iov != iovstack)
1962 		sock_kfree_s(sock->sk, iov, iov_size);
1963 out_put:
1964 	fput_light(sock->file, fput_needed);
1965 out:
1966 	return err;
1967 }
1968 
1969 /*
1970  *	BSD recvmsg interface
1971  */
1972 
1973 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1974 		unsigned int, flags)
1975 {
1976 	struct compat_msghdr __user *msg_compat =
1977 	    (struct compat_msghdr __user *)msg;
1978 	struct socket *sock;
1979 	struct iovec iovstack[UIO_FASTIOV];
1980 	struct iovec *iov = iovstack;
1981 	struct msghdr msg_sys;
1982 	unsigned long cmsg_ptr;
1983 	int err, iov_size, total_len, len;
1984 	int fput_needed;
1985 
1986 	/* kernel mode address */
1987 	struct sockaddr_storage addr;
1988 
1989 	/* user mode address pointers */
1990 	struct sockaddr __user *uaddr;
1991 	int __user *uaddr_len;
1992 
1993 	if (MSG_CMSG_COMPAT & flags) {
1994 		if (get_compat_msghdr(&msg_sys, msg_compat))
1995 			return -EFAULT;
1996 	}
1997 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1998 		return -EFAULT;
1999 
2000 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2001 	if (!sock)
2002 		goto out;
2003 
2004 	err = -EMSGSIZE;
2005 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
2006 		goto out_put;
2007 
2008 	/* Check whether to allocate the iovec area */
2009 	err = -ENOMEM;
2010 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2011 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2012 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2013 		if (!iov)
2014 			goto out_put;
2015 	}
2016 
2017 	/*
2018 	 *      Save the user-mode address (verify_iovec will change the
2019 	 *      kernel msghdr to use the kernel address space)
2020 	 */
2021 
2022 	uaddr = (__force void __user *)msg_sys.msg_name;
2023 	uaddr_len = COMPAT_NAMELEN(msg);
2024 	if (MSG_CMSG_COMPAT & flags) {
2025 		err = verify_compat_iovec(&msg_sys, iov,
2026 					  (struct sockaddr *)&addr,
2027 					  VERIFY_WRITE);
2028 	} else
2029 		err = verify_iovec(&msg_sys, iov,
2030 				   (struct sockaddr *)&addr,
2031 				   VERIFY_WRITE);
2032 	if (err < 0)
2033 		goto out_freeiov;
2034 	total_len = err;
2035 
2036 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
2037 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2038 
2039 	if (sock->file->f_flags & O_NONBLOCK)
2040 		flags |= MSG_DONTWAIT;
2041 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2042 	if (err < 0)
2043 		goto out_freeiov;
2044 	len = err;
2045 
2046 	if (uaddr != NULL) {
2047 		err = move_addr_to_user((struct sockaddr *)&addr,
2048 					msg_sys.msg_namelen, uaddr,
2049 					uaddr_len);
2050 		if (err < 0)
2051 			goto out_freeiov;
2052 	}
2053 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2054 			 COMPAT_FLAGS(msg));
2055 	if (err)
2056 		goto out_freeiov;
2057 	if (MSG_CMSG_COMPAT & flags)
2058 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2059 				 &msg_compat->msg_controllen);
2060 	else
2061 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2062 				 &msg->msg_controllen);
2063 	if (err)
2064 		goto out_freeiov;
2065 	err = len;
2066 
2067 out_freeiov:
2068 	if (iov != iovstack)
2069 		sock_kfree_s(sock->sk, iov, iov_size);
2070 out_put:
2071 	fput_light(sock->file, fput_needed);
2072 out:
2073 	return err;
2074 }
2075 
2076 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2077 
2078 /* Argument list sizes for sys_socketcall */
2079 #define AL(x) ((x) * sizeof(unsigned long))
2080 static const unsigned char nargs[19]={
2081 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2082 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2083 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2084 	AL(4)
2085 };
2086 
2087 #undef AL
2088 
2089 /*
2090  *	System call vectors.
2091  *
2092  *	Argument checking cleaned up. Saved 20% in size.
2093  *  This function doesn't need to set the kernel lock because
2094  *  it is set by the callees.
2095  */
2096 
2097 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2098 {
2099 	unsigned long a[6];
2100 	unsigned long a0, a1;
2101 	int err;
2102 
2103 	if (call < 1 || call > SYS_ACCEPT4)
2104 		return -EINVAL;
2105 
2106 	/* copy_from_user should be SMP safe. */
2107 	if (copy_from_user(a, args, nargs[call]))
2108 		return -EFAULT;
2109 
2110 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2111 
2112 	a0 = a[0];
2113 	a1 = a[1];
2114 
2115 	switch (call) {
2116 	case SYS_SOCKET:
2117 		err = sys_socket(a0, a1, a[2]);
2118 		break;
2119 	case SYS_BIND:
2120 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2121 		break;
2122 	case SYS_CONNECT:
2123 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2124 		break;
2125 	case SYS_LISTEN:
2126 		err = sys_listen(a0, a1);
2127 		break;
2128 	case SYS_ACCEPT:
2129 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2130 				  (int __user *)a[2], 0);
2131 		break;
2132 	case SYS_GETSOCKNAME:
2133 		err =
2134 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2135 				    (int __user *)a[2]);
2136 		break;
2137 	case SYS_GETPEERNAME:
2138 		err =
2139 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2140 				    (int __user *)a[2]);
2141 		break;
2142 	case SYS_SOCKETPAIR:
2143 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2144 		break;
2145 	case SYS_SEND:
2146 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2147 		break;
2148 	case SYS_SENDTO:
2149 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2150 				 (struct sockaddr __user *)a[4], a[5]);
2151 		break;
2152 	case SYS_RECV:
2153 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2154 		break;
2155 	case SYS_RECVFROM:
2156 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2157 				   (struct sockaddr __user *)a[4],
2158 				   (int __user *)a[5]);
2159 		break;
2160 	case SYS_SHUTDOWN:
2161 		err = sys_shutdown(a0, a1);
2162 		break;
2163 	case SYS_SETSOCKOPT:
2164 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2165 		break;
2166 	case SYS_GETSOCKOPT:
2167 		err =
2168 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2169 				   (int __user *)a[4]);
2170 		break;
2171 	case SYS_SENDMSG:
2172 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2173 		break;
2174 	case SYS_RECVMSG:
2175 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2176 		break;
2177 	case SYS_ACCEPT4:
2178 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2179 				  (int __user *)a[2], a[3]);
2180 		break;
2181 	default:
2182 		err = -EINVAL;
2183 		break;
2184 	}
2185 	return err;
2186 }
2187 
2188 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2189 
2190 /**
2191  *	sock_register - add a socket protocol handler
2192  *	@ops: description of protocol
2193  *
2194  *	This function is called by a protocol handler that wants to
2195  *	advertise its address family, and have it linked into the
2196  *	socket interface. The value ops->family coresponds to the
2197  *	socket system call protocol family.
2198  */
2199 int sock_register(const struct net_proto_family *ops)
2200 {
2201 	int err;
2202 
2203 	if (ops->family >= NPROTO) {
2204 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2205 		       NPROTO);
2206 		return -ENOBUFS;
2207 	}
2208 
2209 	spin_lock(&net_family_lock);
2210 	if (net_families[ops->family])
2211 		err = -EEXIST;
2212 	else {
2213 		net_families[ops->family] = ops;
2214 		err = 0;
2215 	}
2216 	spin_unlock(&net_family_lock);
2217 
2218 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2219 	return err;
2220 }
2221 
2222 /**
2223  *	sock_unregister - remove a protocol handler
2224  *	@family: protocol family to remove
2225  *
2226  *	This function is called by a protocol handler that wants to
2227  *	remove its address family, and have it unlinked from the
2228  *	new socket creation.
2229  *
2230  *	If protocol handler is a module, then it can use module reference
2231  *	counts to protect against new references. If protocol handler is not
2232  *	a module then it needs to provide its own protection in
2233  *	the ops->create routine.
2234  */
2235 void sock_unregister(int family)
2236 {
2237 	BUG_ON(family < 0 || family >= NPROTO);
2238 
2239 	spin_lock(&net_family_lock);
2240 	net_families[family] = NULL;
2241 	spin_unlock(&net_family_lock);
2242 
2243 	synchronize_rcu();
2244 
2245 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2246 }
2247 
2248 static int __init sock_init(void)
2249 {
2250 	/*
2251 	 *      Initialize sock SLAB cache.
2252 	 */
2253 
2254 	sk_init();
2255 
2256 	/*
2257 	 *      Initialize skbuff SLAB cache
2258 	 */
2259 	skb_init();
2260 
2261 	/*
2262 	 *      Initialize the protocols module.
2263 	 */
2264 
2265 	init_inodecache();
2266 	register_filesystem(&sock_fs_type);
2267 	sock_mnt = kern_mount(&sock_fs_type);
2268 
2269 	/* The real protocol initialization is performed in later initcalls.
2270 	 */
2271 
2272 #ifdef CONFIG_NETFILTER
2273 	netfilter_init();
2274 #endif
2275 
2276 	return 0;
2277 }
2278 
2279 core_initcall(sock_init);	/* early initcall */
2280 
2281 #ifdef CONFIG_PROC_FS
2282 void socket_seq_show(struct seq_file *seq)
2283 {
2284 	int cpu;
2285 	int counter = 0;
2286 
2287 	for_each_possible_cpu(cpu)
2288 	    counter += per_cpu(sockets_in_use, cpu);
2289 
2290 	/* It can be negative, by the way. 8) */
2291 	if (counter < 0)
2292 		counter = 0;
2293 
2294 	seq_printf(seq, "sockets: used %d\n", counter);
2295 }
2296 #endif				/* CONFIG_PROC_FS */
2297 
2298 #ifdef CONFIG_COMPAT
2299 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2300 			      unsigned long arg)
2301 {
2302 	struct socket *sock = file->private_data;
2303 	int ret = -ENOIOCTLCMD;
2304 	struct sock *sk;
2305 	struct net *net;
2306 
2307 	sk = sock->sk;
2308 	net = sock_net(sk);
2309 
2310 	if (sock->ops->compat_ioctl)
2311 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2312 
2313 	if (ret == -ENOIOCTLCMD &&
2314 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2315 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2316 
2317 	return ret;
2318 }
2319 #endif
2320 
2321 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2322 {
2323 	return sock->ops->bind(sock, addr, addrlen);
2324 }
2325 
2326 int kernel_listen(struct socket *sock, int backlog)
2327 {
2328 	return sock->ops->listen(sock, backlog);
2329 }
2330 
2331 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2332 {
2333 	struct sock *sk = sock->sk;
2334 	int err;
2335 
2336 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2337 			       newsock);
2338 	if (err < 0)
2339 		goto done;
2340 
2341 	err = sock->ops->accept(sock, *newsock, flags);
2342 	if (err < 0) {
2343 		sock_release(*newsock);
2344 		*newsock = NULL;
2345 		goto done;
2346 	}
2347 
2348 	(*newsock)->ops = sock->ops;
2349 	__module_get((*newsock)->ops->owner);
2350 
2351 done:
2352 	return err;
2353 }
2354 
2355 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2356 		   int flags)
2357 {
2358 	return sock->ops->connect(sock, addr, addrlen, flags);
2359 }
2360 
2361 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2362 			 int *addrlen)
2363 {
2364 	return sock->ops->getname(sock, addr, addrlen, 0);
2365 }
2366 
2367 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2368 			 int *addrlen)
2369 {
2370 	return sock->ops->getname(sock, addr, addrlen, 1);
2371 }
2372 
2373 int kernel_getsockopt(struct socket *sock, int level, int optname,
2374 			char *optval, int *optlen)
2375 {
2376 	mm_segment_t oldfs = get_fs();
2377 	int err;
2378 
2379 	set_fs(KERNEL_DS);
2380 	if (level == SOL_SOCKET)
2381 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2382 	else
2383 		err = sock->ops->getsockopt(sock, level, optname, optval,
2384 					    optlen);
2385 	set_fs(oldfs);
2386 	return err;
2387 }
2388 
2389 int kernel_setsockopt(struct socket *sock, int level, int optname,
2390 			char *optval, int optlen)
2391 {
2392 	mm_segment_t oldfs = get_fs();
2393 	int err;
2394 
2395 	set_fs(KERNEL_DS);
2396 	if (level == SOL_SOCKET)
2397 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2398 	else
2399 		err = sock->ops->setsockopt(sock, level, optname, optval,
2400 					    optlen);
2401 	set_fs(oldfs);
2402 	return err;
2403 }
2404 
2405 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2406 		    size_t size, int flags)
2407 {
2408 	if (sock->ops->sendpage)
2409 		return sock->ops->sendpage(sock, page, offset, size, flags);
2410 
2411 	return sock_no_sendpage(sock, page, offset, size, flags);
2412 }
2413 
2414 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2415 {
2416 	mm_segment_t oldfs = get_fs();
2417 	int err;
2418 
2419 	set_fs(KERNEL_DS);
2420 	err = sock->ops->ioctl(sock, cmd, arg);
2421 	set_fs(oldfs);
2422 
2423 	return err;
2424 }
2425 
2426 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2427 {
2428 	return sock->ops->shutdown(sock, how);
2429 }
2430 
2431 EXPORT_SYMBOL(sock_create);
2432 EXPORT_SYMBOL(sock_create_kern);
2433 EXPORT_SYMBOL(sock_create_lite);
2434 EXPORT_SYMBOL(sock_map_fd);
2435 EXPORT_SYMBOL(sock_recvmsg);
2436 EXPORT_SYMBOL(sock_register);
2437 EXPORT_SYMBOL(sock_release);
2438 EXPORT_SYMBOL(sock_sendmsg);
2439 EXPORT_SYMBOL(sock_unregister);
2440 EXPORT_SYMBOL(sock_wake_async);
2441 EXPORT_SYMBOL(sockfd_lookup);
2442 EXPORT_SYMBOL(kernel_sendmsg);
2443 EXPORT_SYMBOL(kernel_recvmsg);
2444 EXPORT_SYMBOL(kernel_bind);
2445 EXPORT_SYMBOL(kernel_listen);
2446 EXPORT_SYMBOL(kernel_accept);
2447 EXPORT_SYMBOL(kernel_connect);
2448 EXPORT_SYMBOL(kernel_getsockname);
2449 EXPORT_SYMBOL(kernel_getpeername);
2450 EXPORT_SYMBOL(kernel_getsockopt);
2451 EXPORT_SYMBOL(kernel_setsockopt);
2452 EXPORT_SYMBOL(kernel_sendpage);
2453 EXPORT_SYMBOL(kernel_sock_ioctl);
2454 EXPORT_SYMBOL(kernel_sock_shutdown);
2455