xref: /linux/net/socket.c (revision 1fc31357ad194fb98691f3d122bcd47e59239e83)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 			    struct dentry *dentry, struct inode *inode,
325 			    const char *suffix, void *value, size_t size)
326 {
327 	if (value) {
328 		if (dentry->d_name.len + 1 > size)
329 			return -ERANGE;
330 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 	}
332 	return dentry->d_name.len + 1;
333 }
334 
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338 
339 static const struct xattr_handler sockfs_xattr_handler = {
340 	.name = XATTR_NAME_SOCKPROTONAME,
341 	.get = sockfs_xattr_get,
342 };
343 
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 				     struct dentry *dentry, struct inode *inode,
346 				     const char *suffix, const void *value,
347 				     size_t size, int flags)
348 {
349 	/* Handled by LSM. */
350 	return -EAGAIN;
351 }
352 
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 	.prefix = XATTR_SECURITY_PREFIX,
355 	.set = sockfs_security_xattr_set,
356 };
357 
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 	&sockfs_xattr_handler,
360 	&sockfs_security_xattr_handler,
361 	NULL
362 };
363 
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 			 int flags, const char *dev_name, void *data)
366 {
367 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 				  sockfs_xattr_handlers,
369 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371 
372 static struct vfsmount *sock_mnt __read_mostly;
373 
374 static struct file_system_type sock_fs_type = {
375 	.name =		"sockfs",
376 	.mount =	sockfs_mount,
377 	.kill_sb =	kill_anon_super,
378 };
379 
380 /*
381  *	Obtains the first available file descriptor and sets it up for use.
382  *
383  *	These functions create file structures and maps them to fd space
384  *	of the current process. On success it returns file descriptor
385  *	and file struct implicitly stored in sock->file.
386  *	Note that another thread may close file descriptor before we return
387  *	from this function. We use the fact that now we do not refer
388  *	to socket after mapping. If one day we will need it, this
389  *	function will increment ref. count on file by 1.
390  *
391  *	In any case returned fd MAY BE not valid!
392  *	This race condition is unavoidable
393  *	with shared fd spaces, we cannot solve it inside kernel,
394  *	but we take care of internal coherence yet.
395  */
396 
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399 	struct qstr name = { .name = "" };
400 	struct path path;
401 	struct file *file;
402 
403 	if (dname) {
404 		name.name = dname;
405 		name.len = strlen(name.name);
406 	} else if (sock->sk) {
407 		name.name = sock->sk->sk_prot_creator->name;
408 		name.len = strlen(name.name);
409 	}
410 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 	if (unlikely(!path.dentry))
412 		return ERR_PTR(-ENOMEM);
413 	path.mnt = mntget(sock_mnt);
414 
415 	d_instantiate(path.dentry, SOCK_INODE(sock));
416 
417 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 		  &socket_file_ops);
419 	if (IS_ERR(file)) {
420 		/* drop dentry, keep inode */
421 		ihold(d_inode(path.dentry));
422 		path_put(&path);
423 		return file;
424 	}
425 
426 	sock->file = file;
427 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 	file->private_data = sock;
429 	return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432 
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435 	struct file *newfile;
436 	int fd = get_unused_fd_flags(flags);
437 	if (unlikely(fd < 0))
438 		return fd;
439 
440 	newfile = sock_alloc_file(sock, flags, NULL);
441 	if (likely(!IS_ERR(newfile))) {
442 		fd_install(fd, newfile);
443 		return fd;
444 	}
445 
446 	put_unused_fd(fd);
447 	return PTR_ERR(newfile);
448 }
449 
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 	if (file->f_op == &socket_file_ops)
453 		return file->private_data;	/* set in sock_map_fd */
454 
455 	*err = -ENOTSOCK;
456 	return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459 
460 /**
461  *	sockfd_lookup - Go from a file number to its socket slot
462  *	@fd: file handle
463  *	@err: pointer to an error code return
464  *
465  *	The file handle passed in is locked and the socket it is bound
466  *	too is returned. If an error occurs the err pointer is overwritten
467  *	with a negative errno code and NULL is returned. The function checks
468  *	for both invalid handles and passing a handle which is not a socket.
469  *
470  *	On a success the socket object pointer is returned.
471  */
472 
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 	struct file *file;
476 	struct socket *sock;
477 
478 	file = fget(fd);
479 	if (!file) {
480 		*err = -EBADF;
481 		return NULL;
482 	}
483 
484 	sock = sock_from_file(file, err);
485 	if (!sock)
486 		fput(file);
487 	return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490 
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 	struct fd f = fdget(fd);
494 	struct socket *sock;
495 
496 	*err = -EBADF;
497 	if (f.file) {
498 		sock = sock_from_file(f.file, err);
499 		if (likely(sock)) {
500 			*fput_needed = f.flags;
501 			return sock;
502 		}
503 		fdput(f);
504 	}
505 	return NULL;
506 }
507 
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 				size_t size)
510 {
511 	ssize_t len;
512 	ssize_t used = 0;
513 
514 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 	if (len < 0)
516 		return len;
517 	used += len;
518 	if (buffer) {
519 		if (size < used)
520 			return -ERANGE;
521 		buffer += len;
522 	}
523 
524 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 	used += len;
526 	if (buffer) {
527 		if (size < used)
528 			return -ERANGE;
529 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 		buffer += len;
531 	}
532 
533 	return used;
534 }
535 
536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 	int err = simple_setattr(dentry, iattr);
539 
540 	if (!err) {
541 		struct socket *sock = SOCKET_I(d_inode(dentry));
542 
543 		sock->sk->sk_uid = iattr->ia_uid;
544 	}
545 
546 	return err;
547 }
548 
549 static const struct inode_operations sockfs_inode_ops = {
550 	.listxattr = sockfs_listxattr,
551 	.setattr = sockfs_setattr,
552 };
553 
554 /**
555  *	sock_alloc	-	allocate a socket
556  *
557  *	Allocate a new inode and socket object. The two are bound together
558  *	and initialised. The socket is then returned. If we are out of inodes
559  *	NULL is returned.
560  */
561 
562 struct socket *sock_alloc(void)
563 {
564 	struct inode *inode;
565 	struct socket *sock;
566 
567 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 	if (!inode)
569 		return NULL;
570 
571 	sock = SOCKET_I(inode);
572 
573 	kmemcheck_annotate_bitfield(sock, type);
574 	inode->i_ino = get_next_ino();
575 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 	inode->i_uid = current_fsuid();
577 	inode->i_gid = current_fsgid();
578 	inode->i_op = &sockfs_inode_ops;
579 
580 	this_cpu_add(sockets_in_use, 1);
581 	return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584 
585 /**
586  *	sock_release	-	close a socket
587  *	@sock: socket to close
588  *
589  *	The socket is released from the protocol stack if it has a release
590  *	callback, and the inode is then released if the socket is bound to
591  *	an inode not a file.
592  */
593 
594 void sock_release(struct socket *sock)
595 {
596 	if (sock->ops) {
597 		struct module *owner = sock->ops->owner;
598 
599 		sock->ops->release(sock);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	this_cpu_sub(sockets_in_use, 1);
608 	if (!sock->file) {
609 		iput(SOCK_INODE(sock));
610 		return;
611 	}
612 	sock->file = NULL;
613 }
614 EXPORT_SYMBOL(sock_release);
615 
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617 {
618 	u8 flags = *tx_flags;
619 
620 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 		flags |= SKBTX_HW_TSTAMP;
622 
623 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 		flags |= SKBTX_SW_TSTAMP;
625 
626 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 		flags |= SKBTX_SCHED_TSTAMP;
628 
629 	*tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632 
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634 {
635 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 	BUG_ON(ret == -EIOCBQUEUED);
637 	return ret;
638 }
639 
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641 {
642 	int err = security_socket_sendmsg(sock, msg,
643 					  msg_data_left(msg));
644 
645 	return err ?: sock_sendmsg_nosec(sock, msg);
646 }
647 EXPORT_SYMBOL(sock_sendmsg);
648 
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 		   struct kvec *vec, size_t num, size_t size)
651 {
652 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 	return sock_sendmsg(sock, msg);
654 }
655 EXPORT_SYMBOL(kernel_sendmsg);
656 
657 /*
658  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
659  */
660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
661 	struct sk_buff *skb)
662 {
663 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664 	struct scm_timestamping tss;
665 	int empty = 1;
666 	struct skb_shared_hwtstamps *shhwtstamps =
667 		skb_hwtstamps(skb);
668 
669 	/* Race occurred between timestamp enabling and packet
670 	   receiving.  Fill in the current time for now. */
671 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
672 		__net_timestamp(skb);
673 
674 	if (need_software_tstamp) {
675 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
676 			struct timeval tv;
677 			skb_get_timestamp(skb, &tv);
678 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
679 				 sizeof(tv), &tv);
680 		} else {
681 			struct timespec ts;
682 			skb_get_timestampns(skb, &ts);
683 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
684 				 sizeof(ts), &ts);
685 		}
686 	}
687 
688 	memset(&tss, 0, sizeof(tss));
689 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
691 		empty = 0;
692 	if (shhwtstamps &&
693 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
695 		empty = 0;
696 	if (!empty)
697 		put_cmsg(msg, SOL_SOCKET,
698 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
699 }
700 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
701 
702 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int ack;
706 
707 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
708 		return;
709 	if (!skb->wifi_acked_valid)
710 		return;
711 
712 	ack = skb->wifi_acked;
713 
714 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
715 }
716 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
717 
718 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
719 				   struct sk_buff *skb)
720 {
721 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
722 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
723 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
724 }
725 
726 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
727 	struct sk_buff *skb)
728 {
729 	sock_recv_timestamp(msg, sk, skb);
730 	sock_recv_drops(msg, sk, skb);
731 }
732 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
733 
734 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
735 				     int flags)
736 {
737 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
738 }
739 
740 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
741 {
742 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
743 
744 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
745 }
746 EXPORT_SYMBOL(sock_recvmsg);
747 
748 /**
749  * kernel_recvmsg - Receive a message from a socket (kernel space)
750  * @sock:       The socket to receive the message from
751  * @msg:        Received message
752  * @vec:        Input s/g array for message data
753  * @num:        Size of input s/g array
754  * @size:       Number of bytes to read
755  * @flags:      Message flags (MSG_DONTWAIT, etc...)
756  *
757  * On return the msg structure contains the scatter/gather array passed in the
758  * vec argument. The array is modified so that it consists of the unfilled
759  * portion of the original array.
760  *
761  * The returned value is the total number of bytes received, or an error.
762  */
763 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
764 		   struct kvec *vec, size_t num, size_t size, int flags)
765 {
766 	mm_segment_t oldfs = get_fs();
767 	int result;
768 
769 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
770 	set_fs(KERNEL_DS);
771 	result = sock_recvmsg(sock, msg, flags);
772 	set_fs(oldfs);
773 	return result;
774 }
775 EXPORT_SYMBOL(kernel_recvmsg);
776 
777 static ssize_t sock_sendpage(struct file *file, struct page *page,
778 			     int offset, size_t size, loff_t *ppos, int more)
779 {
780 	struct socket *sock;
781 	int flags;
782 
783 	sock = file->private_data;
784 
785 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
787 	flags |= more;
788 
789 	return kernel_sendpage(sock, page, offset, size, flags);
790 }
791 
792 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
793 				struct pipe_inode_info *pipe, size_t len,
794 				unsigned int flags)
795 {
796 	struct socket *sock = file->private_data;
797 
798 	if (unlikely(!sock->ops->splice_read))
799 		return -EINVAL;
800 
801 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
802 }
803 
804 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
805 {
806 	struct file *file = iocb->ki_filp;
807 	struct socket *sock = file->private_data;
808 	struct msghdr msg = {.msg_iter = *to,
809 			     .msg_iocb = iocb};
810 	ssize_t res;
811 
812 	if (file->f_flags & O_NONBLOCK)
813 		msg.msg_flags = MSG_DONTWAIT;
814 
815 	if (iocb->ki_pos != 0)
816 		return -ESPIPE;
817 
818 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
819 		return 0;
820 
821 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
822 	*to = msg.msg_iter;
823 	return res;
824 }
825 
826 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
827 {
828 	struct file *file = iocb->ki_filp;
829 	struct socket *sock = file->private_data;
830 	struct msghdr msg = {.msg_iter = *from,
831 			     .msg_iocb = iocb};
832 	ssize_t res;
833 
834 	if (iocb->ki_pos != 0)
835 		return -ESPIPE;
836 
837 	if (file->f_flags & O_NONBLOCK)
838 		msg.msg_flags = MSG_DONTWAIT;
839 
840 	if (sock->type == SOCK_SEQPACKET)
841 		msg.msg_flags |= MSG_EOR;
842 
843 	res = sock_sendmsg(sock, &msg);
844 	*from = msg.msg_iter;
845 	return res;
846 }
847 
848 /*
849  * Atomic setting of ioctl hooks to avoid race
850  * with module unload.
851  */
852 
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
855 
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 	mutex_lock(&br_ioctl_mutex);
859 	br_ioctl_hook = hook;
860 	mutex_unlock(&br_ioctl_mutex);
861 }
862 EXPORT_SYMBOL(brioctl_set);
863 
864 static DEFINE_MUTEX(vlan_ioctl_mutex);
865 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
866 
867 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
868 {
869 	mutex_lock(&vlan_ioctl_mutex);
870 	vlan_ioctl_hook = hook;
871 	mutex_unlock(&vlan_ioctl_mutex);
872 }
873 EXPORT_SYMBOL(vlan_ioctl_set);
874 
875 static DEFINE_MUTEX(dlci_ioctl_mutex);
876 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
877 
878 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
879 {
880 	mutex_lock(&dlci_ioctl_mutex);
881 	dlci_ioctl_hook = hook;
882 	mutex_unlock(&dlci_ioctl_mutex);
883 }
884 EXPORT_SYMBOL(dlci_ioctl_set);
885 
886 static long sock_do_ioctl(struct net *net, struct socket *sock,
887 				 unsigned int cmd, unsigned long arg)
888 {
889 	int err;
890 	void __user *argp = (void __user *)arg;
891 
892 	err = sock->ops->ioctl(sock, cmd, arg);
893 
894 	/*
895 	 * If this ioctl is unknown try to hand it down
896 	 * to the NIC driver.
897 	 */
898 	if (err == -ENOIOCTLCMD)
899 		err = dev_ioctl(net, cmd, argp);
900 
901 	return err;
902 }
903 
904 /*
905  *	With an ioctl, arg may well be a user mode pointer, but we don't know
906  *	what to do with it - that's up to the protocol still.
907  */
908 
909 static struct ns_common *get_net_ns(struct ns_common *ns)
910 {
911 	return &get_net(container_of(ns, struct net, ns))->ns;
912 }
913 
914 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
915 {
916 	struct socket *sock;
917 	struct sock *sk;
918 	void __user *argp = (void __user *)arg;
919 	int pid, err;
920 	struct net *net;
921 
922 	sock = file->private_data;
923 	sk = sock->sk;
924 	net = sock_net(sk);
925 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
926 		err = dev_ioctl(net, cmd, argp);
927 	} else
928 #ifdef CONFIG_WEXT_CORE
929 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
930 		err = dev_ioctl(net, cmd, argp);
931 	} else
932 #endif
933 		switch (cmd) {
934 		case FIOSETOWN:
935 		case SIOCSPGRP:
936 			err = -EFAULT;
937 			if (get_user(pid, (int __user *)argp))
938 				break;
939 			f_setown(sock->file, pid, 1);
940 			err = 0;
941 			break;
942 		case FIOGETOWN:
943 		case SIOCGPGRP:
944 			err = put_user(f_getown(sock->file),
945 				       (int __user *)argp);
946 			break;
947 		case SIOCGIFBR:
948 		case SIOCSIFBR:
949 		case SIOCBRADDBR:
950 		case SIOCBRDELBR:
951 			err = -ENOPKG;
952 			if (!br_ioctl_hook)
953 				request_module("bridge");
954 
955 			mutex_lock(&br_ioctl_mutex);
956 			if (br_ioctl_hook)
957 				err = br_ioctl_hook(net, cmd, argp);
958 			mutex_unlock(&br_ioctl_mutex);
959 			break;
960 		case SIOCGIFVLAN:
961 		case SIOCSIFVLAN:
962 			err = -ENOPKG;
963 			if (!vlan_ioctl_hook)
964 				request_module("8021q");
965 
966 			mutex_lock(&vlan_ioctl_mutex);
967 			if (vlan_ioctl_hook)
968 				err = vlan_ioctl_hook(net, argp);
969 			mutex_unlock(&vlan_ioctl_mutex);
970 			break;
971 		case SIOCADDDLCI:
972 		case SIOCDELDLCI:
973 			err = -ENOPKG;
974 			if (!dlci_ioctl_hook)
975 				request_module("dlci");
976 
977 			mutex_lock(&dlci_ioctl_mutex);
978 			if (dlci_ioctl_hook)
979 				err = dlci_ioctl_hook(cmd, argp);
980 			mutex_unlock(&dlci_ioctl_mutex);
981 			break;
982 		case SIOCGSKNS:
983 			err = -EPERM;
984 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
985 				break;
986 
987 			err = open_related_ns(&net->ns, get_net_ns);
988 			break;
989 		default:
990 			err = sock_do_ioctl(net, sock, cmd, arg);
991 			break;
992 		}
993 	return err;
994 }
995 
996 int sock_create_lite(int family, int type, int protocol, struct socket **res)
997 {
998 	int err;
999 	struct socket *sock = NULL;
1000 
1001 	err = security_socket_create(family, type, protocol, 1);
1002 	if (err)
1003 		goto out;
1004 
1005 	sock = sock_alloc();
1006 	if (!sock) {
1007 		err = -ENOMEM;
1008 		goto out;
1009 	}
1010 
1011 	sock->type = type;
1012 	err = security_socket_post_create(sock, family, type, protocol, 1);
1013 	if (err)
1014 		goto out_release;
1015 
1016 out:
1017 	*res = sock;
1018 	return err;
1019 out_release:
1020 	sock_release(sock);
1021 	sock = NULL;
1022 	goto out;
1023 }
1024 EXPORT_SYMBOL(sock_create_lite);
1025 
1026 /* No kernel lock held - perfect */
1027 static unsigned int sock_poll(struct file *file, poll_table *wait)
1028 {
1029 	unsigned int busy_flag = 0;
1030 	struct socket *sock;
1031 
1032 	/*
1033 	 *      We can't return errors to poll, so it's either yes or no.
1034 	 */
1035 	sock = file->private_data;
1036 
1037 	if (sk_can_busy_loop(sock->sk)) {
1038 		/* this socket can poll_ll so tell the system call */
1039 		busy_flag = POLL_BUSY_LOOP;
1040 
1041 		/* once, only if requested by syscall */
1042 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1043 			sk_busy_loop(sock->sk, 1);
1044 	}
1045 
1046 	return busy_flag | sock->ops->poll(file, sock, wait);
1047 }
1048 
1049 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1050 {
1051 	struct socket *sock = file->private_data;
1052 
1053 	return sock->ops->mmap(file, sock, vma);
1054 }
1055 
1056 static int sock_close(struct inode *inode, struct file *filp)
1057 {
1058 	sock_release(SOCKET_I(inode));
1059 	return 0;
1060 }
1061 
1062 /*
1063  *	Update the socket async list
1064  *
1065  *	Fasync_list locking strategy.
1066  *
1067  *	1. fasync_list is modified only under process context socket lock
1068  *	   i.e. under semaphore.
1069  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1070  *	   or under socket lock
1071  */
1072 
1073 static int sock_fasync(int fd, struct file *filp, int on)
1074 {
1075 	struct socket *sock = filp->private_data;
1076 	struct sock *sk = sock->sk;
1077 	struct socket_wq *wq;
1078 
1079 	if (sk == NULL)
1080 		return -EINVAL;
1081 
1082 	lock_sock(sk);
1083 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1084 	fasync_helper(fd, filp, on, &wq->fasync_list);
1085 
1086 	if (!wq->fasync_list)
1087 		sock_reset_flag(sk, SOCK_FASYNC);
1088 	else
1089 		sock_set_flag(sk, SOCK_FASYNC);
1090 
1091 	release_sock(sk);
1092 	return 0;
1093 }
1094 
1095 /* This function may be called only under rcu_lock */
1096 
1097 int sock_wake_async(struct socket_wq *wq, int how, int band)
1098 {
1099 	if (!wq || !wq->fasync_list)
1100 		return -1;
1101 
1102 	switch (how) {
1103 	case SOCK_WAKE_WAITD:
1104 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1105 			break;
1106 		goto call_kill;
1107 	case SOCK_WAKE_SPACE:
1108 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1109 			break;
1110 		/* fall through */
1111 	case SOCK_WAKE_IO:
1112 call_kill:
1113 		kill_fasync(&wq->fasync_list, SIGIO, band);
1114 		break;
1115 	case SOCK_WAKE_URG:
1116 		kill_fasync(&wq->fasync_list, SIGURG, band);
1117 	}
1118 
1119 	return 0;
1120 }
1121 EXPORT_SYMBOL(sock_wake_async);
1122 
1123 int __sock_create(struct net *net, int family, int type, int protocol,
1124 			 struct socket **res, int kern)
1125 {
1126 	int err;
1127 	struct socket *sock;
1128 	const struct net_proto_family *pf;
1129 
1130 	/*
1131 	 *      Check protocol is in range
1132 	 */
1133 	if (family < 0 || family >= NPROTO)
1134 		return -EAFNOSUPPORT;
1135 	if (type < 0 || type >= SOCK_MAX)
1136 		return -EINVAL;
1137 
1138 	/* Compatibility.
1139 
1140 	   This uglymoron is moved from INET layer to here to avoid
1141 	   deadlock in module load.
1142 	 */
1143 	if (family == PF_INET && type == SOCK_PACKET) {
1144 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1145 			     current->comm);
1146 		family = PF_PACKET;
1147 	}
1148 
1149 	err = security_socket_create(family, type, protocol, kern);
1150 	if (err)
1151 		return err;
1152 
1153 	/*
1154 	 *	Allocate the socket and allow the family to set things up. if
1155 	 *	the protocol is 0, the family is instructed to select an appropriate
1156 	 *	default.
1157 	 */
1158 	sock = sock_alloc();
1159 	if (!sock) {
1160 		net_warn_ratelimited("socket: no more sockets\n");
1161 		return -ENFILE;	/* Not exactly a match, but its the
1162 				   closest posix thing */
1163 	}
1164 
1165 	sock->type = type;
1166 
1167 #ifdef CONFIG_MODULES
1168 	/* Attempt to load a protocol module if the find failed.
1169 	 *
1170 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1171 	 * requested real, full-featured networking support upon configuration.
1172 	 * Otherwise module support will break!
1173 	 */
1174 	if (rcu_access_pointer(net_families[family]) == NULL)
1175 		request_module("net-pf-%d", family);
1176 #endif
1177 
1178 	rcu_read_lock();
1179 	pf = rcu_dereference(net_families[family]);
1180 	err = -EAFNOSUPPORT;
1181 	if (!pf)
1182 		goto out_release;
1183 
1184 	/*
1185 	 * We will call the ->create function, that possibly is in a loadable
1186 	 * module, so we have to bump that loadable module refcnt first.
1187 	 */
1188 	if (!try_module_get(pf->owner))
1189 		goto out_release;
1190 
1191 	/* Now protected by module ref count */
1192 	rcu_read_unlock();
1193 
1194 	err = pf->create(net, sock, protocol, kern);
1195 	if (err < 0)
1196 		goto out_module_put;
1197 
1198 	/*
1199 	 * Now to bump the refcnt of the [loadable] module that owns this
1200 	 * socket at sock_release time we decrement its refcnt.
1201 	 */
1202 	if (!try_module_get(sock->ops->owner))
1203 		goto out_module_busy;
1204 
1205 	/*
1206 	 * Now that we're done with the ->create function, the [loadable]
1207 	 * module can have its refcnt decremented
1208 	 */
1209 	module_put(pf->owner);
1210 	err = security_socket_post_create(sock, family, type, protocol, kern);
1211 	if (err)
1212 		goto out_sock_release;
1213 	*res = sock;
1214 
1215 	return 0;
1216 
1217 out_module_busy:
1218 	err = -EAFNOSUPPORT;
1219 out_module_put:
1220 	sock->ops = NULL;
1221 	module_put(pf->owner);
1222 out_sock_release:
1223 	sock_release(sock);
1224 	return err;
1225 
1226 out_release:
1227 	rcu_read_unlock();
1228 	goto out_sock_release;
1229 }
1230 EXPORT_SYMBOL(__sock_create);
1231 
1232 int sock_create(int family, int type, int protocol, struct socket **res)
1233 {
1234 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1235 }
1236 EXPORT_SYMBOL(sock_create);
1237 
1238 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1239 {
1240 	return __sock_create(net, family, type, protocol, res, 1);
1241 }
1242 EXPORT_SYMBOL(sock_create_kern);
1243 
1244 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1245 {
1246 	int retval;
1247 	struct socket *sock;
1248 	int flags;
1249 
1250 	/* Check the SOCK_* constants for consistency.  */
1251 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1252 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1253 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1254 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1255 
1256 	flags = type & ~SOCK_TYPE_MASK;
1257 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1258 		return -EINVAL;
1259 	type &= SOCK_TYPE_MASK;
1260 
1261 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1262 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1263 
1264 	retval = sock_create(family, type, protocol, &sock);
1265 	if (retval < 0)
1266 		goto out;
1267 
1268 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1269 	if (retval < 0)
1270 		goto out_release;
1271 
1272 out:
1273 	/* It may be already another descriptor 8) Not kernel problem. */
1274 	return retval;
1275 
1276 out_release:
1277 	sock_release(sock);
1278 	return retval;
1279 }
1280 
1281 /*
1282  *	Create a pair of connected sockets.
1283  */
1284 
1285 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1286 		int __user *, usockvec)
1287 {
1288 	struct socket *sock1, *sock2;
1289 	int fd1, fd2, err;
1290 	struct file *newfile1, *newfile2;
1291 	int flags;
1292 
1293 	flags = type & ~SOCK_TYPE_MASK;
1294 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1295 		return -EINVAL;
1296 	type &= SOCK_TYPE_MASK;
1297 
1298 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1299 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1300 
1301 	/*
1302 	 * Obtain the first socket and check if the underlying protocol
1303 	 * supports the socketpair call.
1304 	 */
1305 
1306 	err = sock_create(family, type, protocol, &sock1);
1307 	if (err < 0)
1308 		goto out;
1309 
1310 	err = sock_create(family, type, protocol, &sock2);
1311 	if (err < 0)
1312 		goto out_release_1;
1313 
1314 	err = sock1->ops->socketpair(sock1, sock2);
1315 	if (err < 0)
1316 		goto out_release_both;
1317 
1318 	fd1 = get_unused_fd_flags(flags);
1319 	if (unlikely(fd1 < 0)) {
1320 		err = fd1;
1321 		goto out_release_both;
1322 	}
1323 
1324 	fd2 = get_unused_fd_flags(flags);
1325 	if (unlikely(fd2 < 0)) {
1326 		err = fd2;
1327 		goto out_put_unused_1;
1328 	}
1329 
1330 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1331 	if (IS_ERR(newfile1)) {
1332 		err = PTR_ERR(newfile1);
1333 		goto out_put_unused_both;
1334 	}
1335 
1336 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1337 	if (IS_ERR(newfile2)) {
1338 		err = PTR_ERR(newfile2);
1339 		goto out_fput_1;
1340 	}
1341 
1342 	err = put_user(fd1, &usockvec[0]);
1343 	if (err)
1344 		goto out_fput_both;
1345 
1346 	err = put_user(fd2, &usockvec[1]);
1347 	if (err)
1348 		goto out_fput_both;
1349 
1350 	audit_fd_pair(fd1, fd2);
1351 
1352 	fd_install(fd1, newfile1);
1353 	fd_install(fd2, newfile2);
1354 	/* fd1 and fd2 may be already another descriptors.
1355 	 * Not kernel problem.
1356 	 */
1357 
1358 	return 0;
1359 
1360 out_fput_both:
1361 	fput(newfile2);
1362 	fput(newfile1);
1363 	put_unused_fd(fd2);
1364 	put_unused_fd(fd1);
1365 	goto out;
1366 
1367 out_fput_1:
1368 	fput(newfile1);
1369 	put_unused_fd(fd2);
1370 	put_unused_fd(fd1);
1371 	sock_release(sock2);
1372 	goto out;
1373 
1374 out_put_unused_both:
1375 	put_unused_fd(fd2);
1376 out_put_unused_1:
1377 	put_unused_fd(fd1);
1378 out_release_both:
1379 	sock_release(sock2);
1380 out_release_1:
1381 	sock_release(sock1);
1382 out:
1383 	return err;
1384 }
1385 
1386 /*
1387  *	Bind a name to a socket. Nothing much to do here since it's
1388  *	the protocol's responsibility to handle the local address.
1389  *
1390  *	We move the socket address to kernel space before we call
1391  *	the protocol layer (having also checked the address is ok).
1392  */
1393 
1394 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1395 {
1396 	struct socket *sock;
1397 	struct sockaddr_storage address;
1398 	int err, fput_needed;
1399 
1400 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1401 	if (sock) {
1402 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1403 		if (err >= 0) {
1404 			err = security_socket_bind(sock,
1405 						   (struct sockaddr *)&address,
1406 						   addrlen);
1407 			if (!err)
1408 				err = sock->ops->bind(sock,
1409 						      (struct sockaddr *)
1410 						      &address, addrlen);
1411 		}
1412 		fput_light(sock->file, fput_needed);
1413 	}
1414 	return err;
1415 }
1416 
1417 /*
1418  *	Perform a listen. Basically, we allow the protocol to do anything
1419  *	necessary for a listen, and if that works, we mark the socket as
1420  *	ready for listening.
1421  */
1422 
1423 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1424 {
1425 	struct socket *sock;
1426 	int err, fput_needed;
1427 	int somaxconn;
1428 
1429 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430 	if (sock) {
1431 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1432 		if ((unsigned int)backlog > somaxconn)
1433 			backlog = somaxconn;
1434 
1435 		err = security_socket_listen(sock, backlog);
1436 		if (!err)
1437 			err = sock->ops->listen(sock, backlog);
1438 
1439 		fput_light(sock->file, fput_needed);
1440 	}
1441 	return err;
1442 }
1443 
1444 /*
1445  *	For accept, we attempt to create a new socket, set up the link
1446  *	with the client, wake up the client, then return the new
1447  *	connected fd. We collect the address of the connector in kernel
1448  *	space and move it to user at the very end. This is unclean because
1449  *	we open the socket then return an error.
1450  *
1451  *	1003.1g adds the ability to recvmsg() to query connection pending
1452  *	status to recvmsg. We need to add that support in a way thats
1453  *	clean when we restucture accept also.
1454  */
1455 
1456 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1457 		int __user *, upeer_addrlen, int, flags)
1458 {
1459 	struct socket *sock, *newsock;
1460 	struct file *newfile;
1461 	int err, len, newfd, fput_needed;
1462 	struct sockaddr_storage address;
1463 
1464 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1465 		return -EINVAL;
1466 
1467 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1468 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1469 
1470 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1471 	if (!sock)
1472 		goto out;
1473 
1474 	err = -ENFILE;
1475 	newsock = sock_alloc();
1476 	if (!newsock)
1477 		goto out_put;
1478 
1479 	newsock->type = sock->type;
1480 	newsock->ops = sock->ops;
1481 
1482 	/*
1483 	 * We don't need try_module_get here, as the listening socket (sock)
1484 	 * has the protocol module (sock->ops->owner) held.
1485 	 */
1486 	__module_get(newsock->ops->owner);
1487 
1488 	newfd = get_unused_fd_flags(flags);
1489 	if (unlikely(newfd < 0)) {
1490 		err = newfd;
1491 		sock_release(newsock);
1492 		goto out_put;
1493 	}
1494 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1495 	if (IS_ERR(newfile)) {
1496 		err = PTR_ERR(newfile);
1497 		put_unused_fd(newfd);
1498 		sock_release(newsock);
1499 		goto out_put;
1500 	}
1501 
1502 	err = security_socket_accept(sock, newsock);
1503 	if (err)
1504 		goto out_fd;
1505 
1506 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1507 	if (err < 0)
1508 		goto out_fd;
1509 
1510 	if (upeer_sockaddr) {
1511 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1512 					  &len, 2) < 0) {
1513 			err = -ECONNABORTED;
1514 			goto out_fd;
1515 		}
1516 		err = move_addr_to_user(&address,
1517 					len, upeer_sockaddr, upeer_addrlen);
1518 		if (err < 0)
1519 			goto out_fd;
1520 	}
1521 
1522 	/* File flags are not inherited via accept() unlike another OSes. */
1523 
1524 	fd_install(newfd, newfile);
1525 	err = newfd;
1526 
1527 out_put:
1528 	fput_light(sock->file, fput_needed);
1529 out:
1530 	return err;
1531 out_fd:
1532 	fput(newfile);
1533 	put_unused_fd(newfd);
1534 	goto out_put;
1535 }
1536 
1537 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1538 		int __user *, upeer_addrlen)
1539 {
1540 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1541 }
1542 
1543 /*
1544  *	Attempt to connect to a socket with the server address.  The address
1545  *	is in user space so we verify it is OK and move it to kernel space.
1546  *
1547  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1548  *	break bindings
1549  *
1550  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1551  *	other SEQPACKET protocols that take time to connect() as it doesn't
1552  *	include the -EINPROGRESS status for such sockets.
1553  */
1554 
1555 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1556 		int, addrlen)
1557 {
1558 	struct socket *sock;
1559 	struct sockaddr_storage address;
1560 	int err, fput_needed;
1561 
1562 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 	if (!sock)
1564 		goto out;
1565 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1566 	if (err < 0)
1567 		goto out_put;
1568 
1569 	err =
1570 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1571 	if (err)
1572 		goto out_put;
1573 
1574 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1575 				 sock->file->f_flags);
1576 out_put:
1577 	fput_light(sock->file, fput_needed);
1578 out:
1579 	return err;
1580 }
1581 
1582 /*
1583  *	Get the local address ('name') of a socket object. Move the obtained
1584  *	name to user space.
1585  */
1586 
1587 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1588 		int __user *, usockaddr_len)
1589 {
1590 	struct socket *sock;
1591 	struct sockaddr_storage address;
1592 	int len, err, fput_needed;
1593 
1594 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 	if (!sock)
1596 		goto out;
1597 
1598 	err = security_socket_getsockname(sock);
1599 	if (err)
1600 		goto out_put;
1601 
1602 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1603 	if (err)
1604 		goto out_put;
1605 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1606 
1607 out_put:
1608 	fput_light(sock->file, fput_needed);
1609 out:
1610 	return err;
1611 }
1612 
1613 /*
1614  *	Get the remote address ('name') of a socket object. Move the obtained
1615  *	name to user space.
1616  */
1617 
1618 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1619 		int __user *, usockaddr_len)
1620 {
1621 	struct socket *sock;
1622 	struct sockaddr_storage address;
1623 	int len, err, fput_needed;
1624 
1625 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1626 	if (sock != NULL) {
1627 		err = security_socket_getpeername(sock);
1628 		if (err) {
1629 			fput_light(sock->file, fput_needed);
1630 			return err;
1631 		}
1632 
1633 		err =
1634 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1635 				       1);
1636 		if (!err)
1637 			err = move_addr_to_user(&address, len, usockaddr,
1638 						usockaddr_len);
1639 		fput_light(sock->file, fput_needed);
1640 	}
1641 	return err;
1642 }
1643 
1644 /*
1645  *	Send a datagram to a given address. We move the address into kernel
1646  *	space and check the user space data area is readable before invoking
1647  *	the protocol.
1648  */
1649 
1650 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1651 		unsigned int, flags, struct sockaddr __user *, addr,
1652 		int, addr_len)
1653 {
1654 	struct socket *sock;
1655 	struct sockaddr_storage address;
1656 	int err;
1657 	struct msghdr msg;
1658 	struct iovec iov;
1659 	int fput_needed;
1660 
1661 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1662 	if (unlikely(err))
1663 		return err;
1664 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1665 	if (!sock)
1666 		goto out;
1667 
1668 	msg.msg_name = NULL;
1669 	msg.msg_control = NULL;
1670 	msg.msg_controllen = 0;
1671 	msg.msg_namelen = 0;
1672 	if (addr) {
1673 		err = move_addr_to_kernel(addr, addr_len, &address);
1674 		if (err < 0)
1675 			goto out_put;
1676 		msg.msg_name = (struct sockaddr *)&address;
1677 		msg.msg_namelen = addr_len;
1678 	}
1679 	if (sock->file->f_flags & O_NONBLOCK)
1680 		flags |= MSG_DONTWAIT;
1681 	msg.msg_flags = flags;
1682 	err = sock_sendmsg(sock, &msg);
1683 
1684 out_put:
1685 	fput_light(sock->file, fput_needed);
1686 out:
1687 	return err;
1688 }
1689 
1690 /*
1691  *	Send a datagram down a socket.
1692  */
1693 
1694 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1695 		unsigned int, flags)
1696 {
1697 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1698 }
1699 
1700 /*
1701  *	Receive a frame from the socket and optionally record the address of the
1702  *	sender. We verify the buffers are writable and if needed move the
1703  *	sender address from kernel to user space.
1704  */
1705 
1706 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1707 		unsigned int, flags, struct sockaddr __user *, addr,
1708 		int __user *, addr_len)
1709 {
1710 	struct socket *sock;
1711 	struct iovec iov;
1712 	struct msghdr msg;
1713 	struct sockaddr_storage address;
1714 	int err, err2;
1715 	int fput_needed;
1716 
1717 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1718 	if (unlikely(err))
1719 		return err;
1720 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 	if (!sock)
1722 		goto out;
1723 
1724 	msg.msg_control = NULL;
1725 	msg.msg_controllen = 0;
1726 	/* Save some cycles and don't copy the address if not needed */
1727 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1728 	/* We assume all kernel code knows the size of sockaddr_storage */
1729 	msg.msg_namelen = 0;
1730 	msg.msg_iocb = NULL;
1731 	if (sock->file->f_flags & O_NONBLOCK)
1732 		flags |= MSG_DONTWAIT;
1733 	err = sock_recvmsg(sock, &msg, flags);
1734 
1735 	if (err >= 0 && addr != NULL) {
1736 		err2 = move_addr_to_user(&address,
1737 					 msg.msg_namelen, addr, addr_len);
1738 		if (err2 < 0)
1739 			err = err2;
1740 	}
1741 
1742 	fput_light(sock->file, fput_needed);
1743 out:
1744 	return err;
1745 }
1746 
1747 /*
1748  *	Receive a datagram from a socket.
1749  */
1750 
1751 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1752 		unsigned int, flags)
1753 {
1754 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1755 }
1756 
1757 /*
1758  *	Set a socket option. Because we don't know the option lengths we have
1759  *	to pass the user mode parameter for the protocols to sort out.
1760  */
1761 
1762 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1763 		char __user *, optval, int, optlen)
1764 {
1765 	int err, fput_needed;
1766 	struct socket *sock;
1767 
1768 	if (optlen < 0)
1769 		return -EINVAL;
1770 
1771 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 	if (sock != NULL) {
1773 		err = security_socket_setsockopt(sock, level, optname);
1774 		if (err)
1775 			goto out_put;
1776 
1777 		if (level == SOL_SOCKET)
1778 			err =
1779 			    sock_setsockopt(sock, level, optname, optval,
1780 					    optlen);
1781 		else
1782 			err =
1783 			    sock->ops->setsockopt(sock, level, optname, optval,
1784 						  optlen);
1785 out_put:
1786 		fput_light(sock->file, fput_needed);
1787 	}
1788 	return err;
1789 }
1790 
1791 /*
1792  *	Get a socket option. Because we don't know the option lengths we have
1793  *	to pass a user mode parameter for the protocols to sort out.
1794  */
1795 
1796 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1797 		char __user *, optval, int __user *, optlen)
1798 {
1799 	int err, fput_needed;
1800 	struct socket *sock;
1801 
1802 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 	if (sock != NULL) {
1804 		err = security_socket_getsockopt(sock, level, optname);
1805 		if (err)
1806 			goto out_put;
1807 
1808 		if (level == SOL_SOCKET)
1809 			err =
1810 			    sock_getsockopt(sock, level, optname, optval,
1811 					    optlen);
1812 		else
1813 			err =
1814 			    sock->ops->getsockopt(sock, level, optname, optval,
1815 						  optlen);
1816 out_put:
1817 		fput_light(sock->file, fput_needed);
1818 	}
1819 	return err;
1820 }
1821 
1822 /*
1823  *	Shutdown a socket.
1824  */
1825 
1826 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1827 {
1828 	int err, fput_needed;
1829 	struct socket *sock;
1830 
1831 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 	if (sock != NULL) {
1833 		err = security_socket_shutdown(sock, how);
1834 		if (!err)
1835 			err = sock->ops->shutdown(sock, how);
1836 		fput_light(sock->file, fput_needed);
1837 	}
1838 	return err;
1839 }
1840 
1841 /* A couple of helpful macros for getting the address of the 32/64 bit
1842  * fields which are the same type (int / unsigned) on our platforms.
1843  */
1844 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1845 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1846 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1847 
1848 struct used_address {
1849 	struct sockaddr_storage name;
1850 	unsigned int name_len;
1851 };
1852 
1853 static int copy_msghdr_from_user(struct msghdr *kmsg,
1854 				 struct user_msghdr __user *umsg,
1855 				 struct sockaddr __user **save_addr,
1856 				 struct iovec **iov)
1857 {
1858 	struct sockaddr __user *uaddr;
1859 	struct iovec __user *uiov;
1860 	size_t nr_segs;
1861 	ssize_t err;
1862 
1863 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1864 	    __get_user(uaddr, &umsg->msg_name) ||
1865 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1866 	    __get_user(uiov, &umsg->msg_iov) ||
1867 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1868 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1869 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1870 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1871 		return -EFAULT;
1872 
1873 	if (!uaddr)
1874 		kmsg->msg_namelen = 0;
1875 
1876 	if (kmsg->msg_namelen < 0)
1877 		return -EINVAL;
1878 
1879 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1880 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1881 
1882 	if (save_addr)
1883 		*save_addr = uaddr;
1884 
1885 	if (uaddr && kmsg->msg_namelen) {
1886 		if (!save_addr) {
1887 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1888 						  kmsg->msg_name);
1889 			if (err < 0)
1890 				return err;
1891 		}
1892 	} else {
1893 		kmsg->msg_name = NULL;
1894 		kmsg->msg_namelen = 0;
1895 	}
1896 
1897 	if (nr_segs > UIO_MAXIOV)
1898 		return -EMSGSIZE;
1899 
1900 	kmsg->msg_iocb = NULL;
1901 
1902 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1903 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1904 }
1905 
1906 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1907 			 struct msghdr *msg_sys, unsigned int flags,
1908 			 struct used_address *used_address,
1909 			 unsigned int allowed_msghdr_flags)
1910 {
1911 	struct compat_msghdr __user *msg_compat =
1912 	    (struct compat_msghdr __user *)msg;
1913 	struct sockaddr_storage address;
1914 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1915 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1916 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1917 	/* 20 is size of ipv6_pktinfo */
1918 	unsigned char *ctl_buf = ctl;
1919 	int ctl_len;
1920 	ssize_t err;
1921 
1922 	msg_sys->msg_name = &address;
1923 
1924 	if (MSG_CMSG_COMPAT & flags)
1925 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1926 	else
1927 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1928 	if (err < 0)
1929 		return err;
1930 
1931 	err = -ENOBUFS;
1932 
1933 	if (msg_sys->msg_controllen > INT_MAX)
1934 		goto out_freeiov;
1935 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1936 	ctl_len = msg_sys->msg_controllen;
1937 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1938 		err =
1939 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1940 						     sizeof(ctl));
1941 		if (err)
1942 			goto out_freeiov;
1943 		ctl_buf = msg_sys->msg_control;
1944 		ctl_len = msg_sys->msg_controllen;
1945 	} else if (ctl_len) {
1946 		if (ctl_len > sizeof(ctl)) {
1947 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1948 			if (ctl_buf == NULL)
1949 				goto out_freeiov;
1950 		}
1951 		err = -EFAULT;
1952 		/*
1953 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1954 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1955 		 * checking falls down on this.
1956 		 */
1957 		if (copy_from_user(ctl_buf,
1958 				   (void __user __force *)msg_sys->msg_control,
1959 				   ctl_len))
1960 			goto out_freectl;
1961 		msg_sys->msg_control = ctl_buf;
1962 	}
1963 	msg_sys->msg_flags = flags;
1964 
1965 	if (sock->file->f_flags & O_NONBLOCK)
1966 		msg_sys->msg_flags |= MSG_DONTWAIT;
1967 	/*
1968 	 * If this is sendmmsg() and current destination address is same as
1969 	 * previously succeeded address, omit asking LSM's decision.
1970 	 * used_address->name_len is initialized to UINT_MAX so that the first
1971 	 * destination address never matches.
1972 	 */
1973 	if (used_address && msg_sys->msg_name &&
1974 	    used_address->name_len == msg_sys->msg_namelen &&
1975 	    !memcmp(&used_address->name, msg_sys->msg_name,
1976 		    used_address->name_len)) {
1977 		err = sock_sendmsg_nosec(sock, msg_sys);
1978 		goto out_freectl;
1979 	}
1980 	err = sock_sendmsg(sock, msg_sys);
1981 	/*
1982 	 * If this is sendmmsg() and sending to current destination address was
1983 	 * successful, remember it.
1984 	 */
1985 	if (used_address && err >= 0) {
1986 		used_address->name_len = msg_sys->msg_namelen;
1987 		if (msg_sys->msg_name)
1988 			memcpy(&used_address->name, msg_sys->msg_name,
1989 			       used_address->name_len);
1990 	}
1991 
1992 out_freectl:
1993 	if (ctl_buf != ctl)
1994 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1995 out_freeiov:
1996 	kfree(iov);
1997 	return err;
1998 }
1999 
2000 /*
2001  *	BSD sendmsg interface
2002  */
2003 
2004 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2005 {
2006 	int fput_needed, err;
2007 	struct msghdr msg_sys;
2008 	struct socket *sock;
2009 
2010 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 	if (!sock)
2012 		goto out;
2013 
2014 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2015 
2016 	fput_light(sock->file, fput_needed);
2017 out:
2018 	return err;
2019 }
2020 
2021 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2022 {
2023 	if (flags & MSG_CMSG_COMPAT)
2024 		return -EINVAL;
2025 	return __sys_sendmsg(fd, msg, flags);
2026 }
2027 
2028 /*
2029  *	Linux sendmmsg interface
2030  */
2031 
2032 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2033 		   unsigned int flags)
2034 {
2035 	int fput_needed, err, datagrams;
2036 	struct socket *sock;
2037 	struct mmsghdr __user *entry;
2038 	struct compat_mmsghdr __user *compat_entry;
2039 	struct msghdr msg_sys;
2040 	struct used_address used_address;
2041 	unsigned int oflags = flags;
2042 
2043 	if (vlen > UIO_MAXIOV)
2044 		vlen = UIO_MAXIOV;
2045 
2046 	datagrams = 0;
2047 
2048 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 	if (!sock)
2050 		return err;
2051 
2052 	used_address.name_len = UINT_MAX;
2053 	entry = mmsg;
2054 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2055 	err = 0;
2056 	flags |= MSG_BATCH;
2057 
2058 	while (datagrams < vlen) {
2059 		if (datagrams == vlen - 1)
2060 			flags = oflags;
2061 
2062 		if (MSG_CMSG_COMPAT & flags) {
2063 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2064 					     &msg_sys, flags, &used_address, MSG_EOR);
2065 			if (err < 0)
2066 				break;
2067 			err = __put_user(err, &compat_entry->msg_len);
2068 			++compat_entry;
2069 		} else {
2070 			err = ___sys_sendmsg(sock,
2071 					     (struct user_msghdr __user *)entry,
2072 					     &msg_sys, flags, &used_address, MSG_EOR);
2073 			if (err < 0)
2074 				break;
2075 			err = put_user(err, &entry->msg_len);
2076 			++entry;
2077 		}
2078 
2079 		if (err)
2080 			break;
2081 		++datagrams;
2082 		if (msg_data_left(&msg_sys))
2083 			break;
2084 		cond_resched();
2085 	}
2086 
2087 	fput_light(sock->file, fput_needed);
2088 
2089 	/* We only return an error if no datagrams were able to be sent */
2090 	if (datagrams != 0)
2091 		return datagrams;
2092 
2093 	return err;
2094 }
2095 
2096 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2097 		unsigned int, vlen, unsigned int, flags)
2098 {
2099 	if (flags & MSG_CMSG_COMPAT)
2100 		return -EINVAL;
2101 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2102 }
2103 
2104 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2105 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2106 {
2107 	struct compat_msghdr __user *msg_compat =
2108 	    (struct compat_msghdr __user *)msg;
2109 	struct iovec iovstack[UIO_FASTIOV];
2110 	struct iovec *iov = iovstack;
2111 	unsigned long cmsg_ptr;
2112 	int len;
2113 	ssize_t err;
2114 
2115 	/* kernel mode address */
2116 	struct sockaddr_storage addr;
2117 
2118 	/* user mode address pointers */
2119 	struct sockaddr __user *uaddr;
2120 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2121 
2122 	msg_sys->msg_name = &addr;
2123 
2124 	if (MSG_CMSG_COMPAT & flags)
2125 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2126 	else
2127 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2128 	if (err < 0)
2129 		return err;
2130 
2131 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2132 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2133 
2134 	/* We assume all kernel code knows the size of sockaddr_storage */
2135 	msg_sys->msg_namelen = 0;
2136 
2137 	if (sock->file->f_flags & O_NONBLOCK)
2138 		flags |= MSG_DONTWAIT;
2139 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2140 	if (err < 0)
2141 		goto out_freeiov;
2142 	len = err;
2143 
2144 	if (uaddr != NULL) {
2145 		err = move_addr_to_user(&addr,
2146 					msg_sys->msg_namelen, uaddr,
2147 					uaddr_len);
2148 		if (err < 0)
2149 			goto out_freeiov;
2150 	}
2151 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2152 			 COMPAT_FLAGS(msg));
2153 	if (err)
2154 		goto out_freeiov;
2155 	if (MSG_CMSG_COMPAT & flags)
2156 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2157 				 &msg_compat->msg_controllen);
2158 	else
2159 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2160 				 &msg->msg_controllen);
2161 	if (err)
2162 		goto out_freeiov;
2163 	err = len;
2164 
2165 out_freeiov:
2166 	kfree(iov);
2167 	return err;
2168 }
2169 
2170 /*
2171  *	BSD recvmsg interface
2172  */
2173 
2174 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2175 {
2176 	int fput_needed, err;
2177 	struct msghdr msg_sys;
2178 	struct socket *sock;
2179 
2180 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 	if (!sock)
2182 		goto out;
2183 
2184 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2185 
2186 	fput_light(sock->file, fput_needed);
2187 out:
2188 	return err;
2189 }
2190 
2191 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2192 		unsigned int, flags)
2193 {
2194 	if (flags & MSG_CMSG_COMPAT)
2195 		return -EINVAL;
2196 	return __sys_recvmsg(fd, msg, flags);
2197 }
2198 
2199 /*
2200  *     Linux recvmmsg interface
2201  */
2202 
2203 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2204 		   unsigned int flags, struct timespec *timeout)
2205 {
2206 	int fput_needed, err, datagrams;
2207 	struct socket *sock;
2208 	struct mmsghdr __user *entry;
2209 	struct compat_mmsghdr __user *compat_entry;
2210 	struct msghdr msg_sys;
2211 	struct timespec64 end_time;
2212 	struct timespec64 timeout64;
2213 
2214 	if (timeout &&
2215 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2216 				    timeout->tv_nsec))
2217 		return -EINVAL;
2218 
2219 	datagrams = 0;
2220 
2221 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2222 	if (!sock)
2223 		return err;
2224 
2225 	err = sock_error(sock->sk);
2226 	if (err)
2227 		goto out_put;
2228 
2229 	entry = mmsg;
2230 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2231 
2232 	while (datagrams < vlen) {
2233 		/*
2234 		 * No need to ask LSM for more than the first datagram.
2235 		 */
2236 		if (MSG_CMSG_COMPAT & flags) {
2237 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2238 					     &msg_sys, flags & ~MSG_WAITFORONE,
2239 					     datagrams);
2240 			if (err < 0)
2241 				break;
2242 			err = __put_user(err, &compat_entry->msg_len);
2243 			++compat_entry;
2244 		} else {
2245 			err = ___sys_recvmsg(sock,
2246 					     (struct user_msghdr __user *)entry,
2247 					     &msg_sys, flags & ~MSG_WAITFORONE,
2248 					     datagrams);
2249 			if (err < 0)
2250 				break;
2251 			err = put_user(err, &entry->msg_len);
2252 			++entry;
2253 		}
2254 
2255 		if (err)
2256 			break;
2257 		++datagrams;
2258 
2259 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2260 		if (flags & MSG_WAITFORONE)
2261 			flags |= MSG_DONTWAIT;
2262 
2263 		if (timeout) {
2264 			ktime_get_ts64(&timeout64);
2265 			*timeout = timespec64_to_timespec(
2266 					timespec64_sub(end_time, timeout64));
2267 			if (timeout->tv_sec < 0) {
2268 				timeout->tv_sec = timeout->tv_nsec = 0;
2269 				break;
2270 			}
2271 
2272 			/* Timeout, return less than vlen datagrams */
2273 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2274 				break;
2275 		}
2276 
2277 		/* Out of band data, return right away */
2278 		if (msg_sys.msg_flags & MSG_OOB)
2279 			break;
2280 		cond_resched();
2281 	}
2282 
2283 	if (err == 0)
2284 		goto out_put;
2285 
2286 	if (datagrams == 0) {
2287 		datagrams = err;
2288 		goto out_put;
2289 	}
2290 
2291 	/*
2292 	 * We may return less entries than requested (vlen) if the
2293 	 * sock is non block and there aren't enough datagrams...
2294 	 */
2295 	if (err != -EAGAIN) {
2296 		/*
2297 		 * ... or  if recvmsg returns an error after we
2298 		 * received some datagrams, where we record the
2299 		 * error to return on the next call or if the
2300 		 * app asks about it using getsockopt(SO_ERROR).
2301 		 */
2302 		sock->sk->sk_err = -err;
2303 	}
2304 out_put:
2305 	fput_light(sock->file, fput_needed);
2306 
2307 	return datagrams;
2308 }
2309 
2310 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2311 		unsigned int, vlen, unsigned int, flags,
2312 		struct timespec __user *, timeout)
2313 {
2314 	int datagrams;
2315 	struct timespec timeout_sys;
2316 
2317 	if (flags & MSG_CMSG_COMPAT)
2318 		return -EINVAL;
2319 
2320 	if (!timeout)
2321 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322 
2323 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324 		return -EFAULT;
2325 
2326 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327 
2328 	if (datagrams > 0 &&
2329 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330 		datagrams = -EFAULT;
2331 
2332 	return datagrams;
2333 }
2334 
2335 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2336 /* Argument list sizes for sys_socketcall */
2337 #define AL(x) ((x) * sizeof(unsigned long))
2338 static const unsigned char nargs[21] = {
2339 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342 	AL(4), AL(5), AL(4)
2343 };
2344 
2345 #undef AL
2346 
2347 /*
2348  *	System call vectors.
2349  *
2350  *	Argument checking cleaned up. Saved 20% in size.
2351  *  This function doesn't need to set the kernel lock because
2352  *  it is set by the callees.
2353  */
2354 
2355 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356 {
2357 	unsigned long a[AUDITSC_ARGS];
2358 	unsigned long a0, a1;
2359 	int err;
2360 	unsigned int len;
2361 
2362 	if (call < 1 || call > SYS_SENDMMSG)
2363 		return -EINVAL;
2364 
2365 	len = nargs[call];
2366 	if (len > sizeof(a))
2367 		return -EINVAL;
2368 
2369 	/* copy_from_user should be SMP safe. */
2370 	if (copy_from_user(a, args, len))
2371 		return -EFAULT;
2372 
2373 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374 	if (err)
2375 		return err;
2376 
2377 	a0 = a[0];
2378 	a1 = a[1];
2379 
2380 	switch (call) {
2381 	case SYS_SOCKET:
2382 		err = sys_socket(a0, a1, a[2]);
2383 		break;
2384 	case SYS_BIND:
2385 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2386 		break;
2387 	case SYS_CONNECT:
2388 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2389 		break;
2390 	case SYS_LISTEN:
2391 		err = sys_listen(a0, a1);
2392 		break;
2393 	case SYS_ACCEPT:
2394 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2395 				  (int __user *)a[2], 0);
2396 		break;
2397 	case SYS_GETSOCKNAME:
2398 		err =
2399 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2400 				    (int __user *)a[2]);
2401 		break;
2402 	case SYS_GETPEERNAME:
2403 		err =
2404 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2405 				    (int __user *)a[2]);
2406 		break;
2407 	case SYS_SOCKETPAIR:
2408 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2409 		break;
2410 	case SYS_SEND:
2411 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2412 		break;
2413 	case SYS_SENDTO:
2414 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2415 				 (struct sockaddr __user *)a[4], a[5]);
2416 		break;
2417 	case SYS_RECV:
2418 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2419 		break;
2420 	case SYS_RECVFROM:
2421 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2422 				   (struct sockaddr __user *)a[4],
2423 				   (int __user *)a[5]);
2424 		break;
2425 	case SYS_SHUTDOWN:
2426 		err = sys_shutdown(a0, a1);
2427 		break;
2428 	case SYS_SETSOCKOPT:
2429 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2430 		break;
2431 	case SYS_GETSOCKOPT:
2432 		err =
2433 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2434 				   (int __user *)a[4]);
2435 		break;
2436 	case SYS_SENDMSG:
2437 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2438 		break;
2439 	case SYS_SENDMMSG:
2440 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2441 		break;
2442 	case SYS_RECVMSG:
2443 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2444 		break;
2445 	case SYS_RECVMMSG:
2446 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2447 				   (struct timespec __user *)a[4]);
2448 		break;
2449 	case SYS_ACCEPT4:
2450 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2451 				  (int __user *)a[2], a[3]);
2452 		break;
2453 	default:
2454 		err = -EINVAL;
2455 		break;
2456 	}
2457 	return err;
2458 }
2459 
2460 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2461 
2462 /**
2463  *	sock_register - add a socket protocol handler
2464  *	@ops: description of protocol
2465  *
2466  *	This function is called by a protocol handler that wants to
2467  *	advertise its address family, and have it linked into the
2468  *	socket interface. The value ops->family corresponds to the
2469  *	socket system call protocol family.
2470  */
2471 int sock_register(const struct net_proto_family *ops)
2472 {
2473 	int err;
2474 
2475 	if (ops->family >= NPROTO) {
2476 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2477 		return -ENOBUFS;
2478 	}
2479 
2480 	spin_lock(&net_family_lock);
2481 	if (rcu_dereference_protected(net_families[ops->family],
2482 				      lockdep_is_held(&net_family_lock)))
2483 		err = -EEXIST;
2484 	else {
2485 		rcu_assign_pointer(net_families[ops->family], ops);
2486 		err = 0;
2487 	}
2488 	spin_unlock(&net_family_lock);
2489 
2490 	pr_info("NET: Registered protocol family %d\n", ops->family);
2491 	return err;
2492 }
2493 EXPORT_SYMBOL(sock_register);
2494 
2495 /**
2496  *	sock_unregister - remove a protocol handler
2497  *	@family: protocol family to remove
2498  *
2499  *	This function is called by a protocol handler that wants to
2500  *	remove its address family, and have it unlinked from the
2501  *	new socket creation.
2502  *
2503  *	If protocol handler is a module, then it can use module reference
2504  *	counts to protect against new references. If protocol handler is not
2505  *	a module then it needs to provide its own protection in
2506  *	the ops->create routine.
2507  */
2508 void sock_unregister(int family)
2509 {
2510 	BUG_ON(family < 0 || family >= NPROTO);
2511 
2512 	spin_lock(&net_family_lock);
2513 	RCU_INIT_POINTER(net_families[family], NULL);
2514 	spin_unlock(&net_family_lock);
2515 
2516 	synchronize_rcu();
2517 
2518 	pr_info("NET: Unregistered protocol family %d\n", family);
2519 }
2520 EXPORT_SYMBOL(sock_unregister);
2521 
2522 static int __init sock_init(void)
2523 {
2524 	int err;
2525 	/*
2526 	 *      Initialize the network sysctl infrastructure.
2527 	 */
2528 	err = net_sysctl_init();
2529 	if (err)
2530 		goto out;
2531 
2532 	/*
2533 	 *      Initialize skbuff SLAB cache
2534 	 */
2535 	skb_init();
2536 
2537 	/*
2538 	 *      Initialize the protocols module.
2539 	 */
2540 
2541 	init_inodecache();
2542 
2543 	err = register_filesystem(&sock_fs_type);
2544 	if (err)
2545 		goto out_fs;
2546 	sock_mnt = kern_mount(&sock_fs_type);
2547 	if (IS_ERR(sock_mnt)) {
2548 		err = PTR_ERR(sock_mnt);
2549 		goto out_mount;
2550 	}
2551 
2552 	/* The real protocol initialization is performed in later initcalls.
2553 	 */
2554 
2555 #ifdef CONFIG_NETFILTER
2556 	err = netfilter_init();
2557 	if (err)
2558 		goto out;
2559 #endif
2560 
2561 	ptp_classifier_init();
2562 
2563 out:
2564 	return err;
2565 
2566 out_mount:
2567 	unregister_filesystem(&sock_fs_type);
2568 out_fs:
2569 	goto out;
2570 }
2571 
2572 core_initcall(sock_init);	/* early initcall */
2573 
2574 #ifdef CONFIG_PROC_FS
2575 void socket_seq_show(struct seq_file *seq)
2576 {
2577 	int cpu;
2578 	int counter = 0;
2579 
2580 	for_each_possible_cpu(cpu)
2581 	    counter += per_cpu(sockets_in_use, cpu);
2582 
2583 	/* It can be negative, by the way. 8) */
2584 	if (counter < 0)
2585 		counter = 0;
2586 
2587 	seq_printf(seq, "sockets: used %d\n", counter);
2588 }
2589 #endif				/* CONFIG_PROC_FS */
2590 
2591 #ifdef CONFIG_COMPAT
2592 static int do_siocgstamp(struct net *net, struct socket *sock,
2593 			 unsigned int cmd, void __user *up)
2594 {
2595 	mm_segment_t old_fs = get_fs();
2596 	struct timeval ktv;
2597 	int err;
2598 
2599 	set_fs(KERNEL_DS);
2600 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2601 	set_fs(old_fs);
2602 	if (!err)
2603 		err = compat_put_timeval(&ktv, up);
2604 
2605 	return err;
2606 }
2607 
2608 static int do_siocgstampns(struct net *net, struct socket *sock,
2609 			   unsigned int cmd, void __user *up)
2610 {
2611 	mm_segment_t old_fs = get_fs();
2612 	struct timespec kts;
2613 	int err;
2614 
2615 	set_fs(KERNEL_DS);
2616 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2617 	set_fs(old_fs);
2618 	if (!err)
2619 		err = compat_put_timespec(&kts, up);
2620 
2621 	return err;
2622 }
2623 
2624 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2625 {
2626 	struct ifreq __user *uifr;
2627 	int err;
2628 
2629 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2630 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2631 		return -EFAULT;
2632 
2633 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2634 	if (err)
2635 		return err;
2636 
2637 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2638 		return -EFAULT;
2639 
2640 	return 0;
2641 }
2642 
2643 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2644 {
2645 	struct compat_ifconf ifc32;
2646 	struct ifconf ifc;
2647 	struct ifconf __user *uifc;
2648 	struct compat_ifreq __user *ifr32;
2649 	struct ifreq __user *ifr;
2650 	unsigned int i, j;
2651 	int err;
2652 
2653 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2654 		return -EFAULT;
2655 
2656 	memset(&ifc, 0, sizeof(ifc));
2657 	if (ifc32.ifcbuf == 0) {
2658 		ifc32.ifc_len = 0;
2659 		ifc.ifc_len = 0;
2660 		ifc.ifc_req = NULL;
2661 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2662 	} else {
2663 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2664 			sizeof(struct ifreq);
2665 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2666 		ifc.ifc_len = len;
2667 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2668 		ifr32 = compat_ptr(ifc32.ifcbuf);
2669 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2670 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2671 				return -EFAULT;
2672 			ifr++;
2673 			ifr32++;
2674 		}
2675 	}
2676 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2677 		return -EFAULT;
2678 
2679 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2680 	if (err)
2681 		return err;
2682 
2683 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2684 		return -EFAULT;
2685 
2686 	ifr = ifc.ifc_req;
2687 	ifr32 = compat_ptr(ifc32.ifcbuf);
2688 	for (i = 0, j = 0;
2689 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2690 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2691 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2692 			return -EFAULT;
2693 		ifr32++;
2694 		ifr++;
2695 	}
2696 
2697 	if (ifc32.ifcbuf == 0) {
2698 		/* Translate from 64-bit structure multiple to
2699 		 * a 32-bit one.
2700 		 */
2701 		i = ifc.ifc_len;
2702 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2703 		ifc32.ifc_len = i;
2704 	} else {
2705 		ifc32.ifc_len = i;
2706 	}
2707 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2708 		return -EFAULT;
2709 
2710 	return 0;
2711 }
2712 
2713 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2714 {
2715 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2716 	bool convert_in = false, convert_out = false;
2717 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2718 	struct ethtool_rxnfc __user *rxnfc;
2719 	struct ifreq __user *ifr;
2720 	u32 rule_cnt = 0, actual_rule_cnt;
2721 	u32 ethcmd;
2722 	u32 data;
2723 	int ret;
2724 
2725 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2726 		return -EFAULT;
2727 
2728 	compat_rxnfc = compat_ptr(data);
2729 
2730 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2731 		return -EFAULT;
2732 
2733 	/* Most ethtool structures are defined without padding.
2734 	 * Unfortunately struct ethtool_rxnfc is an exception.
2735 	 */
2736 	switch (ethcmd) {
2737 	default:
2738 		break;
2739 	case ETHTOOL_GRXCLSRLALL:
2740 		/* Buffer size is variable */
2741 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2742 			return -EFAULT;
2743 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2744 			return -ENOMEM;
2745 		buf_size += rule_cnt * sizeof(u32);
2746 		/* fall through */
2747 	case ETHTOOL_GRXRINGS:
2748 	case ETHTOOL_GRXCLSRLCNT:
2749 	case ETHTOOL_GRXCLSRULE:
2750 	case ETHTOOL_SRXCLSRLINS:
2751 		convert_out = true;
2752 		/* fall through */
2753 	case ETHTOOL_SRXCLSRLDEL:
2754 		buf_size += sizeof(struct ethtool_rxnfc);
2755 		convert_in = true;
2756 		break;
2757 	}
2758 
2759 	ifr = compat_alloc_user_space(buf_size);
2760 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2761 
2762 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2763 		return -EFAULT;
2764 
2765 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2766 		     &ifr->ifr_ifru.ifru_data))
2767 		return -EFAULT;
2768 
2769 	if (convert_in) {
2770 		/* We expect there to be holes between fs.m_ext and
2771 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2772 		 */
2773 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2774 			     sizeof(compat_rxnfc->fs.m_ext) !=
2775 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2776 			     sizeof(rxnfc->fs.m_ext));
2777 		BUILD_BUG_ON(
2778 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2779 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2780 			offsetof(struct ethtool_rxnfc, fs.location) -
2781 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2782 
2783 		if (copy_in_user(rxnfc, compat_rxnfc,
2784 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2785 				 (void __user *)rxnfc) ||
2786 		    copy_in_user(&rxnfc->fs.ring_cookie,
2787 				 &compat_rxnfc->fs.ring_cookie,
2788 				 (void __user *)(&rxnfc->fs.location + 1) -
2789 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2790 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2791 				 sizeof(rxnfc->rule_cnt)))
2792 			return -EFAULT;
2793 	}
2794 
2795 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2796 	if (ret)
2797 		return ret;
2798 
2799 	if (convert_out) {
2800 		if (copy_in_user(compat_rxnfc, rxnfc,
2801 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2802 				 (const void __user *)rxnfc) ||
2803 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2804 				 &rxnfc->fs.ring_cookie,
2805 				 (const void __user *)(&rxnfc->fs.location + 1) -
2806 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2807 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2808 				 sizeof(rxnfc->rule_cnt)))
2809 			return -EFAULT;
2810 
2811 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2812 			/* As an optimisation, we only copy the actual
2813 			 * number of rules that the underlying
2814 			 * function returned.  Since Mallory might
2815 			 * change the rule count in user memory, we
2816 			 * check that it is less than the rule count
2817 			 * originally given (as the user buffer size),
2818 			 * which has been range-checked.
2819 			 */
2820 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2821 				return -EFAULT;
2822 			if (actual_rule_cnt < rule_cnt)
2823 				rule_cnt = actual_rule_cnt;
2824 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2825 					 &rxnfc->rule_locs[0],
2826 					 rule_cnt * sizeof(u32)))
2827 				return -EFAULT;
2828 		}
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2835 {
2836 	void __user *uptr;
2837 	compat_uptr_t uptr32;
2838 	struct ifreq __user *uifr;
2839 
2840 	uifr = compat_alloc_user_space(sizeof(*uifr));
2841 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2842 		return -EFAULT;
2843 
2844 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2845 		return -EFAULT;
2846 
2847 	uptr = compat_ptr(uptr32);
2848 
2849 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2850 		return -EFAULT;
2851 
2852 	return dev_ioctl(net, SIOCWANDEV, uifr);
2853 }
2854 
2855 static int bond_ioctl(struct net *net, unsigned int cmd,
2856 			 struct compat_ifreq __user *ifr32)
2857 {
2858 	struct ifreq kifr;
2859 	mm_segment_t old_fs;
2860 	int err;
2861 
2862 	switch (cmd) {
2863 	case SIOCBONDENSLAVE:
2864 	case SIOCBONDRELEASE:
2865 	case SIOCBONDSETHWADDR:
2866 	case SIOCBONDCHANGEACTIVE:
2867 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2868 			return -EFAULT;
2869 
2870 		old_fs = get_fs();
2871 		set_fs(KERNEL_DS);
2872 		err = dev_ioctl(net, cmd,
2873 				(struct ifreq __user __force *) &kifr);
2874 		set_fs(old_fs);
2875 
2876 		return err;
2877 	default:
2878 		return -ENOIOCTLCMD;
2879 	}
2880 }
2881 
2882 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2883 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2884 				 struct compat_ifreq __user *u_ifreq32)
2885 {
2886 	struct ifreq __user *u_ifreq64;
2887 	char tmp_buf[IFNAMSIZ];
2888 	void __user *data64;
2889 	u32 data32;
2890 
2891 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2892 			   IFNAMSIZ))
2893 		return -EFAULT;
2894 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2895 		return -EFAULT;
2896 	data64 = compat_ptr(data32);
2897 
2898 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2899 
2900 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2901 			 IFNAMSIZ))
2902 		return -EFAULT;
2903 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2904 		return -EFAULT;
2905 
2906 	return dev_ioctl(net, cmd, u_ifreq64);
2907 }
2908 
2909 static int dev_ifsioc(struct net *net, struct socket *sock,
2910 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2911 {
2912 	struct ifreq __user *uifr;
2913 	int err;
2914 
2915 	uifr = compat_alloc_user_space(sizeof(*uifr));
2916 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2917 		return -EFAULT;
2918 
2919 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2920 
2921 	if (!err) {
2922 		switch (cmd) {
2923 		case SIOCGIFFLAGS:
2924 		case SIOCGIFMETRIC:
2925 		case SIOCGIFMTU:
2926 		case SIOCGIFMEM:
2927 		case SIOCGIFHWADDR:
2928 		case SIOCGIFINDEX:
2929 		case SIOCGIFADDR:
2930 		case SIOCGIFBRDADDR:
2931 		case SIOCGIFDSTADDR:
2932 		case SIOCGIFNETMASK:
2933 		case SIOCGIFPFLAGS:
2934 		case SIOCGIFTXQLEN:
2935 		case SIOCGMIIPHY:
2936 		case SIOCGMIIREG:
2937 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2938 				err = -EFAULT;
2939 			break;
2940 		}
2941 	}
2942 	return err;
2943 }
2944 
2945 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2946 			struct compat_ifreq __user *uifr32)
2947 {
2948 	struct ifreq ifr;
2949 	struct compat_ifmap __user *uifmap32;
2950 	mm_segment_t old_fs;
2951 	int err;
2952 
2953 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2954 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2955 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2956 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2957 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2958 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2959 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2960 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2961 	if (err)
2962 		return -EFAULT;
2963 
2964 	old_fs = get_fs();
2965 	set_fs(KERNEL_DS);
2966 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2967 	set_fs(old_fs);
2968 
2969 	if (cmd == SIOCGIFMAP && !err) {
2970 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2971 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2975 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2976 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2977 		if (err)
2978 			err = -EFAULT;
2979 	}
2980 	return err;
2981 }
2982 
2983 struct rtentry32 {
2984 	u32		rt_pad1;
2985 	struct sockaddr rt_dst;         /* target address               */
2986 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2987 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2988 	unsigned short	rt_flags;
2989 	short		rt_pad2;
2990 	u32		rt_pad3;
2991 	unsigned char	rt_tos;
2992 	unsigned char	rt_class;
2993 	short		rt_pad4;
2994 	short		rt_metric;      /* +1 for binary compatibility! */
2995 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2996 	u32		rt_mtu;         /* per route MTU/Window         */
2997 	u32		rt_window;      /* Window clamping              */
2998 	unsigned short  rt_irtt;        /* Initial RTT                  */
2999 };
3000 
3001 struct in6_rtmsg32 {
3002 	struct in6_addr		rtmsg_dst;
3003 	struct in6_addr		rtmsg_src;
3004 	struct in6_addr		rtmsg_gateway;
3005 	u32			rtmsg_type;
3006 	u16			rtmsg_dst_len;
3007 	u16			rtmsg_src_len;
3008 	u32			rtmsg_metric;
3009 	u32			rtmsg_info;
3010 	u32			rtmsg_flags;
3011 	s32			rtmsg_ifindex;
3012 };
3013 
3014 static int routing_ioctl(struct net *net, struct socket *sock,
3015 			 unsigned int cmd, void __user *argp)
3016 {
3017 	int ret;
3018 	void *r = NULL;
3019 	struct in6_rtmsg r6;
3020 	struct rtentry r4;
3021 	char devname[16];
3022 	u32 rtdev;
3023 	mm_segment_t old_fs = get_fs();
3024 
3025 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3026 		struct in6_rtmsg32 __user *ur6 = argp;
3027 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3028 			3 * sizeof(struct in6_addr));
3029 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3030 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3031 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3032 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3033 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3034 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3035 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3036 
3037 		r = (void *) &r6;
3038 	} else { /* ipv4 */
3039 		struct rtentry32 __user *ur4 = argp;
3040 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3041 					3 * sizeof(struct sockaddr));
3042 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3043 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3044 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3045 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3046 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3047 		ret |= get_user(rtdev, &(ur4->rt_dev));
3048 		if (rtdev) {
3049 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3050 			r4.rt_dev = (char __user __force *)devname;
3051 			devname[15] = 0;
3052 		} else
3053 			r4.rt_dev = NULL;
3054 
3055 		r = (void *) &r4;
3056 	}
3057 
3058 	if (ret) {
3059 		ret = -EFAULT;
3060 		goto out;
3061 	}
3062 
3063 	set_fs(KERNEL_DS);
3064 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3065 	set_fs(old_fs);
3066 
3067 out:
3068 	return ret;
3069 }
3070 
3071 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3072  * for some operations; this forces use of the newer bridge-utils that
3073  * use compatible ioctls
3074  */
3075 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3076 {
3077 	compat_ulong_t tmp;
3078 
3079 	if (get_user(tmp, argp))
3080 		return -EFAULT;
3081 	if (tmp == BRCTL_GET_VERSION)
3082 		return BRCTL_VERSION + 1;
3083 	return -EINVAL;
3084 }
3085 
3086 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3087 			 unsigned int cmd, unsigned long arg)
3088 {
3089 	void __user *argp = compat_ptr(arg);
3090 	struct sock *sk = sock->sk;
3091 	struct net *net = sock_net(sk);
3092 
3093 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3094 		return compat_ifr_data_ioctl(net, cmd, argp);
3095 
3096 	switch (cmd) {
3097 	case SIOCSIFBR:
3098 	case SIOCGIFBR:
3099 		return old_bridge_ioctl(argp);
3100 	case SIOCGIFNAME:
3101 		return dev_ifname32(net, argp);
3102 	case SIOCGIFCONF:
3103 		return dev_ifconf(net, argp);
3104 	case SIOCETHTOOL:
3105 		return ethtool_ioctl(net, argp);
3106 	case SIOCWANDEV:
3107 		return compat_siocwandev(net, argp);
3108 	case SIOCGIFMAP:
3109 	case SIOCSIFMAP:
3110 		return compat_sioc_ifmap(net, cmd, argp);
3111 	case SIOCBONDENSLAVE:
3112 	case SIOCBONDRELEASE:
3113 	case SIOCBONDSETHWADDR:
3114 	case SIOCBONDCHANGEACTIVE:
3115 		return bond_ioctl(net, cmd, argp);
3116 	case SIOCADDRT:
3117 	case SIOCDELRT:
3118 		return routing_ioctl(net, sock, cmd, argp);
3119 	case SIOCGSTAMP:
3120 		return do_siocgstamp(net, sock, cmd, argp);
3121 	case SIOCGSTAMPNS:
3122 		return do_siocgstampns(net, sock, cmd, argp);
3123 	case SIOCBONDSLAVEINFOQUERY:
3124 	case SIOCBONDINFOQUERY:
3125 	case SIOCSHWTSTAMP:
3126 	case SIOCGHWTSTAMP:
3127 		return compat_ifr_data_ioctl(net, cmd, argp);
3128 
3129 	case FIOSETOWN:
3130 	case SIOCSPGRP:
3131 	case FIOGETOWN:
3132 	case SIOCGPGRP:
3133 	case SIOCBRADDBR:
3134 	case SIOCBRDELBR:
3135 	case SIOCGIFVLAN:
3136 	case SIOCSIFVLAN:
3137 	case SIOCADDDLCI:
3138 	case SIOCDELDLCI:
3139 	case SIOCGSKNS:
3140 		return sock_ioctl(file, cmd, arg);
3141 
3142 	case SIOCGIFFLAGS:
3143 	case SIOCSIFFLAGS:
3144 	case SIOCGIFMETRIC:
3145 	case SIOCSIFMETRIC:
3146 	case SIOCGIFMTU:
3147 	case SIOCSIFMTU:
3148 	case SIOCGIFMEM:
3149 	case SIOCSIFMEM:
3150 	case SIOCGIFHWADDR:
3151 	case SIOCSIFHWADDR:
3152 	case SIOCADDMULTI:
3153 	case SIOCDELMULTI:
3154 	case SIOCGIFINDEX:
3155 	case SIOCGIFADDR:
3156 	case SIOCSIFADDR:
3157 	case SIOCSIFHWBROADCAST:
3158 	case SIOCDIFADDR:
3159 	case SIOCGIFBRDADDR:
3160 	case SIOCSIFBRDADDR:
3161 	case SIOCGIFDSTADDR:
3162 	case SIOCSIFDSTADDR:
3163 	case SIOCGIFNETMASK:
3164 	case SIOCSIFNETMASK:
3165 	case SIOCSIFPFLAGS:
3166 	case SIOCGIFPFLAGS:
3167 	case SIOCGIFTXQLEN:
3168 	case SIOCSIFTXQLEN:
3169 	case SIOCBRADDIF:
3170 	case SIOCBRDELIF:
3171 	case SIOCSIFNAME:
3172 	case SIOCGMIIPHY:
3173 	case SIOCGMIIREG:
3174 	case SIOCSMIIREG:
3175 		return dev_ifsioc(net, sock, cmd, argp);
3176 
3177 	case SIOCSARP:
3178 	case SIOCGARP:
3179 	case SIOCDARP:
3180 	case SIOCATMARK:
3181 		return sock_do_ioctl(net, sock, cmd, arg);
3182 	}
3183 
3184 	return -ENOIOCTLCMD;
3185 }
3186 
3187 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3188 			      unsigned long arg)
3189 {
3190 	struct socket *sock = file->private_data;
3191 	int ret = -ENOIOCTLCMD;
3192 	struct sock *sk;
3193 	struct net *net;
3194 
3195 	sk = sock->sk;
3196 	net = sock_net(sk);
3197 
3198 	if (sock->ops->compat_ioctl)
3199 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3200 
3201 	if (ret == -ENOIOCTLCMD &&
3202 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3203 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3204 
3205 	if (ret == -ENOIOCTLCMD)
3206 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3207 
3208 	return ret;
3209 }
3210 #endif
3211 
3212 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3213 {
3214 	return sock->ops->bind(sock, addr, addrlen);
3215 }
3216 EXPORT_SYMBOL(kernel_bind);
3217 
3218 int kernel_listen(struct socket *sock, int backlog)
3219 {
3220 	return sock->ops->listen(sock, backlog);
3221 }
3222 EXPORT_SYMBOL(kernel_listen);
3223 
3224 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3225 {
3226 	struct sock *sk = sock->sk;
3227 	int err;
3228 
3229 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3230 			       newsock);
3231 	if (err < 0)
3232 		goto done;
3233 
3234 	err = sock->ops->accept(sock, *newsock, flags);
3235 	if (err < 0) {
3236 		sock_release(*newsock);
3237 		*newsock = NULL;
3238 		goto done;
3239 	}
3240 
3241 	(*newsock)->ops = sock->ops;
3242 	__module_get((*newsock)->ops->owner);
3243 
3244 done:
3245 	return err;
3246 }
3247 EXPORT_SYMBOL(kernel_accept);
3248 
3249 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3250 		   int flags)
3251 {
3252 	return sock->ops->connect(sock, addr, addrlen, flags);
3253 }
3254 EXPORT_SYMBOL(kernel_connect);
3255 
3256 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3257 			 int *addrlen)
3258 {
3259 	return sock->ops->getname(sock, addr, addrlen, 0);
3260 }
3261 EXPORT_SYMBOL(kernel_getsockname);
3262 
3263 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3264 			 int *addrlen)
3265 {
3266 	return sock->ops->getname(sock, addr, addrlen, 1);
3267 }
3268 EXPORT_SYMBOL(kernel_getpeername);
3269 
3270 int kernel_getsockopt(struct socket *sock, int level, int optname,
3271 			char *optval, int *optlen)
3272 {
3273 	mm_segment_t oldfs = get_fs();
3274 	char __user *uoptval;
3275 	int __user *uoptlen;
3276 	int err;
3277 
3278 	uoptval = (char __user __force *) optval;
3279 	uoptlen = (int __user __force *) optlen;
3280 
3281 	set_fs(KERNEL_DS);
3282 	if (level == SOL_SOCKET)
3283 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3284 	else
3285 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3286 					    uoptlen);
3287 	set_fs(oldfs);
3288 	return err;
3289 }
3290 EXPORT_SYMBOL(kernel_getsockopt);
3291 
3292 int kernel_setsockopt(struct socket *sock, int level, int optname,
3293 			char *optval, unsigned int optlen)
3294 {
3295 	mm_segment_t oldfs = get_fs();
3296 	char __user *uoptval;
3297 	int err;
3298 
3299 	uoptval = (char __user __force *) optval;
3300 
3301 	set_fs(KERNEL_DS);
3302 	if (level == SOL_SOCKET)
3303 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3304 	else
3305 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3306 					    optlen);
3307 	set_fs(oldfs);
3308 	return err;
3309 }
3310 EXPORT_SYMBOL(kernel_setsockopt);
3311 
3312 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3313 		    size_t size, int flags)
3314 {
3315 	if (sock->ops->sendpage)
3316 		return sock->ops->sendpage(sock, page, offset, size, flags);
3317 
3318 	return sock_no_sendpage(sock, page, offset, size, flags);
3319 }
3320 EXPORT_SYMBOL(kernel_sendpage);
3321 
3322 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3323 {
3324 	mm_segment_t oldfs = get_fs();
3325 	int err;
3326 
3327 	set_fs(KERNEL_DS);
3328 	err = sock->ops->ioctl(sock, cmd, arg);
3329 	set_fs(oldfs);
3330 
3331 	return err;
3332 }
3333 EXPORT_SYMBOL(kernel_sock_ioctl);
3334 
3335 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3336 {
3337 	return sock->ops->shutdown(sock, how);
3338 }
3339 EXPORT_SYMBOL(kernel_sock_shutdown);
3340