xref: /linux/net/socket.c (revision 1ee54195a305fae3955642af8528bdf67496d353)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106 
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111 
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.read_iter =	sock_read_iter,
140 	.write_iter =	sock_write_iter,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  * Support routines.
163  * Move socket addresses back and forth across the kernel/user
164  * divide and look after the messy bits.
165  */
166 
167 /**
168  *	move_addr_to_kernel	-	copy a socket address into kernel space
169  *	@uaddr: Address in user space
170  *	@kaddr: Address in kernel space
171  *	@ulen: Length in user space
172  *
173  *	The address is copied into kernel space. If the provided address is
174  *	too long an error code of -EINVAL is returned. If the copy gives
175  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
176  */
177 
178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 		return -EINVAL;
182 	if (ulen == 0)
183 		return 0;
184 	if (copy_from_user(kaddr, uaddr, ulen))
185 		return -EFAULT;
186 	return audit_sockaddr(ulen, kaddr);
187 }
188 
189 /**
190  *	move_addr_to_user	-	copy an address to user space
191  *	@kaddr: kernel space address
192  *	@klen: length of address in kernel
193  *	@uaddr: user space address
194  *	@ulen: pointer to user length field
195  *
196  *	The value pointed to by ulen on entry is the buffer length available.
197  *	This is overwritten with the buffer space used. -EINVAL is returned
198  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
199  *	is returned if either the buffer or the length field are not
200  *	accessible.
201  *	After copying the data up to the limit the user specifies, the true
202  *	length of the data is written over the length limit the user
203  *	specified. Zero is returned for a success.
204  */
205 
206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 			     void __user *uaddr, int __user *ulen)
208 {
209 	int err;
210 	int len;
211 
212 	BUG_ON(klen > sizeof(struct sockaddr_storage));
213 	err = get_user(len, ulen);
214 	if (err)
215 		return err;
216 	if (len > klen)
217 		len = klen;
218 	if (len < 0)
219 		return -EINVAL;
220 	if (len) {
221 		if (audit_sockaddr(klen, kaddr))
222 			return -ENOMEM;
223 		if (copy_to_user(uaddr, kaddr, len))
224 			return -EFAULT;
225 	}
226 	/*
227 	 *      "fromlen shall refer to the value before truncation.."
228 	 *                      1003.1g
229 	 */
230 	return __put_user(klen, ulen);
231 }
232 
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wq.wait);
243 	ei->socket.wq.fasync_list = NULL;
244 	ei->socket.wq.flags = 0;
245 
246 	ei->socket.state = SS_UNCONNECTED;
247 	ei->socket.flags = 0;
248 	ei->socket.ops = NULL;
249 	ei->socket.sk = NULL;
250 	ei->socket.file = NULL;
251 
252 	return &ei->vfs_inode;
253 }
254 
255 static void sock_free_inode(struct inode *inode)
256 {
257 	struct socket_alloc *ei;
258 
259 	ei = container_of(inode, struct socket_alloc, vfs_inode);
260 	kmem_cache_free(sock_inode_cachep, ei);
261 }
262 
263 static void init_once(void *foo)
264 {
265 	struct socket_alloc *ei = (struct socket_alloc *)foo;
266 
267 	inode_init_once(&ei->vfs_inode);
268 }
269 
270 static void init_inodecache(void)
271 {
272 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 					      sizeof(struct socket_alloc),
274 					      0,
275 					      (SLAB_HWCACHE_ALIGN |
276 					       SLAB_RECLAIM_ACCOUNT |
277 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 					      init_once);
279 	BUG_ON(sock_inode_cachep == NULL);
280 }
281 
282 static const struct super_operations sockfs_ops = {
283 	.alloc_inode	= sock_alloc_inode,
284 	.free_inode	= sock_free_inode,
285 	.statfs		= simple_statfs,
286 };
287 
288 /*
289  * sockfs_dname() is called from d_path().
290  */
291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 				d_inode(dentry)->i_ino);
295 }
296 
297 static const struct dentry_operations sockfs_dentry_operations = {
298 	.d_dname  = sockfs_dname,
299 };
300 
301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 			    struct dentry *dentry, struct inode *inode,
303 			    const char *suffix, void *value, size_t size)
304 {
305 	if (value) {
306 		if (dentry->d_name.len + 1 > size)
307 			return -ERANGE;
308 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
309 	}
310 	return dentry->d_name.len + 1;
311 }
312 
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
316 
317 static const struct xattr_handler sockfs_xattr_handler = {
318 	.name = XATTR_NAME_SOCKPROTONAME,
319 	.get = sockfs_xattr_get,
320 };
321 
322 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
323 				     struct dentry *dentry, struct inode *inode,
324 				     const char *suffix, const void *value,
325 				     size_t size, int flags)
326 {
327 	/* Handled by LSM. */
328 	return -EAGAIN;
329 }
330 
331 static const struct xattr_handler sockfs_security_xattr_handler = {
332 	.prefix = XATTR_SECURITY_PREFIX,
333 	.set = sockfs_security_xattr_set,
334 };
335 
336 static const struct xattr_handler *sockfs_xattr_handlers[] = {
337 	&sockfs_xattr_handler,
338 	&sockfs_security_xattr_handler,
339 	NULL
340 };
341 
342 static int sockfs_init_fs_context(struct fs_context *fc)
343 {
344 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
345 	if (!ctx)
346 		return -ENOMEM;
347 	ctx->ops = &sockfs_ops;
348 	ctx->dops = &sockfs_dentry_operations;
349 	ctx->xattr = sockfs_xattr_handlers;
350 	return 0;
351 }
352 
353 static struct vfsmount *sock_mnt __read_mostly;
354 
355 static struct file_system_type sock_fs_type = {
356 	.name =		"sockfs",
357 	.init_fs_context = sockfs_init_fs_context,
358 	.kill_sb =	kill_anon_super,
359 };
360 
361 /*
362  *	Obtains the first available file descriptor and sets it up for use.
363  *
364  *	These functions create file structures and maps them to fd space
365  *	of the current process. On success it returns file descriptor
366  *	and file struct implicitly stored in sock->file.
367  *	Note that another thread may close file descriptor before we return
368  *	from this function. We use the fact that now we do not refer
369  *	to socket after mapping. If one day we will need it, this
370  *	function will increment ref. count on file by 1.
371  *
372  *	In any case returned fd MAY BE not valid!
373  *	This race condition is unavoidable
374  *	with shared fd spaces, we cannot solve it inside kernel,
375  *	but we take care of internal coherence yet.
376  */
377 
378 /**
379  *	sock_alloc_file - Bind a &socket to a &file
380  *	@sock: socket
381  *	@flags: file status flags
382  *	@dname: protocol name
383  *
384  *	Returns the &file bound with @sock, implicitly storing it
385  *	in sock->file. If dname is %NULL, sets to "".
386  *	On failure the return is a ERR pointer (see linux/err.h).
387  *	This function uses GFP_KERNEL internally.
388  */
389 
390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 {
392 	struct file *file;
393 
394 	if (!dname)
395 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
396 
397 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
398 				O_RDWR | (flags & O_NONBLOCK),
399 				&socket_file_ops);
400 	if (IS_ERR(file)) {
401 		sock_release(sock);
402 		return file;
403 	}
404 
405 	sock->file = file;
406 	file->private_data = sock;
407 	stream_open(SOCK_INODE(sock), file);
408 	return file;
409 }
410 EXPORT_SYMBOL(sock_alloc_file);
411 
412 static int sock_map_fd(struct socket *sock, int flags)
413 {
414 	struct file *newfile;
415 	int fd = get_unused_fd_flags(flags);
416 	if (unlikely(fd < 0)) {
417 		sock_release(sock);
418 		return fd;
419 	}
420 
421 	newfile = sock_alloc_file(sock, flags, NULL);
422 	if (!IS_ERR(newfile)) {
423 		fd_install(fd, newfile);
424 		return fd;
425 	}
426 
427 	put_unused_fd(fd);
428 	return PTR_ERR(newfile);
429 }
430 
431 /**
432  *	sock_from_file - Return the &socket bounded to @file.
433  *	@file: file
434  *	@err: pointer to an error code return
435  *
436  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
437  */
438 
439 struct socket *sock_from_file(struct file *file, int *err)
440 {
441 	if (file->f_op == &socket_file_ops)
442 		return file->private_data;	/* set in sock_map_fd */
443 
444 	*err = -ENOTSOCK;
445 	return NULL;
446 }
447 EXPORT_SYMBOL(sock_from_file);
448 
449 /**
450  *	sockfd_lookup - Go from a file number to its socket slot
451  *	@fd: file handle
452  *	@err: pointer to an error code return
453  *
454  *	The file handle passed in is locked and the socket it is bound
455  *	to is returned. If an error occurs the err pointer is overwritten
456  *	with a negative errno code and NULL is returned. The function checks
457  *	for both invalid handles and passing a handle which is not a socket.
458  *
459  *	On a success the socket object pointer is returned.
460  */
461 
462 struct socket *sockfd_lookup(int fd, int *err)
463 {
464 	struct file *file;
465 	struct socket *sock;
466 
467 	file = fget(fd);
468 	if (!file) {
469 		*err = -EBADF;
470 		return NULL;
471 	}
472 
473 	sock = sock_from_file(file, err);
474 	if (!sock)
475 		fput(file);
476 	return sock;
477 }
478 EXPORT_SYMBOL(sockfd_lookup);
479 
480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
481 {
482 	struct fd f = fdget(fd);
483 	struct socket *sock;
484 
485 	*err = -EBADF;
486 	if (f.file) {
487 		sock = sock_from_file(f.file, err);
488 		if (likely(sock)) {
489 			*fput_needed = f.flags;
490 			return sock;
491 		}
492 		fdput(f);
493 	}
494 	return NULL;
495 }
496 
497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 				size_t size)
499 {
500 	ssize_t len;
501 	ssize_t used = 0;
502 
503 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
504 	if (len < 0)
505 		return len;
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		buffer += len;
511 	}
512 
513 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 		buffer += len;
520 	}
521 
522 	return used;
523 }
524 
525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
526 {
527 	int err = simple_setattr(dentry, iattr);
528 
529 	if (!err && (iattr->ia_valid & ATTR_UID)) {
530 		struct socket *sock = SOCKET_I(d_inode(dentry));
531 
532 		if (sock->sk)
533 			sock->sk->sk_uid = iattr->ia_uid;
534 		else
535 			err = -ENOENT;
536 	}
537 
538 	return err;
539 }
540 
541 static const struct inode_operations sockfs_inode_ops = {
542 	.listxattr = sockfs_listxattr,
543 	.setattr = sockfs_setattr,
544 };
545 
546 /**
547  *	sock_alloc - allocate a socket
548  *
549  *	Allocate a new inode and socket object. The two are bound together
550  *	and initialised. The socket is then returned. If we are out of inodes
551  *	NULL is returned. This functions uses GFP_KERNEL internally.
552  */
553 
554 struct socket *sock_alloc(void)
555 {
556 	struct inode *inode;
557 	struct socket *sock;
558 
559 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 	if (!inode)
561 		return NULL;
562 
563 	sock = SOCKET_I(inode);
564 
565 	inode->i_ino = get_next_ino();
566 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
567 	inode->i_uid = current_fsuid();
568 	inode->i_gid = current_fsgid();
569 	inode->i_op = &sockfs_inode_ops;
570 
571 	return sock;
572 }
573 EXPORT_SYMBOL(sock_alloc);
574 
575 /**
576  *	sock_release - close a socket
577  *	@sock: socket to close
578  *
579  *	The socket is released from the protocol stack if it has a release
580  *	callback, and the inode is then released if the socket is bound to
581  *	an inode not a file.
582  */
583 
584 static void __sock_release(struct socket *sock, struct inode *inode)
585 {
586 	if (sock->ops) {
587 		struct module *owner = sock->ops->owner;
588 
589 		if (inode)
590 			inode_lock(inode);
591 		sock->ops->release(sock);
592 		sock->sk = NULL;
593 		if (inode)
594 			inode_unlock(inode);
595 		sock->ops = NULL;
596 		module_put(owner);
597 	}
598 
599 	if (sock->wq.fasync_list)
600 		pr_err("%s: fasync list not empty!\n", __func__);
601 
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 
609 void sock_release(struct socket *sock)
610 {
611 	__sock_release(sock, NULL);
612 }
613 EXPORT_SYMBOL(sock_release);
614 
615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 	u8 flags = *tx_flags;
618 
619 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 		flags |= SKBTX_HW_TSTAMP;
621 
622 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 		flags |= SKBTX_SW_TSTAMP;
624 
625 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 		flags |= SKBTX_SCHED_TSTAMP;
627 
628 	*tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631 
632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
633 					   size_t));
634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
635 					    size_t));
636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
639 				     inet_sendmsg, sock, msg,
640 				     msg_data_left(msg));
641 	BUG_ON(ret == -EIOCBQUEUED);
642 	return ret;
643 }
644 
645 /**
646  *	sock_sendmsg - send a message through @sock
647  *	@sock: socket
648  *	@msg: message to send
649  *
650  *	Sends @msg through @sock, passing through LSM.
651  *	Returns the number of bytes sent, or an error code.
652  */
653 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
654 {
655 	int err = security_socket_sendmsg(sock, msg,
656 					  msg_data_left(msg));
657 
658 	return err ?: sock_sendmsg_nosec(sock, msg);
659 }
660 EXPORT_SYMBOL(sock_sendmsg);
661 
662 /**
663  *	kernel_sendmsg - send a message through @sock (kernel-space)
664  *	@sock: socket
665  *	@msg: message header
666  *	@vec: kernel vec
667  *	@num: vec array length
668  *	@size: total message data size
669  *
670  *	Builds the message data with @vec and sends it through @sock.
671  *	Returns the number of bytes sent, or an error code.
672  */
673 
674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 		   struct kvec *vec, size_t num, size_t size)
676 {
677 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
678 	return sock_sendmsg(sock, msg);
679 }
680 EXPORT_SYMBOL(kernel_sendmsg);
681 
682 /**
683  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
684  *	@sk: sock
685  *	@msg: message header
686  *	@vec: output s/g array
687  *	@num: output s/g array length
688  *	@size: total message data size
689  *
690  *	Builds the message data with @vec and sends it through @sock.
691  *	Returns the number of bytes sent, or an error code.
692  *	Caller must hold @sk.
693  */
694 
695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
696 			  struct kvec *vec, size_t num, size_t size)
697 {
698 	struct socket *sock = sk->sk_socket;
699 
700 	if (!sock->ops->sendmsg_locked)
701 		return sock_no_sendmsg_locked(sk, msg, size);
702 
703 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
704 
705 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
706 }
707 EXPORT_SYMBOL(kernel_sendmsg_locked);
708 
709 static bool skb_is_err_queue(const struct sk_buff *skb)
710 {
711 	/* pkt_type of skbs enqueued on the error queue are set to
712 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
713 	 * in recvmsg, since skbs received on a local socket will never
714 	 * have a pkt_type of PACKET_OUTGOING.
715 	 */
716 	return skb->pkt_type == PACKET_OUTGOING;
717 }
718 
719 /* On transmit, software and hardware timestamps are returned independently.
720  * As the two skb clones share the hardware timestamp, which may be updated
721  * before the software timestamp is received, a hardware TX timestamp may be
722  * returned only if there is no software TX timestamp. Ignore false software
723  * timestamps, which may be made in the __sock_recv_timestamp() call when the
724  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
725  * hardware timestamp.
726  */
727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
728 {
729 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
730 }
731 
732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
733 {
734 	struct scm_ts_pktinfo ts_pktinfo;
735 	struct net_device *orig_dev;
736 
737 	if (!skb_mac_header_was_set(skb))
738 		return;
739 
740 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
741 
742 	rcu_read_lock();
743 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
744 	if (orig_dev)
745 		ts_pktinfo.if_index = orig_dev->ifindex;
746 	rcu_read_unlock();
747 
748 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
749 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
750 		 sizeof(ts_pktinfo), &ts_pktinfo);
751 }
752 
753 /*
754  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
755  */
756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
757 	struct sk_buff *skb)
758 {
759 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
760 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
761 	struct scm_timestamping_internal tss;
762 
763 	int empty = 1, false_tstamp = 0;
764 	struct skb_shared_hwtstamps *shhwtstamps =
765 		skb_hwtstamps(skb);
766 
767 	/* Race occurred between timestamp enabling and packet
768 	   receiving.  Fill in the current time for now. */
769 	if (need_software_tstamp && skb->tstamp == 0) {
770 		__net_timestamp(skb);
771 		false_tstamp = 1;
772 	}
773 
774 	if (need_software_tstamp) {
775 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
776 			if (new_tstamp) {
777 				struct __kernel_sock_timeval tv;
778 
779 				skb_get_new_timestamp(skb, &tv);
780 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
781 					 sizeof(tv), &tv);
782 			} else {
783 				struct __kernel_old_timeval tv;
784 
785 				skb_get_timestamp(skb, &tv);
786 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
787 					 sizeof(tv), &tv);
788 			}
789 		} else {
790 			if (new_tstamp) {
791 				struct __kernel_timespec ts;
792 
793 				skb_get_new_timestampns(skb, &ts);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
795 					 sizeof(ts), &ts);
796 			} else {
797 				struct timespec ts;
798 
799 				skb_get_timestampns(skb, &ts);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
801 					 sizeof(ts), &ts);
802 			}
803 		}
804 	}
805 
806 	memset(&tss, 0, sizeof(tss));
807 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
808 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
809 		empty = 0;
810 	if (shhwtstamps &&
811 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
812 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
813 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
814 		empty = 0;
815 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
816 		    !skb_is_err_queue(skb))
817 			put_ts_pktinfo(msg, skb);
818 	}
819 	if (!empty) {
820 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
821 			put_cmsg_scm_timestamping64(msg, &tss);
822 		else
823 			put_cmsg_scm_timestamping(msg, &tss);
824 
825 		if (skb_is_err_queue(skb) && skb->len &&
826 		    SKB_EXT_ERR(skb)->opt_stats)
827 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
828 				 skb->len, skb->data);
829 	}
830 }
831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
832 
833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
834 	struct sk_buff *skb)
835 {
836 	int ack;
837 
838 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
839 		return;
840 	if (!skb->wifi_acked_valid)
841 		return;
842 
843 	ack = skb->wifi_acked;
844 
845 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
848 
849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
850 				   struct sk_buff *skb)
851 {
852 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
853 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
854 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
855 }
856 
857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
858 	struct sk_buff *skb)
859 {
860 	sock_recv_timestamp(msg, sk, skb);
861 	sock_recv_drops(msg, sk, skb);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
864 
865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
866 					   size_t, int));
867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
868 					    size_t, int));
869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
870 				     int flags)
871 {
872 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
873 				  inet_recvmsg, sock, msg, msg_data_left(msg),
874 				  flags);
875 }
876 
877 /**
878  *	sock_recvmsg - receive a message from @sock
879  *	@sock: socket
880  *	@msg: message to receive
881  *	@flags: message flags
882  *
883  *	Receives @msg from @sock, passing through LSM. Returns the total number
884  *	of bytes received, or an error.
885  */
886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
887 {
888 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
889 
890 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
891 }
892 EXPORT_SYMBOL(sock_recvmsg);
893 
894 /**
895  *	kernel_recvmsg - Receive a message from a socket (kernel space)
896  *	@sock: The socket to receive the message from
897  *	@msg: Received message
898  *	@vec: Input s/g array for message data
899  *	@num: Size of input s/g array
900  *	@size: Number of bytes to read
901  *	@flags: Message flags (MSG_DONTWAIT, etc...)
902  *
903  *	On return the msg structure contains the scatter/gather array passed in the
904  *	vec argument. The array is modified so that it consists of the unfilled
905  *	portion of the original array.
906  *
907  *	The returned value is the total number of bytes received, or an error.
908  */
909 
910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
911 		   struct kvec *vec, size_t num, size_t size, int flags)
912 {
913 	mm_segment_t oldfs = get_fs();
914 	int result;
915 
916 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
917 	set_fs(KERNEL_DS);
918 	result = sock_recvmsg(sock, msg, flags);
919 	set_fs(oldfs);
920 	return result;
921 }
922 EXPORT_SYMBOL(kernel_recvmsg);
923 
924 static ssize_t sock_sendpage(struct file *file, struct page *page,
925 			     int offset, size_t size, loff_t *ppos, int more)
926 {
927 	struct socket *sock;
928 	int flags;
929 
930 	sock = file->private_data;
931 
932 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
934 	flags |= more;
935 
936 	return kernel_sendpage(sock, page, offset, size, flags);
937 }
938 
939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
940 				struct pipe_inode_info *pipe, size_t len,
941 				unsigned int flags)
942 {
943 	struct socket *sock = file->private_data;
944 
945 	if (unlikely(!sock->ops->splice_read))
946 		return generic_file_splice_read(file, ppos, pipe, len, flags);
947 
948 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
949 }
950 
951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
952 {
953 	struct file *file = iocb->ki_filp;
954 	struct socket *sock = file->private_data;
955 	struct msghdr msg = {.msg_iter = *to,
956 			     .msg_iocb = iocb};
957 	ssize_t res;
958 
959 	if (file->f_flags & O_NONBLOCK)
960 		msg.msg_flags = MSG_DONTWAIT;
961 
962 	if (iocb->ki_pos != 0)
963 		return -ESPIPE;
964 
965 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
966 		return 0;
967 
968 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
969 	*to = msg.msg_iter;
970 	return res;
971 }
972 
973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
974 {
975 	struct file *file = iocb->ki_filp;
976 	struct socket *sock = file->private_data;
977 	struct msghdr msg = {.msg_iter = *from,
978 			     .msg_iocb = iocb};
979 	ssize_t res;
980 
981 	if (iocb->ki_pos != 0)
982 		return -ESPIPE;
983 
984 	if (file->f_flags & O_NONBLOCK)
985 		msg.msg_flags = MSG_DONTWAIT;
986 
987 	if (sock->type == SOCK_SEQPACKET)
988 		msg.msg_flags |= MSG_EOR;
989 
990 	res = sock_sendmsg(sock, &msg);
991 	*from = msg.msg_iter;
992 	return res;
993 }
994 
995 /*
996  * Atomic setting of ioctl hooks to avoid race
997  * with module unload.
998  */
999 
1000 static DEFINE_MUTEX(br_ioctl_mutex);
1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1002 
1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1004 {
1005 	mutex_lock(&br_ioctl_mutex);
1006 	br_ioctl_hook = hook;
1007 	mutex_unlock(&br_ioctl_mutex);
1008 }
1009 EXPORT_SYMBOL(brioctl_set);
1010 
1011 static DEFINE_MUTEX(vlan_ioctl_mutex);
1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1013 
1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1015 {
1016 	mutex_lock(&vlan_ioctl_mutex);
1017 	vlan_ioctl_hook = hook;
1018 	mutex_unlock(&vlan_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(vlan_ioctl_set);
1021 
1022 static DEFINE_MUTEX(dlci_ioctl_mutex);
1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1024 
1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1026 {
1027 	mutex_lock(&dlci_ioctl_mutex);
1028 	dlci_ioctl_hook = hook;
1029 	mutex_unlock(&dlci_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(dlci_ioctl_set);
1032 
1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 			  unsigned int cmd, unsigned long arg)
1035 {
1036 	int err;
1037 	void __user *argp = (void __user *)arg;
1038 
1039 	err = sock->ops->ioctl(sock, cmd, arg);
1040 
1041 	/*
1042 	 * If this ioctl is unknown try to hand it down
1043 	 * to the NIC driver.
1044 	 */
1045 	if (err != -ENOIOCTLCMD)
1046 		return err;
1047 
1048 	if (cmd == SIOCGIFCONF) {
1049 		struct ifconf ifc;
1050 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 			return -EFAULT;
1052 		rtnl_lock();
1053 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 		rtnl_unlock();
1055 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 			err = -EFAULT;
1057 	} else {
1058 		struct ifreq ifr;
1059 		bool need_copyout;
1060 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 			return -EFAULT;
1062 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 		if (!err && need_copyout)
1064 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 				return -EFAULT;
1066 	}
1067 	return err;
1068 }
1069 
1070 /*
1071  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1072  *	what to do with it - that's up to the protocol still.
1073  */
1074 
1075 /**
1076  *	get_net_ns - increment the refcount of the network namespace
1077  *	@ns: common namespace (net)
1078  *
1079  *	Returns the net's common namespace.
1080  */
1081 
1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 	return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087 
1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 	struct socket *sock;
1091 	struct sock *sk;
1092 	void __user *argp = (void __user *)arg;
1093 	int pid, err;
1094 	struct net *net;
1095 
1096 	sock = file->private_data;
1097 	sk = sock->sk;
1098 	net = sock_net(sk);
1099 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 		struct ifreq ifr;
1101 		bool need_copyout;
1102 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 			return -EFAULT;
1104 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 		if (!err && need_copyout)
1106 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 				return -EFAULT;
1108 	} else
1109 #ifdef CONFIG_WEXT_CORE
1110 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 		err = wext_handle_ioctl(net, cmd, argp);
1112 	} else
1113 #endif
1114 		switch (cmd) {
1115 		case FIOSETOWN:
1116 		case SIOCSPGRP:
1117 			err = -EFAULT;
1118 			if (get_user(pid, (int __user *)argp))
1119 				break;
1120 			err = f_setown(sock->file, pid, 1);
1121 			break;
1122 		case FIOGETOWN:
1123 		case SIOCGPGRP:
1124 			err = put_user(f_getown(sock->file),
1125 				       (int __user *)argp);
1126 			break;
1127 		case SIOCGIFBR:
1128 		case SIOCSIFBR:
1129 		case SIOCBRADDBR:
1130 		case SIOCBRDELBR:
1131 			err = -ENOPKG;
1132 			if (!br_ioctl_hook)
1133 				request_module("bridge");
1134 
1135 			mutex_lock(&br_ioctl_mutex);
1136 			if (br_ioctl_hook)
1137 				err = br_ioctl_hook(net, cmd, argp);
1138 			mutex_unlock(&br_ioctl_mutex);
1139 			break;
1140 		case SIOCGIFVLAN:
1141 		case SIOCSIFVLAN:
1142 			err = -ENOPKG;
1143 			if (!vlan_ioctl_hook)
1144 				request_module("8021q");
1145 
1146 			mutex_lock(&vlan_ioctl_mutex);
1147 			if (vlan_ioctl_hook)
1148 				err = vlan_ioctl_hook(net, argp);
1149 			mutex_unlock(&vlan_ioctl_mutex);
1150 			break;
1151 		case SIOCADDDLCI:
1152 		case SIOCDELDLCI:
1153 			err = -ENOPKG;
1154 			if (!dlci_ioctl_hook)
1155 				request_module("dlci");
1156 
1157 			mutex_lock(&dlci_ioctl_mutex);
1158 			if (dlci_ioctl_hook)
1159 				err = dlci_ioctl_hook(cmd, argp);
1160 			mutex_unlock(&dlci_ioctl_mutex);
1161 			break;
1162 		case SIOCGSKNS:
1163 			err = -EPERM;
1164 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1165 				break;
1166 
1167 			err = open_related_ns(&net->ns, get_net_ns);
1168 			break;
1169 		case SIOCGSTAMP_OLD:
1170 		case SIOCGSTAMPNS_OLD:
1171 			if (!sock->ops->gettstamp) {
1172 				err = -ENOIOCTLCMD;
1173 				break;
1174 			}
1175 			err = sock->ops->gettstamp(sock, argp,
1176 						   cmd == SIOCGSTAMP_OLD,
1177 						   !IS_ENABLED(CONFIG_64BIT));
1178 			break;
1179 		case SIOCGSTAMP_NEW:
1180 		case SIOCGSTAMPNS_NEW:
1181 			if (!sock->ops->gettstamp) {
1182 				err = -ENOIOCTLCMD;
1183 				break;
1184 			}
1185 			err = sock->ops->gettstamp(sock, argp,
1186 						   cmd == SIOCGSTAMP_NEW,
1187 						   false);
1188 			break;
1189 		default:
1190 			err = sock_do_ioctl(net, sock, cmd, arg);
1191 			break;
1192 		}
1193 	return err;
1194 }
1195 
1196 /**
1197  *	sock_create_lite - creates a socket
1198  *	@family: protocol family (AF_INET, ...)
1199  *	@type: communication type (SOCK_STREAM, ...)
1200  *	@protocol: protocol (0, ...)
1201  *	@res: new socket
1202  *
1203  *	Creates a new socket and assigns it to @res, passing through LSM.
1204  *	The new socket initialization is not complete, see kernel_accept().
1205  *	Returns 0 or an error. On failure @res is set to %NULL.
1206  *	This function internally uses GFP_KERNEL.
1207  */
1208 
1209 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1210 {
1211 	int err;
1212 	struct socket *sock = NULL;
1213 
1214 	err = security_socket_create(family, type, protocol, 1);
1215 	if (err)
1216 		goto out;
1217 
1218 	sock = sock_alloc();
1219 	if (!sock) {
1220 		err = -ENOMEM;
1221 		goto out;
1222 	}
1223 
1224 	sock->type = type;
1225 	err = security_socket_post_create(sock, family, type, protocol, 1);
1226 	if (err)
1227 		goto out_release;
1228 
1229 out:
1230 	*res = sock;
1231 	return err;
1232 out_release:
1233 	sock_release(sock);
1234 	sock = NULL;
1235 	goto out;
1236 }
1237 EXPORT_SYMBOL(sock_create_lite);
1238 
1239 /* No kernel lock held - perfect */
1240 static __poll_t sock_poll(struct file *file, poll_table *wait)
1241 {
1242 	struct socket *sock = file->private_data;
1243 	__poll_t events = poll_requested_events(wait), flag = 0;
1244 
1245 	if (!sock->ops->poll)
1246 		return 0;
1247 
1248 	if (sk_can_busy_loop(sock->sk)) {
1249 		/* poll once if requested by the syscall */
1250 		if (events & POLL_BUSY_LOOP)
1251 			sk_busy_loop(sock->sk, 1);
1252 
1253 		/* if this socket can poll_ll, tell the system call */
1254 		flag = POLL_BUSY_LOOP;
1255 	}
1256 
1257 	return sock->ops->poll(file, sock, wait) | flag;
1258 }
1259 
1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1261 {
1262 	struct socket *sock = file->private_data;
1263 
1264 	return sock->ops->mmap(file, sock, vma);
1265 }
1266 
1267 static int sock_close(struct inode *inode, struct file *filp)
1268 {
1269 	__sock_release(SOCKET_I(inode), inode);
1270 	return 0;
1271 }
1272 
1273 /*
1274  *	Update the socket async list
1275  *
1276  *	Fasync_list locking strategy.
1277  *
1278  *	1. fasync_list is modified only under process context socket lock
1279  *	   i.e. under semaphore.
1280  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1281  *	   or under socket lock
1282  */
1283 
1284 static int sock_fasync(int fd, struct file *filp, int on)
1285 {
1286 	struct socket *sock = filp->private_data;
1287 	struct sock *sk = sock->sk;
1288 	struct socket_wq *wq = &sock->wq;
1289 
1290 	if (sk == NULL)
1291 		return -EINVAL;
1292 
1293 	lock_sock(sk);
1294 	fasync_helper(fd, filp, on, &wq->fasync_list);
1295 
1296 	if (!wq->fasync_list)
1297 		sock_reset_flag(sk, SOCK_FASYNC);
1298 	else
1299 		sock_set_flag(sk, SOCK_FASYNC);
1300 
1301 	release_sock(sk);
1302 	return 0;
1303 }
1304 
1305 /* This function may be called only under rcu_lock */
1306 
1307 int sock_wake_async(struct socket_wq *wq, int how, int band)
1308 {
1309 	if (!wq || !wq->fasync_list)
1310 		return -1;
1311 
1312 	switch (how) {
1313 	case SOCK_WAKE_WAITD:
1314 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1315 			break;
1316 		goto call_kill;
1317 	case SOCK_WAKE_SPACE:
1318 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1319 			break;
1320 		/* fall through */
1321 	case SOCK_WAKE_IO:
1322 call_kill:
1323 		kill_fasync(&wq->fasync_list, SIGIO, band);
1324 		break;
1325 	case SOCK_WAKE_URG:
1326 		kill_fasync(&wq->fasync_list, SIGURG, band);
1327 	}
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(sock_wake_async);
1332 
1333 /**
1334  *	__sock_create - creates a socket
1335  *	@net: net namespace
1336  *	@family: protocol family (AF_INET, ...)
1337  *	@type: communication type (SOCK_STREAM, ...)
1338  *	@protocol: protocol (0, ...)
1339  *	@res: new socket
1340  *	@kern: boolean for kernel space sockets
1341  *
1342  *	Creates a new socket and assigns it to @res, passing through LSM.
1343  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1344  *	be set to true if the socket resides in kernel space.
1345  *	This function internally uses GFP_KERNEL.
1346  */
1347 
1348 int __sock_create(struct net *net, int family, int type, int protocol,
1349 			 struct socket **res, int kern)
1350 {
1351 	int err;
1352 	struct socket *sock;
1353 	const struct net_proto_family *pf;
1354 
1355 	/*
1356 	 *      Check protocol is in range
1357 	 */
1358 	if (family < 0 || family >= NPROTO)
1359 		return -EAFNOSUPPORT;
1360 	if (type < 0 || type >= SOCK_MAX)
1361 		return -EINVAL;
1362 
1363 	/* Compatibility.
1364 
1365 	   This uglymoron is moved from INET layer to here to avoid
1366 	   deadlock in module load.
1367 	 */
1368 	if (family == PF_INET && type == SOCK_PACKET) {
1369 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1370 			     current->comm);
1371 		family = PF_PACKET;
1372 	}
1373 
1374 	err = security_socket_create(family, type, protocol, kern);
1375 	if (err)
1376 		return err;
1377 
1378 	/*
1379 	 *	Allocate the socket and allow the family to set things up. if
1380 	 *	the protocol is 0, the family is instructed to select an appropriate
1381 	 *	default.
1382 	 */
1383 	sock = sock_alloc();
1384 	if (!sock) {
1385 		net_warn_ratelimited("socket: no more sockets\n");
1386 		return -ENFILE;	/* Not exactly a match, but its the
1387 				   closest posix thing */
1388 	}
1389 
1390 	sock->type = type;
1391 
1392 #ifdef CONFIG_MODULES
1393 	/* Attempt to load a protocol module if the find failed.
1394 	 *
1395 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1396 	 * requested real, full-featured networking support upon configuration.
1397 	 * Otherwise module support will break!
1398 	 */
1399 	if (rcu_access_pointer(net_families[family]) == NULL)
1400 		request_module("net-pf-%d", family);
1401 #endif
1402 
1403 	rcu_read_lock();
1404 	pf = rcu_dereference(net_families[family]);
1405 	err = -EAFNOSUPPORT;
1406 	if (!pf)
1407 		goto out_release;
1408 
1409 	/*
1410 	 * We will call the ->create function, that possibly is in a loadable
1411 	 * module, so we have to bump that loadable module refcnt first.
1412 	 */
1413 	if (!try_module_get(pf->owner))
1414 		goto out_release;
1415 
1416 	/* Now protected by module ref count */
1417 	rcu_read_unlock();
1418 
1419 	err = pf->create(net, sock, protocol, kern);
1420 	if (err < 0)
1421 		goto out_module_put;
1422 
1423 	/*
1424 	 * Now to bump the refcnt of the [loadable] module that owns this
1425 	 * socket at sock_release time we decrement its refcnt.
1426 	 */
1427 	if (!try_module_get(sock->ops->owner))
1428 		goto out_module_busy;
1429 
1430 	/*
1431 	 * Now that we're done with the ->create function, the [loadable]
1432 	 * module can have its refcnt decremented
1433 	 */
1434 	module_put(pf->owner);
1435 	err = security_socket_post_create(sock, family, type, protocol, kern);
1436 	if (err)
1437 		goto out_sock_release;
1438 	*res = sock;
1439 
1440 	return 0;
1441 
1442 out_module_busy:
1443 	err = -EAFNOSUPPORT;
1444 out_module_put:
1445 	sock->ops = NULL;
1446 	module_put(pf->owner);
1447 out_sock_release:
1448 	sock_release(sock);
1449 	return err;
1450 
1451 out_release:
1452 	rcu_read_unlock();
1453 	goto out_sock_release;
1454 }
1455 EXPORT_SYMBOL(__sock_create);
1456 
1457 /**
1458  *	sock_create - creates a socket
1459  *	@family: protocol family (AF_INET, ...)
1460  *	@type: communication type (SOCK_STREAM, ...)
1461  *	@protocol: protocol (0, ...)
1462  *	@res: new socket
1463  *
1464  *	A wrapper around __sock_create().
1465  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1466  */
1467 
1468 int sock_create(int family, int type, int protocol, struct socket **res)
1469 {
1470 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1471 }
1472 EXPORT_SYMBOL(sock_create);
1473 
1474 /**
1475  *	sock_create_kern - creates a socket (kernel space)
1476  *	@net: net namespace
1477  *	@family: protocol family (AF_INET, ...)
1478  *	@type: communication type (SOCK_STREAM, ...)
1479  *	@protocol: protocol (0, ...)
1480  *	@res: new socket
1481  *
1482  *	A wrapper around __sock_create().
1483  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1484  */
1485 
1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1487 {
1488 	return __sock_create(net, family, type, protocol, res, 1);
1489 }
1490 EXPORT_SYMBOL(sock_create_kern);
1491 
1492 int __sys_socket(int family, int type, int protocol)
1493 {
1494 	int retval;
1495 	struct socket *sock;
1496 	int flags;
1497 
1498 	/* Check the SOCK_* constants for consistency.  */
1499 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1500 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1501 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1502 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1503 
1504 	flags = type & ~SOCK_TYPE_MASK;
1505 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1506 		return -EINVAL;
1507 	type &= SOCK_TYPE_MASK;
1508 
1509 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511 
1512 	retval = sock_create(family, type, protocol, &sock);
1513 	if (retval < 0)
1514 		return retval;
1515 
1516 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1517 }
1518 
1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1520 {
1521 	return __sys_socket(family, type, protocol);
1522 }
1523 
1524 /*
1525  *	Create a pair of connected sockets.
1526  */
1527 
1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1529 {
1530 	struct socket *sock1, *sock2;
1531 	int fd1, fd2, err;
1532 	struct file *newfile1, *newfile2;
1533 	int flags;
1534 
1535 	flags = type & ~SOCK_TYPE_MASK;
1536 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1537 		return -EINVAL;
1538 	type &= SOCK_TYPE_MASK;
1539 
1540 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1541 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542 
1543 	/*
1544 	 * reserve descriptors and make sure we won't fail
1545 	 * to return them to userland.
1546 	 */
1547 	fd1 = get_unused_fd_flags(flags);
1548 	if (unlikely(fd1 < 0))
1549 		return fd1;
1550 
1551 	fd2 = get_unused_fd_flags(flags);
1552 	if (unlikely(fd2 < 0)) {
1553 		put_unused_fd(fd1);
1554 		return fd2;
1555 	}
1556 
1557 	err = put_user(fd1, &usockvec[0]);
1558 	if (err)
1559 		goto out;
1560 
1561 	err = put_user(fd2, &usockvec[1]);
1562 	if (err)
1563 		goto out;
1564 
1565 	/*
1566 	 * Obtain the first socket and check if the underlying protocol
1567 	 * supports the socketpair call.
1568 	 */
1569 
1570 	err = sock_create(family, type, protocol, &sock1);
1571 	if (unlikely(err < 0))
1572 		goto out;
1573 
1574 	err = sock_create(family, type, protocol, &sock2);
1575 	if (unlikely(err < 0)) {
1576 		sock_release(sock1);
1577 		goto out;
1578 	}
1579 
1580 	err = security_socket_socketpair(sock1, sock2);
1581 	if (unlikely(err)) {
1582 		sock_release(sock2);
1583 		sock_release(sock1);
1584 		goto out;
1585 	}
1586 
1587 	err = sock1->ops->socketpair(sock1, sock2);
1588 	if (unlikely(err < 0)) {
1589 		sock_release(sock2);
1590 		sock_release(sock1);
1591 		goto out;
1592 	}
1593 
1594 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1595 	if (IS_ERR(newfile1)) {
1596 		err = PTR_ERR(newfile1);
1597 		sock_release(sock2);
1598 		goto out;
1599 	}
1600 
1601 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1602 	if (IS_ERR(newfile2)) {
1603 		err = PTR_ERR(newfile2);
1604 		fput(newfile1);
1605 		goto out;
1606 	}
1607 
1608 	audit_fd_pair(fd1, fd2);
1609 
1610 	fd_install(fd1, newfile1);
1611 	fd_install(fd2, newfile2);
1612 	return 0;
1613 
1614 out:
1615 	put_unused_fd(fd2);
1616 	put_unused_fd(fd1);
1617 	return err;
1618 }
1619 
1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1621 		int __user *, usockvec)
1622 {
1623 	return __sys_socketpair(family, type, protocol, usockvec);
1624 }
1625 
1626 /*
1627  *	Bind a name to a socket. Nothing much to do here since it's
1628  *	the protocol's responsibility to handle the local address.
1629  *
1630  *	We move the socket address to kernel space before we call
1631  *	the protocol layer (having also checked the address is ok).
1632  */
1633 
1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock) {
1642 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1643 		if (!err) {
1644 			err = security_socket_bind(sock,
1645 						   (struct sockaddr *)&address,
1646 						   addrlen);
1647 			if (!err)
1648 				err = sock->ops->bind(sock,
1649 						      (struct sockaddr *)
1650 						      &address, addrlen);
1651 		}
1652 		fput_light(sock->file, fput_needed);
1653 	}
1654 	return err;
1655 }
1656 
1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1658 {
1659 	return __sys_bind(fd, umyaddr, addrlen);
1660 }
1661 
1662 /*
1663  *	Perform a listen. Basically, we allow the protocol to do anything
1664  *	necessary for a listen, and if that works, we mark the socket as
1665  *	ready for listening.
1666  */
1667 
1668 int __sys_listen(int fd, int backlog)
1669 {
1670 	struct socket *sock;
1671 	int err, fput_needed;
1672 	int somaxconn;
1673 
1674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 	if (sock) {
1676 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1677 		if ((unsigned int)backlog > somaxconn)
1678 			backlog = somaxconn;
1679 
1680 		err = security_socket_listen(sock, backlog);
1681 		if (!err)
1682 			err = sock->ops->listen(sock, backlog);
1683 
1684 		fput_light(sock->file, fput_needed);
1685 	}
1686 	return err;
1687 }
1688 
1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1690 {
1691 	return __sys_listen(fd, backlog);
1692 }
1693 
1694 int __sys_accept4_file(struct file *file, unsigned file_flags,
1695 		       struct sockaddr __user *upeer_sockaddr,
1696 		       int __user *upeer_addrlen, int flags)
1697 {
1698 	struct socket *sock, *newsock;
1699 	struct file *newfile;
1700 	int err, len, newfd;
1701 	struct sockaddr_storage address;
1702 
1703 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1704 		return -EINVAL;
1705 
1706 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708 
1709 	sock = sock_from_file(file, &err);
1710 	if (!sock)
1711 		goto out;
1712 
1713 	err = -ENFILE;
1714 	newsock = sock_alloc();
1715 	if (!newsock)
1716 		goto out;
1717 
1718 	newsock->type = sock->type;
1719 	newsock->ops = sock->ops;
1720 
1721 	/*
1722 	 * We don't need try_module_get here, as the listening socket (sock)
1723 	 * has the protocol module (sock->ops->owner) held.
1724 	 */
1725 	__module_get(newsock->ops->owner);
1726 
1727 	newfd = get_unused_fd_flags(flags);
1728 	if (unlikely(newfd < 0)) {
1729 		err = newfd;
1730 		sock_release(newsock);
1731 		goto out;
1732 	}
1733 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1734 	if (IS_ERR(newfile)) {
1735 		err = PTR_ERR(newfile);
1736 		put_unused_fd(newfd);
1737 		goto out;
1738 	}
1739 
1740 	err = security_socket_accept(sock, newsock);
1741 	if (err)
1742 		goto out_fd;
1743 
1744 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1745 					false);
1746 	if (err < 0)
1747 		goto out_fd;
1748 
1749 	if (upeer_sockaddr) {
1750 		len = newsock->ops->getname(newsock,
1751 					(struct sockaddr *)&address, 2);
1752 		if (len < 0) {
1753 			err = -ECONNABORTED;
1754 			goto out_fd;
1755 		}
1756 		err = move_addr_to_user(&address,
1757 					len, upeer_sockaddr, upeer_addrlen);
1758 		if (err < 0)
1759 			goto out_fd;
1760 	}
1761 
1762 	/* File flags are not inherited via accept() unlike another OSes. */
1763 
1764 	fd_install(newfd, newfile);
1765 	err = newfd;
1766 out:
1767 	return err;
1768 out_fd:
1769 	fput(newfile);
1770 	put_unused_fd(newfd);
1771 	goto out;
1772 
1773 }
1774 
1775 /*
1776  *	For accept, we attempt to create a new socket, set up the link
1777  *	with the client, wake up the client, then return the new
1778  *	connected fd. We collect the address of the connector in kernel
1779  *	space and move it to user at the very end. This is unclean because
1780  *	we open the socket then return an error.
1781  *
1782  *	1003.1g adds the ability to recvmsg() to query connection pending
1783  *	status to recvmsg. We need to add that support in a way thats
1784  *	clean when we restructure accept also.
1785  */
1786 
1787 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1788 		  int __user *upeer_addrlen, int flags)
1789 {
1790 	int ret = -EBADF;
1791 	struct fd f;
1792 
1793 	f = fdget(fd);
1794 	if (f.file) {
1795 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1796 						upeer_addrlen, flags);
1797 		if (f.flags)
1798 			fput(f.file);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1805 		int __user *, upeer_addrlen, int, flags)
1806 {
1807 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1808 }
1809 
1810 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1811 		int __user *, upeer_addrlen)
1812 {
1813 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1814 }
1815 
1816 /*
1817  *	Attempt to connect to a socket with the server address.  The address
1818  *	is in user space so we verify it is OK and move it to kernel space.
1819  *
1820  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1821  *	break bindings
1822  *
1823  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1824  *	other SEQPACKET protocols that take time to connect() as it doesn't
1825  *	include the -EINPROGRESS status for such sockets.
1826  */
1827 
1828 int __sys_connect_file(struct file *file, struct sockaddr __user *uservaddr,
1829 		       int addrlen, int file_flags)
1830 {
1831 	struct socket *sock;
1832 	struct sockaddr_storage address;
1833 	int err;
1834 
1835 	sock = sock_from_file(file, &err);
1836 	if (!sock)
1837 		goto out;
1838 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1839 	if (err < 0)
1840 		goto out;
1841 
1842 	err =
1843 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1844 	if (err)
1845 		goto out;
1846 
1847 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1848 				 sock->file->f_flags | file_flags);
1849 out:
1850 	return err;
1851 }
1852 
1853 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1854 {
1855 	int ret = -EBADF;
1856 	struct fd f;
1857 
1858 	f = fdget(fd);
1859 	if (f.file) {
1860 		ret = __sys_connect_file(f.file, uservaddr, addrlen, 0);
1861 		if (f.flags)
1862 			fput(f.file);
1863 	}
1864 
1865 	return ret;
1866 }
1867 
1868 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1869 		int, addrlen)
1870 {
1871 	return __sys_connect(fd, uservaddr, addrlen);
1872 }
1873 
1874 /*
1875  *	Get the local address ('name') of a socket object. Move the obtained
1876  *	name to user space.
1877  */
1878 
1879 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1880 		      int __user *usockaddr_len)
1881 {
1882 	struct socket *sock;
1883 	struct sockaddr_storage address;
1884 	int err, fput_needed;
1885 
1886 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 	if (!sock)
1888 		goto out;
1889 
1890 	err = security_socket_getsockname(sock);
1891 	if (err)
1892 		goto out_put;
1893 
1894 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1895 	if (err < 0)
1896 		goto out_put;
1897         /* "err" is actually length in this case */
1898 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1899 
1900 out_put:
1901 	fput_light(sock->file, fput_needed);
1902 out:
1903 	return err;
1904 }
1905 
1906 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1907 		int __user *, usockaddr_len)
1908 {
1909 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1910 }
1911 
1912 /*
1913  *	Get the remote address ('name') of a socket object. Move the obtained
1914  *	name to user space.
1915  */
1916 
1917 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1918 		      int __user *usockaddr_len)
1919 {
1920 	struct socket *sock;
1921 	struct sockaddr_storage address;
1922 	int err, fput_needed;
1923 
1924 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1925 	if (sock != NULL) {
1926 		err = security_socket_getpeername(sock);
1927 		if (err) {
1928 			fput_light(sock->file, fput_needed);
1929 			return err;
1930 		}
1931 
1932 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1933 		if (err >= 0)
1934 			/* "err" is actually length in this case */
1935 			err = move_addr_to_user(&address, err, usockaddr,
1936 						usockaddr_len);
1937 		fput_light(sock->file, fput_needed);
1938 	}
1939 	return err;
1940 }
1941 
1942 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1943 		int __user *, usockaddr_len)
1944 {
1945 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1946 }
1947 
1948 /*
1949  *	Send a datagram to a given address. We move the address into kernel
1950  *	space and check the user space data area is readable before invoking
1951  *	the protocol.
1952  */
1953 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1954 		 struct sockaddr __user *addr,  int addr_len)
1955 {
1956 	struct socket *sock;
1957 	struct sockaddr_storage address;
1958 	int err;
1959 	struct msghdr msg;
1960 	struct iovec iov;
1961 	int fput_needed;
1962 
1963 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1964 	if (unlikely(err))
1965 		return err;
1966 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1967 	if (!sock)
1968 		goto out;
1969 
1970 	msg.msg_name = NULL;
1971 	msg.msg_control = NULL;
1972 	msg.msg_controllen = 0;
1973 	msg.msg_namelen = 0;
1974 	if (addr) {
1975 		err = move_addr_to_kernel(addr, addr_len, &address);
1976 		if (err < 0)
1977 			goto out_put;
1978 		msg.msg_name = (struct sockaddr *)&address;
1979 		msg.msg_namelen = addr_len;
1980 	}
1981 	if (sock->file->f_flags & O_NONBLOCK)
1982 		flags |= MSG_DONTWAIT;
1983 	msg.msg_flags = flags;
1984 	err = sock_sendmsg(sock, &msg);
1985 
1986 out_put:
1987 	fput_light(sock->file, fput_needed);
1988 out:
1989 	return err;
1990 }
1991 
1992 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1993 		unsigned int, flags, struct sockaddr __user *, addr,
1994 		int, addr_len)
1995 {
1996 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1997 }
1998 
1999 /*
2000  *	Send a datagram down a socket.
2001  */
2002 
2003 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2004 		unsigned int, flags)
2005 {
2006 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2007 }
2008 
2009 /*
2010  *	Receive a frame from the socket and optionally record the address of the
2011  *	sender. We verify the buffers are writable and if needed move the
2012  *	sender address from kernel to user space.
2013  */
2014 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2015 		   struct sockaddr __user *addr, int __user *addr_len)
2016 {
2017 	struct socket *sock;
2018 	struct iovec iov;
2019 	struct msghdr msg;
2020 	struct sockaddr_storage address;
2021 	int err, err2;
2022 	int fput_needed;
2023 
2024 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2025 	if (unlikely(err))
2026 		return err;
2027 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2028 	if (!sock)
2029 		goto out;
2030 
2031 	msg.msg_control = NULL;
2032 	msg.msg_controllen = 0;
2033 	/* Save some cycles and don't copy the address if not needed */
2034 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2035 	/* We assume all kernel code knows the size of sockaddr_storage */
2036 	msg.msg_namelen = 0;
2037 	msg.msg_iocb = NULL;
2038 	msg.msg_flags = 0;
2039 	if (sock->file->f_flags & O_NONBLOCK)
2040 		flags |= MSG_DONTWAIT;
2041 	err = sock_recvmsg(sock, &msg, flags);
2042 
2043 	if (err >= 0 && addr != NULL) {
2044 		err2 = move_addr_to_user(&address,
2045 					 msg.msg_namelen, addr, addr_len);
2046 		if (err2 < 0)
2047 			err = err2;
2048 	}
2049 
2050 	fput_light(sock->file, fput_needed);
2051 out:
2052 	return err;
2053 }
2054 
2055 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2056 		unsigned int, flags, struct sockaddr __user *, addr,
2057 		int __user *, addr_len)
2058 {
2059 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2060 }
2061 
2062 /*
2063  *	Receive a datagram from a socket.
2064  */
2065 
2066 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2067 		unsigned int, flags)
2068 {
2069 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2070 }
2071 
2072 /*
2073  *	Set a socket option. Because we don't know the option lengths we have
2074  *	to pass the user mode parameter for the protocols to sort out.
2075  */
2076 
2077 static int __sys_setsockopt(int fd, int level, int optname,
2078 			    char __user *optval, int optlen)
2079 {
2080 	mm_segment_t oldfs = get_fs();
2081 	char *kernel_optval = NULL;
2082 	int err, fput_needed;
2083 	struct socket *sock;
2084 
2085 	if (optlen < 0)
2086 		return -EINVAL;
2087 
2088 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2089 	if (sock != NULL) {
2090 		err = security_socket_setsockopt(sock, level, optname);
2091 		if (err)
2092 			goto out_put;
2093 
2094 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2095 						     &optname, optval, &optlen,
2096 						     &kernel_optval);
2097 
2098 		if (err < 0) {
2099 			goto out_put;
2100 		} else if (err > 0) {
2101 			err = 0;
2102 			goto out_put;
2103 		}
2104 
2105 		if (kernel_optval) {
2106 			set_fs(KERNEL_DS);
2107 			optval = (char __user __force *)kernel_optval;
2108 		}
2109 
2110 		if (level == SOL_SOCKET)
2111 			err =
2112 			    sock_setsockopt(sock, level, optname, optval,
2113 					    optlen);
2114 		else
2115 			err =
2116 			    sock->ops->setsockopt(sock, level, optname, optval,
2117 						  optlen);
2118 
2119 		if (kernel_optval) {
2120 			set_fs(oldfs);
2121 			kfree(kernel_optval);
2122 		}
2123 out_put:
2124 		fput_light(sock->file, fput_needed);
2125 	}
2126 	return err;
2127 }
2128 
2129 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2130 		char __user *, optval, int, optlen)
2131 {
2132 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2133 }
2134 
2135 /*
2136  *	Get a socket option. Because we don't know the option lengths we have
2137  *	to pass a user mode parameter for the protocols to sort out.
2138  */
2139 
2140 static int __sys_getsockopt(int fd, int level, int optname,
2141 			    char __user *optval, int __user *optlen)
2142 {
2143 	int err, fput_needed;
2144 	struct socket *sock;
2145 	int max_optlen;
2146 
2147 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2148 	if (sock != NULL) {
2149 		err = security_socket_getsockopt(sock, level, optname);
2150 		if (err)
2151 			goto out_put;
2152 
2153 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2154 
2155 		if (level == SOL_SOCKET)
2156 			err =
2157 			    sock_getsockopt(sock, level, optname, optval,
2158 					    optlen);
2159 		else
2160 			err =
2161 			    sock->ops->getsockopt(sock, level, optname, optval,
2162 						  optlen);
2163 
2164 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2165 						     optval, optlen,
2166 						     max_optlen, err);
2167 out_put:
2168 		fput_light(sock->file, fput_needed);
2169 	}
2170 	return err;
2171 }
2172 
2173 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2174 		char __user *, optval, int __user *, optlen)
2175 {
2176 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2177 }
2178 
2179 /*
2180  *	Shutdown a socket.
2181  */
2182 
2183 int __sys_shutdown(int fd, int how)
2184 {
2185 	int err, fput_needed;
2186 	struct socket *sock;
2187 
2188 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 	if (sock != NULL) {
2190 		err = security_socket_shutdown(sock, how);
2191 		if (!err)
2192 			err = sock->ops->shutdown(sock, how);
2193 		fput_light(sock->file, fput_needed);
2194 	}
2195 	return err;
2196 }
2197 
2198 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2199 {
2200 	return __sys_shutdown(fd, how);
2201 }
2202 
2203 /* A couple of helpful macros for getting the address of the 32/64 bit
2204  * fields which are the same type (int / unsigned) on our platforms.
2205  */
2206 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2207 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2208 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2209 
2210 struct used_address {
2211 	struct sockaddr_storage name;
2212 	unsigned int name_len;
2213 };
2214 
2215 static int copy_msghdr_from_user(struct msghdr *kmsg,
2216 				 struct user_msghdr __user *umsg,
2217 				 struct sockaddr __user **save_addr,
2218 				 struct iovec **iov)
2219 {
2220 	struct user_msghdr msg;
2221 	ssize_t err;
2222 
2223 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2224 		return -EFAULT;
2225 
2226 	kmsg->msg_control = (void __force *)msg.msg_control;
2227 	kmsg->msg_controllen = msg.msg_controllen;
2228 	kmsg->msg_flags = msg.msg_flags;
2229 
2230 	kmsg->msg_namelen = msg.msg_namelen;
2231 	if (!msg.msg_name)
2232 		kmsg->msg_namelen = 0;
2233 
2234 	if (kmsg->msg_namelen < 0)
2235 		return -EINVAL;
2236 
2237 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2238 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2239 
2240 	if (save_addr)
2241 		*save_addr = msg.msg_name;
2242 
2243 	if (msg.msg_name && kmsg->msg_namelen) {
2244 		if (!save_addr) {
2245 			err = move_addr_to_kernel(msg.msg_name,
2246 						  kmsg->msg_namelen,
2247 						  kmsg->msg_name);
2248 			if (err < 0)
2249 				return err;
2250 		}
2251 	} else {
2252 		kmsg->msg_name = NULL;
2253 		kmsg->msg_namelen = 0;
2254 	}
2255 
2256 	if (msg.msg_iovlen > UIO_MAXIOV)
2257 		return -EMSGSIZE;
2258 
2259 	kmsg->msg_iocb = NULL;
2260 
2261 	err = import_iovec(save_addr ? READ : WRITE,
2262 			    msg.msg_iov, msg.msg_iovlen,
2263 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2264 	return err < 0 ? err : 0;
2265 }
2266 
2267 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2268 			   unsigned int flags, struct used_address *used_address,
2269 			   unsigned int allowed_msghdr_flags)
2270 {
2271 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2272 				__aligned(sizeof(__kernel_size_t));
2273 	/* 20 is size of ipv6_pktinfo */
2274 	unsigned char *ctl_buf = ctl;
2275 	int ctl_len;
2276 	ssize_t err;
2277 
2278 	err = -ENOBUFS;
2279 
2280 	if (msg_sys->msg_controllen > INT_MAX)
2281 		goto out;
2282 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2283 	ctl_len = msg_sys->msg_controllen;
2284 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2285 		err =
2286 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2287 						     sizeof(ctl));
2288 		if (err)
2289 			goto out;
2290 		ctl_buf = msg_sys->msg_control;
2291 		ctl_len = msg_sys->msg_controllen;
2292 	} else if (ctl_len) {
2293 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2294 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2295 		if (ctl_len > sizeof(ctl)) {
2296 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2297 			if (ctl_buf == NULL)
2298 				goto out;
2299 		}
2300 		err = -EFAULT;
2301 		/*
2302 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2303 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2304 		 * checking falls down on this.
2305 		 */
2306 		if (copy_from_user(ctl_buf,
2307 				   (void __user __force *)msg_sys->msg_control,
2308 				   ctl_len))
2309 			goto out_freectl;
2310 		msg_sys->msg_control = ctl_buf;
2311 	}
2312 	msg_sys->msg_flags = flags;
2313 
2314 	if (sock->file->f_flags & O_NONBLOCK)
2315 		msg_sys->msg_flags |= MSG_DONTWAIT;
2316 	/*
2317 	 * If this is sendmmsg() and current destination address is same as
2318 	 * previously succeeded address, omit asking LSM's decision.
2319 	 * used_address->name_len is initialized to UINT_MAX so that the first
2320 	 * destination address never matches.
2321 	 */
2322 	if (used_address && msg_sys->msg_name &&
2323 	    used_address->name_len == msg_sys->msg_namelen &&
2324 	    !memcmp(&used_address->name, msg_sys->msg_name,
2325 		    used_address->name_len)) {
2326 		err = sock_sendmsg_nosec(sock, msg_sys);
2327 		goto out_freectl;
2328 	}
2329 	err = sock_sendmsg(sock, msg_sys);
2330 	/*
2331 	 * If this is sendmmsg() and sending to current destination address was
2332 	 * successful, remember it.
2333 	 */
2334 	if (used_address && err >= 0) {
2335 		used_address->name_len = msg_sys->msg_namelen;
2336 		if (msg_sys->msg_name)
2337 			memcpy(&used_address->name, msg_sys->msg_name,
2338 			       used_address->name_len);
2339 	}
2340 
2341 out_freectl:
2342 	if (ctl_buf != ctl)
2343 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2344 out:
2345 	return err;
2346 }
2347 
2348 static int sendmsg_copy_msghdr(struct msghdr *msg,
2349 			       struct user_msghdr __user *umsg, unsigned flags,
2350 			       struct iovec **iov)
2351 {
2352 	int err;
2353 
2354 	if (flags & MSG_CMSG_COMPAT) {
2355 		struct compat_msghdr __user *msg_compat;
2356 
2357 		msg_compat = (struct compat_msghdr __user *) umsg;
2358 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2359 	} else {
2360 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2361 	}
2362 	if (err < 0)
2363 		return err;
2364 
2365 	return 0;
2366 }
2367 
2368 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2369 			 struct msghdr *msg_sys, unsigned int flags,
2370 			 struct used_address *used_address,
2371 			 unsigned int allowed_msghdr_flags)
2372 {
2373 	struct sockaddr_storage address;
2374 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2375 	ssize_t err;
2376 
2377 	msg_sys->msg_name = &address;
2378 
2379 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2380 	if (err < 0)
2381 		return err;
2382 
2383 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2384 				allowed_msghdr_flags);
2385 	kfree(iov);
2386 	return err;
2387 }
2388 
2389 /*
2390  *	BSD sendmsg interface
2391  */
2392 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2393 			unsigned int flags)
2394 {
2395 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2396 	struct sockaddr_storage address;
2397 	struct msghdr msg = { .msg_name = &address };
2398 	ssize_t err;
2399 
2400 	err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov);
2401 	if (err)
2402 		return err;
2403 	/* disallow ancillary data requests from this path */
2404 	if (msg.msg_control || msg.msg_controllen) {
2405 		err = -EINVAL;
2406 		goto out;
2407 	}
2408 
2409 	err = ____sys_sendmsg(sock, &msg, flags, NULL, 0);
2410 out:
2411 	kfree(iov);
2412 	return err;
2413 }
2414 
2415 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2416 		   bool forbid_cmsg_compat)
2417 {
2418 	int fput_needed, err;
2419 	struct msghdr msg_sys;
2420 	struct socket *sock;
2421 
2422 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2423 		return -EINVAL;
2424 
2425 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2426 	if (!sock)
2427 		goto out;
2428 
2429 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2430 
2431 	fput_light(sock->file, fput_needed);
2432 out:
2433 	return err;
2434 }
2435 
2436 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2437 {
2438 	return __sys_sendmsg(fd, msg, flags, true);
2439 }
2440 
2441 /*
2442  *	Linux sendmmsg interface
2443  */
2444 
2445 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2446 		   unsigned int flags, bool forbid_cmsg_compat)
2447 {
2448 	int fput_needed, err, datagrams;
2449 	struct socket *sock;
2450 	struct mmsghdr __user *entry;
2451 	struct compat_mmsghdr __user *compat_entry;
2452 	struct msghdr msg_sys;
2453 	struct used_address used_address;
2454 	unsigned int oflags = flags;
2455 
2456 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2457 		return -EINVAL;
2458 
2459 	if (vlen > UIO_MAXIOV)
2460 		vlen = UIO_MAXIOV;
2461 
2462 	datagrams = 0;
2463 
2464 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2465 	if (!sock)
2466 		return err;
2467 
2468 	used_address.name_len = UINT_MAX;
2469 	entry = mmsg;
2470 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2471 	err = 0;
2472 	flags |= MSG_BATCH;
2473 
2474 	while (datagrams < vlen) {
2475 		if (datagrams == vlen - 1)
2476 			flags = oflags;
2477 
2478 		if (MSG_CMSG_COMPAT & flags) {
2479 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2480 					     &msg_sys, flags, &used_address, MSG_EOR);
2481 			if (err < 0)
2482 				break;
2483 			err = __put_user(err, &compat_entry->msg_len);
2484 			++compat_entry;
2485 		} else {
2486 			err = ___sys_sendmsg(sock,
2487 					     (struct user_msghdr __user *)entry,
2488 					     &msg_sys, flags, &used_address, MSG_EOR);
2489 			if (err < 0)
2490 				break;
2491 			err = put_user(err, &entry->msg_len);
2492 			++entry;
2493 		}
2494 
2495 		if (err)
2496 			break;
2497 		++datagrams;
2498 		if (msg_data_left(&msg_sys))
2499 			break;
2500 		cond_resched();
2501 	}
2502 
2503 	fput_light(sock->file, fput_needed);
2504 
2505 	/* We only return an error if no datagrams were able to be sent */
2506 	if (datagrams != 0)
2507 		return datagrams;
2508 
2509 	return err;
2510 }
2511 
2512 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2513 		unsigned int, vlen, unsigned int, flags)
2514 {
2515 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2516 }
2517 
2518 static int recvmsg_copy_msghdr(struct msghdr *msg,
2519 			       struct user_msghdr __user *umsg, unsigned flags,
2520 			       struct sockaddr __user **uaddr,
2521 			       struct iovec **iov)
2522 {
2523 	ssize_t err;
2524 
2525 	if (MSG_CMSG_COMPAT & flags) {
2526 		struct compat_msghdr __user *msg_compat;
2527 
2528 		msg_compat = (struct compat_msghdr __user *) umsg;
2529 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2530 	} else {
2531 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2532 	}
2533 	if (err < 0)
2534 		return err;
2535 
2536 	return 0;
2537 }
2538 
2539 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2540 			   struct user_msghdr __user *msg,
2541 			   struct sockaddr __user *uaddr,
2542 			   unsigned int flags, int nosec)
2543 {
2544 	struct compat_msghdr __user *msg_compat =
2545 					(struct compat_msghdr __user *) msg;
2546 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2547 	struct sockaddr_storage addr;
2548 	unsigned long cmsg_ptr;
2549 	int len;
2550 	ssize_t err;
2551 
2552 	msg_sys->msg_name = &addr;
2553 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2554 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2555 
2556 	/* We assume all kernel code knows the size of sockaddr_storage */
2557 	msg_sys->msg_namelen = 0;
2558 
2559 	if (sock->file->f_flags & O_NONBLOCK)
2560 		flags |= MSG_DONTWAIT;
2561 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2562 	if (err < 0)
2563 		goto out;
2564 	len = err;
2565 
2566 	if (uaddr != NULL) {
2567 		err = move_addr_to_user(&addr,
2568 					msg_sys->msg_namelen, uaddr,
2569 					uaddr_len);
2570 		if (err < 0)
2571 			goto out;
2572 	}
2573 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2574 			 COMPAT_FLAGS(msg));
2575 	if (err)
2576 		goto out;
2577 	if (MSG_CMSG_COMPAT & flags)
2578 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2579 				 &msg_compat->msg_controllen);
2580 	else
2581 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2582 				 &msg->msg_controllen);
2583 	if (err)
2584 		goto out;
2585 	err = len;
2586 out:
2587 	return err;
2588 }
2589 
2590 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2591 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2592 {
2593 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2594 	/* user mode address pointers */
2595 	struct sockaddr __user *uaddr;
2596 	ssize_t err;
2597 
2598 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2599 	if (err < 0)
2600 		return err;
2601 
2602 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2603 	kfree(iov);
2604 	return err;
2605 }
2606 
2607 /*
2608  *	BSD recvmsg interface
2609  */
2610 
2611 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2612 			unsigned int flags)
2613 {
2614 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2615 	struct sockaddr_storage address;
2616 	struct msghdr msg = { .msg_name = &address };
2617 	struct sockaddr __user *uaddr;
2618 	ssize_t err;
2619 
2620 	err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov);
2621 	if (err)
2622 		return err;
2623 	/* disallow ancillary data requests from this path */
2624 	if (msg.msg_control || msg.msg_controllen) {
2625 		err = -EINVAL;
2626 		goto out;
2627 	}
2628 
2629 	err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0);
2630 out:
2631 	kfree(iov);
2632 	return err;
2633 }
2634 
2635 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2636 		   bool forbid_cmsg_compat)
2637 {
2638 	int fput_needed, err;
2639 	struct msghdr msg_sys;
2640 	struct socket *sock;
2641 
2642 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2643 		return -EINVAL;
2644 
2645 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2646 	if (!sock)
2647 		goto out;
2648 
2649 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2650 
2651 	fput_light(sock->file, fput_needed);
2652 out:
2653 	return err;
2654 }
2655 
2656 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2657 		unsigned int, flags)
2658 {
2659 	return __sys_recvmsg(fd, msg, flags, true);
2660 }
2661 
2662 /*
2663  *     Linux recvmmsg interface
2664  */
2665 
2666 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2667 			  unsigned int vlen, unsigned int flags,
2668 			  struct timespec64 *timeout)
2669 {
2670 	int fput_needed, err, datagrams;
2671 	struct socket *sock;
2672 	struct mmsghdr __user *entry;
2673 	struct compat_mmsghdr __user *compat_entry;
2674 	struct msghdr msg_sys;
2675 	struct timespec64 end_time;
2676 	struct timespec64 timeout64;
2677 
2678 	if (timeout &&
2679 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2680 				    timeout->tv_nsec))
2681 		return -EINVAL;
2682 
2683 	datagrams = 0;
2684 
2685 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2686 	if (!sock)
2687 		return err;
2688 
2689 	if (likely(!(flags & MSG_ERRQUEUE))) {
2690 		err = sock_error(sock->sk);
2691 		if (err) {
2692 			datagrams = err;
2693 			goto out_put;
2694 		}
2695 	}
2696 
2697 	entry = mmsg;
2698 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2699 
2700 	while (datagrams < vlen) {
2701 		/*
2702 		 * No need to ask LSM for more than the first datagram.
2703 		 */
2704 		if (MSG_CMSG_COMPAT & flags) {
2705 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2706 					     &msg_sys, flags & ~MSG_WAITFORONE,
2707 					     datagrams);
2708 			if (err < 0)
2709 				break;
2710 			err = __put_user(err, &compat_entry->msg_len);
2711 			++compat_entry;
2712 		} else {
2713 			err = ___sys_recvmsg(sock,
2714 					     (struct user_msghdr __user *)entry,
2715 					     &msg_sys, flags & ~MSG_WAITFORONE,
2716 					     datagrams);
2717 			if (err < 0)
2718 				break;
2719 			err = put_user(err, &entry->msg_len);
2720 			++entry;
2721 		}
2722 
2723 		if (err)
2724 			break;
2725 		++datagrams;
2726 
2727 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2728 		if (flags & MSG_WAITFORONE)
2729 			flags |= MSG_DONTWAIT;
2730 
2731 		if (timeout) {
2732 			ktime_get_ts64(&timeout64);
2733 			*timeout = timespec64_sub(end_time, timeout64);
2734 			if (timeout->tv_sec < 0) {
2735 				timeout->tv_sec = timeout->tv_nsec = 0;
2736 				break;
2737 			}
2738 
2739 			/* Timeout, return less than vlen datagrams */
2740 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2741 				break;
2742 		}
2743 
2744 		/* Out of band data, return right away */
2745 		if (msg_sys.msg_flags & MSG_OOB)
2746 			break;
2747 		cond_resched();
2748 	}
2749 
2750 	if (err == 0)
2751 		goto out_put;
2752 
2753 	if (datagrams == 0) {
2754 		datagrams = err;
2755 		goto out_put;
2756 	}
2757 
2758 	/*
2759 	 * We may return less entries than requested (vlen) if the
2760 	 * sock is non block and there aren't enough datagrams...
2761 	 */
2762 	if (err != -EAGAIN) {
2763 		/*
2764 		 * ... or  if recvmsg returns an error after we
2765 		 * received some datagrams, where we record the
2766 		 * error to return on the next call or if the
2767 		 * app asks about it using getsockopt(SO_ERROR).
2768 		 */
2769 		sock->sk->sk_err = -err;
2770 	}
2771 out_put:
2772 	fput_light(sock->file, fput_needed);
2773 
2774 	return datagrams;
2775 }
2776 
2777 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2778 		   unsigned int vlen, unsigned int flags,
2779 		   struct __kernel_timespec __user *timeout,
2780 		   struct old_timespec32 __user *timeout32)
2781 {
2782 	int datagrams;
2783 	struct timespec64 timeout_sys;
2784 
2785 	if (timeout && get_timespec64(&timeout_sys, timeout))
2786 		return -EFAULT;
2787 
2788 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2789 		return -EFAULT;
2790 
2791 	if (!timeout && !timeout32)
2792 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2793 
2794 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2795 
2796 	if (datagrams <= 0)
2797 		return datagrams;
2798 
2799 	if (timeout && put_timespec64(&timeout_sys, timeout))
2800 		datagrams = -EFAULT;
2801 
2802 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2803 		datagrams = -EFAULT;
2804 
2805 	return datagrams;
2806 }
2807 
2808 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2809 		unsigned int, vlen, unsigned int, flags,
2810 		struct __kernel_timespec __user *, timeout)
2811 {
2812 	if (flags & MSG_CMSG_COMPAT)
2813 		return -EINVAL;
2814 
2815 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2816 }
2817 
2818 #ifdef CONFIG_COMPAT_32BIT_TIME
2819 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2820 		unsigned int, vlen, unsigned int, flags,
2821 		struct old_timespec32 __user *, timeout)
2822 {
2823 	if (flags & MSG_CMSG_COMPAT)
2824 		return -EINVAL;
2825 
2826 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2827 }
2828 #endif
2829 
2830 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2831 /* Argument list sizes for sys_socketcall */
2832 #define AL(x) ((x) * sizeof(unsigned long))
2833 static const unsigned char nargs[21] = {
2834 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2835 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2836 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2837 	AL(4), AL(5), AL(4)
2838 };
2839 
2840 #undef AL
2841 
2842 /*
2843  *	System call vectors.
2844  *
2845  *	Argument checking cleaned up. Saved 20% in size.
2846  *  This function doesn't need to set the kernel lock because
2847  *  it is set by the callees.
2848  */
2849 
2850 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2851 {
2852 	unsigned long a[AUDITSC_ARGS];
2853 	unsigned long a0, a1;
2854 	int err;
2855 	unsigned int len;
2856 
2857 	if (call < 1 || call > SYS_SENDMMSG)
2858 		return -EINVAL;
2859 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2860 
2861 	len = nargs[call];
2862 	if (len > sizeof(a))
2863 		return -EINVAL;
2864 
2865 	/* copy_from_user should be SMP safe. */
2866 	if (copy_from_user(a, args, len))
2867 		return -EFAULT;
2868 
2869 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2870 	if (err)
2871 		return err;
2872 
2873 	a0 = a[0];
2874 	a1 = a[1];
2875 
2876 	switch (call) {
2877 	case SYS_SOCKET:
2878 		err = __sys_socket(a0, a1, a[2]);
2879 		break;
2880 	case SYS_BIND:
2881 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2882 		break;
2883 	case SYS_CONNECT:
2884 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2885 		break;
2886 	case SYS_LISTEN:
2887 		err = __sys_listen(a0, a1);
2888 		break;
2889 	case SYS_ACCEPT:
2890 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2891 				    (int __user *)a[2], 0);
2892 		break;
2893 	case SYS_GETSOCKNAME:
2894 		err =
2895 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2896 				      (int __user *)a[2]);
2897 		break;
2898 	case SYS_GETPEERNAME:
2899 		err =
2900 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2901 				      (int __user *)a[2]);
2902 		break;
2903 	case SYS_SOCKETPAIR:
2904 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2905 		break;
2906 	case SYS_SEND:
2907 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2908 				   NULL, 0);
2909 		break;
2910 	case SYS_SENDTO:
2911 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2912 				   (struct sockaddr __user *)a[4], a[5]);
2913 		break;
2914 	case SYS_RECV:
2915 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2916 				     NULL, NULL);
2917 		break;
2918 	case SYS_RECVFROM:
2919 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2920 				     (struct sockaddr __user *)a[4],
2921 				     (int __user *)a[5]);
2922 		break;
2923 	case SYS_SHUTDOWN:
2924 		err = __sys_shutdown(a0, a1);
2925 		break;
2926 	case SYS_SETSOCKOPT:
2927 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2928 				       a[4]);
2929 		break;
2930 	case SYS_GETSOCKOPT:
2931 		err =
2932 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2933 				     (int __user *)a[4]);
2934 		break;
2935 	case SYS_SENDMSG:
2936 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2937 				    a[2], true);
2938 		break;
2939 	case SYS_SENDMMSG:
2940 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2941 				     a[3], true);
2942 		break;
2943 	case SYS_RECVMSG:
2944 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2945 				    a[2], true);
2946 		break;
2947 	case SYS_RECVMMSG:
2948 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2949 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2950 					     a[2], a[3],
2951 					     (struct __kernel_timespec __user *)a[4],
2952 					     NULL);
2953 		else
2954 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2955 					     a[2], a[3], NULL,
2956 					     (struct old_timespec32 __user *)a[4]);
2957 		break;
2958 	case SYS_ACCEPT4:
2959 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2960 				    (int __user *)a[2], a[3]);
2961 		break;
2962 	default:
2963 		err = -EINVAL;
2964 		break;
2965 	}
2966 	return err;
2967 }
2968 
2969 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2970 
2971 /**
2972  *	sock_register - add a socket protocol handler
2973  *	@ops: description of protocol
2974  *
2975  *	This function is called by a protocol handler that wants to
2976  *	advertise its address family, and have it linked into the
2977  *	socket interface. The value ops->family corresponds to the
2978  *	socket system call protocol family.
2979  */
2980 int sock_register(const struct net_proto_family *ops)
2981 {
2982 	int err;
2983 
2984 	if (ops->family >= NPROTO) {
2985 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2986 		return -ENOBUFS;
2987 	}
2988 
2989 	spin_lock(&net_family_lock);
2990 	if (rcu_dereference_protected(net_families[ops->family],
2991 				      lockdep_is_held(&net_family_lock)))
2992 		err = -EEXIST;
2993 	else {
2994 		rcu_assign_pointer(net_families[ops->family], ops);
2995 		err = 0;
2996 	}
2997 	spin_unlock(&net_family_lock);
2998 
2999 	pr_info("NET: Registered protocol family %d\n", ops->family);
3000 	return err;
3001 }
3002 EXPORT_SYMBOL(sock_register);
3003 
3004 /**
3005  *	sock_unregister - remove a protocol handler
3006  *	@family: protocol family to remove
3007  *
3008  *	This function is called by a protocol handler that wants to
3009  *	remove its address family, and have it unlinked from the
3010  *	new socket creation.
3011  *
3012  *	If protocol handler is a module, then it can use module reference
3013  *	counts to protect against new references. If protocol handler is not
3014  *	a module then it needs to provide its own protection in
3015  *	the ops->create routine.
3016  */
3017 void sock_unregister(int family)
3018 {
3019 	BUG_ON(family < 0 || family >= NPROTO);
3020 
3021 	spin_lock(&net_family_lock);
3022 	RCU_INIT_POINTER(net_families[family], NULL);
3023 	spin_unlock(&net_family_lock);
3024 
3025 	synchronize_rcu();
3026 
3027 	pr_info("NET: Unregistered protocol family %d\n", family);
3028 }
3029 EXPORT_SYMBOL(sock_unregister);
3030 
3031 bool sock_is_registered(int family)
3032 {
3033 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3034 }
3035 
3036 static int __init sock_init(void)
3037 {
3038 	int err;
3039 	/*
3040 	 *      Initialize the network sysctl infrastructure.
3041 	 */
3042 	err = net_sysctl_init();
3043 	if (err)
3044 		goto out;
3045 
3046 	/*
3047 	 *      Initialize skbuff SLAB cache
3048 	 */
3049 	skb_init();
3050 
3051 	/*
3052 	 *      Initialize the protocols module.
3053 	 */
3054 
3055 	init_inodecache();
3056 
3057 	err = register_filesystem(&sock_fs_type);
3058 	if (err)
3059 		goto out_fs;
3060 	sock_mnt = kern_mount(&sock_fs_type);
3061 	if (IS_ERR(sock_mnt)) {
3062 		err = PTR_ERR(sock_mnt);
3063 		goto out_mount;
3064 	}
3065 
3066 	/* The real protocol initialization is performed in later initcalls.
3067 	 */
3068 
3069 #ifdef CONFIG_NETFILTER
3070 	err = netfilter_init();
3071 	if (err)
3072 		goto out;
3073 #endif
3074 
3075 	ptp_classifier_init();
3076 
3077 out:
3078 	return err;
3079 
3080 out_mount:
3081 	unregister_filesystem(&sock_fs_type);
3082 out_fs:
3083 	goto out;
3084 }
3085 
3086 core_initcall(sock_init);	/* early initcall */
3087 
3088 #ifdef CONFIG_PROC_FS
3089 void socket_seq_show(struct seq_file *seq)
3090 {
3091 	seq_printf(seq, "sockets: used %d\n",
3092 		   sock_inuse_get(seq->private));
3093 }
3094 #endif				/* CONFIG_PROC_FS */
3095 
3096 #ifdef CONFIG_COMPAT
3097 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3098 {
3099 	struct compat_ifconf ifc32;
3100 	struct ifconf ifc;
3101 	int err;
3102 
3103 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3104 		return -EFAULT;
3105 
3106 	ifc.ifc_len = ifc32.ifc_len;
3107 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3108 
3109 	rtnl_lock();
3110 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3111 	rtnl_unlock();
3112 	if (err)
3113 		return err;
3114 
3115 	ifc32.ifc_len = ifc.ifc_len;
3116 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3117 		return -EFAULT;
3118 
3119 	return 0;
3120 }
3121 
3122 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3123 {
3124 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3125 	bool convert_in = false, convert_out = false;
3126 	size_t buf_size = 0;
3127 	struct ethtool_rxnfc __user *rxnfc = NULL;
3128 	struct ifreq ifr;
3129 	u32 rule_cnt = 0, actual_rule_cnt;
3130 	u32 ethcmd;
3131 	u32 data;
3132 	int ret;
3133 
3134 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3135 		return -EFAULT;
3136 
3137 	compat_rxnfc = compat_ptr(data);
3138 
3139 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3140 		return -EFAULT;
3141 
3142 	/* Most ethtool structures are defined without padding.
3143 	 * Unfortunately struct ethtool_rxnfc is an exception.
3144 	 */
3145 	switch (ethcmd) {
3146 	default:
3147 		break;
3148 	case ETHTOOL_GRXCLSRLALL:
3149 		/* Buffer size is variable */
3150 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3151 			return -EFAULT;
3152 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3153 			return -ENOMEM;
3154 		buf_size += rule_cnt * sizeof(u32);
3155 		/* fall through */
3156 	case ETHTOOL_GRXRINGS:
3157 	case ETHTOOL_GRXCLSRLCNT:
3158 	case ETHTOOL_GRXCLSRULE:
3159 	case ETHTOOL_SRXCLSRLINS:
3160 		convert_out = true;
3161 		/* fall through */
3162 	case ETHTOOL_SRXCLSRLDEL:
3163 		buf_size += sizeof(struct ethtool_rxnfc);
3164 		convert_in = true;
3165 		rxnfc = compat_alloc_user_space(buf_size);
3166 		break;
3167 	}
3168 
3169 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3170 		return -EFAULT;
3171 
3172 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3173 
3174 	if (convert_in) {
3175 		/* We expect there to be holes between fs.m_ext and
3176 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3177 		 */
3178 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3179 			     sizeof(compat_rxnfc->fs.m_ext) !=
3180 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3181 			     sizeof(rxnfc->fs.m_ext));
3182 		BUILD_BUG_ON(
3183 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3184 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3185 			offsetof(struct ethtool_rxnfc, fs.location) -
3186 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3187 
3188 		if (copy_in_user(rxnfc, compat_rxnfc,
3189 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3190 				 (void __user *)rxnfc) ||
3191 		    copy_in_user(&rxnfc->fs.ring_cookie,
3192 				 &compat_rxnfc->fs.ring_cookie,
3193 				 (void __user *)(&rxnfc->fs.location + 1) -
3194 				 (void __user *)&rxnfc->fs.ring_cookie))
3195 			return -EFAULT;
3196 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3197 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3198 				return -EFAULT;
3199 		} else if (copy_in_user(&rxnfc->rule_cnt,
3200 					&compat_rxnfc->rule_cnt,
3201 					sizeof(rxnfc->rule_cnt)))
3202 			return -EFAULT;
3203 	}
3204 
3205 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3206 	if (ret)
3207 		return ret;
3208 
3209 	if (convert_out) {
3210 		if (copy_in_user(compat_rxnfc, rxnfc,
3211 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3212 				 (const void __user *)rxnfc) ||
3213 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3214 				 &rxnfc->fs.ring_cookie,
3215 				 (const void __user *)(&rxnfc->fs.location + 1) -
3216 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3217 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3218 				 sizeof(rxnfc->rule_cnt)))
3219 			return -EFAULT;
3220 
3221 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3222 			/* As an optimisation, we only copy the actual
3223 			 * number of rules that the underlying
3224 			 * function returned.  Since Mallory might
3225 			 * change the rule count in user memory, we
3226 			 * check that it is less than the rule count
3227 			 * originally given (as the user buffer size),
3228 			 * which has been range-checked.
3229 			 */
3230 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3231 				return -EFAULT;
3232 			if (actual_rule_cnt < rule_cnt)
3233 				rule_cnt = actual_rule_cnt;
3234 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3235 					 &rxnfc->rule_locs[0],
3236 					 rule_cnt * sizeof(u32)))
3237 				return -EFAULT;
3238 		}
3239 	}
3240 
3241 	return 0;
3242 }
3243 
3244 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3245 {
3246 	compat_uptr_t uptr32;
3247 	struct ifreq ifr;
3248 	void __user *saved;
3249 	int err;
3250 
3251 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3252 		return -EFAULT;
3253 
3254 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3255 		return -EFAULT;
3256 
3257 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3258 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3259 
3260 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3261 	if (!err) {
3262 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3263 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3264 			err = -EFAULT;
3265 	}
3266 	return err;
3267 }
3268 
3269 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3270 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3271 				 struct compat_ifreq __user *u_ifreq32)
3272 {
3273 	struct ifreq ifreq;
3274 	u32 data32;
3275 
3276 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3277 		return -EFAULT;
3278 	if (get_user(data32, &u_ifreq32->ifr_data))
3279 		return -EFAULT;
3280 	ifreq.ifr_data = compat_ptr(data32);
3281 
3282 	return dev_ioctl(net, cmd, &ifreq, NULL);
3283 }
3284 
3285 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3286 			      unsigned int cmd,
3287 			      struct compat_ifreq __user *uifr32)
3288 {
3289 	struct ifreq __user *uifr;
3290 	int err;
3291 
3292 	/* Handle the fact that while struct ifreq has the same *layout* on
3293 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3294 	 * which are handled elsewhere, it still has different *size* due to
3295 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3296 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3297 	 * As a result, if the struct happens to be at the end of a page and
3298 	 * the next page isn't readable/writable, we get a fault. To prevent
3299 	 * that, copy back and forth to the full size.
3300 	 */
3301 
3302 	uifr = compat_alloc_user_space(sizeof(*uifr));
3303 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3304 		return -EFAULT;
3305 
3306 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3307 
3308 	if (!err) {
3309 		switch (cmd) {
3310 		case SIOCGIFFLAGS:
3311 		case SIOCGIFMETRIC:
3312 		case SIOCGIFMTU:
3313 		case SIOCGIFMEM:
3314 		case SIOCGIFHWADDR:
3315 		case SIOCGIFINDEX:
3316 		case SIOCGIFADDR:
3317 		case SIOCGIFBRDADDR:
3318 		case SIOCGIFDSTADDR:
3319 		case SIOCGIFNETMASK:
3320 		case SIOCGIFPFLAGS:
3321 		case SIOCGIFTXQLEN:
3322 		case SIOCGMIIPHY:
3323 		case SIOCGMIIREG:
3324 		case SIOCGIFNAME:
3325 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3326 				err = -EFAULT;
3327 			break;
3328 		}
3329 	}
3330 	return err;
3331 }
3332 
3333 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3334 			struct compat_ifreq __user *uifr32)
3335 {
3336 	struct ifreq ifr;
3337 	struct compat_ifmap __user *uifmap32;
3338 	int err;
3339 
3340 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3341 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3342 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3343 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3344 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3345 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3346 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3347 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3348 	if (err)
3349 		return -EFAULT;
3350 
3351 	err = dev_ioctl(net, cmd, &ifr, NULL);
3352 
3353 	if (cmd == SIOCGIFMAP && !err) {
3354 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3355 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3356 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3357 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3358 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3359 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3360 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3361 		if (err)
3362 			err = -EFAULT;
3363 	}
3364 	return err;
3365 }
3366 
3367 struct rtentry32 {
3368 	u32		rt_pad1;
3369 	struct sockaddr rt_dst;         /* target address               */
3370 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3371 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3372 	unsigned short	rt_flags;
3373 	short		rt_pad2;
3374 	u32		rt_pad3;
3375 	unsigned char	rt_tos;
3376 	unsigned char	rt_class;
3377 	short		rt_pad4;
3378 	short		rt_metric;      /* +1 for binary compatibility! */
3379 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3380 	u32		rt_mtu;         /* per route MTU/Window         */
3381 	u32		rt_window;      /* Window clamping              */
3382 	unsigned short  rt_irtt;        /* Initial RTT                  */
3383 };
3384 
3385 struct in6_rtmsg32 {
3386 	struct in6_addr		rtmsg_dst;
3387 	struct in6_addr		rtmsg_src;
3388 	struct in6_addr		rtmsg_gateway;
3389 	u32			rtmsg_type;
3390 	u16			rtmsg_dst_len;
3391 	u16			rtmsg_src_len;
3392 	u32			rtmsg_metric;
3393 	u32			rtmsg_info;
3394 	u32			rtmsg_flags;
3395 	s32			rtmsg_ifindex;
3396 };
3397 
3398 static int routing_ioctl(struct net *net, struct socket *sock,
3399 			 unsigned int cmd, void __user *argp)
3400 {
3401 	int ret;
3402 	void *r = NULL;
3403 	struct in6_rtmsg r6;
3404 	struct rtentry r4;
3405 	char devname[16];
3406 	u32 rtdev;
3407 	mm_segment_t old_fs = get_fs();
3408 
3409 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3410 		struct in6_rtmsg32 __user *ur6 = argp;
3411 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3412 			3 * sizeof(struct in6_addr));
3413 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3414 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3415 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3416 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3417 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3418 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3419 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3420 
3421 		r = (void *) &r6;
3422 	} else { /* ipv4 */
3423 		struct rtentry32 __user *ur4 = argp;
3424 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3425 					3 * sizeof(struct sockaddr));
3426 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3427 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3428 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3429 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3430 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3431 		ret |= get_user(rtdev, &(ur4->rt_dev));
3432 		if (rtdev) {
3433 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3434 			r4.rt_dev = (char __user __force *)devname;
3435 			devname[15] = 0;
3436 		} else
3437 			r4.rt_dev = NULL;
3438 
3439 		r = (void *) &r4;
3440 	}
3441 
3442 	if (ret) {
3443 		ret = -EFAULT;
3444 		goto out;
3445 	}
3446 
3447 	set_fs(KERNEL_DS);
3448 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3449 	set_fs(old_fs);
3450 
3451 out:
3452 	return ret;
3453 }
3454 
3455 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3456  * for some operations; this forces use of the newer bridge-utils that
3457  * use compatible ioctls
3458  */
3459 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3460 {
3461 	compat_ulong_t tmp;
3462 
3463 	if (get_user(tmp, argp))
3464 		return -EFAULT;
3465 	if (tmp == BRCTL_GET_VERSION)
3466 		return BRCTL_VERSION + 1;
3467 	return -EINVAL;
3468 }
3469 
3470 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3471 			 unsigned int cmd, unsigned long arg)
3472 {
3473 	void __user *argp = compat_ptr(arg);
3474 	struct sock *sk = sock->sk;
3475 	struct net *net = sock_net(sk);
3476 
3477 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3478 		return compat_ifr_data_ioctl(net, cmd, argp);
3479 
3480 	switch (cmd) {
3481 	case SIOCSIFBR:
3482 	case SIOCGIFBR:
3483 		return old_bridge_ioctl(argp);
3484 	case SIOCGIFCONF:
3485 		return compat_dev_ifconf(net, argp);
3486 	case SIOCETHTOOL:
3487 		return ethtool_ioctl(net, argp);
3488 	case SIOCWANDEV:
3489 		return compat_siocwandev(net, argp);
3490 	case SIOCGIFMAP:
3491 	case SIOCSIFMAP:
3492 		return compat_sioc_ifmap(net, cmd, argp);
3493 	case SIOCADDRT:
3494 	case SIOCDELRT:
3495 		return routing_ioctl(net, sock, cmd, argp);
3496 	case SIOCGSTAMP_OLD:
3497 	case SIOCGSTAMPNS_OLD:
3498 		if (!sock->ops->gettstamp)
3499 			return -ENOIOCTLCMD;
3500 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3501 					    !COMPAT_USE_64BIT_TIME);
3502 
3503 	case SIOCBONDSLAVEINFOQUERY:
3504 	case SIOCBONDINFOQUERY:
3505 	case SIOCSHWTSTAMP:
3506 	case SIOCGHWTSTAMP:
3507 		return compat_ifr_data_ioctl(net, cmd, argp);
3508 
3509 	case FIOSETOWN:
3510 	case SIOCSPGRP:
3511 	case FIOGETOWN:
3512 	case SIOCGPGRP:
3513 	case SIOCBRADDBR:
3514 	case SIOCBRDELBR:
3515 	case SIOCGIFVLAN:
3516 	case SIOCSIFVLAN:
3517 	case SIOCADDDLCI:
3518 	case SIOCDELDLCI:
3519 	case SIOCGSKNS:
3520 	case SIOCGSTAMP_NEW:
3521 	case SIOCGSTAMPNS_NEW:
3522 		return sock_ioctl(file, cmd, arg);
3523 
3524 	case SIOCGIFFLAGS:
3525 	case SIOCSIFFLAGS:
3526 	case SIOCGIFMETRIC:
3527 	case SIOCSIFMETRIC:
3528 	case SIOCGIFMTU:
3529 	case SIOCSIFMTU:
3530 	case SIOCGIFMEM:
3531 	case SIOCSIFMEM:
3532 	case SIOCGIFHWADDR:
3533 	case SIOCSIFHWADDR:
3534 	case SIOCADDMULTI:
3535 	case SIOCDELMULTI:
3536 	case SIOCGIFINDEX:
3537 	case SIOCGIFADDR:
3538 	case SIOCSIFADDR:
3539 	case SIOCSIFHWBROADCAST:
3540 	case SIOCDIFADDR:
3541 	case SIOCGIFBRDADDR:
3542 	case SIOCSIFBRDADDR:
3543 	case SIOCGIFDSTADDR:
3544 	case SIOCSIFDSTADDR:
3545 	case SIOCGIFNETMASK:
3546 	case SIOCSIFNETMASK:
3547 	case SIOCSIFPFLAGS:
3548 	case SIOCGIFPFLAGS:
3549 	case SIOCGIFTXQLEN:
3550 	case SIOCSIFTXQLEN:
3551 	case SIOCBRADDIF:
3552 	case SIOCBRDELIF:
3553 	case SIOCGIFNAME:
3554 	case SIOCSIFNAME:
3555 	case SIOCGMIIPHY:
3556 	case SIOCGMIIREG:
3557 	case SIOCSMIIREG:
3558 	case SIOCBONDENSLAVE:
3559 	case SIOCBONDRELEASE:
3560 	case SIOCBONDSETHWADDR:
3561 	case SIOCBONDCHANGEACTIVE:
3562 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3563 
3564 	case SIOCSARP:
3565 	case SIOCGARP:
3566 	case SIOCDARP:
3567 	case SIOCATMARK:
3568 		return sock_do_ioctl(net, sock, cmd, arg);
3569 	}
3570 
3571 	return -ENOIOCTLCMD;
3572 }
3573 
3574 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3575 			      unsigned long arg)
3576 {
3577 	struct socket *sock = file->private_data;
3578 	int ret = -ENOIOCTLCMD;
3579 	struct sock *sk;
3580 	struct net *net;
3581 
3582 	sk = sock->sk;
3583 	net = sock_net(sk);
3584 
3585 	if (sock->ops->compat_ioctl)
3586 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3587 
3588 	if (ret == -ENOIOCTLCMD &&
3589 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3590 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3591 
3592 	if (ret == -ENOIOCTLCMD)
3593 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3594 
3595 	return ret;
3596 }
3597 #endif
3598 
3599 /**
3600  *	kernel_bind - bind an address to a socket (kernel space)
3601  *	@sock: socket
3602  *	@addr: address
3603  *	@addrlen: length of address
3604  *
3605  *	Returns 0 or an error.
3606  */
3607 
3608 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3609 {
3610 	return sock->ops->bind(sock, addr, addrlen);
3611 }
3612 EXPORT_SYMBOL(kernel_bind);
3613 
3614 /**
3615  *	kernel_listen - move socket to listening state (kernel space)
3616  *	@sock: socket
3617  *	@backlog: pending connections queue size
3618  *
3619  *	Returns 0 or an error.
3620  */
3621 
3622 int kernel_listen(struct socket *sock, int backlog)
3623 {
3624 	return sock->ops->listen(sock, backlog);
3625 }
3626 EXPORT_SYMBOL(kernel_listen);
3627 
3628 /**
3629  *	kernel_accept - accept a connection (kernel space)
3630  *	@sock: listening socket
3631  *	@newsock: new connected socket
3632  *	@flags: flags
3633  *
3634  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3635  *	If it fails, @newsock is guaranteed to be %NULL.
3636  *	Returns 0 or an error.
3637  */
3638 
3639 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3640 {
3641 	struct sock *sk = sock->sk;
3642 	int err;
3643 
3644 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3645 			       newsock);
3646 	if (err < 0)
3647 		goto done;
3648 
3649 	err = sock->ops->accept(sock, *newsock, flags, true);
3650 	if (err < 0) {
3651 		sock_release(*newsock);
3652 		*newsock = NULL;
3653 		goto done;
3654 	}
3655 
3656 	(*newsock)->ops = sock->ops;
3657 	__module_get((*newsock)->ops->owner);
3658 
3659 done:
3660 	return err;
3661 }
3662 EXPORT_SYMBOL(kernel_accept);
3663 
3664 /**
3665  *	kernel_connect - connect a socket (kernel space)
3666  *	@sock: socket
3667  *	@addr: address
3668  *	@addrlen: address length
3669  *	@flags: flags (O_NONBLOCK, ...)
3670  *
3671  *	For datagram sockets, @addr is the addres to which datagrams are sent
3672  *	by default, and the only address from which datagrams are received.
3673  *	For stream sockets, attempts to connect to @addr.
3674  *	Returns 0 or an error code.
3675  */
3676 
3677 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3678 		   int flags)
3679 {
3680 	return sock->ops->connect(sock, addr, addrlen, flags);
3681 }
3682 EXPORT_SYMBOL(kernel_connect);
3683 
3684 /**
3685  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3686  *	@sock: socket
3687  *	@addr: address holder
3688  *
3689  * 	Fills the @addr pointer with the address which the socket is bound.
3690  *	Returns 0 or an error code.
3691  */
3692 
3693 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3694 {
3695 	return sock->ops->getname(sock, addr, 0);
3696 }
3697 EXPORT_SYMBOL(kernel_getsockname);
3698 
3699 /**
3700  *	kernel_peername - get the address which the socket is connected (kernel space)
3701  *	@sock: socket
3702  *	@addr: address holder
3703  *
3704  * 	Fills the @addr pointer with the address which the socket is connected.
3705  *	Returns 0 or an error code.
3706  */
3707 
3708 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3709 {
3710 	return sock->ops->getname(sock, addr, 1);
3711 }
3712 EXPORT_SYMBOL(kernel_getpeername);
3713 
3714 /**
3715  *	kernel_getsockopt - get a socket option (kernel space)
3716  *	@sock: socket
3717  *	@level: API level (SOL_SOCKET, ...)
3718  *	@optname: option tag
3719  *	@optval: option value
3720  *	@optlen: option length
3721  *
3722  *	Assigns the option length to @optlen.
3723  *	Returns 0 or an error.
3724  */
3725 
3726 int kernel_getsockopt(struct socket *sock, int level, int optname,
3727 			char *optval, int *optlen)
3728 {
3729 	mm_segment_t oldfs = get_fs();
3730 	char __user *uoptval;
3731 	int __user *uoptlen;
3732 	int err;
3733 
3734 	uoptval = (char __user __force *) optval;
3735 	uoptlen = (int __user __force *) optlen;
3736 
3737 	set_fs(KERNEL_DS);
3738 	if (level == SOL_SOCKET)
3739 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3740 	else
3741 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3742 					    uoptlen);
3743 	set_fs(oldfs);
3744 	return err;
3745 }
3746 EXPORT_SYMBOL(kernel_getsockopt);
3747 
3748 /**
3749  *	kernel_setsockopt - set a socket option (kernel space)
3750  *	@sock: socket
3751  *	@level: API level (SOL_SOCKET, ...)
3752  *	@optname: option tag
3753  *	@optval: option value
3754  *	@optlen: option length
3755  *
3756  *	Returns 0 or an error.
3757  */
3758 
3759 int kernel_setsockopt(struct socket *sock, int level, int optname,
3760 			char *optval, unsigned int optlen)
3761 {
3762 	mm_segment_t oldfs = get_fs();
3763 	char __user *uoptval;
3764 	int err;
3765 
3766 	uoptval = (char __user __force *) optval;
3767 
3768 	set_fs(KERNEL_DS);
3769 	if (level == SOL_SOCKET)
3770 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3771 	else
3772 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3773 					    optlen);
3774 	set_fs(oldfs);
3775 	return err;
3776 }
3777 EXPORT_SYMBOL(kernel_setsockopt);
3778 
3779 /**
3780  *	kernel_sendpage - send a &page through a socket (kernel space)
3781  *	@sock: socket
3782  *	@page: page
3783  *	@offset: page offset
3784  *	@size: total size in bytes
3785  *	@flags: flags (MSG_DONTWAIT, ...)
3786  *
3787  *	Returns the total amount sent in bytes or an error.
3788  */
3789 
3790 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3791 		    size_t size, int flags)
3792 {
3793 	if (sock->ops->sendpage)
3794 		return sock->ops->sendpage(sock, page, offset, size, flags);
3795 
3796 	return sock_no_sendpage(sock, page, offset, size, flags);
3797 }
3798 EXPORT_SYMBOL(kernel_sendpage);
3799 
3800 /**
3801  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3802  *	@sk: sock
3803  *	@page: page
3804  *	@offset: page offset
3805  *	@size: total size in bytes
3806  *	@flags: flags (MSG_DONTWAIT, ...)
3807  *
3808  *	Returns the total amount sent in bytes or an error.
3809  *	Caller must hold @sk.
3810  */
3811 
3812 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3813 			   size_t size, int flags)
3814 {
3815 	struct socket *sock = sk->sk_socket;
3816 
3817 	if (sock->ops->sendpage_locked)
3818 		return sock->ops->sendpage_locked(sk, page, offset, size,
3819 						  flags);
3820 
3821 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3822 }
3823 EXPORT_SYMBOL(kernel_sendpage_locked);
3824 
3825 /**
3826  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3827  *	@sock: socket
3828  *	@how: connection part
3829  *
3830  *	Returns 0 or an error.
3831  */
3832 
3833 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3834 {
3835 	return sock->ops->shutdown(sock, how);
3836 }
3837 EXPORT_SYMBOL(kernel_sock_shutdown);
3838 
3839 /**
3840  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3841  *	@sk: socket
3842  *
3843  *	This routine returns the IP overhead imposed by a socket i.e.
3844  *	the length of the underlying IP header, depending on whether
3845  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3846  *	on at the socket. Assumes that the caller has a lock on the socket.
3847  */
3848 
3849 u32 kernel_sock_ip_overhead(struct sock *sk)
3850 {
3851 	struct inet_sock *inet;
3852 	struct ip_options_rcu *opt;
3853 	u32 overhead = 0;
3854 #if IS_ENABLED(CONFIG_IPV6)
3855 	struct ipv6_pinfo *np;
3856 	struct ipv6_txoptions *optv6 = NULL;
3857 #endif /* IS_ENABLED(CONFIG_IPV6) */
3858 
3859 	if (!sk)
3860 		return overhead;
3861 
3862 	switch (sk->sk_family) {
3863 	case AF_INET:
3864 		inet = inet_sk(sk);
3865 		overhead += sizeof(struct iphdr);
3866 		opt = rcu_dereference_protected(inet->inet_opt,
3867 						sock_owned_by_user(sk));
3868 		if (opt)
3869 			overhead += opt->opt.optlen;
3870 		return overhead;
3871 #if IS_ENABLED(CONFIG_IPV6)
3872 	case AF_INET6:
3873 		np = inet6_sk(sk);
3874 		overhead += sizeof(struct ipv6hdr);
3875 		if (np)
3876 			optv6 = rcu_dereference_protected(np->opt,
3877 							  sock_owned_by_user(sk));
3878 		if (optv6)
3879 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3880 		return overhead;
3881 #endif /* IS_ENABLED(CONFIG_IPV6) */
3882 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3883 		return overhead;
3884 	}
3885 }
3886 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3887