xref: /linux/net/socket.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 
748 /**
749  *	sock_sendmsg - send a message through @sock
750  *	@sock: socket
751  *	@msg: message to send
752  *
753  *	Sends @msg through @sock, passing through LSM.
754  *	Returns the number of bytes sent, or an error code.
755  */
756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 	struct sockaddr_storage address;
760 	int save_len = msg->msg_namelen;
761 	int ret;
762 
763 	if (msg->msg_name) {
764 		memcpy(&address, msg->msg_name, msg->msg_namelen);
765 		msg->msg_name = &address;
766 	}
767 
768 	ret = __sock_sendmsg(sock, msg);
769 	msg->msg_name = save_addr;
770 	msg->msg_namelen = save_len;
771 
772 	return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775 
776 /**
777  *	kernel_sendmsg - send a message through @sock (kernel-space)
778  *	@sock: socket
779  *	@msg: message header
780  *	@vec: kernel vec
781  *	@num: vec array length
782  *	@size: total message data size
783  *
784  *	Builds the message data with @vec and sends it through @sock.
785  *	Returns the number of bytes sent, or an error code.
786  */
787 
788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 		   struct kvec *vec, size_t num, size_t size)
790 {
791 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 	return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795 
796 /**
797  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
798  *	@sk: sock
799  *	@msg: message header
800  *	@vec: output s/g array
801  *	@num: output s/g array length
802  *	@size: total message data size
803  *
804  *	Builds the message data with @vec and sends it through @sock.
805  *	Returns the number of bytes sent, or an error code.
806  *	Caller must hold @sk.
807  */
808 
809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 			  struct kvec *vec, size_t num, size_t size)
811 {
812 	struct socket *sock = sk->sk_socket;
813 	const struct proto_ops *ops = READ_ONCE(sock->ops);
814 
815 	if (!ops->sendmsg_locked)
816 		return sock_no_sendmsg_locked(sk, msg, size);
817 
818 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819 
820 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823 
824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 	/* pkt_type of skbs enqueued on the error queue are set to
827 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 	 * in recvmsg, since skbs received on a local socket will never
829 	 * have a pkt_type of PACKET_OUTGOING.
830 	 */
831 	return skb->pkt_type == PACKET_OUTGOING;
832 }
833 
834 /* On transmit, software and hardware timestamps are returned independently.
835  * As the two skb clones share the hardware timestamp, which may be updated
836  * before the software timestamp is received, a hardware TX timestamp may be
837  * returned only if there is no software TX timestamp. Ignore false software
838  * timestamps, which may be made in the __sock_recv_timestamp() call when the
839  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840  * hardware timestamp.
841  */
842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846 
847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 	struct net_device *orig_dev;
852 	ktime_t hwtstamp;
853 
854 	rcu_read_lock();
855 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 	if (orig_dev) {
857 		*if_index = orig_dev->ifindex;
858 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 	} else {
860 		hwtstamp = shhwtstamps->hwtstamp;
861 	}
862 	rcu_read_unlock();
863 
864 	return hwtstamp;
865 }
866 
867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 			   int if_index)
869 {
870 	struct scm_ts_pktinfo ts_pktinfo;
871 	struct net_device *orig_dev;
872 
873 	if (!skb_mac_header_was_set(skb))
874 		return;
875 
876 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877 
878 	if (!if_index) {
879 		rcu_read_lock();
880 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 		if (orig_dev)
882 			if_index = orig_dev->ifindex;
883 		rcu_read_unlock();
884 	}
885 	ts_pktinfo.if_index = if_index;
886 
887 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 		 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891 
892 /*
893  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894  */
895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 	struct sk_buff *skb)
897 {
898 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 	struct scm_timestamping_internal tss;
901 	int empty = 1, false_tstamp = 0;
902 	struct skb_shared_hwtstamps *shhwtstamps =
903 		skb_hwtstamps(skb);
904 	int if_index;
905 	ktime_t hwtstamp;
906 	u32 tsflags;
907 
908 	/* Race occurred between timestamp enabling and packet
909 	   receiving.  Fill in the current time for now. */
910 	if (need_software_tstamp && skb->tstamp == 0) {
911 		__net_timestamp(skb);
912 		false_tstamp = 1;
913 	}
914 
915 	if (need_software_tstamp) {
916 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 			if (new_tstamp) {
918 				struct __kernel_sock_timeval tv;
919 
920 				skb_get_new_timestamp(skb, &tv);
921 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 					 sizeof(tv), &tv);
923 			} else {
924 				struct __kernel_old_timeval tv;
925 
926 				skb_get_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 					 sizeof(tv), &tv);
929 			}
930 		} else {
931 			if (new_tstamp) {
932 				struct __kernel_timespec ts;
933 
934 				skb_get_new_timestampns(skb, &ts);
935 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 					 sizeof(ts), &ts);
937 			} else {
938 				struct __kernel_old_timespec ts;
939 
940 				skb_get_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 					 sizeof(ts), &ts);
943 			}
944 		}
945 	}
946 
947 	memset(&tss, 0, sizeof(tss));
948 	tsflags = READ_ONCE(sk->sk_tsflags);
949 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
950 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
951 	      skb_is_err_queue(skb) ||
952 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
953 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
954 		empty = 0;
955 	if (shhwtstamps &&
956 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
957 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
958 	      skb_is_err_queue(skb) ||
959 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
960 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
961 		if_index = 0;
962 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
963 			hwtstamp = get_timestamp(sk, skb, &if_index);
964 		else
965 			hwtstamp = shhwtstamps->hwtstamp;
966 
967 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
968 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
969 							 READ_ONCE(sk->sk_bind_phc));
970 
971 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
972 			empty = 0;
973 
974 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
975 			    !skb_is_err_queue(skb))
976 				put_ts_pktinfo(msg, skb, if_index);
977 		}
978 	}
979 	if (!empty) {
980 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
981 			put_cmsg_scm_timestamping64(msg, &tss);
982 		else
983 			put_cmsg_scm_timestamping(msg, &tss);
984 
985 		if (skb_is_err_queue(skb) && skb->len &&
986 		    SKB_EXT_ERR(skb)->opt_stats)
987 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
988 				 skb->len, skb->data);
989 	}
990 }
991 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
992 
993 #ifdef CONFIG_WIRELESS
994 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
995 	struct sk_buff *skb)
996 {
997 	int ack;
998 
999 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1000 		return;
1001 	if (!skb->wifi_acked_valid)
1002 		return;
1003 
1004 	ack = skb->wifi_acked;
1005 
1006 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1009 #endif
1010 
1011 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1012 				   struct sk_buff *skb)
1013 {
1014 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1015 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1016 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1017 }
1018 
1019 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1020 			   struct sk_buff *skb)
1021 {
1022 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1023 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1024 		__u32 mark = skb->mark;
1025 
1026 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1027 	}
1028 }
1029 
1030 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1031 		       struct sk_buff *skb)
1032 {
1033 	sock_recv_timestamp(msg, sk, skb);
1034 	sock_recv_drops(msg, sk, skb);
1035 	sock_recv_mark(msg, sk, skb);
1036 }
1037 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1038 
1039 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1040 					   size_t, int));
1041 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1042 					    size_t, int));
1043 
1044 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1045 {
1046 	trace_sock_recv_length(sk, ret, flags);
1047 }
1048 
1049 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1050 				     int flags)
1051 {
1052 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1053 				     inet6_recvmsg,
1054 				     inet_recvmsg, sock, msg,
1055 				     msg_data_left(msg), flags);
1056 	if (trace_sock_recv_length_enabled())
1057 		call_trace_sock_recv_length(sock->sk, ret, flags);
1058 	return ret;
1059 }
1060 
1061 /**
1062  *	sock_recvmsg - receive a message from @sock
1063  *	@sock: socket
1064  *	@msg: message to receive
1065  *	@flags: message flags
1066  *
1067  *	Receives @msg from @sock, passing through LSM. Returns the total number
1068  *	of bytes received, or an error.
1069  */
1070 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1071 {
1072 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1073 
1074 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1075 }
1076 EXPORT_SYMBOL(sock_recvmsg);
1077 
1078 /**
1079  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1080  *	@sock: The socket to receive the message from
1081  *	@msg: Received message
1082  *	@vec: Input s/g array for message data
1083  *	@num: Size of input s/g array
1084  *	@size: Number of bytes to read
1085  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1086  *
1087  *	On return the msg structure contains the scatter/gather array passed in the
1088  *	vec argument. The array is modified so that it consists of the unfilled
1089  *	portion of the original array.
1090  *
1091  *	The returned value is the total number of bytes received, or an error.
1092  */
1093 
1094 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1095 		   struct kvec *vec, size_t num, size_t size, int flags)
1096 {
1097 	msg->msg_control_is_user = false;
1098 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1099 	return sock_recvmsg(sock, msg, flags);
1100 }
1101 EXPORT_SYMBOL(kernel_recvmsg);
1102 
1103 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1104 				struct pipe_inode_info *pipe, size_t len,
1105 				unsigned int flags)
1106 {
1107 	struct socket *sock = file->private_data;
1108 	const struct proto_ops *ops;
1109 
1110 	ops = READ_ONCE(sock->ops);
1111 	if (unlikely(!ops->splice_read))
1112 		return copy_splice_read(file, ppos, pipe, len, flags);
1113 
1114 	return ops->splice_read(sock, ppos, pipe, len, flags);
1115 }
1116 
1117 static void sock_splice_eof(struct file *file)
1118 {
1119 	struct socket *sock = file->private_data;
1120 	const struct proto_ops *ops;
1121 
1122 	ops = READ_ONCE(sock->ops);
1123 	if (ops->splice_eof)
1124 		ops->splice_eof(sock);
1125 }
1126 
1127 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1128 {
1129 	struct file *file = iocb->ki_filp;
1130 	struct socket *sock = file->private_data;
1131 	struct msghdr msg = {.msg_iter = *to,
1132 			     .msg_iocb = iocb};
1133 	ssize_t res;
1134 
1135 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1136 		msg.msg_flags = MSG_DONTWAIT;
1137 
1138 	if (iocb->ki_pos != 0)
1139 		return -ESPIPE;
1140 
1141 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1142 		return 0;
1143 
1144 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1145 	*to = msg.msg_iter;
1146 	return res;
1147 }
1148 
1149 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1150 {
1151 	struct file *file = iocb->ki_filp;
1152 	struct socket *sock = file->private_data;
1153 	struct msghdr msg = {.msg_iter = *from,
1154 			     .msg_iocb = iocb};
1155 	ssize_t res;
1156 
1157 	if (iocb->ki_pos != 0)
1158 		return -ESPIPE;
1159 
1160 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1161 		msg.msg_flags = MSG_DONTWAIT;
1162 
1163 	if (sock->type == SOCK_SEQPACKET)
1164 		msg.msg_flags |= MSG_EOR;
1165 
1166 	res = __sock_sendmsg(sock, &msg);
1167 	*from = msg.msg_iter;
1168 	return res;
1169 }
1170 
1171 /*
1172  * Atomic setting of ioctl hooks to avoid race
1173  * with module unload.
1174  */
1175 
1176 static DEFINE_MUTEX(br_ioctl_mutex);
1177 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1178 			    unsigned int cmd, struct ifreq *ifr,
1179 			    void __user *uarg);
1180 
1181 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1182 			     unsigned int cmd, struct ifreq *ifr,
1183 			     void __user *uarg))
1184 {
1185 	mutex_lock(&br_ioctl_mutex);
1186 	br_ioctl_hook = hook;
1187 	mutex_unlock(&br_ioctl_mutex);
1188 }
1189 EXPORT_SYMBOL(brioctl_set);
1190 
1191 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1192 		  struct ifreq *ifr, void __user *uarg)
1193 {
1194 	int err = -ENOPKG;
1195 
1196 	if (!br_ioctl_hook)
1197 		request_module("bridge");
1198 
1199 	mutex_lock(&br_ioctl_mutex);
1200 	if (br_ioctl_hook)
1201 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1202 	mutex_unlock(&br_ioctl_mutex);
1203 
1204 	return err;
1205 }
1206 
1207 static DEFINE_MUTEX(vlan_ioctl_mutex);
1208 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1209 
1210 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1211 {
1212 	mutex_lock(&vlan_ioctl_mutex);
1213 	vlan_ioctl_hook = hook;
1214 	mutex_unlock(&vlan_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(vlan_ioctl_set);
1217 
1218 static long sock_do_ioctl(struct net *net, struct socket *sock,
1219 			  unsigned int cmd, unsigned long arg)
1220 {
1221 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1222 	struct ifreq ifr;
1223 	bool need_copyout;
1224 	int err;
1225 	void __user *argp = (void __user *)arg;
1226 	void __user *data;
1227 
1228 	err = ops->ioctl(sock, cmd, arg);
1229 
1230 	/*
1231 	 * If this ioctl is unknown try to hand it down
1232 	 * to the NIC driver.
1233 	 */
1234 	if (err != -ENOIOCTLCMD)
1235 		return err;
1236 
1237 	if (!is_socket_ioctl_cmd(cmd))
1238 		return -ENOTTY;
1239 
1240 	if (get_user_ifreq(&ifr, &data, argp))
1241 		return -EFAULT;
1242 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1243 	if (!err && need_copyout)
1244 		if (put_user_ifreq(&ifr, argp))
1245 			return -EFAULT;
1246 
1247 	return err;
1248 }
1249 
1250 /*
1251  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1252  *	what to do with it - that's up to the protocol still.
1253  */
1254 
1255 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1256 {
1257 	const struct proto_ops  *ops;
1258 	struct socket *sock;
1259 	struct sock *sk;
1260 	void __user *argp = (void __user *)arg;
1261 	int pid, err;
1262 	struct net *net;
1263 
1264 	sock = file->private_data;
1265 	ops = READ_ONCE(sock->ops);
1266 	sk = sock->sk;
1267 	net = sock_net(sk);
1268 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1269 		struct ifreq ifr;
1270 		void __user *data;
1271 		bool need_copyout;
1272 		if (get_user_ifreq(&ifr, &data, argp))
1273 			return -EFAULT;
1274 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1275 		if (!err && need_copyout)
1276 			if (put_user_ifreq(&ifr, argp))
1277 				return -EFAULT;
1278 	} else
1279 #ifdef CONFIG_WEXT_CORE
1280 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1281 		err = wext_handle_ioctl(net, cmd, argp);
1282 	} else
1283 #endif
1284 		switch (cmd) {
1285 		case FIOSETOWN:
1286 		case SIOCSPGRP:
1287 			err = -EFAULT;
1288 			if (get_user(pid, (int __user *)argp))
1289 				break;
1290 			err = f_setown(sock->file, pid, 1);
1291 			break;
1292 		case FIOGETOWN:
1293 		case SIOCGPGRP:
1294 			err = put_user(f_getown(sock->file),
1295 				       (int __user *)argp);
1296 			break;
1297 		case SIOCGIFBR:
1298 		case SIOCSIFBR:
1299 		case SIOCBRADDBR:
1300 		case SIOCBRDELBR:
1301 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1302 			break;
1303 		case SIOCGIFVLAN:
1304 		case SIOCSIFVLAN:
1305 			err = -ENOPKG;
1306 			if (!vlan_ioctl_hook)
1307 				request_module("8021q");
1308 
1309 			mutex_lock(&vlan_ioctl_mutex);
1310 			if (vlan_ioctl_hook)
1311 				err = vlan_ioctl_hook(net, argp);
1312 			mutex_unlock(&vlan_ioctl_mutex);
1313 			break;
1314 		case SIOCGSKNS:
1315 			err = -EPERM;
1316 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1317 				break;
1318 
1319 			err = open_related_ns(&net->ns, get_net_ns);
1320 			break;
1321 		case SIOCGSTAMP_OLD:
1322 		case SIOCGSTAMPNS_OLD:
1323 			if (!ops->gettstamp) {
1324 				err = -ENOIOCTLCMD;
1325 				break;
1326 			}
1327 			err = ops->gettstamp(sock, argp,
1328 					     cmd == SIOCGSTAMP_OLD,
1329 					     !IS_ENABLED(CONFIG_64BIT));
1330 			break;
1331 		case SIOCGSTAMP_NEW:
1332 		case SIOCGSTAMPNS_NEW:
1333 			if (!ops->gettstamp) {
1334 				err = -ENOIOCTLCMD;
1335 				break;
1336 			}
1337 			err = ops->gettstamp(sock, argp,
1338 					     cmd == SIOCGSTAMP_NEW,
1339 					     false);
1340 			break;
1341 
1342 		case SIOCGIFCONF:
1343 			err = dev_ifconf(net, argp);
1344 			break;
1345 
1346 		default:
1347 			err = sock_do_ioctl(net, sock, cmd, arg);
1348 			break;
1349 		}
1350 	return err;
1351 }
1352 
1353 /**
1354  *	sock_create_lite - creates a socket
1355  *	@family: protocol family (AF_INET, ...)
1356  *	@type: communication type (SOCK_STREAM, ...)
1357  *	@protocol: protocol (0, ...)
1358  *	@res: new socket
1359  *
1360  *	Creates a new socket and assigns it to @res, passing through LSM.
1361  *	The new socket initialization is not complete, see kernel_accept().
1362  *	Returns 0 or an error. On failure @res is set to %NULL.
1363  *	This function internally uses GFP_KERNEL.
1364  */
1365 
1366 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1367 {
1368 	int err;
1369 	struct socket *sock = NULL;
1370 
1371 	err = security_socket_create(family, type, protocol, 1);
1372 	if (err)
1373 		goto out;
1374 
1375 	sock = sock_alloc();
1376 	if (!sock) {
1377 		err = -ENOMEM;
1378 		goto out;
1379 	}
1380 
1381 	sock->type = type;
1382 	err = security_socket_post_create(sock, family, type, protocol, 1);
1383 	if (err)
1384 		goto out_release;
1385 
1386 out:
1387 	*res = sock;
1388 	return err;
1389 out_release:
1390 	sock_release(sock);
1391 	sock = NULL;
1392 	goto out;
1393 }
1394 EXPORT_SYMBOL(sock_create_lite);
1395 
1396 /* No kernel lock held - perfect */
1397 static __poll_t sock_poll(struct file *file, poll_table *wait)
1398 {
1399 	struct socket *sock = file->private_data;
1400 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1401 	__poll_t events = poll_requested_events(wait), flag = 0;
1402 
1403 	if (!ops->poll)
1404 		return 0;
1405 
1406 	if (sk_can_busy_loop(sock->sk)) {
1407 		/* poll once if requested by the syscall */
1408 		if (events & POLL_BUSY_LOOP)
1409 			sk_busy_loop(sock->sk, 1);
1410 
1411 		/* if this socket can poll_ll, tell the system call */
1412 		flag = POLL_BUSY_LOOP;
1413 	}
1414 
1415 	return ops->poll(file, sock, wait) | flag;
1416 }
1417 
1418 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1419 {
1420 	struct socket *sock = file->private_data;
1421 
1422 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1423 }
1424 
1425 static int sock_close(struct inode *inode, struct file *filp)
1426 {
1427 	__sock_release(SOCKET_I(inode), inode);
1428 	return 0;
1429 }
1430 
1431 /*
1432  *	Update the socket async list
1433  *
1434  *	Fasync_list locking strategy.
1435  *
1436  *	1. fasync_list is modified only under process context socket lock
1437  *	   i.e. under semaphore.
1438  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1439  *	   or under socket lock
1440  */
1441 
1442 static int sock_fasync(int fd, struct file *filp, int on)
1443 {
1444 	struct socket *sock = filp->private_data;
1445 	struct sock *sk = sock->sk;
1446 	struct socket_wq *wq = &sock->wq;
1447 
1448 	if (sk == NULL)
1449 		return -EINVAL;
1450 
1451 	lock_sock(sk);
1452 	fasync_helper(fd, filp, on, &wq->fasync_list);
1453 
1454 	if (!wq->fasync_list)
1455 		sock_reset_flag(sk, SOCK_FASYNC);
1456 	else
1457 		sock_set_flag(sk, SOCK_FASYNC);
1458 
1459 	release_sock(sk);
1460 	return 0;
1461 }
1462 
1463 /* This function may be called only under rcu_lock */
1464 
1465 int sock_wake_async(struct socket_wq *wq, int how, int band)
1466 {
1467 	if (!wq || !wq->fasync_list)
1468 		return -1;
1469 
1470 	switch (how) {
1471 	case SOCK_WAKE_WAITD:
1472 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1473 			break;
1474 		goto call_kill;
1475 	case SOCK_WAKE_SPACE:
1476 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1477 			break;
1478 		fallthrough;
1479 	case SOCK_WAKE_IO:
1480 call_kill:
1481 		kill_fasync(&wq->fasync_list, SIGIO, band);
1482 		break;
1483 	case SOCK_WAKE_URG:
1484 		kill_fasync(&wq->fasync_list, SIGURG, band);
1485 	}
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(sock_wake_async);
1490 
1491 /**
1492  *	__sock_create - creates a socket
1493  *	@net: net namespace
1494  *	@family: protocol family (AF_INET, ...)
1495  *	@type: communication type (SOCK_STREAM, ...)
1496  *	@protocol: protocol (0, ...)
1497  *	@res: new socket
1498  *	@kern: boolean for kernel space sockets
1499  *
1500  *	Creates a new socket and assigns it to @res, passing through LSM.
1501  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1502  *	be set to true if the socket resides in kernel space.
1503  *	This function internally uses GFP_KERNEL.
1504  */
1505 
1506 int __sock_create(struct net *net, int family, int type, int protocol,
1507 			 struct socket **res, int kern)
1508 {
1509 	int err;
1510 	struct socket *sock;
1511 	const struct net_proto_family *pf;
1512 
1513 	/*
1514 	 *      Check protocol is in range
1515 	 */
1516 	if (family < 0 || family >= NPROTO)
1517 		return -EAFNOSUPPORT;
1518 	if (type < 0 || type >= SOCK_MAX)
1519 		return -EINVAL;
1520 
1521 	/* Compatibility.
1522 
1523 	   This uglymoron is moved from INET layer to here to avoid
1524 	   deadlock in module load.
1525 	 */
1526 	if (family == PF_INET && type == SOCK_PACKET) {
1527 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1528 			     current->comm);
1529 		family = PF_PACKET;
1530 	}
1531 
1532 	err = security_socket_create(family, type, protocol, kern);
1533 	if (err)
1534 		return err;
1535 
1536 	/*
1537 	 *	Allocate the socket and allow the family to set things up. if
1538 	 *	the protocol is 0, the family is instructed to select an appropriate
1539 	 *	default.
1540 	 */
1541 	sock = sock_alloc();
1542 	if (!sock) {
1543 		net_warn_ratelimited("socket: no more sockets\n");
1544 		return -ENFILE;	/* Not exactly a match, but its the
1545 				   closest posix thing */
1546 	}
1547 
1548 	sock->type = type;
1549 
1550 #ifdef CONFIG_MODULES
1551 	/* Attempt to load a protocol module if the find failed.
1552 	 *
1553 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1554 	 * requested real, full-featured networking support upon configuration.
1555 	 * Otherwise module support will break!
1556 	 */
1557 	if (rcu_access_pointer(net_families[family]) == NULL)
1558 		request_module("net-pf-%d", family);
1559 #endif
1560 
1561 	rcu_read_lock();
1562 	pf = rcu_dereference(net_families[family]);
1563 	err = -EAFNOSUPPORT;
1564 	if (!pf)
1565 		goto out_release;
1566 
1567 	/*
1568 	 * We will call the ->create function, that possibly is in a loadable
1569 	 * module, so we have to bump that loadable module refcnt first.
1570 	 */
1571 	if (!try_module_get(pf->owner))
1572 		goto out_release;
1573 
1574 	/* Now protected by module ref count */
1575 	rcu_read_unlock();
1576 
1577 	err = pf->create(net, sock, protocol, kern);
1578 	if (err < 0)
1579 		goto out_module_put;
1580 
1581 	/*
1582 	 * Now to bump the refcnt of the [loadable] module that owns this
1583 	 * socket at sock_release time we decrement its refcnt.
1584 	 */
1585 	if (!try_module_get(sock->ops->owner))
1586 		goto out_module_busy;
1587 
1588 	/*
1589 	 * Now that we're done with the ->create function, the [loadable]
1590 	 * module can have its refcnt decremented
1591 	 */
1592 	module_put(pf->owner);
1593 	err = security_socket_post_create(sock, family, type, protocol, kern);
1594 	if (err)
1595 		goto out_sock_release;
1596 	*res = sock;
1597 
1598 	return 0;
1599 
1600 out_module_busy:
1601 	err = -EAFNOSUPPORT;
1602 out_module_put:
1603 	sock->ops = NULL;
1604 	module_put(pf->owner);
1605 out_sock_release:
1606 	sock_release(sock);
1607 	return err;
1608 
1609 out_release:
1610 	rcu_read_unlock();
1611 	goto out_sock_release;
1612 }
1613 EXPORT_SYMBOL(__sock_create);
1614 
1615 /**
1616  *	sock_create - creates a socket
1617  *	@family: protocol family (AF_INET, ...)
1618  *	@type: communication type (SOCK_STREAM, ...)
1619  *	@protocol: protocol (0, ...)
1620  *	@res: new socket
1621  *
1622  *	A wrapper around __sock_create().
1623  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1624  */
1625 
1626 int sock_create(int family, int type, int protocol, struct socket **res)
1627 {
1628 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1629 }
1630 EXPORT_SYMBOL(sock_create);
1631 
1632 /**
1633  *	sock_create_kern - creates a socket (kernel space)
1634  *	@net: net namespace
1635  *	@family: protocol family (AF_INET, ...)
1636  *	@type: communication type (SOCK_STREAM, ...)
1637  *	@protocol: protocol (0, ...)
1638  *	@res: new socket
1639  *
1640  *	A wrapper around __sock_create().
1641  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1642  */
1643 
1644 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1645 {
1646 	return __sock_create(net, family, type, protocol, res, 1);
1647 }
1648 EXPORT_SYMBOL(sock_create_kern);
1649 
1650 static struct socket *__sys_socket_create(int family, int type, int protocol)
1651 {
1652 	struct socket *sock;
1653 	int retval;
1654 
1655 	/* Check the SOCK_* constants for consistency.  */
1656 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1657 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1658 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1659 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1660 
1661 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1662 		return ERR_PTR(-EINVAL);
1663 	type &= SOCK_TYPE_MASK;
1664 
1665 	retval = sock_create(family, type, protocol, &sock);
1666 	if (retval < 0)
1667 		return ERR_PTR(retval);
1668 
1669 	return sock;
1670 }
1671 
1672 struct file *__sys_socket_file(int family, int type, int protocol)
1673 {
1674 	struct socket *sock;
1675 	int flags;
1676 
1677 	sock = __sys_socket_create(family, type, protocol);
1678 	if (IS_ERR(sock))
1679 		return ERR_CAST(sock);
1680 
1681 	flags = type & ~SOCK_TYPE_MASK;
1682 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1683 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1684 
1685 	return sock_alloc_file(sock, flags, NULL);
1686 }
1687 
1688 /*	A hook for bpf progs to attach to and update socket protocol.
1689  *
1690  *	A static noinline declaration here could cause the compiler to
1691  *	optimize away the function. A global noinline declaration will
1692  *	keep the definition, but may optimize away the callsite.
1693  *	Therefore, __weak is needed to ensure that the call is still
1694  *	emitted, by telling the compiler that we don't know what the
1695  *	function might eventually be.
1696  */
1697 
1698 __bpf_hook_start();
1699 
1700 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1701 {
1702 	return protocol;
1703 }
1704 
1705 __bpf_hook_end();
1706 
1707 int __sys_socket(int family, int type, int protocol)
1708 {
1709 	struct socket *sock;
1710 	int flags;
1711 
1712 	sock = __sys_socket_create(family, type,
1713 				   update_socket_protocol(family, type, protocol));
1714 	if (IS_ERR(sock))
1715 		return PTR_ERR(sock);
1716 
1717 	flags = type & ~SOCK_TYPE_MASK;
1718 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1719 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1720 
1721 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1722 }
1723 
1724 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1725 {
1726 	return __sys_socket(family, type, protocol);
1727 }
1728 
1729 /*
1730  *	Create a pair of connected sockets.
1731  */
1732 
1733 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1734 {
1735 	struct socket *sock1, *sock2;
1736 	int fd1, fd2, err;
1737 	struct file *newfile1, *newfile2;
1738 	int flags;
1739 
1740 	flags = type & ~SOCK_TYPE_MASK;
1741 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1742 		return -EINVAL;
1743 	type &= SOCK_TYPE_MASK;
1744 
1745 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1746 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1747 
1748 	/*
1749 	 * reserve descriptors and make sure we won't fail
1750 	 * to return them to userland.
1751 	 */
1752 	fd1 = get_unused_fd_flags(flags);
1753 	if (unlikely(fd1 < 0))
1754 		return fd1;
1755 
1756 	fd2 = get_unused_fd_flags(flags);
1757 	if (unlikely(fd2 < 0)) {
1758 		put_unused_fd(fd1);
1759 		return fd2;
1760 	}
1761 
1762 	err = put_user(fd1, &usockvec[0]);
1763 	if (err)
1764 		goto out;
1765 
1766 	err = put_user(fd2, &usockvec[1]);
1767 	if (err)
1768 		goto out;
1769 
1770 	/*
1771 	 * Obtain the first socket and check if the underlying protocol
1772 	 * supports the socketpair call.
1773 	 */
1774 
1775 	err = sock_create(family, type, protocol, &sock1);
1776 	if (unlikely(err < 0))
1777 		goto out;
1778 
1779 	err = sock_create(family, type, protocol, &sock2);
1780 	if (unlikely(err < 0)) {
1781 		sock_release(sock1);
1782 		goto out;
1783 	}
1784 
1785 	err = security_socket_socketpair(sock1, sock2);
1786 	if (unlikely(err)) {
1787 		sock_release(sock2);
1788 		sock_release(sock1);
1789 		goto out;
1790 	}
1791 
1792 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1793 	if (unlikely(err < 0)) {
1794 		sock_release(sock2);
1795 		sock_release(sock1);
1796 		goto out;
1797 	}
1798 
1799 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1800 	if (IS_ERR(newfile1)) {
1801 		err = PTR_ERR(newfile1);
1802 		sock_release(sock2);
1803 		goto out;
1804 	}
1805 
1806 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1807 	if (IS_ERR(newfile2)) {
1808 		err = PTR_ERR(newfile2);
1809 		fput(newfile1);
1810 		goto out;
1811 	}
1812 
1813 	audit_fd_pair(fd1, fd2);
1814 
1815 	fd_install(fd1, newfile1);
1816 	fd_install(fd2, newfile2);
1817 	return 0;
1818 
1819 out:
1820 	put_unused_fd(fd2);
1821 	put_unused_fd(fd1);
1822 	return err;
1823 }
1824 
1825 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1826 		int __user *, usockvec)
1827 {
1828 	return __sys_socketpair(family, type, protocol, usockvec);
1829 }
1830 
1831 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1832 		      int addrlen)
1833 {
1834 	int err;
1835 
1836 	err = security_socket_bind(sock, (struct sockaddr *)address,
1837 				   addrlen);
1838 	if (!err)
1839 		err = READ_ONCE(sock->ops)->bind(sock,
1840 						 (struct sockaddr *)address,
1841 						 addrlen);
1842 	return err;
1843 }
1844 
1845 /*
1846  *	Bind a name to a socket. Nothing much to do here since it's
1847  *	the protocol's responsibility to handle the local address.
1848  *
1849  *	We move the socket address to kernel space before we call
1850  *	the protocol layer (having also checked the address is ok).
1851  */
1852 
1853 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1854 {
1855 	struct socket *sock;
1856 	struct sockaddr_storage address;
1857 	int err, fput_needed;
1858 
1859 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1860 	if (sock) {
1861 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1862 		if (!err)
1863 			err = __sys_bind_socket(sock, &address, addrlen);
1864 		fput_light(sock->file, fput_needed);
1865 	}
1866 	return err;
1867 }
1868 
1869 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1870 {
1871 	return __sys_bind(fd, umyaddr, addrlen);
1872 }
1873 
1874 /*
1875  *	Perform a listen. Basically, we allow the protocol to do anything
1876  *	necessary for a listen, and if that works, we mark the socket as
1877  *	ready for listening.
1878  */
1879 int __sys_listen_socket(struct socket *sock, int backlog)
1880 {
1881 	int somaxconn, err;
1882 
1883 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1884 	if ((unsigned int)backlog > somaxconn)
1885 		backlog = somaxconn;
1886 
1887 	err = security_socket_listen(sock, backlog);
1888 	if (!err)
1889 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1890 	return err;
1891 }
1892 
1893 int __sys_listen(int fd, int backlog)
1894 {
1895 	struct socket *sock;
1896 	int err, fput_needed;
1897 
1898 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 	if (sock) {
1900 		err = __sys_listen_socket(sock, backlog);
1901 		fput_light(sock->file, fput_needed);
1902 	}
1903 	return err;
1904 }
1905 
1906 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1907 {
1908 	return __sys_listen(fd, backlog);
1909 }
1910 
1911 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1912 		       struct sockaddr __user *upeer_sockaddr,
1913 		       int __user *upeer_addrlen, int flags)
1914 {
1915 	struct socket *sock, *newsock;
1916 	struct file *newfile;
1917 	int err, len;
1918 	struct sockaddr_storage address;
1919 	const struct proto_ops *ops;
1920 
1921 	sock = sock_from_file(file);
1922 	if (!sock)
1923 		return ERR_PTR(-ENOTSOCK);
1924 
1925 	newsock = sock_alloc();
1926 	if (!newsock)
1927 		return ERR_PTR(-ENFILE);
1928 	ops = READ_ONCE(sock->ops);
1929 
1930 	newsock->type = sock->type;
1931 	newsock->ops = ops;
1932 
1933 	/*
1934 	 * We don't need try_module_get here, as the listening socket (sock)
1935 	 * has the protocol module (sock->ops->owner) held.
1936 	 */
1937 	__module_get(ops->owner);
1938 
1939 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1940 	if (IS_ERR(newfile))
1941 		return newfile;
1942 
1943 	err = security_socket_accept(sock, newsock);
1944 	if (err)
1945 		goto out_fd;
1946 
1947 	arg->flags |= sock->file->f_flags;
1948 	err = ops->accept(sock, newsock, arg);
1949 	if (err < 0)
1950 		goto out_fd;
1951 
1952 	if (upeer_sockaddr) {
1953 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1954 		if (len < 0) {
1955 			err = -ECONNABORTED;
1956 			goto out_fd;
1957 		}
1958 		err = move_addr_to_user(&address,
1959 					len, upeer_sockaddr, upeer_addrlen);
1960 		if (err < 0)
1961 			goto out_fd;
1962 	}
1963 
1964 	/* File flags are not inherited via accept() unlike another OSes. */
1965 	return newfile;
1966 out_fd:
1967 	fput(newfile);
1968 	return ERR_PTR(err);
1969 }
1970 
1971 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1972 			      int __user *upeer_addrlen, int flags)
1973 {
1974 	struct proto_accept_arg arg = { };
1975 	struct file *newfile;
1976 	int newfd;
1977 
1978 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1979 		return -EINVAL;
1980 
1981 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1982 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1983 
1984 	newfd = get_unused_fd_flags(flags);
1985 	if (unlikely(newfd < 0))
1986 		return newfd;
1987 
1988 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1989 			    flags);
1990 	if (IS_ERR(newfile)) {
1991 		put_unused_fd(newfd);
1992 		return PTR_ERR(newfile);
1993 	}
1994 	fd_install(newfd, newfile);
1995 	return newfd;
1996 }
1997 
1998 /*
1999  *	For accept, we attempt to create a new socket, set up the link
2000  *	with the client, wake up the client, then return the new
2001  *	connected fd. We collect the address of the connector in kernel
2002  *	space and move it to user at the very end. This is unclean because
2003  *	we open the socket then return an error.
2004  *
2005  *	1003.1g adds the ability to recvmsg() to query connection pending
2006  *	status to recvmsg. We need to add that support in a way thats
2007  *	clean when we restructure accept also.
2008  */
2009 
2010 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2011 		  int __user *upeer_addrlen, int flags)
2012 {
2013 	int ret = -EBADF;
2014 	struct fd f;
2015 
2016 	f = fdget(fd);
2017 	if (f.file) {
2018 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
2019 					 upeer_addrlen, flags);
2020 		fdput(f);
2021 	}
2022 
2023 	return ret;
2024 }
2025 
2026 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2027 		int __user *, upeer_addrlen, int, flags)
2028 {
2029 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2030 }
2031 
2032 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2033 		int __user *, upeer_addrlen)
2034 {
2035 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2036 }
2037 
2038 /*
2039  *	Attempt to connect to a socket with the server address.  The address
2040  *	is in user space so we verify it is OK and move it to kernel space.
2041  *
2042  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2043  *	break bindings
2044  *
2045  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2046  *	other SEQPACKET protocols that take time to connect() as it doesn't
2047  *	include the -EINPROGRESS status for such sockets.
2048  */
2049 
2050 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2051 		       int addrlen, int file_flags)
2052 {
2053 	struct socket *sock;
2054 	int err;
2055 
2056 	sock = sock_from_file(file);
2057 	if (!sock) {
2058 		err = -ENOTSOCK;
2059 		goto out;
2060 	}
2061 
2062 	err =
2063 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2064 	if (err)
2065 		goto out;
2066 
2067 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2068 				addrlen, sock->file->f_flags | file_flags);
2069 out:
2070 	return err;
2071 }
2072 
2073 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2074 {
2075 	int ret = -EBADF;
2076 	struct fd f;
2077 
2078 	f = fdget(fd);
2079 	if (f.file) {
2080 		struct sockaddr_storage address;
2081 
2082 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2083 		if (!ret)
2084 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2085 		fdput(f);
2086 	}
2087 
2088 	return ret;
2089 }
2090 
2091 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2092 		int, addrlen)
2093 {
2094 	return __sys_connect(fd, uservaddr, addrlen);
2095 }
2096 
2097 /*
2098  *	Get the local address ('name') of a socket object. Move the obtained
2099  *	name to user space.
2100  */
2101 
2102 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2103 		      int __user *usockaddr_len)
2104 {
2105 	struct socket *sock;
2106 	struct sockaddr_storage address;
2107 	int err, fput_needed;
2108 
2109 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2110 	if (!sock)
2111 		goto out;
2112 
2113 	err = security_socket_getsockname(sock);
2114 	if (err)
2115 		goto out_put;
2116 
2117 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2118 	if (err < 0)
2119 		goto out_put;
2120 	/* "err" is actually length in this case */
2121 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2122 
2123 out_put:
2124 	fput_light(sock->file, fput_needed);
2125 out:
2126 	return err;
2127 }
2128 
2129 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2130 		int __user *, usockaddr_len)
2131 {
2132 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2133 }
2134 
2135 /*
2136  *	Get the remote address ('name') of a socket object. Move the obtained
2137  *	name to user space.
2138  */
2139 
2140 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2141 		      int __user *usockaddr_len)
2142 {
2143 	struct socket *sock;
2144 	struct sockaddr_storage address;
2145 	int err, fput_needed;
2146 
2147 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2148 	if (sock != NULL) {
2149 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2150 
2151 		err = security_socket_getpeername(sock);
2152 		if (err) {
2153 			fput_light(sock->file, fput_needed);
2154 			return err;
2155 		}
2156 
2157 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2158 		if (err >= 0)
2159 			/* "err" is actually length in this case */
2160 			err = move_addr_to_user(&address, err, usockaddr,
2161 						usockaddr_len);
2162 		fput_light(sock->file, fput_needed);
2163 	}
2164 	return err;
2165 }
2166 
2167 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2168 		int __user *, usockaddr_len)
2169 {
2170 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2171 }
2172 
2173 /*
2174  *	Send a datagram to a given address. We move the address into kernel
2175  *	space and check the user space data area is readable before invoking
2176  *	the protocol.
2177  */
2178 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2179 		 struct sockaddr __user *addr,  int addr_len)
2180 {
2181 	struct socket *sock;
2182 	struct sockaddr_storage address;
2183 	int err;
2184 	struct msghdr msg;
2185 	int fput_needed;
2186 
2187 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2188 	if (unlikely(err))
2189 		return err;
2190 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 	if (!sock)
2192 		goto out;
2193 
2194 	msg.msg_name = NULL;
2195 	msg.msg_control = NULL;
2196 	msg.msg_controllen = 0;
2197 	msg.msg_namelen = 0;
2198 	msg.msg_ubuf = NULL;
2199 	if (addr) {
2200 		err = move_addr_to_kernel(addr, addr_len, &address);
2201 		if (err < 0)
2202 			goto out_put;
2203 		msg.msg_name = (struct sockaddr *)&address;
2204 		msg.msg_namelen = addr_len;
2205 	}
2206 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2207 	if (sock->file->f_flags & O_NONBLOCK)
2208 		flags |= MSG_DONTWAIT;
2209 	msg.msg_flags = flags;
2210 	err = __sock_sendmsg(sock, &msg);
2211 
2212 out_put:
2213 	fput_light(sock->file, fput_needed);
2214 out:
2215 	return err;
2216 }
2217 
2218 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2219 		unsigned int, flags, struct sockaddr __user *, addr,
2220 		int, addr_len)
2221 {
2222 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2223 }
2224 
2225 /*
2226  *	Send a datagram down a socket.
2227  */
2228 
2229 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2230 		unsigned int, flags)
2231 {
2232 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2233 }
2234 
2235 /*
2236  *	Receive a frame from the socket and optionally record the address of the
2237  *	sender. We verify the buffers are writable and if needed move the
2238  *	sender address from kernel to user space.
2239  */
2240 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2241 		   struct sockaddr __user *addr, int __user *addr_len)
2242 {
2243 	struct sockaddr_storage address;
2244 	struct msghdr msg = {
2245 		/* Save some cycles and don't copy the address if not needed */
2246 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2247 	};
2248 	struct socket *sock;
2249 	int err, err2;
2250 	int fput_needed;
2251 
2252 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2253 	if (unlikely(err))
2254 		return err;
2255 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2256 	if (!sock)
2257 		goto out;
2258 
2259 	if (sock->file->f_flags & O_NONBLOCK)
2260 		flags |= MSG_DONTWAIT;
2261 	err = sock_recvmsg(sock, &msg, flags);
2262 
2263 	if (err >= 0 && addr != NULL) {
2264 		err2 = move_addr_to_user(&address,
2265 					 msg.msg_namelen, addr, addr_len);
2266 		if (err2 < 0)
2267 			err = err2;
2268 	}
2269 
2270 	fput_light(sock->file, fput_needed);
2271 out:
2272 	return err;
2273 }
2274 
2275 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2276 		unsigned int, flags, struct sockaddr __user *, addr,
2277 		int __user *, addr_len)
2278 {
2279 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2280 }
2281 
2282 /*
2283  *	Receive a datagram from a socket.
2284  */
2285 
2286 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2287 		unsigned int, flags)
2288 {
2289 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2290 }
2291 
2292 static bool sock_use_custom_sol_socket(const struct socket *sock)
2293 {
2294 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2295 }
2296 
2297 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2298 		       int optname, sockptr_t optval, int optlen)
2299 {
2300 	const struct proto_ops *ops;
2301 	char *kernel_optval = NULL;
2302 	int err;
2303 
2304 	if (optlen < 0)
2305 		return -EINVAL;
2306 
2307 	err = security_socket_setsockopt(sock, level, optname);
2308 	if (err)
2309 		goto out_put;
2310 
2311 	if (!compat)
2312 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2313 						     optval, &optlen,
2314 						     &kernel_optval);
2315 	if (err < 0)
2316 		goto out_put;
2317 	if (err > 0) {
2318 		err = 0;
2319 		goto out_put;
2320 	}
2321 
2322 	if (kernel_optval)
2323 		optval = KERNEL_SOCKPTR(kernel_optval);
2324 	ops = READ_ONCE(sock->ops);
2325 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2326 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2327 	else if (unlikely(!ops->setsockopt))
2328 		err = -EOPNOTSUPP;
2329 	else
2330 		err = ops->setsockopt(sock, level, optname, optval,
2331 					    optlen);
2332 	kfree(kernel_optval);
2333 out_put:
2334 	return err;
2335 }
2336 EXPORT_SYMBOL(do_sock_setsockopt);
2337 
2338 /* Set a socket option. Because we don't know the option lengths we have
2339  * to pass the user mode parameter for the protocols to sort out.
2340  */
2341 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2342 		     int optlen)
2343 {
2344 	sockptr_t optval = USER_SOCKPTR(user_optval);
2345 	bool compat = in_compat_syscall();
2346 	int err, fput_needed;
2347 	struct socket *sock;
2348 
2349 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 	if (!sock)
2351 		return err;
2352 
2353 	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2354 
2355 	fput_light(sock->file, fput_needed);
2356 	return err;
2357 }
2358 
2359 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2360 		char __user *, optval, int, optlen)
2361 {
2362 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2363 }
2364 
2365 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2366 							 int optname));
2367 
2368 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2369 		       int optname, sockptr_t optval, sockptr_t optlen)
2370 {
2371 	int max_optlen __maybe_unused = 0;
2372 	const struct proto_ops *ops;
2373 	int err;
2374 
2375 	err = security_socket_getsockopt(sock, level, optname);
2376 	if (err)
2377 		return err;
2378 
2379 	if (!compat)
2380 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2381 
2382 	ops = READ_ONCE(sock->ops);
2383 	if (level == SOL_SOCKET) {
2384 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2385 	} else if (unlikely(!ops->getsockopt)) {
2386 		err = -EOPNOTSUPP;
2387 	} else {
2388 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2389 			      "Invalid argument type"))
2390 			return -EOPNOTSUPP;
2391 
2392 		err = ops->getsockopt(sock, level, optname, optval.user,
2393 				      optlen.user);
2394 	}
2395 
2396 	if (!compat)
2397 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2398 						     optval, optlen, max_optlen,
2399 						     err);
2400 
2401 	return err;
2402 }
2403 EXPORT_SYMBOL(do_sock_getsockopt);
2404 
2405 /*
2406  *	Get a socket option. Because we don't know the option lengths we have
2407  *	to pass a user mode parameter for the protocols to sort out.
2408  */
2409 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2410 		int __user *optlen)
2411 {
2412 	int err, fput_needed;
2413 	struct socket *sock;
2414 	bool compat;
2415 
2416 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2417 	if (!sock)
2418 		return err;
2419 
2420 	compat = in_compat_syscall();
2421 	err = do_sock_getsockopt(sock, compat, level, optname,
2422 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2423 
2424 	fput_light(sock->file, fput_needed);
2425 	return err;
2426 }
2427 
2428 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2429 		char __user *, optval, int __user *, optlen)
2430 {
2431 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2432 }
2433 
2434 /*
2435  *	Shutdown a socket.
2436  */
2437 
2438 int __sys_shutdown_sock(struct socket *sock, int how)
2439 {
2440 	int err;
2441 
2442 	err = security_socket_shutdown(sock, how);
2443 	if (!err)
2444 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2445 
2446 	return err;
2447 }
2448 
2449 int __sys_shutdown(int fd, int how)
2450 {
2451 	int err, fput_needed;
2452 	struct socket *sock;
2453 
2454 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2455 	if (sock != NULL) {
2456 		err = __sys_shutdown_sock(sock, how);
2457 		fput_light(sock->file, fput_needed);
2458 	}
2459 	return err;
2460 }
2461 
2462 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2463 {
2464 	return __sys_shutdown(fd, how);
2465 }
2466 
2467 /* A couple of helpful macros for getting the address of the 32/64 bit
2468  * fields which are the same type (int / unsigned) on our platforms.
2469  */
2470 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2471 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2472 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2473 
2474 struct used_address {
2475 	struct sockaddr_storage name;
2476 	unsigned int name_len;
2477 };
2478 
2479 int __copy_msghdr(struct msghdr *kmsg,
2480 		  struct user_msghdr *msg,
2481 		  struct sockaddr __user **save_addr)
2482 {
2483 	ssize_t err;
2484 
2485 	kmsg->msg_control_is_user = true;
2486 	kmsg->msg_get_inq = 0;
2487 	kmsg->msg_control_user = msg->msg_control;
2488 	kmsg->msg_controllen = msg->msg_controllen;
2489 	kmsg->msg_flags = msg->msg_flags;
2490 
2491 	kmsg->msg_namelen = msg->msg_namelen;
2492 	if (!msg->msg_name)
2493 		kmsg->msg_namelen = 0;
2494 
2495 	if (kmsg->msg_namelen < 0)
2496 		return -EINVAL;
2497 
2498 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2499 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2500 
2501 	if (save_addr)
2502 		*save_addr = msg->msg_name;
2503 
2504 	if (msg->msg_name && kmsg->msg_namelen) {
2505 		if (!save_addr) {
2506 			err = move_addr_to_kernel(msg->msg_name,
2507 						  kmsg->msg_namelen,
2508 						  kmsg->msg_name);
2509 			if (err < 0)
2510 				return err;
2511 		}
2512 	} else {
2513 		kmsg->msg_name = NULL;
2514 		kmsg->msg_namelen = 0;
2515 	}
2516 
2517 	if (msg->msg_iovlen > UIO_MAXIOV)
2518 		return -EMSGSIZE;
2519 
2520 	kmsg->msg_iocb = NULL;
2521 	kmsg->msg_ubuf = NULL;
2522 	return 0;
2523 }
2524 
2525 static int copy_msghdr_from_user(struct msghdr *kmsg,
2526 				 struct user_msghdr __user *umsg,
2527 				 struct sockaddr __user **save_addr,
2528 				 struct iovec **iov)
2529 {
2530 	struct user_msghdr msg;
2531 	ssize_t err;
2532 
2533 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2534 		return -EFAULT;
2535 
2536 	err = __copy_msghdr(kmsg, &msg, save_addr);
2537 	if (err)
2538 		return err;
2539 
2540 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2541 			    msg.msg_iov, msg.msg_iovlen,
2542 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2543 	return err < 0 ? err : 0;
2544 }
2545 
2546 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2547 			   unsigned int flags, struct used_address *used_address,
2548 			   unsigned int allowed_msghdr_flags)
2549 {
2550 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2551 				__aligned(sizeof(__kernel_size_t));
2552 	/* 20 is size of ipv6_pktinfo */
2553 	unsigned char *ctl_buf = ctl;
2554 	int ctl_len;
2555 	ssize_t err;
2556 
2557 	err = -ENOBUFS;
2558 
2559 	if (msg_sys->msg_controllen > INT_MAX)
2560 		goto out;
2561 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2562 	ctl_len = msg_sys->msg_controllen;
2563 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2564 		err =
2565 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2566 						     sizeof(ctl));
2567 		if (err)
2568 			goto out;
2569 		ctl_buf = msg_sys->msg_control;
2570 		ctl_len = msg_sys->msg_controllen;
2571 	} else if (ctl_len) {
2572 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2573 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2574 		if (ctl_len > sizeof(ctl)) {
2575 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2576 			if (ctl_buf == NULL)
2577 				goto out;
2578 		}
2579 		err = -EFAULT;
2580 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2581 			goto out_freectl;
2582 		msg_sys->msg_control = ctl_buf;
2583 		msg_sys->msg_control_is_user = false;
2584 	}
2585 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2586 	msg_sys->msg_flags = flags;
2587 
2588 	if (sock->file->f_flags & O_NONBLOCK)
2589 		msg_sys->msg_flags |= MSG_DONTWAIT;
2590 	/*
2591 	 * If this is sendmmsg() and current destination address is same as
2592 	 * previously succeeded address, omit asking LSM's decision.
2593 	 * used_address->name_len is initialized to UINT_MAX so that the first
2594 	 * destination address never matches.
2595 	 */
2596 	if (used_address && msg_sys->msg_name &&
2597 	    used_address->name_len == msg_sys->msg_namelen &&
2598 	    !memcmp(&used_address->name, msg_sys->msg_name,
2599 		    used_address->name_len)) {
2600 		err = sock_sendmsg_nosec(sock, msg_sys);
2601 		goto out_freectl;
2602 	}
2603 	err = __sock_sendmsg(sock, msg_sys);
2604 	/*
2605 	 * If this is sendmmsg() and sending to current destination address was
2606 	 * successful, remember it.
2607 	 */
2608 	if (used_address && err >= 0) {
2609 		used_address->name_len = msg_sys->msg_namelen;
2610 		if (msg_sys->msg_name)
2611 			memcpy(&used_address->name, msg_sys->msg_name,
2612 			       used_address->name_len);
2613 	}
2614 
2615 out_freectl:
2616 	if (ctl_buf != ctl)
2617 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2618 out:
2619 	return err;
2620 }
2621 
2622 static int sendmsg_copy_msghdr(struct msghdr *msg,
2623 			       struct user_msghdr __user *umsg, unsigned flags,
2624 			       struct iovec **iov)
2625 {
2626 	int err;
2627 
2628 	if (flags & MSG_CMSG_COMPAT) {
2629 		struct compat_msghdr __user *msg_compat;
2630 
2631 		msg_compat = (struct compat_msghdr __user *) umsg;
2632 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2633 	} else {
2634 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2635 	}
2636 	if (err < 0)
2637 		return err;
2638 
2639 	return 0;
2640 }
2641 
2642 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2643 			 struct msghdr *msg_sys, unsigned int flags,
2644 			 struct used_address *used_address,
2645 			 unsigned int allowed_msghdr_flags)
2646 {
2647 	struct sockaddr_storage address;
2648 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2649 	ssize_t err;
2650 
2651 	msg_sys->msg_name = &address;
2652 
2653 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2654 	if (err < 0)
2655 		return err;
2656 
2657 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2658 				allowed_msghdr_flags);
2659 	kfree(iov);
2660 	return err;
2661 }
2662 
2663 /*
2664  *	BSD sendmsg interface
2665  */
2666 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2667 			unsigned int flags)
2668 {
2669 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2670 }
2671 
2672 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2673 		   bool forbid_cmsg_compat)
2674 {
2675 	int fput_needed, err;
2676 	struct msghdr msg_sys;
2677 	struct socket *sock;
2678 
2679 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2680 		return -EINVAL;
2681 
2682 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2683 	if (!sock)
2684 		goto out;
2685 
2686 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2687 
2688 	fput_light(sock->file, fput_needed);
2689 out:
2690 	return err;
2691 }
2692 
2693 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2694 {
2695 	return __sys_sendmsg(fd, msg, flags, true);
2696 }
2697 
2698 /*
2699  *	Linux sendmmsg interface
2700  */
2701 
2702 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2703 		   unsigned int flags, bool forbid_cmsg_compat)
2704 {
2705 	int fput_needed, err, datagrams;
2706 	struct socket *sock;
2707 	struct mmsghdr __user *entry;
2708 	struct compat_mmsghdr __user *compat_entry;
2709 	struct msghdr msg_sys;
2710 	struct used_address used_address;
2711 	unsigned int oflags = flags;
2712 
2713 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2714 		return -EINVAL;
2715 
2716 	if (vlen > UIO_MAXIOV)
2717 		vlen = UIO_MAXIOV;
2718 
2719 	datagrams = 0;
2720 
2721 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722 	if (!sock)
2723 		return err;
2724 
2725 	used_address.name_len = UINT_MAX;
2726 	entry = mmsg;
2727 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2728 	err = 0;
2729 	flags |= MSG_BATCH;
2730 
2731 	while (datagrams < vlen) {
2732 		if (datagrams == vlen - 1)
2733 			flags = oflags;
2734 
2735 		if (MSG_CMSG_COMPAT & flags) {
2736 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2737 					     &msg_sys, flags, &used_address, MSG_EOR);
2738 			if (err < 0)
2739 				break;
2740 			err = __put_user(err, &compat_entry->msg_len);
2741 			++compat_entry;
2742 		} else {
2743 			err = ___sys_sendmsg(sock,
2744 					     (struct user_msghdr __user *)entry,
2745 					     &msg_sys, flags, &used_address, MSG_EOR);
2746 			if (err < 0)
2747 				break;
2748 			err = put_user(err, &entry->msg_len);
2749 			++entry;
2750 		}
2751 
2752 		if (err)
2753 			break;
2754 		++datagrams;
2755 		if (msg_data_left(&msg_sys))
2756 			break;
2757 		cond_resched();
2758 	}
2759 
2760 	fput_light(sock->file, fput_needed);
2761 
2762 	/* We only return an error if no datagrams were able to be sent */
2763 	if (datagrams != 0)
2764 		return datagrams;
2765 
2766 	return err;
2767 }
2768 
2769 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2770 		unsigned int, vlen, unsigned int, flags)
2771 {
2772 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2773 }
2774 
2775 static int recvmsg_copy_msghdr(struct msghdr *msg,
2776 			       struct user_msghdr __user *umsg, unsigned flags,
2777 			       struct sockaddr __user **uaddr,
2778 			       struct iovec **iov)
2779 {
2780 	ssize_t err;
2781 
2782 	if (MSG_CMSG_COMPAT & flags) {
2783 		struct compat_msghdr __user *msg_compat;
2784 
2785 		msg_compat = (struct compat_msghdr __user *) umsg;
2786 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2787 	} else {
2788 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2789 	}
2790 	if (err < 0)
2791 		return err;
2792 
2793 	return 0;
2794 }
2795 
2796 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2797 			   struct user_msghdr __user *msg,
2798 			   struct sockaddr __user *uaddr,
2799 			   unsigned int flags, int nosec)
2800 {
2801 	struct compat_msghdr __user *msg_compat =
2802 					(struct compat_msghdr __user *) msg;
2803 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2804 	struct sockaddr_storage addr;
2805 	unsigned long cmsg_ptr;
2806 	int len;
2807 	ssize_t err;
2808 
2809 	msg_sys->msg_name = &addr;
2810 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2811 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2812 
2813 	/* We assume all kernel code knows the size of sockaddr_storage */
2814 	msg_sys->msg_namelen = 0;
2815 
2816 	if (sock->file->f_flags & O_NONBLOCK)
2817 		flags |= MSG_DONTWAIT;
2818 
2819 	if (unlikely(nosec))
2820 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2821 	else
2822 		err = sock_recvmsg(sock, msg_sys, flags);
2823 
2824 	if (err < 0)
2825 		goto out;
2826 	len = err;
2827 
2828 	if (uaddr != NULL) {
2829 		err = move_addr_to_user(&addr,
2830 					msg_sys->msg_namelen, uaddr,
2831 					uaddr_len);
2832 		if (err < 0)
2833 			goto out;
2834 	}
2835 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2836 			 COMPAT_FLAGS(msg));
2837 	if (err)
2838 		goto out;
2839 	if (MSG_CMSG_COMPAT & flags)
2840 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2841 				 &msg_compat->msg_controllen);
2842 	else
2843 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2844 				 &msg->msg_controllen);
2845 	if (err)
2846 		goto out;
2847 	err = len;
2848 out:
2849 	return err;
2850 }
2851 
2852 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2853 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2854 {
2855 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2856 	/* user mode address pointers */
2857 	struct sockaddr __user *uaddr;
2858 	ssize_t err;
2859 
2860 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2861 	if (err < 0)
2862 		return err;
2863 
2864 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2865 	kfree(iov);
2866 	return err;
2867 }
2868 
2869 /*
2870  *	BSD recvmsg interface
2871  */
2872 
2873 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2874 			struct user_msghdr __user *umsg,
2875 			struct sockaddr __user *uaddr, unsigned int flags)
2876 {
2877 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2878 }
2879 
2880 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2881 		   bool forbid_cmsg_compat)
2882 {
2883 	int fput_needed, err;
2884 	struct msghdr msg_sys;
2885 	struct socket *sock;
2886 
2887 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2888 		return -EINVAL;
2889 
2890 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2891 	if (!sock)
2892 		goto out;
2893 
2894 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2895 
2896 	fput_light(sock->file, fput_needed);
2897 out:
2898 	return err;
2899 }
2900 
2901 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2902 		unsigned int, flags)
2903 {
2904 	return __sys_recvmsg(fd, msg, flags, true);
2905 }
2906 
2907 /*
2908  *     Linux recvmmsg interface
2909  */
2910 
2911 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2912 			  unsigned int vlen, unsigned int flags,
2913 			  struct timespec64 *timeout)
2914 {
2915 	int fput_needed, err, datagrams;
2916 	struct socket *sock;
2917 	struct mmsghdr __user *entry;
2918 	struct compat_mmsghdr __user *compat_entry;
2919 	struct msghdr msg_sys;
2920 	struct timespec64 end_time;
2921 	struct timespec64 timeout64;
2922 
2923 	if (timeout &&
2924 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2925 				    timeout->tv_nsec))
2926 		return -EINVAL;
2927 
2928 	datagrams = 0;
2929 
2930 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2931 	if (!sock)
2932 		return err;
2933 
2934 	if (likely(!(flags & MSG_ERRQUEUE))) {
2935 		err = sock_error(sock->sk);
2936 		if (err) {
2937 			datagrams = err;
2938 			goto out_put;
2939 		}
2940 	}
2941 
2942 	entry = mmsg;
2943 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2944 
2945 	while (datagrams < vlen) {
2946 		/*
2947 		 * No need to ask LSM for more than the first datagram.
2948 		 */
2949 		if (MSG_CMSG_COMPAT & flags) {
2950 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2951 					     &msg_sys, flags & ~MSG_WAITFORONE,
2952 					     datagrams);
2953 			if (err < 0)
2954 				break;
2955 			err = __put_user(err, &compat_entry->msg_len);
2956 			++compat_entry;
2957 		} else {
2958 			err = ___sys_recvmsg(sock,
2959 					     (struct user_msghdr __user *)entry,
2960 					     &msg_sys, flags & ~MSG_WAITFORONE,
2961 					     datagrams);
2962 			if (err < 0)
2963 				break;
2964 			err = put_user(err, &entry->msg_len);
2965 			++entry;
2966 		}
2967 
2968 		if (err)
2969 			break;
2970 		++datagrams;
2971 
2972 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2973 		if (flags & MSG_WAITFORONE)
2974 			flags |= MSG_DONTWAIT;
2975 
2976 		if (timeout) {
2977 			ktime_get_ts64(&timeout64);
2978 			*timeout = timespec64_sub(end_time, timeout64);
2979 			if (timeout->tv_sec < 0) {
2980 				timeout->tv_sec = timeout->tv_nsec = 0;
2981 				break;
2982 			}
2983 
2984 			/* Timeout, return less than vlen datagrams */
2985 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2986 				break;
2987 		}
2988 
2989 		/* Out of band data, return right away */
2990 		if (msg_sys.msg_flags & MSG_OOB)
2991 			break;
2992 		cond_resched();
2993 	}
2994 
2995 	if (err == 0)
2996 		goto out_put;
2997 
2998 	if (datagrams == 0) {
2999 		datagrams = err;
3000 		goto out_put;
3001 	}
3002 
3003 	/*
3004 	 * We may return less entries than requested (vlen) if the
3005 	 * sock is non block and there aren't enough datagrams...
3006 	 */
3007 	if (err != -EAGAIN) {
3008 		/*
3009 		 * ... or  if recvmsg returns an error after we
3010 		 * received some datagrams, where we record the
3011 		 * error to return on the next call or if the
3012 		 * app asks about it using getsockopt(SO_ERROR).
3013 		 */
3014 		WRITE_ONCE(sock->sk->sk_err, -err);
3015 	}
3016 out_put:
3017 	fput_light(sock->file, fput_needed);
3018 
3019 	return datagrams;
3020 }
3021 
3022 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3023 		   unsigned int vlen, unsigned int flags,
3024 		   struct __kernel_timespec __user *timeout,
3025 		   struct old_timespec32 __user *timeout32)
3026 {
3027 	int datagrams;
3028 	struct timespec64 timeout_sys;
3029 
3030 	if (timeout && get_timespec64(&timeout_sys, timeout))
3031 		return -EFAULT;
3032 
3033 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3034 		return -EFAULT;
3035 
3036 	if (!timeout && !timeout32)
3037 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3038 
3039 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3040 
3041 	if (datagrams <= 0)
3042 		return datagrams;
3043 
3044 	if (timeout && put_timespec64(&timeout_sys, timeout))
3045 		datagrams = -EFAULT;
3046 
3047 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3048 		datagrams = -EFAULT;
3049 
3050 	return datagrams;
3051 }
3052 
3053 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3054 		unsigned int, vlen, unsigned int, flags,
3055 		struct __kernel_timespec __user *, timeout)
3056 {
3057 	if (flags & MSG_CMSG_COMPAT)
3058 		return -EINVAL;
3059 
3060 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3061 }
3062 
3063 #ifdef CONFIG_COMPAT_32BIT_TIME
3064 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3065 		unsigned int, vlen, unsigned int, flags,
3066 		struct old_timespec32 __user *, timeout)
3067 {
3068 	if (flags & MSG_CMSG_COMPAT)
3069 		return -EINVAL;
3070 
3071 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3072 }
3073 #endif
3074 
3075 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3076 /* Argument list sizes for sys_socketcall */
3077 #define AL(x) ((x) * sizeof(unsigned long))
3078 static const unsigned char nargs[21] = {
3079 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3080 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3081 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3082 	AL(4), AL(5), AL(4)
3083 };
3084 
3085 #undef AL
3086 
3087 /*
3088  *	System call vectors.
3089  *
3090  *	Argument checking cleaned up. Saved 20% in size.
3091  *  This function doesn't need to set the kernel lock because
3092  *  it is set by the callees.
3093  */
3094 
3095 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3096 {
3097 	unsigned long a[AUDITSC_ARGS];
3098 	unsigned long a0, a1;
3099 	int err;
3100 	unsigned int len;
3101 
3102 	if (call < 1 || call > SYS_SENDMMSG)
3103 		return -EINVAL;
3104 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3105 
3106 	len = nargs[call];
3107 	if (len > sizeof(a))
3108 		return -EINVAL;
3109 
3110 	/* copy_from_user should be SMP safe. */
3111 	if (copy_from_user(a, args, len))
3112 		return -EFAULT;
3113 
3114 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3115 	if (err)
3116 		return err;
3117 
3118 	a0 = a[0];
3119 	a1 = a[1];
3120 
3121 	switch (call) {
3122 	case SYS_SOCKET:
3123 		err = __sys_socket(a0, a1, a[2]);
3124 		break;
3125 	case SYS_BIND:
3126 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3127 		break;
3128 	case SYS_CONNECT:
3129 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3130 		break;
3131 	case SYS_LISTEN:
3132 		err = __sys_listen(a0, a1);
3133 		break;
3134 	case SYS_ACCEPT:
3135 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3136 				    (int __user *)a[2], 0);
3137 		break;
3138 	case SYS_GETSOCKNAME:
3139 		err =
3140 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3141 				      (int __user *)a[2]);
3142 		break;
3143 	case SYS_GETPEERNAME:
3144 		err =
3145 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3146 				      (int __user *)a[2]);
3147 		break;
3148 	case SYS_SOCKETPAIR:
3149 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3150 		break;
3151 	case SYS_SEND:
3152 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3153 				   NULL, 0);
3154 		break;
3155 	case SYS_SENDTO:
3156 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3157 				   (struct sockaddr __user *)a[4], a[5]);
3158 		break;
3159 	case SYS_RECV:
3160 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3161 				     NULL, NULL);
3162 		break;
3163 	case SYS_RECVFROM:
3164 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3165 				     (struct sockaddr __user *)a[4],
3166 				     (int __user *)a[5]);
3167 		break;
3168 	case SYS_SHUTDOWN:
3169 		err = __sys_shutdown(a0, a1);
3170 		break;
3171 	case SYS_SETSOCKOPT:
3172 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3173 				       a[4]);
3174 		break;
3175 	case SYS_GETSOCKOPT:
3176 		err =
3177 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3178 				     (int __user *)a[4]);
3179 		break;
3180 	case SYS_SENDMSG:
3181 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3182 				    a[2], true);
3183 		break;
3184 	case SYS_SENDMMSG:
3185 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3186 				     a[3], true);
3187 		break;
3188 	case SYS_RECVMSG:
3189 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3190 				    a[2], true);
3191 		break;
3192 	case SYS_RECVMMSG:
3193 		if (IS_ENABLED(CONFIG_64BIT))
3194 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3195 					     a[2], a[3],
3196 					     (struct __kernel_timespec __user *)a[4],
3197 					     NULL);
3198 		else
3199 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3200 					     a[2], a[3], NULL,
3201 					     (struct old_timespec32 __user *)a[4]);
3202 		break;
3203 	case SYS_ACCEPT4:
3204 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3205 				    (int __user *)a[2], a[3]);
3206 		break;
3207 	default:
3208 		err = -EINVAL;
3209 		break;
3210 	}
3211 	return err;
3212 }
3213 
3214 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3215 
3216 /**
3217  *	sock_register - add a socket protocol handler
3218  *	@ops: description of protocol
3219  *
3220  *	This function is called by a protocol handler that wants to
3221  *	advertise its address family, and have it linked into the
3222  *	socket interface. The value ops->family corresponds to the
3223  *	socket system call protocol family.
3224  */
3225 int sock_register(const struct net_proto_family *ops)
3226 {
3227 	int err;
3228 
3229 	if (ops->family >= NPROTO) {
3230 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3231 		return -ENOBUFS;
3232 	}
3233 
3234 	spin_lock(&net_family_lock);
3235 	if (rcu_dereference_protected(net_families[ops->family],
3236 				      lockdep_is_held(&net_family_lock)))
3237 		err = -EEXIST;
3238 	else {
3239 		rcu_assign_pointer(net_families[ops->family], ops);
3240 		err = 0;
3241 	}
3242 	spin_unlock(&net_family_lock);
3243 
3244 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3245 	return err;
3246 }
3247 EXPORT_SYMBOL(sock_register);
3248 
3249 /**
3250  *	sock_unregister - remove a protocol handler
3251  *	@family: protocol family to remove
3252  *
3253  *	This function is called by a protocol handler that wants to
3254  *	remove its address family, and have it unlinked from the
3255  *	new socket creation.
3256  *
3257  *	If protocol handler is a module, then it can use module reference
3258  *	counts to protect against new references. If protocol handler is not
3259  *	a module then it needs to provide its own protection in
3260  *	the ops->create routine.
3261  */
3262 void sock_unregister(int family)
3263 {
3264 	BUG_ON(family < 0 || family >= NPROTO);
3265 
3266 	spin_lock(&net_family_lock);
3267 	RCU_INIT_POINTER(net_families[family], NULL);
3268 	spin_unlock(&net_family_lock);
3269 
3270 	synchronize_rcu();
3271 
3272 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3273 }
3274 EXPORT_SYMBOL(sock_unregister);
3275 
3276 bool sock_is_registered(int family)
3277 {
3278 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3279 }
3280 
3281 static int __init sock_init(void)
3282 {
3283 	int err;
3284 	/*
3285 	 *      Initialize the network sysctl infrastructure.
3286 	 */
3287 	err = net_sysctl_init();
3288 	if (err)
3289 		goto out;
3290 
3291 	/*
3292 	 *      Initialize skbuff SLAB cache
3293 	 */
3294 	skb_init();
3295 
3296 	/*
3297 	 *      Initialize the protocols module.
3298 	 */
3299 
3300 	init_inodecache();
3301 
3302 	err = register_filesystem(&sock_fs_type);
3303 	if (err)
3304 		goto out;
3305 	sock_mnt = kern_mount(&sock_fs_type);
3306 	if (IS_ERR(sock_mnt)) {
3307 		err = PTR_ERR(sock_mnt);
3308 		goto out_mount;
3309 	}
3310 
3311 	/* The real protocol initialization is performed in later initcalls.
3312 	 */
3313 
3314 #ifdef CONFIG_NETFILTER
3315 	err = netfilter_init();
3316 	if (err)
3317 		goto out;
3318 #endif
3319 
3320 	ptp_classifier_init();
3321 
3322 out:
3323 	return err;
3324 
3325 out_mount:
3326 	unregister_filesystem(&sock_fs_type);
3327 	goto out;
3328 }
3329 
3330 core_initcall(sock_init);	/* early initcall */
3331 
3332 #ifdef CONFIG_PROC_FS
3333 void socket_seq_show(struct seq_file *seq)
3334 {
3335 	seq_printf(seq, "sockets: used %d\n",
3336 		   sock_inuse_get(seq->private));
3337 }
3338 #endif				/* CONFIG_PROC_FS */
3339 
3340 /* Handle the fact that while struct ifreq has the same *layout* on
3341  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3342  * which are handled elsewhere, it still has different *size* due to
3343  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3344  * resulting in struct ifreq being 32 and 40 bytes respectively).
3345  * As a result, if the struct happens to be at the end of a page and
3346  * the next page isn't readable/writable, we get a fault. To prevent
3347  * that, copy back and forth to the full size.
3348  */
3349 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3350 {
3351 	if (in_compat_syscall()) {
3352 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3353 
3354 		memset(ifr, 0, sizeof(*ifr));
3355 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3356 			return -EFAULT;
3357 
3358 		if (ifrdata)
3359 			*ifrdata = compat_ptr(ifr32->ifr_data);
3360 
3361 		return 0;
3362 	}
3363 
3364 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3365 		return -EFAULT;
3366 
3367 	if (ifrdata)
3368 		*ifrdata = ifr->ifr_data;
3369 
3370 	return 0;
3371 }
3372 EXPORT_SYMBOL(get_user_ifreq);
3373 
3374 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3375 {
3376 	size_t size = sizeof(*ifr);
3377 
3378 	if (in_compat_syscall())
3379 		size = sizeof(struct compat_ifreq);
3380 
3381 	if (copy_to_user(arg, ifr, size))
3382 		return -EFAULT;
3383 
3384 	return 0;
3385 }
3386 EXPORT_SYMBOL(put_user_ifreq);
3387 
3388 #ifdef CONFIG_COMPAT
3389 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3390 {
3391 	compat_uptr_t uptr32;
3392 	struct ifreq ifr;
3393 	void __user *saved;
3394 	int err;
3395 
3396 	if (get_user_ifreq(&ifr, NULL, uifr32))
3397 		return -EFAULT;
3398 
3399 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3400 		return -EFAULT;
3401 
3402 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3403 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3404 
3405 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3406 	if (!err) {
3407 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3408 		if (put_user_ifreq(&ifr, uifr32))
3409 			err = -EFAULT;
3410 	}
3411 	return err;
3412 }
3413 
3414 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3415 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3416 				 struct compat_ifreq __user *u_ifreq32)
3417 {
3418 	struct ifreq ifreq;
3419 	void __user *data;
3420 
3421 	if (!is_socket_ioctl_cmd(cmd))
3422 		return -ENOTTY;
3423 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3424 		return -EFAULT;
3425 	ifreq.ifr_data = data;
3426 
3427 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3428 }
3429 
3430 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3431 			 unsigned int cmd, unsigned long arg)
3432 {
3433 	void __user *argp = compat_ptr(arg);
3434 	struct sock *sk = sock->sk;
3435 	struct net *net = sock_net(sk);
3436 	const struct proto_ops *ops;
3437 
3438 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3439 		return sock_ioctl(file, cmd, (unsigned long)argp);
3440 
3441 	switch (cmd) {
3442 	case SIOCWANDEV:
3443 		return compat_siocwandev(net, argp);
3444 	case SIOCGSTAMP_OLD:
3445 	case SIOCGSTAMPNS_OLD:
3446 		ops = READ_ONCE(sock->ops);
3447 		if (!ops->gettstamp)
3448 			return -ENOIOCTLCMD;
3449 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3450 				      !COMPAT_USE_64BIT_TIME);
3451 
3452 	case SIOCETHTOOL:
3453 	case SIOCBONDSLAVEINFOQUERY:
3454 	case SIOCBONDINFOQUERY:
3455 	case SIOCSHWTSTAMP:
3456 	case SIOCGHWTSTAMP:
3457 		return compat_ifr_data_ioctl(net, cmd, argp);
3458 
3459 	case FIOSETOWN:
3460 	case SIOCSPGRP:
3461 	case FIOGETOWN:
3462 	case SIOCGPGRP:
3463 	case SIOCBRADDBR:
3464 	case SIOCBRDELBR:
3465 	case SIOCGIFVLAN:
3466 	case SIOCSIFVLAN:
3467 	case SIOCGSKNS:
3468 	case SIOCGSTAMP_NEW:
3469 	case SIOCGSTAMPNS_NEW:
3470 	case SIOCGIFCONF:
3471 	case SIOCSIFBR:
3472 	case SIOCGIFBR:
3473 		return sock_ioctl(file, cmd, arg);
3474 
3475 	case SIOCGIFFLAGS:
3476 	case SIOCSIFFLAGS:
3477 	case SIOCGIFMAP:
3478 	case SIOCSIFMAP:
3479 	case SIOCGIFMETRIC:
3480 	case SIOCSIFMETRIC:
3481 	case SIOCGIFMTU:
3482 	case SIOCSIFMTU:
3483 	case SIOCGIFMEM:
3484 	case SIOCSIFMEM:
3485 	case SIOCGIFHWADDR:
3486 	case SIOCSIFHWADDR:
3487 	case SIOCADDMULTI:
3488 	case SIOCDELMULTI:
3489 	case SIOCGIFINDEX:
3490 	case SIOCGIFADDR:
3491 	case SIOCSIFADDR:
3492 	case SIOCSIFHWBROADCAST:
3493 	case SIOCDIFADDR:
3494 	case SIOCGIFBRDADDR:
3495 	case SIOCSIFBRDADDR:
3496 	case SIOCGIFDSTADDR:
3497 	case SIOCSIFDSTADDR:
3498 	case SIOCGIFNETMASK:
3499 	case SIOCSIFNETMASK:
3500 	case SIOCSIFPFLAGS:
3501 	case SIOCGIFPFLAGS:
3502 	case SIOCGIFTXQLEN:
3503 	case SIOCSIFTXQLEN:
3504 	case SIOCBRADDIF:
3505 	case SIOCBRDELIF:
3506 	case SIOCGIFNAME:
3507 	case SIOCSIFNAME:
3508 	case SIOCGMIIPHY:
3509 	case SIOCGMIIREG:
3510 	case SIOCSMIIREG:
3511 	case SIOCBONDENSLAVE:
3512 	case SIOCBONDRELEASE:
3513 	case SIOCBONDSETHWADDR:
3514 	case SIOCBONDCHANGEACTIVE:
3515 	case SIOCSARP:
3516 	case SIOCGARP:
3517 	case SIOCDARP:
3518 	case SIOCOUTQ:
3519 	case SIOCOUTQNSD:
3520 	case SIOCATMARK:
3521 		return sock_do_ioctl(net, sock, cmd, arg);
3522 	}
3523 
3524 	return -ENOIOCTLCMD;
3525 }
3526 
3527 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3528 			      unsigned long arg)
3529 {
3530 	struct socket *sock = file->private_data;
3531 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3532 	int ret = -ENOIOCTLCMD;
3533 	struct sock *sk;
3534 	struct net *net;
3535 
3536 	sk = sock->sk;
3537 	net = sock_net(sk);
3538 
3539 	if (ops->compat_ioctl)
3540 		ret = ops->compat_ioctl(sock, cmd, arg);
3541 
3542 	if (ret == -ENOIOCTLCMD &&
3543 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3544 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3545 
3546 	if (ret == -ENOIOCTLCMD)
3547 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3548 
3549 	return ret;
3550 }
3551 #endif
3552 
3553 /**
3554  *	kernel_bind - bind an address to a socket (kernel space)
3555  *	@sock: socket
3556  *	@addr: address
3557  *	@addrlen: length of address
3558  *
3559  *	Returns 0 or an error.
3560  */
3561 
3562 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3563 {
3564 	struct sockaddr_storage address;
3565 
3566 	memcpy(&address, addr, addrlen);
3567 
3568 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3569 					  addrlen);
3570 }
3571 EXPORT_SYMBOL(kernel_bind);
3572 
3573 /**
3574  *	kernel_listen - move socket to listening state (kernel space)
3575  *	@sock: socket
3576  *	@backlog: pending connections queue size
3577  *
3578  *	Returns 0 or an error.
3579  */
3580 
3581 int kernel_listen(struct socket *sock, int backlog)
3582 {
3583 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3584 }
3585 EXPORT_SYMBOL(kernel_listen);
3586 
3587 /**
3588  *	kernel_accept - accept a connection (kernel space)
3589  *	@sock: listening socket
3590  *	@newsock: new connected socket
3591  *	@flags: flags
3592  *
3593  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3594  *	If it fails, @newsock is guaranteed to be %NULL.
3595  *	Returns 0 or an error.
3596  */
3597 
3598 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3599 {
3600 	struct sock *sk = sock->sk;
3601 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3602 	struct proto_accept_arg arg = {
3603 		.flags = flags,
3604 		.kern = true,
3605 	};
3606 	int err;
3607 
3608 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3609 			       newsock);
3610 	if (err < 0)
3611 		goto done;
3612 
3613 	err = ops->accept(sock, *newsock, &arg);
3614 	if (err < 0) {
3615 		sock_release(*newsock);
3616 		*newsock = NULL;
3617 		goto done;
3618 	}
3619 
3620 	(*newsock)->ops = ops;
3621 	__module_get(ops->owner);
3622 
3623 done:
3624 	return err;
3625 }
3626 EXPORT_SYMBOL(kernel_accept);
3627 
3628 /**
3629  *	kernel_connect - connect a socket (kernel space)
3630  *	@sock: socket
3631  *	@addr: address
3632  *	@addrlen: address length
3633  *	@flags: flags (O_NONBLOCK, ...)
3634  *
3635  *	For datagram sockets, @addr is the address to which datagrams are sent
3636  *	by default, and the only address from which datagrams are received.
3637  *	For stream sockets, attempts to connect to @addr.
3638  *	Returns 0 or an error code.
3639  */
3640 
3641 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3642 		   int flags)
3643 {
3644 	struct sockaddr_storage address;
3645 
3646 	memcpy(&address, addr, addrlen);
3647 
3648 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3649 					     addrlen, flags);
3650 }
3651 EXPORT_SYMBOL(kernel_connect);
3652 
3653 /**
3654  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3655  *	@sock: socket
3656  *	@addr: address holder
3657  *
3658  * 	Fills the @addr pointer with the address which the socket is bound.
3659  *	Returns the length of the address in bytes or an error code.
3660  */
3661 
3662 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3663 {
3664 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3665 }
3666 EXPORT_SYMBOL(kernel_getsockname);
3667 
3668 /**
3669  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3670  *	@sock: socket
3671  *	@addr: address holder
3672  *
3673  * 	Fills the @addr pointer with the address which the socket is connected.
3674  *	Returns the length of the address in bytes or an error code.
3675  */
3676 
3677 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3678 {
3679 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3680 }
3681 EXPORT_SYMBOL(kernel_getpeername);
3682 
3683 /**
3684  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3685  *	@sock: socket
3686  *	@how: connection part
3687  *
3688  *	Returns 0 or an error.
3689  */
3690 
3691 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3692 {
3693 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3694 }
3695 EXPORT_SYMBOL(kernel_sock_shutdown);
3696 
3697 /**
3698  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3699  *	@sk: socket
3700  *
3701  *	This routine returns the IP overhead imposed by a socket i.e.
3702  *	the length of the underlying IP header, depending on whether
3703  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3704  *	on at the socket. Assumes that the caller has a lock on the socket.
3705  */
3706 
3707 u32 kernel_sock_ip_overhead(struct sock *sk)
3708 {
3709 	struct inet_sock *inet;
3710 	struct ip_options_rcu *opt;
3711 	u32 overhead = 0;
3712 #if IS_ENABLED(CONFIG_IPV6)
3713 	struct ipv6_pinfo *np;
3714 	struct ipv6_txoptions *optv6 = NULL;
3715 #endif /* IS_ENABLED(CONFIG_IPV6) */
3716 
3717 	if (!sk)
3718 		return overhead;
3719 
3720 	switch (sk->sk_family) {
3721 	case AF_INET:
3722 		inet = inet_sk(sk);
3723 		overhead += sizeof(struct iphdr);
3724 		opt = rcu_dereference_protected(inet->inet_opt,
3725 						sock_owned_by_user(sk));
3726 		if (opt)
3727 			overhead += opt->opt.optlen;
3728 		return overhead;
3729 #if IS_ENABLED(CONFIG_IPV6)
3730 	case AF_INET6:
3731 		np = inet6_sk(sk);
3732 		overhead += sizeof(struct ipv6hdr);
3733 		if (np)
3734 			optv6 = rcu_dereference_protected(np->opt,
3735 							  sock_owned_by_user(sk));
3736 		if (optv6)
3737 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3738 		return overhead;
3739 #endif /* IS_ENABLED(CONFIG_IPV6) */
3740 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3741 		return overhead;
3742 	}
3743 }
3744 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3745