xref: /linux/net/socket.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct file *file;
390 
391 	if (!dname)
392 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 				O_RDWR | (flags & O_NONBLOCK),
396 				&socket_file_ops);
397 	if (IS_ERR(file)) {
398 		sock_release(sock);
399 		return file;
400 	}
401 
402 	sock->file = file;
403 	file->private_data = sock;
404 	return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410 	struct file *newfile;
411 	int fd = get_unused_fd_flags(flags);
412 	if (unlikely(fd < 0)) {
413 		sock_release(sock);
414 		return fd;
415 	}
416 
417 	newfile = sock_alloc_file(sock, flags, NULL);
418 	if (likely(!IS_ERR(newfile))) {
419 		fd_install(fd, newfile);
420 		return fd;
421 	}
422 
423 	put_unused_fd(fd);
424 	return PTR_ERR(newfile);
425 }
426 
427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429 	if (file->f_op == &socket_file_ops)
430 		return file->private_data;	/* set in sock_map_fd */
431 
432 	*err = -ENOTSOCK;
433 	return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *	sockfd_lookup - Go from a file number to its socket slot
439  *	@fd: file handle
440  *	@err: pointer to an error code return
441  *
442  *	The file handle passed in is locked and the socket it is bound
443  *	to is returned. If an error occurs the err pointer is overwritten
444  *	with a negative errno code and NULL is returned. The function checks
445  *	for both invalid handles and passing a handle which is not a socket.
446  *
447  *	On a success the socket object pointer is returned.
448  */
449 
450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	file = fget(fd);
456 	if (!file) {
457 		*err = -EBADF;
458 		return NULL;
459 	}
460 
461 	sock = sock_from_file(file, err);
462 	if (!sock)
463 		fput(file);
464 	return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470 	struct fd f = fdget(fd);
471 	struct socket *sock;
472 
473 	*err = -EBADF;
474 	if (f.file) {
475 		sock = sock_from_file(f.file, err);
476 		if (likely(sock)) {
477 			*fput_needed = f.flags;
478 			return sock;
479 		}
480 		fdput(f);
481 	}
482 	return NULL;
483 }
484 
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 				size_t size)
487 {
488 	ssize_t len;
489 	ssize_t used = 0;
490 
491 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 	if (len < 0)
493 		return len;
494 	used += len;
495 	if (buffer) {
496 		if (size < used)
497 			return -ERANGE;
498 		buffer += len;
499 	}
500 
501 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 		buffer += len;
508 	}
509 
510 	return used;
511 }
512 
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515 	int err = simple_setattr(dentry, iattr);
516 
517 	if (!err && (iattr->ia_valid & ATTR_UID)) {
518 		struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520 		if (sock->sk)
521 			sock->sk->sk_uid = iattr->ia_uid;
522 		else
523 			err = -ENOENT;
524 	}
525 
526 	return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
542 struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	inode->i_ino = get_next_ino();
554 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 	inode->i_uid = current_fsuid();
556 	inode->i_gid = current_fsgid();
557 	inode->i_op = &sockfs_inode_ops;
558 
559 	return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *	sock_release	-	close a socket
565  *	@sock: socket to close
566  *
567  *	The socket is released from the protocol stack if it has a release
568  *	callback, and the inode is then released if the socket is bound to
569  *	an inode not a file.
570  */
571 
572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574 	if (sock->ops) {
575 		struct module *owner = sock->ops->owner;
576 
577 		if (inode)
578 			inode_lock(inode);
579 		sock->ops->release(sock);
580 		sock->sk = NULL;
581 		if (inode)
582 			inode_unlock(inode);
583 		sock->ops = NULL;
584 		module_put(owner);
585 	}
586 
587 	if (sock->wq->fasync_list)
588 		pr_err("%s: fasync list not empty!\n", __func__);
589 
590 	if (!sock->file) {
591 		iput(SOCK_INODE(sock));
592 		return;
593 	}
594 	sock->file = NULL;
595 }
596 
597 void sock_release(struct socket *sock)
598 {
599 	__sock_release(sock, NULL);
600 }
601 EXPORT_SYMBOL(sock_release);
602 
603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 {
605 	u8 flags = *tx_flags;
606 
607 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
608 		flags |= SKBTX_HW_TSTAMP;
609 
610 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
611 		flags |= SKBTX_SW_TSTAMP;
612 
613 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
614 		flags |= SKBTX_SCHED_TSTAMP;
615 
616 	*tx_flags = flags;
617 }
618 EXPORT_SYMBOL(__sock_tx_timestamp);
619 
620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 {
622 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
623 	BUG_ON(ret == -EIOCBQUEUED);
624 	return ret;
625 }
626 
627 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 {
629 	int err = security_socket_sendmsg(sock, msg,
630 					  msg_data_left(msg));
631 
632 	return err ?: sock_sendmsg_nosec(sock, msg);
633 }
634 EXPORT_SYMBOL(sock_sendmsg);
635 
636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
637 		   struct kvec *vec, size_t num, size_t size)
638 {
639 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
640 	return sock_sendmsg(sock, msg);
641 }
642 EXPORT_SYMBOL(kernel_sendmsg);
643 
644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
645 			  struct kvec *vec, size_t num, size_t size)
646 {
647 	struct socket *sock = sk->sk_socket;
648 
649 	if (!sock->ops->sendmsg_locked)
650 		return sock_no_sendmsg_locked(sk, msg, size);
651 
652 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
653 
654 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
655 }
656 EXPORT_SYMBOL(kernel_sendmsg_locked);
657 
658 static bool skb_is_err_queue(const struct sk_buff *skb)
659 {
660 	/* pkt_type of skbs enqueued on the error queue are set to
661 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
662 	 * in recvmsg, since skbs received on a local socket will never
663 	 * have a pkt_type of PACKET_OUTGOING.
664 	 */
665 	return skb->pkt_type == PACKET_OUTGOING;
666 }
667 
668 /* On transmit, software and hardware timestamps are returned independently.
669  * As the two skb clones share the hardware timestamp, which may be updated
670  * before the software timestamp is received, a hardware TX timestamp may be
671  * returned only if there is no software TX timestamp. Ignore false software
672  * timestamps, which may be made in the __sock_recv_timestamp() call when the
673  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
674  * hardware timestamp.
675  */
676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
677 {
678 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
679 }
680 
681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
682 {
683 	struct scm_ts_pktinfo ts_pktinfo;
684 	struct net_device *orig_dev;
685 
686 	if (!skb_mac_header_was_set(skb))
687 		return;
688 
689 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
690 
691 	rcu_read_lock();
692 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
693 	if (orig_dev)
694 		ts_pktinfo.if_index = orig_dev->ifindex;
695 	rcu_read_unlock();
696 
697 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
698 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
699 		 sizeof(ts_pktinfo), &ts_pktinfo);
700 }
701 
702 /*
703  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704  */
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 	struct sk_buff *skb)
707 {
708 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
710 	struct scm_timestamping_internal tss;
711 
712 	int empty = 1, false_tstamp = 0;
713 	struct skb_shared_hwtstamps *shhwtstamps =
714 		skb_hwtstamps(skb);
715 
716 	/* Race occurred between timestamp enabling and packet
717 	   receiving.  Fill in the current time for now. */
718 	if (need_software_tstamp && skb->tstamp == 0) {
719 		__net_timestamp(skb);
720 		false_tstamp = 1;
721 	}
722 
723 	if (need_software_tstamp) {
724 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
725 			if (new_tstamp) {
726 				struct __kernel_sock_timeval tv;
727 
728 				skb_get_new_timestamp(skb, &tv);
729 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
730 					 sizeof(tv), &tv);
731 			} else {
732 				struct __kernel_old_timeval tv;
733 
734 				skb_get_timestamp(skb, &tv);
735 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
736 					 sizeof(tv), &tv);
737 			}
738 		} else {
739 			if (new_tstamp) {
740 				struct __kernel_timespec ts;
741 
742 				skb_get_new_timestampns(skb, &ts);
743 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
744 					 sizeof(ts), &ts);
745 			} else {
746 				struct timespec ts;
747 
748 				skb_get_timestampns(skb, &ts);
749 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
750 					 sizeof(ts), &ts);
751 			}
752 		}
753 	}
754 
755 	memset(&tss, 0, sizeof(tss));
756 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
757 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
758 		empty = 0;
759 	if (shhwtstamps &&
760 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
761 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
762 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
763 		empty = 0;
764 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
765 		    !skb_is_err_queue(skb))
766 			put_ts_pktinfo(msg, skb);
767 	}
768 	if (!empty) {
769 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
770 			put_cmsg_scm_timestamping64(msg, &tss);
771 		else
772 			put_cmsg_scm_timestamping(msg, &tss);
773 
774 		if (skb_is_err_queue(skb) && skb->len &&
775 		    SKB_EXT_ERR(skb)->opt_stats)
776 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
777 				 skb->len, skb->data);
778 	}
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
781 
782 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
783 	struct sk_buff *skb)
784 {
785 	int ack;
786 
787 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
788 		return;
789 	if (!skb->wifi_acked_valid)
790 		return;
791 
792 	ack = skb->wifi_acked;
793 
794 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
795 }
796 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
797 
798 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
799 				   struct sk_buff *skb)
800 {
801 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
802 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
803 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
804 }
805 
806 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
807 	struct sk_buff *skb)
808 {
809 	sock_recv_timestamp(msg, sk, skb);
810 	sock_recv_drops(msg, sk, skb);
811 }
812 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
813 
814 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
815 				     int flags)
816 {
817 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
818 }
819 
820 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
821 {
822 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
823 
824 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
825 }
826 EXPORT_SYMBOL(sock_recvmsg);
827 
828 /**
829  * kernel_recvmsg - Receive a message from a socket (kernel space)
830  * @sock:       The socket to receive the message from
831  * @msg:        Received message
832  * @vec:        Input s/g array for message data
833  * @num:        Size of input s/g array
834  * @size:       Number of bytes to read
835  * @flags:      Message flags (MSG_DONTWAIT, etc...)
836  *
837  * On return the msg structure contains the scatter/gather array passed in the
838  * vec argument. The array is modified so that it consists of the unfilled
839  * portion of the original array.
840  *
841  * The returned value is the total number of bytes received, or an error.
842  */
843 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
844 		   struct kvec *vec, size_t num, size_t size, int flags)
845 {
846 	mm_segment_t oldfs = get_fs();
847 	int result;
848 
849 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
850 	set_fs(KERNEL_DS);
851 	result = sock_recvmsg(sock, msg, flags);
852 	set_fs(oldfs);
853 	return result;
854 }
855 EXPORT_SYMBOL(kernel_recvmsg);
856 
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 			     int offset, size_t size, loff_t *ppos, int more)
859 {
860 	struct socket *sock;
861 	int flags;
862 
863 	sock = file->private_data;
864 
865 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 	flags |= more;
868 
869 	return kernel_sendpage(sock, page, offset, size, flags);
870 }
871 
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 				struct pipe_inode_info *pipe, size_t len,
874 				unsigned int flags)
875 {
876 	struct socket *sock = file->private_data;
877 
878 	if (unlikely(!sock->ops->splice_read))
879 		return generic_file_splice_read(file, ppos, pipe, len, flags);
880 
881 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
882 }
883 
884 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
885 {
886 	struct file *file = iocb->ki_filp;
887 	struct socket *sock = file->private_data;
888 	struct msghdr msg = {.msg_iter = *to,
889 			     .msg_iocb = iocb};
890 	ssize_t res;
891 
892 	if (file->f_flags & O_NONBLOCK)
893 		msg.msg_flags = MSG_DONTWAIT;
894 
895 	if (iocb->ki_pos != 0)
896 		return -ESPIPE;
897 
898 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
899 		return 0;
900 
901 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
902 	*to = msg.msg_iter;
903 	return res;
904 }
905 
906 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
907 {
908 	struct file *file = iocb->ki_filp;
909 	struct socket *sock = file->private_data;
910 	struct msghdr msg = {.msg_iter = *from,
911 			     .msg_iocb = iocb};
912 	ssize_t res;
913 
914 	if (iocb->ki_pos != 0)
915 		return -ESPIPE;
916 
917 	if (file->f_flags & O_NONBLOCK)
918 		msg.msg_flags = MSG_DONTWAIT;
919 
920 	if (sock->type == SOCK_SEQPACKET)
921 		msg.msg_flags |= MSG_EOR;
922 
923 	res = sock_sendmsg(sock, &msg);
924 	*from = msg.msg_iter;
925 	return res;
926 }
927 
928 /*
929  * Atomic setting of ioctl hooks to avoid race
930  * with module unload.
931  */
932 
933 static DEFINE_MUTEX(br_ioctl_mutex);
934 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
935 
936 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
937 {
938 	mutex_lock(&br_ioctl_mutex);
939 	br_ioctl_hook = hook;
940 	mutex_unlock(&br_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(brioctl_set);
943 
944 static DEFINE_MUTEX(vlan_ioctl_mutex);
945 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
946 
947 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
948 {
949 	mutex_lock(&vlan_ioctl_mutex);
950 	vlan_ioctl_hook = hook;
951 	mutex_unlock(&vlan_ioctl_mutex);
952 }
953 EXPORT_SYMBOL(vlan_ioctl_set);
954 
955 static DEFINE_MUTEX(dlci_ioctl_mutex);
956 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
957 
958 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
959 {
960 	mutex_lock(&dlci_ioctl_mutex);
961 	dlci_ioctl_hook = hook;
962 	mutex_unlock(&dlci_ioctl_mutex);
963 }
964 EXPORT_SYMBOL(dlci_ioctl_set);
965 
966 static long sock_do_ioctl(struct net *net, struct socket *sock,
967 			  unsigned int cmd, unsigned long arg)
968 {
969 	int err;
970 	void __user *argp = (void __user *)arg;
971 
972 	err = sock->ops->ioctl(sock, cmd, arg);
973 
974 	/*
975 	 * If this ioctl is unknown try to hand it down
976 	 * to the NIC driver.
977 	 */
978 	if (err != -ENOIOCTLCMD)
979 		return err;
980 
981 	if (cmd == SIOCGIFCONF) {
982 		struct ifconf ifc;
983 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
984 			return -EFAULT;
985 		rtnl_lock();
986 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
987 		rtnl_unlock();
988 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
989 			err = -EFAULT;
990 	} else {
991 		struct ifreq ifr;
992 		bool need_copyout;
993 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
994 			return -EFAULT;
995 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
996 		if (!err && need_copyout)
997 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
998 				return -EFAULT;
999 	}
1000 	return err;
1001 }
1002 
1003 /*
1004  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1005  *	what to do with it - that's up to the protocol still.
1006  */
1007 
1008 struct ns_common *get_net_ns(struct ns_common *ns)
1009 {
1010 	return &get_net(container_of(ns, struct net, ns))->ns;
1011 }
1012 EXPORT_SYMBOL_GPL(get_net_ns);
1013 
1014 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1015 {
1016 	struct socket *sock;
1017 	struct sock *sk;
1018 	void __user *argp = (void __user *)arg;
1019 	int pid, err;
1020 	struct net *net;
1021 
1022 	sock = file->private_data;
1023 	sk = sock->sk;
1024 	net = sock_net(sk);
1025 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1026 		struct ifreq ifr;
1027 		bool need_copyout;
1028 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1029 			return -EFAULT;
1030 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1031 		if (!err && need_copyout)
1032 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1033 				return -EFAULT;
1034 	} else
1035 #ifdef CONFIG_WEXT_CORE
1036 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1037 		err = wext_handle_ioctl(net, cmd, argp);
1038 	} else
1039 #endif
1040 		switch (cmd) {
1041 		case FIOSETOWN:
1042 		case SIOCSPGRP:
1043 			err = -EFAULT;
1044 			if (get_user(pid, (int __user *)argp))
1045 				break;
1046 			err = f_setown(sock->file, pid, 1);
1047 			break;
1048 		case FIOGETOWN:
1049 		case SIOCGPGRP:
1050 			err = put_user(f_getown(sock->file),
1051 				       (int __user *)argp);
1052 			break;
1053 		case SIOCGIFBR:
1054 		case SIOCSIFBR:
1055 		case SIOCBRADDBR:
1056 		case SIOCBRDELBR:
1057 			err = -ENOPKG;
1058 			if (!br_ioctl_hook)
1059 				request_module("bridge");
1060 
1061 			mutex_lock(&br_ioctl_mutex);
1062 			if (br_ioctl_hook)
1063 				err = br_ioctl_hook(net, cmd, argp);
1064 			mutex_unlock(&br_ioctl_mutex);
1065 			break;
1066 		case SIOCGIFVLAN:
1067 		case SIOCSIFVLAN:
1068 			err = -ENOPKG;
1069 			if (!vlan_ioctl_hook)
1070 				request_module("8021q");
1071 
1072 			mutex_lock(&vlan_ioctl_mutex);
1073 			if (vlan_ioctl_hook)
1074 				err = vlan_ioctl_hook(net, argp);
1075 			mutex_unlock(&vlan_ioctl_mutex);
1076 			break;
1077 		case SIOCADDDLCI:
1078 		case SIOCDELDLCI:
1079 			err = -ENOPKG;
1080 			if (!dlci_ioctl_hook)
1081 				request_module("dlci");
1082 
1083 			mutex_lock(&dlci_ioctl_mutex);
1084 			if (dlci_ioctl_hook)
1085 				err = dlci_ioctl_hook(cmd, argp);
1086 			mutex_unlock(&dlci_ioctl_mutex);
1087 			break;
1088 		case SIOCGSKNS:
1089 			err = -EPERM;
1090 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1091 				break;
1092 
1093 			err = open_related_ns(&net->ns, get_net_ns);
1094 			break;
1095 		default:
1096 			err = sock_do_ioctl(net, sock, cmd, arg);
1097 			break;
1098 		}
1099 	return err;
1100 }
1101 
1102 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1103 {
1104 	int err;
1105 	struct socket *sock = NULL;
1106 
1107 	err = security_socket_create(family, type, protocol, 1);
1108 	if (err)
1109 		goto out;
1110 
1111 	sock = sock_alloc();
1112 	if (!sock) {
1113 		err = -ENOMEM;
1114 		goto out;
1115 	}
1116 
1117 	sock->type = type;
1118 	err = security_socket_post_create(sock, family, type, protocol, 1);
1119 	if (err)
1120 		goto out_release;
1121 
1122 out:
1123 	*res = sock;
1124 	return err;
1125 out_release:
1126 	sock_release(sock);
1127 	sock = NULL;
1128 	goto out;
1129 }
1130 EXPORT_SYMBOL(sock_create_lite);
1131 
1132 /* No kernel lock held - perfect */
1133 static __poll_t sock_poll(struct file *file, poll_table *wait)
1134 {
1135 	struct socket *sock = file->private_data;
1136 	__poll_t events = poll_requested_events(wait), flag = 0;
1137 
1138 	if (!sock->ops->poll)
1139 		return 0;
1140 
1141 	if (sk_can_busy_loop(sock->sk)) {
1142 		/* poll once if requested by the syscall */
1143 		if (events & POLL_BUSY_LOOP)
1144 			sk_busy_loop(sock->sk, 1);
1145 
1146 		/* if this socket can poll_ll, tell the system call */
1147 		flag = POLL_BUSY_LOOP;
1148 	}
1149 
1150 	return sock->ops->poll(file, sock, wait) | flag;
1151 }
1152 
1153 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1154 {
1155 	struct socket *sock = file->private_data;
1156 
1157 	return sock->ops->mmap(file, sock, vma);
1158 }
1159 
1160 static int sock_close(struct inode *inode, struct file *filp)
1161 {
1162 	__sock_release(SOCKET_I(inode), inode);
1163 	return 0;
1164 }
1165 
1166 /*
1167  *	Update the socket async list
1168  *
1169  *	Fasync_list locking strategy.
1170  *
1171  *	1. fasync_list is modified only under process context socket lock
1172  *	   i.e. under semaphore.
1173  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1174  *	   or under socket lock
1175  */
1176 
1177 static int sock_fasync(int fd, struct file *filp, int on)
1178 {
1179 	struct socket *sock = filp->private_data;
1180 	struct sock *sk = sock->sk;
1181 	struct socket_wq *wq;
1182 
1183 	if (sk == NULL)
1184 		return -EINVAL;
1185 
1186 	lock_sock(sk);
1187 	wq = sock->wq;
1188 	fasync_helper(fd, filp, on, &wq->fasync_list);
1189 
1190 	if (!wq->fasync_list)
1191 		sock_reset_flag(sk, SOCK_FASYNC);
1192 	else
1193 		sock_set_flag(sk, SOCK_FASYNC);
1194 
1195 	release_sock(sk);
1196 	return 0;
1197 }
1198 
1199 /* This function may be called only under rcu_lock */
1200 
1201 int sock_wake_async(struct socket_wq *wq, int how, int band)
1202 {
1203 	if (!wq || !wq->fasync_list)
1204 		return -1;
1205 
1206 	switch (how) {
1207 	case SOCK_WAKE_WAITD:
1208 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1209 			break;
1210 		goto call_kill;
1211 	case SOCK_WAKE_SPACE:
1212 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1213 			break;
1214 		/* fall through */
1215 	case SOCK_WAKE_IO:
1216 call_kill:
1217 		kill_fasync(&wq->fasync_list, SIGIO, band);
1218 		break;
1219 	case SOCK_WAKE_URG:
1220 		kill_fasync(&wq->fasync_list, SIGURG, band);
1221 	}
1222 
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL(sock_wake_async);
1226 
1227 int __sock_create(struct net *net, int family, int type, int protocol,
1228 			 struct socket **res, int kern)
1229 {
1230 	int err;
1231 	struct socket *sock;
1232 	const struct net_proto_family *pf;
1233 
1234 	/*
1235 	 *      Check protocol is in range
1236 	 */
1237 	if (family < 0 || family >= NPROTO)
1238 		return -EAFNOSUPPORT;
1239 	if (type < 0 || type >= SOCK_MAX)
1240 		return -EINVAL;
1241 
1242 	/* Compatibility.
1243 
1244 	   This uglymoron is moved from INET layer to here to avoid
1245 	   deadlock in module load.
1246 	 */
1247 	if (family == PF_INET && type == SOCK_PACKET) {
1248 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1249 			     current->comm);
1250 		family = PF_PACKET;
1251 	}
1252 
1253 	err = security_socket_create(family, type, protocol, kern);
1254 	if (err)
1255 		return err;
1256 
1257 	/*
1258 	 *	Allocate the socket and allow the family to set things up. if
1259 	 *	the protocol is 0, the family is instructed to select an appropriate
1260 	 *	default.
1261 	 */
1262 	sock = sock_alloc();
1263 	if (!sock) {
1264 		net_warn_ratelimited("socket: no more sockets\n");
1265 		return -ENFILE;	/* Not exactly a match, but its the
1266 				   closest posix thing */
1267 	}
1268 
1269 	sock->type = type;
1270 
1271 #ifdef CONFIG_MODULES
1272 	/* Attempt to load a protocol module if the find failed.
1273 	 *
1274 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1275 	 * requested real, full-featured networking support upon configuration.
1276 	 * Otherwise module support will break!
1277 	 */
1278 	if (rcu_access_pointer(net_families[family]) == NULL)
1279 		request_module("net-pf-%d", family);
1280 #endif
1281 
1282 	rcu_read_lock();
1283 	pf = rcu_dereference(net_families[family]);
1284 	err = -EAFNOSUPPORT;
1285 	if (!pf)
1286 		goto out_release;
1287 
1288 	/*
1289 	 * We will call the ->create function, that possibly is in a loadable
1290 	 * module, so we have to bump that loadable module refcnt first.
1291 	 */
1292 	if (!try_module_get(pf->owner))
1293 		goto out_release;
1294 
1295 	/* Now protected by module ref count */
1296 	rcu_read_unlock();
1297 
1298 	err = pf->create(net, sock, protocol, kern);
1299 	if (err < 0)
1300 		goto out_module_put;
1301 
1302 	/*
1303 	 * Now to bump the refcnt of the [loadable] module that owns this
1304 	 * socket at sock_release time we decrement its refcnt.
1305 	 */
1306 	if (!try_module_get(sock->ops->owner))
1307 		goto out_module_busy;
1308 
1309 	/*
1310 	 * Now that we're done with the ->create function, the [loadable]
1311 	 * module can have its refcnt decremented
1312 	 */
1313 	module_put(pf->owner);
1314 	err = security_socket_post_create(sock, family, type, protocol, kern);
1315 	if (err)
1316 		goto out_sock_release;
1317 	*res = sock;
1318 
1319 	return 0;
1320 
1321 out_module_busy:
1322 	err = -EAFNOSUPPORT;
1323 out_module_put:
1324 	sock->ops = NULL;
1325 	module_put(pf->owner);
1326 out_sock_release:
1327 	sock_release(sock);
1328 	return err;
1329 
1330 out_release:
1331 	rcu_read_unlock();
1332 	goto out_sock_release;
1333 }
1334 EXPORT_SYMBOL(__sock_create);
1335 
1336 int sock_create(int family, int type, int protocol, struct socket **res)
1337 {
1338 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1339 }
1340 EXPORT_SYMBOL(sock_create);
1341 
1342 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1343 {
1344 	return __sock_create(net, family, type, protocol, res, 1);
1345 }
1346 EXPORT_SYMBOL(sock_create_kern);
1347 
1348 int __sys_socket(int family, int type, int protocol)
1349 {
1350 	int retval;
1351 	struct socket *sock;
1352 	int flags;
1353 
1354 	/* Check the SOCK_* constants for consistency.  */
1355 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1356 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1357 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1358 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1359 
1360 	flags = type & ~SOCK_TYPE_MASK;
1361 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1362 		return -EINVAL;
1363 	type &= SOCK_TYPE_MASK;
1364 
1365 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1366 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1367 
1368 	retval = sock_create(family, type, protocol, &sock);
1369 	if (retval < 0)
1370 		return retval;
1371 
1372 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1373 }
1374 
1375 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1376 {
1377 	return __sys_socket(family, type, protocol);
1378 }
1379 
1380 /*
1381  *	Create a pair of connected sockets.
1382  */
1383 
1384 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1385 {
1386 	struct socket *sock1, *sock2;
1387 	int fd1, fd2, err;
1388 	struct file *newfile1, *newfile2;
1389 	int flags;
1390 
1391 	flags = type & ~SOCK_TYPE_MASK;
1392 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393 		return -EINVAL;
1394 	type &= SOCK_TYPE_MASK;
1395 
1396 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1398 
1399 	/*
1400 	 * reserve descriptors and make sure we won't fail
1401 	 * to return them to userland.
1402 	 */
1403 	fd1 = get_unused_fd_flags(flags);
1404 	if (unlikely(fd1 < 0))
1405 		return fd1;
1406 
1407 	fd2 = get_unused_fd_flags(flags);
1408 	if (unlikely(fd2 < 0)) {
1409 		put_unused_fd(fd1);
1410 		return fd2;
1411 	}
1412 
1413 	err = put_user(fd1, &usockvec[0]);
1414 	if (err)
1415 		goto out;
1416 
1417 	err = put_user(fd2, &usockvec[1]);
1418 	if (err)
1419 		goto out;
1420 
1421 	/*
1422 	 * Obtain the first socket and check if the underlying protocol
1423 	 * supports the socketpair call.
1424 	 */
1425 
1426 	err = sock_create(family, type, protocol, &sock1);
1427 	if (unlikely(err < 0))
1428 		goto out;
1429 
1430 	err = sock_create(family, type, protocol, &sock2);
1431 	if (unlikely(err < 0)) {
1432 		sock_release(sock1);
1433 		goto out;
1434 	}
1435 
1436 	err = security_socket_socketpair(sock1, sock2);
1437 	if (unlikely(err)) {
1438 		sock_release(sock2);
1439 		sock_release(sock1);
1440 		goto out;
1441 	}
1442 
1443 	err = sock1->ops->socketpair(sock1, sock2);
1444 	if (unlikely(err < 0)) {
1445 		sock_release(sock2);
1446 		sock_release(sock1);
1447 		goto out;
1448 	}
1449 
1450 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1451 	if (IS_ERR(newfile1)) {
1452 		err = PTR_ERR(newfile1);
1453 		sock_release(sock2);
1454 		goto out;
1455 	}
1456 
1457 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1458 	if (IS_ERR(newfile2)) {
1459 		err = PTR_ERR(newfile2);
1460 		fput(newfile1);
1461 		goto out;
1462 	}
1463 
1464 	audit_fd_pair(fd1, fd2);
1465 
1466 	fd_install(fd1, newfile1);
1467 	fd_install(fd2, newfile2);
1468 	return 0;
1469 
1470 out:
1471 	put_unused_fd(fd2);
1472 	put_unused_fd(fd1);
1473 	return err;
1474 }
1475 
1476 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1477 		int __user *, usockvec)
1478 {
1479 	return __sys_socketpair(family, type, protocol, usockvec);
1480 }
1481 
1482 /*
1483  *	Bind a name to a socket. Nothing much to do here since it's
1484  *	the protocol's responsibility to handle the local address.
1485  *
1486  *	We move the socket address to kernel space before we call
1487  *	the protocol layer (having also checked the address is ok).
1488  */
1489 
1490 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1491 {
1492 	struct socket *sock;
1493 	struct sockaddr_storage address;
1494 	int err, fput_needed;
1495 
1496 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 	if (sock) {
1498 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1499 		if (!err) {
1500 			err = security_socket_bind(sock,
1501 						   (struct sockaddr *)&address,
1502 						   addrlen);
1503 			if (!err)
1504 				err = sock->ops->bind(sock,
1505 						      (struct sockaddr *)
1506 						      &address, addrlen);
1507 		}
1508 		fput_light(sock->file, fput_needed);
1509 	}
1510 	return err;
1511 }
1512 
1513 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1514 {
1515 	return __sys_bind(fd, umyaddr, addrlen);
1516 }
1517 
1518 /*
1519  *	Perform a listen. Basically, we allow the protocol to do anything
1520  *	necessary for a listen, and if that works, we mark the socket as
1521  *	ready for listening.
1522  */
1523 
1524 int __sys_listen(int fd, int backlog)
1525 {
1526 	struct socket *sock;
1527 	int err, fput_needed;
1528 	int somaxconn;
1529 
1530 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 	if (sock) {
1532 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1533 		if ((unsigned int)backlog > somaxconn)
1534 			backlog = somaxconn;
1535 
1536 		err = security_socket_listen(sock, backlog);
1537 		if (!err)
1538 			err = sock->ops->listen(sock, backlog);
1539 
1540 		fput_light(sock->file, fput_needed);
1541 	}
1542 	return err;
1543 }
1544 
1545 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1546 {
1547 	return __sys_listen(fd, backlog);
1548 }
1549 
1550 /*
1551  *	For accept, we attempt to create a new socket, set up the link
1552  *	with the client, wake up the client, then return the new
1553  *	connected fd. We collect the address of the connector in kernel
1554  *	space and move it to user at the very end. This is unclean because
1555  *	we open the socket then return an error.
1556  *
1557  *	1003.1g adds the ability to recvmsg() to query connection pending
1558  *	status to recvmsg. We need to add that support in a way thats
1559  *	clean when we restructure accept also.
1560  */
1561 
1562 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1563 		  int __user *upeer_addrlen, int flags)
1564 {
1565 	struct socket *sock, *newsock;
1566 	struct file *newfile;
1567 	int err, len, newfd, fput_needed;
1568 	struct sockaddr_storage address;
1569 
1570 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1571 		return -EINVAL;
1572 
1573 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575 
1576 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 	if (!sock)
1578 		goto out;
1579 
1580 	err = -ENFILE;
1581 	newsock = sock_alloc();
1582 	if (!newsock)
1583 		goto out_put;
1584 
1585 	newsock->type = sock->type;
1586 	newsock->ops = sock->ops;
1587 
1588 	/*
1589 	 * We don't need try_module_get here, as the listening socket (sock)
1590 	 * has the protocol module (sock->ops->owner) held.
1591 	 */
1592 	__module_get(newsock->ops->owner);
1593 
1594 	newfd = get_unused_fd_flags(flags);
1595 	if (unlikely(newfd < 0)) {
1596 		err = newfd;
1597 		sock_release(newsock);
1598 		goto out_put;
1599 	}
1600 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1601 	if (IS_ERR(newfile)) {
1602 		err = PTR_ERR(newfile);
1603 		put_unused_fd(newfd);
1604 		goto out_put;
1605 	}
1606 
1607 	err = security_socket_accept(sock, newsock);
1608 	if (err)
1609 		goto out_fd;
1610 
1611 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1612 	if (err < 0)
1613 		goto out_fd;
1614 
1615 	if (upeer_sockaddr) {
1616 		len = newsock->ops->getname(newsock,
1617 					(struct sockaddr *)&address, 2);
1618 		if (len < 0) {
1619 			err = -ECONNABORTED;
1620 			goto out_fd;
1621 		}
1622 		err = move_addr_to_user(&address,
1623 					len, upeer_sockaddr, upeer_addrlen);
1624 		if (err < 0)
1625 			goto out_fd;
1626 	}
1627 
1628 	/* File flags are not inherited via accept() unlike another OSes. */
1629 
1630 	fd_install(newfd, newfile);
1631 	err = newfd;
1632 
1633 out_put:
1634 	fput_light(sock->file, fput_needed);
1635 out:
1636 	return err;
1637 out_fd:
1638 	fput(newfile);
1639 	put_unused_fd(newfd);
1640 	goto out_put;
1641 }
1642 
1643 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1644 		int __user *, upeer_addrlen, int, flags)
1645 {
1646 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1647 }
1648 
1649 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1650 		int __user *, upeer_addrlen)
1651 {
1652 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1653 }
1654 
1655 /*
1656  *	Attempt to connect to a socket with the server address.  The address
1657  *	is in user space so we verify it is OK and move it to kernel space.
1658  *
1659  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1660  *	break bindings
1661  *
1662  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1663  *	other SEQPACKET protocols that take time to connect() as it doesn't
1664  *	include the -EINPROGRESS status for such sockets.
1665  */
1666 
1667 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err, fput_needed;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (!sock)
1675 		goto out;
1676 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1677 	if (err < 0)
1678 		goto out_put;
1679 
1680 	err =
1681 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1682 	if (err)
1683 		goto out_put;
1684 
1685 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1686 				 sock->file->f_flags);
1687 out_put:
1688 	fput_light(sock->file, fput_needed);
1689 out:
1690 	return err;
1691 }
1692 
1693 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1694 		int, addrlen)
1695 {
1696 	return __sys_connect(fd, uservaddr, addrlen);
1697 }
1698 
1699 /*
1700  *	Get the local address ('name') of a socket object. Move the obtained
1701  *	name to user space.
1702  */
1703 
1704 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1705 		      int __user *usockaddr_len)
1706 {
1707 	struct socket *sock;
1708 	struct sockaddr_storage address;
1709 	int err, fput_needed;
1710 
1711 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 	if (!sock)
1713 		goto out;
1714 
1715 	err = security_socket_getsockname(sock);
1716 	if (err)
1717 		goto out_put;
1718 
1719 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1720 	if (err < 0)
1721 		goto out_put;
1722         /* "err" is actually length in this case */
1723 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1724 
1725 out_put:
1726 	fput_light(sock->file, fput_needed);
1727 out:
1728 	return err;
1729 }
1730 
1731 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1732 		int __user *, usockaddr_len)
1733 {
1734 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1735 }
1736 
1737 /*
1738  *	Get the remote address ('name') of a socket object. Move the obtained
1739  *	name to user space.
1740  */
1741 
1742 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1743 		      int __user *usockaddr_len)
1744 {
1745 	struct socket *sock;
1746 	struct sockaddr_storage address;
1747 	int err, fput_needed;
1748 
1749 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1750 	if (sock != NULL) {
1751 		err = security_socket_getpeername(sock);
1752 		if (err) {
1753 			fput_light(sock->file, fput_needed);
1754 			return err;
1755 		}
1756 
1757 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1758 		if (err >= 0)
1759 			/* "err" is actually length in this case */
1760 			err = move_addr_to_user(&address, err, usockaddr,
1761 						usockaddr_len);
1762 		fput_light(sock->file, fput_needed);
1763 	}
1764 	return err;
1765 }
1766 
1767 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1768 		int __user *, usockaddr_len)
1769 {
1770 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1771 }
1772 
1773 /*
1774  *	Send a datagram to a given address. We move the address into kernel
1775  *	space and check the user space data area is readable before invoking
1776  *	the protocol.
1777  */
1778 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1779 		 struct sockaddr __user *addr,  int addr_len)
1780 {
1781 	struct socket *sock;
1782 	struct sockaddr_storage address;
1783 	int err;
1784 	struct msghdr msg;
1785 	struct iovec iov;
1786 	int fput_needed;
1787 
1788 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1789 	if (unlikely(err))
1790 		return err;
1791 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1792 	if (!sock)
1793 		goto out;
1794 
1795 	msg.msg_name = NULL;
1796 	msg.msg_control = NULL;
1797 	msg.msg_controllen = 0;
1798 	msg.msg_namelen = 0;
1799 	if (addr) {
1800 		err = move_addr_to_kernel(addr, addr_len, &address);
1801 		if (err < 0)
1802 			goto out_put;
1803 		msg.msg_name = (struct sockaddr *)&address;
1804 		msg.msg_namelen = addr_len;
1805 	}
1806 	if (sock->file->f_flags & O_NONBLOCK)
1807 		flags |= MSG_DONTWAIT;
1808 	msg.msg_flags = flags;
1809 	err = sock_sendmsg(sock, &msg);
1810 
1811 out_put:
1812 	fput_light(sock->file, fput_needed);
1813 out:
1814 	return err;
1815 }
1816 
1817 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1818 		unsigned int, flags, struct sockaddr __user *, addr,
1819 		int, addr_len)
1820 {
1821 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1822 }
1823 
1824 /*
1825  *	Send a datagram down a socket.
1826  */
1827 
1828 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1829 		unsigned int, flags)
1830 {
1831 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1832 }
1833 
1834 /*
1835  *	Receive a frame from the socket and optionally record the address of the
1836  *	sender. We verify the buffers are writable and if needed move the
1837  *	sender address from kernel to user space.
1838  */
1839 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1840 		   struct sockaddr __user *addr, int __user *addr_len)
1841 {
1842 	struct socket *sock;
1843 	struct iovec iov;
1844 	struct msghdr msg;
1845 	struct sockaddr_storage address;
1846 	int err, err2;
1847 	int fput_needed;
1848 
1849 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1850 	if (unlikely(err))
1851 		return err;
1852 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 	if (!sock)
1854 		goto out;
1855 
1856 	msg.msg_control = NULL;
1857 	msg.msg_controllen = 0;
1858 	/* Save some cycles and don't copy the address if not needed */
1859 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 	/* We assume all kernel code knows the size of sockaddr_storage */
1861 	msg.msg_namelen = 0;
1862 	msg.msg_iocb = NULL;
1863 	msg.msg_flags = 0;
1864 	if (sock->file->f_flags & O_NONBLOCK)
1865 		flags |= MSG_DONTWAIT;
1866 	err = sock_recvmsg(sock, &msg, flags);
1867 
1868 	if (err >= 0 && addr != NULL) {
1869 		err2 = move_addr_to_user(&address,
1870 					 msg.msg_namelen, addr, addr_len);
1871 		if (err2 < 0)
1872 			err = err2;
1873 	}
1874 
1875 	fput_light(sock->file, fput_needed);
1876 out:
1877 	return err;
1878 }
1879 
1880 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1881 		unsigned int, flags, struct sockaddr __user *, addr,
1882 		int __user *, addr_len)
1883 {
1884 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1885 }
1886 
1887 /*
1888  *	Receive a datagram from a socket.
1889  */
1890 
1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1892 		unsigned int, flags)
1893 {
1894 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 }
1896 
1897 /*
1898  *	Set a socket option. Because we don't know the option lengths we have
1899  *	to pass the user mode parameter for the protocols to sort out.
1900  */
1901 
1902 static int __sys_setsockopt(int fd, int level, int optname,
1903 			    char __user *optval, int optlen)
1904 {
1905 	int err, fput_needed;
1906 	struct socket *sock;
1907 
1908 	if (optlen < 0)
1909 		return -EINVAL;
1910 
1911 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1912 	if (sock != NULL) {
1913 		err = security_socket_setsockopt(sock, level, optname);
1914 		if (err)
1915 			goto out_put;
1916 
1917 		if (level == SOL_SOCKET)
1918 			err =
1919 			    sock_setsockopt(sock, level, optname, optval,
1920 					    optlen);
1921 		else
1922 			err =
1923 			    sock->ops->setsockopt(sock, level, optname, optval,
1924 						  optlen);
1925 out_put:
1926 		fput_light(sock->file, fput_needed);
1927 	}
1928 	return err;
1929 }
1930 
1931 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1932 		char __user *, optval, int, optlen)
1933 {
1934 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1935 }
1936 
1937 /*
1938  *	Get a socket option. Because we don't know the option lengths we have
1939  *	to pass a user mode parameter for the protocols to sort out.
1940  */
1941 
1942 static int __sys_getsockopt(int fd, int level, int optname,
1943 			    char __user *optval, int __user *optlen)
1944 {
1945 	int err, fput_needed;
1946 	struct socket *sock;
1947 
1948 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1949 	if (sock != NULL) {
1950 		err = security_socket_getsockopt(sock, level, optname);
1951 		if (err)
1952 			goto out_put;
1953 
1954 		if (level == SOL_SOCKET)
1955 			err =
1956 			    sock_getsockopt(sock, level, optname, optval,
1957 					    optlen);
1958 		else
1959 			err =
1960 			    sock->ops->getsockopt(sock, level, optname, optval,
1961 						  optlen);
1962 out_put:
1963 		fput_light(sock->file, fput_needed);
1964 	}
1965 	return err;
1966 }
1967 
1968 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1969 		char __user *, optval, int __user *, optlen)
1970 {
1971 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1972 }
1973 
1974 /*
1975  *	Shutdown a socket.
1976  */
1977 
1978 int __sys_shutdown(int fd, int how)
1979 {
1980 	int err, fput_needed;
1981 	struct socket *sock;
1982 
1983 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1984 	if (sock != NULL) {
1985 		err = security_socket_shutdown(sock, how);
1986 		if (!err)
1987 			err = sock->ops->shutdown(sock, how);
1988 		fput_light(sock->file, fput_needed);
1989 	}
1990 	return err;
1991 }
1992 
1993 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1994 {
1995 	return __sys_shutdown(fd, how);
1996 }
1997 
1998 /* A couple of helpful macros for getting the address of the 32/64 bit
1999  * fields which are the same type (int / unsigned) on our platforms.
2000  */
2001 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2002 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2003 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2004 
2005 struct used_address {
2006 	struct sockaddr_storage name;
2007 	unsigned int name_len;
2008 };
2009 
2010 static int copy_msghdr_from_user(struct msghdr *kmsg,
2011 				 struct user_msghdr __user *umsg,
2012 				 struct sockaddr __user **save_addr,
2013 				 struct iovec **iov)
2014 {
2015 	struct user_msghdr msg;
2016 	ssize_t err;
2017 
2018 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2019 		return -EFAULT;
2020 
2021 	kmsg->msg_control = (void __force *)msg.msg_control;
2022 	kmsg->msg_controllen = msg.msg_controllen;
2023 	kmsg->msg_flags = msg.msg_flags;
2024 
2025 	kmsg->msg_namelen = msg.msg_namelen;
2026 	if (!msg.msg_name)
2027 		kmsg->msg_namelen = 0;
2028 
2029 	if (kmsg->msg_namelen < 0)
2030 		return -EINVAL;
2031 
2032 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2033 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2034 
2035 	if (save_addr)
2036 		*save_addr = msg.msg_name;
2037 
2038 	if (msg.msg_name && kmsg->msg_namelen) {
2039 		if (!save_addr) {
2040 			err = move_addr_to_kernel(msg.msg_name,
2041 						  kmsg->msg_namelen,
2042 						  kmsg->msg_name);
2043 			if (err < 0)
2044 				return err;
2045 		}
2046 	} else {
2047 		kmsg->msg_name = NULL;
2048 		kmsg->msg_namelen = 0;
2049 	}
2050 
2051 	if (msg.msg_iovlen > UIO_MAXIOV)
2052 		return -EMSGSIZE;
2053 
2054 	kmsg->msg_iocb = NULL;
2055 
2056 	return import_iovec(save_addr ? READ : WRITE,
2057 			    msg.msg_iov, msg.msg_iovlen,
2058 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2059 }
2060 
2061 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2062 			 struct msghdr *msg_sys, unsigned int flags,
2063 			 struct used_address *used_address,
2064 			 unsigned int allowed_msghdr_flags)
2065 {
2066 	struct compat_msghdr __user *msg_compat =
2067 	    (struct compat_msghdr __user *)msg;
2068 	struct sockaddr_storage address;
2069 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2070 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2071 				__aligned(sizeof(__kernel_size_t));
2072 	/* 20 is size of ipv6_pktinfo */
2073 	unsigned char *ctl_buf = ctl;
2074 	int ctl_len;
2075 	ssize_t err;
2076 
2077 	msg_sys->msg_name = &address;
2078 
2079 	if (MSG_CMSG_COMPAT & flags)
2080 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2081 	else
2082 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2083 	if (err < 0)
2084 		return err;
2085 
2086 	err = -ENOBUFS;
2087 
2088 	if (msg_sys->msg_controllen > INT_MAX)
2089 		goto out_freeiov;
2090 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2091 	ctl_len = msg_sys->msg_controllen;
2092 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2093 		err =
2094 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2095 						     sizeof(ctl));
2096 		if (err)
2097 			goto out_freeiov;
2098 		ctl_buf = msg_sys->msg_control;
2099 		ctl_len = msg_sys->msg_controllen;
2100 	} else if (ctl_len) {
2101 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2102 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2103 		if (ctl_len > sizeof(ctl)) {
2104 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2105 			if (ctl_buf == NULL)
2106 				goto out_freeiov;
2107 		}
2108 		err = -EFAULT;
2109 		/*
2110 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2111 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2112 		 * checking falls down on this.
2113 		 */
2114 		if (copy_from_user(ctl_buf,
2115 				   (void __user __force *)msg_sys->msg_control,
2116 				   ctl_len))
2117 			goto out_freectl;
2118 		msg_sys->msg_control = ctl_buf;
2119 	}
2120 	msg_sys->msg_flags = flags;
2121 
2122 	if (sock->file->f_flags & O_NONBLOCK)
2123 		msg_sys->msg_flags |= MSG_DONTWAIT;
2124 	/*
2125 	 * If this is sendmmsg() and current destination address is same as
2126 	 * previously succeeded address, omit asking LSM's decision.
2127 	 * used_address->name_len is initialized to UINT_MAX so that the first
2128 	 * destination address never matches.
2129 	 */
2130 	if (used_address && msg_sys->msg_name &&
2131 	    used_address->name_len == msg_sys->msg_namelen &&
2132 	    !memcmp(&used_address->name, msg_sys->msg_name,
2133 		    used_address->name_len)) {
2134 		err = sock_sendmsg_nosec(sock, msg_sys);
2135 		goto out_freectl;
2136 	}
2137 	err = sock_sendmsg(sock, msg_sys);
2138 	/*
2139 	 * If this is sendmmsg() and sending to current destination address was
2140 	 * successful, remember it.
2141 	 */
2142 	if (used_address && err >= 0) {
2143 		used_address->name_len = msg_sys->msg_namelen;
2144 		if (msg_sys->msg_name)
2145 			memcpy(&used_address->name, msg_sys->msg_name,
2146 			       used_address->name_len);
2147 	}
2148 
2149 out_freectl:
2150 	if (ctl_buf != ctl)
2151 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2152 out_freeiov:
2153 	kfree(iov);
2154 	return err;
2155 }
2156 
2157 /*
2158  *	BSD sendmsg interface
2159  */
2160 
2161 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2162 		   bool forbid_cmsg_compat)
2163 {
2164 	int fput_needed, err;
2165 	struct msghdr msg_sys;
2166 	struct socket *sock;
2167 
2168 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2169 		return -EINVAL;
2170 
2171 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 	if (!sock)
2173 		goto out;
2174 
2175 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2176 
2177 	fput_light(sock->file, fput_needed);
2178 out:
2179 	return err;
2180 }
2181 
2182 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2183 {
2184 	return __sys_sendmsg(fd, msg, flags, true);
2185 }
2186 
2187 /*
2188  *	Linux sendmmsg interface
2189  */
2190 
2191 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2192 		   unsigned int flags, bool forbid_cmsg_compat)
2193 {
2194 	int fput_needed, err, datagrams;
2195 	struct socket *sock;
2196 	struct mmsghdr __user *entry;
2197 	struct compat_mmsghdr __user *compat_entry;
2198 	struct msghdr msg_sys;
2199 	struct used_address used_address;
2200 	unsigned int oflags = flags;
2201 
2202 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2203 		return -EINVAL;
2204 
2205 	if (vlen > UIO_MAXIOV)
2206 		vlen = UIO_MAXIOV;
2207 
2208 	datagrams = 0;
2209 
2210 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2211 	if (!sock)
2212 		return err;
2213 
2214 	used_address.name_len = UINT_MAX;
2215 	entry = mmsg;
2216 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2217 	err = 0;
2218 	flags |= MSG_BATCH;
2219 
2220 	while (datagrams < vlen) {
2221 		if (datagrams == vlen - 1)
2222 			flags = oflags;
2223 
2224 		if (MSG_CMSG_COMPAT & flags) {
2225 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2226 					     &msg_sys, flags, &used_address, MSG_EOR);
2227 			if (err < 0)
2228 				break;
2229 			err = __put_user(err, &compat_entry->msg_len);
2230 			++compat_entry;
2231 		} else {
2232 			err = ___sys_sendmsg(sock,
2233 					     (struct user_msghdr __user *)entry,
2234 					     &msg_sys, flags, &used_address, MSG_EOR);
2235 			if (err < 0)
2236 				break;
2237 			err = put_user(err, &entry->msg_len);
2238 			++entry;
2239 		}
2240 
2241 		if (err)
2242 			break;
2243 		++datagrams;
2244 		if (msg_data_left(&msg_sys))
2245 			break;
2246 		cond_resched();
2247 	}
2248 
2249 	fput_light(sock->file, fput_needed);
2250 
2251 	/* We only return an error if no datagrams were able to be sent */
2252 	if (datagrams != 0)
2253 		return datagrams;
2254 
2255 	return err;
2256 }
2257 
2258 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2259 		unsigned int, vlen, unsigned int, flags)
2260 {
2261 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2262 }
2263 
2264 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2265 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2266 {
2267 	struct compat_msghdr __user *msg_compat =
2268 	    (struct compat_msghdr __user *)msg;
2269 	struct iovec iovstack[UIO_FASTIOV];
2270 	struct iovec *iov = iovstack;
2271 	unsigned long cmsg_ptr;
2272 	int len;
2273 	ssize_t err;
2274 
2275 	/* kernel mode address */
2276 	struct sockaddr_storage addr;
2277 
2278 	/* user mode address pointers */
2279 	struct sockaddr __user *uaddr;
2280 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2281 
2282 	msg_sys->msg_name = &addr;
2283 
2284 	if (MSG_CMSG_COMPAT & flags)
2285 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2286 	else
2287 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2288 	if (err < 0)
2289 		return err;
2290 
2291 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2292 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2293 
2294 	/* We assume all kernel code knows the size of sockaddr_storage */
2295 	msg_sys->msg_namelen = 0;
2296 
2297 	if (sock->file->f_flags & O_NONBLOCK)
2298 		flags |= MSG_DONTWAIT;
2299 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2300 	if (err < 0)
2301 		goto out_freeiov;
2302 	len = err;
2303 
2304 	if (uaddr != NULL) {
2305 		err = move_addr_to_user(&addr,
2306 					msg_sys->msg_namelen, uaddr,
2307 					uaddr_len);
2308 		if (err < 0)
2309 			goto out_freeiov;
2310 	}
2311 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2312 			 COMPAT_FLAGS(msg));
2313 	if (err)
2314 		goto out_freeiov;
2315 	if (MSG_CMSG_COMPAT & flags)
2316 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2317 				 &msg_compat->msg_controllen);
2318 	else
2319 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2320 				 &msg->msg_controllen);
2321 	if (err)
2322 		goto out_freeiov;
2323 	err = len;
2324 
2325 out_freeiov:
2326 	kfree(iov);
2327 	return err;
2328 }
2329 
2330 /*
2331  *	BSD recvmsg interface
2332  */
2333 
2334 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2335 		   bool forbid_cmsg_compat)
2336 {
2337 	int fput_needed, err;
2338 	struct msghdr msg_sys;
2339 	struct socket *sock;
2340 
2341 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2342 		return -EINVAL;
2343 
2344 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2345 	if (!sock)
2346 		goto out;
2347 
2348 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2349 
2350 	fput_light(sock->file, fput_needed);
2351 out:
2352 	return err;
2353 }
2354 
2355 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2356 		unsigned int, flags)
2357 {
2358 	return __sys_recvmsg(fd, msg, flags, true);
2359 }
2360 
2361 /*
2362  *     Linux recvmmsg interface
2363  */
2364 
2365 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2366 			  unsigned int vlen, unsigned int flags,
2367 			  struct timespec64 *timeout)
2368 {
2369 	int fput_needed, err, datagrams;
2370 	struct socket *sock;
2371 	struct mmsghdr __user *entry;
2372 	struct compat_mmsghdr __user *compat_entry;
2373 	struct msghdr msg_sys;
2374 	struct timespec64 end_time;
2375 	struct timespec64 timeout64;
2376 
2377 	if (timeout &&
2378 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2379 				    timeout->tv_nsec))
2380 		return -EINVAL;
2381 
2382 	datagrams = 0;
2383 
2384 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2385 	if (!sock)
2386 		return err;
2387 
2388 	if (likely(!(flags & MSG_ERRQUEUE))) {
2389 		err = sock_error(sock->sk);
2390 		if (err) {
2391 			datagrams = err;
2392 			goto out_put;
2393 		}
2394 	}
2395 
2396 	entry = mmsg;
2397 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2398 
2399 	while (datagrams < vlen) {
2400 		/*
2401 		 * No need to ask LSM for more than the first datagram.
2402 		 */
2403 		if (MSG_CMSG_COMPAT & flags) {
2404 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2405 					     &msg_sys, flags & ~MSG_WAITFORONE,
2406 					     datagrams);
2407 			if (err < 0)
2408 				break;
2409 			err = __put_user(err, &compat_entry->msg_len);
2410 			++compat_entry;
2411 		} else {
2412 			err = ___sys_recvmsg(sock,
2413 					     (struct user_msghdr __user *)entry,
2414 					     &msg_sys, flags & ~MSG_WAITFORONE,
2415 					     datagrams);
2416 			if (err < 0)
2417 				break;
2418 			err = put_user(err, &entry->msg_len);
2419 			++entry;
2420 		}
2421 
2422 		if (err)
2423 			break;
2424 		++datagrams;
2425 
2426 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2427 		if (flags & MSG_WAITFORONE)
2428 			flags |= MSG_DONTWAIT;
2429 
2430 		if (timeout) {
2431 			ktime_get_ts64(&timeout64);
2432 			*timeout = timespec64_sub(end_time, timeout64);
2433 			if (timeout->tv_sec < 0) {
2434 				timeout->tv_sec = timeout->tv_nsec = 0;
2435 				break;
2436 			}
2437 
2438 			/* Timeout, return less than vlen datagrams */
2439 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2440 				break;
2441 		}
2442 
2443 		/* Out of band data, return right away */
2444 		if (msg_sys.msg_flags & MSG_OOB)
2445 			break;
2446 		cond_resched();
2447 	}
2448 
2449 	if (err == 0)
2450 		goto out_put;
2451 
2452 	if (datagrams == 0) {
2453 		datagrams = err;
2454 		goto out_put;
2455 	}
2456 
2457 	/*
2458 	 * We may return less entries than requested (vlen) if the
2459 	 * sock is non block and there aren't enough datagrams...
2460 	 */
2461 	if (err != -EAGAIN) {
2462 		/*
2463 		 * ... or  if recvmsg returns an error after we
2464 		 * received some datagrams, where we record the
2465 		 * error to return on the next call or if the
2466 		 * app asks about it using getsockopt(SO_ERROR).
2467 		 */
2468 		sock->sk->sk_err = -err;
2469 	}
2470 out_put:
2471 	fput_light(sock->file, fput_needed);
2472 
2473 	return datagrams;
2474 }
2475 
2476 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2477 		   unsigned int vlen, unsigned int flags,
2478 		   struct __kernel_timespec __user *timeout,
2479 		   struct old_timespec32 __user *timeout32)
2480 {
2481 	int datagrams;
2482 	struct timespec64 timeout_sys;
2483 
2484 	if (timeout && get_timespec64(&timeout_sys, timeout))
2485 		return -EFAULT;
2486 
2487 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2488 		return -EFAULT;
2489 
2490 	if (!timeout && !timeout32)
2491 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2492 
2493 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2494 
2495 	if (datagrams <= 0)
2496 		return datagrams;
2497 
2498 	if (timeout && put_timespec64(&timeout_sys, timeout))
2499 		datagrams = -EFAULT;
2500 
2501 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2502 		datagrams = -EFAULT;
2503 
2504 	return datagrams;
2505 }
2506 
2507 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2508 		unsigned int, vlen, unsigned int, flags,
2509 		struct __kernel_timespec __user *, timeout)
2510 {
2511 	if (flags & MSG_CMSG_COMPAT)
2512 		return -EINVAL;
2513 
2514 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2515 }
2516 
2517 #ifdef CONFIG_COMPAT_32BIT_TIME
2518 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2519 		unsigned int, vlen, unsigned int, flags,
2520 		struct old_timespec32 __user *, timeout)
2521 {
2522 	if (flags & MSG_CMSG_COMPAT)
2523 		return -EINVAL;
2524 
2525 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2526 }
2527 #endif
2528 
2529 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2530 /* Argument list sizes for sys_socketcall */
2531 #define AL(x) ((x) * sizeof(unsigned long))
2532 static const unsigned char nargs[21] = {
2533 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2534 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2535 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2536 	AL(4), AL(5), AL(4)
2537 };
2538 
2539 #undef AL
2540 
2541 /*
2542  *	System call vectors.
2543  *
2544  *	Argument checking cleaned up. Saved 20% in size.
2545  *  This function doesn't need to set the kernel lock because
2546  *  it is set by the callees.
2547  */
2548 
2549 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2550 {
2551 	unsigned long a[AUDITSC_ARGS];
2552 	unsigned long a0, a1;
2553 	int err;
2554 	unsigned int len;
2555 
2556 	if (call < 1 || call > SYS_SENDMMSG)
2557 		return -EINVAL;
2558 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2559 
2560 	len = nargs[call];
2561 	if (len > sizeof(a))
2562 		return -EINVAL;
2563 
2564 	/* copy_from_user should be SMP safe. */
2565 	if (copy_from_user(a, args, len))
2566 		return -EFAULT;
2567 
2568 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2569 	if (err)
2570 		return err;
2571 
2572 	a0 = a[0];
2573 	a1 = a[1];
2574 
2575 	switch (call) {
2576 	case SYS_SOCKET:
2577 		err = __sys_socket(a0, a1, a[2]);
2578 		break;
2579 	case SYS_BIND:
2580 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2581 		break;
2582 	case SYS_CONNECT:
2583 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2584 		break;
2585 	case SYS_LISTEN:
2586 		err = __sys_listen(a0, a1);
2587 		break;
2588 	case SYS_ACCEPT:
2589 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2590 				    (int __user *)a[2], 0);
2591 		break;
2592 	case SYS_GETSOCKNAME:
2593 		err =
2594 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2595 				      (int __user *)a[2]);
2596 		break;
2597 	case SYS_GETPEERNAME:
2598 		err =
2599 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2600 				      (int __user *)a[2]);
2601 		break;
2602 	case SYS_SOCKETPAIR:
2603 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2604 		break;
2605 	case SYS_SEND:
2606 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2607 				   NULL, 0);
2608 		break;
2609 	case SYS_SENDTO:
2610 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2611 				   (struct sockaddr __user *)a[4], a[5]);
2612 		break;
2613 	case SYS_RECV:
2614 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2615 				     NULL, NULL);
2616 		break;
2617 	case SYS_RECVFROM:
2618 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2619 				     (struct sockaddr __user *)a[4],
2620 				     (int __user *)a[5]);
2621 		break;
2622 	case SYS_SHUTDOWN:
2623 		err = __sys_shutdown(a0, a1);
2624 		break;
2625 	case SYS_SETSOCKOPT:
2626 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2627 				       a[4]);
2628 		break;
2629 	case SYS_GETSOCKOPT:
2630 		err =
2631 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2632 				     (int __user *)a[4]);
2633 		break;
2634 	case SYS_SENDMSG:
2635 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2636 				    a[2], true);
2637 		break;
2638 	case SYS_SENDMMSG:
2639 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2640 				     a[3], true);
2641 		break;
2642 	case SYS_RECVMSG:
2643 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2644 				    a[2], true);
2645 		break;
2646 	case SYS_RECVMMSG:
2647 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2648 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2649 					     a[2], a[3],
2650 					     (struct __kernel_timespec __user *)a[4],
2651 					     NULL);
2652 		else
2653 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2654 					     a[2], a[3], NULL,
2655 					     (struct old_timespec32 __user *)a[4]);
2656 		break;
2657 	case SYS_ACCEPT4:
2658 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2659 				    (int __user *)a[2], a[3]);
2660 		break;
2661 	default:
2662 		err = -EINVAL;
2663 		break;
2664 	}
2665 	return err;
2666 }
2667 
2668 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2669 
2670 /**
2671  *	sock_register - add a socket protocol handler
2672  *	@ops: description of protocol
2673  *
2674  *	This function is called by a protocol handler that wants to
2675  *	advertise its address family, and have it linked into the
2676  *	socket interface. The value ops->family corresponds to the
2677  *	socket system call protocol family.
2678  */
2679 int sock_register(const struct net_proto_family *ops)
2680 {
2681 	int err;
2682 
2683 	if (ops->family >= NPROTO) {
2684 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2685 		return -ENOBUFS;
2686 	}
2687 
2688 	spin_lock(&net_family_lock);
2689 	if (rcu_dereference_protected(net_families[ops->family],
2690 				      lockdep_is_held(&net_family_lock)))
2691 		err = -EEXIST;
2692 	else {
2693 		rcu_assign_pointer(net_families[ops->family], ops);
2694 		err = 0;
2695 	}
2696 	spin_unlock(&net_family_lock);
2697 
2698 	pr_info("NET: Registered protocol family %d\n", ops->family);
2699 	return err;
2700 }
2701 EXPORT_SYMBOL(sock_register);
2702 
2703 /**
2704  *	sock_unregister - remove a protocol handler
2705  *	@family: protocol family to remove
2706  *
2707  *	This function is called by a protocol handler that wants to
2708  *	remove its address family, and have it unlinked from the
2709  *	new socket creation.
2710  *
2711  *	If protocol handler is a module, then it can use module reference
2712  *	counts to protect against new references. If protocol handler is not
2713  *	a module then it needs to provide its own protection in
2714  *	the ops->create routine.
2715  */
2716 void sock_unregister(int family)
2717 {
2718 	BUG_ON(family < 0 || family >= NPROTO);
2719 
2720 	spin_lock(&net_family_lock);
2721 	RCU_INIT_POINTER(net_families[family], NULL);
2722 	spin_unlock(&net_family_lock);
2723 
2724 	synchronize_rcu();
2725 
2726 	pr_info("NET: Unregistered protocol family %d\n", family);
2727 }
2728 EXPORT_SYMBOL(sock_unregister);
2729 
2730 bool sock_is_registered(int family)
2731 {
2732 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2733 }
2734 
2735 static int __init sock_init(void)
2736 {
2737 	int err;
2738 	/*
2739 	 *      Initialize the network sysctl infrastructure.
2740 	 */
2741 	err = net_sysctl_init();
2742 	if (err)
2743 		goto out;
2744 
2745 	/*
2746 	 *      Initialize skbuff SLAB cache
2747 	 */
2748 	skb_init();
2749 
2750 	/*
2751 	 *      Initialize the protocols module.
2752 	 */
2753 
2754 	init_inodecache();
2755 
2756 	err = register_filesystem(&sock_fs_type);
2757 	if (err)
2758 		goto out_fs;
2759 	sock_mnt = kern_mount(&sock_fs_type);
2760 	if (IS_ERR(sock_mnt)) {
2761 		err = PTR_ERR(sock_mnt);
2762 		goto out_mount;
2763 	}
2764 
2765 	/* The real protocol initialization is performed in later initcalls.
2766 	 */
2767 
2768 #ifdef CONFIG_NETFILTER
2769 	err = netfilter_init();
2770 	if (err)
2771 		goto out;
2772 #endif
2773 
2774 	ptp_classifier_init();
2775 
2776 out:
2777 	return err;
2778 
2779 out_mount:
2780 	unregister_filesystem(&sock_fs_type);
2781 out_fs:
2782 	goto out;
2783 }
2784 
2785 core_initcall(sock_init);	/* early initcall */
2786 
2787 #ifdef CONFIG_PROC_FS
2788 void socket_seq_show(struct seq_file *seq)
2789 {
2790 	seq_printf(seq, "sockets: used %d\n",
2791 		   sock_inuse_get(seq->private));
2792 }
2793 #endif				/* CONFIG_PROC_FS */
2794 
2795 #ifdef CONFIG_COMPAT
2796 static int do_siocgstamp(struct net *net, struct socket *sock,
2797 			 unsigned int cmd, void __user *up)
2798 {
2799 	mm_segment_t old_fs = get_fs();
2800 	struct timeval ktv;
2801 	int err;
2802 
2803 	set_fs(KERNEL_DS);
2804 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2805 	set_fs(old_fs);
2806 	if (!err)
2807 		err = compat_put_timeval(&ktv, up);
2808 
2809 	return err;
2810 }
2811 
2812 static int do_siocgstampns(struct net *net, struct socket *sock,
2813 			   unsigned int cmd, void __user *up)
2814 {
2815 	mm_segment_t old_fs = get_fs();
2816 	struct timespec kts;
2817 	int err;
2818 
2819 	set_fs(KERNEL_DS);
2820 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2821 	set_fs(old_fs);
2822 	if (!err)
2823 		err = compat_put_timespec(&kts, up);
2824 
2825 	return err;
2826 }
2827 
2828 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2829 {
2830 	struct compat_ifconf ifc32;
2831 	struct ifconf ifc;
2832 	int err;
2833 
2834 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2835 		return -EFAULT;
2836 
2837 	ifc.ifc_len = ifc32.ifc_len;
2838 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2839 
2840 	rtnl_lock();
2841 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2842 	rtnl_unlock();
2843 	if (err)
2844 		return err;
2845 
2846 	ifc32.ifc_len = ifc.ifc_len;
2847 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2848 		return -EFAULT;
2849 
2850 	return 0;
2851 }
2852 
2853 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2854 {
2855 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2856 	bool convert_in = false, convert_out = false;
2857 	size_t buf_size = 0;
2858 	struct ethtool_rxnfc __user *rxnfc = NULL;
2859 	struct ifreq ifr;
2860 	u32 rule_cnt = 0, actual_rule_cnt;
2861 	u32 ethcmd;
2862 	u32 data;
2863 	int ret;
2864 
2865 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2866 		return -EFAULT;
2867 
2868 	compat_rxnfc = compat_ptr(data);
2869 
2870 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2871 		return -EFAULT;
2872 
2873 	/* Most ethtool structures are defined without padding.
2874 	 * Unfortunately struct ethtool_rxnfc is an exception.
2875 	 */
2876 	switch (ethcmd) {
2877 	default:
2878 		break;
2879 	case ETHTOOL_GRXCLSRLALL:
2880 		/* Buffer size is variable */
2881 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2882 			return -EFAULT;
2883 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2884 			return -ENOMEM;
2885 		buf_size += rule_cnt * sizeof(u32);
2886 		/* fall through */
2887 	case ETHTOOL_GRXRINGS:
2888 	case ETHTOOL_GRXCLSRLCNT:
2889 	case ETHTOOL_GRXCLSRULE:
2890 	case ETHTOOL_SRXCLSRLINS:
2891 		convert_out = true;
2892 		/* fall through */
2893 	case ETHTOOL_SRXCLSRLDEL:
2894 		buf_size += sizeof(struct ethtool_rxnfc);
2895 		convert_in = true;
2896 		rxnfc = compat_alloc_user_space(buf_size);
2897 		break;
2898 	}
2899 
2900 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2901 		return -EFAULT;
2902 
2903 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2904 
2905 	if (convert_in) {
2906 		/* We expect there to be holes between fs.m_ext and
2907 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2908 		 */
2909 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2910 			     sizeof(compat_rxnfc->fs.m_ext) !=
2911 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2912 			     sizeof(rxnfc->fs.m_ext));
2913 		BUILD_BUG_ON(
2914 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2915 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2916 			offsetof(struct ethtool_rxnfc, fs.location) -
2917 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2918 
2919 		if (copy_in_user(rxnfc, compat_rxnfc,
2920 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2921 				 (void __user *)rxnfc) ||
2922 		    copy_in_user(&rxnfc->fs.ring_cookie,
2923 				 &compat_rxnfc->fs.ring_cookie,
2924 				 (void __user *)(&rxnfc->fs.location + 1) -
2925 				 (void __user *)&rxnfc->fs.ring_cookie))
2926 			return -EFAULT;
2927 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2928 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2929 				return -EFAULT;
2930 		} else if (copy_in_user(&rxnfc->rule_cnt,
2931 					&compat_rxnfc->rule_cnt,
2932 					sizeof(rxnfc->rule_cnt)))
2933 			return -EFAULT;
2934 	}
2935 
2936 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2937 	if (ret)
2938 		return ret;
2939 
2940 	if (convert_out) {
2941 		if (copy_in_user(compat_rxnfc, rxnfc,
2942 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2943 				 (const void __user *)rxnfc) ||
2944 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2945 				 &rxnfc->fs.ring_cookie,
2946 				 (const void __user *)(&rxnfc->fs.location + 1) -
2947 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2948 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2949 				 sizeof(rxnfc->rule_cnt)))
2950 			return -EFAULT;
2951 
2952 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2953 			/* As an optimisation, we only copy the actual
2954 			 * number of rules that the underlying
2955 			 * function returned.  Since Mallory might
2956 			 * change the rule count in user memory, we
2957 			 * check that it is less than the rule count
2958 			 * originally given (as the user buffer size),
2959 			 * which has been range-checked.
2960 			 */
2961 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2962 				return -EFAULT;
2963 			if (actual_rule_cnt < rule_cnt)
2964 				rule_cnt = actual_rule_cnt;
2965 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2966 					 &rxnfc->rule_locs[0],
2967 					 rule_cnt * sizeof(u32)))
2968 				return -EFAULT;
2969 		}
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2976 {
2977 	compat_uptr_t uptr32;
2978 	struct ifreq ifr;
2979 	void __user *saved;
2980 	int err;
2981 
2982 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2983 		return -EFAULT;
2984 
2985 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2986 		return -EFAULT;
2987 
2988 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2989 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2990 
2991 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2992 	if (!err) {
2993 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2994 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2995 			err = -EFAULT;
2996 	}
2997 	return err;
2998 }
2999 
3000 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3001 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3002 				 struct compat_ifreq __user *u_ifreq32)
3003 {
3004 	struct ifreq ifreq;
3005 	u32 data32;
3006 
3007 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3008 		return -EFAULT;
3009 	if (get_user(data32, &u_ifreq32->ifr_data))
3010 		return -EFAULT;
3011 	ifreq.ifr_data = compat_ptr(data32);
3012 
3013 	return dev_ioctl(net, cmd, &ifreq, NULL);
3014 }
3015 
3016 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3017 			      unsigned int cmd,
3018 			      struct compat_ifreq __user *uifr32)
3019 {
3020 	struct ifreq __user *uifr;
3021 	int err;
3022 
3023 	/* Handle the fact that while struct ifreq has the same *layout* on
3024 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3025 	 * which are handled elsewhere, it still has different *size* due to
3026 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3027 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3028 	 * As a result, if the struct happens to be at the end of a page and
3029 	 * the next page isn't readable/writable, we get a fault. To prevent
3030 	 * that, copy back and forth to the full size.
3031 	 */
3032 
3033 	uifr = compat_alloc_user_space(sizeof(*uifr));
3034 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3035 		return -EFAULT;
3036 
3037 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3038 
3039 	if (!err) {
3040 		switch (cmd) {
3041 		case SIOCGIFFLAGS:
3042 		case SIOCGIFMETRIC:
3043 		case SIOCGIFMTU:
3044 		case SIOCGIFMEM:
3045 		case SIOCGIFHWADDR:
3046 		case SIOCGIFINDEX:
3047 		case SIOCGIFADDR:
3048 		case SIOCGIFBRDADDR:
3049 		case SIOCGIFDSTADDR:
3050 		case SIOCGIFNETMASK:
3051 		case SIOCGIFPFLAGS:
3052 		case SIOCGIFTXQLEN:
3053 		case SIOCGMIIPHY:
3054 		case SIOCGMIIREG:
3055 		case SIOCGIFNAME:
3056 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3057 				err = -EFAULT;
3058 			break;
3059 		}
3060 	}
3061 	return err;
3062 }
3063 
3064 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3065 			struct compat_ifreq __user *uifr32)
3066 {
3067 	struct ifreq ifr;
3068 	struct compat_ifmap __user *uifmap32;
3069 	int err;
3070 
3071 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3072 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3073 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3074 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3075 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3076 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3077 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3078 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3079 	if (err)
3080 		return -EFAULT;
3081 
3082 	err = dev_ioctl(net, cmd, &ifr, NULL);
3083 
3084 	if (cmd == SIOCGIFMAP && !err) {
3085 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3086 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3087 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3088 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3089 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3090 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3091 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3092 		if (err)
3093 			err = -EFAULT;
3094 	}
3095 	return err;
3096 }
3097 
3098 struct rtentry32 {
3099 	u32		rt_pad1;
3100 	struct sockaddr rt_dst;         /* target address               */
3101 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3102 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3103 	unsigned short	rt_flags;
3104 	short		rt_pad2;
3105 	u32		rt_pad3;
3106 	unsigned char	rt_tos;
3107 	unsigned char	rt_class;
3108 	short		rt_pad4;
3109 	short		rt_metric;      /* +1 for binary compatibility! */
3110 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3111 	u32		rt_mtu;         /* per route MTU/Window         */
3112 	u32		rt_window;      /* Window clamping              */
3113 	unsigned short  rt_irtt;        /* Initial RTT                  */
3114 };
3115 
3116 struct in6_rtmsg32 {
3117 	struct in6_addr		rtmsg_dst;
3118 	struct in6_addr		rtmsg_src;
3119 	struct in6_addr		rtmsg_gateway;
3120 	u32			rtmsg_type;
3121 	u16			rtmsg_dst_len;
3122 	u16			rtmsg_src_len;
3123 	u32			rtmsg_metric;
3124 	u32			rtmsg_info;
3125 	u32			rtmsg_flags;
3126 	s32			rtmsg_ifindex;
3127 };
3128 
3129 static int routing_ioctl(struct net *net, struct socket *sock,
3130 			 unsigned int cmd, void __user *argp)
3131 {
3132 	int ret;
3133 	void *r = NULL;
3134 	struct in6_rtmsg r6;
3135 	struct rtentry r4;
3136 	char devname[16];
3137 	u32 rtdev;
3138 	mm_segment_t old_fs = get_fs();
3139 
3140 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3141 		struct in6_rtmsg32 __user *ur6 = argp;
3142 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3143 			3 * sizeof(struct in6_addr));
3144 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3145 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3146 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3147 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3148 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3149 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3150 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3151 
3152 		r = (void *) &r6;
3153 	} else { /* ipv4 */
3154 		struct rtentry32 __user *ur4 = argp;
3155 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3156 					3 * sizeof(struct sockaddr));
3157 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3158 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3159 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3160 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3161 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3162 		ret |= get_user(rtdev, &(ur4->rt_dev));
3163 		if (rtdev) {
3164 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3165 			r4.rt_dev = (char __user __force *)devname;
3166 			devname[15] = 0;
3167 		} else
3168 			r4.rt_dev = NULL;
3169 
3170 		r = (void *) &r4;
3171 	}
3172 
3173 	if (ret) {
3174 		ret = -EFAULT;
3175 		goto out;
3176 	}
3177 
3178 	set_fs(KERNEL_DS);
3179 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3180 	set_fs(old_fs);
3181 
3182 out:
3183 	return ret;
3184 }
3185 
3186 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3187  * for some operations; this forces use of the newer bridge-utils that
3188  * use compatible ioctls
3189  */
3190 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3191 {
3192 	compat_ulong_t tmp;
3193 
3194 	if (get_user(tmp, argp))
3195 		return -EFAULT;
3196 	if (tmp == BRCTL_GET_VERSION)
3197 		return BRCTL_VERSION + 1;
3198 	return -EINVAL;
3199 }
3200 
3201 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3202 			 unsigned int cmd, unsigned long arg)
3203 {
3204 	void __user *argp = compat_ptr(arg);
3205 	struct sock *sk = sock->sk;
3206 	struct net *net = sock_net(sk);
3207 
3208 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3209 		return compat_ifr_data_ioctl(net, cmd, argp);
3210 
3211 	switch (cmd) {
3212 	case SIOCSIFBR:
3213 	case SIOCGIFBR:
3214 		return old_bridge_ioctl(argp);
3215 	case SIOCGIFCONF:
3216 		return compat_dev_ifconf(net, argp);
3217 	case SIOCETHTOOL:
3218 		return ethtool_ioctl(net, argp);
3219 	case SIOCWANDEV:
3220 		return compat_siocwandev(net, argp);
3221 	case SIOCGIFMAP:
3222 	case SIOCSIFMAP:
3223 		return compat_sioc_ifmap(net, cmd, argp);
3224 	case SIOCADDRT:
3225 	case SIOCDELRT:
3226 		return routing_ioctl(net, sock, cmd, argp);
3227 	case SIOCGSTAMP:
3228 		return do_siocgstamp(net, sock, cmd, argp);
3229 	case SIOCGSTAMPNS:
3230 		return do_siocgstampns(net, sock, cmd, argp);
3231 	case SIOCBONDSLAVEINFOQUERY:
3232 	case SIOCBONDINFOQUERY:
3233 	case SIOCSHWTSTAMP:
3234 	case SIOCGHWTSTAMP:
3235 		return compat_ifr_data_ioctl(net, cmd, argp);
3236 
3237 	case FIOSETOWN:
3238 	case SIOCSPGRP:
3239 	case FIOGETOWN:
3240 	case SIOCGPGRP:
3241 	case SIOCBRADDBR:
3242 	case SIOCBRDELBR:
3243 	case SIOCGIFVLAN:
3244 	case SIOCSIFVLAN:
3245 	case SIOCADDDLCI:
3246 	case SIOCDELDLCI:
3247 	case SIOCGSKNS:
3248 		return sock_ioctl(file, cmd, arg);
3249 
3250 	case SIOCGIFFLAGS:
3251 	case SIOCSIFFLAGS:
3252 	case SIOCGIFMETRIC:
3253 	case SIOCSIFMETRIC:
3254 	case SIOCGIFMTU:
3255 	case SIOCSIFMTU:
3256 	case SIOCGIFMEM:
3257 	case SIOCSIFMEM:
3258 	case SIOCGIFHWADDR:
3259 	case SIOCSIFHWADDR:
3260 	case SIOCADDMULTI:
3261 	case SIOCDELMULTI:
3262 	case SIOCGIFINDEX:
3263 	case SIOCGIFADDR:
3264 	case SIOCSIFADDR:
3265 	case SIOCSIFHWBROADCAST:
3266 	case SIOCDIFADDR:
3267 	case SIOCGIFBRDADDR:
3268 	case SIOCSIFBRDADDR:
3269 	case SIOCGIFDSTADDR:
3270 	case SIOCSIFDSTADDR:
3271 	case SIOCGIFNETMASK:
3272 	case SIOCSIFNETMASK:
3273 	case SIOCSIFPFLAGS:
3274 	case SIOCGIFPFLAGS:
3275 	case SIOCGIFTXQLEN:
3276 	case SIOCSIFTXQLEN:
3277 	case SIOCBRADDIF:
3278 	case SIOCBRDELIF:
3279 	case SIOCGIFNAME:
3280 	case SIOCSIFNAME:
3281 	case SIOCGMIIPHY:
3282 	case SIOCGMIIREG:
3283 	case SIOCSMIIREG:
3284 	case SIOCBONDENSLAVE:
3285 	case SIOCBONDRELEASE:
3286 	case SIOCBONDSETHWADDR:
3287 	case SIOCBONDCHANGEACTIVE:
3288 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3289 
3290 	case SIOCSARP:
3291 	case SIOCGARP:
3292 	case SIOCDARP:
3293 	case SIOCATMARK:
3294 		return sock_do_ioctl(net, sock, cmd, arg);
3295 	}
3296 
3297 	return -ENOIOCTLCMD;
3298 }
3299 
3300 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3301 			      unsigned long arg)
3302 {
3303 	struct socket *sock = file->private_data;
3304 	int ret = -ENOIOCTLCMD;
3305 	struct sock *sk;
3306 	struct net *net;
3307 
3308 	sk = sock->sk;
3309 	net = sock_net(sk);
3310 
3311 	if (sock->ops->compat_ioctl)
3312 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3313 
3314 	if (ret == -ENOIOCTLCMD &&
3315 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3316 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3317 
3318 	if (ret == -ENOIOCTLCMD)
3319 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3320 
3321 	return ret;
3322 }
3323 #endif
3324 
3325 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3326 {
3327 	return sock->ops->bind(sock, addr, addrlen);
3328 }
3329 EXPORT_SYMBOL(kernel_bind);
3330 
3331 int kernel_listen(struct socket *sock, int backlog)
3332 {
3333 	return sock->ops->listen(sock, backlog);
3334 }
3335 EXPORT_SYMBOL(kernel_listen);
3336 
3337 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3338 {
3339 	struct sock *sk = sock->sk;
3340 	int err;
3341 
3342 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3343 			       newsock);
3344 	if (err < 0)
3345 		goto done;
3346 
3347 	err = sock->ops->accept(sock, *newsock, flags, true);
3348 	if (err < 0) {
3349 		sock_release(*newsock);
3350 		*newsock = NULL;
3351 		goto done;
3352 	}
3353 
3354 	(*newsock)->ops = sock->ops;
3355 	__module_get((*newsock)->ops->owner);
3356 
3357 done:
3358 	return err;
3359 }
3360 EXPORT_SYMBOL(kernel_accept);
3361 
3362 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3363 		   int flags)
3364 {
3365 	return sock->ops->connect(sock, addr, addrlen, flags);
3366 }
3367 EXPORT_SYMBOL(kernel_connect);
3368 
3369 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3370 {
3371 	return sock->ops->getname(sock, addr, 0);
3372 }
3373 EXPORT_SYMBOL(kernel_getsockname);
3374 
3375 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3376 {
3377 	return sock->ops->getname(sock, addr, 1);
3378 }
3379 EXPORT_SYMBOL(kernel_getpeername);
3380 
3381 int kernel_getsockopt(struct socket *sock, int level, int optname,
3382 			char *optval, int *optlen)
3383 {
3384 	mm_segment_t oldfs = get_fs();
3385 	char __user *uoptval;
3386 	int __user *uoptlen;
3387 	int err;
3388 
3389 	uoptval = (char __user __force *) optval;
3390 	uoptlen = (int __user __force *) optlen;
3391 
3392 	set_fs(KERNEL_DS);
3393 	if (level == SOL_SOCKET)
3394 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3395 	else
3396 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3397 					    uoptlen);
3398 	set_fs(oldfs);
3399 	return err;
3400 }
3401 EXPORT_SYMBOL(kernel_getsockopt);
3402 
3403 int kernel_setsockopt(struct socket *sock, int level, int optname,
3404 			char *optval, unsigned int optlen)
3405 {
3406 	mm_segment_t oldfs = get_fs();
3407 	char __user *uoptval;
3408 	int err;
3409 
3410 	uoptval = (char __user __force *) optval;
3411 
3412 	set_fs(KERNEL_DS);
3413 	if (level == SOL_SOCKET)
3414 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3415 	else
3416 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3417 					    optlen);
3418 	set_fs(oldfs);
3419 	return err;
3420 }
3421 EXPORT_SYMBOL(kernel_setsockopt);
3422 
3423 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3424 		    size_t size, int flags)
3425 {
3426 	if (sock->ops->sendpage)
3427 		return sock->ops->sendpage(sock, page, offset, size, flags);
3428 
3429 	return sock_no_sendpage(sock, page, offset, size, flags);
3430 }
3431 EXPORT_SYMBOL(kernel_sendpage);
3432 
3433 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3434 			   size_t size, int flags)
3435 {
3436 	struct socket *sock = sk->sk_socket;
3437 
3438 	if (sock->ops->sendpage_locked)
3439 		return sock->ops->sendpage_locked(sk, page, offset, size,
3440 						  flags);
3441 
3442 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3443 }
3444 EXPORT_SYMBOL(kernel_sendpage_locked);
3445 
3446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3447 {
3448 	return sock->ops->shutdown(sock, how);
3449 }
3450 EXPORT_SYMBOL(kernel_sock_shutdown);
3451 
3452 /* This routine returns the IP overhead imposed by a socket i.e.
3453  * the length of the underlying IP header, depending on whether
3454  * this is an IPv4 or IPv6 socket and the length from IP options turned
3455  * on at the socket. Assumes that the caller has a lock on the socket.
3456  */
3457 u32 kernel_sock_ip_overhead(struct sock *sk)
3458 {
3459 	struct inet_sock *inet;
3460 	struct ip_options_rcu *opt;
3461 	u32 overhead = 0;
3462 #if IS_ENABLED(CONFIG_IPV6)
3463 	struct ipv6_pinfo *np;
3464 	struct ipv6_txoptions *optv6 = NULL;
3465 #endif /* IS_ENABLED(CONFIG_IPV6) */
3466 
3467 	if (!sk)
3468 		return overhead;
3469 
3470 	switch (sk->sk_family) {
3471 	case AF_INET:
3472 		inet = inet_sk(sk);
3473 		overhead += sizeof(struct iphdr);
3474 		opt = rcu_dereference_protected(inet->inet_opt,
3475 						sock_owned_by_user(sk));
3476 		if (opt)
3477 			overhead += opt->opt.optlen;
3478 		return overhead;
3479 #if IS_ENABLED(CONFIG_IPV6)
3480 	case AF_INET6:
3481 		np = inet6_sk(sk);
3482 		overhead += sizeof(struct ipv6hdr);
3483 		if (np)
3484 			optv6 = rcu_dereference_protected(np->opt,
3485 							  sock_owned_by_user(sk));
3486 		if (optv6)
3487 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3488 		return overhead;
3489 #endif /* IS_ENABLED(CONFIG_IPV6) */
3490 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3491 		return overhead;
3492 	}
3493 }
3494 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3495