1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 RCU_INIT_POINTER(ei->socket.wq, wq); 261 262 ei->socket.state = SS_UNCONNECTED; 263 ei->socket.flags = 0; 264 ei->socket.ops = NULL; 265 ei->socket.sk = NULL; 266 ei->socket.file = NULL; 267 268 return &ei->vfs_inode; 269 } 270 271 static void sock_destroy_inode(struct inode *inode) 272 { 273 struct socket_alloc *ei; 274 struct socket_wq *wq; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 wq = rcu_dereference_protected(ei->socket.wq, 1); 278 kfree_rcu(wq, rcu); 279 kmem_cache_free(sock_inode_cachep, ei); 280 } 281 282 static void init_once(void *foo) 283 { 284 struct socket_alloc *ei = (struct socket_alloc *)foo; 285 286 inode_init_once(&ei->vfs_inode); 287 } 288 289 static int init_inodecache(void) 290 { 291 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 292 sizeof(struct socket_alloc), 293 0, 294 (SLAB_HWCACHE_ALIGN | 295 SLAB_RECLAIM_ACCOUNT | 296 SLAB_MEM_SPREAD), 297 init_once); 298 if (sock_inode_cachep == NULL) 299 return -ENOMEM; 300 return 0; 301 } 302 303 static const struct super_operations sockfs_ops = { 304 .alloc_inode = sock_alloc_inode, 305 .destroy_inode = sock_destroy_inode, 306 .statfs = simple_statfs, 307 }; 308 309 /* 310 * sockfs_dname() is called from d_path(). 311 */ 312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 313 { 314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 315 d_inode(dentry)->i_ino); 316 } 317 318 static const struct dentry_operations sockfs_dentry_operations = { 319 .d_dname = sockfs_dname, 320 }; 321 322 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 323 int flags, const char *dev_name, void *data) 324 { 325 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 326 &sockfs_dentry_operations, SOCKFS_MAGIC); 327 } 328 329 static struct vfsmount *sock_mnt __read_mostly; 330 331 static struct file_system_type sock_fs_type = { 332 .name = "sockfs", 333 .mount = sockfs_mount, 334 .kill_sb = kill_anon_super, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 360 if (dname) { 361 name.name = dname; 362 name.len = strlen(name.name); 363 } else if (sock->sk) { 364 name.name = sock->sk->sk_prot_creator->name; 365 name.len = strlen(name.name); 366 } 367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 368 if (unlikely(!path.dentry)) 369 return ERR_PTR(-ENOMEM); 370 path.mnt = mntget(sock_mnt); 371 372 d_instantiate(path.dentry, SOCK_INODE(sock)); 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (IS_ERR(file)) { 377 /* drop dentry, keep inode */ 378 ihold(d_inode(path.dentry)); 379 path_put(&path); 380 return file; 381 } 382 383 sock->file = file; 384 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 385 file->private_data = sock; 386 return file; 387 } 388 EXPORT_SYMBOL(sock_alloc_file); 389 390 static int sock_map_fd(struct socket *sock, int flags) 391 { 392 struct file *newfile; 393 int fd = get_unused_fd_flags(flags); 394 if (unlikely(fd < 0)) 395 return fd; 396 397 newfile = sock_alloc_file(sock, flags, NULL); 398 if (likely(!IS_ERR(newfile))) { 399 fd_install(fd, newfile); 400 return fd; 401 } 402 403 put_unused_fd(fd); 404 return PTR_ERR(newfile); 405 } 406 407 struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 EXPORT_SYMBOL(sock_from_file); 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct socket *sock; 434 435 file = fget(fd); 436 if (!file) { 437 *err = -EBADF; 438 return NULL; 439 } 440 441 sock = sock_from_file(file, err); 442 if (!sock) 443 fput(file); 444 return sock; 445 } 446 EXPORT_SYMBOL(sockfd_lookup); 447 448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 449 { 450 struct fd f = fdget(fd); 451 struct socket *sock; 452 453 *err = -EBADF; 454 if (f.file) { 455 sock = sock_from_file(f.file, err); 456 if (likely(sock)) { 457 *fput_needed = f.flags; 458 return sock; 459 } 460 fdput(f); 461 } 462 return NULL; 463 } 464 465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 468 static ssize_t sockfs_getxattr(struct dentry *dentry, 469 const char *name, void *value, size_t size) 470 { 471 const char *proto_name; 472 size_t proto_size; 473 int error; 474 475 error = -ENODATA; 476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 477 proto_name = dentry->d_name.name; 478 proto_size = strlen(proto_name); 479 480 if (value) { 481 error = -ERANGE; 482 if (proto_size + 1 > size) 483 goto out; 484 485 strncpy(value, proto_name, proto_size + 1); 486 } 487 error = proto_size + 1; 488 } 489 490 out: 491 return error; 492 } 493 494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 495 size_t size) 496 { 497 ssize_t len; 498 ssize_t used = 0; 499 500 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 501 if (len < 0) 502 return len; 503 used += len; 504 if (buffer) { 505 if (size < used) 506 return -ERANGE; 507 buffer += len; 508 } 509 510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 511 used += len; 512 if (buffer) { 513 if (size < used) 514 return -ERANGE; 515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 516 buffer += len; 517 } 518 519 return used; 520 } 521 522 static const struct inode_operations sockfs_inode_ops = { 523 .getxattr = sockfs_getxattr, 524 .listxattr = sockfs_listxattr, 525 }; 526 527 /** 528 * sock_alloc - allocate a socket 529 * 530 * Allocate a new inode and socket object. The two are bound together 531 * and initialised. The socket is then returned. If we are out of inodes 532 * NULL is returned. 533 */ 534 535 static struct socket *sock_alloc(void) 536 { 537 struct inode *inode; 538 struct socket *sock; 539 540 inode = new_inode_pseudo(sock_mnt->mnt_sb); 541 if (!inode) 542 return NULL; 543 544 sock = SOCKET_I(inode); 545 546 kmemcheck_annotate_bitfield(sock, type); 547 inode->i_ino = get_next_ino(); 548 inode->i_mode = S_IFSOCK | S_IRWXUGO; 549 inode->i_uid = current_fsuid(); 550 inode->i_gid = current_fsgid(); 551 inode->i_op = &sockfs_inode_ops; 552 553 this_cpu_add(sockets_in_use, 1); 554 return sock; 555 } 556 557 /** 558 * sock_release - close a socket 559 * @sock: socket to close 560 * 561 * The socket is released from the protocol stack if it has a release 562 * callback, and the inode is then released if the socket is bound to 563 * an inode not a file. 564 */ 565 566 void sock_release(struct socket *sock) 567 { 568 if (sock->ops) { 569 struct module *owner = sock->ops->owner; 570 571 sock->ops->release(sock); 572 sock->ops = NULL; 573 module_put(owner); 574 } 575 576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 577 pr_err("%s: fasync list not empty!\n", __func__); 578 579 this_cpu_sub(sockets_in_use, 1); 580 if (!sock->file) { 581 iput(SOCK_INODE(sock)); 582 return; 583 } 584 sock->file = NULL; 585 } 586 EXPORT_SYMBOL(sock_release); 587 588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 589 { 590 u8 flags = *tx_flags; 591 592 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 593 flags |= SKBTX_HW_TSTAMP; 594 595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 596 flags |= SKBTX_SW_TSTAMP; 597 598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 599 flags |= SKBTX_SCHED_TSTAMP; 600 601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 602 flags |= SKBTX_ACK_TSTAMP; 603 604 *tx_flags = flags; 605 } 606 EXPORT_SYMBOL(__sock_tx_timestamp); 607 608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 609 { 610 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 611 BUG_ON(ret == -EIOCBQUEUED); 612 return ret; 613 } 614 615 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 616 { 617 int err = security_socket_sendmsg(sock, msg, 618 msg_data_left(msg)); 619 620 return err ?: sock_sendmsg_nosec(sock, msg); 621 } 622 EXPORT_SYMBOL(sock_sendmsg); 623 624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 625 struct kvec *vec, size_t num, size_t size) 626 { 627 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 628 return sock_sendmsg(sock, msg); 629 } 630 EXPORT_SYMBOL(kernel_sendmsg); 631 632 /* 633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 634 */ 635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 636 struct sk_buff *skb) 637 { 638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 639 struct scm_timestamping tss; 640 int empty = 1; 641 struct skb_shared_hwtstamps *shhwtstamps = 642 skb_hwtstamps(skb); 643 644 /* Race occurred between timestamp enabling and packet 645 receiving. Fill in the current time for now. */ 646 if (need_software_tstamp && skb->tstamp.tv64 == 0) 647 __net_timestamp(skb); 648 649 if (need_software_tstamp) { 650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 651 struct timeval tv; 652 skb_get_timestamp(skb, &tv); 653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 654 sizeof(tv), &tv); 655 } else { 656 struct timespec ts; 657 skb_get_timestampns(skb, &ts); 658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 659 sizeof(ts), &ts); 660 } 661 } 662 663 memset(&tss, 0, sizeof(tss)); 664 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 665 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 666 empty = 0; 667 if (shhwtstamps && 668 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 669 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 670 empty = 0; 671 if (!empty) 672 put_cmsg(msg, SOL_SOCKET, 673 SCM_TIMESTAMPING, sizeof(tss), &tss); 674 } 675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 676 677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 int ack; 681 682 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 683 return; 684 if (!skb->wifi_acked_valid) 685 return; 686 687 ack = skb->wifi_acked; 688 689 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 690 } 691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 692 693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 694 struct sk_buff *skb) 695 { 696 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 697 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 698 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 699 } 700 701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 702 struct sk_buff *skb) 703 { 704 sock_recv_timestamp(msg, sk, skb); 705 sock_recv_drops(msg, sk, skb); 706 } 707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 708 709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 710 size_t size, int flags) 711 { 712 return sock->ops->recvmsg(sock, msg, size, flags); 713 } 714 715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 716 int flags) 717 { 718 int err = security_socket_recvmsg(sock, msg, size, flags); 719 720 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 721 } 722 EXPORT_SYMBOL(sock_recvmsg); 723 724 /** 725 * kernel_recvmsg - Receive a message from a socket (kernel space) 726 * @sock: The socket to receive the message from 727 * @msg: Received message 728 * @vec: Input s/g array for message data 729 * @num: Size of input s/g array 730 * @size: Number of bytes to read 731 * @flags: Message flags (MSG_DONTWAIT, etc...) 732 * 733 * On return the msg structure contains the scatter/gather array passed in the 734 * vec argument. The array is modified so that it consists of the unfilled 735 * portion of the original array. 736 * 737 * The returned value is the total number of bytes received, or an error. 738 */ 739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size, int flags) 741 { 742 mm_segment_t oldfs = get_fs(); 743 int result; 744 745 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 746 set_fs(KERNEL_DS); 747 result = sock_recvmsg(sock, msg, size, flags); 748 set_fs(oldfs); 749 return result; 750 } 751 EXPORT_SYMBOL(kernel_recvmsg); 752 753 static ssize_t sock_sendpage(struct file *file, struct page *page, 754 int offset, size_t size, loff_t *ppos, int more) 755 { 756 struct socket *sock; 757 int flags; 758 759 sock = file->private_data; 760 761 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 762 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 763 flags |= more; 764 765 return kernel_sendpage(sock, page, offset, size, flags); 766 } 767 768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 769 struct pipe_inode_info *pipe, size_t len, 770 unsigned int flags) 771 { 772 struct socket *sock = file->private_data; 773 774 if (unlikely(!sock->ops->splice_read)) 775 return -EINVAL; 776 777 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 778 } 779 780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 781 { 782 struct file *file = iocb->ki_filp; 783 struct socket *sock = file->private_data; 784 struct msghdr msg = {.msg_iter = *to, 785 .msg_iocb = iocb}; 786 ssize_t res; 787 788 if (file->f_flags & O_NONBLOCK) 789 msg.msg_flags = MSG_DONTWAIT; 790 791 if (iocb->ki_pos != 0) 792 return -ESPIPE; 793 794 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 795 return 0; 796 797 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 798 *to = msg.msg_iter; 799 return res; 800 } 801 802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 803 { 804 struct file *file = iocb->ki_filp; 805 struct socket *sock = file->private_data; 806 struct msghdr msg = {.msg_iter = *from, 807 .msg_iocb = iocb}; 808 ssize_t res; 809 810 if (iocb->ki_pos != 0) 811 return -ESPIPE; 812 813 if (file->f_flags & O_NONBLOCK) 814 msg.msg_flags = MSG_DONTWAIT; 815 816 if (sock->type == SOCK_SEQPACKET) 817 msg.msg_flags |= MSG_EOR; 818 819 res = sock_sendmsg(sock, &msg); 820 *from = msg.msg_iter; 821 return res; 822 } 823 824 /* 825 * Atomic setting of ioctl hooks to avoid race 826 * with module unload. 827 */ 828 829 static DEFINE_MUTEX(br_ioctl_mutex); 830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 831 832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 833 { 834 mutex_lock(&br_ioctl_mutex); 835 br_ioctl_hook = hook; 836 mutex_unlock(&br_ioctl_mutex); 837 } 838 EXPORT_SYMBOL(brioctl_set); 839 840 static DEFINE_MUTEX(vlan_ioctl_mutex); 841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 842 843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 844 { 845 mutex_lock(&vlan_ioctl_mutex); 846 vlan_ioctl_hook = hook; 847 mutex_unlock(&vlan_ioctl_mutex); 848 } 849 EXPORT_SYMBOL(vlan_ioctl_set); 850 851 static DEFINE_MUTEX(dlci_ioctl_mutex); 852 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 853 854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 855 { 856 mutex_lock(&dlci_ioctl_mutex); 857 dlci_ioctl_hook = hook; 858 mutex_unlock(&dlci_ioctl_mutex); 859 } 860 EXPORT_SYMBOL(dlci_ioctl_set); 861 862 static long sock_do_ioctl(struct net *net, struct socket *sock, 863 unsigned int cmd, unsigned long arg) 864 { 865 int err; 866 void __user *argp = (void __user *)arg; 867 868 err = sock->ops->ioctl(sock, cmd, arg); 869 870 /* 871 * If this ioctl is unknown try to hand it down 872 * to the NIC driver. 873 */ 874 if (err == -ENOIOCTLCMD) 875 err = dev_ioctl(net, cmd, argp); 876 877 return err; 878 } 879 880 /* 881 * With an ioctl, arg may well be a user mode pointer, but we don't know 882 * what to do with it - that's up to the protocol still. 883 */ 884 885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 886 { 887 struct socket *sock; 888 struct sock *sk; 889 void __user *argp = (void __user *)arg; 890 int pid, err; 891 struct net *net; 892 893 sock = file->private_data; 894 sk = sock->sk; 895 net = sock_net(sk); 896 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 897 err = dev_ioctl(net, cmd, argp); 898 } else 899 #ifdef CONFIG_WEXT_CORE 900 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 901 err = dev_ioctl(net, cmd, argp); 902 } else 903 #endif 904 switch (cmd) { 905 case FIOSETOWN: 906 case SIOCSPGRP: 907 err = -EFAULT; 908 if (get_user(pid, (int __user *)argp)) 909 break; 910 f_setown(sock->file, pid, 1); 911 err = 0; 912 break; 913 case FIOGETOWN: 914 case SIOCGPGRP: 915 err = put_user(f_getown(sock->file), 916 (int __user *)argp); 917 break; 918 case SIOCGIFBR: 919 case SIOCSIFBR: 920 case SIOCBRADDBR: 921 case SIOCBRDELBR: 922 err = -ENOPKG; 923 if (!br_ioctl_hook) 924 request_module("bridge"); 925 926 mutex_lock(&br_ioctl_mutex); 927 if (br_ioctl_hook) 928 err = br_ioctl_hook(net, cmd, argp); 929 mutex_unlock(&br_ioctl_mutex); 930 break; 931 case SIOCGIFVLAN: 932 case SIOCSIFVLAN: 933 err = -ENOPKG; 934 if (!vlan_ioctl_hook) 935 request_module("8021q"); 936 937 mutex_lock(&vlan_ioctl_mutex); 938 if (vlan_ioctl_hook) 939 err = vlan_ioctl_hook(net, argp); 940 mutex_unlock(&vlan_ioctl_mutex); 941 break; 942 case SIOCADDDLCI: 943 case SIOCDELDLCI: 944 err = -ENOPKG; 945 if (!dlci_ioctl_hook) 946 request_module("dlci"); 947 948 mutex_lock(&dlci_ioctl_mutex); 949 if (dlci_ioctl_hook) 950 err = dlci_ioctl_hook(cmd, argp); 951 mutex_unlock(&dlci_ioctl_mutex); 952 break; 953 default: 954 err = sock_do_ioctl(net, sock, cmd, arg); 955 break; 956 } 957 return err; 958 } 959 960 int sock_create_lite(int family, int type, int protocol, struct socket **res) 961 { 962 int err; 963 struct socket *sock = NULL; 964 965 err = security_socket_create(family, type, protocol, 1); 966 if (err) 967 goto out; 968 969 sock = sock_alloc(); 970 if (!sock) { 971 err = -ENOMEM; 972 goto out; 973 } 974 975 sock->type = type; 976 err = security_socket_post_create(sock, family, type, protocol, 1); 977 if (err) 978 goto out_release; 979 980 out: 981 *res = sock; 982 return err; 983 out_release: 984 sock_release(sock); 985 sock = NULL; 986 goto out; 987 } 988 EXPORT_SYMBOL(sock_create_lite); 989 990 /* No kernel lock held - perfect */ 991 static unsigned int sock_poll(struct file *file, poll_table *wait) 992 { 993 unsigned int busy_flag = 0; 994 struct socket *sock; 995 996 /* 997 * We can't return errors to poll, so it's either yes or no. 998 */ 999 sock = file->private_data; 1000 1001 if (sk_can_busy_loop(sock->sk)) { 1002 /* this socket can poll_ll so tell the system call */ 1003 busy_flag = POLL_BUSY_LOOP; 1004 1005 /* once, only if requested by syscall */ 1006 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1007 sk_busy_loop(sock->sk, 1); 1008 } 1009 1010 return busy_flag | sock->ops->poll(file, sock, wait); 1011 } 1012 1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1014 { 1015 struct socket *sock = file->private_data; 1016 1017 return sock->ops->mmap(file, sock, vma); 1018 } 1019 1020 static int sock_close(struct inode *inode, struct file *filp) 1021 { 1022 sock_release(SOCKET_I(inode)); 1023 return 0; 1024 } 1025 1026 /* 1027 * Update the socket async list 1028 * 1029 * Fasync_list locking strategy. 1030 * 1031 * 1. fasync_list is modified only under process context socket lock 1032 * i.e. under semaphore. 1033 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1034 * or under socket lock 1035 */ 1036 1037 static int sock_fasync(int fd, struct file *filp, int on) 1038 { 1039 struct socket *sock = filp->private_data; 1040 struct sock *sk = sock->sk; 1041 struct socket_wq *wq; 1042 1043 if (sk == NULL) 1044 return -EINVAL; 1045 1046 lock_sock(sk); 1047 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1048 fasync_helper(fd, filp, on, &wq->fasync_list); 1049 1050 if (!wq->fasync_list) 1051 sock_reset_flag(sk, SOCK_FASYNC); 1052 else 1053 sock_set_flag(sk, SOCK_FASYNC); 1054 1055 release_sock(sk); 1056 return 0; 1057 } 1058 1059 /* This function may be called only under rcu_lock */ 1060 1061 int sock_wake_async(struct socket_wq *wq, int how, int band) 1062 { 1063 if (!wq || !wq->fasync_list) 1064 return -1; 1065 1066 switch (how) { 1067 case SOCK_WAKE_WAITD: 1068 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1069 break; 1070 goto call_kill; 1071 case SOCK_WAKE_SPACE: 1072 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1073 break; 1074 /* fall through */ 1075 case SOCK_WAKE_IO: 1076 call_kill: 1077 kill_fasync(&wq->fasync_list, SIGIO, band); 1078 break; 1079 case SOCK_WAKE_URG: 1080 kill_fasync(&wq->fasync_list, SIGURG, band); 1081 } 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(sock_wake_async); 1086 1087 int __sock_create(struct net *net, int family, int type, int protocol, 1088 struct socket **res, int kern) 1089 { 1090 int err; 1091 struct socket *sock; 1092 const struct net_proto_family *pf; 1093 1094 /* 1095 * Check protocol is in range 1096 */ 1097 if (family < 0 || family >= NPROTO) 1098 return -EAFNOSUPPORT; 1099 if (type < 0 || type >= SOCK_MAX) 1100 return -EINVAL; 1101 1102 /* Compatibility. 1103 1104 This uglymoron is moved from INET layer to here to avoid 1105 deadlock in module load. 1106 */ 1107 if (family == PF_INET && type == SOCK_PACKET) { 1108 static int warned; 1109 if (!warned) { 1110 warned = 1; 1111 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1112 current->comm); 1113 } 1114 family = PF_PACKET; 1115 } 1116 1117 err = security_socket_create(family, type, protocol, kern); 1118 if (err) 1119 return err; 1120 1121 /* 1122 * Allocate the socket and allow the family to set things up. if 1123 * the protocol is 0, the family is instructed to select an appropriate 1124 * default. 1125 */ 1126 sock = sock_alloc(); 1127 if (!sock) { 1128 net_warn_ratelimited("socket: no more sockets\n"); 1129 return -ENFILE; /* Not exactly a match, but its the 1130 closest posix thing */ 1131 } 1132 1133 sock->type = type; 1134 1135 #ifdef CONFIG_MODULES 1136 /* Attempt to load a protocol module if the find failed. 1137 * 1138 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1139 * requested real, full-featured networking support upon configuration. 1140 * Otherwise module support will break! 1141 */ 1142 if (rcu_access_pointer(net_families[family]) == NULL) 1143 request_module("net-pf-%d", family); 1144 #endif 1145 1146 rcu_read_lock(); 1147 pf = rcu_dereference(net_families[family]); 1148 err = -EAFNOSUPPORT; 1149 if (!pf) 1150 goto out_release; 1151 1152 /* 1153 * We will call the ->create function, that possibly is in a loadable 1154 * module, so we have to bump that loadable module refcnt first. 1155 */ 1156 if (!try_module_get(pf->owner)) 1157 goto out_release; 1158 1159 /* Now protected by module ref count */ 1160 rcu_read_unlock(); 1161 1162 err = pf->create(net, sock, protocol, kern); 1163 if (err < 0) 1164 goto out_module_put; 1165 1166 /* 1167 * Now to bump the refcnt of the [loadable] module that owns this 1168 * socket at sock_release time we decrement its refcnt. 1169 */ 1170 if (!try_module_get(sock->ops->owner)) 1171 goto out_module_busy; 1172 1173 /* 1174 * Now that we're done with the ->create function, the [loadable] 1175 * module can have its refcnt decremented 1176 */ 1177 module_put(pf->owner); 1178 err = security_socket_post_create(sock, family, type, protocol, kern); 1179 if (err) 1180 goto out_sock_release; 1181 *res = sock; 1182 1183 return 0; 1184 1185 out_module_busy: 1186 err = -EAFNOSUPPORT; 1187 out_module_put: 1188 sock->ops = NULL; 1189 module_put(pf->owner); 1190 out_sock_release: 1191 sock_release(sock); 1192 return err; 1193 1194 out_release: 1195 rcu_read_unlock(); 1196 goto out_sock_release; 1197 } 1198 EXPORT_SYMBOL(__sock_create); 1199 1200 int sock_create(int family, int type, int protocol, struct socket **res) 1201 { 1202 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1203 } 1204 EXPORT_SYMBOL(sock_create); 1205 1206 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1207 { 1208 return __sock_create(net, family, type, protocol, res, 1); 1209 } 1210 EXPORT_SYMBOL(sock_create_kern); 1211 1212 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1213 { 1214 int retval; 1215 struct socket *sock; 1216 int flags; 1217 1218 /* Check the SOCK_* constants for consistency. */ 1219 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1220 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1221 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1222 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1223 1224 flags = type & ~SOCK_TYPE_MASK; 1225 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1226 return -EINVAL; 1227 type &= SOCK_TYPE_MASK; 1228 1229 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1230 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1231 1232 retval = sock_create(family, type, protocol, &sock); 1233 if (retval < 0) 1234 goto out; 1235 1236 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1237 if (retval < 0) 1238 goto out_release; 1239 1240 out: 1241 /* It may be already another descriptor 8) Not kernel problem. */ 1242 return retval; 1243 1244 out_release: 1245 sock_release(sock); 1246 return retval; 1247 } 1248 1249 /* 1250 * Create a pair of connected sockets. 1251 */ 1252 1253 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1254 int __user *, usockvec) 1255 { 1256 struct socket *sock1, *sock2; 1257 int fd1, fd2, err; 1258 struct file *newfile1, *newfile2; 1259 int flags; 1260 1261 flags = type & ~SOCK_TYPE_MASK; 1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1263 return -EINVAL; 1264 type &= SOCK_TYPE_MASK; 1265 1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1268 1269 /* 1270 * Obtain the first socket and check if the underlying protocol 1271 * supports the socketpair call. 1272 */ 1273 1274 err = sock_create(family, type, protocol, &sock1); 1275 if (err < 0) 1276 goto out; 1277 1278 err = sock_create(family, type, protocol, &sock2); 1279 if (err < 0) 1280 goto out_release_1; 1281 1282 err = sock1->ops->socketpair(sock1, sock2); 1283 if (err < 0) 1284 goto out_release_both; 1285 1286 fd1 = get_unused_fd_flags(flags); 1287 if (unlikely(fd1 < 0)) { 1288 err = fd1; 1289 goto out_release_both; 1290 } 1291 1292 fd2 = get_unused_fd_flags(flags); 1293 if (unlikely(fd2 < 0)) { 1294 err = fd2; 1295 goto out_put_unused_1; 1296 } 1297 1298 newfile1 = sock_alloc_file(sock1, flags, NULL); 1299 if (IS_ERR(newfile1)) { 1300 err = PTR_ERR(newfile1); 1301 goto out_put_unused_both; 1302 } 1303 1304 newfile2 = sock_alloc_file(sock2, flags, NULL); 1305 if (IS_ERR(newfile2)) { 1306 err = PTR_ERR(newfile2); 1307 goto out_fput_1; 1308 } 1309 1310 err = put_user(fd1, &usockvec[0]); 1311 if (err) 1312 goto out_fput_both; 1313 1314 err = put_user(fd2, &usockvec[1]); 1315 if (err) 1316 goto out_fput_both; 1317 1318 audit_fd_pair(fd1, fd2); 1319 1320 fd_install(fd1, newfile1); 1321 fd_install(fd2, newfile2); 1322 /* fd1 and fd2 may be already another descriptors. 1323 * Not kernel problem. 1324 */ 1325 1326 return 0; 1327 1328 out_fput_both: 1329 fput(newfile2); 1330 fput(newfile1); 1331 put_unused_fd(fd2); 1332 put_unused_fd(fd1); 1333 goto out; 1334 1335 out_fput_1: 1336 fput(newfile1); 1337 put_unused_fd(fd2); 1338 put_unused_fd(fd1); 1339 sock_release(sock2); 1340 goto out; 1341 1342 out_put_unused_both: 1343 put_unused_fd(fd2); 1344 out_put_unused_1: 1345 put_unused_fd(fd1); 1346 out_release_both: 1347 sock_release(sock2); 1348 out_release_1: 1349 sock_release(sock1); 1350 out: 1351 return err; 1352 } 1353 1354 /* 1355 * Bind a name to a socket. Nothing much to do here since it's 1356 * the protocol's responsibility to handle the local address. 1357 * 1358 * We move the socket address to kernel space before we call 1359 * the protocol layer (having also checked the address is ok). 1360 */ 1361 1362 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1363 { 1364 struct socket *sock; 1365 struct sockaddr_storage address; 1366 int err, fput_needed; 1367 1368 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1369 if (sock) { 1370 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1371 if (err >= 0) { 1372 err = security_socket_bind(sock, 1373 (struct sockaddr *)&address, 1374 addrlen); 1375 if (!err) 1376 err = sock->ops->bind(sock, 1377 (struct sockaddr *) 1378 &address, addrlen); 1379 } 1380 fput_light(sock->file, fput_needed); 1381 } 1382 return err; 1383 } 1384 1385 /* 1386 * Perform a listen. Basically, we allow the protocol to do anything 1387 * necessary for a listen, and if that works, we mark the socket as 1388 * ready for listening. 1389 */ 1390 1391 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1392 { 1393 struct socket *sock; 1394 int err, fput_needed; 1395 int somaxconn; 1396 1397 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1398 if (sock) { 1399 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1400 if ((unsigned int)backlog > somaxconn) 1401 backlog = somaxconn; 1402 1403 err = security_socket_listen(sock, backlog); 1404 if (!err) 1405 err = sock->ops->listen(sock, backlog); 1406 1407 fput_light(sock->file, fput_needed); 1408 } 1409 return err; 1410 } 1411 1412 /* 1413 * For accept, we attempt to create a new socket, set up the link 1414 * with the client, wake up the client, then return the new 1415 * connected fd. We collect the address of the connector in kernel 1416 * space and move it to user at the very end. This is unclean because 1417 * we open the socket then return an error. 1418 * 1419 * 1003.1g adds the ability to recvmsg() to query connection pending 1420 * status to recvmsg. We need to add that support in a way thats 1421 * clean when we restucture accept also. 1422 */ 1423 1424 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1425 int __user *, upeer_addrlen, int, flags) 1426 { 1427 struct socket *sock, *newsock; 1428 struct file *newfile; 1429 int err, len, newfd, fput_needed; 1430 struct sockaddr_storage address; 1431 1432 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1433 return -EINVAL; 1434 1435 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1436 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1437 1438 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1439 if (!sock) 1440 goto out; 1441 1442 err = -ENFILE; 1443 newsock = sock_alloc(); 1444 if (!newsock) 1445 goto out_put; 1446 1447 newsock->type = sock->type; 1448 newsock->ops = sock->ops; 1449 1450 /* 1451 * We don't need try_module_get here, as the listening socket (sock) 1452 * has the protocol module (sock->ops->owner) held. 1453 */ 1454 __module_get(newsock->ops->owner); 1455 1456 newfd = get_unused_fd_flags(flags); 1457 if (unlikely(newfd < 0)) { 1458 err = newfd; 1459 sock_release(newsock); 1460 goto out_put; 1461 } 1462 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1463 if (IS_ERR(newfile)) { 1464 err = PTR_ERR(newfile); 1465 put_unused_fd(newfd); 1466 sock_release(newsock); 1467 goto out_put; 1468 } 1469 1470 err = security_socket_accept(sock, newsock); 1471 if (err) 1472 goto out_fd; 1473 1474 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1475 if (err < 0) 1476 goto out_fd; 1477 1478 if (upeer_sockaddr) { 1479 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1480 &len, 2) < 0) { 1481 err = -ECONNABORTED; 1482 goto out_fd; 1483 } 1484 err = move_addr_to_user(&address, 1485 len, upeer_sockaddr, upeer_addrlen); 1486 if (err < 0) 1487 goto out_fd; 1488 } 1489 1490 /* File flags are not inherited via accept() unlike another OSes. */ 1491 1492 fd_install(newfd, newfile); 1493 err = newfd; 1494 1495 out_put: 1496 fput_light(sock->file, fput_needed); 1497 out: 1498 return err; 1499 out_fd: 1500 fput(newfile); 1501 put_unused_fd(newfd); 1502 goto out_put; 1503 } 1504 1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1506 int __user *, upeer_addrlen) 1507 { 1508 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1509 } 1510 1511 /* 1512 * Attempt to connect to a socket with the server address. The address 1513 * is in user space so we verify it is OK and move it to kernel space. 1514 * 1515 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1516 * break bindings 1517 * 1518 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1519 * other SEQPACKET protocols that take time to connect() as it doesn't 1520 * include the -EINPROGRESS status for such sockets. 1521 */ 1522 1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1524 int, addrlen) 1525 { 1526 struct socket *sock; 1527 struct sockaddr_storage address; 1528 int err, fput_needed; 1529 1530 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1531 if (!sock) 1532 goto out; 1533 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1534 if (err < 0) 1535 goto out_put; 1536 1537 err = 1538 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1539 if (err) 1540 goto out_put; 1541 1542 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1543 sock->file->f_flags); 1544 out_put: 1545 fput_light(sock->file, fput_needed); 1546 out: 1547 return err; 1548 } 1549 1550 /* 1551 * Get the local address ('name') of a socket object. Move the obtained 1552 * name to user space. 1553 */ 1554 1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1556 int __user *, usockaddr_len) 1557 { 1558 struct socket *sock; 1559 struct sockaddr_storage address; 1560 int len, err, fput_needed; 1561 1562 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1563 if (!sock) 1564 goto out; 1565 1566 err = security_socket_getsockname(sock); 1567 if (err) 1568 goto out_put; 1569 1570 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1571 if (err) 1572 goto out_put; 1573 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1574 1575 out_put: 1576 fput_light(sock->file, fput_needed); 1577 out: 1578 return err; 1579 } 1580 1581 /* 1582 * Get the remote address ('name') of a socket object. Move the obtained 1583 * name to user space. 1584 */ 1585 1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1587 int __user *, usockaddr_len) 1588 { 1589 struct socket *sock; 1590 struct sockaddr_storage address; 1591 int len, err, fput_needed; 1592 1593 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1594 if (sock != NULL) { 1595 err = security_socket_getpeername(sock); 1596 if (err) { 1597 fput_light(sock->file, fput_needed); 1598 return err; 1599 } 1600 1601 err = 1602 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1603 1); 1604 if (!err) 1605 err = move_addr_to_user(&address, len, usockaddr, 1606 usockaddr_len); 1607 fput_light(sock->file, fput_needed); 1608 } 1609 return err; 1610 } 1611 1612 /* 1613 * Send a datagram to a given address. We move the address into kernel 1614 * space and check the user space data area is readable before invoking 1615 * the protocol. 1616 */ 1617 1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1619 unsigned int, flags, struct sockaddr __user *, addr, 1620 int, addr_len) 1621 { 1622 struct socket *sock; 1623 struct sockaddr_storage address; 1624 int err; 1625 struct msghdr msg; 1626 struct iovec iov; 1627 int fput_needed; 1628 1629 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1630 if (unlikely(err)) 1631 return err; 1632 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1633 if (!sock) 1634 goto out; 1635 1636 msg.msg_name = NULL; 1637 msg.msg_control = NULL; 1638 msg.msg_controllen = 0; 1639 msg.msg_namelen = 0; 1640 if (addr) { 1641 err = move_addr_to_kernel(addr, addr_len, &address); 1642 if (err < 0) 1643 goto out_put; 1644 msg.msg_name = (struct sockaddr *)&address; 1645 msg.msg_namelen = addr_len; 1646 } 1647 if (sock->file->f_flags & O_NONBLOCK) 1648 flags |= MSG_DONTWAIT; 1649 msg.msg_flags = flags; 1650 err = sock_sendmsg(sock, &msg); 1651 1652 out_put: 1653 fput_light(sock->file, fput_needed); 1654 out: 1655 return err; 1656 } 1657 1658 /* 1659 * Send a datagram down a socket. 1660 */ 1661 1662 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1663 unsigned int, flags) 1664 { 1665 return sys_sendto(fd, buff, len, flags, NULL, 0); 1666 } 1667 1668 /* 1669 * Receive a frame from the socket and optionally record the address of the 1670 * sender. We verify the buffers are writable and if needed move the 1671 * sender address from kernel to user space. 1672 */ 1673 1674 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1675 unsigned int, flags, struct sockaddr __user *, addr, 1676 int __user *, addr_len) 1677 { 1678 struct socket *sock; 1679 struct iovec iov; 1680 struct msghdr msg; 1681 struct sockaddr_storage address; 1682 int err, err2; 1683 int fput_needed; 1684 1685 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1686 if (unlikely(err)) 1687 return err; 1688 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1689 if (!sock) 1690 goto out; 1691 1692 msg.msg_control = NULL; 1693 msg.msg_controllen = 0; 1694 /* Save some cycles and don't copy the address if not needed */ 1695 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1696 /* We assume all kernel code knows the size of sockaddr_storage */ 1697 msg.msg_namelen = 0; 1698 msg.msg_iocb = NULL; 1699 if (sock->file->f_flags & O_NONBLOCK) 1700 flags |= MSG_DONTWAIT; 1701 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1702 1703 if (err >= 0 && addr != NULL) { 1704 err2 = move_addr_to_user(&address, 1705 msg.msg_namelen, addr, addr_len); 1706 if (err2 < 0) 1707 err = err2; 1708 } 1709 1710 fput_light(sock->file, fput_needed); 1711 out: 1712 return err; 1713 } 1714 1715 /* 1716 * Receive a datagram from a socket. 1717 */ 1718 1719 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1720 unsigned int, flags) 1721 { 1722 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1723 } 1724 1725 /* 1726 * Set a socket option. Because we don't know the option lengths we have 1727 * to pass the user mode parameter for the protocols to sort out. 1728 */ 1729 1730 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1731 char __user *, optval, int, optlen) 1732 { 1733 int err, fput_needed; 1734 struct socket *sock; 1735 1736 if (optlen < 0) 1737 return -EINVAL; 1738 1739 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1740 if (sock != NULL) { 1741 err = security_socket_setsockopt(sock, level, optname); 1742 if (err) 1743 goto out_put; 1744 1745 if (level == SOL_SOCKET) 1746 err = 1747 sock_setsockopt(sock, level, optname, optval, 1748 optlen); 1749 else 1750 err = 1751 sock->ops->setsockopt(sock, level, optname, optval, 1752 optlen); 1753 out_put: 1754 fput_light(sock->file, fput_needed); 1755 } 1756 return err; 1757 } 1758 1759 /* 1760 * Get a socket option. Because we don't know the option lengths we have 1761 * to pass a user mode parameter for the protocols to sort out. 1762 */ 1763 1764 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1765 char __user *, optval, int __user *, optlen) 1766 { 1767 int err, fput_needed; 1768 struct socket *sock; 1769 1770 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1771 if (sock != NULL) { 1772 err = security_socket_getsockopt(sock, level, optname); 1773 if (err) 1774 goto out_put; 1775 1776 if (level == SOL_SOCKET) 1777 err = 1778 sock_getsockopt(sock, level, optname, optval, 1779 optlen); 1780 else 1781 err = 1782 sock->ops->getsockopt(sock, level, optname, optval, 1783 optlen); 1784 out_put: 1785 fput_light(sock->file, fput_needed); 1786 } 1787 return err; 1788 } 1789 1790 /* 1791 * Shutdown a socket. 1792 */ 1793 1794 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1795 { 1796 int err, fput_needed; 1797 struct socket *sock; 1798 1799 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1800 if (sock != NULL) { 1801 err = security_socket_shutdown(sock, how); 1802 if (!err) 1803 err = sock->ops->shutdown(sock, how); 1804 fput_light(sock->file, fput_needed); 1805 } 1806 return err; 1807 } 1808 1809 /* A couple of helpful macros for getting the address of the 32/64 bit 1810 * fields which are the same type (int / unsigned) on our platforms. 1811 */ 1812 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1813 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1814 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1815 1816 struct used_address { 1817 struct sockaddr_storage name; 1818 unsigned int name_len; 1819 }; 1820 1821 static int copy_msghdr_from_user(struct msghdr *kmsg, 1822 struct user_msghdr __user *umsg, 1823 struct sockaddr __user **save_addr, 1824 struct iovec **iov) 1825 { 1826 struct sockaddr __user *uaddr; 1827 struct iovec __user *uiov; 1828 size_t nr_segs; 1829 ssize_t err; 1830 1831 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1832 __get_user(uaddr, &umsg->msg_name) || 1833 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1834 __get_user(uiov, &umsg->msg_iov) || 1835 __get_user(nr_segs, &umsg->msg_iovlen) || 1836 __get_user(kmsg->msg_control, &umsg->msg_control) || 1837 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1838 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1839 return -EFAULT; 1840 1841 if (!uaddr) 1842 kmsg->msg_namelen = 0; 1843 1844 if (kmsg->msg_namelen < 0) 1845 return -EINVAL; 1846 1847 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1848 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1849 1850 if (save_addr) 1851 *save_addr = uaddr; 1852 1853 if (uaddr && kmsg->msg_namelen) { 1854 if (!save_addr) { 1855 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1856 kmsg->msg_name); 1857 if (err < 0) 1858 return err; 1859 } 1860 } else { 1861 kmsg->msg_name = NULL; 1862 kmsg->msg_namelen = 0; 1863 } 1864 1865 if (nr_segs > UIO_MAXIOV) 1866 return -EMSGSIZE; 1867 1868 kmsg->msg_iocb = NULL; 1869 1870 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1871 UIO_FASTIOV, iov, &kmsg->msg_iter); 1872 } 1873 1874 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1875 struct msghdr *msg_sys, unsigned int flags, 1876 struct used_address *used_address) 1877 { 1878 struct compat_msghdr __user *msg_compat = 1879 (struct compat_msghdr __user *)msg; 1880 struct sockaddr_storage address; 1881 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1882 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1883 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1884 /* 20 is size of ipv6_pktinfo */ 1885 unsigned char *ctl_buf = ctl; 1886 int ctl_len; 1887 ssize_t err; 1888 1889 msg_sys->msg_name = &address; 1890 1891 if (MSG_CMSG_COMPAT & flags) 1892 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1893 else 1894 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1895 if (err < 0) 1896 return err; 1897 1898 err = -ENOBUFS; 1899 1900 if (msg_sys->msg_controllen > INT_MAX) 1901 goto out_freeiov; 1902 ctl_len = msg_sys->msg_controllen; 1903 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1904 err = 1905 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1906 sizeof(ctl)); 1907 if (err) 1908 goto out_freeiov; 1909 ctl_buf = msg_sys->msg_control; 1910 ctl_len = msg_sys->msg_controllen; 1911 } else if (ctl_len) { 1912 if (ctl_len > sizeof(ctl)) { 1913 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1914 if (ctl_buf == NULL) 1915 goto out_freeiov; 1916 } 1917 err = -EFAULT; 1918 /* 1919 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1920 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1921 * checking falls down on this. 1922 */ 1923 if (copy_from_user(ctl_buf, 1924 (void __user __force *)msg_sys->msg_control, 1925 ctl_len)) 1926 goto out_freectl; 1927 msg_sys->msg_control = ctl_buf; 1928 } 1929 msg_sys->msg_flags = flags; 1930 1931 if (sock->file->f_flags & O_NONBLOCK) 1932 msg_sys->msg_flags |= MSG_DONTWAIT; 1933 /* 1934 * If this is sendmmsg() and current destination address is same as 1935 * previously succeeded address, omit asking LSM's decision. 1936 * used_address->name_len is initialized to UINT_MAX so that the first 1937 * destination address never matches. 1938 */ 1939 if (used_address && msg_sys->msg_name && 1940 used_address->name_len == msg_sys->msg_namelen && 1941 !memcmp(&used_address->name, msg_sys->msg_name, 1942 used_address->name_len)) { 1943 err = sock_sendmsg_nosec(sock, msg_sys); 1944 goto out_freectl; 1945 } 1946 err = sock_sendmsg(sock, msg_sys); 1947 /* 1948 * If this is sendmmsg() and sending to current destination address was 1949 * successful, remember it. 1950 */ 1951 if (used_address && err >= 0) { 1952 used_address->name_len = msg_sys->msg_namelen; 1953 if (msg_sys->msg_name) 1954 memcpy(&used_address->name, msg_sys->msg_name, 1955 used_address->name_len); 1956 } 1957 1958 out_freectl: 1959 if (ctl_buf != ctl) 1960 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1961 out_freeiov: 1962 kfree(iov); 1963 return err; 1964 } 1965 1966 /* 1967 * BSD sendmsg interface 1968 */ 1969 1970 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1971 { 1972 int fput_needed, err; 1973 struct msghdr msg_sys; 1974 struct socket *sock; 1975 1976 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1977 if (!sock) 1978 goto out; 1979 1980 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1981 1982 fput_light(sock->file, fput_needed); 1983 out: 1984 return err; 1985 } 1986 1987 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1988 { 1989 if (flags & MSG_CMSG_COMPAT) 1990 return -EINVAL; 1991 return __sys_sendmsg(fd, msg, flags); 1992 } 1993 1994 /* 1995 * Linux sendmmsg interface 1996 */ 1997 1998 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 1999 unsigned int flags) 2000 { 2001 int fput_needed, err, datagrams; 2002 struct socket *sock; 2003 struct mmsghdr __user *entry; 2004 struct compat_mmsghdr __user *compat_entry; 2005 struct msghdr msg_sys; 2006 struct used_address used_address; 2007 2008 if (vlen > UIO_MAXIOV) 2009 vlen = UIO_MAXIOV; 2010 2011 datagrams = 0; 2012 2013 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2014 if (!sock) 2015 return err; 2016 2017 used_address.name_len = UINT_MAX; 2018 entry = mmsg; 2019 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2020 err = 0; 2021 2022 while (datagrams < vlen) { 2023 if (MSG_CMSG_COMPAT & flags) { 2024 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2025 &msg_sys, flags, &used_address); 2026 if (err < 0) 2027 break; 2028 err = __put_user(err, &compat_entry->msg_len); 2029 ++compat_entry; 2030 } else { 2031 err = ___sys_sendmsg(sock, 2032 (struct user_msghdr __user *)entry, 2033 &msg_sys, flags, &used_address); 2034 if (err < 0) 2035 break; 2036 err = put_user(err, &entry->msg_len); 2037 ++entry; 2038 } 2039 2040 if (err) 2041 break; 2042 ++datagrams; 2043 } 2044 2045 fput_light(sock->file, fput_needed); 2046 2047 /* We only return an error if no datagrams were able to be sent */ 2048 if (datagrams != 0) 2049 return datagrams; 2050 2051 return err; 2052 } 2053 2054 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2055 unsigned int, vlen, unsigned int, flags) 2056 { 2057 if (flags & MSG_CMSG_COMPAT) 2058 return -EINVAL; 2059 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2060 } 2061 2062 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2063 struct msghdr *msg_sys, unsigned int flags, int nosec) 2064 { 2065 struct compat_msghdr __user *msg_compat = 2066 (struct compat_msghdr __user *)msg; 2067 struct iovec iovstack[UIO_FASTIOV]; 2068 struct iovec *iov = iovstack; 2069 unsigned long cmsg_ptr; 2070 int total_len, len; 2071 ssize_t err; 2072 2073 /* kernel mode address */ 2074 struct sockaddr_storage addr; 2075 2076 /* user mode address pointers */ 2077 struct sockaddr __user *uaddr; 2078 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2079 2080 msg_sys->msg_name = &addr; 2081 2082 if (MSG_CMSG_COMPAT & flags) 2083 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2084 else 2085 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2086 if (err < 0) 2087 return err; 2088 total_len = iov_iter_count(&msg_sys->msg_iter); 2089 2090 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2091 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2092 2093 /* We assume all kernel code knows the size of sockaddr_storage */ 2094 msg_sys->msg_namelen = 0; 2095 2096 if (sock->file->f_flags & O_NONBLOCK) 2097 flags |= MSG_DONTWAIT; 2098 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2099 total_len, flags); 2100 if (err < 0) 2101 goto out_freeiov; 2102 len = err; 2103 2104 if (uaddr != NULL) { 2105 err = move_addr_to_user(&addr, 2106 msg_sys->msg_namelen, uaddr, 2107 uaddr_len); 2108 if (err < 0) 2109 goto out_freeiov; 2110 } 2111 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2112 COMPAT_FLAGS(msg)); 2113 if (err) 2114 goto out_freeiov; 2115 if (MSG_CMSG_COMPAT & flags) 2116 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2117 &msg_compat->msg_controllen); 2118 else 2119 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2120 &msg->msg_controllen); 2121 if (err) 2122 goto out_freeiov; 2123 err = len; 2124 2125 out_freeiov: 2126 kfree(iov); 2127 return err; 2128 } 2129 2130 /* 2131 * BSD recvmsg interface 2132 */ 2133 2134 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2135 { 2136 int fput_needed, err; 2137 struct msghdr msg_sys; 2138 struct socket *sock; 2139 2140 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2141 if (!sock) 2142 goto out; 2143 2144 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2145 2146 fput_light(sock->file, fput_needed); 2147 out: 2148 return err; 2149 } 2150 2151 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2152 unsigned int, flags) 2153 { 2154 if (flags & MSG_CMSG_COMPAT) 2155 return -EINVAL; 2156 return __sys_recvmsg(fd, msg, flags); 2157 } 2158 2159 /* 2160 * Linux recvmmsg interface 2161 */ 2162 2163 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2164 unsigned int flags, struct timespec *timeout) 2165 { 2166 int fput_needed, err, datagrams; 2167 struct socket *sock; 2168 struct mmsghdr __user *entry; 2169 struct compat_mmsghdr __user *compat_entry; 2170 struct msghdr msg_sys; 2171 struct timespec end_time; 2172 2173 if (timeout && 2174 poll_select_set_timeout(&end_time, timeout->tv_sec, 2175 timeout->tv_nsec)) 2176 return -EINVAL; 2177 2178 datagrams = 0; 2179 2180 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2181 if (!sock) 2182 return err; 2183 2184 err = sock_error(sock->sk); 2185 if (err) 2186 goto out_put; 2187 2188 entry = mmsg; 2189 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2190 2191 while (datagrams < vlen) { 2192 /* 2193 * No need to ask LSM for more than the first datagram. 2194 */ 2195 if (MSG_CMSG_COMPAT & flags) { 2196 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2197 &msg_sys, flags & ~MSG_WAITFORONE, 2198 datagrams); 2199 if (err < 0) 2200 break; 2201 err = __put_user(err, &compat_entry->msg_len); 2202 ++compat_entry; 2203 } else { 2204 err = ___sys_recvmsg(sock, 2205 (struct user_msghdr __user *)entry, 2206 &msg_sys, flags & ~MSG_WAITFORONE, 2207 datagrams); 2208 if (err < 0) 2209 break; 2210 err = put_user(err, &entry->msg_len); 2211 ++entry; 2212 } 2213 2214 if (err) 2215 break; 2216 ++datagrams; 2217 2218 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2219 if (flags & MSG_WAITFORONE) 2220 flags |= MSG_DONTWAIT; 2221 2222 if (timeout) { 2223 ktime_get_ts(timeout); 2224 *timeout = timespec_sub(end_time, *timeout); 2225 if (timeout->tv_sec < 0) { 2226 timeout->tv_sec = timeout->tv_nsec = 0; 2227 break; 2228 } 2229 2230 /* Timeout, return less than vlen datagrams */ 2231 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2232 break; 2233 } 2234 2235 /* Out of band data, return right away */ 2236 if (msg_sys.msg_flags & MSG_OOB) 2237 break; 2238 } 2239 2240 out_put: 2241 fput_light(sock->file, fput_needed); 2242 2243 if (err == 0) 2244 return datagrams; 2245 2246 if (datagrams != 0) { 2247 /* 2248 * We may return less entries than requested (vlen) if the 2249 * sock is non block and there aren't enough datagrams... 2250 */ 2251 if (err != -EAGAIN) { 2252 /* 2253 * ... or if recvmsg returns an error after we 2254 * received some datagrams, where we record the 2255 * error to return on the next call or if the 2256 * app asks about it using getsockopt(SO_ERROR). 2257 */ 2258 sock->sk->sk_err = -err; 2259 } 2260 2261 return datagrams; 2262 } 2263 2264 return err; 2265 } 2266 2267 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2268 unsigned int, vlen, unsigned int, flags, 2269 struct timespec __user *, timeout) 2270 { 2271 int datagrams; 2272 struct timespec timeout_sys; 2273 2274 if (flags & MSG_CMSG_COMPAT) 2275 return -EINVAL; 2276 2277 if (!timeout) 2278 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2279 2280 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2281 return -EFAULT; 2282 2283 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2284 2285 if (datagrams > 0 && 2286 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2287 datagrams = -EFAULT; 2288 2289 return datagrams; 2290 } 2291 2292 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2293 /* Argument list sizes for sys_socketcall */ 2294 #define AL(x) ((x) * sizeof(unsigned long)) 2295 static const unsigned char nargs[21] = { 2296 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2297 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2298 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2299 AL(4), AL(5), AL(4) 2300 }; 2301 2302 #undef AL 2303 2304 /* 2305 * System call vectors. 2306 * 2307 * Argument checking cleaned up. Saved 20% in size. 2308 * This function doesn't need to set the kernel lock because 2309 * it is set by the callees. 2310 */ 2311 2312 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2313 { 2314 unsigned long a[AUDITSC_ARGS]; 2315 unsigned long a0, a1; 2316 int err; 2317 unsigned int len; 2318 2319 if (call < 1 || call > SYS_SENDMMSG) 2320 return -EINVAL; 2321 2322 len = nargs[call]; 2323 if (len > sizeof(a)) 2324 return -EINVAL; 2325 2326 /* copy_from_user should be SMP safe. */ 2327 if (copy_from_user(a, args, len)) 2328 return -EFAULT; 2329 2330 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2331 if (err) 2332 return err; 2333 2334 a0 = a[0]; 2335 a1 = a[1]; 2336 2337 switch (call) { 2338 case SYS_SOCKET: 2339 err = sys_socket(a0, a1, a[2]); 2340 break; 2341 case SYS_BIND: 2342 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2343 break; 2344 case SYS_CONNECT: 2345 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2346 break; 2347 case SYS_LISTEN: 2348 err = sys_listen(a0, a1); 2349 break; 2350 case SYS_ACCEPT: 2351 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2352 (int __user *)a[2], 0); 2353 break; 2354 case SYS_GETSOCKNAME: 2355 err = 2356 sys_getsockname(a0, (struct sockaddr __user *)a1, 2357 (int __user *)a[2]); 2358 break; 2359 case SYS_GETPEERNAME: 2360 err = 2361 sys_getpeername(a0, (struct sockaddr __user *)a1, 2362 (int __user *)a[2]); 2363 break; 2364 case SYS_SOCKETPAIR: 2365 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2366 break; 2367 case SYS_SEND: 2368 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2369 break; 2370 case SYS_SENDTO: 2371 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2372 (struct sockaddr __user *)a[4], a[5]); 2373 break; 2374 case SYS_RECV: 2375 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2376 break; 2377 case SYS_RECVFROM: 2378 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2379 (struct sockaddr __user *)a[4], 2380 (int __user *)a[5]); 2381 break; 2382 case SYS_SHUTDOWN: 2383 err = sys_shutdown(a0, a1); 2384 break; 2385 case SYS_SETSOCKOPT: 2386 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2387 break; 2388 case SYS_GETSOCKOPT: 2389 err = 2390 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2391 (int __user *)a[4]); 2392 break; 2393 case SYS_SENDMSG: 2394 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2395 break; 2396 case SYS_SENDMMSG: 2397 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2398 break; 2399 case SYS_RECVMSG: 2400 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2401 break; 2402 case SYS_RECVMMSG: 2403 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2404 (struct timespec __user *)a[4]); 2405 break; 2406 case SYS_ACCEPT4: 2407 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2408 (int __user *)a[2], a[3]); 2409 break; 2410 default: 2411 err = -EINVAL; 2412 break; 2413 } 2414 return err; 2415 } 2416 2417 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2418 2419 /** 2420 * sock_register - add a socket protocol handler 2421 * @ops: description of protocol 2422 * 2423 * This function is called by a protocol handler that wants to 2424 * advertise its address family, and have it linked into the 2425 * socket interface. The value ops->family corresponds to the 2426 * socket system call protocol family. 2427 */ 2428 int sock_register(const struct net_proto_family *ops) 2429 { 2430 int err; 2431 2432 if (ops->family >= NPROTO) { 2433 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2434 return -ENOBUFS; 2435 } 2436 2437 spin_lock(&net_family_lock); 2438 if (rcu_dereference_protected(net_families[ops->family], 2439 lockdep_is_held(&net_family_lock))) 2440 err = -EEXIST; 2441 else { 2442 rcu_assign_pointer(net_families[ops->family], ops); 2443 err = 0; 2444 } 2445 spin_unlock(&net_family_lock); 2446 2447 pr_info("NET: Registered protocol family %d\n", ops->family); 2448 return err; 2449 } 2450 EXPORT_SYMBOL(sock_register); 2451 2452 /** 2453 * sock_unregister - remove a protocol handler 2454 * @family: protocol family to remove 2455 * 2456 * This function is called by a protocol handler that wants to 2457 * remove its address family, and have it unlinked from the 2458 * new socket creation. 2459 * 2460 * If protocol handler is a module, then it can use module reference 2461 * counts to protect against new references. If protocol handler is not 2462 * a module then it needs to provide its own protection in 2463 * the ops->create routine. 2464 */ 2465 void sock_unregister(int family) 2466 { 2467 BUG_ON(family < 0 || family >= NPROTO); 2468 2469 spin_lock(&net_family_lock); 2470 RCU_INIT_POINTER(net_families[family], NULL); 2471 spin_unlock(&net_family_lock); 2472 2473 synchronize_rcu(); 2474 2475 pr_info("NET: Unregistered protocol family %d\n", family); 2476 } 2477 EXPORT_SYMBOL(sock_unregister); 2478 2479 static int __init sock_init(void) 2480 { 2481 int err; 2482 /* 2483 * Initialize the network sysctl infrastructure. 2484 */ 2485 err = net_sysctl_init(); 2486 if (err) 2487 goto out; 2488 2489 /* 2490 * Initialize skbuff SLAB cache 2491 */ 2492 skb_init(); 2493 2494 /* 2495 * Initialize the protocols module. 2496 */ 2497 2498 init_inodecache(); 2499 2500 err = register_filesystem(&sock_fs_type); 2501 if (err) 2502 goto out_fs; 2503 sock_mnt = kern_mount(&sock_fs_type); 2504 if (IS_ERR(sock_mnt)) { 2505 err = PTR_ERR(sock_mnt); 2506 goto out_mount; 2507 } 2508 2509 /* The real protocol initialization is performed in later initcalls. 2510 */ 2511 2512 #ifdef CONFIG_NETFILTER 2513 err = netfilter_init(); 2514 if (err) 2515 goto out; 2516 #endif 2517 2518 ptp_classifier_init(); 2519 2520 out: 2521 return err; 2522 2523 out_mount: 2524 unregister_filesystem(&sock_fs_type); 2525 out_fs: 2526 goto out; 2527 } 2528 2529 core_initcall(sock_init); /* early initcall */ 2530 2531 #ifdef CONFIG_PROC_FS 2532 void socket_seq_show(struct seq_file *seq) 2533 { 2534 int cpu; 2535 int counter = 0; 2536 2537 for_each_possible_cpu(cpu) 2538 counter += per_cpu(sockets_in_use, cpu); 2539 2540 /* It can be negative, by the way. 8) */ 2541 if (counter < 0) 2542 counter = 0; 2543 2544 seq_printf(seq, "sockets: used %d\n", counter); 2545 } 2546 #endif /* CONFIG_PROC_FS */ 2547 2548 #ifdef CONFIG_COMPAT 2549 static int do_siocgstamp(struct net *net, struct socket *sock, 2550 unsigned int cmd, void __user *up) 2551 { 2552 mm_segment_t old_fs = get_fs(); 2553 struct timeval ktv; 2554 int err; 2555 2556 set_fs(KERNEL_DS); 2557 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2558 set_fs(old_fs); 2559 if (!err) 2560 err = compat_put_timeval(&ktv, up); 2561 2562 return err; 2563 } 2564 2565 static int do_siocgstampns(struct net *net, struct socket *sock, 2566 unsigned int cmd, void __user *up) 2567 { 2568 mm_segment_t old_fs = get_fs(); 2569 struct timespec kts; 2570 int err; 2571 2572 set_fs(KERNEL_DS); 2573 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2574 set_fs(old_fs); 2575 if (!err) 2576 err = compat_put_timespec(&kts, up); 2577 2578 return err; 2579 } 2580 2581 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2582 { 2583 struct ifreq __user *uifr; 2584 int err; 2585 2586 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2587 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2588 return -EFAULT; 2589 2590 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2591 if (err) 2592 return err; 2593 2594 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2595 return -EFAULT; 2596 2597 return 0; 2598 } 2599 2600 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2601 { 2602 struct compat_ifconf ifc32; 2603 struct ifconf ifc; 2604 struct ifconf __user *uifc; 2605 struct compat_ifreq __user *ifr32; 2606 struct ifreq __user *ifr; 2607 unsigned int i, j; 2608 int err; 2609 2610 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2611 return -EFAULT; 2612 2613 memset(&ifc, 0, sizeof(ifc)); 2614 if (ifc32.ifcbuf == 0) { 2615 ifc32.ifc_len = 0; 2616 ifc.ifc_len = 0; 2617 ifc.ifc_req = NULL; 2618 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2619 } else { 2620 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2621 sizeof(struct ifreq); 2622 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2623 ifc.ifc_len = len; 2624 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2625 ifr32 = compat_ptr(ifc32.ifcbuf); 2626 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2627 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2628 return -EFAULT; 2629 ifr++; 2630 ifr32++; 2631 } 2632 } 2633 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2634 return -EFAULT; 2635 2636 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2637 if (err) 2638 return err; 2639 2640 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2641 return -EFAULT; 2642 2643 ifr = ifc.ifc_req; 2644 ifr32 = compat_ptr(ifc32.ifcbuf); 2645 for (i = 0, j = 0; 2646 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2647 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2648 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2649 return -EFAULT; 2650 ifr32++; 2651 ifr++; 2652 } 2653 2654 if (ifc32.ifcbuf == 0) { 2655 /* Translate from 64-bit structure multiple to 2656 * a 32-bit one. 2657 */ 2658 i = ifc.ifc_len; 2659 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2660 ifc32.ifc_len = i; 2661 } else { 2662 ifc32.ifc_len = i; 2663 } 2664 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2665 return -EFAULT; 2666 2667 return 0; 2668 } 2669 2670 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2671 { 2672 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2673 bool convert_in = false, convert_out = false; 2674 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2675 struct ethtool_rxnfc __user *rxnfc; 2676 struct ifreq __user *ifr; 2677 u32 rule_cnt = 0, actual_rule_cnt; 2678 u32 ethcmd; 2679 u32 data; 2680 int ret; 2681 2682 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2683 return -EFAULT; 2684 2685 compat_rxnfc = compat_ptr(data); 2686 2687 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2688 return -EFAULT; 2689 2690 /* Most ethtool structures are defined without padding. 2691 * Unfortunately struct ethtool_rxnfc is an exception. 2692 */ 2693 switch (ethcmd) { 2694 default: 2695 break; 2696 case ETHTOOL_GRXCLSRLALL: 2697 /* Buffer size is variable */ 2698 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2699 return -EFAULT; 2700 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2701 return -ENOMEM; 2702 buf_size += rule_cnt * sizeof(u32); 2703 /* fall through */ 2704 case ETHTOOL_GRXRINGS: 2705 case ETHTOOL_GRXCLSRLCNT: 2706 case ETHTOOL_GRXCLSRULE: 2707 case ETHTOOL_SRXCLSRLINS: 2708 convert_out = true; 2709 /* fall through */ 2710 case ETHTOOL_SRXCLSRLDEL: 2711 buf_size += sizeof(struct ethtool_rxnfc); 2712 convert_in = true; 2713 break; 2714 } 2715 2716 ifr = compat_alloc_user_space(buf_size); 2717 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2718 2719 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2720 return -EFAULT; 2721 2722 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2723 &ifr->ifr_ifru.ifru_data)) 2724 return -EFAULT; 2725 2726 if (convert_in) { 2727 /* We expect there to be holes between fs.m_ext and 2728 * fs.ring_cookie and at the end of fs, but nowhere else. 2729 */ 2730 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2731 sizeof(compat_rxnfc->fs.m_ext) != 2732 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2733 sizeof(rxnfc->fs.m_ext)); 2734 BUILD_BUG_ON( 2735 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2736 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2737 offsetof(struct ethtool_rxnfc, fs.location) - 2738 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2739 2740 if (copy_in_user(rxnfc, compat_rxnfc, 2741 (void __user *)(&rxnfc->fs.m_ext + 1) - 2742 (void __user *)rxnfc) || 2743 copy_in_user(&rxnfc->fs.ring_cookie, 2744 &compat_rxnfc->fs.ring_cookie, 2745 (void __user *)(&rxnfc->fs.location + 1) - 2746 (void __user *)&rxnfc->fs.ring_cookie) || 2747 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2748 sizeof(rxnfc->rule_cnt))) 2749 return -EFAULT; 2750 } 2751 2752 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2753 if (ret) 2754 return ret; 2755 2756 if (convert_out) { 2757 if (copy_in_user(compat_rxnfc, rxnfc, 2758 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2759 (const void __user *)rxnfc) || 2760 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2761 &rxnfc->fs.ring_cookie, 2762 (const void __user *)(&rxnfc->fs.location + 1) - 2763 (const void __user *)&rxnfc->fs.ring_cookie) || 2764 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2765 sizeof(rxnfc->rule_cnt))) 2766 return -EFAULT; 2767 2768 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2769 /* As an optimisation, we only copy the actual 2770 * number of rules that the underlying 2771 * function returned. Since Mallory might 2772 * change the rule count in user memory, we 2773 * check that it is less than the rule count 2774 * originally given (as the user buffer size), 2775 * which has been range-checked. 2776 */ 2777 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2778 return -EFAULT; 2779 if (actual_rule_cnt < rule_cnt) 2780 rule_cnt = actual_rule_cnt; 2781 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2782 &rxnfc->rule_locs[0], 2783 rule_cnt * sizeof(u32))) 2784 return -EFAULT; 2785 } 2786 } 2787 2788 return 0; 2789 } 2790 2791 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2792 { 2793 void __user *uptr; 2794 compat_uptr_t uptr32; 2795 struct ifreq __user *uifr; 2796 2797 uifr = compat_alloc_user_space(sizeof(*uifr)); 2798 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2799 return -EFAULT; 2800 2801 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2802 return -EFAULT; 2803 2804 uptr = compat_ptr(uptr32); 2805 2806 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2807 return -EFAULT; 2808 2809 return dev_ioctl(net, SIOCWANDEV, uifr); 2810 } 2811 2812 static int bond_ioctl(struct net *net, unsigned int cmd, 2813 struct compat_ifreq __user *ifr32) 2814 { 2815 struct ifreq kifr; 2816 mm_segment_t old_fs; 2817 int err; 2818 2819 switch (cmd) { 2820 case SIOCBONDENSLAVE: 2821 case SIOCBONDRELEASE: 2822 case SIOCBONDSETHWADDR: 2823 case SIOCBONDCHANGEACTIVE: 2824 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2825 return -EFAULT; 2826 2827 old_fs = get_fs(); 2828 set_fs(KERNEL_DS); 2829 err = dev_ioctl(net, cmd, 2830 (struct ifreq __user __force *) &kifr); 2831 set_fs(old_fs); 2832 2833 return err; 2834 default: 2835 return -ENOIOCTLCMD; 2836 } 2837 } 2838 2839 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2840 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2841 struct compat_ifreq __user *u_ifreq32) 2842 { 2843 struct ifreq __user *u_ifreq64; 2844 char tmp_buf[IFNAMSIZ]; 2845 void __user *data64; 2846 u32 data32; 2847 2848 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2849 IFNAMSIZ)) 2850 return -EFAULT; 2851 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2852 return -EFAULT; 2853 data64 = compat_ptr(data32); 2854 2855 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2856 2857 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2858 IFNAMSIZ)) 2859 return -EFAULT; 2860 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2861 return -EFAULT; 2862 2863 return dev_ioctl(net, cmd, u_ifreq64); 2864 } 2865 2866 static int dev_ifsioc(struct net *net, struct socket *sock, 2867 unsigned int cmd, struct compat_ifreq __user *uifr32) 2868 { 2869 struct ifreq __user *uifr; 2870 int err; 2871 2872 uifr = compat_alloc_user_space(sizeof(*uifr)); 2873 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2874 return -EFAULT; 2875 2876 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2877 2878 if (!err) { 2879 switch (cmd) { 2880 case SIOCGIFFLAGS: 2881 case SIOCGIFMETRIC: 2882 case SIOCGIFMTU: 2883 case SIOCGIFMEM: 2884 case SIOCGIFHWADDR: 2885 case SIOCGIFINDEX: 2886 case SIOCGIFADDR: 2887 case SIOCGIFBRDADDR: 2888 case SIOCGIFDSTADDR: 2889 case SIOCGIFNETMASK: 2890 case SIOCGIFPFLAGS: 2891 case SIOCGIFTXQLEN: 2892 case SIOCGMIIPHY: 2893 case SIOCGMIIREG: 2894 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2895 err = -EFAULT; 2896 break; 2897 } 2898 } 2899 return err; 2900 } 2901 2902 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2903 struct compat_ifreq __user *uifr32) 2904 { 2905 struct ifreq ifr; 2906 struct compat_ifmap __user *uifmap32; 2907 mm_segment_t old_fs; 2908 int err; 2909 2910 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2911 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2912 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2913 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2914 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2915 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2916 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2917 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2918 if (err) 2919 return -EFAULT; 2920 2921 old_fs = get_fs(); 2922 set_fs(KERNEL_DS); 2923 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2924 set_fs(old_fs); 2925 2926 if (cmd == SIOCGIFMAP && !err) { 2927 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2928 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2929 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2930 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2931 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2932 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2933 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2934 if (err) 2935 err = -EFAULT; 2936 } 2937 return err; 2938 } 2939 2940 struct rtentry32 { 2941 u32 rt_pad1; 2942 struct sockaddr rt_dst; /* target address */ 2943 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2944 struct sockaddr rt_genmask; /* target network mask (IP) */ 2945 unsigned short rt_flags; 2946 short rt_pad2; 2947 u32 rt_pad3; 2948 unsigned char rt_tos; 2949 unsigned char rt_class; 2950 short rt_pad4; 2951 short rt_metric; /* +1 for binary compatibility! */ 2952 /* char * */ u32 rt_dev; /* forcing the device at add */ 2953 u32 rt_mtu; /* per route MTU/Window */ 2954 u32 rt_window; /* Window clamping */ 2955 unsigned short rt_irtt; /* Initial RTT */ 2956 }; 2957 2958 struct in6_rtmsg32 { 2959 struct in6_addr rtmsg_dst; 2960 struct in6_addr rtmsg_src; 2961 struct in6_addr rtmsg_gateway; 2962 u32 rtmsg_type; 2963 u16 rtmsg_dst_len; 2964 u16 rtmsg_src_len; 2965 u32 rtmsg_metric; 2966 u32 rtmsg_info; 2967 u32 rtmsg_flags; 2968 s32 rtmsg_ifindex; 2969 }; 2970 2971 static int routing_ioctl(struct net *net, struct socket *sock, 2972 unsigned int cmd, void __user *argp) 2973 { 2974 int ret; 2975 void *r = NULL; 2976 struct in6_rtmsg r6; 2977 struct rtentry r4; 2978 char devname[16]; 2979 u32 rtdev; 2980 mm_segment_t old_fs = get_fs(); 2981 2982 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2983 struct in6_rtmsg32 __user *ur6 = argp; 2984 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2985 3 * sizeof(struct in6_addr)); 2986 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2987 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2988 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2989 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2990 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2991 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2992 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2993 2994 r = (void *) &r6; 2995 } else { /* ipv4 */ 2996 struct rtentry32 __user *ur4 = argp; 2997 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2998 3 * sizeof(struct sockaddr)); 2999 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3000 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3001 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3002 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3003 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3004 ret |= get_user(rtdev, &(ur4->rt_dev)); 3005 if (rtdev) { 3006 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3007 r4.rt_dev = (char __user __force *)devname; 3008 devname[15] = 0; 3009 } else 3010 r4.rt_dev = NULL; 3011 3012 r = (void *) &r4; 3013 } 3014 3015 if (ret) { 3016 ret = -EFAULT; 3017 goto out; 3018 } 3019 3020 set_fs(KERNEL_DS); 3021 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3022 set_fs(old_fs); 3023 3024 out: 3025 return ret; 3026 } 3027 3028 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3029 * for some operations; this forces use of the newer bridge-utils that 3030 * use compatible ioctls 3031 */ 3032 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3033 { 3034 compat_ulong_t tmp; 3035 3036 if (get_user(tmp, argp)) 3037 return -EFAULT; 3038 if (tmp == BRCTL_GET_VERSION) 3039 return BRCTL_VERSION + 1; 3040 return -EINVAL; 3041 } 3042 3043 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3044 unsigned int cmd, unsigned long arg) 3045 { 3046 void __user *argp = compat_ptr(arg); 3047 struct sock *sk = sock->sk; 3048 struct net *net = sock_net(sk); 3049 3050 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3051 return compat_ifr_data_ioctl(net, cmd, argp); 3052 3053 switch (cmd) { 3054 case SIOCSIFBR: 3055 case SIOCGIFBR: 3056 return old_bridge_ioctl(argp); 3057 case SIOCGIFNAME: 3058 return dev_ifname32(net, argp); 3059 case SIOCGIFCONF: 3060 return dev_ifconf(net, argp); 3061 case SIOCETHTOOL: 3062 return ethtool_ioctl(net, argp); 3063 case SIOCWANDEV: 3064 return compat_siocwandev(net, argp); 3065 case SIOCGIFMAP: 3066 case SIOCSIFMAP: 3067 return compat_sioc_ifmap(net, cmd, argp); 3068 case SIOCBONDENSLAVE: 3069 case SIOCBONDRELEASE: 3070 case SIOCBONDSETHWADDR: 3071 case SIOCBONDCHANGEACTIVE: 3072 return bond_ioctl(net, cmd, argp); 3073 case SIOCADDRT: 3074 case SIOCDELRT: 3075 return routing_ioctl(net, sock, cmd, argp); 3076 case SIOCGSTAMP: 3077 return do_siocgstamp(net, sock, cmd, argp); 3078 case SIOCGSTAMPNS: 3079 return do_siocgstampns(net, sock, cmd, argp); 3080 case SIOCBONDSLAVEINFOQUERY: 3081 case SIOCBONDINFOQUERY: 3082 case SIOCSHWTSTAMP: 3083 case SIOCGHWTSTAMP: 3084 return compat_ifr_data_ioctl(net, cmd, argp); 3085 3086 case FIOSETOWN: 3087 case SIOCSPGRP: 3088 case FIOGETOWN: 3089 case SIOCGPGRP: 3090 case SIOCBRADDBR: 3091 case SIOCBRDELBR: 3092 case SIOCGIFVLAN: 3093 case SIOCSIFVLAN: 3094 case SIOCADDDLCI: 3095 case SIOCDELDLCI: 3096 return sock_ioctl(file, cmd, arg); 3097 3098 case SIOCGIFFLAGS: 3099 case SIOCSIFFLAGS: 3100 case SIOCGIFMETRIC: 3101 case SIOCSIFMETRIC: 3102 case SIOCGIFMTU: 3103 case SIOCSIFMTU: 3104 case SIOCGIFMEM: 3105 case SIOCSIFMEM: 3106 case SIOCGIFHWADDR: 3107 case SIOCSIFHWADDR: 3108 case SIOCADDMULTI: 3109 case SIOCDELMULTI: 3110 case SIOCGIFINDEX: 3111 case SIOCGIFADDR: 3112 case SIOCSIFADDR: 3113 case SIOCSIFHWBROADCAST: 3114 case SIOCDIFADDR: 3115 case SIOCGIFBRDADDR: 3116 case SIOCSIFBRDADDR: 3117 case SIOCGIFDSTADDR: 3118 case SIOCSIFDSTADDR: 3119 case SIOCGIFNETMASK: 3120 case SIOCSIFNETMASK: 3121 case SIOCSIFPFLAGS: 3122 case SIOCGIFPFLAGS: 3123 case SIOCGIFTXQLEN: 3124 case SIOCSIFTXQLEN: 3125 case SIOCBRADDIF: 3126 case SIOCBRDELIF: 3127 case SIOCSIFNAME: 3128 case SIOCGMIIPHY: 3129 case SIOCGMIIREG: 3130 case SIOCSMIIREG: 3131 return dev_ifsioc(net, sock, cmd, argp); 3132 3133 case SIOCSARP: 3134 case SIOCGARP: 3135 case SIOCDARP: 3136 case SIOCATMARK: 3137 return sock_do_ioctl(net, sock, cmd, arg); 3138 } 3139 3140 return -ENOIOCTLCMD; 3141 } 3142 3143 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3144 unsigned long arg) 3145 { 3146 struct socket *sock = file->private_data; 3147 int ret = -ENOIOCTLCMD; 3148 struct sock *sk; 3149 struct net *net; 3150 3151 sk = sock->sk; 3152 net = sock_net(sk); 3153 3154 if (sock->ops->compat_ioctl) 3155 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3156 3157 if (ret == -ENOIOCTLCMD && 3158 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3159 ret = compat_wext_handle_ioctl(net, cmd, arg); 3160 3161 if (ret == -ENOIOCTLCMD) 3162 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3163 3164 return ret; 3165 } 3166 #endif 3167 3168 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3169 { 3170 return sock->ops->bind(sock, addr, addrlen); 3171 } 3172 EXPORT_SYMBOL(kernel_bind); 3173 3174 int kernel_listen(struct socket *sock, int backlog) 3175 { 3176 return sock->ops->listen(sock, backlog); 3177 } 3178 EXPORT_SYMBOL(kernel_listen); 3179 3180 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3181 { 3182 struct sock *sk = sock->sk; 3183 int err; 3184 3185 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3186 newsock); 3187 if (err < 0) 3188 goto done; 3189 3190 err = sock->ops->accept(sock, *newsock, flags); 3191 if (err < 0) { 3192 sock_release(*newsock); 3193 *newsock = NULL; 3194 goto done; 3195 } 3196 3197 (*newsock)->ops = sock->ops; 3198 __module_get((*newsock)->ops->owner); 3199 3200 done: 3201 return err; 3202 } 3203 EXPORT_SYMBOL(kernel_accept); 3204 3205 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3206 int flags) 3207 { 3208 return sock->ops->connect(sock, addr, addrlen, flags); 3209 } 3210 EXPORT_SYMBOL(kernel_connect); 3211 3212 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3213 int *addrlen) 3214 { 3215 return sock->ops->getname(sock, addr, addrlen, 0); 3216 } 3217 EXPORT_SYMBOL(kernel_getsockname); 3218 3219 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3220 int *addrlen) 3221 { 3222 return sock->ops->getname(sock, addr, addrlen, 1); 3223 } 3224 EXPORT_SYMBOL(kernel_getpeername); 3225 3226 int kernel_getsockopt(struct socket *sock, int level, int optname, 3227 char *optval, int *optlen) 3228 { 3229 mm_segment_t oldfs = get_fs(); 3230 char __user *uoptval; 3231 int __user *uoptlen; 3232 int err; 3233 3234 uoptval = (char __user __force *) optval; 3235 uoptlen = (int __user __force *) optlen; 3236 3237 set_fs(KERNEL_DS); 3238 if (level == SOL_SOCKET) 3239 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3240 else 3241 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3242 uoptlen); 3243 set_fs(oldfs); 3244 return err; 3245 } 3246 EXPORT_SYMBOL(kernel_getsockopt); 3247 3248 int kernel_setsockopt(struct socket *sock, int level, int optname, 3249 char *optval, unsigned int optlen) 3250 { 3251 mm_segment_t oldfs = get_fs(); 3252 char __user *uoptval; 3253 int err; 3254 3255 uoptval = (char __user __force *) optval; 3256 3257 set_fs(KERNEL_DS); 3258 if (level == SOL_SOCKET) 3259 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3260 else 3261 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3262 optlen); 3263 set_fs(oldfs); 3264 return err; 3265 } 3266 EXPORT_SYMBOL(kernel_setsockopt); 3267 3268 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3269 size_t size, int flags) 3270 { 3271 if (sock->ops->sendpage) 3272 return sock->ops->sendpage(sock, page, offset, size, flags); 3273 3274 return sock_no_sendpage(sock, page, offset, size, flags); 3275 } 3276 EXPORT_SYMBOL(kernel_sendpage); 3277 3278 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3279 { 3280 mm_segment_t oldfs = get_fs(); 3281 int err; 3282 3283 set_fs(KERNEL_DS); 3284 err = sock->ops->ioctl(sock, cmd, arg); 3285 set_fs(oldfs); 3286 3287 return err; 3288 } 3289 EXPORT_SYMBOL(kernel_sock_ioctl); 3290 3291 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3292 { 3293 return sock->ops->shutdown(sock, how); 3294 } 3295 EXPORT_SYMBOL(kernel_sock_shutdown); 3296