1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/sockios.h> 104 #include <net/busy_poll.h> 105 #include <linux/errqueue.h> 106 107 #ifdef CONFIG_NET_RX_BUSY_POLL 108 unsigned int sysctl_net_busy_read __read_mostly; 109 unsigned int sysctl_net_busy_poll __read_mostly; 110 #endif 111 112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 114 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 115 116 static int sock_close(struct inode *inode, struct file *file); 117 static __poll_t sock_poll(struct file *file, 118 struct poll_table_struct *wait); 119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 120 #ifdef CONFIG_COMPAT 121 static long compat_sock_ioctl(struct file *file, 122 unsigned int cmd, unsigned long arg); 123 #endif 124 static int sock_fasync(int fd, struct file *filp, int on); 125 static ssize_t sock_sendpage(struct file *file, struct page *page, 126 int offset, size_t size, loff_t *ppos, int more); 127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 128 struct pipe_inode_info *pipe, size_t len, 129 unsigned int flags); 130 131 /* 132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 133 * in the operation structures but are done directly via the socketcall() multiplexor. 134 */ 135 136 static const struct file_operations socket_file_ops = { 137 .owner = THIS_MODULE, 138 .llseek = no_llseek, 139 .read_iter = sock_read_iter, 140 .write_iter = sock_write_iter, 141 .poll = sock_poll, 142 .unlocked_ioctl = sock_ioctl, 143 #ifdef CONFIG_COMPAT 144 .compat_ioctl = compat_sock_ioctl, 145 #endif 146 .mmap = sock_mmap, 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Support routines. 163 * Move socket addresses back and forth across the kernel/user 164 * divide and look after the messy bits. 165 */ 166 167 /** 168 * move_addr_to_kernel - copy a socket address into kernel space 169 * @uaddr: Address in user space 170 * @kaddr: Address in kernel space 171 * @ulen: Length in user space 172 * 173 * The address is copied into kernel space. If the provided address is 174 * too long an error code of -EINVAL is returned. If the copy gives 175 * invalid addresses -EFAULT is returned. On a success 0 is returned. 176 */ 177 178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 179 { 180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 181 return -EINVAL; 182 if (ulen == 0) 183 return 0; 184 if (copy_from_user(kaddr, uaddr, ulen)) 185 return -EFAULT; 186 return audit_sockaddr(ulen, kaddr); 187 } 188 189 /** 190 * move_addr_to_user - copy an address to user space 191 * @kaddr: kernel space address 192 * @klen: length of address in kernel 193 * @uaddr: user space address 194 * @ulen: pointer to user length field 195 * 196 * The value pointed to by ulen on entry is the buffer length available. 197 * This is overwritten with the buffer space used. -EINVAL is returned 198 * if an overlong buffer is specified or a negative buffer size. -EFAULT 199 * is returned if either the buffer or the length field are not 200 * accessible. 201 * After copying the data up to the limit the user specifies, the true 202 * length of the data is written over the length limit the user 203 * specified. Zero is returned for a success. 204 */ 205 206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 207 void __user *uaddr, int __user *ulen) 208 { 209 int err; 210 int len; 211 212 BUG_ON(klen > sizeof(struct sockaddr_storage)); 213 err = get_user(len, ulen); 214 if (err) 215 return err; 216 if (len > klen) 217 len = klen; 218 if (len < 0) 219 return -EINVAL; 220 if (len) { 221 if (audit_sockaddr(klen, kaddr)) 222 return -ENOMEM; 223 if (copy_to_user(uaddr, kaddr, len)) 224 return -EFAULT; 225 } 226 /* 227 * "fromlen shall refer to the value before truncation.." 228 * 1003.1g 229 */ 230 return __put_user(klen, ulen); 231 } 232 233 static struct kmem_cache *sock_inode_cachep __ro_after_init; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wq.wait); 243 ei->socket.wq.fasync_list = NULL; 244 ei->socket.wq.flags = 0; 245 246 ei->socket.state = SS_UNCONNECTED; 247 ei->socket.flags = 0; 248 ei->socket.ops = NULL; 249 ei->socket.sk = NULL; 250 ei->socket.file = NULL; 251 252 return &ei->vfs_inode; 253 } 254 255 static void sock_free_inode(struct inode *inode) 256 { 257 struct socket_alloc *ei; 258 259 ei = container_of(inode, struct socket_alloc, vfs_inode); 260 kmem_cache_free(sock_inode_cachep, ei); 261 } 262 263 static void init_once(void *foo) 264 { 265 struct socket_alloc *ei = (struct socket_alloc *)foo; 266 267 inode_init_once(&ei->vfs_inode); 268 } 269 270 static void init_inodecache(void) 271 { 272 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 273 sizeof(struct socket_alloc), 274 0, 275 (SLAB_HWCACHE_ALIGN | 276 SLAB_RECLAIM_ACCOUNT | 277 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 278 init_once); 279 BUG_ON(sock_inode_cachep == NULL); 280 } 281 282 static const struct super_operations sockfs_ops = { 283 .alloc_inode = sock_alloc_inode, 284 .free_inode = sock_free_inode, 285 .statfs = simple_statfs, 286 }; 287 288 /* 289 * sockfs_dname() is called from d_path(). 290 */ 291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 292 { 293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 294 d_inode(dentry)->i_ino); 295 } 296 297 static const struct dentry_operations sockfs_dentry_operations = { 298 .d_dname = sockfs_dname, 299 }; 300 301 static int sockfs_xattr_get(const struct xattr_handler *handler, 302 struct dentry *dentry, struct inode *inode, 303 const char *suffix, void *value, size_t size) 304 { 305 if (value) { 306 if (dentry->d_name.len + 1 > size) 307 return -ERANGE; 308 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 309 } 310 return dentry->d_name.len + 1; 311 } 312 313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 316 317 static const struct xattr_handler sockfs_xattr_handler = { 318 .name = XATTR_NAME_SOCKPROTONAME, 319 .get = sockfs_xattr_get, 320 }; 321 322 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 323 struct dentry *dentry, struct inode *inode, 324 const char *suffix, const void *value, 325 size_t size, int flags) 326 { 327 /* Handled by LSM. */ 328 return -EAGAIN; 329 } 330 331 static const struct xattr_handler sockfs_security_xattr_handler = { 332 .prefix = XATTR_SECURITY_PREFIX, 333 .set = sockfs_security_xattr_set, 334 }; 335 336 static const struct xattr_handler *sockfs_xattr_handlers[] = { 337 &sockfs_xattr_handler, 338 &sockfs_security_xattr_handler, 339 NULL 340 }; 341 342 static int sockfs_init_fs_context(struct fs_context *fc) 343 { 344 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 345 if (!ctx) 346 return -ENOMEM; 347 ctx->ops = &sockfs_ops; 348 ctx->dops = &sockfs_dentry_operations; 349 ctx->xattr = sockfs_xattr_handlers; 350 return 0; 351 } 352 353 static struct vfsmount *sock_mnt __read_mostly; 354 355 static struct file_system_type sock_fs_type = { 356 .name = "sockfs", 357 .init_fs_context = sockfs_init_fs_context, 358 .kill_sb = kill_anon_super, 359 }; 360 361 /* 362 * Obtains the first available file descriptor and sets it up for use. 363 * 364 * These functions create file structures and maps them to fd space 365 * of the current process. On success it returns file descriptor 366 * and file struct implicitly stored in sock->file. 367 * Note that another thread may close file descriptor before we return 368 * from this function. We use the fact that now we do not refer 369 * to socket after mapping. If one day we will need it, this 370 * function will increment ref. count on file by 1. 371 * 372 * In any case returned fd MAY BE not valid! 373 * This race condition is unavoidable 374 * with shared fd spaces, we cannot solve it inside kernel, 375 * but we take care of internal coherence yet. 376 */ 377 378 /** 379 * sock_alloc_file - Bind a &socket to a &file 380 * @sock: socket 381 * @flags: file status flags 382 * @dname: protocol name 383 * 384 * Returns the &file bound with @sock, implicitly storing it 385 * in sock->file. If dname is %NULL, sets to "". 386 * On failure the return is a ERR pointer (see linux/err.h). 387 * This function uses GFP_KERNEL internally. 388 */ 389 390 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 391 { 392 struct file *file; 393 394 if (!dname) 395 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 396 397 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 398 O_RDWR | (flags & O_NONBLOCK), 399 &socket_file_ops); 400 if (IS_ERR(file)) { 401 sock_release(sock); 402 return file; 403 } 404 405 sock->file = file; 406 file->private_data = sock; 407 stream_open(SOCK_INODE(sock), file); 408 return file; 409 } 410 EXPORT_SYMBOL(sock_alloc_file); 411 412 static int sock_map_fd(struct socket *sock, int flags) 413 { 414 struct file *newfile; 415 int fd = get_unused_fd_flags(flags); 416 if (unlikely(fd < 0)) { 417 sock_release(sock); 418 return fd; 419 } 420 421 newfile = sock_alloc_file(sock, flags, NULL); 422 if (!IS_ERR(newfile)) { 423 fd_install(fd, newfile); 424 return fd; 425 } 426 427 put_unused_fd(fd); 428 return PTR_ERR(newfile); 429 } 430 431 /** 432 * sock_from_file - Return the &socket bounded to @file. 433 * @file: file 434 * @err: pointer to an error code return 435 * 436 * On failure returns %NULL and assigns -ENOTSOCK to @err. 437 */ 438 439 struct socket *sock_from_file(struct file *file, int *err) 440 { 441 if (file->f_op == &socket_file_ops) 442 return file->private_data; /* set in sock_map_fd */ 443 444 *err = -ENOTSOCK; 445 return NULL; 446 } 447 EXPORT_SYMBOL(sock_from_file); 448 449 /** 450 * sockfd_lookup - Go from a file number to its socket slot 451 * @fd: file handle 452 * @err: pointer to an error code return 453 * 454 * The file handle passed in is locked and the socket it is bound 455 * to is returned. If an error occurs the err pointer is overwritten 456 * with a negative errno code and NULL is returned. The function checks 457 * for both invalid handles and passing a handle which is not a socket. 458 * 459 * On a success the socket object pointer is returned. 460 */ 461 462 struct socket *sockfd_lookup(int fd, int *err) 463 { 464 struct file *file; 465 struct socket *sock; 466 467 file = fget(fd); 468 if (!file) { 469 *err = -EBADF; 470 return NULL; 471 } 472 473 sock = sock_from_file(file, err); 474 if (!sock) 475 fput(file); 476 return sock; 477 } 478 EXPORT_SYMBOL(sockfd_lookup); 479 480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 481 { 482 struct fd f = fdget(fd); 483 struct socket *sock; 484 485 *err = -EBADF; 486 if (f.file) { 487 sock = sock_from_file(f.file, err); 488 if (likely(sock)) { 489 *fput_needed = f.flags; 490 return sock; 491 } 492 fdput(f); 493 } 494 return NULL; 495 } 496 497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 498 size_t size) 499 { 500 ssize_t len; 501 ssize_t used = 0; 502 503 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 504 if (len < 0) 505 return len; 506 used += len; 507 if (buffer) { 508 if (size < used) 509 return -ERANGE; 510 buffer += len; 511 } 512 513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 519 buffer += len; 520 } 521 522 return used; 523 } 524 525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 526 { 527 int err = simple_setattr(dentry, iattr); 528 529 if (!err && (iattr->ia_valid & ATTR_UID)) { 530 struct socket *sock = SOCKET_I(d_inode(dentry)); 531 532 if (sock->sk) 533 sock->sk->sk_uid = iattr->ia_uid; 534 else 535 err = -ENOENT; 536 } 537 538 return err; 539 } 540 541 static const struct inode_operations sockfs_inode_ops = { 542 .listxattr = sockfs_listxattr, 543 .setattr = sockfs_setattr, 544 }; 545 546 /** 547 * sock_alloc - allocate a socket 548 * 549 * Allocate a new inode and socket object. The two are bound together 550 * and initialised. The socket is then returned. If we are out of inodes 551 * NULL is returned. This functions uses GFP_KERNEL internally. 552 */ 553 554 struct socket *sock_alloc(void) 555 { 556 struct inode *inode; 557 struct socket *sock; 558 559 inode = new_inode_pseudo(sock_mnt->mnt_sb); 560 if (!inode) 561 return NULL; 562 563 sock = SOCKET_I(inode); 564 565 inode->i_ino = get_next_ino(); 566 inode->i_mode = S_IFSOCK | S_IRWXUGO; 567 inode->i_uid = current_fsuid(); 568 inode->i_gid = current_fsgid(); 569 inode->i_op = &sockfs_inode_ops; 570 571 return sock; 572 } 573 EXPORT_SYMBOL(sock_alloc); 574 575 /** 576 * sock_release - close a socket 577 * @sock: socket to close 578 * 579 * The socket is released from the protocol stack if it has a release 580 * callback, and the inode is then released if the socket is bound to 581 * an inode not a file. 582 */ 583 584 static void __sock_release(struct socket *sock, struct inode *inode) 585 { 586 if (sock->ops) { 587 struct module *owner = sock->ops->owner; 588 589 if (inode) 590 inode_lock(inode); 591 sock->ops->release(sock); 592 sock->sk = NULL; 593 if (inode) 594 inode_unlock(inode); 595 sock->ops = NULL; 596 module_put(owner); 597 } 598 599 if (sock->wq.fasync_list) 600 pr_err("%s: fasync list not empty!\n", __func__); 601 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 609 void sock_release(struct socket *sock) 610 { 611 __sock_release(sock, NULL); 612 } 613 EXPORT_SYMBOL(sock_release); 614 615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 616 { 617 u8 flags = *tx_flags; 618 619 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 620 flags |= SKBTX_HW_TSTAMP; 621 622 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 623 flags |= SKBTX_SW_TSTAMP; 624 625 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 626 flags |= SKBTX_SCHED_TSTAMP; 627 628 *tx_flags = flags; 629 } 630 EXPORT_SYMBOL(__sock_tx_timestamp); 631 632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 633 size_t)); 634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 635 size_t)); 636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 637 { 638 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 639 inet_sendmsg, sock, msg, 640 msg_data_left(msg)); 641 BUG_ON(ret == -EIOCBQUEUED); 642 return ret; 643 } 644 645 /** 646 * sock_sendmsg - send a message through @sock 647 * @sock: socket 648 * @msg: message to send 649 * 650 * Sends @msg through @sock, passing through LSM. 651 * Returns the number of bytes sent, or an error code. 652 */ 653 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 654 { 655 int err = security_socket_sendmsg(sock, msg, 656 msg_data_left(msg)); 657 658 return err ?: sock_sendmsg_nosec(sock, msg); 659 } 660 EXPORT_SYMBOL(sock_sendmsg); 661 662 /** 663 * kernel_sendmsg - send a message through @sock (kernel-space) 664 * @sock: socket 665 * @msg: message header 666 * @vec: kernel vec 667 * @num: vec array length 668 * @size: total message data size 669 * 670 * Builds the message data with @vec and sends it through @sock. 671 * Returns the number of bytes sent, or an error code. 672 */ 673 674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 675 struct kvec *vec, size_t num, size_t size) 676 { 677 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 678 return sock_sendmsg(sock, msg); 679 } 680 EXPORT_SYMBOL(kernel_sendmsg); 681 682 /** 683 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 684 * @sk: sock 685 * @msg: message header 686 * @vec: output s/g array 687 * @num: output s/g array length 688 * @size: total message data size 689 * 690 * Builds the message data with @vec and sends it through @sock. 691 * Returns the number of bytes sent, or an error code. 692 * Caller must hold @sk. 693 */ 694 695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 696 struct kvec *vec, size_t num, size_t size) 697 { 698 struct socket *sock = sk->sk_socket; 699 700 if (!sock->ops->sendmsg_locked) 701 return sock_no_sendmsg_locked(sk, msg, size); 702 703 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 704 705 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 706 } 707 EXPORT_SYMBOL(kernel_sendmsg_locked); 708 709 static bool skb_is_err_queue(const struct sk_buff *skb) 710 { 711 /* pkt_type of skbs enqueued on the error queue are set to 712 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 713 * in recvmsg, since skbs received on a local socket will never 714 * have a pkt_type of PACKET_OUTGOING. 715 */ 716 return skb->pkt_type == PACKET_OUTGOING; 717 } 718 719 /* On transmit, software and hardware timestamps are returned independently. 720 * As the two skb clones share the hardware timestamp, which may be updated 721 * before the software timestamp is received, a hardware TX timestamp may be 722 * returned only if there is no software TX timestamp. Ignore false software 723 * timestamps, which may be made in the __sock_recv_timestamp() call when the 724 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 725 * hardware timestamp. 726 */ 727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 728 { 729 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 730 } 731 732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 733 { 734 struct scm_ts_pktinfo ts_pktinfo; 735 struct net_device *orig_dev; 736 737 if (!skb_mac_header_was_set(skb)) 738 return; 739 740 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 741 742 rcu_read_lock(); 743 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 744 if (orig_dev) 745 ts_pktinfo.if_index = orig_dev->ifindex; 746 rcu_read_unlock(); 747 748 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 750 sizeof(ts_pktinfo), &ts_pktinfo); 751 } 752 753 /* 754 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 755 */ 756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 757 struct sk_buff *skb) 758 { 759 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 760 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 761 struct scm_timestamping_internal tss; 762 763 int empty = 1, false_tstamp = 0; 764 struct skb_shared_hwtstamps *shhwtstamps = 765 skb_hwtstamps(skb); 766 767 /* Race occurred between timestamp enabling and packet 768 receiving. Fill in the current time for now. */ 769 if (need_software_tstamp && skb->tstamp == 0) { 770 __net_timestamp(skb); 771 false_tstamp = 1; 772 } 773 774 if (need_software_tstamp) { 775 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 776 if (new_tstamp) { 777 struct __kernel_sock_timeval tv; 778 779 skb_get_new_timestamp(skb, &tv); 780 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 781 sizeof(tv), &tv); 782 } else { 783 struct __kernel_old_timeval tv; 784 785 skb_get_timestamp(skb, &tv); 786 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 787 sizeof(tv), &tv); 788 } 789 } else { 790 if (new_tstamp) { 791 struct __kernel_timespec ts; 792 793 skb_get_new_timestampns(skb, &ts); 794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 795 sizeof(ts), &ts); 796 } else { 797 struct timespec ts; 798 799 skb_get_timestampns(skb, &ts); 800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 801 sizeof(ts), &ts); 802 } 803 } 804 } 805 806 memset(&tss, 0, sizeof(tss)); 807 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 808 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 809 empty = 0; 810 if (shhwtstamps && 811 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 812 !skb_is_swtx_tstamp(skb, false_tstamp) && 813 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 814 empty = 0; 815 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 816 !skb_is_err_queue(skb)) 817 put_ts_pktinfo(msg, skb); 818 } 819 if (!empty) { 820 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 821 put_cmsg_scm_timestamping64(msg, &tss); 822 else 823 put_cmsg_scm_timestamping(msg, &tss); 824 825 if (skb_is_err_queue(skb) && skb->len && 826 SKB_EXT_ERR(skb)->opt_stats) 827 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 828 skb->len, skb->data); 829 } 830 } 831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 832 833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 834 struct sk_buff *skb) 835 { 836 int ack; 837 838 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 839 return; 840 if (!skb->wifi_acked_valid) 841 return; 842 843 ack = skb->wifi_acked; 844 845 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 846 } 847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 848 849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 850 struct sk_buff *skb) 851 { 852 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 853 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 854 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 855 } 856 857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 858 struct sk_buff *skb) 859 { 860 sock_recv_timestamp(msg, sk, skb); 861 sock_recv_drops(msg, sk, skb); 862 } 863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 864 865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 866 size_t, int)); 867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 868 size_t, int)); 869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 870 int flags) 871 { 872 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 873 inet_recvmsg, sock, msg, msg_data_left(msg), 874 flags); 875 } 876 877 /** 878 * sock_recvmsg - receive a message from @sock 879 * @sock: socket 880 * @msg: message to receive 881 * @flags: message flags 882 * 883 * Receives @msg from @sock, passing through LSM. Returns the total number 884 * of bytes received, or an error. 885 */ 886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 887 { 888 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 889 890 return err ?: sock_recvmsg_nosec(sock, msg, flags); 891 } 892 EXPORT_SYMBOL(sock_recvmsg); 893 894 /** 895 * kernel_recvmsg - Receive a message from a socket (kernel space) 896 * @sock: The socket to receive the message from 897 * @msg: Received message 898 * @vec: Input s/g array for message data 899 * @num: Size of input s/g array 900 * @size: Number of bytes to read 901 * @flags: Message flags (MSG_DONTWAIT, etc...) 902 * 903 * On return the msg structure contains the scatter/gather array passed in the 904 * vec argument. The array is modified so that it consists of the unfilled 905 * portion of the original array. 906 * 907 * The returned value is the total number of bytes received, or an error. 908 */ 909 910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 911 struct kvec *vec, size_t num, size_t size, int flags) 912 { 913 mm_segment_t oldfs = get_fs(); 914 int result; 915 916 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 917 set_fs(KERNEL_DS); 918 result = sock_recvmsg(sock, msg, flags); 919 set_fs(oldfs); 920 return result; 921 } 922 EXPORT_SYMBOL(kernel_recvmsg); 923 924 static ssize_t sock_sendpage(struct file *file, struct page *page, 925 int offset, size_t size, loff_t *ppos, int more) 926 { 927 struct socket *sock; 928 int flags; 929 930 sock = file->private_data; 931 932 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 933 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 934 flags |= more; 935 936 return kernel_sendpage(sock, page, offset, size, flags); 937 } 938 939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 940 struct pipe_inode_info *pipe, size_t len, 941 unsigned int flags) 942 { 943 struct socket *sock = file->private_data; 944 945 if (unlikely(!sock->ops->splice_read)) 946 return generic_file_splice_read(file, ppos, pipe, len, flags); 947 948 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 949 } 950 951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 952 { 953 struct file *file = iocb->ki_filp; 954 struct socket *sock = file->private_data; 955 struct msghdr msg = {.msg_iter = *to, 956 .msg_iocb = iocb}; 957 ssize_t res; 958 959 if (file->f_flags & O_NONBLOCK) 960 msg.msg_flags = MSG_DONTWAIT; 961 962 if (iocb->ki_pos != 0) 963 return -ESPIPE; 964 965 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 966 return 0; 967 968 res = sock_recvmsg(sock, &msg, msg.msg_flags); 969 *to = msg.msg_iter; 970 return res; 971 } 972 973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 974 { 975 struct file *file = iocb->ki_filp; 976 struct socket *sock = file->private_data; 977 struct msghdr msg = {.msg_iter = *from, 978 .msg_iocb = iocb}; 979 ssize_t res; 980 981 if (iocb->ki_pos != 0) 982 return -ESPIPE; 983 984 if (file->f_flags & O_NONBLOCK) 985 msg.msg_flags = MSG_DONTWAIT; 986 987 if (sock->type == SOCK_SEQPACKET) 988 msg.msg_flags |= MSG_EOR; 989 990 res = sock_sendmsg(sock, &msg); 991 *from = msg.msg_iter; 992 return res; 993 } 994 995 /* 996 * Atomic setting of ioctl hooks to avoid race 997 * with module unload. 998 */ 999 1000 static DEFINE_MUTEX(br_ioctl_mutex); 1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1002 1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1004 { 1005 mutex_lock(&br_ioctl_mutex); 1006 br_ioctl_hook = hook; 1007 mutex_unlock(&br_ioctl_mutex); 1008 } 1009 EXPORT_SYMBOL(brioctl_set); 1010 1011 static DEFINE_MUTEX(vlan_ioctl_mutex); 1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1013 1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1015 { 1016 mutex_lock(&vlan_ioctl_mutex); 1017 vlan_ioctl_hook = hook; 1018 mutex_unlock(&vlan_ioctl_mutex); 1019 } 1020 EXPORT_SYMBOL(vlan_ioctl_set); 1021 1022 static DEFINE_MUTEX(dlci_ioctl_mutex); 1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1024 1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1026 { 1027 mutex_lock(&dlci_ioctl_mutex); 1028 dlci_ioctl_hook = hook; 1029 mutex_unlock(&dlci_ioctl_mutex); 1030 } 1031 EXPORT_SYMBOL(dlci_ioctl_set); 1032 1033 static long sock_do_ioctl(struct net *net, struct socket *sock, 1034 unsigned int cmd, unsigned long arg) 1035 { 1036 int err; 1037 void __user *argp = (void __user *)arg; 1038 1039 err = sock->ops->ioctl(sock, cmd, arg); 1040 1041 /* 1042 * If this ioctl is unknown try to hand it down 1043 * to the NIC driver. 1044 */ 1045 if (err != -ENOIOCTLCMD) 1046 return err; 1047 1048 if (cmd == SIOCGIFCONF) { 1049 struct ifconf ifc; 1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1051 return -EFAULT; 1052 rtnl_lock(); 1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1054 rtnl_unlock(); 1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1056 err = -EFAULT; 1057 } else { 1058 struct ifreq ifr; 1059 bool need_copyout; 1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1061 return -EFAULT; 1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1063 if (!err && need_copyout) 1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1065 return -EFAULT; 1066 } 1067 return err; 1068 } 1069 1070 /* 1071 * With an ioctl, arg may well be a user mode pointer, but we don't know 1072 * what to do with it - that's up to the protocol still. 1073 */ 1074 1075 /** 1076 * get_net_ns - increment the refcount of the network namespace 1077 * @ns: common namespace (net) 1078 * 1079 * Returns the net's common namespace. 1080 */ 1081 1082 struct ns_common *get_net_ns(struct ns_common *ns) 1083 { 1084 return &get_net(container_of(ns, struct net, ns))->ns; 1085 } 1086 EXPORT_SYMBOL_GPL(get_net_ns); 1087 1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1089 { 1090 struct socket *sock; 1091 struct sock *sk; 1092 void __user *argp = (void __user *)arg; 1093 int pid, err; 1094 struct net *net; 1095 1096 sock = file->private_data; 1097 sk = sock->sk; 1098 net = sock_net(sk); 1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1100 struct ifreq ifr; 1101 bool need_copyout; 1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1103 return -EFAULT; 1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1105 if (!err && need_copyout) 1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1107 return -EFAULT; 1108 } else 1109 #ifdef CONFIG_WEXT_CORE 1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1111 err = wext_handle_ioctl(net, cmd, argp); 1112 } else 1113 #endif 1114 switch (cmd) { 1115 case FIOSETOWN: 1116 case SIOCSPGRP: 1117 err = -EFAULT; 1118 if (get_user(pid, (int __user *)argp)) 1119 break; 1120 err = f_setown(sock->file, pid, 1); 1121 break; 1122 case FIOGETOWN: 1123 case SIOCGPGRP: 1124 err = put_user(f_getown(sock->file), 1125 (int __user *)argp); 1126 break; 1127 case SIOCGIFBR: 1128 case SIOCSIFBR: 1129 case SIOCBRADDBR: 1130 case SIOCBRDELBR: 1131 err = -ENOPKG; 1132 if (!br_ioctl_hook) 1133 request_module("bridge"); 1134 1135 mutex_lock(&br_ioctl_mutex); 1136 if (br_ioctl_hook) 1137 err = br_ioctl_hook(net, cmd, argp); 1138 mutex_unlock(&br_ioctl_mutex); 1139 break; 1140 case SIOCGIFVLAN: 1141 case SIOCSIFVLAN: 1142 err = -ENOPKG; 1143 if (!vlan_ioctl_hook) 1144 request_module("8021q"); 1145 1146 mutex_lock(&vlan_ioctl_mutex); 1147 if (vlan_ioctl_hook) 1148 err = vlan_ioctl_hook(net, argp); 1149 mutex_unlock(&vlan_ioctl_mutex); 1150 break; 1151 case SIOCADDDLCI: 1152 case SIOCDELDLCI: 1153 err = -ENOPKG; 1154 if (!dlci_ioctl_hook) 1155 request_module("dlci"); 1156 1157 mutex_lock(&dlci_ioctl_mutex); 1158 if (dlci_ioctl_hook) 1159 err = dlci_ioctl_hook(cmd, argp); 1160 mutex_unlock(&dlci_ioctl_mutex); 1161 break; 1162 case SIOCGSKNS: 1163 err = -EPERM; 1164 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1165 break; 1166 1167 err = open_related_ns(&net->ns, get_net_ns); 1168 break; 1169 case SIOCGSTAMP_OLD: 1170 case SIOCGSTAMPNS_OLD: 1171 if (!sock->ops->gettstamp) { 1172 err = -ENOIOCTLCMD; 1173 break; 1174 } 1175 err = sock->ops->gettstamp(sock, argp, 1176 cmd == SIOCGSTAMP_OLD, 1177 !IS_ENABLED(CONFIG_64BIT)); 1178 break; 1179 case SIOCGSTAMP_NEW: 1180 case SIOCGSTAMPNS_NEW: 1181 if (!sock->ops->gettstamp) { 1182 err = -ENOIOCTLCMD; 1183 break; 1184 } 1185 err = sock->ops->gettstamp(sock, argp, 1186 cmd == SIOCGSTAMP_NEW, 1187 false); 1188 break; 1189 default: 1190 err = sock_do_ioctl(net, sock, cmd, arg); 1191 break; 1192 } 1193 return err; 1194 } 1195 1196 /** 1197 * sock_create_lite - creates a socket 1198 * @family: protocol family (AF_INET, ...) 1199 * @type: communication type (SOCK_STREAM, ...) 1200 * @protocol: protocol (0, ...) 1201 * @res: new socket 1202 * 1203 * Creates a new socket and assigns it to @res, passing through LSM. 1204 * The new socket initialization is not complete, see kernel_accept(). 1205 * Returns 0 or an error. On failure @res is set to %NULL. 1206 * This function internally uses GFP_KERNEL. 1207 */ 1208 1209 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1210 { 1211 int err; 1212 struct socket *sock = NULL; 1213 1214 err = security_socket_create(family, type, protocol, 1); 1215 if (err) 1216 goto out; 1217 1218 sock = sock_alloc(); 1219 if (!sock) { 1220 err = -ENOMEM; 1221 goto out; 1222 } 1223 1224 sock->type = type; 1225 err = security_socket_post_create(sock, family, type, protocol, 1); 1226 if (err) 1227 goto out_release; 1228 1229 out: 1230 *res = sock; 1231 return err; 1232 out_release: 1233 sock_release(sock); 1234 sock = NULL; 1235 goto out; 1236 } 1237 EXPORT_SYMBOL(sock_create_lite); 1238 1239 /* No kernel lock held - perfect */ 1240 static __poll_t sock_poll(struct file *file, poll_table *wait) 1241 { 1242 struct socket *sock = file->private_data; 1243 __poll_t events = poll_requested_events(wait), flag = 0; 1244 1245 if (!sock->ops->poll) 1246 return 0; 1247 1248 if (sk_can_busy_loop(sock->sk)) { 1249 /* poll once if requested by the syscall */ 1250 if (events & POLL_BUSY_LOOP) 1251 sk_busy_loop(sock->sk, 1); 1252 1253 /* if this socket can poll_ll, tell the system call */ 1254 flag = POLL_BUSY_LOOP; 1255 } 1256 1257 return sock->ops->poll(file, sock, wait) | flag; 1258 } 1259 1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1261 { 1262 struct socket *sock = file->private_data; 1263 1264 return sock->ops->mmap(file, sock, vma); 1265 } 1266 1267 static int sock_close(struct inode *inode, struct file *filp) 1268 { 1269 __sock_release(SOCKET_I(inode), inode); 1270 return 0; 1271 } 1272 1273 /* 1274 * Update the socket async list 1275 * 1276 * Fasync_list locking strategy. 1277 * 1278 * 1. fasync_list is modified only under process context socket lock 1279 * i.e. under semaphore. 1280 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1281 * or under socket lock 1282 */ 1283 1284 static int sock_fasync(int fd, struct file *filp, int on) 1285 { 1286 struct socket *sock = filp->private_data; 1287 struct sock *sk = sock->sk; 1288 struct socket_wq *wq = &sock->wq; 1289 1290 if (sk == NULL) 1291 return -EINVAL; 1292 1293 lock_sock(sk); 1294 fasync_helper(fd, filp, on, &wq->fasync_list); 1295 1296 if (!wq->fasync_list) 1297 sock_reset_flag(sk, SOCK_FASYNC); 1298 else 1299 sock_set_flag(sk, SOCK_FASYNC); 1300 1301 release_sock(sk); 1302 return 0; 1303 } 1304 1305 /* This function may be called only under rcu_lock */ 1306 1307 int sock_wake_async(struct socket_wq *wq, int how, int band) 1308 { 1309 if (!wq || !wq->fasync_list) 1310 return -1; 1311 1312 switch (how) { 1313 case SOCK_WAKE_WAITD: 1314 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1315 break; 1316 goto call_kill; 1317 case SOCK_WAKE_SPACE: 1318 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1319 break; 1320 /* fall through */ 1321 case SOCK_WAKE_IO: 1322 call_kill: 1323 kill_fasync(&wq->fasync_list, SIGIO, band); 1324 break; 1325 case SOCK_WAKE_URG: 1326 kill_fasync(&wq->fasync_list, SIGURG, band); 1327 } 1328 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(sock_wake_async); 1332 1333 /** 1334 * __sock_create - creates a socket 1335 * @net: net namespace 1336 * @family: protocol family (AF_INET, ...) 1337 * @type: communication type (SOCK_STREAM, ...) 1338 * @protocol: protocol (0, ...) 1339 * @res: new socket 1340 * @kern: boolean for kernel space sockets 1341 * 1342 * Creates a new socket and assigns it to @res, passing through LSM. 1343 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1344 * be set to true if the socket resides in kernel space. 1345 * This function internally uses GFP_KERNEL. 1346 */ 1347 1348 int __sock_create(struct net *net, int family, int type, int protocol, 1349 struct socket **res, int kern) 1350 { 1351 int err; 1352 struct socket *sock; 1353 const struct net_proto_family *pf; 1354 1355 /* 1356 * Check protocol is in range 1357 */ 1358 if (family < 0 || family >= NPROTO) 1359 return -EAFNOSUPPORT; 1360 if (type < 0 || type >= SOCK_MAX) 1361 return -EINVAL; 1362 1363 /* Compatibility. 1364 1365 This uglymoron is moved from INET layer to here to avoid 1366 deadlock in module load. 1367 */ 1368 if (family == PF_INET && type == SOCK_PACKET) { 1369 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1370 current->comm); 1371 family = PF_PACKET; 1372 } 1373 1374 err = security_socket_create(family, type, protocol, kern); 1375 if (err) 1376 return err; 1377 1378 /* 1379 * Allocate the socket and allow the family to set things up. if 1380 * the protocol is 0, the family is instructed to select an appropriate 1381 * default. 1382 */ 1383 sock = sock_alloc(); 1384 if (!sock) { 1385 net_warn_ratelimited("socket: no more sockets\n"); 1386 return -ENFILE; /* Not exactly a match, but its the 1387 closest posix thing */ 1388 } 1389 1390 sock->type = type; 1391 1392 #ifdef CONFIG_MODULES 1393 /* Attempt to load a protocol module if the find failed. 1394 * 1395 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1396 * requested real, full-featured networking support upon configuration. 1397 * Otherwise module support will break! 1398 */ 1399 if (rcu_access_pointer(net_families[family]) == NULL) 1400 request_module("net-pf-%d", family); 1401 #endif 1402 1403 rcu_read_lock(); 1404 pf = rcu_dereference(net_families[family]); 1405 err = -EAFNOSUPPORT; 1406 if (!pf) 1407 goto out_release; 1408 1409 /* 1410 * We will call the ->create function, that possibly is in a loadable 1411 * module, so we have to bump that loadable module refcnt first. 1412 */ 1413 if (!try_module_get(pf->owner)) 1414 goto out_release; 1415 1416 /* Now protected by module ref count */ 1417 rcu_read_unlock(); 1418 1419 err = pf->create(net, sock, protocol, kern); 1420 if (err < 0) 1421 goto out_module_put; 1422 1423 /* 1424 * Now to bump the refcnt of the [loadable] module that owns this 1425 * socket at sock_release time we decrement its refcnt. 1426 */ 1427 if (!try_module_get(sock->ops->owner)) 1428 goto out_module_busy; 1429 1430 /* 1431 * Now that we're done with the ->create function, the [loadable] 1432 * module can have its refcnt decremented 1433 */ 1434 module_put(pf->owner); 1435 err = security_socket_post_create(sock, family, type, protocol, kern); 1436 if (err) 1437 goto out_sock_release; 1438 *res = sock; 1439 1440 return 0; 1441 1442 out_module_busy: 1443 err = -EAFNOSUPPORT; 1444 out_module_put: 1445 sock->ops = NULL; 1446 module_put(pf->owner); 1447 out_sock_release: 1448 sock_release(sock); 1449 return err; 1450 1451 out_release: 1452 rcu_read_unlock(); 1453 goto out_sock_release; 1454 } 1455 EXPORT_SYMBOL(__sock_create); 1456 1457 /** 1458 * sock_create - creates a socket 1459 * @family: protocol family (AF_INET, ...) 1460 * @type: communication type (SOCK_STREAM, ...) 1461 * @protocol: protocol (0, ...) 1462 * @res: new socket 1463 * 1464 * A wrapper around __sock_create(). 1465 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1466 */ 1467 1468 int sock_create(int family, int type, int protocol, struct socket **res) 1469 { 1470 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1471 } 1472 EXPORT_SYMBOL(sock_create); 1473 1474 /** 1475 * sock_create_kern - creates a socket (kernel space) 1476 * @net: net namespace 1477 * @family: protocol family (AF_INET, ...) 1478 * @type: communication type (SOCK_STREAM, ...) 1479 * @protocol: protocol (0, ...) 1480 * @res: new socket 1481 * 1482 * A wrapper around __sock_create(). 1483 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1484 */ 1485 1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1487 { 1488 return __sock_create(net, family, type, protocol, res, 1); 1489 } 1490 EXPORT_SYMBOL(sock_create_kern); 1491 1492 int __sys_socket(int family, int type, int protocol) 1493 { 1494 int retval; 1495 struct socket *sock; 1496 int flags; 1497 1498 /* Check the SOCK_* constants for consistency. */ 1499 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1500 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1501 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1502 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1503 1504 flags = type & ~SOCK_TYPE_MASK; 1505 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1506 return -EINVAL; 1507 type &= SOCK_TYPE_MASK; 1508 1509 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1510 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1511 1512 retval = sock_create(family, type, protocol, &sock); 1513 if (retval < 0) 1514 return retval; 1515 1516 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1517 } 1518 1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1520 { 1521 return __sys_socket(family, type, protocol); 1522 } 1523 1524 /* 1525 * Create a pair of connected sockets. 1526 */ 1527 1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1529 { 1530 struct socket *sock1, *sock2; 1531 int fd1, fd2, err; 1532 struct file *newfile1, *newfile2; 1533 int flags; 1534 1535 flags = type & ~SOCK_TYPE_MASK; 1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1537 return -EINVAL; 1538 type &= SOCK_TYPE_MASK; 1539 1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1542 1543 /* 1544 * reserve descriptors and make sure we won't fail 1545 * to return them to userland. 1546 */ 1547 fd1 = get_unused_fd_flags(flags); 1548 if (unlikely(fd1 < 0)) 1549 return fd1; 1550 1551 fd2 = get_unused_fd_flags(flags); 1552 if (unlikely(fd2 < 0)) { 1553 put_unused_fd(fd1); 1554 return fd2; 1555 } 1556 1557 err = put_user(fd1, &usockvec[0]); 1558 if (err) 1559 goto out; 1560 1561 err = put_user(fd2, &usockvec[1]); 1562 if (err) 1563 goto out; 1564 1565 /* 1566 * Obtain the first socket and check if the underlying protocol 1567 * supports the socketpair call. 1568 */ 1569 1570 err = sock_create(family, type, protocol, &sock1); 1571 if (unlikely(err < 0)) 1572 goto out; 1573 1574 err = sock_create(family, type, protocol, &sock2); 1575 if (unlikely(err < 0)) { 1576 sock_release(sock1); 1577 goto out; 1578 } 1579 1580 err = security_socket_socketpair(sock1, sock2); 1581 if (unlikely(err)) { 1582 sock_release(sock2); 1583 sock_release(sock1); 1584 goto out; 1585 } 1586 1587 err = sock1->ops->socketpair(sock1, sock2); 1588 if (unlikely(err < 0)) { 1589 sock_release(sock2); 1590 sock_release(sock1); 1591 goto out; 1592 } 1593 1594 newfile1 = sock_alloc_file(sock1, flags, NULL); 1595 if (IS_ERR(newfile1)) { 1596 err = PTR_ERR(newfile1); 1597 sock_release(sock2); 1598 goto out; 1599 } 1600 1601 newfile2 = sock_alloc_file(sock2, flags, NULL); 1602 if (IS_ERR(newfile2)) { 1603 err = PTR_ERR(newfile2); 1604 fput(newfile1); 1605 goto out; 1606 } 1607 1608 audit_fd_pair(fd1, fd2); 1609 1610 fd_install(fd1, newfile1); 1611 fd_install(fd2, newfile2); 1612 return 0; 1613 1614 out: 1615 put_unused_fd(fd2); 1616 put_unused_fd(fd1); 1617 return err; 1618 } 1619 1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1621 int __user *, usockvec) 1622 { 1623 return __sys_socketpair(family, type, protocol, usockvec); 1624 } 1625 1626 /* 1627 * Bind a name to a socket. Nothing much to do here since it's 1628 * the protocol's responsibility to handle the local address. 1629 * 1630 * We move the socket address to kernel space before we call 1631 * the protocol layer (having also checked the address is ok). 1632 */ 1633 1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1635 { 1636 struct socket *sock; 1637 struct sockaddr_storage address; 1638 int err, fput_needed; 1639 1640 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1641 if (sock) { 1642 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1643 if (!err) { 1644 err = security_socket_bind(sock, 1645 (struct sockaddr *)&address, 1646 addrlen); 1647 if (!err) 1648 err = sock->ops->bind(sock, 1649 (struct sockaddr *) 1650 &address, addrlen); 1651 } 1652 fput_light(sock->file, fput_needed); 1653 } 1654 return err; 1655 } 1656 1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1658 { 1659 return __sys_bind(fd, umyaddr, addrlen); 1660 } 1661 1662 /* 1663 * Perform a listen. Basically, we allow the protocol to do anything 1664 * necessary for a listen, and if that works, we mark the socket as 1665 * ready for listening. 1666 */ 1667 1668 int __sys_listen(int fd, int backlog) 1669 { 1670 struct socket *sock; 1671 int err, fput_needed; 1672 int somaxconn; 1673 1674 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1675 if (sock) { 1676 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1677 if ((unsigned int)backlog > somaxconn) 1678 backlog = somaxconn; 1679 1680 err = security_socket_listen(sock, backlog); 1681 if (!err) 1682 err = sock->ops->listen(sock, backlog); 1683 1684 fput_light(sock->file, fput_needed); 1685 } 1686 return err; 1687 } 1688 1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1690 { 1691 return __sys_listen(fd, backlog); 1692 } 1693 1694 int __sys_accept4_file(struct file *file, unsigned file_flags, 1695 struct sockaddr __user *upeer_sockaddr, 1696 int __user *upeer_addrlen, int flags) 1697 { 1698 struct socket *sock, *newsock; 1699 struct file *newfile; 1700 int err, len, newfd; 1701 struct sockaddr_storage address; 1702 1703 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1704 return -EINVAL; 1705 1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1708 1709 sock = sock_from_file(file, &err); 1710 if (!sock) 1711 goto out; 1712 1713 err = -ENFILE; 1714 newsock = sock_alloc(); 1715 if (!newsock) 1716 goto out; 1717 1718 newsock->type = sock->type; 1719 newsock->ops = sock->ops; 1720 1721 /* 1722 * We don't need try_module_get here, as the listening socket (sock) 1723 * has the protocol module (sock->ops->owner) held. 1724 */ 1725 __module_get(newsock->ops->owner); 1726 1727 newfd = get_unused_fd_flags(flags); 1728 if (unlikely(newfd < 0)) { 1729 err = newfd; 1730 sock_release(newsock); 1731 goto out; 1732 } 1733 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1734 if (IS_ERR(newfile)) { 1735 err = PTR_ERR(newfile); 1736 put_unused_fd(newfd); 1737 goto out; 1738 } 1739 1740 err = security_socket_accept(sock, newsock); 1741 if (err) 1742 goto out_fd; 1743 1744 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1745 false); 1746 if (err < 0) 1747 goto out_fd; 1748 1749 if (upeer_sockaddr) { 1750 len = newsock->ops->getname(newsock, 1751 (struct sockaddr *)&address, 2); 1752 if (len < 0) { 1753 err = -ECONNABORTED; 1754 goto out_fd; 1755 } 1756 err = move_addr_to_user(&address, 1757 len, upeer_sockaddr, upeer_addrlen); 1758 if (err < 0) 1759 goto out_fd; 1760 } 1761 1762 /* File flags are not inherited via accept() unlike another OSes. */ 1763 1764 fd_install(newfd, newfile); 1765 err = newfd; 1766 out: 1767 return err; 1768 out_fd: 1769 fput(newfile); 1770 put_unused_fd(newfd); 1771 goto out; 1772 1773 } 1774 1775 /* 1776 * For accept, we attempt to create a new socket, set up the link 1777 * with the client, wake up the client, then return the new 1778 * connected fd. We collect the address of the connector in kernel 1779 * space and move it to user at the very end. This is unclean because 1780 * we open the socket then return an error. 1781 * 1782 * 1003.1g adds the ability to recvmsg() to query connection pending 1783 * status to recvmsg. We need to add that support in a way thats 1784 * clean when we restructure accept also. 1785 */ 1786 1787 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1788 int __user *upeer_addrlen, int flags) 1789 { 1790 int ret = -EBADF; 1791 struct fd f; 1792 1793 f = fdget(fd); 1794 if (f.file) { 1795 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1796 upeer_addrlen, flags); 1797 if (f.flags) 1798 fput(f.file); 1799 } 1800 1801 return ret; 1802 } 1803 1804 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1805 int __user *, upeer_addrlen, int, flags) 1806 { 1807 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1808 } 1809 1810 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1811 int __user *, upeer_addrlen) 1812 { 1813 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1814 } 1815 1816 /* 1817 * Attempt to connect to a socket with the server address. The address 1818 * is in user space so we verify it is OK and move it to kernel space. 1819 * 1820 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1821 * break bindings 1822 * 1823 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1824 * other SEQPACKET protocols that take time to connect() as it doesn't 1825 * include the -EINPROGRESS status for such sockets. 1826 */ 1827 1828 int __sys_connect_file(struct file *file, struct sockaddr __user *uservaddr, 1829 int addrlen, int file_flags) 1830 { 1831 struct socket *sock; 1832 struct sockaddr_storage address; 1833 int err; 1834 1835 sock = sock_from_file(file, &err); 1836 if (!sock) 1837 goto out; 1838 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1839 if (err < 0) 1840 goto out; 1841 1842 err = 1843 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1844 if (err) 1845 goto out; 1846 1847 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1848 sock->file->f_flags | file_flags); 1849 out: 1850 return err; 1851 } 1852 1853 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1854 { 1855 int ret = -EBADF; 1856 struct fd f; 1857 1858 f = fdget(fd); 1859 if (f.file) { 1860 ret = __sys_connect_file(f.file, uservaddr, addrlen, 0); 1861 if (f.flags) 1862 fput(f.file); 1863 } 1864 1865 return ret; 1866 } 1867 1868 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1869 int, addrlen) 1870 { 1871 return __sys_connect(fd, uservaddr, addrlen); 1872 } 1873 1874 /* 1875 * Get the local address ('name') of a socket object. Move the obtained 1876 * name to user space. 1877 */ 1878 1879 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1880 int __user *usockaddr_len) 1881 { 1882 struct socket *sock; 1883 struct sockaddr_storage address; 1884 int err, fput_needed; 1885 1886 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1887 if (!sock) 1888 goto out; 1889 1890 err = security_socket_getsockname(sock); 1891 if (err) 1892 goto out_put; 1893 1894 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1895 if (err < 0) 1896 goto out_put; 1897 /* "err" is actually length in this case */ 1898 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1899 1900 out_put: 1901 fput_light(sock->file, fput_needed); 1902 out: 1903 return err; 1904 } 1905 1906 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1907 int __user *, usockaddr_len) 1908 { 1909 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1910 } 1911 1912 /* 1913 * Get the remote address ('name') of a socket object. Move the obtained 1914 * name to user space. 1915 */ 1916 1917 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1918 int __user *usockaddr_len) 1919 { 1920 struct socket *sock; 1921 struct sockaddr_storage address; 1922 int err, fput_needed; 1923 1924 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1925 if (sock != NULL) { 1926 err = security_socket_getpeername(sock); 1927 if (err) { 1928 fput_light(sock->file, fput_needed); 1929 return err; 1930 } 1931 1932 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1933 if (err >= 0) 1934 /* "err" is actually length in this case */ 1935 err = move_addr_to_user(&address, err, usockaddr, 1936 usockaddr_len); 1937 fput_light(sock->file, fput_needed); 1938 } 1939 return err; 1940 } 1941 1942 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1943 int __user *, usockaddr_len) 1944 { 1945 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1946 } 1947 1948 /* 1949 * Send a datagram to a given address. We move the address into kernel 1950 * space and check the user space data area is readable before invoking 1951 * the protocol. 1952 */ 1953 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1954 struct sockaddr __user *addr, int addr_len) 1955 { 1956 struct socket *sock; 1957 struct sockaddr_storage address; 1958 int err; 1959 struct msghdr msg; 1960 struct iovec iov; 1961 int fput_needed; 1962 1963 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1964 if (unlikely(err)) 1965 return err; 1966 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1967 if (!sock) 1968 goto out; 1969 1970 msg.msg_name = NULL; 1971 msg.msg_control = NULL; 1972 msg.msg_controllen = 0; 1973 msg.msg_namelen = 0; 1974 if (addr) { 1975 err = move_addr_to_kernel(addr, addr_len, &address); 1976 if (err < 0) 1977 goto out_put; 1978 msg.msg_name = (struct sockaddr *)&address; 1979 msg.msg_namelen = addr_len; 1980 } 1981 if (sock->file->f_flags & O_NONBLOCK) 1982 flags |= MSG_DONTWAIT; 1983 msg.msg_flags = flags; 1984 err = sock_sendmsg(sock, &msg); 1985 1986 out_put: 1987 fput_light(sock->file, fput_needed); 1988 out: 1989 return err; 1990 } 1991 1992 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1993 unsigned int, flags, struct sockaddr __user *, addr, 1994 int, addr_len) 1995 { 1996 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1997 } 1998 1999 /* 2000 * Send a datagram down a socket. 2001 */ 2002 2003 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2004 unsigned int, flags) 2005 { 2006 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2007 } 2008 2009 /* 2010 * Receive a frame from the socket and optionally record the address of the 2011 * sender. We verify the buffers are writable and if needed move the 2012 * sender address from kernel to user space. 2013 */ 2014 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2015 struct sockaddr __user *addr, int __user *addr_len) 2016 { 2017 struct socket *sock; 2018 struct iovec iov; 2019 struct msghdr msg; 2020 struct sockaddr_storage address; 2021 int err, err2; 2022 int fput_needed; 2023 2024 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2025 if (unlikely(err)) 2026 return err; 2027 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2028 if (!sock) 2029 goto out; 2030 2031 msg.msg_control = NULL; 2032 msg.msg_controllen = 0; 2033 /* Save some cycles and don't copy the address if not needed */ 2034 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2035 /* We assume all kernel code knows the size of sockaddr_storage */ 2036 msg.msg_namelen = 0; 2037 msg.msg_iocb = NULL; 2038 msg.msg_flags = 0; 2039 if (sock->file->f_flags & O_NONBLOCK) 2040 flags |= MSG_DONTWAIT; 2041 err = sock_recvmsg(sock, &msg, flags); 2042 2043 if (err >= 0 && addr != NULL) { 2044 err2 = move_addr_to_user(&address, 2045 msg.msg_namelen, addr, addr_len); 2046 if (err2 < 0) 2047 err = err2; 2048 } 2049 2050 fput_light(sock->file, fput_needed); 2051 out: 2052 return err; 2053 } 2054 2055 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2056 unsigned int, flags, struct sockaddr __user *, addr, 2057 int __user *, addr_len) 2058 { 2059 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2060 } 2061 2062 /* 2063 * Receive a datagram from a socket. 2064 */ 2065 2066 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2067 unsigned int, flags) 2068 { 2069 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2070 } 2071 2072 /* 2073 * Set a socket option. Because we don't know the option lengths we have 2074 * to pass the user mode parameter for the protocols to sort out. 2075 */ 2076 2077 static int __sys_setsockopt(int fd, int level, int optname, 2078 char __user *optval, int optlen) 2079 { 2080 mm_segment_t oldfs = get_fs(); 2081 char *kernel_optval = NULL; 2082 int err, fput_needed; 2083 struct socket *sock; 2084 2085 if (optlen < 0) 2086 return -EINVAL; 2087 2088 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2089 if (sock != NULL) { 2090 err = security_socket_setsockopt(sock, level, optname); 2091 if (err) 2092 goto out_put; 2093 2094 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2095 &optname, optval, &optlen, 2096 &kernel_optval); 2097 2098 if (err < 0) { 2099 goto out_put; 2100 } else if (err > 0) { 2101 err = 0; 2102 goto out_put; 2103 } 2104 2105 if (kernel_optval) { 2106 set_fs(KERNEL_DS); 2107 optval = (char __user __force *)kernel_optval; 2108 } 2109 2110 if (level == SOL_SOCKET) 2111 err = 2112 sock_setsockopt(sock, level, optname, optval, 2113 optlen); 2114 else 2115 err = 2116 sock->ops->setsockopt(sock, level, optname, optval, 2117 optlen); 2118 2119 if (kernel_optval) { 2120 set_fs(oldfs); 2121 kfree(kernel_optval); 2122 } 2123 out_put: 2124 fput_light(sock->file, fput_needed); 2125 } 2126 return err; 2127 } 2128 2129 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2130 char __user *, optval, int, optlen) 2131 { 2132 return __sys_setsockopt(fd, level, optname, optval, optlen); 2133 } 2134 2135 /* 2136 * Get a socket option. Because we don't know the option lengths we have 2137 * to pass a user mode parameter for the protocols to sort out. 2138 */ 2139 2140 static int __sys_getsockopt(int fd, int level, int optname, 2141 char __user *optval, int __user *optlen) 2142 { 2143 int err, fput_needed; 2144 struct socket *sock; 2145 int max_optlen; 2146 2147 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2148 if (sock != NULL) { 2149 err = security_socket_getsockopt(sock, level, optname); 2150 if (err) 2151 goto out_put; 2152 2153 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2154 2155 if (level == SOL_SOCKET) 2156 err = 2157 sock_getsockopt(sock, level, optname, optval, 2158 optlen); 2159 else 2160 err = 2161 sock->ops->getsockopt(sock, level, optname, optval, 2162 optlen); 2163 2164 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2165 optval, optlen, 2166 max_optlen, err); 2167 out_put: 2168 fput_light(sock->file, fput_needed); 2169 } 2170 return err; 2171 } 2172 2173 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2174 char __user *, optval, int __user *, optlen) 2175 { 2176 return __sys_getsockopt(fd, level, optname, optval, optlen); 2177 } 2178 2179 /* 2180 * Shutdown a socket. 2181 */ 2182 2183 int __sys_shutdown(int fd, int how) 2184 { 2185 int err, fput_needed; 2186 struct socket *sock; 2187 2188 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2189 if (sock != NULL) { 2190 err = security_socket_shutdown(sock, how); 2191 if (!err) 2192 err = sock->ops->shutdown(sock, how); 2193 fput_light(sock->file, fput_needed); 2194 } 2195 return err; 2196 } 2197 2198 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2199 { 2200 return __sys_shutdown(fd, how); 2201 } 2202 2203 /* A couple of helpful macros for getting the address of the 32/64 bit 2204 * fields which are the same type (int / unsigned) on our platforms. 2205 */ 2206 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2207 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2208 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2209 2210 struct used_address { 2211 struct sockaddr_storage name; 2212 unsigned int name_len; 2213 }; 2214 2215 static int copy_msghdr_from_user(struct msghdr *kmsg, 2216 struct user_msghdr __user *umsg, 2217 struct sockaddr __user **save_addr, 2218 struct iovec **iov) 2219 { 2220 struct user_msghdr msg; 2221 ssize_t err; 2222 2223 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2224 return -EFAULT; 2225 2226 kmsg->msg_control = (void __force *)msg.msg_control; 2227 kmsg->msg_controllen = msg.msg_controllen; 2228 kmsg->msg_flags = msg.msg_flags; 2229 2230 kmsg->msg_namelen = msg.msg_namelen; 2231 if (!msg.msg_name) 2232 kmsg->msg_namelen = 0; 2233 2234 if (kmsg->msg_namelen < 0) 2235 return -EINVAL; 2236 2237 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2238 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2239 2240 if (save_addr) 2241 *save_addr = msg.msg_name; 2242 2243 if (msg.msg_name && kmsg->msg_namelen) { 2244 if (!save_addr) { 2245 err = move_addr_to_kernel(msg.msg_name, 2246 kmsg->msg_namelen, 2247 kmsg->msg_name); 2248 if (err < 0) 2249 return err; 2250 } 2251 } else { 2252 kmsg->msg_name = NULL; 2253 kmsg->msg_namelen = 0; 2254 } 2255 2256 if (msg.msg_iovlen > UIO_MAXIOV) 2257 return -EMSGSIZE; 2258 2259 kmsg->msg_iocb = NULL; 2260 2261 err = import_iovec(save_addr ? READ : WRITE, 2262 msg.msg_iov, msg.msg_iovlen, 2263 UIO_FASTIOV, iov, &kmsg->msg_iter); 2264 return err < 0 ? err : 0; 2265 } 2266 2267 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2268 unsigned int flags, struct used_address *used_address, 2269 unsigned int allowed_msghdr_flags) 2270 { 2271 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2272 __aligned(sizeof(__kernel_size_t)); 2273 /* 20 is size of ipv6_pktinfo */ 2274 unsigned char *ctl_buf = ctl; 2275 int ctl_len; 2276 ssize_t err; 2277 2278 err = -ENOBUFS; 2279 2280 if (msg_sys->msg_controllen > INT_MAX) 2281 goto out; 2282 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2283 ctl_len = msg_sys->msg_controllen; 2284 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2285 err = 2286 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2287 sizeof(ctl)); 2288 if (err) 2289 goto out; 2290 ctl_buf = msg_sys->msg_control; 2291 ctl_len = msg_sys->msg_controllen; 2292 } else if (ctl_len) { 2293 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2294 CMSG_ALIGN(sizeof(struct cmsghdr))); 2295 if (ctl_len > sizeof(ctl)) { 2296 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2297 if (ctl_buf == NULL) 2298 goto out; 2299 } 2300 err = -EFAULT; 2301 /* 2302 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2303 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2304 * checking falls down on this. 2305 */ 2306 if (copy_from_user(ctl_buf, 2307 (void __user __force *)msg_sys->msg_control, 2308 ctl_len)) 2309 goto out_freectl; 2310 msg_sys->msg_control = ctl_buf; 2311 } 2312 msg_sys->msg_flags = flags; 2313 2314 if (sock->file->f_flags & O_NONBLOCK) 2315 msg_sys->msg_flags |= MSG_DONTWAIT; 2316 /* 2317 * If this is sendmmsg() and current destination address is same as 2318 * previously succeeded address, omit asking LSM's decision. 2319 * used_address->name_len is initialized to UINT_MAX so that the first 2320 * destination address never matches. 2321 */ 2322 if (used_address && msg_sys->msg_name && 2323 used_address->name_len == msg_sys->msg_namelen && 2324 !memcmp(&used_address->name, msg_sys->msg_name, 2325 used_address->name_len)) { 2326 err = sock_sendmsg_nosec(sock, msg_sys); 2327 goto out_freectl; 2328 } 2329 err = sock_sendmsg(sock, msg_sys); 2330 /* 2331 * If this is sendmmsg() and sending to current destination address was 2332 * successful, remember it. 2333 */ 2334 if (used_address && err >= 0) { 2335 used_address->name_len = msg_sys->msg_namelen; 2336 if (msg_sys->msg_name) 2337 memcpy(&used_address->name, msg_sys->msg_name, 2338 used_address->name_len); 2339 } 2340 2341 out_freectl: 2342 if (ctl_buf != ctl) 2343 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2344 out: 2345 return err; 2346 } 2347 2348 static int sendmsg_copy_msghdr(struct msghdr *msg, 2349 struct user_msghdr __user *umsg, unsigned flags, 2350 struct iovec **iov) 2351 { 2352 int err; 2353 2354 if (flags & MSG_CMSG_COMPAT) { 2355 struct compat_msghdr __user *msg_compat; 2356 2357 msg_compat = (struct compat_msghdr __user *) umsg; 2358 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2359 } else { 2360 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2361 } 2362 if (err < 0) 2363 return err; 2364 2365 return 0; 2366 } 2367 2368 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2369 struct msghdr *msg_sys, unsigned int flags, 2370 struct used_address *used_address, 2371 unsigned int allowed_msghdr_flags) 2372 { 2373 struct sockaddr_storage address; 2374 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2375 ssize_t err; 2376 2377 msg_sys->msg_name = &address; 2378 2379 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2380 if (err < 0) 2381 return err; 2382 2383 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2384 allowed_msghdr_flags); 2385 kfree(iov); 2386 return err; 2387 } 2388 2389 /* 2390 * BSD sendmsg interface 2391 */ 2392 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg, 2393 unsigned int flags) 2394 { 2395 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2396 struct sockaddr_storage address; 2397 struct msghdr msg = { .msg_name = &address }; 2398 ssize_t err; 2399 2400 err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov); 2401 if (err) 2402 return err; 2403 /* disallow ancillary data requests from this path */ 2404 if (msg.msg_control || msg.msg_controllen) { 2405 err = -EINVAL; 2406 goto out; 2407 } 2408 2409 err = ____sys_sendmsg(sock, &msg, flags, NULL, 0); 2410 out: 2411 kfree(iov); 2412 return err; 2413 } 2414 2415 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2416 bool forbid_cmsg_compat) 2417 { 2418 int fput_needed, err; 2419 struct msghdr msg_sys; 2420 struct socket *sock; 2421 2422 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2423 return -EINVAL; 2424 2425 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2426 if (!sock) 2427 goto out; 2428 2429 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2430 2431 fput_light(sock->file, fput_needed); 2432 out: 2433 return err; 2434 } 2435 2436 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2437 { 2438 return __sys_sendmsg(fd, msg, flags, true); 2439 } 2440 2441 /* 2442 * Linux sendmmsg interface 2443 */ 2444 2445 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2446 unsigned int flags, bool forbid_cmsg_compat) 2447 { 2448 int fput_needed, err, datagrams; 2449 struct socket *sock; 2450 struct mmsghdr __user *entry; 2451 struct compat_mmsghdr __user *compat_entry; 2452 struct msghdr msg_sys; 2453 struct used_address used_address; 2454 unsigned int oflags = flags; 2455 2456 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2457 return -EINVAL; 2458 2459 if (vlen > UIO_MAXIOV) 2460 vlen = UIO_MAXIOV; 2461 2462 datagrams = 0; 2463 2464 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2465 if (!sock) 2466 return err; 2467 2468 used_address.name_len = UINT_MAX; 2469 entry = mmsg; 2470 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2471 err = 0; 2472 flags |= MSG_BATCH; 2473 2474 while (datagrams < vlen) { 2475 if (datagrams == vlen - 1) 2476 flags = oflags; 2477 2478 if (MSG_CMSG_COMPAT & flags) { 2479 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2480 &msg_sys, flags, &used_address, MSG_EOR); 2481 if (err < 0) 2482 break; 2483 err = __put_user(err, &compat_entry->msg_len); 2484 ++compat_entry; 2485 } else { 2486 err = ___sys_sendmsg(sock, 2487 (struct user_msghdr __user *)entry, 2488 &msg_sys, flags, &used_address, MSG_EOR); 2489 if (err < 0) 2490 break; 2491 err = put_user(err, &entry->msg_len); 2492 ++entry; 2493 } 2494 2495 if (err) 2496 break; 2497 ++datagrams; 2498 if (msg_data_left(&msg_sys)) 2499 break; 2500 cond_resched(); 2501 } 2502 2503 fput_light(sock->file, fput_needed); 2504 2505 /* We only return an error if no datagrams were able to be sent */ 2506 if (datagrams != 0) 2507 return datagrams; 2508 2509 return err; 2510 } 2511 2512 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2513 unsigned int, vlen, unsigned int, flags) 2514 { 2515 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2516 } 2517 2518 static int recvmsg_copy_msghdr(struct msghdr *msg, 2519 struct user_msghdr __user *umsg, unsigned flags, 2520 struct sockaddr __user **uaddr, 2521 struct iovec **iov) 2522 { 2523 ssize_t err; 2524 2525 if (MSG_CMSG_COMPAT & flags) { 2526 struct compat_msghdr __user *msg_compat; 2527 2528 msg_compat = (struct compat_msghdr __user *) umsg; 2529 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2530 } else { 2531 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2532 } 2533 if (err < 0) 2534 return err; 2535 2536 return 0; 2537 } 2538 2539 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2540 struct user_msghdr __user *msg, 2541 struct sockaddr __user *uaddr, 2542 unsigned int flags, int nosec) 2543 { 2544 struct compat_msghdr __user *msg_compat = 2545 (struct compat_msghdr __user *) msg; 2546 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2547 struct sockaddr_storage addr; 2548 unsigned long cmsg_ptr; 2549 int len; 2550 ssize_t err; 2551 2552 msg_sys->msg_name = &addr; 2553 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2554 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2555 2556 /* We assume all kernel code knows the size of sockaddr_storage */ 2557 msg_sys->msg_namelen = 0; 2558 2559 if (sock->file->f_flags & O_NONBLOCK) 2560 flags |= MSG_DONTWAIT; 2561 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2562 if (err < 0) 2563 goto out; 2564 len = err; 2565 2566 if (uaddr != NULL) { 2567 err = move_addr_to_user(&addr, 2568 msg_sys->msg_namelen, uaddr, 2569 uaddr_len); 2570 if (err < 0) 2571 goto out; 2572 } 2573 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2574 COMPAT_FLAGS(msg)); 2575 if (err) 2576 goto out; 2577 if (MSG_CMSG_COMPAT & flags) 2578 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2579 &msg_compat->msg_controllen); 2580 else 2581 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2582 &msg->msg_controllen); 2583 if (err) 2584 goto out; 2585 err = len; 2586 out: 2587 return err; 2588 } 2589 2590 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2591 struct msghdr *msg_sys, unsigned int flags, int nosec) 2592 { 2593 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2594 /* user mode address pointers */ 2595 struct sockaddr __user *uaddr; 2596 ssize_t err; 2597 2598 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2599 if (err < 0) 2600 return err; 2601 2602 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2603 kfree(iov); 2604 return err; 2605 } 2606 2607 /* 2608 * BSD recvmsg interface 2609 */ 2610 2611 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg, 2612 unsigned int flags) 2613 { 2614 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2615 struct sockaddr_storage address; 2616 struct msghdr msg = { .msg_name = &address }; 2617 struct sockaddr __user *uaddr; 2618 ssize_t err; 2619 2620 err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov); 2621 if (err) 2622 return err; 2623 /* disallow ancillary data requests from this path */ 2624 if (msg.msg_control || msg.msg_controllen) { 2625 err = -EINVAL; 2626 goto out; 2627 } 2628 2629 err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0); 2630 out: 2631 kfree(iov); 2632 return err; 2633 } 2634 2635 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2636 bool forbid_cmsg_compat) 2637 { 2638 int fput_needed, err; 2639 struct msghdr msg_sys; 2640 struct socket *sock; 2641 2642 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2643 return -EINVAL; 2644 2645 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2646 if (!sock) 2647 goto out; 2648 2649 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2650 2651 fput_light(sock->file, fput_needed); 2652 out: 2653 return err; 2654 } 2655 2656 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2657 unsigned int, flags) 2658 { 2659 return __sys_recvmsg(fd, msg, flags, true); 2660 } 2661 2662 /* 2663 * Linux recvmmsg interface 2664 */ 2665 2666 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2667 unsigned int vlen, unsigned int flags, 2668 struct timespec64 *timeout) 2669 { 2670 int fput_needed, err, datagrams; 2671 struct socket *sock; 2672 struct mmsghdr __user *entry; 2673 struct compat_mmsghdr __user *compat_entry; 2674 struct msghdr msg_sys; 2675 struct timespec64 end_time; 2676 struct timespec64 timeout64; 2677 2678 if (timeout && 2679 poll_select_set_timeout(&end_time, timeout->tv_sec, 2680 timeout->tv_nsec)) 2681 return -EINVAL; 2682 2683 datagrams = 0; 2684 2685 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2686 if (!sock) 2687 return err; 2688 2689 if (likely(!(flags & MSG_ERRQUEUE))) { 2690 err = sock_error(sock->sk); 2691 if (err) { 2692 datagrams = err; 2693 goto out_put; 2694 } 2695 } 2696 2697 entry = mmsg; 2698 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2699 2700 while (datagrams < vlen) { 2701 /* 2702 * No need to ask LSM for more than the first datagram. 2703 */ 2704 if (MSG_CMSG_COMPAT & flags) { 2705 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2706 &msg_sys, flags & ~MSG_WAITFORONE, 2707 datagrams); 2708 if (err < 0) 2709 break; 2710 err = __put_user(err, &compat_entry->msg_len); 2711 ++compat_entry; 2712 } else { 2713 err = ___sys_recvmsg(sock, 2714 (struct user_msghdr __user *)entry, 2715 &msg_sys, flags & ~MSG_WAITFORONE, 2716 datagrams); 2717 if (err < 0) 2718 break; 2719 err = put_user(err, &entry->msg_len); 2720 ++entry; 2721 } 2722 2723 if (err) 2724 break; 2725 ++datagrams; 2726 2727 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2728 if (flags & MSG_WAITFORONE) 2729 flags |= MSG_DONTWAIT; 2730 2731 if (timeout) { 2732 ktime_get_ts64(&timeout64); 2733 *timeout = timespec64_sub(end_time, timeout64); 2734 if (timeout->tv_sec < 0) { 2735 timeout->tv_sec = timeout->tv_nsec = 0; 2736 break; 2737 } 2738 2739 /* Timeout, return less than vlen datagrams */ 2740 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2741 break; 2742 } 2743 2744 /* Out of band data, return right away */ 2745 if (msg_sys.msg_flags & MSG_OOB) 2746 break; 2747 cond_resched(); 2748 } 2749 2750 if (err == 0) 2751 goto out_put; 2752 2753 if (datagrams == 0) { 2754 datagrams = err; 2755 goto out_put; 2756 } 2757 2758 /* 2759 * We may return less entries than requested (vlen) if the 2760 * sock is non block and there aren't enough datagrams... 2761 */ 2762 if (err != -EAGAIN) { 2763 /* 2764 * ... or if recvmsg returns an error after we 2765 * received some datagrams, where we record the 2766 * error to return on the next call or if the 2767 * app asks about it using getsockopt(SO_ERROR). 2768 */ 2769 sock->sk->sk_err = -err; 2770 } 2771 out_put: 2772 fput_light(sock->file, fput_needed); 2773 2774 return datagrams; 2775 } 2776 2777 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2778 unsigned int vlen, unsigned int flags, 2779 struct __kernel_timespec __user *timeout, 2780 struct old_timespec32 __user *timeout32) 2781 { 2782 int datagrams; 2783 struct timespec64 timeout_sys; 2784 2785 if (timeout && get_timespec64(&timeout_sys, timeout)) 2786 return -EFAULT; 2787 2788 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2789 return -EFAULT; 2790 2791 if (!timeout && !timeout32) 2792 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2793 2794 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2795 2796 if (datagrams <= 0) 2797 return datagrams; 2798 2799 if (timeout && put_timespec64(&timeout_sys, timeout)) 2800 datagrams = -EFAULT; 2801 2802 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2803 datagrams = -EFAULT; 2804 2805 return datagrams; 2806 } 2807 2808 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2809 unsigned int, vlen, unsigned int, flags, 2810 struct __kernel_timespec __user *, timeout) 2811 { 2812 if (flags & MSG_CMSG_COMPAT) 2813 return -EINVAL; 2814 2815 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2816 } 2817 2818 #ifdef CONFIG_COMPAT_32BIT_TIME 2819 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2820 unsigned int, vlen, unsigned int, flags, 2821 struct old_timespec32 __user *, timeout) 2822 { 2823 if (flags & MSG_CMSG_COMPAT) 2824 return -EINVAL; 2825 2826 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2827 } 2828 #endif 2829 2830 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2831 /* Argument list sizes for sys_socketcall */ 2832 #define AL(x) ((x) * sizeof(unsigned long)) 2833 static const unsigned char nargs[21] = { 2834 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2835 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2836 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2837 AL(4), AL(5), AL(4) 2838 }; 2839 2840 #undef AL 2841 2842 /* 2843 * System call vectors. 2844 * 2845 * Argument checking cleaned up. Saved 20% in size. 2846 * This function doesn't need to set the kernel lock because 2847 * it is set by the callees. 2848 */ 2849 2850 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2851 { 2852 unsigned long a[AUDITSC_ARGS]; 2853 unsigned long a0, a1; 2854 int err; 2855 unsigned int len; 2856 2857 if (call < 1 || call > SYS_SENDMMSG) 2858 return -EINVAL; 2859 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2860 2861 len = nargs[call]; 2862 if (len > sizeof(a)) 2863 return -EINVAL; 2864 2865 /* copy_from_user should be SMP safe. */ 2866 if (copy_from_user(a, args, len)) 2867 return -EFAULT; 2868 2869 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2870 if (err) 2871 return err; 2872 2873 a0 = a[0]; 2874 a1 = a[1]; 2875 2876 switch (call) { 2877 case SYS_SOCKET: 2878 err = __sys_socket(a0, a1, a[2]); 2879 break; 2880 case SYS_BIND: 2881 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2882 break; 2883 case SYS_CONNECT: 2884 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2885 break; 2886 case SYS_LISTEN: 2887 err = __sys_listen(a0, a1); 2888 break; 2889 case SYS_ACCEPT: 2890 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2891 (int __user *)a[2], 0); 2892 break; 2893 case SYS_GETSOCKNAME: 2894 err = 2895 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2896 (int __user *)a[2]); 2897 break; 2898 case SYS_GETPEERNAME: 2899 err = 2900 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2901 (int __user *)a[2]); 2902 break; 2903 case SYS_SOCKETPAIR: 2904 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2905 break; 2906 case SYS_SEND: 2907 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2908 NULL, 0); 2909 break; 2910 case SYS_SENDTO: 2911 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2912 (struct sockaddr __user *)a[4], a[5]); 2913 break; 2914 case SYS_RECV: 2915 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2916 NULL, NULL); 2917 break; 2918 case SYS_RECVFROM: 2919 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2920 (struct sockaddr __user *)a[4], 2921 (int __user *)a[5]); 2922 break; 2923 case SYS_SHUTDOWN: 2924 err = __sys_shutdown(a0, a1); 2925 break; 2926 case SYS_SETSOCKOPT: 2927 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2928 a[4]); 2929 break; 2930 case SYS_GETSOCKOPT: 2931 err = 2932 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2933 (int __user *)a[4]); 2934 break; 2935 case SYS_SENDMSG: 2936 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2937 a[2], true); 2938 break; 2939 case SYS_SENDMMSG: 2940 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2941 a[3], true); 2942 break; 2943 case SYS_RECVMSG: 2944 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2945 a[2], true); 2946 break; 2947 case SYS_RECVMMSG: 2948 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2949 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2950 a[2], a[3], 2951 (struct __kernel_timespec __user *)a[4], 2952 NULL); 2953 else 2954 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2955 a[2], a[3], NULL, 2956 (struct old_timespec32 __user *)a[4]); 2957 break; 2958 case SYS_ACCEPT4: 2959 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2960 (int __user *)a[2], a[3]); 2961 break; 2962 default: 2963 err = -EINVAL; 2964 break; 2965 } 2966 return err; 2967 } 2968 2969 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2970 2971 /** 2972 * sock_register - add a socket protocol handler 2973 * @ops: description of protocol 2974 * 2975 * This function is called by a protocol handler that wants to 2976 * advertise its address family, and have it linked into the 2977 * socket interface. The value ops->family corresponds to the 2978 * socket system call protocol family. 2979 */ 2980 int sock_register(const struct net_proto_family *ops) 2981 { 2982 int err; 2983 2984 if (ops->family >= NPROTO) { 2985 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2986 return -ENOBUFS; 2987 } 2988 2989 spin_lock(&net_family_lock); 2990 if (rcu_dereference_protected(net_families[ops->family], 2991 lockdep_is_held(&net_family_lock))) 2992 err = -EEXIST; 2993 else { 2994 rcu_assign_pointer(net_families[ops->family], ops); 2995 err = 0; 2996 } 2997 spin_unlock(&net_family_lock); 2998 2999 pr_info("NET: Registered protocol family %d\n", ops->family); 3000 return err; 3001 } 3002 EXPORT_SYMBOL(sock_register); 3003 3004 /** 3005 * sock_unregister - remove a protocol handler 3006 * @family: protocol family to remove 3007 * 3008 * This function is called by a protocol handler that wants to 3009 * remove its address family, and have it unlinked from the 3010 * new socket creation. 3011 * 3012 * If protocol handler is a module, then it can use module reference 3013 * counts to protect against new references. If protocol handler is not 3014 * a module then it needs to provide its own protection in 3015 * the ops->create routine. 3016 */ 3017 void sock_unregister(int family) 3018 { 3019 BUG_ON(family < 0 || family >= NPROTO); 3020 3021 spin_lock(&net_family_lock); 3022 RCU_INIT_POINTER(net_families[family], NULL); 3023 spin_unlock(&net_family_lock); 3024 3025 synchronize_rcu(); 3026 3027 pr_info("NET: Unregistered protocol family %d\n", family); 3028 } 3029 EXPORT_SYMBOL(sock_unregister); 3030 3031 bool sock_is_registered(int family) 3032 { 3033 return family < NPROTO && rcu_access_pointer(net_families[family]); 3034 } 3035 3036 static int __init sock_init(void) 3037 { 3038 int err; 3039 /* 3040 * Initialize the network sysctl infrastructure. 3041 */ 3042 err = net_sysctl_init(); 3043 if (err) 3044 goto out; 3045 3046 /* 3047 * Initialize skbuff SLAB cache 3048 */ 3049 skb_init(); 3050 3051 /* 3052 * Initialize the protocols module. 3053 */ 3054 3055 init_inodecache(); 3056 3057 err = register_filesystem(&sock_fs_type); 3058 if (err) 3059 goto out_fs; 3060 sock_mnt = kern_mount(&sock_fs_type); 3061 if (IS_ERR(sock_mnt)) { 3062 err = PTR_ERR(sock_mnt); 3063 goto out_mount; 3064 } 3065 3066 /* The real protocol initialization is performed in later initcalls. 3067 */ 3068 3069 #ifdef CONFIG_NETFILTER 3070 err = netfilter_init(); 3071 if (err) 3072 goto out; 3073 #endif 3074 3075 ptp_classifier_init(); 3076 3077 out: 3078 return err; 3079 3080 out_mount: 3081 unregister_filesystem(&sock_fs_type); 3082 out_fs: 3083 goto out; 3084 } 3085 3086 core_initcall(sock_init); /* early initcall */ 3087 3088 #ifdef CONFIG_PROC_FS 3089 void socket_seq_show(struct seq_file *seq) 3090 { 3091 seq_printf(seq, "sockets: used %d\n", 3092 sock_inuse_get(seq->private)); 3093 } 3094 #endif /* CONFIG_PROC_FS */ 3095 3096 #ifdef CONFIG_COMPAT 3097 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3098 { 3099 struct compat_ifconf ifc32; 3100 struct ifconf ifc; 3101 int err; 3102 3103 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3104 return -EFAULT; 3105 3106 ifc.ifc_len = ifc32.ifc_len; 3107 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3108 3109 rtnl_lock(); 3110 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3111 rtnl_unlock(); 3112 if (err) 3113 return err; 3114 3115 ifc32.ifc_len = ifc.ifc_len; 3116 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3117 return -EFAULT; 3118 3119 return 0; 3120 } 3121 3122 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3123 { 3124 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3125 bool convert_in = false, convert_out = false; 3126 size_t buf_size = 0; 3127 struct ethtool_rxnfc __user *rxnfc = NULL; 3128 struct ifreq ifr; 3129 u32 rule_cnt = 0, actual_rule_cnt; 3130 u32 ethcmd; 3131 u32 data; 3132 int ret; 3133 3134 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3135 return -EFAULT; 3136 3137 compat_rxnfc = compat_ptr(data); 3138 3139 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3140 return -EFAULT; 3141 3142 /* Most ethtool structures are defined without padding. 3143 * Unfortunately struct ethtool_rxnfc is an exception. 3144 */ 3145 switch (ethcmd) { 3146 default: 3147 break; 3148 case ETHTOOL_GRXCLSRLALL: 3149 /* Buffer size is variable */ 3150 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3151 return -EFAULT; 3152 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3153 return -ENOMEM; 3154 buf_size += rule_cnt * sizeof(u32); 3155 /* fall through */ 3156 case ETHTOOL_GRXRINGS: 3157 case ETHTOOL_GRXCLSRLCNT: 3158 case ETHTOOL_GRXCLSRULE: 3159 case ETHTOOL_SRXCLSRLINS: 3160 convert_out = true; 3161 /* fall through */ 3162 case ETHTOOL_SRXCLSRLDEL: 3163 buf_size += sizeof(struct ethtool_rxnfc); 3164 convert_in = true; 3165 rxnfc = compat_alloc_user_space(buf_size); 3166 break; 3167 } 3168 3169 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3170 return -EFAULT; 3171 3172 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3173 3174 if (convert_in) { 3175 /* We expect there to be holes between fs.m_ext and 3176 * fs.ring_cookie and at the end of fs, but nowhere else. 3177 */ 3178 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3179 sizeof(compat_rxnfc->fs.m_ext) != 3180 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3181 sizeof(rxnfc->fs.m_ext)); 3182 BUILD_BUG_ON( 3183 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3184 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3185 offsetof(struct ethtool_rxnfc, fs.location) - 3186 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3187 3188 if (copy_in_user(rxnfc, compat_rxnfc, 3189 (void __user *)(&rxnfc->fs.m_ext + 1) - 3190 (void __user *)rxnfc) || 3191 copy_in_user(&rxnfc->fs.ring_cookie, 3192 &compat_rxnfc->fs.ring_cookie, 3193 (void __user *)(&rxnfc->fs.location + 1) - 3194 (void __user *)&rxnfc->fs.ring_cookie)) 3195 return -EFAULT; 3196 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3197 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3198 return -EFAULT; 3199 } else if (copy_in_user(&rxnfc->rule_cnt, 3200 &compat_rxnfc->rule_cnt, 3201 sizeof(rxnfc->rule_cnt))) 3202 return -EFAULT; 3203 } 3204 3205 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3206 if (ret) 3207 return ret; 3208 3209 if (convert_out) { 3210 if (copy_in_user(compat_rxnfc, rxnfc, 3211 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3212 (const void __user *)rxnfc) || 3213 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3214 &rxnfc->fs.ring_cookie, 3215 (const void __user *)(&rxnfc->fs.location + 1) - 3216 (const void __user *)&rxnfc->fs.ring_cookie) || 3217 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3218 sizeof(rxnfc->rule_cnt))) 3219 return -EFAULT; 3220 3221 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3222 /* As an optimisation, we only copy the actual 3223 * number of rules that the underlying 3224 * function returned. Since Mallory might 3225 * change the rule count in user memory, we 3226 * check that it is less than the rule count 3227 * originally given (as the user buffer size), 3228 * which has been range-checked. 3229 */ 3230 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3231 return -EFAULT; 3232 if (actual_rule_cnt < rule_cnt) 3233 rule_cnt = actual_rule_cnt; 3234 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3235 &rxnfc->rule_locs[0], 3236 rule_cnt * sizeof(u32))) 3237 return -EFAULT; 3238 } 3239 } 3240 3241 return 0; 3242 } 3243 3244 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3245 { 3246 compat_uptr_t uptr32; 3247 struct ifreq ifr; 3248 void __user *saved; 3249 int err; 3250 3251 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3252 return -EFAULT; 3253 3254 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3255 return -EFAULT; 3256 3257 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3258 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3259 3260 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3261 if (!err) { 3262 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3263 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3264 err = -EFAULT; 3265 } 3266 return err; 3267 } 3268 3269 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3270 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3271 struct compat_ifreq __user *u_ifreq32) 3272 { 3273 struct ifreq ifreq; 3274 u32 data32; 3275 3276 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3277 return -EFAULT; 3278 if (get_user(data32, &u_ifreq32->ifr_data)) 3279 return -EFAULT; 3280 ifreq.ifr_data = compat_ptr(data32); 3281 3282 return dev_ioctl(net, cmd, &ifreq, NULL); 3283 } 3284 3285 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3286 unsigned int cmd, 3287 struct compat_ifreq __user *uifr32) 3288 { 3289 struct ifreq __user *uifr; 3290 int err; 3291 3292 /* Handle the fact that while struct ifreq has the same *layout* on 3293 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3294 * which are handled elsewhere, it still has different *size* due to 3295 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3296 * resulting in struct ifreq being 32 and 40 bytes respectively). 3297 * As a result, if the struct happens to be at the end of a page and 3298 * the next page isn't readable/writable, we get a fault. To prevent 3299 * that, copy back and forth to the full size. 3300 */ 3301 3302 uifr = compat_alloc_user_space(sizeof(*uifr)); 3303 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3304 return -EFAULT; 3305 3306 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3307 3308 if (!err) { 3309 switch (cmd) { 3310 case SIOCGIFFLAGS: 3311 case SIOCGIFMETRIC: 3312 case SIOCGIFMTU: 3313 case SIOCGIFMEM: 3314 case SIOCGIFHWADDR: 3315 case SIOCGIFINDEX: 3316 case SIOCGIFADDR: 3317 case SIOCGIFBRDADDR: 3318 case SIOCGIFDSTADDR: 3319 case SIOCGIFNETMASK: 3320 case SIOCGIFPFLAGS: 3321 case SIOCGIFTXQLEN: 3322 case SIOCGMIIPHY: 3323 case SIOCGMIIREG: 3324 case SIOCGIFNAME: 3325 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3326 err = -EFAULT; 3327 break; 3328 } 3329 } 3330 return err; 3331 } 3332 3333 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3334 struct compat_ifreq __user *uifr32) 3335 { 3336 struct ifreq ifr; 3337 struct compat_ifmap __user *uifmap32; 3338 int err; 3339 3340 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3341 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3342 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3343 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3344 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3345 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3346 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3347 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3348 if (err) 3349 return -EFAULT; 3350 3351 err = dev_ioctl(net, cmd, &ifr, NULL); 3352 3353 if (cmd == SIOCGIFMAP && !err) { 3354 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3355 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3356 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3357 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3358 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3359 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3360 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3361 if (err) 3362 err = -EFAULT; 3363 } 3364 return err; 3365 } 3366 3367 struct rtentry32 { 3368 u32 rt_pad1; 3369 struct sockaddr rt_dst; /* target address */ 3370 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3371 struct sockaddr rt_genmask; /* target network mask (IP) */ 3372 unsigned short rt_flags; 3373 short rt_pad2; 3374 u32 rt_pad3; 3375 unsigned char rt_tos; 3376 unsigned char rt_class; 3377 short rt_pad4; 3378 short rt_metric; /* +1 for binary compatibility! */ 3379 /* char * */ u32 rt_dev; /* forcing the device at add */ 3380 u32 rt_mtu; /* per route MTU/Window */ 3381 u32 rt_window; /* Window clamping */ 3382 unsigned short rt_irtt; /* Initial RTT */ 3383 }; 3384 3385 struct in6_rtmsg32 { 3386 struct in6_addr rtmsg_dst; 3387 struct in6_addr rtmsg_src; 3388 struct in6_addr rtmsg_gateway; 3389 u32 rtmsg_type; 3390 u16 rtmsg_dst_len; 3391 u16 rtmsg_src_len; 3392 u32 rtmsg_metric; 3393 u32 rtmsg_info; 3394 u32 rtmsg_flags; 3395 s32 rtmsg_ifindex; 3396 }; 3397 3398 static int routing_ioctl(struct net *net, struct socket *sock, 3399 unsigned int cmd, void __user *argp) 3400 { 3401 int ret; 3402 void *r = NULL; 3403 struct in6_rtmsg r6; 3404 struct rtentry r4; 3405 char devname[16]; 3406 u32 rtdev; 3407 mm_segment_t old_fs = get_fs(); 3408 3409 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3410 struct in6_rtmsg32 __user *ur6 = argp; 3411 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3412 3 * sizeof(struct in6_addr)); 3413 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3414 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3415 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3416 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3417 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3418 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3419 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3420 3421 r = (void *) &r6; 3422 } else { /* ipv4 */ 3423 struct rtentry32 __user *ur4 = argp; 3424 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3425 3 * sizeof(struct sockaddr)); 3426 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3427 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3428 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3429 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3430 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3431 ret |= get_user(rtdev, &(ur4->rt_dev)); 3432 if (rtdev) { 3433 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3434 r4.rt_dev = (char __user __force *)devname; 3435 devname[15] = 0; 3436 } else 3437 r4.rt_dev = NULL; 3438 3439 r = (void *) &r4; 3440 } 3441 3442 if (ret) { 3443 ret = -EFAULT; 3444 goto out; 3445 } 3446 3447 set_fs(KERNEL_DS); 3448 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3449 set_fs(old_fs); 3450 3451 out: 3452 return ret; 3453 } 3454 3455 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3456 * for some operations; this forces use of the newer bridge-utils that 3457 * use compatible ioctls 3458 */ 3459 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3460 { 3461 compat_ulong_t tmp; 3462 3463 if (get_user(tmp, argp)) 3464 return -EFAULT; 3465 if (tmp == BRCTL_GET_VERSION) 3466 return BRCTL_VERSION + 1; 3467 return -EINVAL; 3468 } 3469 3470 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3471 unsigned int cmd, unsigned long arg) 3472 { 3473 void __user *argp = compat_ptr(arg); 3474 struct sock *sk = sock->sk; 3475 struct net *net = sock_net(sk); 3476 3477 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3478 return compat_ifr_data_ioctl(net, cmd, argp); 3479 3480 switch (cmd) { 3481 case SIOCSIFBR: 3482 case SIOCGIFBR: 3483 return old_bridge_ioctl(argp); 3484 case SIOCGIFCONF: 3485 return compat_dev_ifconf(net, argp); 3486 case SIOCETHTOOL: 3487 return ethtool_ioctl(net, argp); 3488 case SIOCWANDEV: 3489 return compat_siocwandev(net, argp); 3490 case SIOCGIFMAP: 3491 case SIOCSIFMAP: 3492 return compat_sioc_ifmap(net, cmd, argp); 3493 case SIOCADDRT: 3494 case SIOCDELRT: 3495 return routing_ioctl(net, sock, cmd, argp); 3496 case SIOCGSTAMP_OLD: 3497 case SIOCGSTAMPNS_OLD: 3498 if (!sock->ops->gettstamp) 3499 return -ENOIOCTLCMD; 3500 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3501 !COMPAT_USE_64BIT_TIME); 3502 3503 case SIOCBONDSLAVEINFOQUERY: 3504 case SIOCBONDINFOQUERY: 3505 case SIOCSHWTSTAMP: 3506 case SIOCGHWTSTAMP: 3507 return compat_ifr_data_ioctl(net, cmd, argp); 3508 3509 case FIOSETOWN: 3510 case SIOCSPGRP: 3511 case FIOGETOWN: 3512 case SIOCGPGRP: 3513 case SIOCBRADDBR: 3514 case SIOCBRDELBR: 3515 case SIOCGIFVLAN: 3516 case SIOCSIFVLAN: 3517 case SIOCADDDLCI: 3518 case SIOCDELDLCI: 3519 case SIOCGSKNS: 3520 case SIOCGSTAMP_NEW: 3521 case SIOCGSTAMPNS_NEW: 3522 return sock_ioctl(file, cmd, arg); 3523 3524 case SIOCGIFFLAGS: 3525 case SIOCSIFFLAGS: 3526 case SIOCGIFMETRIC: 3527 case SIOCSIFMETRIC: 3528 case SIOCGIFMTU: 3529 case SIOCSIFMTU: 3530 case SIOCGIFMEM: 3531 case SIOCSIFMEM: 3532 case SIOCGIFHWADDR: 3533 case SIOCSIFHWADDR: 3534 case SIOCADDMULTI: 3535 case SIOCDELMULTI: 3536 case SIOCGIFINDEX: 3537 case SIOCGIFADDR: 3538 case SIOCSIFADDR: 3539 case SIOCSIFHWBROADCAST: 3540 case SIOCDIFADDR: 3541 case SIOCGIFBRDADDR: 3542 case SIOCSIFBRDADDR: 3543 case SIOCGIFDSTADDR: 3544 case SIOCSIFDSTADDR: 3545 case SIOCGIFNETMASK: 3546 case SIOCSIFNETMASK: 3547 case SIOCSIFPFLAGS: 3548 case SIOCGIFPFLAGS: 3549 case SIOCGIFTXQLEN: 3550 case SIOCSIFTXQLEN: 3551 case SIOCBRADDIF: 3552 case SIOCBRDELIF: 3553 case SIOCGIFNAME: 3554 case SIOCSIFNAME: 3555 case SIOCGMIIPHY: 3556 case SIOCGMIIREG: 3557 case SIOCSMIIREG: 3558 case SIOCBONDENSLAVE: 3559 case SIOCBONDRELEASE: 3560 case SIOCBONDSETHWADDR: 3561 case SIOCBONDCHANGEACTIVE: 3562 return compat_ifreq_ioctl(net, sock, cmd, argp); 3563 3564 case SIOCSARP: 3565 case SIOCGARP: 3566 case SIOCDARP: 3567 case SIOCATMARK: 3568 return sock_do_ioctl(net, sock, cmd, arg); 3569 } 3570 3571 return -ENOIOCTLCMD; 3572 } 3573 3574 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3575 unsigned long arg) 3576 { 3577 struct socket *sock = file->private_data; 3578 int ret = -ENOIOCTLCMD; 3579 struct sock *sk; 3580 struct net *net; 3581 3582 sk = sock->sk; 3583 net = sock_net(sk); 3584 3585 if (sock->ops->compat_ioctl) 3586 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3587 3588 if (ret == -ENOIOCTLCMD && 3589 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3590 ret = compat_wext_handle_ioctl(net, cmd, arg); 3591 3592 if (ret == -ENOIOCTLCMD) 3593 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3594 3595 return ret; 3596 } 3597 #endif 3598 3599 /** 3600 * kernel_bind - bind an address to a socket (kernel space) 3601 * @sock: socket 3602 * @addr: address 3603 * @addrlen: length of address 3604 * 3605 * Returns 0 or an error. 3606 */ 3607 3608 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3609 { 3610 return sock->ops->bind(sock, addr, addrlen); 3611 } 3612 EXPORT_SYMBOL(kernel_bind); 3613 3614 /** 3615 * kernel_listen - move socket to listening state (kernel space) 3616 * @sock: socket 3617 * @backlog: pending connections queue size 3618 * 3619 * Returns 0 or an error. 3620 */ 3621 3622 int kernel_listen(struct socket *sock, int backlog) 3623 { 3624 return sock->ops->listen(sock, backlog); 3625 } 3626 EXPORT_SYMBOL(kernel_listen); 3627 3628 /** 3629 * kernel_accept - accept a connection (kernel space) 3630 * @sock: listening socket 3631 * @newsock: new connected socket 3632 * @flags: flags 3633 * 3634 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3635 * If it fails, @newsock is guaranteed to be %NULL. 3636 * Returns 0 or an error. 3637 */ 3638 3639 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3640 { 3641 struct sock *sk = sock->sk; 3642 int err; 3643 3644 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3645 newsock); 3646 if (err < 0) 3647 goto done; 3648 3649 err = sock->ops->accept(sock, *newsock, flags, true); 3650 if (err < 0) { 3651 sock_release(*newsock); 3652 *newsock = NULL; 3653 goto done; 3654 } 3655 3656 (*newsock)->ops = sock->ops; 3657 __module_get((*newsock)->ops->owner); 3658 3659 done: 3660 return err; 3661 } 3662 EXPORT_SYMBOL(kernel_accept); 3663 3664 /** 3665 * kernel_connect - connect a socket (kernel space) 3666 * @sock: socket 3667 * @addr: address 3668 * @addrlen: address length 3669 * @flags: flags (O_NONBLOCK, ...) 3670 * 3671 * For datagram sockets, @addr is the addres to which datagrams are sent 3672 * by default, and the only address from which datagrams are received. 3673 * For stream sockets, attempts to connect to @addr. 3674 * Returns 0 or an error code. 3675 */ 3676 3677 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3678 int flags) 3679 { 3680 return sock->ops->connect(sock, addr, addrlen, flags); 3681 } 3682 EXPORT_SYMBOL(kernel_connect); 3683 3684 /** 3685 * kernel_getsockname - get the address which the socket is bound (kernel space) 3686 * @sock: socket 3687 * @addr: address holder 3688 * 3689 * Fills the @addr pointer with the address which the socket is bound. 3690 * Returns 0 or an error code. 3691 */ 3692 3693 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3694 { 3695 return sock->ops->getname(sock, addr, 0); 3696 } 3697 EXPORT_SYMBOL(kernel_getsockname); 3698 3699 /** 3700 * kernel_peername - get the address which the socket is connected (kernel space) 3701 * @sock: socket 3702 * @addr: address holder 3703 * 3704 * Fills the @addr pointer with the address which the socket is connected. 3705 * Returns 0 or an error code. 3706 */ 3707 3708 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3709 { 3710 return sock->ops->getname(sock, addr, 1); 3711 } 3712 EXPORT_SYMBOL(kernel_getpeername); 3713 3714 /** 3715 * kernel_getsockopt - get a socket option (kernel space) 3716 * @sock: socket 3717 * @level: API level (SOL_SOCKET, ...) 3718 * @optname: option tag 3719 * @optval: option value 3720 * @optlen: option length 3721 * 3722 * Assigns the option length to @optlen. 3723 * Returns 0 or an error. 3724 */ 3725 3726 int kernel_getsockopt(struct socket *sock, int level, int optname, 3727 char *optval, int *optlen) 3728 { 3729 mm_segment_t oldfs = get_fs(); 3730 char __user *uoptval; 3731 int __user *uoptlen; 3732 int err; 3733 3734 uoptval = (char __user __force *) optval; 3735 uoptlen = (int __user __force *) optlen; 3736 3737 set_fs(KERNEL_DS); 3738 if (level == SOL_SOCKET) 3739 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3740 else 3741 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3742 uoptlen); 3743 set_fs(oldfs); 3744 return err; 3745 } 3746 EXPORT_SYMBOL(kernel_getsockopt); 3747 3748 /** 3749 * kernel_setsockopt - set a socket option (kernel space) 3750 * @sock: socket 3751 * @level: API level (SOL_SOCKET, ...) 3752 * @optname: option tag 3753 * @optval: option value 3754 * @optlen: option length 3755 * 3756 * Returns 0 or an error. 3757 */ 3758 3759 int kernel_setsockopt(struct socket *sock, int level, int optname, 3760 char *optval, unsigned int optlen) 3761 { 3762 mm_segment_t oldfs = get_fs(); 3763 char __user *uoptval; 3764 int err; 3765 3766 uoptval = (char __user __force *) optval; 3767 3768 set_fs(KERNEL_DS); 3769 if (level == SOL_SOCKET) 3770 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3771 else 3772 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3773 optlen); 3774 set_fs(oldfs); 3775 return err; 3776 } 3777 EXPORT_SYMBOL(kernel_setsockopt); 3778 3779 /** 3780 * kernel_sendpage - send a &page through a socket (kernel space) 3781 * @sock: socket 3782 * @page: page 3783 * @offset: page offset 3784 * @size: total size in bytes 3785 * @flags: flags (MSG_DONTWAIT, ...) 3786 * 3787 * Returns the total amount sent in bytes or an error. 3788 */ 3789 3790 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3791 size_t size, int flags) 3792 { 3793 if (sock->ops->sendpage) 3794 return sock->ops->sendpage(sock, page, offset, size, flags); 3795 3796 return sock_no_sendpage(sock, page, offset, size, flags); 3797 } 3798 EXPORT_SYMBOL(kernel_sendpage); 3799 3800 /** 3801 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3802 * @sk: sock 3803 * @page: page 3804 * @offset: page offset 3805 * @size: total size in bytes 3806 * @flags: flags (MSG_DONTWAIT, ...) 3807 * 3808 * Returns the total amount sent in bytes or an error. 3809 * Caller must hold @sk. 3810 */ 3811 3812 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3813 size_t size, int flags) 3814 { 3815 struct socket *sock = sk->sk_socket; 3816 3817 if (sock->ops->sendpage_locked) 3818 return sock->ops->sendpage_locked(sk, page, offset, size, 3819 flags); 3820 3821 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3822 } 3823 EXPORT_SYMBOL(kernel_sendpage_locked); 3824 3825 /** 3826 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3827 * @sock: socket 3828 * @how: connection part 3829 * 3830 * Returns 0 or an error. 3831 */ 3832 3833 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3834 { 3835 return sock->ops->shutdown(sock, how); 3836 } 3837 EXPORT_SYMBOL(kernel_sock_shutdown); 3838 3839 /** 3840 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3841 * @sk: socket 3842 * 3843 * This routine returns the IP overhead imposed by a socket i.e. 3844 * the length of the underlying IP header, depending on whether 3845 * this is an IPv4 or IPv6 socket and the length from IP options turned 3846 * on at the socket. Assumes that the caller has a lock on the socket. 3847 */ 3848 3849 u32 kernel_sock_ip_overhead(struct sock *sk) 3850 { 3851 struct inet_sock *inet; 3852 struct ip_options_rcu *opt; 3853 u32 overhead = 0; 3854 #if IS_ENABLED(CONFIG_IPV6) 3855 struct ipv6_pinfo *np; 3856 struct ipv6_txoptions *optv6 = NULL; 3857 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3858 3859 if (!sk) 3860 return overhead; 3861 3862 switch (sk->sk_family) { 3863 case AF_INET: 3864 inet = inet_sk(sk); 3865 overhead += sizeof(struct iphdr); 3866 opt = rcu_dereference_protected(inet->inet_opt, 3867 sock_owned_by_user(sk)); 3868 if (opt) 3869 overhead += opt->opt.optlen; 3870 return overhead; 3871 #if IS_ENABLED(CONFIG_IPV6) 3872 case AF_INET6: 3873 np = inet6_sk(sk); 3874 overhead += sizeof(struct ipv6hdr); 3875 if (np) 3876 optv6 = rcu_dereference_protected(np->opt, 3877 sock_owned_by_user(sk)); 3878 if (optv6) 3879 overhead += (optv6->opt_flen + optv6->opt_nflen); 3880 return overhead; 3881 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3882 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3883 return overhead; 3884 } 3885 } 3886 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3887