1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static int sockfs_xattr_get(const struct xattr_handler *handler, 324 struct dentry *dentry, struct inode *inode, 325 const char *suffix, void *value, size_t size) 326 { 327 if (value) { 328 if (dentry->d_name.len + 1 > size) 329 return -ERANGE; 330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 331 } 332 return dentry->d_name.len + 1; 333 } 334 335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 338 339 static const struct xattr_handler sockfs_xattr_handler = { 340 .name = XATTR_NAME_SOCKPROTONAME, 341 .get = sockfs_xattr_get, 342 }; 343 344 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 345 struct dentry *dentry, struct inode *inode, 346 const char *suffix, const void *value, 347 size_t size, int flags) 348 { 349 /* Handled by LSM. */ 350 return -EAGAIN; 351 } 352 353 static const struct xattr_handler sockfs_security_xattr_handler = { 354 .prefix = XATTR_SECURITY_PREFIX, 355 .set = sockfs_security_xattr_set, 356 }; 357 358 static const struct xattr_handler *sockfs_xattr_handlers[] = { 359 &sockfs_xattr_handler, 360 &sockfs_security_xattr_handler, 361 NULL 362 }; 363 364 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 365 int flags, const char *dev_name, void *data) 366 { 367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 368 sockfs_xattr_handlers, 369 &sockfs_dentry_operations, SOCKFS_MAGIC); 370 } 371 372 static struct vfsmount *sock_mnt __read_mostly; 373 374 static struct file_system_type sock_fs_type = { 375 .name = "sockfs", 376 .mount = sockfs_mount, 377 .kill_sb = kill_anon_super, 378 }; 379 380 /* 381 * Obtains the first available file descriptor and sets it up for use. 382 * 383 * These functions create file structures and maps them to fd space 384 * of the current process. On success it returns file descriptor 385 * and file struct implicitly stored in sock->file. 386 * Note that another thread may close file descriptor before we return 387 * from this function. We use the fact that now we do not refer 388 * to socket after mapping. If one day we will need it, this 389 * function will increment ref. count on file by 1. 390 * 391 * In any case returned fd MAY BE not valid! 392 * This race condition is unavoidable 393 * with shared fd spaces, we cannot solve it inside kernel, 394 * but we take care of internal coherence yet. 395 */ 396 397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 398 { 399 struct qstr name = { .name = "" }; 400 struct path path; 401 struct file *file; 402 403 if (dname) { 404 name.name = dname; 405 name.len = strlen(name.name); 406 } else if (sock->sk) { 407 name.name = sock->sk->sk_prot_creator->name; 408 name.len = strlen(name.name); 409 } 410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 411 if (unlikely(!path.dentry)) 412 return ERR_PTR(-ENOMEM); 413 path.mnt = mntget(sock_mnt); 414 415 d_instantiate(path.dentry, SOCK_INODE(sock)); 416 417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 418 &socket_file_ops); 419 if (IS_ERR(file)) { 420 /* drop dentry, keep inode */ 421 ihold(d_inode(path.dentry)); 422 path_put(&path); 423 return file; 424 } 425 426 sock->file = file; 427 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 428 file->private_data = sock; 429 return file; 430 } 431 EXPORT_SYMBOL(sock_alloc_file); 432 433 static int sock_map_fd(struct socket *sock, int flags) 434 { 435 struct file *newfile; 436 int fd = get_unused_fd_flags(flags); 437 if (unlikely(fd < 0)) 438 return fd; 439 440 newfile = sock_alloc_file(sock, flags, NULL); 441 if (likely(!IS_ERR(newfile))) { 442 fd_install(fd, newfile); 443 return fd; 444 } 445 446 put_unused_fd(fd); 447 return PTR_ERR(newfile); 448 } 449 450 struct socket *sock_from_file(struct file *file, int *err) 451 { 452 if (file->f_op == &socket_file_ops) 453 return file->private_data; /* set in sock_map_fd */ 454 455 *err = -ENOTSOCK; 456 return NULL; 457 } 458 EXPORT_SYMBOL(sock_from_file); 459 460 /** 461 * sockfd_lookup - Go from a file number to its socket slot 462 * @fd: file handle 463 * @err: pointer to an error code return 464 * 465 * The file handle passed in is locked and the socket it is bound 466 * too is returned. If an error occurs the err pointer is overwritten 467 * with a negative errno code and NULL is returned. The function checks 468 * for both invalid handles and passing a handle which is not a socket. 469 * 470 * On a success the socket object pointer is returned. 471 */ 472 473 struct socket *sockfd_lookup(int fd, int *err) 474 { 475 struct file *file; 476 struct socket *sock; 477 478 file = fget(fd); 479 if (!file) { 480 *err = -EBADF; 481 return NULL; 482 } 483 484 sock = sock_from_file(file, err); 485 if (!sock) 486 fput(file); 487 return sock; 488 } 489 EXPORT_SYMBOL(sockfd_lookup); 490 491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 492 { 493 struct fd f = fdget(fd); 494 struct socket *sock; 495 496 *err = -EBADF; 497 if (f.file) { 498 sock = sock_from_file(f.file, err); 499 if (likely(sock)) { 500 *fput_needed = f.flags; 501 return sock; 502 } 503 fdput(f); 504 } 505 return NULL; 506 } 507 508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 509 size_t size) 510 { 511 ssize_t len; 512 ssize_t used = 0; 513 514 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 515 if (len < 0) 516 return len; 517 used += len; 518 if (buffer) { 519 if (size < used) 520 return -ERANGE; 521 buffer += len; 522 } 523 524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 525 used += len; 526 if (buffer) { 527 if (size < used) 528 return -ERANGE; 529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 530 buffer += len; 531 } 532 533 return used; 534 } 535 536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 537 { 538 int err = simple_setattr(dentry, iattr); 539 540 if (!err) { 541 struct socket *sock = SOCKET_I(d_inode(dentry)); 542 543 sock->sk->sk_uid = iattr->ia_uid; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 kmemcheck_annotate_bitfield(sock, type); 574 inode->i_ino = get_next_ino(); 575 inode->i_mode = S_IFSOCK | S_IRWXUGO; 576 inode->i_uid = current_fsuid(); 577 inode->i_gid = current_fsgid(); 578 inode->i_op = &sockfs_inode_ops; 579 580 this_cpu_add(sockets_in_use, 1); 581 return sock; 582 } 583 EXPORT_SYMBOL(sock_alloc); 584 585 /** 586 * sock_release - close a socket 587 * @sock: socket to close 588 * 589 * The socket is released from the protocol stack if it has a release 590 * callback, and the inode is then released if the socket is bound to 591 * an inode not a file. 592 */ 593 594 void sock_release(struct socket *sock) 595 { 596 if (sock->ops) { 597 struct module *owner = sock->ops->owner; 598 599 sock->ops->release(sock); 600 sock->ops = NULL; 601 module_put(owner); 602 } 603 604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 605 pr_err("%s: fasync list not empty!\n", __func__); 606 607 this_cpu_sub(sockets_in_use, 1); 608 if (!sock->file) { 609 iput(SOCK_INODE(sock)); 610 return; 611 } 612 sock->file = NULL; 613 } 614 EXPORT_SYMBOL(sock_release); 615 616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 617 { 618 u8 flags = *tx_flags; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 621 flags |= SKBTX_HW_TSTAMP; 622 623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 624 flags |= SKBTX_SW_TSTAMP; 625 626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 627 flags |= SKBTX_SCHED_TSTAMP; 628 629 *tx_flags = flags; 630 } 631 EXPORT_SYMBOL(__sock_tx_timestamp); 632 633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 634 { 635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 636 BUG_ON(ret == -EIOCBQUEUED); 637 return ret; 638 } 639 640 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 641 { 642 int err = security_socket_sendmsg(sock, msg, 643 msg_data_left(msg)); 644 645 return err ?: sock_sendmsg_nosec(sock, msg); 646 } 647 EXPORT_SYMBOL(sock_sendmsg); 648 649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 650 struct kvec *vec, size_t num, size_t size) 651 { 652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 653 return sock_sendmsg(sock, msg); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg); 656 657 /* 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 659 */ 660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 661 struct sk_buff *skb) 662 { 663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 664 struct scm_timestamping tss; 665 int empty = 1; 666 struct skb_shared_hwtstamps *shhwtstamps = 667 skb_hwtstamps(skb); 668 669 /* Race occurred between timestamp enabling and packet 670 receiving. Fill in the current time for now. */ 671 if (need_software_tstamp && skb->tstamp.tv64 == 0) 672 __net_timestamp(skb); 673 674 if (need_software_tstamp) { 675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 676 struct timeval tv; 677 skb_get_timestamp(skb, &tv); 678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 679 sizeof(tv), &tv); 680 } else { 681 struct timespec ts; 682 skb_get_timestampns(skb, &ts); 683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 684 sizeof(ts), &ts); 685 } 686 } 687 688 memset(&tss, 0, sizeof(tss)); 689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 691 empty = 0; 692 if (shhwtstamps && 693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 695 empty = 0; 696 if (!empty) 697 put_cmsg(msg, SOL_SOCKET, 698 SCM_TIMESTAMPING, sizeof(tss), &tss); 699 } 700 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 701 702 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int ack; 706 707 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 708 return; 709 if (!skb->wifi_acked_valid) 710 return; 711 712 ack = skb->wifi_acked; 713 714 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 715 } 716 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 717 718 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 719 struct sk_buff *skb) 720 { 721 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 722 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 723 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 724 } 725 726 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 727 struct sk_buff *skb) 728 { 729 sock_recv_timestamp(msg, sk, skb); 730 sock_recv_drops(msg, sk, skb); 731 } 732 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 733 734 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 735 int flags) 736 { 737 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 738 } 739 740 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 741 { 742 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 743 744 return err ?: sock_recvmsg_nosec(sock, msg, flags); 745 } 746 EXPORT_SYMBOL(sock_recvmsg); 747 748 /** 749 * kernel_recvmsg - Receive a message from a socket (kernel space) 750 * @sock: The socket to receive the message from 751 * @msg: Received message 752 * @vec: Input s/g array for message data 753 * @num: Size of input s/g array 754 * @size: Number of bytes to read 755 * @flags: Message flags (MSG_DONTWAIT, etc...) 756 * 757 * On return the msg structure contains the scatter/gather array passed in the 758 * vec argument. The array is modified so that it consists of the unfilled 759 * portion of the original array. 760 * 761 * The returned value is the total number of bytes received, or an error. 762 */ 763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size, int flags) 765 { 766 mm_segment_t oldfs = get_fs(); 767 int result; 768 769 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 770 set_fs(KERNEL_DS); 771 result = sock_recvmsg(sock, msg, flags); 772 set_fs(oldfs); 773 return result; 774 } 775 EXPORT_SYMBOL(kernel_recvmsg); 776 777 static ssize_t sock_sendpage(struct file *file, struct page *page, 778 int offset, size_t size, loff_t *ppos, int more) 779 { 780 struct socket *sock; 781 int flags; 782 783 sock = file->private_data; 784 785 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 786 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 787 flags |= more; 788 789 return kernel_sendpage(sock, page, offset, size, flags); 790 } 791 792 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 793 struct pipe_inode_info *pipe, size_t len, 794 unsigned int flags) 795 { 796 struct socket *sock = file->private_data; 797 798 if (unlikely(!sock->ops->splice_read)) 799 return -EINVAL; 800 801 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 802 } 803 804 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 805 { 806 struct file *file = iocb->ki_filp; 807 struct socket *sock = file->private_data; 808 struct msghdr msg = {.msg_iter = *to, 809 .msg_iocb = iocb}; 810 ssize_t res; 811 812 if (file->f_flags & O_NONBLOCK) 813 msg.msg_flags = MSG_DONTWAIT; 814 815 if (iocb->ki_pos != 0) 816 return -ESPIPE; 817 818 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 819 return 0; 820 821 res = sock_recvmsg(sock, &msg, msg.msg_flags); 822 *to = msg.msg_iter; 823 return res; 824 } 825 826 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 827 { 828 struct file *file = iocb->ki_filp; 829 struct socket *sock = file->private_data; 830 struct msghdr msg = {.msg_iter = *from, 831 .msg_iocb = iocb}; 832 ssize_t res; 833 834 if (iocb->ki_pos != 0) 835 return -ESPIPE; 836 837 if (file->f_flags & O_NONBLOCK) 838 msg.msg_flags = MSG_DONTWAIT; 839 840 if (sock->type == SOCK_SEQPACKET) 841 msg.msg_flags |= MSG_EOR; 842 843 res = sock_sendmsg(sock, &msg); 844 *from = msg.msg_iter; 845 return res; 846 } 847 848 /* 849 * Atomic setting of ioctl hooks to avoid race 850 * with module unload. 851 */ 852 853 static DEFINE_MUTEX(br_ioctl_mutex); 854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 855 856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 857 { 858 mutex_lock(&br_ioctl_mutex); 859 br_ioctl_hook = hook; 860 mutex_unlock(&br_ioctl_mutex); 861 } 862 EXPORT_SYMBOL(brioctl_set); 863 864 static DEFINE_MUTEX(vlan_ioctl_mutex); 865 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 866 867 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 868 { 869 mutex_lock(&vlan_ioctl_mutex); 870 vlan_ioctl_hook = hook; 871 mutex_unlock(&vlan_ioctl_mutex); 872 } 873 EXPORT_SYMBOL(vlan_ioctl_set); 874 875 static DEFINE_MUTEX(dlci_ioctl_mutex); 876 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 877 878 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 879 { 880 mutex_lock(&dlci_ioctl_mutex); 881 dlci_ioctl_hook = hook; 882 mutex_unlock(&dlci_ioctl_mutex); 883 } 884 EXPORT_SYMBOL(dlci_ioctl_set); 885 886 static long sock_do_ioctl(struct net *net, struct socket *sock, 887 unsigned int cmd, unsigned long arg) 888 { 889 int err; 890 void __user *argp = (void __user *)arg; 891 892 err = sock->ops->ioctl(sock, cmd, arg); 893 894 /* 895 * If this ioctl is unknown try to hand it down 896 * to the NIC driver. 897 */ 898 if (err == -ENOIOCTLCMD) 899 err = dev_ioctl(net, cmd, argp); 900 901 return err; 902 } 903 904 /* 905 * With an ioctl, arg may well be a user mode pointer, but we don't know 906 * what to do with it - that's up to the protocol still. 907 */ 908 909 static struct ns_common *get_net_ns(struct ns_common *ns) 910 { 911 return &get_net(container_of(ns, struct net, ns))->ns; 912 } 913 914 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 915 { 916 struct socket *sock; 917 struct sock *sk; 918 void __user *argp = (void __user *)arg; 919 int pid, err; 920 struct net *net; 921 922 sock = file->private_data; 923 sk = sock->sk; 924 net = sock_net(sk); 925 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 926 err = dev_ioctl(net, cmd, argp); 927 } else 928 #ifdef CONFIG_WEXT_CORE 929 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 930 err = dev_ioctl(net, cmd, argp); 931 } else 932 #endif 933 switch (cmd) { 934 case FIOSETOWN: 935 case SIOCSPGRP: 936 err = -EFAULT; 937 if (get_user(pid, (int __user *)argp)) 938 break; 939 f_setown(sock->file, pid, 1); 940 err = 0; 941 break; 942 case FIOGETOWN: 943 case SIOCGPGRP: 944 err = put_user(f_getown(sock->file), 945 (int __user *)argp); 946 break; 947 case SIOCGIFBR: 948 case SIOCSIFBR: 949 case SIOCBRADDBR: 950 case SIOCBRDELBR: 951 err = -ENOPKG; 952 if (!br_ioctl_hook) 953 request_module("bridge"); 954 955 mutex_lock(&br_ioctl_mutex); 956 if (br_ioctl_hook) 957 err = br_ioctl_hook(net, cmd, argp); 958 mutex_unlock(&br_ioctl_mutex); 959 break; 960 case SIOCGIFVLAN: 961 case SIOCSIFVLAN: 962 err = -ENOPKG; 963 if (!vlan_ioctl_hook) 964 request_module("8021q"); 965 966 mutex_lock(&vlan_ioctl_mutex); 967 if (vlan_ioctl_hook) 968 err = vlan_ioctl_hook(net, argp); 969 mutex_unlock(&vlan_ioctl_mutex); 970 break; 971 case SIOCADDDLCI: 972 case SIOCDELDLCI: 973 err = -ENOPKG; 974 if (!dlci_ioctl_hook) 975 request_module("dlci"); 976 977 mutex_lock(&dlci_ioctl_mutex); 978 if (dlci_ioctl_hook) 979 err = dlci_ioctl_hook(cmd, argp); 980 mutex_unlock(&dlci_ioctl_mutex); 981 break; 982 case SIOCGSKNS: 983 err = -EPERM; 984 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 985 break; 986 987 err = open_related_ns(&net->ns, get_net_ns); 988 break; 989 default: 990 err = sock_do_ioctl(net, sock, cmd, arg); 991 break; 992 } 993 return err; 994 } 995 996 int sock_create_lite(int family, int type, int protocol, struct socket **res) 997 { 998 int err; 999 struct socket *sock = NULL; 1000 1001 err = security_socket_create(family, type, protocol, 1); 1002 if (err) 1003 goto out; 1004 1005 sock = sock_alloc(); 1006 if (!sock) { 1007 err = -ENOMEM; 1008 goto out; 1009 } 1010 1011 sock->type = type; 1012 err = security_socket_post_create(sock, family, type, protocol, 1); 1013 if (err) 1014 goto out_release; 1015 1016 out: 1017 *res = sock; 1018 return err; 1019 out_release: 1020 sock_release(sock); 1021 sock = NULL; 1022 goto out; 1023 } 1024 EXPORT_SYMBOL(sock_create_lite); 1025 1026 /* No kernel lock held - perfect */ 1027 static unsigned int sock_poll(struct file *file, poll_table *wait) 1028 { 1029 unsigned int busy_flag = 0; 1030 struct socket *sock; 1031 1032 /* 1033 * We can't return errors to poll, so it's either yes or no. 1034 */ 1035 sock = file->private_data; 1036 1037 if (sk_can_busy_loop(sock->sk)) { 1038 /* this socket can poll_ll so tell the system call */ 1039 busy_flag = POLL_BUSY_LOOP; 1040 1041 /* once, only if requested by syscall */ 1042 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1043 sk_busy_loop(sock->sk, 1); 1044 } 1045 1046 return busy_flag | sock->ops->poll(file, sock, wait); 1047 } 1048 1049 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1050 { 1051 struct socket *sock = file->private_data; 1052 1053 return sock->ops->mmap(file, sock, vma); 1054 } 1055 1056 static int sock_close(struct inode *inode, struct file *filp) 1057 { 1058 sock_release(SOCKET_I(inode)); 1059 return 0; 1060 } 1061 1062 /* 1063 * Update the socket async list 1064 * 1065 * Fasync_list locking strategy. 1066 * 1067 * 1. fasync_list is modified only under process context socket lock 1068 * i.e. under semaphore. 1069 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1070 * or under socket lock 1071 */ 1072 1073 static int sock_fasync(int fd, struct file *filp, int on) 1074 { 1075 struct socket *sock = filp->private_data; 1076 struct sock *sk = sock->sk; 1077 struct socket_wq *wq; 1078 1079 if (sk == NULL) 1080 return -EINVAL; 1081 1082 lock_sock(sk); 1083 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1084 fasync_helper(fd, filp, on, &wq->fasync_list); 1085 1086 if (!wq->fasync_list) 1087 sock_reset_flag(sk, SOCK_FASYNC); 1088 else 1089 sock_set_flag(sk, SOCK_FASYNC); 1090 1091 release_sock(sk); 1092 return 0; 1093 } 1094 1095 /* This function may be called only under rcu_lock */ 1096 1097 int sock_wake_async(struct socket_wq *wq, int how, int band) 1098 { 1099 if (!wq || !wq->fasync_list) 1100 return -1; 1101 1102 switch (how) { 1103 case SOCK_WAKE_WAITD: 1104 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1105 break; 1106 goto call_kill; 1107 case SOCK_WAKE_SPACE: 1108 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1109 break; 1110 /* fall through */ 1111 case SOCK_WAKE_IO: 1112 call_kill: 1113 kill_fasync(&wq->fasync_list, SIGIO, band); 1114 break; 1115 case SOCK_WAKE_URG: 1116 kill_fasync(&wq->fasync_list, SIGURG, band); 1117 } 1118 1119 return 0; 1120 } 1121 EXPORT_SYMBOL(sock_wake_async); 1122 1123 int __sock_create(struct net *net, int family, int type, int protocol, 1124 struct socket **res, int kern) 1125 { 1126 int err; 1127 struct socket *sock; 1128 const struct net_proto_family *pf; 1129 1130 /* 1131 * Check protocol is in range 1132 */ 1133 if (family < 0 || family >= NPROTO) 1134 return -EAFNOSUPPORT; 1135 if (type < 0 || type >= SOCK_MAX) 1136 return -EINVAL; 1137 1138 /* Compatibility. 1139 1140 This uglymoron is moved from INET layer to here to avoid 1141 deadlock in module load. 1142 */ 1143 if (family == PF_INET && type == SOCK_PACKET) { 1144 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1145 current->comm); 1146 family = PF_PACKET; 1147 } 1148 1149 err = security_socket_create(family, type, protocol, kern); 1150 if (err) 1151 return err; 1152 1153 /* 1154 * Allocate the socket and allow the family to set things up. if 1155 * the protocol is 0, the family is instructed to select an appropriate 1156 * default. 1157 */ 1158 sock = sock_alloc(); 1159 if (!sock) { 1160 net_warn_ratelimited("socket: no more sockets\n"); 1161 return -ENFILE; /* Not exactly a match, but its the 1162 closest posix thing */ 1163 } 1164 1165 sock->type = type; 1166 1167 #ifdef CONFIG_MODULES 1168 /* Attempt to load a protocol module if the find failed. 1169 * 1170 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1171 * requested real, full-featured networking support upon configuration. 1172 * Otherwise module support will break! 1173 */ 1174 if (rcu_access_pointer(net_families[family]) == NULL) 1175 request_module("net-pf-%d", family); 1176 #endif 1177 1178 rcu_read_lock(); 1179 pf = rcu_dereference(net_families[family]); 1180 err = -EAFNOSUPPORT; 1181 if (!pf) 1182 goto out_release; 1183 1184 /* 1185 * We will call the ->create function, that possibly is in a loadable 1186 * module, so we have to bump that loadable module refcnt first. 1187 */ 1188 if (!try_module_get(pf->owner)) 1189 goto out_release; 1190 1191 /* Now protected by module ref count */ 1192 rcu_read_unlock(); 1193 1194 err = pf->create(net, sock, protocol, kern); 1195 if (err < 0) 1196 goto out_module_put; 1197 1198 /* 1199 * Now to bump the refcnt of the [loadable] module that owns this 1200 * socket at sock_release time we decrement its refcnt. 1201 */ 1202 if (!try_module_get(sock->ops->owner)) 1203 goto out_module_busy; 1204 1205 /* 1206 * Now that we're done with the ->create function, the [loadable] 1207 * module can have its refcnt decremented 1208 */ 1209 module_put(pf->owner); 1210 err = security_socket_post_create(sock, family, type, protocol, kern); 1211 if (err) 1212 goto out_sock_release; 1213 *res = sock; 1214 1215 return 0; 1216 1217 out_module_busy: 1218 err = -EAFNOSUPPORT; 1219 out_module_put: 1220 sock->ops = NULL; 1221 module_put(pf->owner); 1222 out_sock_release: 1223 sock_release(sock); 1224 return err; 1225 1226 out_release: 1227 rcu_read_unlock(); 1228 goto out_sock_release; 1229 } 1230 EXPORT_SYMBOL(__sock_create); 1231 1232 int sock_create(int family, int type, int protocol, struct socket **res) 1233 { 1234 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1235 } 1236 EXPORT_SYMBOL(sock_create); 1237 1238 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1239 { 1240 return __sock_create(net, family, type, protocol, res, 1); 1241 } 1242 EXPORT_SYMBOL(sock_create_kern); 1243 1244 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1245 { 1246 int retval; 1247 struct socket *sock; 1248 int flags; 1249 1250 /* Check the SOCK_* constants for consistency. */ 1251 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1252 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1253 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1254 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1255 1256 flags = type & ~SOCK_TYPE_MASK; 1257 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1258 return -EINVAL; 1259 type &= SOCK_TYPE_MASK; 1260 1261 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1262 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1263 1264 retval = sock_create(family, type, protocol, &sock); 1265 if (retval < 0) 1266 goto out; 1267 1268 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1269 if (retval < 0) 1270 goto out_release; 1271 1272 out: 1273 /* It may be already another descriptor 8) Not kernel problem. */ 1274 return retval; 1275 1276 out_release: 1277 sock_release(sock); 1278 return retval; 1279 } 1280 1281 /* 1282 * Create a pair of connected sockets. 1283 */ 1284 1285 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1286 int __user *, usockvec) 1287 { 1288 struct socket *sock1, *sock2; 1289 int fd1, fd2, err; 1290 struct file *newfile1, *newfile2; 1291 int flags; 1292 1293 flags = type & ~SOCK_TYPE_MASK; 1294 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1295 return -EINVAL; 1296 type &= SOCK_TYPE_MASK; 1297 1298 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1299 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1300 1301 /* 1302 * Obtain the first socket and check if the underlying protocol 1303 * supports the socketpair call. 1304 */ 1305 1306 err = sock_create(family, type, protocol, &sock1); 1307 if (err < 0) 1308 goto out; 1309 1310 err = sock_create(family, type, protocol, &sock2); 1311 if (err < 0) 1312 goto out_release_1; 1313 1314 err = sock1->ops->socketpair(sock1, sock2); 1315 if (err < 0) 1316 goto out_release_both; 1317 1318 fd1 = get_unused_fd_flags(flags); 1319 if (unlikely(fd1 < 0)) { 1320 err = fd1; 1321 goto out_release_both; 1322 } 1323 1324 fd2 = get_unused_fd_flags(flags); 1325 if (unlikely(fd2 < 0)) { 1326 err = fd2; 1327 goto out_put_unused_1; 1328 } 1329 1330 newfile1 = sock_alloc_file(sock1, flags, NULL); 1331 if (IS_ERR(newfile1)) { 1332 err = PTR_ERR(newfile1); 1333 goto out_put_unused_both; 1334 } 1335 1336 newfile2 = sock_alloc_file(sock2, flags, NULL); 1337 if (IS_ERR(newfile2)) { 1338 err = PTR_ERR(newfile2); 1339 goto out_fput_1; 1340 } 1341 1342 err = put_user(fd1, &usockvec[0]); 1343 if (err) 1344 goto out_fput_both; 1345 1346 err = put_user(fd2, &usockvec[1]); 1347 if (err) 1348 goto out_fput_both; 1349 1350 audit_fd_pair(fd1, fd2); 1351 1352 fd_install(fd1, newfile1); 1353 fd_install(fd2, newfile2); 1354 /* fd1 and fd2 may be already another descriptors. 1355 * Not kernel problem. 1356 */ 1357 1358 return 0; 1359 1360 out_fput_both: 1361 fput(newfile2); 1362 fput(newfile1); 1363 put_unused_fd(fd2); 1364 put_unused_fd(fd1); 1365 goto out; 1366 1367 out_fput_1: 1368 fput(newfile1); 1369 put_unused_fd(fd2); 1370 put_unused_fd(fd1); 1371 sock_release(sock2); 1372 goto out; 1373 1374 out_put_unused_both: 1375 put_unused_fd(fd2); 1376 out_put_unused_1: 1377 put_unused_fd(fd1); 1378 out_release_both: 1379 sock_release(sock2); 1380 out_release_1: 1381 sock_release(sock1); 1382 out: 1383 return err; 1384 } 1385 1386 /* 1387 * Bind a name to a socket. Nothing much to do here since it's 1388 * the protocol's responsibility to handle the local address. 1389 * 1390 * We move the socket address to kernel space before we call 1391 * the protocol layer (having also checked the address is ok). 1392 */ 1393 1394 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1395 { 1396 struct socket *sock; 1397 struct sockaddr_storage address; 1398 int err, fput_needed; 1399 1400 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1401 if (sock) { 1402 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1403 if (err >= 0) { 1404 err = security_socket_bind(sock, 1405 (struct sockaddr *)&address, 1406 addrlen); 1407 if (!err) 1408 err = sock->ops->bind(sock, 1409 (struct sockaddr *) 1410 &address, addrlen); 1411 } 1412 fput_light(sock->file, fput_needed); 1413 } 1414 return err; 1415 } 1416 1417 /* 1418 * Perform a listen. Basically, we allow the protocol to do anything 1419 * necessary for a listen, and if that works, we mark the socket as 1420 * ready for listening. 1421 */ 1422 1423 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1424 { 1425 struct socket *sock; 1426 int err, fput_needed; 1427 int somaxconn; 1428 1429 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1430 if (sock) { 1431 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1432 if ((unsigned int)backlog > somaxconn) 1433 backlog = somaxconn; 1434 1435 err = security_socket_listen(sock, backlog); 1436 if (!err) 1437 err = sock->ops->listen(sock, backlog); 1438 1439 fput_light(sock->file, fput_needed); 1440 } 1441 return err; 1442 } 1443 1444 /* 1445 * For accept, we attempt to create a new socket, set up the link 1446 * with the client, wake up the client, then return the new 1447 * connected fd. We collect the address of the connector in kernel 1448 * space and move it to user at the very end. This is unclean because 1449 * we open the socket then return an error. 1450 * 1451 * 1003.1g adds the ability to recvmsg() to query connection pending 1452 * status to recvmsg. We need to add that support in a way thats 1453 * clean when we restucture accept also. 1454 */ 1455 1456 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1457 int __user *, upeer_addrlen, int, flags) 1458 { 1459 struct socket *sock, *newsock; 1460 struct file *newfile; 1461 int err, len, newfd, fput_needed; 1462 struct sockaddr_storage address; 1463 1464 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1465 return -EINVAL; 1466 1467 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1468 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1469 1470 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1471 if (!sock) 1472 goto out; 1473 1474 err = -ENFILE; 1475 newsock = sock_alloc(); 1476 if (!newsock) 1477 goto out_put; 1478 1479 newsock->type = sock->type; 1480 newsock->ops = sock->ops; 1481 1482 /* 1483 * We don't need try_module_get here, as the listening socket (sock) 1484 * has the protocol module (sock->ops->owner) held. 1485 */ 1486 __module_get(newsock->ops->owner); 1487 1488 newfd = get_unused_fd_flags(flags); 1489 if (unlikely(newfd < 0)) { 1490 err = newfd; 1491 sock_release(newsock); 1492 goto out_put; 1493 } 1494 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1495 if (IS_ERR(newfile)) { 1496 err = PTR_ERR(newfile); 1497 put_unused_fd(newfd); 1498 sock_release(newsock); 1499 goto out_put; 1500 } 1501 1502 err = security_socket_accept(sock, newsock); 1503 if (err) 1504 goto out_fd; 1505 1506 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1507 if (err < 0) 1508 goto out_fd; 1509 1510 if (upeer_sockaddr) { 1511 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1512 &len, 2) < 0) { 1513 err = -ECONNABORTED; 1514 goto out_fd; 1515 } 1516 err = move_addr_to_user(&address, 1517 len, upeer_sockaddr, upeer_addrlen); 1518 if (err < 0) 1519 goto out_fd; 1520 } 1521 1522 /* File flags are not inherited via accept() unlike another OSes. */ 1523 1524 fd_install(newfd, newfile); 1525 err = newfd; 1526 1527 out_put: 1528 fput_light(sock->file, fput_needed); 1529 out: 1530 return err; 1531 out_fd: 1532 fput(newfile); 1533 put_unused_fd(newfd); 1534 goto out_put; 1535 } 1536 1537 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1538 int __user *, upeer_addrlen) 1539 { 1540 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1541 } 1542 1543 /* 1544 * Attempt to connect to a socket with the server address. The address 1545 * is in user space so we verify it is OK and move it to kernel space. 1546 * 1547 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1548 * break bindings 1549 * 1550 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1551 * other SEQPACKET protocols that take time to connect() as it doesn't 1552 * include the -EINPROGRESS status for such sockets. 1553 */ 1554 1555 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1556 int, addrlen) 1557 { 1558 struct socket *sock; 1559 struct sockaddr_storage address; 1560 int err, fput_needed; 1561 1562 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1563 if (!sock) 1564 goto out; 1565 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1566 if (err < 0) 1567 goto out_put; 1568 1569 err = 1570 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1571 if (err) 1572 goto out_put; 1573 1574 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1575 sock->file->f_flags); 1576 out_put: 1577 fput_light(sock->file, fput_needed); 1578 out: 1579 return err; 1580 } 1581 1582 /* 1583 * Get the local address ('name') of a socket object. Move the obtained 1584 * name to user space. 1585 */ 1586 1587 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1588 int __user *, usockaddr_len) 1589 { 1590 struct socket *sock; 1591 struct sockaddr_storage address; 1592 int len, err, fput_needed; 1593 1594 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1595 if (!sock) 1596 goto out; 1597 1598 err = security_socket_getsockname(sock); 1599 if (err) 1600 goto out_put; 1601 1602 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1603 if (err) 1604 goto out_put; 1605 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1606 1607 out_put: 1608 fput_light(sock->file, fput_needed); 1609 out: 1610 return err; 1611 } 1612 1613 /* 1614 * Get the remote address ('name') of a socket object. Move the obtained 1615 * name to user space. 1616 */ 1617 1618 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1619 int __user *, usockaddr_len) 1620 { 1621 struct socket *sock; 1622 struct sockaddr_storage address; 1623 int len, err, fput_needed; 1624 1625 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1626 if (sock != NULL) { 1627 err = security_socket_getpeername(sock); 1628 if (err) { 1629 fput_light(sock->file, fput_needed); 1630 return err; 1631 } 1632 1633 err = 1634 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1635 1); 1636 if (!err) 1637 err = move_addr_to_user(&address, len, usockaddr, 1638 usockaddr_len); 1639 fput_light(sock->file, fput_needed); 1640 } 1641 return err; 1642 } 1643 1644 /* 1645 * Send a datagram to a given address. We move the address into kernel 1646 * space and check the user space data area is readable before invoking 1647 * the protocol. 1648 */ 1649 1650 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1651 unsigned int, flags, struct sockaddr __user *, addr, 1652 int, addr_len) 1653 { 1654 struct socket *sock; 1655 struct sockaddr_storage address; 1656 int err; 1657 struct msghdr msg; 1658 struct iovec iov; 1659 int fput_needed; 1660 1661 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1662 if (unlikely(err)) 1663 return err; 1664 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1665 if (!sock) 1666 goto out; 1667 1668 msg.msg_name = NULL; 1669 msg.msg_control = NULL; 1670 msg.msg_controllen = 0; 1671 msg.msg_namelen = 0; 1672 if (addr) { 1673 err = move_addr_to_kernel(addr, addr_len, &address); 1674 if (err < 0) 1675 goto out_put; 1676 msg.msg_name = (struct sockaddr *)&address; 1677 msg.msg_namelen = addr_len; 1678 } 1679 if (sock->file->f_flags & O_NONBLOCK) 1680 flags |= MSG_DONTWAIT; 1681 msg.msg_flags = flags; 1682 err = sock_sendmsg(sock, &msg); 1683 1684 out_put: 1685 fput_light(sock->file, fput_needed); 1686 out: 1687 return err; 1688 } 1689 1690 /* 1691 * Send a datagram down a socket. 1692 */ 1693 1694 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1695 unsigned int, flags) 1696 { 1697 return sys_sendto(fd, buff, len, flags, NULL, 0); 1698 } 1699 1700 /* 1701 * Receive a frame from the socket and optionally record the address of the 1702 * sender. We verify the buffers are writable and if needed move the 1703 * sender address from kernel to user space. 1704 */ 1705 1706 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1707 unsigned int, flags, struct sockaddr __user *, addr, 1708 int __user *, addr_len) 1709 { 1710 struct socket *sock; 1711 struct iovec iov; 1712 struct msghdr msg; 1713 struct sockaddr_storage address; 1714 int err, err2; 1715 int fput_needed; 1716 1717 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1718 if (unlikely(err)) 1719 return err; 1720 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1721 if (!sock) 1722 goto out; 1723 1724 msg.msg_control = NULL; 1725 msg.msg_controllen = 0; 1726 /* Save some cycles and don't copy the address if not needed */ 1727 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1728 /* We assume all kernel code knows the size of sockaddr_storage */ 1729 msg.msg_namelen = 0; 1730 msg.msg_iocb = NULL; 1731 if (sock->file->f_flags & O_NONBLOCK) 1732 flags |= MSG_DONTWAIT; 1733 err = sock_recvmsg(sock, &msg, flags); 1734 1735 if (err >= 0 && addr != NULL) { 1736 err2 = move_addr_to_user(&address, 1737 msg.msg_namelen, addr, addr_len); 1738 if (err2 < 0) 1739 err = err2; 1740 } 1741 1742 fput_light(sock->file, fput_needed); 1743 out: 1744 return err; 1745 } 1746 1747 /* 1748 * Receive a datagram from a socket. 1749 */ 1750 1751 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1752 unsigned int, flags) 1753 { 1754 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1755 } 1756 1757 /* 1758 * Set a socket option. Because we don't know the option lengths we have 1759 * to pass the user mode parameter for the protocols to sort out. 1760 */ 1761 1762 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1763 char __user *, optval, int, optlen) 1764 { 1765 int err, fput_needed; 1766 struct socket *sock; 1767 1768 if (optlen < 0) 1769 return -EINVAL; 1770 1771 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1772 if (sock != NULL) { 1773 err = security_socket_setsockopt(sock, level, optname); 1774 if (err) 1775 goto out_put; 1776 1777 if (level == SOL_SOCKET) 1778 err = 1779 sock_setsockopt(sock, level, optname, optval, 1780 optlen); 1781 else 1782 err = 1783 sock->ops->setsockopt(sock, level, optname, optval, 1784 optlen); 1785 out_put: 1786 fput_light(sock->file, fput_needed); 1787 } 1788 return err; 1789 } 1790 1791 /* 1792 * Get a socket option. Because we don't know the option lengths we have 1793 * to pass a user mode parameter for the protocols to sort out. 1794 */ 1795 1796 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1797 char __user *, optval, int __user *, optlen) 1798 { 1799 int err, fput_needed; 1800 struct socket *sock; 1801 1802 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1803 if (sock != NULL) { 1804 err = security_socket_getsockopt(sock, level, optname); 1805 if (err) 1806 goto out_put; 1807 1808 if (level == SOL_SOCKET) 1809 err = 1810 sock_getsockopt(sock, level, optname, optval, 1811 optlen); 1812 else 1813 err = 1814 sock->ops->getsockopt(sock, level, optname, optval, 1815 optlen); 1816 out_put: 1817 fput_light(sock->file, fput_needed); 1818 } 1819 return err; 1820 } 1821 1822 /* 1823 * Shutdown a socket. 1824 */ 1825 1826 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1827 { 1828 int err, fput_needed; 1829 struct socket *sock; 1830 1831 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1832 if (sock != NULL) { 1833 err = security_socket_shutdown(sock, how); 1834 if (!err) 1835 err = sock->ops->shutdown(sock, how); 1836 fput_light(sock->file, fput_needed); 1837 } 1838 return err; 1839 } 1840 1841 /* A couple of helpful macros for getting the address of the 32/64 bit 1842 * fields which are the same type (int / unsigned) on our platforms. 1843 */ 1844 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1845 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1846 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1847 1848 struct used_address { 1849 struct sockaddr_storage name; 1850 unsigned int name_len; 1851 }; 1852 1853 static int copy_msghdr_from_user(struct msghdr *kmsg, 1854 struct user_msghdr __user *umsg, 1855 struct sockaddr __user **save_addr, 1856 struct iovec **iov) 1857 { 1858 struct sockaddr __user *uaddr; 1859 struct iovec __user *uiov; 1860 size_t nr_segs; 1861 ssize_t err; 1862 1863 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1864 __get_user(uaddr, &umsg->msg_name) || 1865 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1866 __get_user(uiov, &umsg->msg_iov) || 1867 __get_user(nr_segs, &umsg->msg_iovlen) || 1868 __get_user(kmsg->msg_control, &umsg->msg_control) || 1869 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1870 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1871 return -EFAULT; 1872 1873 if (!uaddr) 1874 kmsg->msg_namelen = 0; 1875 1876 if (kmsg->msg_namelen < 0) 1877 return -EINVAL; 1878 1879 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1880 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1881 1882 if (save_addr) 1883 *save_addr = uaddr; 1884 1885 if (uaddr && kmsg->msg_namelen) { 1886 if (!save_addr) { 1887 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1888 kmsg->msg_name); 1889 if (err < 0) 1890 return err; 1891 } 1892 } else { 1893 kmsg->msg_name = NULL; 1894 kmsg->msg_namelen = 0; 1895 } 1896 1897 if (nr_segs > UIO_MAXIOV) 1898 return -EMSGSIZE; 1899 1900 kmsg->msg_iocb = NULL; 1901 1902 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1903 UIO_FASTIOV, iov, &kmsg->msg_iter); 1904 } 1905 1906 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1907 struct msghdr *msg_sys, unsigned int flags, 1908 struct used_address *used_address, 1909 unsigned int allowed_msghdr_flags) 1910 { 1911 struct compat_msghdr __user *msg_compat = 1912 (struct compat_msghdr __user *)msg; 1913 struct sockaddr_storage address; 1914 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1915 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1916 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1917 /* 20 is size of ipv6_pktinfo */ 1918 unsigned char *ctl_buf = ctl; 1919 int ctl_len; 1920 ssize_t err; 1921 1922 msg_sys->msg_name = &address; 1923 1924 if (MSG_CMSG_COMPAT & flags) 1925 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1926 else 1927 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1928 if (err < 0) 1929 return err; 1930 1931 err = -ENOBUFS; 1932 1933 if (msg_sys->msg_controllen > INT_MAX) 1934 goto out_freeiov; 1935 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1936 ctl_len = msg_sys->msg_controllen; 1937 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1938 err = 1939 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1940 sizeof(ctl)); 1941 if (err) 1942 goto out_freeiov; 1943 ctl_buf = msg_sys->msg_control; 1944 ctl_len = msg_sys->msg_controllen; 1945 } else if (ctl_len) { 1946 if (ctl_len > sizeof(ctl)) { 1947 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1948 if (ctl_buf == NULL) 1949 goto out_freeiov; 1950 } 1951 err = -EFAULT; 1952 /* 1953 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1954 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1955 * checking falls down on this. 1956 */ 1957 if (copy_from_user(ctl_buf, 1958 (void __user __force *)msg_sys->msg_control, 1959 ctl_len)) 1960 goto out_freectl; 1961 msg_sys->msg_control = ctl_buf; 1962 } 1963 msg_sys->msg_flags = flags; 1964 1965 if (sock->file->f_flags & O_NONBLOCK) 1966 msg_sys->msg_flags |= MSG_DONTWAIT; 1967 /* 1968 * If this is sendmmsg() and current destination address is same as 1969 * previously succeeded address, omit asking LSM's decision. 1970 * used_address->name_len is initialized to UINT_MAX so that the first 1971 * destination address never matches. 1972 */ 1973 if (used_address && msg_sys->msg_name && 1974 used_address->name_len == msg_sys->msg_namelen && 1975 !memcmp(&used_address->name, msg_sys->msg_name, 1976 used_address->name_len)) { 1977 err = sock_sendmsg_nosec(sock, msg_sys); 1978 goto out_freectl; 1979 } 1980 err = sock_sendmsg(sock, msg_sys); 1981 /* 1982 * If this is sendmmsg() and sending to current destination address was 1983 * successful, remember it. 1984 */ 1985 if (used_address && err >= 0) { 1986 used_address->name_len = msg_sys->msg_namelen; 1987 if (msg_sys->msg_name) 1988 memcpy(&used_address->name, msg_sys->msg_name, 1989 used_address->name_len); 1990 } 1991 1992 out_freectl: 1993 if (ctl_buf != ctl) 1994 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1995 out_freeiov: 1996 kfree(iov); 1997 return err; 1998 } 1999 2000 /* 2001 * BSD sendmsg interface 2002 */ 2003 2004 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2005 { 2006 int fput_needed, err; 2007 struct msghdr msg_sys; 2008 struct socket *sock; 2009 2010 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2011 if (!sock) 2012 goto out; 2013 2014 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2015 2016 fput_light(sock->file, fput_needed); 2017 out: 2018 return err; 2019 } 2020 2021 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2022 { 2023 if (flags & MSG_CMSG_COMPAT) 2024 return -EINVAL; 2025 return __sys_sendmsg(fd, msg, flags); 2026 } 2027 2028 /* 2029 * Linux sendmmsg interface 2030 */ 2031 2032 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2033 unsigned int flags) 2034 { 2035 int fput_needed, err, datagrams; 2036 struct socket *sock; 2037 struct mmsghdr __user *entry; 2038 struct compat_mmsghdr __user *compat_entry; 2039 struct msghdr msg_sys; 2040 struct used_address used_address; 2041 unsigned int oflags = flags; 2042 2043 if (vlen > UIO_MAXIOV) 2044 vlen = UIO_MAXIOV; 2045 2046 datagrams = 0; 2047 2048 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2049 if (!sock) 2050 return err; 2051 2052 used_address.name_len = UINT_MAX; 2053 entry = mmsg; 2054 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2055 err = 0; 2056 flags |= MSG_BATCH; 2057 2058 while (datagrams < vlen) { 2059 if (datagrams == vlen - 1) 2060 flags = oflags; 2061 2062 if (MSG_CMSG_COMPAT & flags) { 2063 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2064 &msg_sys, flags, &used_address, MSG_EOR); 2065 if (err < 0) 2066 break; 2067 err = __put_user(err, &compat_entry->msg_len); 2068 ++compat_entry; 2069 } else { 2070 err = ___sys_sendmsg(sock, 2071 (struct user_msghdr __user *)entry, 2072 &msg_sys, flags, &used_address, MSG_EOR); 2073 if (err < 0) 2074 break; 2075 err = put_user(err, &entry->msg_len); 2076 ++entry; 2077 } 2078 2079 if (err) 2080 break; 2081 ++datagrams; 2082 if (msg_data_left(&msg_sys)) 2083 break; 2084 cond_resched(); 2085 } 2086 2087 fput_light(sock->file, fput_needed); 2088 2089 /* We only return an error if no datagrams were able to be sent */ 2090 if (datagrams != 0) 2091 return datagrams; 2092 2093 return err; 2094 } 2095 2096 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2097 unsigned int, vlen, unsigned int, flags) 2098 { 2099 if (flags & MSG_CMSG_COMPAT) 2100 return -EINVAL; 2101 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2102 } 2103 2104 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2105 struct msghdr *msg_sys, unsigned int flags, int nosec) 2106 { 2107 struct compat_msghdr __user *msg_compat = 2108 (struct compat_msghdr __user *)msg; 2109 struct iovec iovstack[UIO_FASTIOV]; 2110 struct iovec *iov = iovstack; 2111 unsigned long cmsg_ptr; 2112 int len; 2113 ssize_t err; 2114 2115 /* kernel mode address */ 2116 struct sockaddr_storage addr; 2117 2118 /* user mode address pointers */ 2119 struct sockaddr __user *uaddr; 2120 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2121 2122 msg_sys->msg_name = &addr; 2123 2124 if (MSG_CMSG_COMPAT & flags) 2125 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2126 else 2127 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2128 if (err < 0) 2129 return err; 2130 2131 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2132 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2133 2134 /* We assume all kernel code knows the size of sockaddr_storage */ 2135 msg_sys->msg_namelen = 0; 2136 2137 if (sock->file->f_flags & O_NONBLOCK) 2138 flags |= MSG_DONTWAIT; 2139 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2140 if (err < 0) 2141 goto out_freeiov; 2142 len = err; 2143 2144 if (uaddr != NULL) { 2145 err = move_addr_to_user(&addr, 2146 msg_sys->msg_namelen, uaddr, 2147 uaddr_len); 2148 if (err < 0) 2149 goto out_freeiov; 2150 } 2151 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2152 COMPAT_FLAGS(msg)); 2153 if (err) 2154 goto out_freeiov; 2155 if (MSG_CMSG_COMPAT & flags) 2156 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2157 &msg_compat->msg_controllen); 2158 else 2159 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2160 &msg->msg_controllen); 2161 if (err) 2162 goto out_freeiov; 2163 err = len; 2164 2165 out_freeiov: 2166 kfree(iov); 2167 return err; 2168 } 2169 2170 /* 2171 * BSD recvmsg interface 2172 */ 2173 2174 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2175 { 2176 int fput_needed, err; 2177 struct msghdr msg_sys; 2178 struct socket *sock; 2179 2180 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2181 if (!sock) 2182 goto out; 2183 2184 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2185 2186 fput_light(sock->file, fput_needed); 2187 out: 2188 return err; 2189 } 2190 2191 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2192 unsigned int, flags) 2193 { 2194 if (flags & MSG_CMSG_COMPAT) 2195 return -EINVAL; 2196 return __sys_recvmsg(fd, msg, flags); 2197 } 2198 2199 /* 2200 * Linux recvmmsg interface 2201 */ 2202 2203 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2204 unsigned int flags, struct timespec *timeout) 2205 { 2206 int fput_needed, err, datagrams; 2207 struct socket *sock; 2208 struct mmsghdr __user *entry; 2209 struct compat_mmsghdr __user *compat_entry; 2210 struct msghdr msg_sys; 2211 struct timespec64 end_time; 2212 struct timespec64 timeout64; 2213 2214 if (timeout && 2215 poll_select_set_timeout(&end_time, timeout->tv_sec, 2216 timeout->tv_nsec)) 2217 return -EINVAL; 2218 2219 datagrams = 0; 2220 2221 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2222 if (!sock) 2223 return err; 2224 2225 err = sock_error(sock->sk); 2226 if (err) 2227 goto out_put; 2228 2229 entry = mmsg; 2230 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2231 2232 while (datagrams < vlen) { 2233 /* 2234 * No need to ask LSM for more than the first datagram. 2235 */ 2236 if (MSG_CMSG_COMPAT & flags) { 2237 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2238 &msg_sys, flags & ~MSG_WAITFORONE, 2239 datagrams); 2240 if (err < 0) 2241 break; 2242 err = __put_user(err, &compat_entry->msg_len); 2243 ++compat_entry; 2244 } else { 2245 err = ___sys_recvmsg(sock, 2246 (struct user_msghdr __user *)entry, 2247 &msg_sys, flags & ~MSG_WAITFORONE, 2248 datagrams); 2249 if (err < 0) 2250 break; 2251 err = put_user(err, &entry->msg_len); 2252 ++entry; 2253 } 2254 2255 if (err) 2256 break; 2257 ++datagrams; 2258 2259 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2260 if (flags & MSG_WAITFORONE) 2261 flags |= MSG_DONTWAIT; 2262 2263 if (timeout) { 2264 ktime_get_ts64(&timeout64); 2265 *timeout = timespec64_to_timespec( 2266 timespec64_sub(end_time, timeout64)); 2267 if (timeout->tv_sec < 0) { 2268 timeout->tv_sec = timeout->tv_nsec = 0; 2269 break; 2270 } 2271 2272 /* Timeout, return less than vlen datagrams */ 2273 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2274 break; 2275 } 2276 2277 /* Out of band data, return right away */ 2278 if (msg_sys.msg_flags & MSG_OOB) 2279 break; 2280 cond_resched(); 2281 } 2282 2283 if (err == 0) 2284 goto out_put; 2285 2286 if (datagrams == 0) { 2287 datagrams = err; 2288 goto out_put; 2289 } 2290 2291 /* 2292 * We may return less entries than requested (vlen) if the 2293 * sock is non block and there aren't enough datagrams... 2294 */ 2295 if (err != -EAGAIN) { 2296 /* 2297 * ... or if recvmsg returns an error after we 2298 * received some datagrams, where we record the 2299 * error to return on the next call or if the 2300 * app asks about it using getsockopt(SO_ERROR). 2301 */ 2302 sock->sk->sk_err = -err; 2303 } 2304 out_put: 2305 fput_light(sock->file, fput_needed); 2306 2307 return datagrams; 2308 } 2309 2310 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2311 unsigned int, vlen, unsigned int, flags, 2312 struct timespec __user *, timeout) 2313 { 2314 int datagrams; 2315 struct timespec timeout_sys; 2316 2317 if (flags & MSG_CMSG_COMPAT) 2318 return -EINVAL; 2319 2320 if (!timeout) 2321 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2322 2323 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2324 return -EFAULT; 2325 2326 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2327 2328 if (datagrams > 0 && 2329 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2330 datagrams = -EFAULT; 2331 2332 return datagrams; 2333 } 2334 2335 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2336 /* Argument list sizes for sys_socketcall */ 2337 #define AL(x) ((x) * sizeof(unsigned long)) 2338 static const unsigned char nargs[21] = { 2339 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2340 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2341 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2342 AL(4), AL(5), AL(4) 2343 }; 2344 2345 #undef AL 2346 2347 /* 2348 * System call vectors. 2349 * 2350 * Argument checking cleaned up. Saved 20% in size. 2351 * This function doesn't need to set the kernel lock because 2352 * it is set by the callees. 2353 */ 2354 2355 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2356 { 2357 unsigned long a[AUDITSC_ARGS]; 2358 unsigned long a0, a1; 2359 int err; 2360 unsigned int len; 2361 2362 if (call < 1 || call > SYS_SENDMMSG) 2363 return -EINVAL; 2364 2365 len = nargs[call]; 2366 if (len > sizeof(a)) 2367 return -EINVAL; 2368 2369 /* copy_from_user should be SMP safe. */ 2370 if (copy_from_user(a, args, len)) 2371 return -EFAULT; 2372 2373 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2374 if (err) 2375 return err; 2376 2377 a0 = a[0]; 2378 a1 = a[1]; 2379 2380 switch (call) { 2381 case SYS_SOCKET: 2382 err = sys_socket(a0, a1, a[2]); 2383 break; 2384 case SYS_BIND: 2385 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2386 break; 2387 case SYS_CONNECT: 2388 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2389 break; 2390 case SYS_LISTEN: 2391 err = sys_listen(a0, a1); 2392 break; 2393 case SYS_ACCEPT: 2394 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2395 (int __user *)a[2], 0); 2396 break; 2397 case SYS_GETSOCKNAME: 2398 err = 2399 sys_getsockname(a0, (struct sockaddr __user *)a1, 2400 (int __user *)a[2]); 2401 break; 2402 case SYS_GETPEERNAME: 2403 err = 2404 sys_getpeername(a0, (struct sockaddr __user *)a1, 2405 (int __user *)a[2]); 2406 break; 2407 case SYS_SOCKETPAIR: 2408 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2409 break; 2410 case SYS_SEND: 2411 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2412 break; 2413 case SYS_SENDTO: 2414 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2415 (struct sockaddr __user *)a[4], a[5]); 2416 break; 2417 case SYS_RECV: 2418 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2419 break; 2420 case SYS_RECVFROM: 2421 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2422 (struct sockaddr __user *)a[4], 2423 (int __user *)a[5]); 2424 break; 2425 case SYS_SHUTDOWN: 2426 err = sys_shutdown(a0, a1); 2427 break; 2428 case SYS_SETSOCKOPT: 2429 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2430 break; 2431 case SYS_GETSOCKOPT: 2432 err = 2433 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2434 (int __user *)a[4]); 2435 break; 2436 case SYS_SENDMSG: 2437 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2438 break; 2439 case SYS_SENDMMSG: 2440 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2441 break; 2442 case SYS_RECVMSG: 2443 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2444 break; 2445 case SYS_RECVMMSG: 2446 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2447 (struct timespec __user *)a[4]); 2448 break; 2449 case SYS_ACCEPT4: 2450 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2451 (int __user *)a[2], a[3]); 2452 break; 2453 default: 2454 err = -EINVAL; 2455 break; 2456 } 2457 return err; 2458 } 2459 2460 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2461 2462 /** 2463 * sock_register - add a socket protocol handler 2464 * @ops: description of protocol 2465 * 2466 * This function is called by a protocol handler that wants to 2467 * advertise its address family, and have it linked into the 2468 * socket interface. The value ops->family corresponds to the 2469 * socket system call protocol family. 2470 */ 2471 int sock_register(const struct net_proto_family *ops) 2472 { 2473 int err; 2474 2475 if (ops->family >= NPROTO) { 2476 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2477 return -ENOBUFS; 2478 } 2479 2480 spin_lock(&net_family_lock); 2481 if (rcu_dereference_protected(net_families[ops->family], 2482 lockdep_is_held(&net_family_lock))) 2483 err = -EEXIST; 2484 else { 2485 rcu_assign_pointer(net_families[ops->family], ops); 2486 err = 0; 2487 } 2488 spin_unlock(&net_family_lock); 2489 2490 pr_info("NET: Registered protocol family %d\n", ops->family); 2491 return err; 2492 } 2493 EXPORT_SYMBOL(sock_register); 2494 2495 /** 2496 * sock_unregister - remove a protocol handler 2497 * @family: protocol family to remove 2498 * 2499 * This function is called by a protocol handler that wants to 2500 * remove its address family, and have it unlinked from the 2501 * new socket creation. 2502 * 2503 * If protocol handler is a module, then it can use module reference 2504 * counts to protect against new references. If protocol handler is not 2505 * a module then it needs to provide its own protection in 2506 * the ops->create routine. 2507 */ 2508 void sock_unregister(int family) 2509 { 2510 BUG_ON(family < 0 || family >= NPROTO); 2511 2512 spin_lock(&net_family_lock); 2513 RCU_INIT_POINTER(net_families[family], NULL); 2514 spin_unlock(&net_family_lock); 2515 2516 synchronize_rcu(); 2517 2518 pr_info("NET: Unregistered protocol family %d\n", family); 2519 } 2520 EXPORT_SYMBOL(sock_unregister); 2521 2522 static int __init sock_init(void) 2523 { 2524 int err; 2525 /* 2526 * Initialize the network sysctl infrastructure. 2527 */ 2528 err = net_sysctl_init(); 2529 if (err) 2530 goto out; 2531 2532 /* 2533 * Initialize skbuff SLAB cache 2534 */ 2535 skb_init(); 2536 2537 /* 2538 * Initialize the protocols module. 2539 */ 2540 2541 init_inodecache(); 2542 2543 err = register_filesystem(&sock_fs_type); 2544 if (err) 2545 goto out_fs; 2546 sock_mnt = kern_mount(&sock_fs_type); 2547 if (IS_ERR(sock_mnt)) { 2548 err = PTR_ERR(sock_mnt); 2549 goto out_mount; 2550 } 2551 2552 /* The real protocol initialization is performed in later initcalls. 2553 */ 2554 2555 #ifdef CONFIG_NETFILTER 2556 err = netfilter_init(); 2557 if (err) 2558 goto out; 2559 #endif 2560 2561 ptp_classifier_init(); 2562 2563 out: 2564 return err; 2565 2566 out_mount: 2567 unregister_filesystem(&sock_fs_type); 2568 out_fs: 2569 goto out; 2570 } 2571 2572 core_initcall(sock_init); /* early initcall */ 2573 2574 #ifdef CONFIG_PROC_FS 2575 void socket_seq_show(struct seq_file *seq) 2576 { 2577 int cpu; 2578 int counter = 0; 2579 2580 for_each_possible_cpu(cpu) 2581 counter += per_cpu(sockets_in_use, cpu); 2582 2583 /* It can be negative, by the way. 8) */ 2584 if (counter < 0) 2585 counter = 0; 2586 2587 seq_printf(seq, "sockets: used %d\n", counter); 2588 } 2589 #endif /* CONFIG_PROC_FS */ 2590 2591 #ifdef CONFIG_COMPAT 2592 static int do_siocgstamp(struct net *net, struct socket *sock, 2593 unsigned int cmd, void __user *up) 2594 { 2595 mm_segment_t old_fs = get_fs(); 2596 struct timeval ktv; 2597 int err; 2598 2599 set_fs(KERNEL_DS); 2600 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2601 set_fs(old_fs); 2602 if (!err) 2603 err = compat_put_timeval(&ktv, up); 2604 2605 return err; 2606 } 2607 2608 static int do_siocgstampns(struct net *net, struct socket *sock, 2609 unsigned int cmd, void __user *up) 2610 { 2611 mm_segment_t old_fs = get_fs(); 2612 struct timespec kts; 2613 int err; 2614 2615 set_fs(KERNEL_DS); 2616 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2617 set_fs(old_fs); 2618 if (!err) 2619 err = compat_put_timespec(&kts, up); 2620 2621 return err; 2622 } 2623 2624 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2625 { 2626 struct ifreq __user *uifr; 2627 int err; 2628 2629 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2630 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2631 return -EFAULT; 2632 2633 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2634 if (err) 2635 return err; 2636 2637 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2638 return -EFAULT; 2639 2640 return 0; 2641 } 2642 2643 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2644 { 2645 struct compat_ifconf ifc32; 2646 struct ifconf ifc; 2647 struct ifconf __user *uifc; 2648 struct compat_ifreq __user *ifr32; 2649 struct ifreq __user *ifr; 2650 unsigned int i, j; 2651 int err; 2652 2653 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2654 return -EFAULT; 2655 2656 memset(&ifc, 0, sizeof(ifc)); 2657 if (ifc32.ifcbuf == 0) { 2658 ifc32.ifc_len = 0; 2659 ifc.ifc_len = 0; 2660 ifc.ifc_req = NULL; 2661 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2662 } else { 2663 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2664 sizeof(struct ifreq); 2665 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2666 ifc.ifc_len = len; 2667 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2668 ifr32 = compat_ptr(ifc32.ifcbuf); 2669 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2670 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2671 return -EFAULT; 2672 ifr++; 2673 ifr32++; 2674 } 2675 } 2676 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2677 return -EFAULT; 2678 2679 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2680 if (err) 2681 return err; 2682 2683 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2684 return -EFAULT; 2685 2686 ifr = ifc.ifc_req; 2687 ifr32 = compat_ptr(ifc32.ifcbuf); 2688 for (i = 0, j = 0; 2689 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2690 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2691 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2692 return -EFAULT; 2693 ifr32++; 2694 ifr++; 2695 } 2696 2697 if (ifc32.ifcbuf == 0) { 2698 /* Translate from 64-bit structure multiple to 2699 * a 32-bit one. 2700 */ 2701 i = ifc.ifc_len; 2702 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2703 ifc32.ifc_len = i; 2704 } else { 2705 ifc32.ifc_len = i; 2706 } 2707 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2708 return -EFAULT; 2709 2710 return 0; 2711 } 2712 2713 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2714 { 2715 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2716 bool convert_in = false, convert_out = false; 2717 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2718 struct ethtool_rxnfc __user *rxnfc; 2719 struct ifreq __user *ifr; 2720 u32 rule_cnt = 0, actual_rule_cnt; 2721 u32 ethcmd; 2722 u32 data; 2723 int ret; 2724 2725 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2726 return -EFAULT; 2727 2728 compat_rxnfc = compat_ptr(data); 2729 2730 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2731 return -EFAULT; 2732 2733 /* Most ethtool structures are defined without padding. 2734 * Unfortunately struct ethtool_rxnfc is an exception. 2735 */ 2736 switch (ethcmd) { 2737 default: 2738 break; 2739 case ETHTOOL_GRXCLSRLALL: 2740 /* Buffer size is variable */ 2741 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2742 return -EFAULT; 2743 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2744 return -ENOMEM; 2745 buf_size += rule_cnt * sizeof(u32); 2746 /* fall through */ 2747 case ETHTOOL_GRXRINGS: 2748 case ETHTOOL_GRXCLSRLCNT: 2749 case ETHTOOL_GRXCLSRULE: 2750 case ETHTOOL_SRXCLSRLINS: 2751 convert_out = true; 2752 /* fall through */ 2753 case ETHTOOL_SRXCLSRLDEL: 2754 buf_size += sizeof(struct ethtool_rxnfc); 2755 convert_in = true; 2756 break; 2757 } 2758 2759 ifr = compat_alloc_user_space(buf_size); 2760 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2761 2762 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2763 return -EFAULT; 2764 2765 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2766 &ifr->ifr_ifru.ifru_data)) 2767 return -EFAULT; 2768 2769 if (convert_in) { 2770 /* We expect there to be holes between fs.m_ext and 2771 * fs.ring_cookie and at the end of fs, but nowhere else. 2772 */ 2773 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2774 sizeof(compat_rxnfc->fs.m_ext) != 2775 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2776 sizeof(rxnfc->fs.m_ext)); 2777 BUILD_BUG_ON( 2778 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2779 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2780 offsetof(struct ethtool_rxnfc, fs.location) - 2781 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2782 2783 if (copy_in_user(rxnfc, compat_rxnfc, 2784 (void __user *)(&rxnfc->fs.m_ext + 1) - 2785 (void __user *)rxnfc) || 2786 copy_in_user(&rxnfc->fs.ring_cookie, 2787 &compat_rxnfc->fs.ring_cookie, 2788 (void __user *)(&rxnfc->fs.location + 1) - 2789 (void __user *)&rxnfc->fs.ring_cookie) || 2790 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2791 sizeof(rxnfc->rule_cnt))) 2792 return -EFAULT; 2793 } 2794 2795 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2796 if (ret) 2797 return ret; 2798 2799 if (convert_out) { 2800 if (copy_in_user(compat_rxnfc, rxnfc, 2801 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2802 (const void __user *)rxnfc) || 2803 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2804 &rxnfc->fs.ring_cookie, 2805 (const void __user *)(&rxnfc->fs.location + 1) - 2806 (const void __user *)&rxnfc->fs.ring_cookie) || 2807 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2808 sizeof(rxnfc->rule_cnt))) 2809 return -EFAULT; 2810 2811 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2812 /* As an optimisation, we only copy the actual 2813 * number of rules that the underlying 2814 * function returned. Since Mallory might 2815 * change the rule count in user memory, we 2816 * check that it is less than the rule count 2817 * originally given (as the user buffer size), 2818 * which has been range-checked. 2819 */ 2820 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2821 return -EFAULT; 2822 if (actual_rule_cnt < rule_cnt) 2823 rule_cnt = actual_rule_cnt; 2824 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2825 &rxnfc->rule_locs[0], 2826 rule_cnt * sizeof(u32))) 2827 return -EFAULT; 2828 } 2829 } 2830 2831 return 0; 2832 } 2833 2834 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2835 { 2836 void __user *uptr; 2837 compat_uptr_t uptr32; 2838 struct ifreq __user *uifr; 2839 2840 uifr = compat_alloc_user_space(sizeof(*uifr)); 2841 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2842 return -EFAULT; 2843 2844 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2845 return -EFAULT; 2846 2847 uptr = compat_ptr(uptr32); 2848 2849 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2850 return -EFAULT; 2851 2852 return dev_ioctl(net, SIOCWANDEV, uifr); 2853 } 2854 2855 static int bond_ioctl(struct net *net, unsigned int cmd, 2856 struct compat_ifreq __user *ifr32) 2857 { 2858 struct ifreq kifr; 2859 mm_segment_t old_fs; 2860 int err; 2861 2862 switch (cmd) { 2863 case SIOCBONDENSLAVE: 2864 case SIOCBONDRELEASE: 2865 case SIOCBONDSETHWADDR: 2866 case SIOCBONDCHANGEACTIVE: 2867 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2868 return -EFAULT; 2869 2870 old_fs = get_fs(); 2871 set_fs(KERNEL_DS); 2872 err = dev_ioctl(net, cmd, 2873 (struct ifreq __user __force *) &kifr); 2874 set_fs(old_fs); 2875 2876 return err; 2877 default: 2878 return -ENOIOCTLCMD; 2879 } 2880 } 2881 2882 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2883 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2884 struct compat_ifreq __user *u_ifreq32) 2885 { 2886 struct ifreq __user *u_ifreq64; 2887 char tmp_buf[IFNAMSIZ]; 2888 void __user *data64; 2889 u32 data32; 2890 2891 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2892 IFNAMSIZ)) 2893 return -EFAULT; 2894 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2895 return -EFAULT; 2896 data64 = compat_ptr(data32); 2897 2898 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2899 2900 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2901 IFNAMSIZ)) 2902 return -EFAULT; 2903 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2904 return -EFAULT; 2905 2906 return dev_ioctl(net, cmd, u_ifreq64); 2907 } 2908 2909 static int dev_ifsioc(struct net *net, struct socket *sock, 2910 unsigned int cmd, struct compat_ifreq __user *uifr32) 2911 { 2912 struct ifreq __user *uifr; 2913 int err; 2914 2915 uifr = compat_alloc_user_space(sizeof(*uifr)); 2916 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2917 return -EFAULT; 2918 2919 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2920 2921 if (!err) { 2922 switch (cmd) { 2923 case SIOCGIFFLAGS: 2924 case SIOCGIFMETRIC: 2925 case SIOCGIFMTU: 2926 case SIOCGIFMEM: 2927 case SIOCGIFHWADDR: 2928 case SIOCGIFINDEX: 2929 case SIOCGIFADDR: 2930 case SIOCGIFBRDADDR: 2931 case SIOCGIFDSTADDR: 2932 case SIOCGIFNETMASK: 2933 case SIOCGIFPFLAGS: 2934 case SIOCGIFTXQLEN: 2935 case SIOCGMIIPHY: 2936 case SIOCGMIIREG: 2937 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2938 err = -EFAULT; 2939 break; 2940 } 2941 } 2942 return err; 2943 } 2944 2945 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2946 struct compat_ifreq __user *uifr32) 2947 { 2948 struct ifreq ifr; 2949 struct compat_ifmap __user *uifmap32; 2950 mm_segment_t old_fs; 2951 int err; 2952 2953 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2954 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2955 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2956 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2957 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2958 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2959 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2960 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2961 if (err) 2962 return -EFAULT; 2963 2964 old_fs = get_fs(); 2965 set_fs(KERNEL_DS); 2966 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2967 set_fs(old_fs); 2968 2969 if (cmd == SIOCGIFMAP && !err) { 2970 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2971 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2972 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2973 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2974 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2975 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2976 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2977 if (err) 2978 err = -EFAULT; 2979 } 2980 return err; 2981 } 2982 2983 struct rtentry32 { 2984 u32 rt_pad1; 2985 struct sockaddr rt_dst; /* target address */ 2986 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2987 struct sockaddr rt_genmask; /* target network mask (IP) */ 2988 unsigned short rt_flags; 2989 short rt_pad2; 2990 u32 rt_pad3; 2991 unsigned char rt_tos; 2992 unsigned char rt_class; 2993 short rt_pad4; 2994 short rt_metric; /* +1 for binary compatibility! */ 2995 /* char * */ u32 rt_dev; /* forcing the device at add */ 2996 u32 rt_mtu; /* per route MTU/Window */ 2997 u32 rt_window; /* Window clamping */ 2998 unsigned short rt_irtt; /* Initial RTT */ 2999 }; 3000 3001 struct in6_rtmsg32 { 3002 struct in6_addr rtmsg_dst; 3003 struct in6_addr rtmsg_src; 3004 struct in6_addr rtmsg_gateway; 3005 u32 rtmsg_type; 3006 u16 rtmsg_dst_len; 3007 u16 rtmsg_src_len; 3008 u32 rtmsg_metric; 3009 u32 rtmsg_info; 3010 u32 rtmsg_flags; 3011 s32 rtmsg_ifindex; 3012 }; 3013 3014 static int routing_ioctl(struct net *net, struct socket *sock, 3015 unsigned int cmd, void __user *argp) 3016 { 3017 int ret; 3018 void *r = NULL; 3019 struct in6_rtmsg r6; 3020 struct rtentry r4; 3021 char devname[16]; 3022 u32 rtdev; 3023 mm_segment_t old_fs = get_fs(); 3024 3025 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3026 struct in6_rtmsg32 __user *ur6 = argp; 3027 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3028 3 * sizeof(struct in6_addr)); 3029 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3030 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3031 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3032 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3033 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3034 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3035 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3036 3037 r = (void *) &r6; 3038 } else { /* ipv4 */ 3039 struct rtentry32 __user *ur4 = argp; 3040 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3041 3 * sizeof(struct sockaddr)); 3042 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3043 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3044 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3045 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3046 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3047 ret |= get_user(rtdev, &(ur4->rt_dev)); 3048 if (rtdev) { 3049 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3050 r4.rt_dev = (char __user __force *)devname; 3051 devname[15] = 0; 3052 } else 3053 r4.rt_dev = NULL; 3054 3055 r = (void *) &r4; 3056 } 3057 3058 if (ret) { 3059 ret = -EFAULT; 3060 goto out; 3061 } 3062 3063 set_fs(KERNEL_DS); 3064 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3065 set_fs(old_fs); 3066 3067 out: 3068 return ret; 3069 } 3070 3071 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3072 * for some operations; this forces use of the newer bridge-utils that 3073 * use compatible ioctls 3074 */ 3075 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3076 { 3077 compat_ulong_t tmp; 3078 3079 if (get_user(tmp, argp)) 3080 return -EFAULT; 3081 if (tmp == BRCTL_GET_VERSION) 3082 return BRCTL_VERSION + 1; 3083 return -EINVAL; 3084 } 3085 3086 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3087 unsigned int cmd, unsigned long arg) 3088 { 3089 void __user *argp = compat_ptr(arg); 3090 struct sock *sk = sock->sk; 3091 struct net *net = sock_net(sk); 3092 3093 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3094 return compat_ifr_data_ioctl(net, cmd, argp); 3095 3096 switch (cmd) { 3097 case SIOCSIFBR: 3098 case SIOCGIFBR: 3099 return old_bridge_ioctl(argp); 3100 case SIOCGIFNAME: 3101 return dev_ifname32(net, argp); 3102 case SIOCGIFCONF: 3103 return dev_ifconf(net, argp); 3104 case SIOCETHTOOL: 3105 return ethtool_ioctl(net, argp); 3106 case SIOCWANDEV: 3107 return compat_siocwandev(net, argp); 3108 case SIOCGIFMAP: 3109 case SIOCSIFMAP: 3110 return compat_sioc_ifmap(net, cmd, argp); 3111 case SIOCBONDENSLAVE: 3112 case SIOCBONDRELEASE: 3113 case SIOCBONDSETHWADDR: 3114 case SIOCBONDCHANGEACTIVE: 3115 return bond_ioctl(net, cmd, argp); 3116 case SIOCADDRT: 3117 case SIOCDELRT: 3118 return routing_ioctl(net, sock, cmd, argp); 3119 case SIOCGSTAMP: 3120 return do_siocgstamp(net, sock, cmd, argp); 3121 case SIOCGSTAMPNS: 3122 return do_siocgstampns(net, sock, cmd, argp); 3123 case SIOCBONDSLAVEINFOQUERY: 3124 case SIOCBONDINFOQUERY: 3125 case SIOCSHWTSTAMP: 3126 case SIOCGHWTSTAMP: 3127 return compat_ifr_data_ioctl(net, cmd, argp); 3128 3129 case FIOSETOWN: 3130 case SIOCSPGRP: 3131 case FIOGETOWN: 3132 case SIOCGPGRP: 3133 case SIOCBRADDBR: 3134 case SIOCBRDELBR: 3135 case SIOCGIFVLAN: 3136 case SIOCSIFVLAN: 3137 case SIOCADDDLCI: 3138 case SIOCDELDLCI: 3139 case SIOCGSKNS: 3140 return sock_ioctl(file, cmd, arg); 3141 3142 case SIOCGIFFLAGS: 3143 case SIOCSIFFLAGS: 3144 case SIOCGIFMETRIC: 3145 case SIOCSIFMETRIC: 3146 case SIOCGIFMTU: 3147 case SIOCSIFMTU: 3148 case SIOCGIFMEM: 3149 case SIOCSIFMEM: 3150 case SIOCGIFHWADDR: 3151 case SIOCSIFHWADDR: 3152 case SIOCADDMULTI: 3153 case SIOCDELMULTI: 3154 case SIOCGIFINDEX: 3155 case SIOCGIFADDR: 3156 case SIOCSIFADDR: 3157 case SIOCSIFHWBROADCAST: 3158 case SIOCDIFADDR: 3159 case SIOCGIFBRDADDR: 3160 case SIOCSIFBRDADDR: 3161 case SIOCGIFDSTADDR: 3162 case SIOCSIFDSTADDR: 3163 case SIOCGIFNETMASK: 3164 case SIOCSIFNETMASK: 3165 case SIOCSIFPFLAGS: 3166 case SIOCGIFPFLAGS: 3167 case SIOCGIFTXQLEN: 3168 case SIOCSIFTXQLEN: 3169 case SIOCBRADDIF: 3170 case SIOCBRDELIF: 3171 case SIOCSIFNAME: 3172 case SIOCGMIIPHY: 3173 case SIOCGMIIREG: 3174 case SIOCSMIIREG: 3175 return dev_ifsioc(net, sock, cmd, argp); 3176 3177 case SIOCSARP: 3178 case SIOCGARP: 3179 case SIOCDARP: 3180 case SIOCATMARK: 3181 return sock_do_ioctl(net, sock, cmd, arg); 3182 } 3183 3184 return -ENOIOCTLCMD; 3185 } 3186 3187 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3188 unsigned long arg) 3189 { 3190 struct socket *sock = file->private_data; 3191 int ret = -ENOIOCTLCMD; 3192 struct sock *sk; 3193 struct net *net; 3194 3195 sk = sock->sk; 3196 net = sock_net(sk); 3197 3198 if (sock->ops->compat_ioctl) 3199 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3200 3201 if (ret == -ENOIOCTLCMD && 3202 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3203 ret = compat_wext_handle_ioctl(net, cmd, arg); 3204 3205 if (ret == -ENOIOCTLCMD) 3206 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3207 3208 return ret; 3209 } 3210 #endif 3211 3212 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3213 { 3214 return sock->ops->bind(sock, addr, addrlen); 3215 } 3216 EXPORT_SYMBOL(kernel_bind); 3217 3218 int kernel_listen(struct socket *sock, int backlog) 3219 { 3220 return sock->ops->listen(sock, backlog); 3221 } 3222 EXPORT_SYMBOL(kernel_listen); 3223 3224 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3225 { 3226 struct sock *sk = sock->sk; 3227 int err; 3228 3229 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3230 newsock); 3231 if (err < 0) 3232 goto done; 3233 3234 err = sock->ops->accept(sock, *newsock, flags); 3235 if (err < 0) { 3236 sock_release(*newsock); 3237 *newsock = NULL; 3238 goto done; 3239 } 3240 3241 (*newsock)->ops = sock->ops; 3242 __module_get((*newsock)->ops->owner); 3243 3244 done: 3245 return err; 3246 } 3247 EXPORT_SYMBOL(kernel_accept); 3248 3249 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3250 int flags) 3251 { 3252 return sock->ops->connect(sock, addr, addrlen, flags); 3253 } 3254 EXPORT_SYMBOL(kernel_connect); 3255 3256 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3257 int *addrlen) 3258 { 3259 return sock->ops->getname(sock, addr, addrlen, 0); 3260 } 3261 EXPORT_SYMBOL(kernel_getsockname); 3262 3263 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3264 int *addrlen) 3265 { 3266 return sock->ops->getname(sock, addr, addrlen, 1); 3267 } 3268 EXPORT_SYMBOL(kernel_getpeername); 3269 3270 int kernel_getsockopt(struct socket *sock, int level, int optname, 3271 char *optval, int *optlen) 3272 { 3273 mm_segment_t oldfs = get_fs(); 3274 char __user *uoptval; 3275 int __user *uoptlen; 3276 int err; 3277 3278 uoptval = (char __user __force *) optval; 3279 uoptlen = (int __user __force *) optlen; 3280 3281 set_fs(KERNEL_DS); 3282 if (level == SOL_SOCKET) 3283 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3284 else 3285 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3286 uoptlen); 3287 set_fs(oldfs); 3288 return err; 3289 } 3290 EXPORT_SYMBOL(kernel_getsockopt); 3291 3292 int kernel_setsockopt(struct socket *sock, int level, int optname, 3293 char *optval, unsigned int optlen) 3294 { 3295 mm_segment_t oldfs = get_fs(); 3296 char __user *uoptval; 3297 int err; 3298 3299 uoptval = (char __user __force *) optval; 3300 3301 set_fs(KERNEL_DS); 3302 if (level == SOL_SOCKET) 3303 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3304 else 3305 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3306 optlen); 3307 set_fs(oldfs); 3308 return err; 3309 } 3310 EXPORT_SYMBOL(kernel_setsockopt); 3311 3312 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3313 size_t size, int flags) 3314 { 3315 if (sock->ops->sendpage) 3316 return sock->ops->sendpage(sock, page, offset, size, flags); 3317 3318 return sock_no_sendpage(sock, page, offset, size, flags); 3319 } 3320 EXPORT_SYMBOL(kernel_sendpage); 3321 3322 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3323 { 3324 mm_segment_t oldfs = get_fs(); 3325 int err; 3326 3327 set_fs(KERNEL_DS); 3328 err = sock->ops->ioctl(sock, cmd, arg); 3329 set_fs(oldfs); 3330 3331 return err; 3332 } 3333 EXPORT_SYMBOL(kernel_sock_ioctl); 3334 3335 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3336 { 3337 return sock->ops->shutdown(sock, how); 3338 } 3339 EXPORT_SYMBOL(kernel_sock_shutdown); 3340