1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 sock->sk = NULL; 581 if (inode) 582 inode_unlock(inode); 583 sock->ops = NULL; 584 module_put(owner); 585 } 586 587 if (sock->wq->fasync_list) 588 pr_err("%s: fasync list not empty!\n", __func__); 589 590 if (!sock->file) { 591 iput(SOCK_INODE(sock)); 592 return; 593 } 594 sock->file = NULL; 595 } 596 597 void sock_release(struct socket *sock) 598 { 599 __sock_release(sock, NULL); 600 } 601 EXPORT_SYMBOL(sock_release); 602 603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 604 { 605 u8 flags = *tx_flags; 606 607 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 608 flags |= SKBTX_HW_TSTAMP; 609 610 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 611 flags |= SKBTX_SW_TSTAMP; 612 613 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 614 flags |= SKBTX_SCHED_TSTAMP; 615 616 *tx_flags = flags; 617 } 618 EXPORT_SYMBOL(__sock_tx_timestamp); 619 620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 621 { 622 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 623 BUG_ON(ret == -EIOCBQUEUED); 624 return ret; 625 } 626 627 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 628 { 629 int err = security_socket_sendmsg(sock, msg, 630 msg_data_left(msg)); 631 632 return err ?: sock_sendmsg_nosec(sock, msg); 633 } 634 EXPORT_SYMBOL(sock_sendmsg); 635 636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 637 struct kvec *vec, size_t num, size_t size) 638 { 639 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 640 return sock_sendmsg(sock, msg); 641 } 642 EXPORT_SYMBOL(kernel_sendmsg); 643 644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 645 struct kvec *vec, size_t num, size_t size) 646 { 647 struct socket *sock = sk->sk_socket; 648 649 if (!sock->ops->sendmsg_locked) 650 return sock_no_sendmsg_locked(sk, msg, size); 651 652 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 653 654 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 655 } 656 EXPORT_SYMBOL(kernel_sendmsg_locked); 657 658 static bool skb_is_err_queue(const struct sk_buff *skb) 659 { 660 /* pkt_type of skbs enqueued on the error queue are set to 661 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 662 * in recvmsg, since skbs received on a local socket will never 663 * have a pkt_type of PACKET_OUTGOING. 664 */ 665 return skb->pkt_type == PACKET_OUTGOING; 666 } 667 668 /* On transmit, software and hardware timestamps are returned independently. 669 * As the two skb clones share the hardware timestamp, which may be updated 670 * before the software timestamp is received, a hardware TX timestamp may be 671 * returned only if there is no software TX timestamp. Ignore false software 672 * timestamps, which may be made in the __sock_recv_timestamp() call when the 673 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 674 * hardware timestamp. 675 */ 676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 677 { 678 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 679 } 680 681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 682 { 683 struct scm_ts_pktinfo ts_pktinfo; 684 struct net_device *orig_dev; 685 686 if (!skb_mac_header_was_set(skb)) 687 return; 688 689 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 690 691 rcu_read_lock(); 692 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 693 if (orig_dev) 694 ts_pktinfo.if_index = orig_dev->ifindex; 695 rcu_read_unlock(); 696 697 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 698 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 699 sizeof(ts_pktinfo), &ts_pktinfo); 700 } 701 702 /* 703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 704 */ 705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707 { 708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 709 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 710 struct scm_timestamping_internal tss; 711 712 int empty = 1, false_tstamp = 0; 713 struct skb_shared_hwtstamps *shhwtstamps = 714 skb_hwtstamps(skb); 715 716 /* Race occurred between timestamp enabling and packet 717 receiving. Fill in the current time for now. */ 718 if (need_software_tstamp && skb->tstamp == 0) { 719 __net_timestamp(skb); 720 false_tstamp = 1; 721 } 722 723 if (need_software_tstamp) { 724 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 725 if (new_tstamp) { 726 struct __kernel_sock_timeval tv; 727 728 skb_get_new_timestamp(skb, &tv); 729 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 730 sizeof(tv), &tv); 731 } else { 732 struct __kernel_old_timeval tv; 733 734 skb_get_timestamp(skb, &tv); 735 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 736 sizeof(tv), &tv); 737 } 738 } else { 739 if (new_tstamp) { 740 struct __kernel_timespec ts; 741 742 skb_get_new_timestampns(skb, &ts); 743 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 744 sizeof(ts), &ts); 745 } else { 746 struct timespec ts; 747 748 skb_get_timestampns(skb, &ts); 749 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 750 sizeof(ts), &ts); 751 } 752 } 753 } 754 755 memset(&tss, 0, sizeof(tss)); 756 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 757 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 758 empty = 0; 759 if (shhwtstamps && 760 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 761 !skb_is_swtx_tstamp(skb, false_tstamp) && 762 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 763 empty = 0; 764 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 765 !skb_is_err_queue(skb)) 766 put_ts_pktinfo(msg, skb); 767 } 768 if (!empty) { 769 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 770 put_cmsg_scm_timestamping64(msg, &tss); 771 else 772 put_cmsg_scm_timestamping(msg, &tss); 773 774 if (skb_is_err_queue(skb) && skb->len && 775 SKB_EXT_ERR(skb)->opt_stats) 776 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 777 skb->len, skb->data); 778 } 779 } 780 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 781 782 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 783 struct sk_buff *skb) 784 { 785 int ack; 786 787 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 788 return; 789 if (!skb->wifi_acked_valid) 790 return; 791 792 ack = skb->wifi_acked; 793 794 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 795 } 796 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 797 798 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 799 struct sk_buff *skb) 800 { 801 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 802 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 803 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 804 } 805 806 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 807 struct sk_buff *skb) 808 { 809 sock_recv_timestamp(msg, sk, skb); 810 sock_recv_drops(msg, sk, skb); 811 } 812 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 813 814 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 815 int flags) 816 { 817 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 818 } 819 820 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 821 { 822 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 823 824 return err ?: sock_recvmsg_nosec(sock, msg, flags); 825 } 826 EXPORT_SYMBOL(sock_recvmsg); 827 828 /** 829 * kernel_recvmsg - Receive a message from a socket (kernel space) 830 * @sock: The socket to receive the message from 831 * @msg: Received message 832 * @vec: Input s/g array for message data 833 * @num: Size of input s/g array 834 * @size: Number of bytes to read 835 * @flags: Message flags (MSG_DONTWAIT, etc...) 836 * 837 * On return the msg structure contains the scatter/gather array passed in the 838 * vec argument. The array is modified so that it consists of the unfilled 839 * portion of the original array. 840 * 841 * The returned value is the total number of bytes received, or an error. 842 */ 843 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 844 struct kvec *vec, size_t num, size_t size, int flags) 845 { 846 mm_segment_t oldfs = get_fs(); 847 int result; 848 849 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 850 set_fs(KERNEL_DS); 851 result = sock_recvmsg(sock, msg, flags); 852 set_fs(oldfs); 853 return result; 854 } 855 EXPORT_SYMBOL(kernel_recvmsg); 856 857 static ssize_t sock_sendpage(struct file *file, struct page *page, 858 int offset, size_t size, loff_t *ppos, int more) 859 { 860 struct socket *sock; 861 int flags; 862 863 sock = file->private_data; 864 865 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 867 flags |= more; 868 869 return kernel_sendpage(sock, page, offset, size, flags); 870 } 871 872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 873 struct pipe_inode_info *pipe, size_t len, 874 unsigned int flags) 875 { 876 struct socket *sock = file->private_data; 877 878 if (unlikely(!sock->ops->splice_read)) 879 return generic_file_splice_read(file, ppos, pipe, len, flags); 880 881 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 882 } 883 884 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 885 { 886 struct file *file = iocb->ki_filp; 887 struct socket *sock = file->private_data; 888 struct msghdr msg = {.msg_iter = *to, 889 .msg_iocb = iocb}; 890 ssize_t res; 891 892 if (file->f_flags & O_NONBLOCK) 893 msg.msg_flags = MSG_DONTWAIT; 894 895 if (iocb->ki_pos != 0) 896 return -ESPIPE; 897 898 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 899 return 0; 900 901 res = sock_recvmsg(sock, &msg, msg.msg_flags); 902 *to = msg.msg_iter; 903 return res; 904 } 905 906 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 907 { 908 struct file *file = iocb->ki_filp; 909 struct socket *sock = file->private_data; 910 struct msghdr msg = {.msg_iter = *from, 911 .msg_iocb = iocb}; 912 ssize_t res; 913 914 if (iocb->ki_pos != 0) 915 return -ESPIPE; 916 917 if (file->f_flags & O_NONBLOCK) 918 msg.msg_flags = MSG_DONTWAIT; 919 920 if (sock->type == SOCK_SEQPACKET) 921 msg.msg_flags |= MSG_EOR; 922 923 res = sock_sendmsg(sock, &msg); 924 *from = msg.msg_iter; 925 return res; 926 } 927 928 /* 929 * Atomic setting of ioctl hooks to avoid race 930 * with module unload. 931 */ 932 933 static DEFINE_MUTEX(br_ioctl_mutex); 934 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 935 936 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 937 { 938 mutex_lock(&br_ioctl_mutex); 939 br_ioctl_hook = hook; 940 mutex_unlock(&br_ioctl_mutex); 941 } 942 EXPORT_SYMBOL(brioctl_set); 943 944 static DEFINE_MUTEX(vlan_ioctl_mutex); 945 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 946 947 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 948 { 949 mutex_lock(&vlan_ioctl_mutex); 950 vlan_ioctl_hook = hook; 951 mutex_unlock(&vlan_ioctl_mutex); 952 } 953 EXPORT_SYMBOL(vlan_ioctl_set); 954 955 static DEFINE_MUTEX(dlci_ioctl_mutex); 956 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 957 958 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 959 { 960 mutex_lock(&dlci_ioctl_mutex); 961 dlci_ioctl_hook = hook; 962 mutex_unlock(&dlci_ioctl_mutex); 963 } 964 EXPORT_SYMBOL(dlci_ioctl_set); 965 966 static long sock_do_ioctl(struct net *net, struct socket *sock, 967 unsigned int cmd, unsigned long arg) 968 { 969 int err; 970 void __user *argp = (void __user *)arg; 971 972 err = sock->ops->ioctl(sock, cmd, arg); 973 974 /* 975 * If this ioctl is unknown try to hand it down 976 * to the NIC driver. 977 */ 978 if (err != -ENOIOCTLCMD) 979 return err; 980 981 if (cmd == SIOCGIFCONF) { 982 struct ifconf ifc; 983 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 984 return -EFAULT; 985 rtnl_lock(); 986 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 987 rtnl_unlock(); 988 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 989 err = -EFAULT; 990 } else { 991 struct ifreq ifr; 992 bool need_copyout; 993 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 994 return -EFAULT; 995 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 996 if (!err && need_copyout) 997 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 998 return -EFAULT; 999 } 1000 return err; 1001 } 1002 1003 /* 1004 * With an ioctl, arg may well be a user mode pointer, but we don't know 1005 * what to do with it - that's up to the protocol still. 1006 */ 1007 1008 struct ns_common *get_net_ns(struct ns_common *ns) 1009 { 1010 return &get_net(container_of(ns, struct net, ns))->ns; 1011 } 1012 EXPORT_SYMBOL_GPL(get_net_ns); 1013 1014 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1015 { 1016 struct socket *sock; 1017 struct sock *sk; 1018 void __user *argp = (void __user *)arg; 1019 int pid, err; 1020 struct net *net; 1021 1022 sock = file->private_data; 1023 sk = sock->sk; 1024 net = sock_net(sk); 1025 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1026 struct ifreq ifr; 1027 bool need_copyout; 1028 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1029 return -EFAULT; 1030 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1031 if (!err && need_copyout) 1032 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1033 return -EFAULT; 1034 } else 1035 #ifdef CONFIG_WEXT_CORE 1036 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1037 err = wext_handle_ioctl(net, cmd, argp); 1038 } else 1039 #endif 1040 switch (cmd) { 1041 case FIOSETOWN: 1042 case SIOCSPGRP: 1043 err = -EFAULT; 1044 if (get_user(pid, (int __user *)argp)) 1045 break; 1046 err = f_setown(sock->file, pid, 1); 1047 break; 1048 case FIOGETOWN: 1049 case SIOCGPGRP: 1050 err = put_user(f_getown(sock->file), 1051 (int __user *)argp); 1052 break; 1053 case SIOCGIFBR: 1054 case SIOCSIFBR: 1055 case SIOCBRADDBR: 1056 case SIOCBRDELBR: 1057 err = -ENOPKG; 1058 if (!br_ioctl_hook) 1059 request_module("bridge"); 1060 1061 mutex_lock(&br_ioctl_mutex); 1062 if (br_ioctl_hook) 1063 err = br_ioctl_hook(net, cmd, argp); 1064 mutex_unlock(&br_ioctl_mutex); 1065 break; 1066 case SIOCGIFVLAN: 1067 case SIOCSIFVLAN: 1068 err = -ENOPKG; 1069 if (!vlan_ioctl_hook) 1070 request_module("8021q"); 1071 1072 mutex_lock(&vlan_ioctl_mutex); 1073 if (vlan_ioctl_hook) 1074 err = vlan_ioctl_hook(net, argp); 1075 mutex_unlock(&vlan_ioctl_mutex); 1076 break; 1077 case SIOCADDDLCI: 1078 case SIOCDELDLCI: 1079 err = -ENOPKG; 1080 if (!dlci_ioctl_hook) 1081 request_module("dlci"); 1082 1083 mutex_lock(&dlci_ioctl_mutex); 1084 if (dlci_ioctl_hook) 1085 err = dlci_ioctl_hook(cmd, argp); 1086 mutex_unlock(&dlci_ioctl_mutex); 1087 break; 1088 case SIOCGSKNS: 1089 err = -EPERM; 1090 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1091 break; 1092 1093 err = open_related_ns(&net->ns, get_net_ns); 1094 break; 1095 default: 1096 err = sock_do_ioctl(net, sock, cmd, arg); 1097 break; 1098 } 1099 return err; 1100 } 1101 1102 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1103 { 1104 int err; 1105 struct socket *sock = NULL; 1106 1107 err = security_socket_create(family, type, protocol, 1); 1108 if (err) 1109 goto out; 1110 1111 sock = sock_alloc(); 1112 if (!sock) { 1113 err = -ENOMEM; 1114 goto out; 1115 } 1116 1117 sock->type = type; 1118 err = security_socket_post_create(sock, family, type, protocol, 1); 1119 if (err) 1120 goto out_release; 1121 1122 out: 1123 *res = sock; 1124 return err; 1125 out_release: 1126 sock_release(sock); 1127 sock = NULL; 1128 goto out; 1129 } 1130 EXPORT_SYMBOL(sock_create_lite); 1131 1132 /* No kernel lock held - perfect */ 1133 static __poll_t sock_poll(struct file *file, poll_table *wait) 1134 { 1135 struct socket *sock = file->private_data; 1136 __poll_t events = poll_requested_events(wait), flag = 0; 1137 1138 if (!sock->ops->poll) 1139 return 0; 1140 1141 if (sk_can_busy_loop(sock->sk)) { 1142 /* poll once if requested by the syscall */ 1143 if (events & POLL_BUSY_LOOP) 1144 sk_busy_loop(sock->sk, 1); 1145 1146 /* if this socket can poll_ll, tell the system call */ 1147 flag = POLL_BUSY_LOOP; 1148 } 1149 1150 return sock->ops->poll(file, sock, wait) | flag; 1151 } 1152 1153 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1154 { 1155 struct socket *sock = file->private_data; 1156 1157 return sock->ops->mmap(file, sock, vma); 1158 } 1159 1160 static int sock_close(struct inode *inode, struct file *filp) 1161 { 1162 __sock_release(SOCKET_I(inode), inode); 1163 return 0; 1164 } 1165 1166 /* 1167 * Update the socket async list 1168 * 1169 * Fasync_list locking strategy. 1170 * 1171 * 1. fasync_list is modified only under process context socket lock 1172 * i.e. under semaphore. 1173 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1174 * or under socket lock 1175 */ 1176 1177 static int sock_fasync(int fd, struct file *filp, int on) 1178 { 1179 struct socket *sock = filp->private_data; 1180 struct sock *sk = sock->sk; 1181 struct socket_wq *wq; 1182 1183 if (sk == NULL) 1184 return -EINVAL; 1185 1186 lock_sock(sk); 1187 wq = sock->wq; 1188 fasync_helper(fd, filp, on, &wq->fasync_list); 1189 1190 if (!wq->fasync_list) 1191 sock_reset_flag(sk, SOCK_FASYNC); 1192 else 1193 sock_set_flag(sk, SOCK_FASYNC); 1194 1195 release_sock(sk); 1196 return 0; 1197 } 1198 1199 /* This function may be called only under rcu_lock */ 1200 1201 int sock_wake_async(struct socket_wq *wq, int how, int band) 1202 { 1203 if (!wq || !wq->fasync_list) 1204 return -1; 1205 1206 switch (how) { 1207 case SOCK_WAKE_WAITD: 1208 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1209 break; 1210 goto call_kill; 1211 case SOCK_WAKE_SPACE: 1212 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1213 break; 1214 /* fall through */ 1215 case SOCK_WAKE_IO: 1216 call_kill: 1217 kill_fasync(&wq->fasync_list, SIGIO, band); 1218 break; 1219 case SOCK_WAKE_URG: 1220 kill_fasync(&wq->fasync_list, SIGURG, band); 1221 } 1222 1223 return 0; 1224 } 1225 EXPORT_SYMBOL(sock_wake_async); 1226 1227 int __sock_create(struct net *net, int family, int type, int protocol, 1228 struct socket **res, int kern) 1229 { 1230 int err; 1231 struct socket *sock; 1232 const struct net_proto_family *pf; 1233 1234 /* 1235 * Check protocol is in range 1236 */ 1237 if (family < 0 || family >= NPROTO) 1238 return -EAFNOSUPPORT; 1239 if (type < 0 || type >= SOCK_MAX) 1240 return -EINVAL; 1241 1242 /* Compatibility. 1243 1244 This uglymoron is moved from INET layer to here to avoid 1245 deadlock in module load. 1246 */ 1247 if (family == PF_INET && type == SOCK_PACKET) { 1248 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1249 current->comm); 1250 family = PF_PACKET; 1251 } 1252 1253 err = security_socket_create(family, type, protocol, kern); 1254 if (err) 1255 return err; 1256 1257 /* 1258 * Allocate the socket and allow the family to set things up. if 1259 * the protocol is 0, the family is instructed to select an appropriate 1260 * default. 1261 */ 1262 sock = sock_alloc(); 1263 if (!sock) { 1264 net_warn_ratelimited("socket: no more sockets\n"); 1265 return -ENFILE; /* Not exactly a match, but its the 1266 closest posix thing */ 1267 } 1268 1269 sock->type = type; 1270 1271 #ifdef CONFIG_MODULES 1272 /* Attempt to load a protocol module if the find failed. 1273 * 1274 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1275 * requested real, full-featured networking support upon configuration. 1276 * Otherwise module support will break! 1277 */ 1278 if (rcu_access_pointer(net_families[family]) == NULL) 1279 request_module("net-pf-%d", family); 1280 #endif 1281 1282 rcu_read_lock(); 1283 pf = rcu_dereference(net_families[family]); 1284 err = -EAFNOSUPPORT; 1285 if (!pf) 1286 goto out_release; 1287 1288 /* 1289 * We will call the ->create function, that possibly is in a loadable 1290 * module, so we have to bump that loadable module refcnt first. 1291 */ 1292 if (!try_module_get(pf->owner)) 1293 goto out_release; 1294 1295 /* Now protected by module ref count */ 1296 rcu_read_unlock(); 1297 1298 err = pf->create(net, sock, protocol, kern); 1299 if (err < 0) 1300 goto out_module_put; 1301 1302 /* 1303 * Now to bump the refcnt of the [loadable] module that owns this 1304 * socket at sock_release time we decrement its refcnt. 1305 */ 1306 if (!try_module_get(sock->ops->owner)) 1307 goto out_module_busy; 1308 1309 /* 1310 * Now that we're done with the ->create function, the [loadable] 1311 * module can have its refcnt decremented 1312 */ 1313 module_put(pf->owner); 1314 err = security_socket_post_create(sock, family, type, protocol, kern); 1315 if (err) 1316 goto out_sock_release; 1317 *res = sock; 1318 1319 return 0; 1320 1321 out_module_busy: 1322 err = -EAFNOSUPPORT; 1323 out_module_put: 1324 sock->ops = NULL; 1325 module_put(pf->owner); 1326 out_sock_release: 1327 sock_release(sock); 1328 return err; 1329 1330 out_release: 1331 rcu_read_unlock(); 1332 goto out_sock_release; 1333 } 1334 EXPORT_SYMBOL(__sock_create); 1335 1336 int sock_create(int family, int type, int protocol, struct socket **res) 1337 { 1338 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1339 } 1340 EXPORT_SYMBOL(sock_create); 1341 1342 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1343 { 1344 return __sock_create(net, family, type, protocol, res, 1); 1345 } 1346 EXPORT_SYMBOL(sock_create_kern); 1347 1348 int __sys_socket(int family, int type, int protocol) 1349 { 1350 int retval; 1351 struct socket *sock; 1352 int flags; 1353 1354 /* Check the SOCK_* constants for consistency. */ 1355 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1356 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1357 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1358 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1359 1360 flags = type & ~SOCK_TYPE_MASK; 1361 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1362 return -EINVAL; 1363 type &= SOCK_TYPE_MASK; 1364 1365 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1366 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1367 1368 retval = sock_create(family, type, protocol, &sock); 1369 if (retval < 0) 1370 return retval; 1371 1372 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1373 } 1374 1375 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1376 { 1377 return __sys_socket(family, type, protocol); 1378 } 1379 1380 /* 1381 * Create a pair of connected sockets. 1382 */ 1383 1384 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1385 { 1386 struct socket *sock1, *sock2; 1387 int fd1, fd2, err; 1388 struct file *newfile1, *newfile2; 1389 int flags; 1390 1391 flags = type & ~SOCK_TYPE_MASK; 1392 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1393 return -EINVAL; 1394 type &= SOCK_TYPE_MASK; 1395 1396 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1397 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1398 1399 /* 1400 * reserve descriptors and make sure we won't fail 1401 * to return them to userland. 1402 */ 1403 fd1 = get_unused_fd_flags(flags); 1404 if (unlikely(fd1 < 0)) 1405 return fd1; 1406 1407 fd2 = get_unused_fd_flags(flags); 1408 if (unlikely(fd2 < 0)) { 1409 put_unused_fd(fd1); 1410 return fd2; 1411 } 1412 1413 err = put_user(fd1, &usockvec[0]); 1414 if (err) 1415 goto out; 1416 1417 err = put_user(fd2, &usockvec[1]); 1418 if (err) 1419 goto out; 1420 1421 /* 1422 * Obtain the first socket and check if the underlying protocol 1423 * supports the socketpair call. 1424 */ 1425 1426 err = sock_create(family, type, protocol, &sock1); 1427 if (unlikely(err < 0)) 1428 goto out; 1429 1430 err = sock_create(family, type, protocol, &sock2); 1431 if (unlikely(err < 0)) { 1432 sock_release(sock1); 1433 goto out; 1434 } 1435 1436 err = security_socket_socketpair(sock1, sock2); 1437 if (unlikely(err)) { 1438 sock_release(sock2); 1439 sock_release(sock1); 1440 goto out; 1441 } 1442 1443 err = sock1->ops->socketpair(sock1, sock2); 1444 if (unlikely(err < 0)) { 1445 sock_release(sock2); 1446 sock_release(sock1); 1447 goto out; 1448 } 1449 1450 newfile1 = sock_alloc_file(sock1, flags, NULL); 1451 if (IS_ERR(newfile1)) { 1452 err = PTR_ERR(newfile1); 1453 sock_release(sock2); 1454 goto out; 1455 } 1456 1457 newfile2 = sock_alloc_file(sock2, flags, NULL); 1458 if (IS_ERR(newfile2)) { 1459 err = PTR_ERR(newfile2); 1460 fput(newfile1); 1461 goto out; 1462 } 1463 1464 audit_fd_pair(fd1, fd2); 1465 1466 fd_install(fd1, newfile1); 1467 fd_install(fd2, newfile2); 1468 return 0; 1469 1470 out: 1471 put_unused_fd(fd2); 1472 put_unused_fd(fd1); 1473 return err; 1474 } 1475 1476 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1477 int __user *, usockvec) 1478 { 1479 return __sys_socketpair(family, type, protocol, usockvec); 1480 } 1481 1482 /* 1483 * Bind a name to a socket. Nothing much to do here since it's 1484 * the protocol's responsibility to handle the local address. 1485 * 1486 * We move the socket address to kernel space before we call 1487 * the protocol layer (having also checked the address is ok). 1488 */ 1489 1490 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1491 { 1492 struct socket *sock; 1493 struct sockaddr_storage address; 1494 int err, fput_needed; 1495 1496 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1497 if (sock) { 1498 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1499 if (!err) { 1500 err = security_socket_bind(sock, 1501 (struct sockaddr *)&address, 1502 addrlen); 1503 if (!err) 1504 err = sock->ops->bind(sock, 1505 (struct sockaddr *) 1506 &address, addrlen); 1507 } 1508 fput_light(sock->file, fput_needed); 1509 } 1510 return err; 1511 } 1512 1513 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1514 { 1515 return __sys_bind(fd, umyaddr, addrlen); 1516 } 1517 1518 /* 1519 * Perform a listen. Basically, we allow the protocol to do anything 1520 * necessary for a listen, and if that works, we mark the socket as 1521 * ready for listening. 1522 */ 1523 1524 int __sys_listen(int fd, int backlog) 1525 { 1526 struct socket *sock; 1527 int err, fput_needed; 1528 int somaxconn; 1529 1530 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1531 if (sock) { 1532 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1533 if ((unsigned int)backlog > somaxconn) 1534 backlog = somaxconn; 1535 1536 err = security_socket_listen(sock, backlog); 1537 if (!err) 1538 err = sock->ops->listen(sock, backlog); 1539 1540 fput_light(sock->file, fput_needed); 1541 } 1542 return err; 1543 } 1544 1545 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1546 { 1547 return __sys_listen(fd, backlog); 1548 } 1549 1550 /* 1551 * For accept, we attempt to create a new socket, set up the link 1552 * with the client, wake up the client, then return the new 1553 * connected fd. We collect the address of the connector in kernel 1554 * space and move it to user at the very end. This is unclean because 1555 * we open the socket then return an error. 1556 * 1557 * 1003.1g adds the ability to recvmsg() to query connection pending 1558 * status to recvmsg. We need to add that support in a way thats 1559 * clean when we restructure accept also. 1560 */ 1561 1562 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1563 int __user *upeer_addrlen, int flags) 1564 { 1565 struct socket *sock, *newsock; 1566 struct file *newfile; 1567 int err, len, newfd, fput_needed; 1568 struct sockaddr_storage address; 1569 1570 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1571 return -EINVAL; 1572 1573 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1574 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1575 1576 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1577 if (!sock) 1578 goto out; 1579 1580 err = -ENFILE; 1581 newsock = sock_alloc(); 1582 if (!newsock) 1583 goto out_put; 1584 1585 newsock->type = sock->type; 1586 newsock->ops = sock->ops; 1587 1588 /* 1589 * We don't need try_module_get here, as the listening socket (sock) 1590 * has the protocol module (sock->ops->owner) held. 1591 */ 1592 __module_get(newsock->ops->owner); 1593 1594 newfd = get_unused_fd_flags(flags); 1595 if (unlikely(newfd < 0)) { 1596 err = newfd; 1597 sock_release(newsock); 1598 goto out_put; 1599 } 1600 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1601 if (IS_ERR(newfile)) { 1602 err = PTR_ERR(newfile); 1603 put_unused_fd(newfd); 1604 goto out_put; 1605 } 1606 1607 err = security_socket_accept(sock, newsock); 1608 if (err) 1609 goto out_fd; 1610 1611 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1612 if (err < 0) 1613 goto out_fd; 1614 1615 if (upeer_sockaddr) { 1616 len = newsock->ops->getname(newsock, 1617 (struct sockaddr *)&address, 2); 1618 if (len < 0) { 1619 err = -ECONNABORTED; 1620 goto out_fd; 1621 } 1622 err = move_addr_to_user(&address, 1623 len, upeer_sockaddr, upeer_addrlen); 1624 if (err < 0) 1625 goto out_fd; 1626 } 1627 1628 /* File flags are not inherited via accept() unlike another OSes. */ 1629 1630 fd_install(newfd, newfile); 1631 err = newfd; 1632 1633 out_put: 1634 fput_light(sock->file, fput_needed); 1635 out: 1636 return err; 1637 out_fd: 1638 fput(newfile); 1639 put_unused_fd(newfd); 1640 goto out_put; 1641 } 1642 1643 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1644 int __user *, upeer_addrlen, int, flags) 1645 { 1646 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1647 } 1648 1649 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1650 int __user *, upeer_addrlen) 1651 { 1652 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1653 } 1654 1655 /* 1656 * Attempt to connect to a socket with the server address. The address 1657 * is in user space so we verify it is OK and move it to kernel space. 1658 * 1659 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1660 * break bindings 1661 * 1662 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1663 * other SEQPACKET protocols that take time to connect() as it doesn't 1664 * include the -EINPROGRESS status for such sockets. 1665 */ 1666 1667 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1668 { 1669 struct socket *sock; 1670 struct sockaddr_storage address; 1671 int err, fput_needed; 1672 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (!sock) 1675 goto out; 1676 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1677 if (err < 0) 1678 goto out_put; 1679 1680 err = 1681 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1682 if (err) 1683 goto out_put; 1684 1685 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1686 sock->file->f_flags); 1687 out_put: 1688 fput_light(sock->file, fput_needed); 1689 out: 1690 return err; 1691 } 1692 1693 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1694 int, addrlen) 1695 { 1696 return __sys_connect(fd, uservaddr, addrlen); 1697 } 1698 1699 /* 1700 * Get the local address ('name') of a socket object. Move the obtained 1701 * name to user space. 1702 */ 1703 1704 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1705 int __user *usockaddr_len) 1706 { 1707 struct socket *sock; 1708 struct sockaddr_storage address; 1709 int err, fput_needed; 1710 1711 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1712 if (!sock) 1713 goto out; 1714 1715 err = security_socket_getsockname(sock); 1716 if (err) 1717 goto out_put; 1718 1719 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1720 if (err < 0) 1721 goto out_put; 1722 /* "err" is actually length in this case */ 1723 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1724 1725 out_put: 1726 fput_light(sock->file, fput_needed); 1727 out: 1728 return err; 1729 } 1730 1731 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1732 int __user *, usockaddr_len) 1733 { 1734 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1735 } 1736 1737 /* 1738 * Get the remote address ('name') of a socket object. Move the obtained 1739 * name to user space. 1740 */ 1741 1742 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1743 int __user *usockaddr_len) 1744 { 1745 struct socket *sock; 1746 struct sockaddr_storage address; 1747 int err, fput_needed; 1748 1749 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1750 if (sock != NULL) { 1751 err = security_socket_getpeername(sock); 1752 if (err) { 1753 fput_light(sock->file, fput_needed); 1754 return err; 1755 } 1756 1757 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1758 if (err >= 0) 1759 /* "err" is actually length in this case */ 1760 err = move_addr_to_user(&address, err, usockaddr, 1761 usockaddr_len); 1762 fput_light(sock->file, fput_needed); 1763 } 1764 return err; 1765 } 1766 1767 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1768 int __user *, usockaddr_len) 1769 { 1770 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1771 } 1772 1773 /* 1774 * Send a datagram to a given address. We move the address into kernel 1775 * space and check the user space data area is readable before invoking 1776 * the protocol. 1777 */ 1778 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1779 struct sockaddr __user *addr, int addr_len) 1780 { 1781 struct socket *sock; 1782 struct sockaddr_storage address; 1783 int err; 1784 struct msghdr msg; 1785 struct iovec iov; 1786 int fput_needed; 1787 1788 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1789 if (unlikely(err)) 1790 return err; 1791 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1792 if (!sock) 1793 goto out; 1794 1795 msg.msg_name = NULL; 1796 msg.msg_control = NULL; 1797 msg.msg_controllen = 0; 1798 msg.msg_namelen = 0; 1799 if (addr) { 1800 err = move_addr_to_kernel(addr, addr_len, &address); 1801 if (err < 0) 1802 goto out_put; 1803 msg.msg_name = (struct sockaddr *)&address; 1804 msg.msg_namelen = addr_len; 1805 } 1806 if (sock->file->f_flags & O_NONBLOCK) 1807 flags |= MSG_DONTWAIT; 1808 msg.msg_flags = flags; 1809 err = sock_sendmsg(sock, &msg); 1810 1811 out_put: 1812 fput_light(sock->file, fput_needed); 1813 out: 1814 return err; 1815 } 1816 1817 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1818 unsigned int, flags, struct sockaddr __user *, addr, 1819 int, addr_len) 1820 { 1821 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1822 } 1823 1824 /* 1825 * Send a datagram down a socket. 1826 */ 1827 1828 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1829 unsigned int, flags) 1830 { 1831 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1832 } 1833 1834 /* 1835 * Receive a frame from the socket and optionally record the address of the 1836 * sender. We verify the buffers are writable and if needed move the 1837 * sender address from kernel to user space. 1838 */ 1839 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1840 struct sockaddr __user *addr, int __user *addr_len) 1841 { 1842 struct socket *sock; 1843 struct iovec iov; 1844 struct msghdr msg; 1845 struct sockaddr_storage address; 1846 int err, err2; 1847 int fput_needed; 1848 1849 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1850 if (unlikely(err)) 1851 return err; 1852 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1853 if (!sock) 1854 goto out; 1855 1856 msg.msg_control = NULL; 1857 msg.msg_controllen = 0; 1858 /* Save some cycles and don't copy the address if not needed */ 1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1860 /* We assume all kernel code knows the size of sockaddr_storage */ 1861 msg.msg_namelen = 0; 1862 msg.msg_iocb = NULL; 1863 msg.msg_flags = 0; 1864 if (sock->file->f_flags & O_NONBLOCK) 1865 flags |= MSG_DONTWAIT; 1866 err = sock_recvmsg(sock, &msg, flags); 1867 1868 if (err >= 0 && addr != NULL) { 1869 err2 = move_addr_to_user(&address, 1870 msg.msg_namelen, addr, addr_len); 1871 if (err2 < 0) 1872 err = err2; 1873 } 1874 1875 fput_light(sock->file, fput_needed); 1876 out: 1877 return err; 1878 } 1879 1880 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1881 unsigned int, flags, struct sockaddr __user *, addr, 1882 int __user *, addr_len) 1883 { 1884 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1885 } 1886 1887 /* 1888 * Receive a datagram from a socket. 1889 */ 1890 1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1892 unsigned int, flags) 1893 { 1894 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1895 } 1896 1897 /* 1898 * Set a socket option. Because we don't know the option lengths we have 1899 * to pass the user mode parameter for the protocols to sort out. 1900 */ 1901 1902 static int __sys_setsockopt(int fd, int level, int optname, 1903 char __user *optval, int optlen) 1904 { 1905 int err, fput_needed; 1906 struct socket *sock; 1907 1908 if (optlen < 0) 1909 return -EINVAL; 1910 1911 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1912 if (sock != NULL) { 1913 err = security_socket_setsockopt(sock, level, optname); 1914 if (err) 1915 goto out_put; 1916 1917 if (level == SOL_SOCKET) 1918 err = 1919 sock_setsockopt(sock, level, optname, optval, 1920 optlen); 1921 else 1922 err = 1923 sock->ops->setsockopt(sock, level, optname, optval, 1924 optlen); 1925 out_put: 1926 fput_light(sock->file, fput_needed); 1927 } 1928 return err; 1929 } 1930 1931 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1932 char __user *, optval, int, optlen) 1933 { 1934 return __sys_setsockopt(fd, level, optname, optval, optlen); 1935 } 1936 1937 /* 1938 * Get a socket option. Because we don't know the option lengths we have 1939 * to pass a user mode parameter for the protocols to sort out. 1940 */ 1941 1942 static int __sys_getsockopt(int fd, int level, int optname, 1943 char __user *optval, int __user *optlen) 1944 { 1945 int err, fput_needed; 1946 struct socket *sock; 1947 1948 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1949 if (sock != NULL) { 1950 err = security_socket_getsockopt(sock, level, optname); 1951 if (err) 1952 goto out_put; 1953 1954 if (level == SOL_SOCKET) 1955 err = 1956 sock_getsockopt(sock, level, optname, optval, 1957 optlen); 1958 else 1959 err = 1960 sock->ops->getsockopt(sock, level, optname, optval, 1961 optlen); 1962 out_put: 1963 fput_light(sock->file, fput_needed); 1964 } 1965 return err; 1966 } 1967 1968 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1969 char __user *, optval, int __user *, optlen) 1970 { 1971 return __sys_getsockopt(fd, level, optname, optval, optlen); 1972 } 1973 1974 /* 1975 * Shutdown a socket. 1976 */ 1977 1978 int __sys_shutdown(int fd, int how) 1979 { 1980 int err, fput_needed; 1981 struct socket *sock; 1982 1983 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1984 if (sock != NULL) { 1985 err = security_socket_shutdown(sock, how); 1986 if (!err) 1987 err = sock->ops->shutdown(sock, how); 1988 fput_light(sock->file, fput_needed); 1989 } 1990 return err; 1991 } 1992 1993 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1994 { 1995 return __sys_shutdown(fd, how); 1996 } 1997 1998 /* A couple of helpful macros for getting the address of the 32/64 bit 1999 * fields which are the same type (int / unsigned) on our platforms. 2000 */ 2001 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2002 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2003 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2004 2005 struct used_address { 2006 struct sockaddr_storage name; 2007 unsigned int name_len; 2008 }; 2009 2010 static int copy_msghdr_from_user(struct msghdr *kmsg, 2011 struct user_msghdr __user *umsg, 2012 struct sockaddr __user **save_addr, 2013 struct iovec **iov) 2014 { 2015 struct user_msghdr msg; 2016 ssize_t err; 2017 2018 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2019 return -EFAULT; 2020 2021 kmsg->msg_control = (void __force *)msg.msg_control; 2022 kmsg->msg_controllen = msg.msg_controllen; 2023 kmsg->msg_flags = msg.msg_flags; 2024 2025 kmsg->msg_namelen = msg.msg_namelen; 2026 if (!msg.msg_name) 2027 kmsg->msg_namelen = 0; 2028 2029 if (kmsg->msg_namelen < 0) 2030 return -EINVAL; 2031 2032 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2033 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2034 2035 if (save_addr) 2036 *save_addr = msg.msg_name; 2037 2038 if (msg.msg_name && kmsg->msg_namelen) { 2039 if (!save_addr) { 2040 err = move_addr_to_kernel(msg.msg_name, 2041 kmsg->msg_namelen, 2042 kmsg->msg_name); 2043 if (err < 0) 2044 return err; 2045 } 2046 } else { 2047 kmsg->msg_name = NULL; 2048 kmsg->msg_namelen = 0; 2049 } 2050 2051 if (msg.msg_iovlen > UIO_MAXIOV) 2052 return -EMSGSIZE; 2053 2054 kmsg->msg_iocb = NULL; 2055 2056 return import_iovec(save_addr ? READ : WRITE, 2057 msg.msg_iov, msg.msg_iovlen, 2058 UIO_FASTIOV, iov, &kmsg->msg_iter); 2059 } 2060 2061 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2062 struct msghdr *msg_sys, unsigned int flags, 2063 struct used_address *used_address, 2064 unsigned int allowed_msghdr_flags) 2065 { 2066 struct compat_msghdr __user *msg_compat = 2067 (struct compat_msghdr __user *)msg; 2068 struct sockaddr_storage address; 2069 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2070 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2071 __aligned(sizeof(__kernel_size_t)); 2072 /* 20 is size of ipv6_pktinfo */ 2073 unsigned char *ctl_buf = ctl; 2074 int ctl_len; 2075 ssize_t err; 2076 2077 msg_sys->msg_name = &address; 2078 2079 if (MSG_CMSG_COMPAT & flags) 2080 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2081 else 2082 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2083 if (err < 0) 2084 return err; 2085 2086 err = -ENOBUFS; 2087 2088 if (msg_sys->msg_controllen > INT_MAX) 2089 goto out_freeiov; 2090 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2091 ctl_len = msg_sys->msg_controllen; 2092 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2093 err = 2094 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2095 sizeof(ctl)); 2096 if (err) 2097 goto out_freeiov; 2098 ctl_buf = msg_sys->msg_control; 2099 ctl_len = msg_sys->msg_controllen; 2100 } else if (ctl_len) { 2101 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2102 CMSG_ALIGN(sizeof(struct cmsghdr))); 2103 if (ctl_len > sizeof(ctl)) { 2104 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2105 if (ctl_buf == NULL) 2106 goto out_freeiov; 2107 } 2108 err = -EFAULT; 2109 /* 2110 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2111 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2112 * checking falls down on this. 2113 */ 2114 if (copy_from_user(ctl_buf, 2115 (void __user __force *)msg_sys->msg_control, 2116 ctl_len)) 2117 goto out_freectl; 2118 msg_sys->msg_control = ctl_buf; 2119 } 2120 msg_sys->msg_flags = flags; 2121 2122 if (sock->file->f_flags & O_NONBLOCK) 2123 msg_sys->msg_flags |= MSG_DONTWAIT; 2124 /* 2125 * If this is sendmmsg() and current destination address is same as 2126 * previously succeeded address, omit asking LSM's decision. 2127 * used_address->name_len is initialized to UINT_MAX so that the first 2128 * destination address never matches. 2129 */ 2130 if (used_address && msg_sys->msg_name && 2131 used_address->name_len == msg_sys->msg_namelen && 2132 !memcmp(&used_address->name, msg_sys->msg_name, 2133 used_address->name_len)) { 2134 err = sock_sendmsg_nosec(sock, msg_sys); 2135 goto out_freectl; 2136 } 2137 err = sock_sendmsg(sock, msg_sys); 2138 /* 2139 * If this is sendmmsg() and sending to current destination address was 2140 * successful, remember it. 2141 */ 2142 if (used_address && err >= 0) { 2143 used_address->name_len = msg_sys->msg_namelen; 2144 if (msg_sys->msg_name) 2145 memcpy(&used_address->name, msg_sys->msg_name, 2146 used_address->name_len); 2147 } 2148 2149 out_freectl: 2150 if (ctl_buf != ctl) 2151 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2152 out_freeiov: 2153 kfree(iov); 2154 return err; 2155 } 2156 2157 /* 2158 * BSD sendmsg interface 2159 */ 2160 2161 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2162 bool forbid_cmsg_compat) 2163 { 2164 int fput_needed, err; 2165 struct msghdr msg_sys; 2166 struct socket *sock; 2167 2168 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2169 return -EINVAL; 2170 2171 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2172 if (!sock) 2173 goto out; 2174 2175 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2176 2177 fput_light(sock->file, fput_needed); 2178 out: 2179 return err; 2180 } 2181 2182 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2183 { 2184 return __sys_sendmsg(fd, msg, flags, true); 2185 } 2186 2187 /* 2188 * Linux sendmmsg interface 2189 */ 2190 2191 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2192 unsigned int flags, bool forbid_cmsg_compat) 2193 { 2194 int fput_needed, err, datagrams; 2195 struct socket *sock; 2196 struct mmsghdr __user *entry; 2197 struct compat_mmsghdr __user *compat_entry; 2198 struct msghdr msg_sys; 2199 struct used_address used_address; 2200 unsigned int oflags = flags; 2201 2202 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2203 return -EINVAL; 2204 2205 if (vlen > UIO_MAXIOV) 2206 vlen = UIO_MAXIOV; 2207 2208 datagrams = 0; 2209 2210 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2211 if (!sock) 2212 return err; 2213 2214 used_address.name_len = UINT_MAX; 2215 entry = mmsg; 2216 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2217 err = 0; 2218 flags |= MSG_BATCH; 2219 2220 while (datagrams < vlen) { 2221 if (datagrams == vlen - 1) 2222 flags = oflags; 2223 2224 if (MSG_CMSG_COMPAT & flags) { 2225 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2226 &msg_sys, flags, &used_address, MSG_EOR); 2227 if (err < 0) 2228 break; 2229 err = __put_user(err, &compat_entry->msg_len); 2230 ++compat_entry; 2231 } else { 2232 err = ___sys_sendmsg(sock, 2233 (struct user_msghdr __user *)entry, 2234 &msg_sys, flags, &used_address, MSG_EOR); 2235 if (err < 0) 2236 break; 2237 err = put_user(err, &entry->msg_len); 2238 ++entry; 2239 } 2240 2241 if (err) 2242 break; 2243 ++datagrams; 2244 if (msg_data_left(&msg_sys)) 2245 break; 2246 cond_resched(); 2247 } 2248 2249 fput_light(sock->file, fput_needed); 2250 2251 /* We only return an error if no datagrams were able to be sent */ 2252 if (datagrams != 0) 2253 return datagrams; 2254 2255 return err; 2256 } 2257 2258 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2259 unsigned int, vlen, unsigned int, flags) 2260 { 2261 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2262 } 2263 2264 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2265 struct msghdr *msg_sys, unsigned int flags, int nosec) 2266 { 2267 struct compat_msghdr __user *msg_compat = 2268 (struct compat_msghdr __user *)msg; 2269 struct iovec iovstack[UIO_FASTIOV]; 2270 struct iovec *iov = iovstack; 2271 unsigned long cmsg_ptr; 2272 int len; 2273 ssize_t err; 2274 2275 /* kernel mode address */ 2276 struct sockaddr_storage addr; 2277 2278 /* user mode address pointers */ 2279 struct sockaddr __user *uaddr; 2280 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2281 2282 msg_sys->msg_name = &addr; 2283 2284 if (MSG_CMSG_COMPAT & flags) 2285 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2286 else 2287 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2288 if (err < 0) 2289 return err; 2290 2291 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2292 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2293 2294 /* We assume all kernel code knows the size of sockaddr_storage */ 2295 msg_sys->msg_namelen = 0; 2296 2297 if (sock->file->f_flags & O_NONBLOCK) 2298 flags |= MSG_DONTWAIT; 2299 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2300 if (err < 0) 2301 goto out_freeiov; 2302 len = err; 2303 2304 if (uaddr != NULL) { 2305 err = move_addr_to_user(&addr, 2306 msg_sys->msg_namelen, uaddr, 2307 uaddr_len); 2308 if (err < 0) 2309 goto out_freeiov; 2310 } 2311 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2312 COMPAT_FLAGS(msg)); 2313 if (err) 2314 goto out_freeiov; 2315 if (MSG_CMSG_COMPAT & flags) 2316 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2317 &msg_compat->msg_controllen); 2318 else 2319 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2320 &msg->msg_controllen); 2321 if (err) 2322 goto out_freeiov; 2323 err = len; 2324 2325 out_freeiov: 2326 kfree(iov); 2327 return err; 2328 } 2329 2330 /* 2331 * BSD recvmsg interface 2332 */ 2333 2334 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2335 bool forbid_cmsg_compat) 2336 { 2337 int fput_needed, err; 2338 struct msghdr msg_sys; 2339 struct socket *sock; 2340 2341 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2342 return -EINVAL; 2343 2344 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2345 if (!sock) 2346 goto out; 2347 2348 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2349 2350 fput_light(sock->file, fput_needed); 2351 out: 2352 return err; 2353 } 2354 2355 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2356 unsigned int, flags) 2357 { 2358 return __sys_recvmsg(fd, msg, flags, true); 2359 } 2360 2361 /* 2362 * Linux recvmmsg interface 2363 */ 2364 2365 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2366 unsigned int vlen, unsigned int flags, 2367 struct timespec64 *timeout) 2368 { 2369 int fput_needed, err, datagrams; 2370 struct socket *sock; 2371 struct mmsghdr __user *entry; 2372 struct compat_mmsghdr __user *compat_entry; 2373 struct msghdr msg_sys; 2374 struct timespec64 end_time; 2375 struct timespec64 timeout64; 2376 2377 if (timeout && 2378 poll_select_set_timeout(&end_time, timeout->tv_sec, 2379 timeout->tv_nsec)) 2380 return -EINVAL; 2381 2382 datagrams = 0; 2383 2384 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2385 if (!sock) 2386 return err; 2387 2388 if (likely(!(flags & MSG_ERRQUEUE))) { 2389 err = sock_error(sock->sk); 2390 if (err) { 2391 datagrams = err; 2392 goto out_put; 2393 } 2394 } 2395 2396 entry = mmsg; 2397 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2398 2399 while (datagrams < vlen) { 2400 /* 2401 * No need to ask LSM for more than the first datagram. 2402 */ 2403 if (MSG_CMSG_COMPAT & flags) { 2404 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2405 &msg_sys, flags & ~MSG_WAITFORONE, 2406 datagrams); 2407 if (err < 0) 2408 break; 2409 err = __put_user(err, &compat_entry->msg_len); 2410 ++compat_entry; 2411 } else { 2412 err = ___sys_recvmsg(sock, 2413 (struct user_msghdr __user *)entry, 2414 &msg_sys, flags & ~MSG_WAITFORONE, 2415 datagrams); 2416 if (err < 0) 2417 break; 2418 err = put_user(err, &entry->msg_len); 2419 ++entry; 2420 } 2421 2422 if (err) 2423 break; 2424 ++datagrams; 2425 2426 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2427 if (flags & MSG_WAITFORONE) 2428 flags |= MSG_DONTWAIT; 2429 2430 if (timeout) { 2431 ktime_get_ts64(&timeout64); 2432 *timeout = timespec64_sub(end_time, timeout64); 2433 if (timeout->tv_sec < 0) { 2434 timeout->tv_sec = timeout->tv_nsec = 0; 2435 break; 2436 } 2437 2438 /* Timeout, return less than vlen datagrams */ 2439 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2440 break; 2441 } 2442 2443 /* Out of band data, return right away */ 2444 if (msg_sys.msg_flags & MSG_OOB) 2445 break; 2446 cond_resched(); 2447 } 2448 2449 if (err == 0) 2450 goto out_put; 2451 2452 if (datagrams == 0) { 2453 datagrams = err; 2454 goto out_put; 2455 } 2456 2457 /* 2458 * We may return less entries than requested (vlen) if the 2459 * sock is non block and there aren't enough datagrams... 2460 */ 2461 if (err != -EAGAIN) { 2462 /* 2463 * ... or if recvmsg returns an error after we 2464 * received some datagrams, where we record the 2465 * error to return on the next call or if the 2466 * app asks about it using getsockopt(SO_ERROR). 2467 */ 2468 sock->sk->sk_err = -err; 2469 } 2470 out_put: 2471 fput_light(sock->file, fput_needed); 2472 2473 return datagrams; 2474 } 2475 2476 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2477 unsigned int vlen, unsigned int flags, 2478 struct __kernel_timespec __user *timeout, 2479 struct old_timespec32 __user *timeout32) 2480 { 2481 int datagrams; 2482 struct timespec64 timeout_sys; 2483 2484 if (timeout && get_timespec64(&timeout_sys, timeout)) 2485 return -EFAULT; 2486 2487 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2488 return -EFAULT; 2489 2490 if (!timeout && !timeout32) 2491 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2492 2493 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2494 2495 if (datagrams <= 0) 2496 return datagrams; 2497 2498 if (timeout && put_timespec64(&timeout_sys, timeout)) 2499 datagrams = -EFAULT; 2500 2501 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2502 datagrams = -EFAULT; 2503 2504 return datagrams; 2505 } 2506 2507 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2508 unsigned int, vlen, unsigned int, flags, 2509 struct __kernel_timespec __user *, timeout) 2510 { 2511 if (flags & MSG_CMSG_COMPAT) 2512 return -EINVAL; 2513 2514 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2515 } 2516 2517 #ifdef CONFIG_COMPAT_32BIT_TIME 2518 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2519 unsigned int, vlen, unsigned int, flags, 2520 struct old_timespec32 __user *, timeout) 2521 { 2522 if (flags & MSG_CMSG_COMPAT) 2523 return -EINVAL; 2524 2525 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2526 } 2527 #endif 2528 2529 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2530 /* Argument list sizes for sys_socketcall */ 2531 #define AL(x) ((x) * sizeof(unsigned long)) 2532 static const unsigned char nargs[21] = { 2533 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2534 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2535 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2536 AL(4), AL(5), AL(4) 2537 }; 2538 2539 #undef AL 2540 2541 /* 2542 * System call vectors. 2543 * 2544 * Argument checking cleaned up. Saved 20% in size. 2545 * This function doesn't need to set the kernel lock because 2546 * it is set by the callees. 2547 */ 2548 2549 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2550 { 2551 unsigned long a[AUDITSC_ARGS]; 2552 unsigned long a0, a1; 2553 int err; 2554 unsigned int len; 2555 2556 if (call < 1 || call > SYS_SENDMMSG) 2557 return -EINVAL; 2558 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2559 2560 len = nargs[call]; 2561 if (len > sizeof(a)) 2562 return -EINVAL; 2563 2564 /* copy_from_user should be SMP safe. */ 2565 if (copy_from_user(a, args, len)) 2566 return -EFAULT; 2567 2568 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2569 if (err) 2570 return err; 2571 2572 a0 = a[0]; 2573 a1 = a[1]; 2574 2575 switch (call) { 2576 case SYS_SOCKET: 2577 err = __sys_socket(a0, a1, a[2]); 2578 break; 2579 case SYS_BIND: 2580 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2581 break; 2582 case SYS_CONNECT: 2583 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2584 break; 2585 case SYS_LISTEN: 2586 err = __sys_listen(a0, a1); 2587 break; 2588 case SYS_ACCEPT: 2589 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2590 (int __user *)a[2], 0); 2591 break; 2592 case SYS_GETSOCKNAME: 2593 err = 2594 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2595 (int __user *)a[2]); 2596 break; 2597 case SYS_GETPEERNAME: 2598 err = 2599 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2600 (int __user *)a[2]); 2601 break; 2602 case SYS_SOCKETPAIR: 2603 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2604 break; 2605 case SYS_SEND: 2606 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2607 NULL, 0); 2608 break; 2609 case SYS_SENDTO: 2610 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2611 (struct sockaddr __user *)a[4], a[5]); 2612 break; 2613 case SYS_RECV: 2614 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2615 NULL, NULL); 2616 break; 2617 case SYS_RECVFROM: 2618 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2619 (struct sockaddr __user *)a[4], 2620 (int __user *)a[5]); 2621 break; 2622 case SYS_SHUTDOWN: 2623 err = __sys_shutdown(a0, a1); 2624 break; 2625 case SYS_SETSOCKOPT: 2626 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2627 a[4]); 2628 break; 2629 case SYS_GETSOCKOPT: 2630 err = 2631 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2632 (int __user *)a[4]); 2633 break; 2634 case SYS_SENDMSG: 2635 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2636 a[2], true); 2637 break; 2638 case SYS_SENDMMSG: 2639 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2640 a[3], true); 2641 break; 2642 case SYS_RECVMSG: 2643 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2644 a[2], true); 2645 break; 2646 case SYS_RECVMMSG: 2647 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2648 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2649 a[2], a[3], 2650 (struct __kernel_timespec __user *)a[4], 2651 NULL); 2652 else 2653 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2654 a[2], a[3], NULL, 2655 (struct old_timespec32 __user *)a[4]); 2656 break; 2657 case SYS_ACCEPT4: 2658 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2659 (int __user *)a[2], a[3]); 2660 break; 2661 default: 2662 err = -EINVAL; 2663 break; 2664 } 2665 return err; 2666 } 2667 2668 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2669 2670 /** 2671 * sock_register - add a socket protocol handler 2672 * @ops: description of protocol 2673 * 2674 * This function is called by a protocol handler that wants to 2675 * advertise its address family, and have it linked into the 2676 * socket interface. The value ops->family corresponds to the 2677 * socket system call protocol family. 2678 */ 2679 int sock_register(const struct net_proto_family *ops) 2680 { 2681 int err; 2682 2683 if (ops->family >= NPROTO) { 2684 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2685 return -ENOBUFS; 2686 } 2687 2688 spin_lock(&net_family_lock); 2689 if (rcu_dereference_protected(net_families[ops->family], 2690 lockdep_is_held(&net_family_lock))) 2691 err = -EEXIST; 2692 else { 2693 rcu_assign_pointer(net_families[ops->family], ops); 2694 err = 0; 2695 } 2696 spin_unlock(&net_family_lock); 2697 2698 pr_info("NET: Registered protocol family %d\n", ops->family); 2699 return err; 2700 } 2701 EXPORT_SYMBOL(sock_register); 2702 2703 /** 2704 * sock_unregister - remove a protocol handler 2705 * @family: protocol family to remove 2706 * 2707 * This function is called by a protocol handler that wants to 2708 * remove its address family, and have it unlinked from the 2709 * new socket creation. 2710 * 2711 * If protocol handler is a module, then it can use module reference 2712 * counts to protect against new references. If protocol handler is not 2713 * a module then it needs to provide its own protection in 2714 * the ops->create routine. 2715 */ 2716 void sock_unregister(int family) 2717 { 2718 BUG_ON(family < 0 || family >= NPROTO); 2719 2720 spin_lock(&net_family_lock); 2721 RCU_INIT_POINTER(net_families[family], NULL); 2722 spin_unlock(&net_family_lock); 2723 2724 synchronize_rcu(); 2725 2726 pr_info("NET: Unregistered protocol family %d\n", family); 2727 } 2728 EXPORT_SYMBOL(sock_unregister); 2729 2730 bool sock_is_registered(int family) 2731 { 2732 return family < NPROTO && rcu_access_pointer(net_families[family]); 2733 } 2734 2735 static int __init sock_init(void) 2736 { 2737 int err; 2738 /* 2739 * Initialize the network sysctl infrastructure. 2740 */ 2741 err = net_sysctl_init(); 2742 if (err) 2743 goto out; 2744 2745 /* 2746 * Initialize skbuff SLAB cache 2747 */ 2748 skb_init(); 2749 2750 /* 2751 * Initialize the protocols module. 2752 */ 2753 2754 init_inodecache(); 2755 2756 err = register_filesystem(&sock_fs_type); 2757 if (err) 2758 goto out_fs; 2759 sock_mnt = kern_mount(&sock_fs_type); 2760 if (IS_ERR(sock_mnt)) { 2761 err = PTR_ERR(sock_mnt); 2762 goto out_mount; 2763 } 2764 2765 /* The real protocol initialization is performed in later initcalls. 2766 */ 2767 2768 #ifdef CONFIG_NETFILTER 2769 err = netfilter_init(); 2770 if (err) 2771 goto out; 2772 #endif 2773 2774 ptp_classifier_init(); 2775 2776 out: 2777 return err; 2778 2779 out_mount: 2780 unregister_filesystem(&sock_fs_type); 2781 out_fs: 2782 goto out; 2783 } 2784 2785 core_initcall(sock_init); /* early initcall */ 2786 2787 #ifdef CONFIG_PROC_FS 2788 void socket_seq_show(struct seq_file *seq) 2789 { 2790 seq_printf(seq, "sockets: used %d\n", 2791 sock_inuse_get(seq->private)); 2792 } 2793 #endif /* CONFIG_PROC_FS */ 2794 2795 #ifdef CONFIG_COMPAT 2796 static int do_siocgstamp(struct net *net, struct socket *sock, 2797 unsigned int cmd, void __user *up) 2798 { 2799 mm_segment_t old_fs = get_fs(); 2800 struct timeval ktv; 2801 int err; 2802 2803 set_fs(KERNEL_DS); 2804 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2805 set_fs(old_fs); 2806 if (!err) 2807 err = compat_put_timeval(&ktv, up); 2808 2809 return err; 2810 } 2811 2812 static int do_siocgstampns(struct net *net, struct socket *sock, 2813 unsigned int cmd, void __user *up) 2814 { 2815 mm_segment_t old_fs = get_fs(); 2816 struct timespec kts; 2817 int err; 2818 2819 set_fs(KERNEL_DS); 2820 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2821 set_fs(old_fs); 2822 if (!err) 2823 err = compat_put_timespec(&kts, up); 2824 2825 return err; 2826 } 2827 2828 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2829 { 2830 struct compat_ifconf ifc32; 2831 struct ifconf ifc; 2832 int err; 2833 2834 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2835 return -EFAULT; 2836 2837 ifc.ifc_len = ifc32.ifc_len; 2838 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2839 2840 rtnl_lock(); 2841 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2842 rtnl_unlock(); 2843 if (err) 2844 return err; 2845 2846 ifc32.ifc_len = ifc.ifc_len; 2847 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2848 return -EFAULT; 2849 2850 return 0; 2851 } 2852 2853 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2854 { 2855 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2856 bool convert_in = false, convert_out = false; 2857 size_t buf_size = 0; 2858 struct ethtool_rxnfc __user *rxnfc = NULL; 2859 struct ifreq ifr; 2860 u32 rule_cnt = 0, actual_rule_cnt; 2861 u32 ethcmd; 2862 u32 data; 2863 int ret; 2864 2865 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2866 return -EFAULT; 2867 2868 compat_rxnfc = compat_ptr(data); 2869 2870 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2871 return -EFAULT; 2872 2873 /* Most ethtool structures are defined without padding. 2874 * Unfortunately struct ethtool_rxnfc is an exception. 2875 */ 2876 switch (ethcmd) { 2877 default: 2878 break; 2879 case ETHTOOL_GRXCLSRLALL: 2880 /* Buffer size is variable */ 2881 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2882 return -EFAULT; 2883 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2884 return -ENOMEM; 2885 buf_size += rule_cnt * sizeof(u32); 2886 /* fall through */ 2887 case ETHTOOL_GRXRINGS: 2888 case ETHTOOL_GRXCLSRLCNT: 2889 case ETHTOOL_GRXCLSRULE: 2890 case ETHTOOL_SRXCLSRLINS: 2891 convert_out = true; 2892 /* fall through */ 2893 case ETHTOOL_SRXCLSRLDEL: 2894 buf_size += sizeof(struct ethtool_rxnfc); 2895 convert_in = true; 2896 rxnfc = compat_alloc_user_space(buf_size); 2897 break; 2898 } 2899 2900 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2901 return -EFAULT; 2902 2903 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2904 2905 if (convert_in) { 2906 /* We expect there to be holes between fs.m_ext and 2907 * fs.ring_cookie and at the end of fs, but nowhere else. 2908 */ 2909 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2910 sizeof(compat_rxnfc->fs.m_ext) != 2911 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2912 sizeof(rxnfc->fs.m_ext)); 2913 BUILD_BUG_ON( 2914 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2915 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2916 offsetof(struct ethtool_rxnfc, fs.location) - 2917 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2918 2919 if (copy_in_user(rxnfc, compat_rxnfc, 2920 (void __user *)(&rxnfc->fs.m_ext + 1) - 2921 (void __user *)rxnfc) || 2922 copy_in_user(&rxnfc->fs.ring_cookie, 2923 &compat_rxnfc->fs.ring_cookie, 2924 (void __user *)(&rxnfc->fs.location + 1) - 2925 (void __user *)&rxnfc->fs.ring_cookie)) 2926 return -EFAULT; 2927 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2928 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2929 return -EFAULT; 2930 } else if (copy_in_user(&rxnfc->rule_cnt, 2931 &compat_rxnfc->rule_cnt, 2932 sizeof(rxnfc->rule_cnt))) 2933 return -EFAULT; 2934 } 2935 2936 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2937 if (ret) 2938 return ret; 2939 2940 if (convert_out) { 2941 if (copy_in_user(compat_rxnfc, rxnfc, 2942 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2943 (const void __user *)rxnfc) || 2944 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2945 &rxnfc->fs.ring_cookie, 2946 (const void __user *)(&rxnfc->fs.location + 1) - 2947 (const void __user *)&rxnfc->fs.ring_cookie) || 2948 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2949 sizeof(rxnfc->rule_cnt))) 2950 return -EFAULT; 2951 2952 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2953 /* As an optimisation, we only copy the actual 2954 * number of rules that the underlying 2955 * function returned. Since Mallory might 2956 * change the rule count in user memory, we 2957 * check that it is less than the rule count 2958 * originally given (as the user buffer size), 2959 * which has been range-checked. 2960 */ 2961 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2962 return -EFAULT; 2963 if (actual_rule_cnt < rule_cnt) 2964 rule_cnt = actual_rule_cnt; 2965 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2966 &rxnfc->rule_locs[0], 2967 rule_cnt * sizeof(u32))) 2968 return -EFAULT; 2969 } 2970 } 2971 2972 return 0; 2973 } 2974 2975 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2976 { 2977 compat_uptr_t uptr32; 2978 struct ifreq ifr; 2979 void __user *saved; 2980 int err; 2981 2982 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2983 return -EFAULT; 2984 2985 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2986 return -EFAULT; 2987 2988 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2989 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2990 2991 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2992 if (!err) { 2993 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2994 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2995 err = -EFAULT; 2996 } 2997 return err; 2998 } 2999 3000 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3001 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3002 struct compat_ifreq __user *u_ifreq32) 3003 { 3004 struct ifreq ifreq; 3005 u32 data32; 3006 3007 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3008 return -EFAULT; 3009 if (get_user(data32, &u_ifreq32->ifr_data)) 3010 return -EFAULT; 3011 ifreq.ifr_data = compat_ptr(data32); 3012 3013 return dev_ioctl(net, cmd, &ifreq, NULL); 3014 } 3015 3016 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3017 unsigned int cmd, 3018 struct compat_ifreq __user *uifr32) 3019 { 3020 struct ifreq __user *uifr; 3021 int err; 3022 3023 /* Handle the fact that while struct ifreq has the same *layout* on 3024 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3025 * which are handled elsewhere, it still has different *size* due to 3026 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3027 * resulting in struct ifreq being 32 and 40 bytes respectively). 3028 * As a result, if the struct happens to be at the end of a page and 3029 * the next page isn't readable/writable, we get a fault. To prevent 3030 * that, copy back and forth to the full size. 3031 */ 3032 3033 uifr = compat_alloc_user_space(sizeof(*uifr)); 3034 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3035 return -EFAULT; 3036 3037 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3038 3039 if (!err) { 3040 switch (cmd) { 3041 case SIOCGIFFLAGS: 3042 case SIOCGIFMETRIC: 3043 case SIOCGIFMTU: 3044 case SIOCGIFMEM: 3045 case SIOCGIFHWADDR: 3046 case SIOCGIFINDEX: 3047 case SIOCGIFADDR: 3048 case SIOCGIFBRDADDR: 3049 case SIOCGIFDSTADDR: 3050 case SIOCGIFNETMASK: 3051 case SIOCGIFPFLAGS: 3052 case SIOCGIFTXQLEN: 3053 case SIOCGMIIPHY: 3054 case SIOCGMIIREG: 3055 case SIOCGIFNAME: 3056 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3057 err = -EFAULT; 3058 break; 3059 } 3060 } 3061 return err; 3062 } 3063 3064 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3065 struct compat_ifreq __user *uifr32) 3066 { 3067 struct ifreq ifr; 3068 struct compat_ifmap __user *uifmap32; 3069 int err; 3070 3071 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3072 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3073 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3074 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3075 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3076 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3077 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3078 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3079 if (err) 3080 return -EFAULT; 3081 3082 err = dev_ioctl(net, cmd, &ifr, NULL); 3083 3084 if (cmd == SIOCGIFMAP && !err) { 3085 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3086 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3087 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3088 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3089 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3090 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3091 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3092 if (err) 3093 err = -EFAULT; 3094 } 3095 return err; 3096 } 3097 3098 struct rtentry32 { 3099 u32 rt_pad1; 3100 struct sockaddr rt_dst; /* target address */ 3101 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3102 struct sockaddr rt_genmask; /* target network mask (IP) */ 3103 unsigned short rt_flags; 3104 short rt_pad2; 3105 u32 rt_pad3; 3106 unsigned char rt_tos; 3107 unsigned char rt_class; 3108 short rt_pad4; 3109 short rt_metric; /* +1 for binary compatibility! */ 3110 /* char * */ u32 rt_dev; /* forcing the device at add */ 3111 u32 rt_mtu; /* per route MTU/Window */ 3112 u32 rt_window; /* Window clamping */ 3113 unsigned short rt_irtt; /* Initial RTT */ 3114 }; 3115 3116 struct in6_rtmsg32 { 3117 struct in6_addr rtmsg_dst; 3118 struct in6_addr rtmsg_src; 3119 struct in6_addr rtmsg_gateway; 3120 u32 rtmsg_type; 3121 u16 rtmsg_dst_len; 3122 u16 rtmsg_src_len; 3123 u32 rtmsg_metric; 3124 u32 rtmsg_info; 3125 u32 rtmsg_flags; 3126 s32 rtmsg_ifindex; 3127 }; 3128 3129 static int routing_ioctl(struct net *net, struct socket *sock, 3130 unsigned int cmd, void __user *argp) 3131 { 3132 int ret; 3133 void *r = NULL; 3134 struct in6_rtmsg r6; 3135 struct rtentry r4; 3136 char devname[16]; 3137 u32 rtdev; 3138 mm_segment_t old_fs = get_fs(); 3139 3140 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3141 struct in6_rtmsg32 __user *ur6 = argp; 3142 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3143 3 * sizeof(struct in6_addr)); 3144 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3145 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3146 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3147 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3148 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3149 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3150 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3151 3152 r = (void *) &r6; 3153 } else { /* ipv4 */ 3154 struct rtentry32 __user *ur4 = argp; 3155 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3156 3 * sizeof(struct sockaddr)); 3157 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3158 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3159 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3160 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3161 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3162 ret |= get_user(rtdev, &(ur4->rt_dev)); 3163 if (rtdev) { 3164 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3165 r4.rt_dev = (char __user __force *)devname; 3166 devname[15] = 0; 3167 } else 3168 r4.rt_dev = NULL; 3169 3170 r = (void *) &r4; 3171 } 3172 3173 if (ret) { 3174 ret = -EFAULT; 3175 goto out; 3176 } 3177 3178 set_fs(KERNEL_DS); 3179 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3180 set_fs(old_fs); 3181 3182 out: 3183 return ret; 3184 } 3185 3186 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3187 * for some operations; this forces use of the newer bridge-utils that 3188 * use compatible ioctls 3189 */ 3190 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3191 { 3192 compat_ulong_t tmp; 3193 3194 if (get_user(tmp, argp)) 3195 return -EFAULT; 3196 if (tmp == BRCTL_GET_VERSION) 3197 return BRCTL_VERSION + 1; 3198 return -EINVAL; 3199 } 3200 3201 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3202 unsigned int cmd, unsigned long arg) 3203 { 3204 void __user *argp = compat_ptr(arg); 3205 struct sock *sk = sock->sk; 3206 struct net *net = sock_net(sk); 3207 3208 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3209 return compat_ifr_data_ioctl(net, cmd, argp); 3210 3211 switch (cmd) { 3212 case SIOCSIFBR: 3213 case SIOCGIFBR: 3214 return old_bridge_ioctl(argp); 3215 case SIOCGIFCONF: 3216 return compat_dev_ifconf(net, argp); 3217 case SIOCETHTOOL: 3218 return ethtool_ioctl(net, argp); 3219 case SIOCWANDEV: 3220 return compat_siocwandev(net, argp); 3221 case SIOCGIFMAP: 3222 case SIOCSIFMAP: 3223 return compat_sioc_ifmap(net, cmd, argp); 3224 case SIOCADDRT: 3225 case SIOCDELRT: 3226 return routing_ioctl(net, sock, cmd, argp); 3227 case SIOCGSTAMP: 3228 return do_siocgstamp(net, sock, cmd, argp); 3229 case SIOCGSTAMPNS: 3230 return do_siocgstampns(net, sock, cmd, argp); 3231 case SIOCBONDSLAVEINFOQUERY: 3232 case SIOCBONDINFOQUERY: 3233 case SIOCSHWTSTAMP: 3234 case SIOCGHWTSTAMP: 3235 return compat_ifr_data_ioctl(net, cmd, argp); 3236 3237 case FIOSETOWN: 3238 case SIOCSPGRP: 3239 case FIOGETOWN: 3240 case SIOCGPGRP: 3241 case SIOCBRADDBR: 3242 case SIOCBRDELBR: 3243 case SIOCGIFVLAN: 3244 case SIOCSIFVLAN: 3245 case SIOCADDDLCI: 3246 case SIOCDELDLCI: 3247 case SIOCGSKNS: 3248 return sock_ioctl(file, cmd, arg); 3249 3250 case SIOCGIFFLAGS: 3251 case SIOCSIFFLAGS: 3252 case SIOCGIFMETRIC: 3253 case SIOCSIFMETRIC: 3254 case SIOCGIFMTU: 3255 case SIOCSIFMTU: 3256 case SIOCGIFMEM: 3257 case SIOCSIFMEM: 3258 case SIOCGIFHWADDR: 3259 case SIOCSIFHWADDR: 3260 case SIOCADDMULTI: 3261 case SIOCDELMULTI: 3262 case SIOCGIFINDEX: 3263 case SIOCGIFADDR: 3264 case SIOCSIFADDR: 3265 case SIOCSIFHWBROADCAST: 3266 case SIOCDIFADDR: 3267 case SIOCGIFBRDADDR: 3268 case SIOCSIFBRDADDR: 3269 case SIOCGIFDSTADDR: 3270 case SIOCSIFDSTADDR: 3271 case SIOCGIFNETMASK: 3272 case SIOCSIFNETMASK: 3273 case SIOCSIFPFLAGS: 3274 case SIOCGIFPFLAGS: 3275 case SIOCGIFTXQLEN: 3276 case SIOCSIFTXQLEN: 3277 case SIOCBRADDIF: 3278 case SIOCBRDELIF: 3279 case SIOCGIFNAME: 3280 case SIOCSIFNAME: 3281 case SIOCGMIIPHY: 3282 case SIOCGMIIREG: 3283 case SIOCSMIIREG: 3284 case SIOCBONDENSLAVE: 3285 case SIOCBONDRELEASE: 3286 case SIOCBONDSETHWADDR: 3287 case SIOCBONDCHANGEACTIVE: 3288 return compat_ifreq_ioctl(net, sock, cmd, argp); 3289 3290 case SIOCSARP: 3291 case SIOCGARP: 3292 case SIOCDARP: 3293 case SIOCATMARK: 3294 return sock_do_ioctl(net, sock, cmd, arg); 3295 } 3296 3297 return -ENOIOCTLCMD; 3298 } 3299 3300 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3301 unsigned long arg) 3302 { 3303 struct socket *sock = file->private_data; 3304 int ret = -ENOIOCTLCMD; 3305 struct sock *sk; 3306 struct net *net; 3307 3308 sk = sock->sk; 3309 net = sock_net(sk); 3310 3311 if (sock->ops->compat_ioctl) 3312 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3313 3314 if (ret == -ENOIOCTLCMD && 3315 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3316 ret = compat_wext_handle_ioctl(net, cmd, arg); 3317 3318 if (ret == -ENOIOCTLCMD) 3319 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3320 3321 return ret; 3322 } 3323 #endif 3324 3325 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3326 { 3327 return sock->ops->bind(sock, addr, addrlen); 3328 } 3329 EXPORT_SYMBOL(kernel_bind); 3330 3331 int kernel_listen(struct socket *sock, int backlog) 3332 { 3333 return sock->ops->listen(sock, backlog); 3334 } 3335 EXPORT_SYMBOL(kernel_listen); 3336 3337 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3338 { 3339 struct sock *sk = sock->sk; 3340 int err; 3341 3342 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3343 newsock); 3344 if (err < 0) 3345 goto done; 3346 3347 err = sock->ops->accept(sock, *newsock, flags, true); 3348 if (err < 0) { 3349 sock_release(*newsock); 3350 *newsock = NULL; 3351 goto done; 3352 } 3353 3354 (*newsock)->ops = sock->ops; 3355 __module_get((*newsock)->ops->owner); 3356 3357 done: 3358 return err; 3359 } 3360 EXPORT_SYMBOL(kernel_accept); 3361 3362 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3363 int flags) 3364 { 3365 return sock->ops->connect(sock, addr, addrlen, flags); 3366 } 3367 EXPORT_SYMBOL(kernel_connect); 3368 3369 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3370 { 3371 return sock->ops->getname(sock, addr, 0); 3372 } 3373 EXPORT_SYMBOL(kernel_getsockname); 3374 3375 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3376 { 3377 return sock->ops->getname(sock, addr, 1); 3378 } 3379 EXPORT_SYMBOL(kernel_getpeername); 3380 3381 int kernel_getsockopt(struct socket *sock, int level, int optname, 3382 char *optval, int *optlen) 3383 { 3384 mm_segment_t oldfs = get_fs(); 3385 char __user *uoptval; 3386 int __user *uoptlen; 3387 int err; 3388 3389 uoptval = (char __user __force *) optval; 3390 uoptlen = (int __user __force *) optlen; 3391 3392 set_fs(KERNEL_DS); 3393 if (level == SOL_SOCKET) 3394 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3395 else 3396 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3397 uoptlen); 3398 set_fs(oldfs); 3399 return err; 3400 } 3401 EXPORT_SYMBOL(kernel_getsockopt); 3402 3403 int kernel_setsockopt(struct socket *sock, int level, int optname, 3404 char *optval, unsigned int optlen) 3405 { 3406 mm_segment_t oldfs = get_fs(); 3407 char __user *uoptval; 3408 int err; 3409 3410 uoptval = (char __user __force *) optval; 3411 3412 set_fs(KERNEL_DS); 3413 if (level == SOL_SOCKET) 3414 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3415 else 3416 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3417 optlen); 3418 set_fs(oldfs); 3419 return err; 3420 } 3421 EXPORT_SYMBOL(kernel_setsockopt); 3422 3423 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3424 size_t size, int flags) 3425 { 3426 if (sock->ops->sendpage) 3427 return sock->ops->sendpage(sock, page, offset, size, flags); 3428 3429 return sock_no_sendpage(sock, page, offset, size, flags); 3430 } 3431 EXPORT_SYMBOL(kernel_sendpage); 3432 3433 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3434 size_t size, int flags) 3435 { 3436 struct socket *sock = sk->sk_socket; 3437 3438 if (sock->ops->sendpage_locked) 3439 return sock->ops->sendpage_locked(sk, page, offset, size, 3440 flags); 3441 3442 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3443 } 3444 EXPORT_SYMBOL(kernel_sendpage_locked); 3445 3446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3447 { 3448 return sock->ops->shutdown(sock, how); 3449 } 3450 EXPORT_SYMBOL(kernel_sock_shutdown); 3451 3452 /* This routine returns the IP overhead imposed by a socket i.e. 3453 * the length of the underlying IP header, depending on whether 3454 * this is an IPv4 or IPv6 socket and the length from IP options turned 3455 * on at the socket. Assumes that the caller has a lock on the socket. 3456 */ 3457 u32 kernel_sock_ip_overhead(struct sock *sk) 3458 { 3459 struct inet_sock *inet; 3460 struct ip_options_rcu *opt; 3461 u32 overhead = 0; 3462 #if IS_ENABLED(CONFIG_IPV6) 3463 struct ipv6_pinfo *np; 3464 struct ipv6_txoptions *optv6 = NULL; 3465 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3466 3467 if (!sk) 3468 return overhead; 3469 3470 switch (sk->sk_family) { 3471 case AF_INET: 3472 inet = inet_sk(sk); 3473 overhead += sizeof(struct iphdr); 3474 opt = rcu_dereference_protected(inet->inet_opt, 3475 sock_owned_by_user(sk)); 3476 if (opt) 3477 overhead += opt->opt.optlen; 3478 return overhead; 3479 #if IS_ENABLED(CONFIG_IPV6) 3480 case AF_INET6: 3481 np = inet6_sk(sk); 3482 overhead += sizeof(struct ipv6hdr); 3483 if (np) 3484 optv6 = rcu_dereference_protected(np->opt, 3485 sock_owned_by_user(sk)); 3486 if (optv6) 3487 overhead += (optv6->opt_flen + optv6->opt_nflen); 3488 return overhead; 3489 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3490 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3491 return overhead; 3492 } 3493 } 3494 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3495