1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/net.h> 61 #include <linux/interrupt.h> 62 #include <linux/thread_info.h> 63 #include <linux/rcupdate.h> 64 #include <linux/netdevice.h> 65 #include <linux/proc_fs.h> 66 #include <linux/seq_file.h> 67 #include <linux/mutex.h> 68 #include <linux/if_bridge.h> 69 #include <linux/if_vlan.h> 70 #include <linux/ptp_classify.h> 71 #include <linux/init.h> 72 #include <linux/poll.h> 73 #include <linux/cache.h> 74 #include <linux/module.h> 75 #include <linux/highmem.h> 76 #include <linux/mount.h> 77 #include <linux/pseudo_fs.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/compat.h> 81 #include <linux/kmod.h> 82 #include <linux/audit.h> 83 #include <linux/wireless.h> 84 #include <linux/nsproxy.h> 85 #include <linux/magic.h> 86 #include <linux/slab.h> 87 #include <linux/xattr.h> 88 #include <linux/nospec.h> 89 #include <linux/indirect_call_wrapper.h> 90 91 #include <linux/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 #include <net/cls_cgroup.h> 97 98 #include <net/sock.h> 99 #include <linux/netfilter.h> 100 101 #include <linux/if_tun.h> 102 #include <linux/ipv6_route.h> 103 #include <linux/route.h> 104 #include <linux/termios.h> 105 #include <linux/sockios.h> 106 #include <net/busy_poll.h> 107 #include <linux/errqueue.h> 108 #include <linux/ptp_clock_kernel.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 #ifdef CONFIG_PROC_FS 135 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 136 { 137 struct socket *sock = f->private_data; 138 139 if (sock->ops->show_fdinfo) 140 sock->ops->show_fdinfo(m, sock); 141 } 142 #else 143 #define sock_show_fdinfo NULL 144 #endif 145 146 /* 147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 148 * in the operation structures but are done directly via the socketcall() multiplexor. 149 */ 150 151 static const struct file_operations socket_file_ops = { 152 .owner = THIS_MODULE, 153 .llseek = no_llseek, 154 .read_iter = sock_read_iter, 155 .write_iter = sock_write_iter, 156 .poll = sock_poll, 157 .unlocked_ioctl = sock_ioctl, 158 #ifdef CONFIG_COMPAT 159 .compat_ioctl = compat_sock_ioctl, 160 #endif 161 .mmap = sock_mmap, 162 .release = sock_close, 163 .fasync = sock_fasync, 164 .sendpage = sock_sendpage, 165 .splice_write = generic_splice_sendpage, 166 .splice_read = sock_splice_read, 167 .show_fdinfo = sock_show_fdinfo, 168 }; 169 170 static const char * const pf_family_names[] = { 171 [PF_UNSPEC] = "PF_UNSPEC", 172 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 173 [PF_INET] = "PF_INET", 174 [PF_AX25] = "PF_AX25", 175 [PF_IPX] = "PF_IPX", 176 [PF_APPLETALK] = "PF_APPLETALK", 177 [PF_NETROM] = "PF_NETROM", 178 [PF_BRIDGE] = "PF_BRIDGE", 179 [PF_ATMPVC] = "PF_ATMPVC", 180 [PF_X25] = "PF_X25", 181 [PF_INET6] = "PF_INET6", 182 [PF_ROSE] = "PF_ROSE", 183 [PF_DECnet] = "PF_DECnet", 184 [PF_NETBEUI] = "PF_NETBEUI", 185 [PF_SECURITY] = "PF_SECURITY", 186 [PF_KEY] = "PF_KEY", 187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 188 [PF_PACKET] = "PF_PACKET", 189 [PF_ASH] = "PF_ASH", 190 [PF_ECONET] = "PF_ECONET", 191 [PF_ATMSVC] = "PF_ATMSVC", 192 [PF_RDS] = "PF_RDS", 193 [PF_SNA] = "PF_SNA", 194 [PF_IRDA] = "PF_IRDA", 195 [PF_PPPOX] = "PF_PPPOX", 196 [PF_WANPIPE] = "PF_WANPIPE", 197 [PF_LLC] = "PF_LLC", 198 [PF_IB] = "PF_IB", 199 [PF_MPLS] = "PF_MPLS", 200 [PF_CAN] = "PF_CAN", 201 [PF_TIPC] = "PF_TIPC", 202 [PF_BLUETOOTH] = "PF_BLUETOOTH", 203 [PF_IUCV] = "PF_IUCV", 204 [PF_RXRPC] = "PF_RXRPC", 205 [PF_ISDN] = "PF_ISDN", 206 [PF_PHONET] = "PF_PHONET", 207 [PF_IEEE802154] = "PF_IEEE802154", 208 [PF_CAIF] = "PF_CAIF", 209 [PF_ALG] = "PF_ALG", 210 [PF_NFC] = "PF_NFC", 211 [PF_VSOCK] = "PF_VSOCK", 212 [PF_KCM] = "PF_KCM", 213 [PF_QIPCRTR] = "PF_QIPCRTR", 214 [PF_SMC] = "PF_SMC", 215 [PF_XDP] = "PF_XDP", 216 [PF_MCTP] = "PF_MCTP", 217 }; 218 219 /* 220 * The protocol list. Each protocol is registered in here. 221 */ 222 223 static DEFINE_SPINLOCK(net_family_lock); 224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 225 226 /* 227 * Support routines. 228 * Move socket addresses back and forth across the kernel/user 229 * divide and look after the messy bits. 230 */ 231 232 /** 233 * move_addr_to_kernel - copy a socket address into kernel space 234 * @uaddr: Address in user space 235 * @kaddr: Address in kernel space 236 * @ulen: Length in user space 237 * 238 * The address is copied into kernel space. If the provided address is 239 * too long an error code of -EINVAL is returned. If the copy gives 240 * invalid addresses -EFAULT is returned. On a success 0 is returned. 241 */ 242 243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 244 { 245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 246 return -EINVAL; 247 if (ulen == 0) 248 return 0; 249 if (copy_from_user(kaddr, uaddr, ulen)) 250 return -EFAULT; 251 return audit_sockaddr(ulen, kaddr); 252 } 253 254 /** 255 * move_addr_to_user - copy an address to user space 256 * @kaddr: kernel space address 257 * @klen: length of address in kernel 258 * @uaddr: user space address 259 * @ulen: pointer to user length field 260 * 261 * The value pointed to by ulen on entry is the buffer length available. 262 * This is overwritten with the buffer space used. -EINVAL is returned 263 * if an overlong buffer is specified or a negative buffer size. -EFAULT 264 * is returned if either the buffer or the length field are not 265 * accessible. 266 * After copying the data up to the limit the user specifies, the true 267 * length of the data is written over the length limit the user 268 * specified. Zero is returned for a success. 269 */ 270 271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 272 void __user *uaddr, int __user *ulen) 273 { 274 int err; 275 int len; 276 277 BUG_ON(klen > sizeof(struct sockaddr_storage)); 278 err = get_user(len, ulen); 279 if (err) 280 return err; 281 if (len > klen) 282 len = klen; 283 if (len < 0) 284 return -EINVAL; 285 if (len) { 286 if (audit_sockaddr(klen, kaddr)) 287 return -ENOMEM; 288 if (copy_to_user(uaddr, kaddr, len)) 289 return -EFAULT; 290 } 291 /* 292 * "fromlen shall refer to the value before truncation.." 293 * 1003.1g 294 */ 295 return __put_user(klen, ulen); 296 } 297 298 static struct kmem_cache *sock_inode_cachep __ro_after_init; 299 300 static struct inode *sock_alloc_inode(struct super_block *sb) 301 { 302 struct socket_alloc *ei; 303 304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 305 if (!ei) 306 return NULL; 307 init_waitqueue_head(&ei->socket.wq.wait); 308 ei->socket.wq.fasync_list = NULL; 309 ei->socket.wq.flags = 0; 310 311 ei->socket.state = SS_UNCONNECTED; 312 ei->socket.flags = 0; 313 ei->socket.ops = NULL; 314 ei->socket.sk = NULL; 315 ei->socket.file = NULL; 316 317 return &ei->vfs_inode; 318 } 319 320 static void sock_free_inode(struct inode *inode) 321 { 322 struct socket_alloc *ei; 323 324 ei = container_of(inode, struct socket_alloc, vfs_inode); 325 kmem_cache_free(sock_inode_cachep, ei); 326 } 327 328 static void init_once(void *foo) 329 { 330 struct socket_alloc *ei = (struct socket_alloc *)foo; 331 332 inode_init_once(&ei->vfs_inode); 333 } 334 335 static void init_inodecache(void) 336 { 337 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 338 sizeof(struct socket_alloc), 339 0, 340 (SLAB_HWCACHE_ALIGN | 341 SLAB_RECLAIM_ACCOUNT | 342 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 343 init_once); 344 BUG_ON(sock_inode_cachep == NULL); 345 } 346 347 static const struct super_operations sockfs_ops = { 348 .alloc_inode = sock_alloc_inode, 349 .free_inode = sock_free_inode, 350 .statfs = simple_statfs, 351 }; 352 353 /* 354 * sockfs_dname() is called from d_path(). 355 */ 356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 357 { 358 return dynamic_dname(buffer, buflen, "socket:[%lu]", 359 d_inode(dentry)->i_ino); 360 } 361 362 static const struct dentry_operations sockfs_dentry_operations = { 363 .d_dname = sockfs_dname, 364 }; 365 366 static int sockfs_xattr_get(const struct xattr_handler *handler, 367 struct dentry *dentry, struct inode *inode, 368 const char *suffix, void *value, size_t size) 369 { 370 if (value) { 371 if (dentry->d_name.len + 1 > size) 372 return -ERANGE; 373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 374 } 375 return dentry->d_name.len + 1; 376 } 377 378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 381 382 static const struct xattr_handler sockfs_xattr_handler = { 383 .name = XATTR_NAME_SOCKPROTONAME, 384 .get = sockfs_xattr_get, 385 }; 386 387 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 388 struct user_namespace *mnt_userns, 389 struct dentry *dentry, struct inode *inode, 390 const char *suffix, const void *value, 391 size_t size, int flags) 392 { 393 /* Handled by LSM. */ 394 return -EAGAIN; 395 } 396 397 static const struct xattr_handler sockfs_security_xattr_handler = { 398 .prefix = XATTR_SECURITY_PREFIX, 399 .set = sockfs_security_xattr_set, 400 }; 401 402 static const struct xattr_handler *sockfs_xattr_handlers[] = { 403 &sockfs_xattr_handler, 404 &sockfs_security_xattr_handler, 405 NULL 406 }; 407 408 static int sockfs_init_fs_context(struct fs_context *fc) 409 { 410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 411 if (!ctx) 412 return -ENOMEM; 413 ctx->ops = &sockfs_ops; 414 ctx->dops = &sockfs_dentry_operations; 415 ctx->xattr = sockfs_xattr_handlers; 416 return 0; 417 } 418 419 static struct vfsmount *sock_mnt __read_mostly; 420 421 static struct file_system_type sock_fs_type = { 422 .name = "sockfs", 423 .init_fs_context = sockfs_init_fs_context, 424 .kill_sb = kill_anon_super, 425 }; 426 427 /* 428 * Obtains the first available file descriptor and sets it up for use. 429 * 430 * These functions create file structures and maps them to fd space 431 * of the current process. On success it returns file descriptor 432 * and file struct implicitly stored in sock->file. 433 * Note that another thread may close file descriptor before we return 434 * from this function. We use the fact that now we do not refer 435 * to socket after mapping. If one day we will need it, this 436 * function will increment ref. count on file by 1. 437 * 438 * In any case returned fd MAY BE not valid! 439 * This race condition is unavoidable 440 * with shared fd spaces, we cannot solve it inside kernel, 441 * but we take care of internal coherence yet. 442 */ 443 444 /** 445 * sock_alloc_file - Bind a &socket to a &file 446 * @sock: socket 447 * @flags: file status flags 448 * @dname: protocol name 449 * 450 * Returns the &file bound with @sock, implicitly storing it 451 * in sock->file. If dname is %NULL, sets to "". 452 * On failure the return is a ERR pointer (see linux/err.h). 453 * This function uses GFP_KERNEL internally. 454 */ 455 456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 457 { 458 struct file *file; 459 460 if (!dname) 461 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 462 463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 464 O_RDWR | (flags & O_NONBLOCK), 465 &socket_file_ops); 466 if (IS_ERR(file)) { 467 sock_release(sock); 468 return file; 469 } 470 471 sock->file = file; 472 file->private_data = sock; 473 stream_open(SOCK_INODE(sock), file); 474 return file; 475 } 476 EXPORT_SYMBOL(sock_alloc_file); 477 478 static int sock_map_fd(struct socket *sock, int flags) 479 { 480 struct file *newfile; 481 int fd = get_unused_fd_flags(flags); 482 if (unlikely(fd < 0)) { 483 sock_release(sock); 484 return fd; 485 } 486 487 newfile = sock_alloc_file(sock, flags, NULL); 488 if (!IS_ERR(newfile)) { 489 fd_install(fd, newfile); 490 return fd; 491 } 492 493 put_unused_fd(fd); 494 return PTR_ERR(newfile); 495 } 496 497 /** 498 * sock_from_file - Return the &socket bounded to @file. 499 * @file: file 500 * 501 * On failure returns %NULL. 502 */ 503 504 struct socket *sock_from_file(struct file *file) 505 { 506 if (file->f_op == &socket_file_ops) 507 return file->private_data; /* set in sock_alloc_file */ 508 509 return NULL; 510 } 511 EXPORT_SYMBOL(sock_from_file); 512 513 /** 514 * sockfd_lookup - Go from a file number to its socket slot 515 * @fd: file handle 516 * @err: pointer to an error code return 517 * 518 * The file handle passed in is locked and the socket it is bound 519 * to is returned. If an error occurs the err pointer is overwritten 520 * with a negative errno code and NULL is returned. The function checks 521 * for both invalid handles and passing a handle which is not a socket. 522 * 523 * On a success the socket object pointer is returned. 524 */ 525 526 struct socket *sockfd_lookup(int fd, int *err) 527 { 528 struct file *file; 529 struct socket *sock; 530 531 file = fget(fd); 532 if (!file) { 533 *err = -EBADF; 534 return NULL; 535 } 536 537 sock = sock_from_file(file); 538 if (!sock) { 539 *err = -ENOTSOCK; 540 fput(file); 541 } 542 return sock; 543 } 544 EXPORT_SYMBOL(sockfd_lookup); 545 546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 547 { 548 struct fd f = fdget(fd); 549 struct socket *sock; 550 551 *err = -EBADF; 552 if (f.file) { 553 sock = sock_from_file(f.file); 554 if (likely(sock)) { 555 *fput_needed = f.flags & FDPUT_FPUT; 556 return sock; 557 } 558 *err = -ENOTSOCK; 559 fdput(f); 560 } 561 return NULL; 562 } 563 564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 565 size_t size) 566 { 567 ssize_t len; 568 ssize_t used = 0; 569 570 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 571 if (len < 0) 572 return len; 573 used += len; 574 if (buffer) { 575 if (size < used) 576 return -ERANGE; 577 buffer += len; 578 } 579 580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 581 used += len; 582 if (buffer) { 583 if (size < used) 584 return -ERANGE; 585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 586 buffer += len; 587 } 588 589 return used; 590 } 591 592 static int sockfs_setattr(struct user_namespace *mnt_userns, 593 struct dentry *dentry, struct iattr *iattr) 594 { 595 int err = simple_setattr(&init_user_ns, dentry, iattr); 596 597 if (!err && (iattr->ia_valid & ATTR_UID)) { 598 struct socket *sock = SOCKET_I(d_inode(dentry)); 599 600 if (sock->sk) 601 sock->sk->sk_uid = iattr->ia_uid; 602 else 603 err = -ENOENT; 604 } 605 606 return err; 607 } 608 609 static const struct inode_operations sockfs_inode_ops = { 610 .listxattr = sockfs_listxattr, 611 .setattr = sockfs_setattr, 612 }; 613 614 /** 615 * sock_alloc - allocate a socket 616 * 617 * Allocate a new inode and socket object. The two are bound together 618 * and initialised. The socket is then returned. If we are out of inodes 619 * NULL is returned. This functions uses GFP_KERNEL internally. 620 */ 621 622 struct socket *sock_alloc(void) 623 { 624 struct inode *inode; 625 struct socket *sock; 626 627 inode = new_inode_pseudo(sock_mnt->mnt_sb); 628 if (!inode) 629 return NULL; 630 631 sock = SOCKET_I(inode); 632 633 inode->i_ino = get_next_ino(); 634 inode->i_mode = S_IFSOCK | S_IRWXUGO; 635 inode->i_uid = current_fsuid(); 636 inode->i_gid = current_fsgid(); 637 inode->i_op = &sockfs_inode_ops; 638 639 return sock; 640 } 641 EXPORT_SYMBOL(sock_alloc); 642 643 static void __sock_release(struct socket *sock, struct inode *inode) 644 { 645 if (sock->ops) { 646 struct module *owner = sock->ops->owner; 647 648 if (inode) 649 inode_lock(inode); 650 sock->ops->release(sock); 651 sock->sk = NULL; 652 if (inode) 653 inode_unlock(inode); 654 sock->ops = NULL; 655 module_put(owner); 656 } 657 658 if (sock->wq.fasync_list) 659 pr_err("%s: fasync list not empty!\n", __func__); 660 661 if (!sock->file) { 662 iput(SOCK_INODE(sock)); 663 return; 664 } 665 sock->file = NULL; 666 } 667 668 /** 669 * sock_release - close a socket 670 * @sock: socket to close 671 * 672 * The socket is released from the protocol stack if it has a release 673 * callback, and the inode is then released if the socket is bound to 674 * an inode not a file. 675 */ 676 void sock_release(struct socket *sock) 677 { 678 __sock_release(sock, NULL); 679 } 680 EXPORT_SYMBOL(sock_release); 681 682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 683 { 684 u8 flags = *tx_flags; 685 686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 687 flags |= SKBTX_HW_TSTAMP; 688 689 /* PTP hardware clocks can provide a free running cycle counter 690 * as a time base for virtual clocks. Tell driver to use the 691 * free running cycle counter for timestamp if socket is bound 692 * to virtual clock. 693 */ 694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 696 } 697 698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 699 flags |= SKBTX_SW_TSTAMP; 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 702 flags |= SKBTX_SCHED_TSTAMP; 703 704 *tx_flags = flags; 705 } 706 EXPORT_SYMBOL(__sock_tx_timestamp); 707 708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 709 size_t)); 710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 711 size_t)); 712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 713 { 714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 715 inet_sendmsg, sock, msg, 716 msg_data_left(msg)); 717 BUG_ON(ret == -EIOCBQUEUED); 718 return ret; 719 } 720 721 /** 722 * sock_sendmsg - send a message through @sock 723 * @sock: socket 724 * @msg: message to send 725 * 726 * Sends @msg through @sock, passing through LSM. 727 * Returns the number of bytes sent, or an error code. 728 */ 729 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 730 { 731 int err = security_socket_sendmsg(sock, msg, 732 msg_data_left(msg)); 733 734 return err ?: sock_sendmsg_nosec(sock, msg); 735 } 736 EXPORT_SYMBOL(sock_sendmsg); 737 738 /** 739 * kernel_sendmsg - send a message through @sock (kernel-space) 740 * @sock: socket 741 * @msg: message header 742 * @vec: kernel vec 743 * @num: vec array length 744 * @size: total message data size 745 * 746 * Builds the message data with @vec and sends it through @sock. 747 * Returns the number of bytes sent, or an error code. 748 */ 749 750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 751 struct kvec *vec, size_t num, size_t size) 752 { 753 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 754 return sock_sendmsg(sock, msg); 755 } 756 EXPORT_SYMBOL(kernel_sendmsg); 757 758 /** 759 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 760 * @sk: sock 761 * @msg: message header 762 * @vec: output s/g array 763 * @num: output s/g array length 764 * @size: total message data size 765 * 766 * Builds the message data with @vec and sends it through @sock. 767 * Returns the number of bytes sent, or an error code. 768 * Caller must hold @sk. 769 */ 770 771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 772 struct kvec *vec, size_t num, size_t size) 773 { 774 struct socket *sock = sk->sk_socket; 775 776 if (!sock->ops->sendmsg_locked) 777 return sock_no_sendmsg_locked(sk, msg, size); 778 779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 780 781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 782 } 783 EXPORT_SYMBOL(kernel_sendmsg_locked); 784 785 static bool skb_is_err_queue(const struct sk_buff *skb) 786 { 787 /* pkt_type of skbs enqueued on the error queue are set to 788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 789 * in recvmsg, since skbs received on a local socket will never 790 * have a pkt_type of PACKET_OUTGOING. 791 */ 792 return skb->pkt_type == PACKET_OUTGOING; 793 } 794 795 /* On transmit, software and hardware timestamps are returned independently. 796 * As the two skb clones share the hardware timestamp, which may be updated 797 * before the software timestamp is received, a hardware TX timestamp may be 798 * returned only if there is no software TX timestamp. Ignore false software 799 * timestamps, which may be made in the __sock_recv_timestamp() call when the 800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 801 * hardware timestamp. 802 */ 803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 804 { 805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 806 } 807 808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 809 { 810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 812 struct net_device *orig_dev; 813 ktime_t hwtstamp; 814 815 rcu_read_lock(); 816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 817 if (orig_dev) { 818 *if_index = orig_dev->ifindex; 819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 820 } else { 821 hwtstamp = shhwtstamps->hwtstamp; 822 } 823 rcu_read_unlock(); 824 825 return hwtstamp; 826 } 827 828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 829 int if_index) 830 { 831 struct scm_ts_pktinfo ts_pktinfo; 832 struct net_device *orig_dev; 833 834 if (!skb_mac_header_was_set(skb)) 835 return; 836 837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 838 839 if (!if_index) { 840 rcu_read_lock(); 841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 842 if (orig_dev) 843 if_index = orig_dev->ifindex; 844 rcu_read_unlock(); 845 } 846 ts_pktinfo.if_index = if_index; 847 848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 850 sizeof(ts_pktinfo), &ts_pktinfo); 851 } 852 853 /* 854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 855 */ 856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 857 struct sk_buff *skb) 858 { 859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 861 struct scm_timestamping_internal tss; 862 863 int empty = 1, false_tstamp = 0; 864 struct skb_shared_hwtstamps *shhwtstamps = 865 skb_hwtstamps(skb); 866 int if_index; 867 ktime_t hwtstamp; 868 869 /* Race occurred between timestamp enabling and packet 870 receiving. Fill in the current time for now. */ 871 if (need_software_tstamp && skb->tstamp == 0) { 872 __net_timestamp(skb); 873 false_tstamp = 1; 874 } 875 876 if (need_software_tstamp) { 877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 878 if (new_tstamp) { 879 struct __kernel_sock_timeval tv; 880 881 skb_get_new_timestamp(skb, &tv); 882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 883 sizeof(tv), &tv); 884 } else { 885 struct __kernel_old_timeval tv; 886 887 skb_get_timestamp(skb, &tv); 888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 889 sizeof(tv), &tv); 890 } 891 } else { 892 if (new_tstamp) { 893 struct __kernel_timespec ts; 894 895 skb_get_new_timestampns(skb, &ts); 896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 897 sizeof(ts), &ts); 898 } else { 899 struct __kernel_old_timespec ts; 900 901 skb_get_timestampns(skb, &ts); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 903 sizeof(ts), &ts); 904 } 905 } 906 } 907 908 memset(&tss, 0, sizeof(tss)); 909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 911 empty = 0; 912 if (shhwtstamps && 913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 914 !skb_is_swtx_tstamp(skb, false_tstamp)) { 915 if_index = 0; 916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 917 hwtstamp = get_timestamp(sk, skb, &if_index); 918 else 919 hwtstamp = shhwtstamps->hwtstamp; 920 921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 922 hwtstamp = ptp_convert_timestamp(&hwtstamp, 923 sk->sk_bind_phc); 924 925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 926 empty = 0; 927 928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 929 !skb_is_err_queue(skb)) 930 put_ts_pktinfo(msg, skb, if_index); 931 } 932 } 933 if (!empty) { 934 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 935 put_cmsg_scm_timestamping64(msg, &tss); 936 else 937 put_cmsg_scm_timestamping(msg, &tss); 938 939 if (skb_is_err_queue(skb) && skb->len && 940 SKB_EXT_ERR(skb)->opt_stats) 941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 942 skb->len, skb->data); 943 } 944 } 945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 946 947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 948 struct sk_buff *skb) 949 { 950 int ack; 951 952 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 953 return; 954 if (!skb->wifi_acked_valid) 955 return; 956 957 ack = skb->wifi_acked; 958 959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 960 } 961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 962 963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 964 struct sk_buff *skb) 965 { 966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 969 } 970 971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 972 struct sk_buff *skb) 973 { 974 if (sock_flag(sk, SOCK_RCVMARK) && skb) 975 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), 976 &skb->mark); 977 } 978 979 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 980 struct sk_buff *skb) 981 { 982 sock_recv_timestamp(msg, sk, skb); 983 sock_recv_drops(msg, sk, skb); 984 sock_recv_mark(msg, sk, skb); 985 } 986 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 987 988 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 989 size_t, int)); 990 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 991 size_t, int)); 992 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 993 int flags) 994 { 995 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 996 inet_recvmsg, sock, msg, msg_data_left(msg), 997 flags); 998 } 999 1000 /** 1001 * sock_recvmsg - receive a message from @sock 1002 * @sock: socket 1003 * @msg: message to receive 1004 * @flags: message flags 1005 * 1006 * Receives @msg from @sock, passing through LSM. Returns the total number 1007 * of bytes received, or an error. 1008 */ 1009 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1010 { 1011 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1012 1013 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1014 } 1015 EXPORT_SYMBOL(sock_recvmsg); 1016 1017 /** 1018 * kernel_recvmsg - Receive a message from a socket (kernel space) 1019 * @sock: The socket to receive the message from 1020 * @msg: Received message 1021 * @vec: Input s/g array for message data 1022 * @num: Size of input s/g array 1023 * @size: Number of bytes to read 1024 * @flags: Message flags (MSG_DONTWAIT, etc...) 1025 * 1026 * On return the msg structure contains the scatter/gather array passed in the 1027 * vec argument. The array is modified so that it consists of the unfilled 1028 * portion of the original array. 1029 * 1030 * The returned value is the total number of bytes received, or an error. 1031 */ 1032 1033 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1034 struct kvec *vec, size_t num, size_t size, int flags) 1035 { 1036 msg->msg_control_is_user = false; 1037 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1038 return sock_recvmsg(sock, msg, flags); 1039 } 1040 EXPORT_SYMBOL(kernel_recvmsg); 1041 1042 static ssize_t sock_sendpage(struct file *file, struct page *page, 1043 int offset, size_t size, loff_t *ppos, int more) 1044 { 1045 struct socket *sock; 1046 int flags; 1047 1048 sock = file->private_data; 1049 1050 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1051 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1052 flags |= more; 1053 1054 return kernel_sendpage(sock, page, offset, size, flags); 1055 } 1056 1057 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1058 struct pipe_inode_info *pipe, size_t len, 1059 unsigned int flags) 1060 { 1061 struct socket *sock = file->private_data; 1062 1063 if (unlikely(!sock->ops->splice_read)) 1064 return generic_file_splice_read(file, ppos, pipe, len, flags); 1065 1066 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1067 } 1068 1069 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1070 { 1071 struct file *file = iocb->ki_filp; 1072 struct socket *sock = file->private_data; 1073 struct msghdr msg = {.msg_iter = *to, 1074 .msg_iocb = iocb}; 1075 ssize_t res; 1076 1077 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1078 msg.msg_flags = MSG_DONTWAIT; 1079 1080 if (iocb->ki_pos != 0) 1081 return -ESPIPE; 1082 1083 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1084 return 0; 1085 1086 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1087 *to = msg.msg_iter; 1088 return res; 1089 } 1090 1091 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1092 { 1093 struct file *file = iocb->ki_filp; 1094 struct socket *sock = file->private_data; 1095 struct msghdr msg = {.msg_iter = *from, 1096 .msg_iocb = iocb}; 1097 ssize_t res; 1098 1099 if (iocb->ki_pos != 0) 1100 return -ESPIPE; 1101 1102 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1103 msg.msg_flags = MSG_DONTWAIT; 1104 1105 if (sock->type == SOCK_SEQPACKET) 1106 msg.msg_flags |= MSG_EOR; 1107 1108 res = sock_sendmsg(sock, &msg); 1109 *from = msg.msg_iter; 1110 return res; 1111 } 1112 1113 /* 1114 * Atomic setting of ioctl hooks to avoid race 1115 * with module unload. 1116 */ 1117 1118 static DEFINE_MUTEX(br_ioctl_mutex); 1119 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1120 unsigned int cmd, struct ifreq *ifr, 1121 void __user *uarg); 1122 1123 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1124 unsigned int cmd, struct ifreq *ifr, 1125 void __user *uarg)) 1126 { 1127 mutex_lock(&br_ioctl_mutex); 1128 br_ioctl_hook = hook; 1129 mutex_unlock(&br_ioctl_mutex); 1130 } 1131 EXPORT_SYMBOL(brioctl_set); 1132 1133 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1134 struct ifreq *ifr, void __user *uarg) 1135 { 1136 int err = -ENOPKG; 1137 1138 if (!br_ioctl_hook) 1139 request_module("bridge"); 1140 1141 mutex_lock(&br_ioctl_mutex); 1142 if (br_ioctl_hook) 1143 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1144 mutex_unlock(&br_ioctl_mutex); 1145 1146 return err; 1147 } 1148 1149 static DEFINE_MUTEX(vlan_ioctl_mutex); 1150 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1151 1152 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1153 { 1154 mutex_lock(&vlan_ioctl_mutex); 1155 vlan_ioctl_hook = hook; 1156 mutex_unlock(&vlan_ioctl_mutex); 1157 } 1158 EXPORT_SYMBOL(vlan_ioctl_set); 1159 1160 static long sock_do_ioctl(struct net *net, struct socket *sock, 1161 unsigned int cmd, unsigned long arg) 1162 { 1163 struct ifreq ifr; 1164 bool need_copyout; 1165 int err; 1166 void __user *argp = (void __user *)arg; 1167 void __user *data; 1168 1169 err = sock->ops->ioctl(sock, cmd, arg); 1170 1171 /* 1172 * If this ioctl is unknown try to hand it down 1173 * to the NIC driver. 1174 */ 1175 if (err != -ENOIOCTLCMD) 1176 return err; 1177 1178 if (!is_socket_ioctl_cmd(cmd)) 1179 return -ENOTTY; 1180 1181 if (get_user_ifreq(&ifr, &data, argp)) 1182 return -EFAULT; 1183 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1184 if (!err && need_copyout) 1185 if (put_user_ifreq(&ifr, argp)) 1186 return -EFAULT; 1187 1188 return err; 1189 } 1190 1191 /* 1192 * With an ioctl, arg may well be a user mode pointer, but we don't know 1193 * what to do with it - that's up to the protocol still. 1194 */ 1195 1196 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1197 { 1198 struct socket *sock; 1199 struct sock *sk; 1200 void __user *argp = (void __user *)arg; 1201 int pid, err; 1202 struct net *net; 1203 1204 sock = file->private_data; 1205 sk = sock->sk; 1206 net = sock_net(sk); 1207 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1208 struct ifreq ifr; 1209 void __user *data; 1210 bool need_copyout; 1211 if (get_user_ifreq(&ifr, &data, argp)) 1212 return -EFAULT; 1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1214 if (!err && need_copyout) 1215 if (put_user_ifreq(&ifr, argp)) 1216 return -EFAULT; 1217 } else 1218 #ifdef CONFIG_WEXT_CORE 1219 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1220 err = wext_handle_ioctl(net, cmd, argp); 1221 } else 1222 #endif 1223 switch (cmd) { 1224 case FIOSETOWN: 1225 case SIOCSPGRP: 1226 err = -EFAULT; 1227 if (get_user(pid, (int __user *)argp)) 1228 break; 1229 err = f_setown(sock->file, pid, 1); 1230 break; 1231 case FIOGETOWN: 1232 case SIOCGPGRP: 1233 err = put_user(f_getown(sock->file), 1234 (int __user *)argp); 1235 break; 1236 case SIOCGIFBR: 1237 case SIOCSIFBR: 1238 case SIOCBRADDBR: 1239 case SIOCBRDELBR: 1240 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1241 break; 1242 case SIOCGIFVLAN: 1243 case SIOCSIFVLAN: 1244 err = -ENOPKG; 1245 if (!vlan_ioctl_hook) 1246 request_module("8021q"); 1247 1248 mutex_lock(&vlan_ioctl_mutex); 1249 if (vlan_ioctl_hook) 1250 err = vlan_ioctl_hook(net, argp); 1251 mutex_unlock(&vlan_ioctl_mutex); 1252 break; 1253 case SIOCGSKNS: 1254 err = -EPERM; 1255 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1256 break; 1257 1258 err = open_related_ns(&net->ns, get_net_ns); 1259 break; 1260 case SIOCGSTAMP_OLD: 1261 case SIOCGSTAMPNS_OLD: 1262 if (!sock->ops->gettstamp) { 1263 err = -ENOIOCTLCMD; 1264 break; 1265 } 1266 err = sock->ops->gettstamp(sock, argp, 1267 cmd == SIOCGSTAMP_OLD, 1268 !IS_ENABLED(CONFIG_64BIT)); 1269 break; 1270 case SIOCGSTAMP_NEW: 1271 case SIOCGSTAMPNS_NEW: 1272 if (!sock->ops->gettstamp) { 1273 err = -ENOIOCTLCMD; 1274 break; 1275 } 1276 err = sock->ops->gettstamp(sock, argp, 1277 cmd == SIOCGSTAMP_NEW, 1278 false); 1279 break; 1280 1281 case SIOCGIFCONF: 1282 err = dev_ifconf(net, argp); 1283 break; 1284 1285 default: 1286 err = sock_do_ioctl(net, sock, cmd, arg); 1287 break; 1288 } 1289 return err; 1290 } 1291 1292 /** 1293 * sock_create_lite - creates a socket 1294 * @family: protocol family (AF_INET, ...) 1295 * @type: communication type (SOCK_STREAM, ...) 1296 * @protocol: protocol (0, ...) 1297 * @res: new socket 1298 * 1299 * Creates a new socket and assigns it to @res, passing through LSM. 1300 * The new socket initialization is not complete, see kernel_accept(). 1301 * Returns 0 or an error. On failure @res is set to %NULL. 1302 * This function internally uses GFP_KERNEL. 1303 */ 1304 1305 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1306 { 1307 int err; 1308 struct socket *sock = NULL; 1309 1310 err = security_socket_create(family, type, protocol, 1); 1311 if (err) 1312 goto out; 1313 1314 sock = sock_alloc(); 1315 if (!sock) { 1316 err = -ENOMEM; 1317 goto out; 1318 } 1319 1320 sock->type = type; 1321 err = security_socket_post_create(sock, family, type, protocol, 1); 1322 if (err) 1323 goto out_release; 1324 1325 out: 1326 *res = sock; 1327 return err; 1328 out_release: 1329 sock_release(sock); 1330 sock = NULL; 1331 goto out; 1332 } 1333 EXPORT_SYMBOL(sock_create_lite); 1334 1335 /* No kernel lock held - perfect */ 1336 static __poll_t sock_poll(struct file *file, poll_table *wait) 1337 { 1338 struct socket *sock = file->private_data; 1339 __poll_t events = poll_requested_events(wait), flag = 0; 1340 1341 if (!sock->ops->poll) 1342 return 0; 1343 1344 if (sk_can_busy_loop(sock->sk)) { 1345 /* poll once if requested by the syscall */ 1346 if (events & POLL_BUSY_LOOP) 1347 sk_busy_loop(sock->sk, 1); 1348 1349 /* if this socket can poll_ll, tell the system call */ 1350 flag = POLL_BUSY_LOOP; 1351 } 1352 1353 return sock->ops->poll(file, sock, wait) | flag; 1354 } 1355 1356 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1357 { 1358 struct socket *sock = file->private_data; 1359 1360 return sock->ops->mmap(file, sock, vma); 1361 } 1362 1363 static int sock_close(struct inode *inode, struct file *filp) 1364 { 1365 __sock_release(SOCKET_I(inode), inode); 1366 return 0; 1367 } 1368 1369 /* 1370 * Update the socket async list 1371 * 1372 * Fasync_list locking strategy. 1373 * 1374 * 1. fasync_list is modified only under process context socket lock 1375 * i.e. under semaphore. 1376 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1377 * or under socket lock 1378 */ 1379 1380 static int sock_fasync(int fd, struct file *filp, int on) 1381 { 1382 struct socket *sock = filp->private_data; 1383 struct sock *sk = sock->sk; 1384 struct socket_wq *wq = &sock->wq; 1385 1386 if (sk == NULL) 1387 return -EINVAL; 1388 1389 lock_sock(sk); 1390 fasync_helper(fd, filp, on, &wq->fasync_list); 1391 1392 if (!wq->fasync_list) 1393 sock_reset_flag(sk, SOCK_FASYNC); 1394 else 1395 sock_set_flag(sk, SOCK_FASYNC); 1396 1397 release_sock(sk); 1398 return 0; 1399 } 1400 1401 /* This function may be called only under rcu_lock */ 1402 1403 int sock_wake_async(struct socket_wq *wq, int how, int band) 1404 { 1405 if (!wq || !wq->fasync_list) 1406 return -1; 1407 1408 switch (how) { 1409 case SOCK_WAKE_WAITD: 1410 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1411 break; 1412 goto call_kill; 1413 case SOCK_WAKE_SPACE: 1414 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1415 break; 1416 fallthrough; 1417 case SOCK_WAKE_IO: 1418 call_kill: 1419 kill_fasync(&wq->fasync_list, SIGIO, band); 1420 break; 1421 case SOCK_WAKE_URG: 1422 kill_fasync(&wq->fasync_list, SIGURG, band); 1423 } 1424 1425 return 0; 1426 } 1427 EXPORT_SYMBOL(sock_wake_async); 1428 1429 /** 1430 * __sock_create - creates a socket 1431 * @net: net namespace 1432 * @family: protocol family (AF_INET, ...) 1433 * @type: communication type (SOCK_STREAM, ...) 1434 * @protocol: protocol (0, ...) 1435 * @res: new socket 1436 * @kern: boolean for kernel space sockets 1437 * 1438 * Creates a new socket and assigns it to @res, passing through LSM. 1439 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1440 * be set to true if the socket resides in kernel space. 1441 * This function internally uses GFP_KERNEL. 1442 */ 1443 1444 int __sock_create(struct net *net, int family, int type, int protocol, 1445 struct socket **res, int kern) 1446 { 1447 int err; 1448 struct socket *sock; 1449 const struct net_proto_family *pf; 1450 1451 /* 1452 * Check protocol is in range 1453 */ 1454 if (family < 0 || family >= NPROTO) 1455 return -EAFNOSUPPORT; 1456 if (type < 0 || type >= SOCK_MAX) 1457 return -EINVAL; 1458 1459 /* Compatibility. 1460 1461 This uglymoron is moved from INET layer to here to avoid 1462 deadlock in module load. 1463 */ 1464 if (family == PF_INET && type == SOCK_PACKET) { 1465 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1466 current->comm); 1467 family = PF_PACKET; 1468 } 1469 1470 err = security_socket_create(family, type, protocol, kern); 1471 if (err) 1472 return err; 1473 1474 /* 1475 * Allocate the socket and allow the family to set things up. if 1476 * the protocol is 0, the family is instructed to select an appropriate 1477 * default. 1478 */ 1479 sock = sock_alloc(); 1480 if (!sock) { 1481 net_warn_ratelimited("socket: no more sockets\n"); 1482 return -ENFILE; /* Not exactly a match, but its the 1483 closest posix thing */ 1484 } 1485 1486 sock->type = type; 1487 1488 #ifdef CONFIG_MODULES 1489 /* Attempt to load a protocol module if the find failed. 1490 * 1491 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1492 * requested real, full-featured networking support upon configuration. 1493 * Otherwise module support will break! 1494 */ 1495 if (rcu_access_pointer(net_families[family]) == NULL) 1496 request_module("net-pf-%d", family); 1497 #endif 1498 1499 rcu_read_lock(); 1500 pf = rcu_dereference(net_families[family]); 1501 err = -EAFNOSUPPORT; 1502 if (!pf) 1503 goto out_release; 1504 1505 /* 1506 * We will call the ->create function, that possibly is in a loadable 1507 * module, so we have to bump that loadable module refcnt first. 1508 */ 1509 if (!try_module_get(pf->owner)) 1510 goto out_release; 1511 1512 /* Now protected by module ref count */ 1513 rcu_read_unlock(); 1514 1515 err = pf->create(net, sock, protocol, kern); 1516 if (err < 0) 1517 goto out_module_put; 1518 1519 /* 1520 * Now to bump the refcnt of the [loadable] module that owns this 1521 * socket at sock_release time we decrement its refcnt. 1522 */ 1523 if (!try_module_get(sock->ops->owner)) 1524 goto out_module_busy; 1525 1526 /* 1527 * Now that we're done with the ->create function, the [loadable] 1528 * module can have its refcnt decremented 1529 */ 1530 module_put(pf->owner); 1531 err = security_socket_post_create(sock, family, type, protocol, kern); 1532 if (err) 1533 goto out_sock_release; 1534 *res = sock; 1535 1536 return 0; 1537 1538 out_module_busy: 1539 err = -EAFNOSUPPORT; 1540 out_module_put: 1541 sock->ops = NULL; 1542 module_put(pf->owner); 1543 out_sock_release: 1544 sock_release(sock); 1545 return err; 1546 1547 out_release: 1548 rcu_read_unlock(); 1549 goto out_sock_release; 1550 } 1551 EXPORT_SYMBOL(__sock_create); 1552 1553 /** 1554 * sock_create - creates a socket 1555 * @family: protocol family (AF_INET, ...) 1556 * @type: communication type (SOCK_STREAM, ...) 1557 * @protocol: protocol (0, ...) 1558 * @res: new socket 1559 * 1560 * A wrapper around __sock_create(). 1561 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1562 */ 1563 1564 int sock_create(int family, int type, int protocol, struct socket **res) 1565 { 1566 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1567 } 1568 EXPORT_SYMBOL(sock_create); 1569 1570 /** 1571 * sock_create_kern - creates a socket (kernel space) 1572 * @net: net namespace 1573 * @family: protocol family (AF_INET, ...) 1574 * @type: communication type (SOCK_STREAM, ...) 1575 * @protocol: protocol (0, ...) 1576 * @res: new socket 1577 * 1578 * A wrapper around __sock_create(). 1579 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1580 */ 1581 1582 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1583 { 1584 return __sock_create(net, family, type, protocol, res, 1); 1585 } 1586 EXPORT_SYMBOL(sock_create_kern); 1587 1588 static struct socket *__sys_socket_create(int family, int type, int protocol) 1589 { 1590 struct socket *sock; 1591 int retval; 1592 1593 /* Check the SOCK_* constants for consistency. */ 1594 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1595 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1596 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1597 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1598 1599 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1600 return ERR_PTR(-EINVAL); 1601 type &= SOCK_TYPE_MASK; 1602 1603 retval = sock_create(family, type, protocol, &sock); 1604 if (retval < 0) 1605 return ERR_PTR(retval); 1606 1607 return sock; 1608 } 1609 1610 struct file *__sys_socket_file(int family, int type, int protocol) 1611 { 1612 struct socket *sock; 1613 struct file *file; 1614 int flags; 1615 1616 sock = __sys_socket_create(family, type, protocol); 1617 if (IS_ERR(sock)) 1618 return ERR_CAST(sock); 1619 1620 flags = type & ~SOCK_TYPE_MASK; 1621 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1622 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1623 1624 file = sock_alloc_file(sock, flags, NULL); 1625 if (IS_ERR(file)) 1626 sock_release(sock); 1627 1628 return file; 1629 } 1630 1631 int __sys_socket(int family, int type, int protocol) 1632 { 1633 struct socket *sock; 1634 int flags; 1635 1636 sock = __sys_socket_create(family, type, protocol); 1637 if (IS_ERR(sock)) 1638 return PTR_ERR(sock); 1639 1640 flags = type & ~SOCK_TYPE_MASK; 1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1643 1644 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1645 } 1646 1647 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1648 { 1649 return __sys_socket(family, type, protocol); 1650 } 1651 1652 /* 1653 * Create a pair of connected sockets. 1654 */ 1655 1656 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1657 { 1658 struct socket *sock1, *sock2; 1659 int fd1, fd2, err; 1660 struct file *newfile1, *newfile2; 1661 int flags; 1662 1663 flags = type & ~SOCK_TYPE_MASK; 1664 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1665 return -EINVAL; 1666 type &= SOCK_TYPE_MASK; 1667 1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1670 1671 /* 1672 * reserve descriptors and make sure we won't fail 1673 * to return them to userland. 1674 */ 1675 fd1 = get_unused_fd_flags(flags); 1676 if (unlikely(fd1 < 0)) 1677 return fd1; 1678 1679 fd2 = get_unused_fd_flags(flags); 1680 if (unlikely(fd2 < 0)) { 1681 put_unused_fd(fd1); 1682 return fd2; 1683 } 1684 1685 err = put_user(fd1, &usockvec[0]); 1686 if (err) 1687 goto out; 1688 1689 err = put_user(fd2, &usockvec[1]); 1690 if (err) 1691 goto out; 1692 1693 /* 1694 * Obtain the first socket and check if the underlying protocol 1695 * supports the socketpair call. 1696 */ 1697 1698 err = sock_create(family, type, protocol, &sock1); 1699 if (unlikely(err < 0)) 1700 goto out; 1701 1702 err = sock_create(family, type, protocol, &sock2); 1703 if (unlikely(err < 0)) { 1704 sock_release(sock1); 1705 goto out; 1706 } 1707 1708 err = security_socket_socketpair(sock1, sock2); 1709 if (unlikely(err)) { 1710 sock_release(sock2); 1711 sock_release(sock1); 1712 goto out; 1713 } 1714 1715 err = sock1->ops->socketpair(sock1, sock2); 1716 if (unlikely(err < 0)) { 1717 sock_release(sock2); 1718 sock_release(sock1); 1719 goto out; 1720 } 1721 1722 newfile1 = sock_alloc_file(sock1, flags, NULL); 1723 if (IS_ERR(newfile1)) { 1724 err = PTR_ERR(newfile1); 1725 sock_release(sock2); 1726 goto out; 1727 } 1728 1729 newfile2 = sock_alloc_file(sock2, flags, NULL); 1730 if (IS_ERR(newfile2)) { 1731 err = PTR_ERR(newfile2); 1732 fput(newfile1); 1733 goto out; 1734 } 1735 1736 audit_fd_pair(fd1, fd2); 1737 1738 fd_install(fd1, newfile1); 1739 fd_install(fd2, newfile2); 1740 return 0; 1741 1742 out: 1743 put_unused_fd(fd2); 1744 put_unused_fd(fd1); 1745 return err; 1746 } 1747 1748 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1749 int __user *, usockvec) 1750 { 1751 return __sys_socketpair(family, type, protocol, usockvec); 1752 } 1753 1754 /* 1755 * Bind a name to a socket. Nothing much to do here since it's 1756 * the protocol's responsibility to handle the local address. 1757 * 1758 * We move the socket address to kernel space before we call 1759 * the protocol layer (having also checked the address is ok). 1760 */ 1761 1762 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1763 { 1764 struct socket *sock; 1765 struct sockaddr_storage address; 1766 int err, fput_needed; 1767 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (sock) { 1770 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1771 if (!err) { 1772 err = security_socket_bind(sock, 1773 (struct sockaddr *)&address, 1774 addrlen); 1775 if (!err) 1776 err = sock->ops->bind(sock, 1777 (struct sockaddr *) 1778 &address, addrlen); 1779 } 1780 fput_light(sock->file, fput_needed); 1781 } 1782 return err; 1783 } 1784 1785 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1786 { 1787 return __sys_bind(fd, umyaddr, addrlen); 1788 } 1789 1790 /* 1791 * Perform a listen. Basically, we allow the protocol to do anything 1792 * necessary for a listen, and if that works, we mark the socket as 1793 * ready for listening. 1794 */ 1795 1796 int __sys_listen(int fd, int backlog) 1797 { 1798 struct socket *sock; 1799 int err, fput_needed; 1800 int somaxconn; 1801 1802 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1803 if (sock) { 1804 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1805 if ((unsigned int)backlog > somaxconn) 1806 backlog = somaxconn; 1807 1808 err = security_socket_listen(sock, backlog); 1809 if (!err) 1810 err = sock->ops->listen(sock, backlog); 1811 1812 fput_light(sock->file, fput_needed); 1813 } 1814 return err; 1815 } 1816 1817 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1818 { 1819 return __sys_listen(fd, backlog); 1820 } 1821 1822 struct file *do_accept(struct file *file, unsigned file_flags, 1823 struct sockaddr __user *upeer_sockaddr, 1824 int __user *upeer_addrlen, int flags) 1825 { 1826 struct socket *sock, *newsock; 1827 struct file *newfile; 1828 int err, len; 1829 struct sockaddr_storage address; 1830 1831 sock = sock_from_file(file); 1832 if (!sock) 1833 return ERR_PTR(-ENOTSOCK); 1834 1835 newsock = sock_alloc(); 1836 if (!newsock) 1837 return ERR_PTR(-ENFILE); 1838 1839 newsock->type = sock->type; 1840 newsock->ops = sock->ops; 1841 1842 /* 1843 * We don't need try_module_get here, as the listening socket (sock) 1844 * has the protocol module (sock->ops->owner) held. 1845 */ 1846 __module_get(newsock->ops->owner); 1847 1848 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1849 if (IS_ERR(newfile)) 1850 return newfile; 1851 1852 err = security_socket_accept(sock, newsock); 1853 if (err) 1854 goto out_fd; 1855 1856 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1857 false); 1858 if (err < 0) 1859 goto out_fd; 1860 1861 if (upeer_sockaddr) { 1862 len = newsock->ops->getname(newsock, 1863 (struct sockaddr *)&address, 2); 1864 if (len < 0) { 1865 err = -ECONNABORTED; 1866 goto out_fd; 1867 } 1868 err = move_addr_to_user(&address, 1869 len, upeer_sockaddr, upeer_addrlen); 1870 if (err < 0) 1871 goto out_fd; 1872 } 1873 1874 /* File flags are not inherited via accept() unlike another OSes. */ 1875 return newfile; 1876 out_fd: 1877 fput(newfile); 1878 return ERR_PTR(err); 1879 } 1880 1881 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1882 int __user *upeer_addrlen, int flags) 1883 { 1884 struct file *newfile; 1885 int newfd; 1886 1887 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1888 return -EINVAL; 1889 1890 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1891 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1892 1893 newfd = get_unused_fd_flags(flags); 1894 if (unlikely(newfd < 0)) 1895 return newfd; 1896 1897 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1898 flags); 1899 if (IS_ERR(newfile)) { 1900 put_unused_fd(newfd); 1901 return PTR_ERR(newfile); 1902 } 1903 fd_install(newfd, newfile); 1904 return newfd; 1905 } 1906 1907 /* 1908 * For accept, we attempt to create a new socket, set up the link 1909 * with the client, wake up the client, then return the new 1910 * connected fd. We collect the address of the connector in kernel 1911 * space and move it to user at the very end. This is unclean because 1912 * we open the socket then return an error. 1913 * 1914 * 1003.1g adds the ability to recvmsg() to query connection pending 1915 * status to recvmsg. We need to add that support in a way thats 1916 * clean when we restructure accept also. 1917 */ 1918 1919 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1920 int __user *upeer_addrlen, int flags) 1921 { 1922 int ret = -EBADF; 1923 struct fd f; 1924 1925 f = fdget(fd); 1926 if (f.file) { 1927 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1928 upeer_addrlen, flags); 1929 fdput(f); 1930 } 1931 1932 return ret; 1933 } 1934 1935 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1936 int __user *, upeer_addrlen, int, flags) 1937 { 1938 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1939 } 1940 1941 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1942 int __user *, upeer_addrlen) 1943 { 1944 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1945 } 1946 1947 /* 1948 * Attempt to connect to a socket with the server address. The address 1949 * is in user space so we verify it is OK and move it to kernel space. 1950 * 1951 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1952 * break bindings 1953 * 1954 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1955 * other SEQPACKET protocols that take time to connect() as it doesn't 1956 * include the -EINPROGRESS status for such sockets. 1957 */ 1958 1959 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1960 int addrlen, int file_flags) 1961 { 1962 struct socket *sock; 1963 int err; 1964 1965 sock = sock_from_file(file); 1966 if (!sock) { 1967 err = -ENOTSOCK; 1968 goto out; 1969 } 1970 1971 err = 1972 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1973 if (err) 1974 goto out; 1975 1976 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1977 sock->file->f_flags | file_flags); 1978 out: 1979 return err; 1980 } 1981 1982 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1983 { 1984 int ret = -EBADF; 1985 struct fd f; 1986 1987 f = fdget(fd); 1988 if (f.file) { 1989 struct sockaddr_storage address; 1990 1991 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1992 if (!ret) 1993 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1994 fdput(f); 1995 } 1996 1997 return ret; 1998 } 1999 2000 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2001 int, addrlen) 2002 { 2003 return __sys_connect(fd, uservaddr, addrlen); 2004 } 2005 2006 /* 2007 * Get the local address ('name') of a socket object. Move the obtained 2008 * name to user space. 2009 */ 2010 2011 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2012 int __user *usockaddr_len) 2013 { 2014 struct socket *sock; 2015 struct sockaddr_storage address; 2016 int err, fput_needed; 2017 2018 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2019 if (!sock) 2020 goto out; 2021 2022 err = security_socket_getsockname(sock); 2023 if (err) 2024 goto out_put; 2025 2026 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2027 if (err < 0) 2028 goto out_put; 2029 /* "err" is actually length in this case */ 2030 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2031 2032 out_put: 2033 fput_light(sock->file, fput_needed); 2034 out: 2035 return err; 2036 } 2037 2038 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2039 int __user *, usockaddr_len) 2040 { 2041 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2042 } 2043 2044 /* 2045 * Get the remote address ('name') of a socket object. Move the obtained 2046 * name to user space. 2047 */ 2048 2049 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2050 int __user *usockaddr_len) 2051 { 2052 struct socket *sock; 2053 struct sockaddr_storage address; 2054 int err, fput_needed; 2055 2056 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2057 if (sock != NULL) { 2058 err = security_socket_getpeername(sock); 2059 if (err) { 2060 fput_light(sock->file, fput_needed); 2061 return err; 2062 } 2063 2064 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2065 if (err >= 0) 2066 /* "err" is actually length in this case */ 2067 err = move_addr_to_user(&address, err, usockaddr, 2068 usockaddr_len); 2069 fput_light(sock->file, fput_needed); 2070 } 2071 return err; 2072 } 2073 2074 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2075 int __user *, usockaddr_len) 2076 { 2077 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2078 } 2079 2080 /* 2081 * Send a datagram to a given address. We move the address into kernel 2082 * space and check the user space data area is readable before invoking 2083 * the protocol. 2084 */ 2085 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2086 struct sockaddr __user *addr, int addr_len) 2087 { 2088 struct socket *sock; 2089 struct sockaddr_storage address; 2090 int err; 2091 struct msghdr msg; 2092 struct iovec iov; 2093 int fput_needed; 2094 2095 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2096 if (unlikely(err)) 2097 return err; 2098 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2099 if (!sock) 2100 goto out; 2101 2102 msg.msg_name = NULL; 2103 msg.msg_control = NULL; 2104 msg.msg_controllen = 0; 2105 msg.msg_namelen = 0; 2106 msg.msg_ubuf = NULL; 2107 if (addr) { 2108 err = move_addr_to_kernel(addr, addr_len, &address); 2109 if (err < 0) 2110 goto out_put; 2111 msg.msg_name = (struct sockaddr *)&address; 2112 msg.msg_namelen = addr_len; 2113 } 2114 if (sock->file->f_flags & O_NONBLOCK) 2115 flags |= MSG_DONTWAIT; 2116 msg.msg_flags = flags; 2117 err = sock_sendmsg(sock, &msg); 2118 2119 out_put: 2120 fput_light(sock->file, fput_needed); 2121 out: 2122 return err; 2123 } 2124 2125 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2126 unsigned int, flags, struct sockaddr __user *, addr, 2127 int, addr_len) 2128 { 2129 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2130 } 2131 2132 /* 2133 * Send a datagram down a socket. 2134 */ 2135 2136 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2137 unsigned int, flags) 2138 { 2139 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2140 } 2141 2142 /* 2143 * Receive a frame from the socket and optionally record the address of the 2144 * sender. We verify the buffers are writable and if needed move the 2145 * sender address from kernel to user space. 2146 */ 2147 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2148 struct sockaddr __user *addr, int __user *addr_len) 2149 { 2150 struct sockaddr_storage address; 2151 struct msghdr msg = { 2152 /* Save some cycles and don't copy the address if not needed */ 2153 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2154 }; 2155 struct socket *sock; 2156 struct iovec iov; 2157 int err, err2; 2158 int fput_needed; 2159 2160 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2161 if (unlikely(err)) 2162 return err; 2163 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2164 if (!sock) 2165 goto out; 2166 2167 if (sock->file->f_flags & O_NONBLOCK) 2168 flags |= MSG_DONTWAIT; 2169 err = sock_recvmsg(sock, &msg, flags); 2170 2171 if (err >= 0 && addr != NULL) { 2172 err2 = move_addr_to_user(&address, 2173 msg.msg_namelen, addr, addr_len); 2174 if (err2 < 0) 2175 err = err2; 2176 } 2177 2178 fput_light(sock->file, fput_needed); 2179 out: 2180 return err; 2181 } 2182 2183 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2184 unsigned int, flags, struct sockaddr __user *, addr, 2185 int __user *, addr_len) 2186 { 2187 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2188 } 2189 2190 /* 2191 * Receive a datagram from a socket. 2192 */ 2193 2194 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2195 unsigned int, flags) 2196 { 2197 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2198 } 2199 2200 static bool sock_use_custom_sol_socket(const struct socket *sock) 2201 { 2202 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2203 } 2204 2205 /* 2206 * Set a socket option. Because we don't know the option lengths we have 2207 * to pass the user mode parameter for the protocols to sort out. 2208 */ 2209 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2210 int optlen) 2211 { 2212 sockptr_t optval = USER_SOCKPTR(user_optval); 2213 char *kernel_optval = NULL; 2214 int err, fput_needed; 2215 struct socket *sock; 2216 2217 if (optlen < 0) 2218 return -EINVAL; 2219 2220 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2221 if (!sock) 2222 return err; 2223 2224 err = security_socket_setsockopt(sock, level, optname); 2225 if (err) 2226 goto out_put; 2227 2228 if (!in_compat_syscall()) 2229 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2230 user_optval, &optlen, 2231 &kernel_optval); 2232 if (err < 0) 2233 goto out_put; 2234 if (err > 0) { 2235 err = 0; 2236 goto out_put; 2237 } 2238 2239 if (kernel_optval) 2240 optval = KERNEL_SOCKPTR(kernel_optval); 2241 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2242 err = sock_setsockopt(sock, level, optname, optval, optlen); 2243 else if (unlikely(!sock->ops->setsockopt)) 2244 err = -EOPNOTSUPP; 2245 else 2246 err = sock->ops->setsockopt(sock, level, optname, optval, 2247 optlen); 2248 kfree(kernel_optval); 2249 out_put: 2250 fput_light(sock->file, fput_needed); 2251 return err; 2252 } 2253 2254 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2255 char __user *, optval, int, optlen) 2256 { 2257 return __sys_setsockopt(fd, level, optname, optval, optlen); 2258 } 2259 2260 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2261 int optname)); 2262 2263 /* 2264 * Get a socket option. Because we don't know the option lengths we have 2265 * to pass a user mode parameter for the protocols to sort out. 2266 */ 2267 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2268 int __user *optlen) 2269 { 2270 int err, fput_needed; 2271 struct socket *sock; 2272 int max_optlen; 2273 2274 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2275 if (!sock) 2276 return err; 2277 2278 err = security_socket_getsockopt(sock, level, optname); 2279 if (err) 2280 goto out_put; 2281 2282 if (!in_compat_syscall()) 2283 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2284 2285 if (level == SOL_SOCKET) 2286 err = sock_getsockopt(sock, level, optname, optval, optlen); 2287 else if (unlikely(!sock->ops->getsockopt)) 2288 err = -EOPNOTSUPP; 2289 else 2290 err = sock->ops->getsockopt(sock, level, optname, optval, 2291 optlen); 2292 2293 if (!in_compat_syscall()) 2294 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2295 optval, optlen, max_optlen, 2296 err); 2297 out_put: 2298 fput_light(sock->file, fput_needed); 2299 return err; 2300 } 2301 2302 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2303 char __user *, optval, int __user *, optlen) 2304 { 2305 return __sys_getsockopt(fd, level, optname, optval, optlen); 2306 } 2307 2308 /* 2309 * Shutdown a socket. 2310 */ 2311 2312 int __sys_shutdown_sock(struct socket *sock, int how) 2313 { 2314 int err; 2315 2316 err = security_socket_shutdown(sock, how); 2317 if (!err) 2318 err = sock->ops->shutdown(sock, how); 2319 2320 return err; 2321 } 2322 2323 int __sys_shutdown(int fd, int how) 2324 { 2325 int err, fput_needed; 2326 struct socket *sock; 2327 2328 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2329 if (sock != NULL) { 2330 err = __sys_shutdown_sock(sock, how); 2331 fput_light(sock->file, fput_needed); 2332 } 2333 return err; 2334 } 2335 2336 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2337 { 2338 return __sys_shutdown(fd, how); 2339 } 2340 2341 /* A couple of helpful macros for getting the address of the 32/64 bit 2342 * fields which are the same type (int / unsigned) on our platforms. 2343 */ 2344 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2345 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2346 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2347 2348 struct used_address { 2349 struct sockaddr_storage name; 2350 unsigned int name_len; 2351 }; 2352 2353 int __copy_msghdr(struct msghdr *kmsg, 2354 struct user_msghdr *msg, 2355 struct sockaddr __user **save_addr) 2356 { 2357 ssize_t err; 2358 2359 kmsg->msg_control_is_user = true; 2360 kmsg->msg_get_inq = 0; 2361 kmsg->msg_control_user = msg->msg_control; 2362 kmsg->msg_controllen = msg->msg_controllen; 2363 kmsg->msg_flags = msg->msg_flags; 2364 2365 kmsg->msg_namelen = msg->msg_namelen; 2366 if (!msg->msg_name) 2367 kmsg->msg_namelen = 0; 2368 2369 if (kmsg->msg_namelen < 0) 2370 return -EINVAL; 2371 2372 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2373 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2374 2375 if (save_addr) 2376 *save_addr = msg->msg_name; 2377 2378 if (msg->msg_name && kmsg->msg_namelen) { 2379 if (!save_addr) { 2380 err = move_addr_to_kernel(msg->msg_name, 2381 kmsg->msg_namelen, 2382 kmsg->msg_name); 2383 if (err < 0) 2384 return err; 2385 } 2386 } else { 2387 kmsg->msg_name = NULL; 2388 kmsg->msg_namelen = 0; 2389 } 2390 2391 if (msg->msg_iovlen > UIO_MAXIOV) 2392 return -EMSGSIZE; 2393 2394 kmsg->msg_iocb = NULL; 2395 kmsg->msg_ubuf = NULL; 2396 return 0; 2397 } 2398 2399 static int copy_msghdr_from_user(struct msghdr *kmsg, 2400 struct user_msghdr __user *umsg, 2401 struct sockaddr __user **save_addr, 2402 struct iovec **iov) 2403 { 2404 struct user_msghdr msg; 2405 ssize_t err; 2406 2407 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2408 return -EFAULT; 2409 2410 err = __copy_msghdr(kmsg, &msg, save_addr); 2411 if (err) 2412 return err; 2413 2414 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2415 msg.msg_iov, msg.msg_iovlen, 2416 UIO_FASTIOV, iov, &kmsg->msg_iter); 2417 return err < 0 ? err : 0; 2418 } 2419 2420 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2421 unsigned int flags, struct used_address *used_address, 2422 unsigned int allowed_msghdr_flags) 2423 { 2424 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2425 __aligned(sizeof(__kernel_size_t)); 2426 /* 20 is size of ipv6_pktinfo */ 2427 unsigned char *ctl_buf = ctl; 2428 int ctl_len; 2429 ssize_t err; 2430 2431 err = -ENOBUFS; 2432 2433 if (msg_sys->msg_controllen > INT_MAX) 2434 goto out; 2435 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2436 ctl_len = msg_sys->msg_controllen; 2437 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2438 err = 2439 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2440 sizeof(ctl)); 2441 if (err) 2442 goto out; 2443 ctl_buf = msg_sys->msg_control; 2444 ctl_len = msg_sys->msg_controllen; 2445 } else if (ctl_len) { 2446 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2447 CMSG_ALIGN(sizeof(struct cmsghdr))); 2448 if (ctl_len > sizeof(ctl)) { 2449 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2450 if (ctl_buf == NULL) 2451 goto out; 2452 } 2453 err = -EFAULT; 2454 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2455 goto out_freectl; 2456 msg_sys->msg_control = ctl_buf; 2457 msg_sys->msg_control_is_user = false; 2458 } 2459 msg_sys->msg_flags = flags; 2460 2461 if (sock->file->f_flags & O_NONBLOCK) 2462 msg_sys->msg_flags |= MSG_DONTWAIT; 2463 /* 2464 * If this is sendmmsg() and current destination address is same as 2465 * previously succeeded address, omit asking LSM's decision. 2466 * used_address->name_len is initialized to UINT_MAX so that the first 2467 * destination address never matches. 2468 */ 2469 if (used_address && msg_sys->msg_name && 2470 used_address->name_len == msg_sys->msg_namelen && 2471 !memcmp(&used_address->name, msg_sys->msg_name, 2472 used_address->name_len)) { 2473 err = sock_sendmsg_nosec(sock, msg_sys); 2474 goto out_freectl; 2475 } 2476 err = sock_sendmsg(sock, msg_sys); 2477 /* 2478 * If this is sendmmsg() and sending to current destination address was 2479 * successful, remember it. 2480 */ 2481 if (used_address && err >= 0) { 2482 used_address->name_len = msg_sys->msg_namelen; 2483 if (msg_sys->msg_name) 2484 memcpy(&used_address->name, msg_sys->msg_name, 2485 used_address->name_len); 2486 } 2487 2488 out_freectl: 2489 if (ctl_buf != ctl) 2490 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2491 out: 2492 return err; 2493 } 2494 2495 int sendmsg_copy_msghdr(struct msghdr *msg, 2496 struct user_msghdr __user *umsg, unsigned flags, 2497 struct iovec **iov) 2498 { 2499 int err; 2500 2501 if (flags & MSG_CMSG_COMPAT) { 2502 struct compat_msghdr __user *msg_compat; 2503 2504 msg_compat = (struct compat_msghdr __user *) umsg; 2505 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2506 } else { 2507 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2508 } 2509 if (err < 0) 2510 return err; 2511 2512 return 0; 2513 } 2514 2515 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2516 struct msghdr *msg_sys, unsigned int flags, 2517 struct used_address *used_address, 2518 unsigned int allowed_msghdr_flags) 2519 { 2520 struct sockaddr_storage address; 2521 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2522 ssize_t err; 2523 2524 msg_sys->msg_name = &address; 2525 2526 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2527 if (err < 0) 2528 return err; 2529 2530 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2531 allowed_msghdr_flags); 2532 kfree(iov); 2533 return err; 2534 } 2535 2536 /* 2537 * BSD sendmsg interface 2538 */ 2539 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2540 unsigned int flags) 2541 { 2542 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2543 } 2544 2545 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2546 bool forbid_cmsg_compat) 2547 { 2548 int fput_needed, err; 2549 struct msghdr msg_sys; 2550 struct socket *sock; 2551 2552 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2553 return -EINVAL; 2554 2555 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2556 if (!sock) 2557 goto out; 2558 2559 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2560 2561 fput_light(sock->file, fput_needed); 2562 out: 2563 return err; 2564 } 2565 2566 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2567 { 2568 return __sys_sendmsg(fd, msg, flags, true); 2569 } 2570 2571 /* 2572 * Linux sendmmsg interface 2573 */ 2574 2575 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2576 unsigned int flags, bool forbid_cmsg_compat) 2577 { 2578 int fput_needed, err, datagrams; 2579 struct socket *sock; 2580 struct mmsghdr __user *entry; 2581 struct compat_mmsghdr __user *compat_entry; 2582 struct msghdr msg_sys; 2583 struct used_address used_address; 2584 unsigned int oflags = flags; 2585 2586 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2587 return -EINVAL; 2588 2589 if (vlen > UIO_MAXIOV) 2590 vlen = UIO_MAXIOV; 2591 2592 datagrams = 0; 2593 2594 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2595 if (!sock) 2596 return err; 2597 2598 used_address.name_len = UINT_MAX; 2599 entry = mmsg; 2600 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2601 err = 0; 2602 flags |= MSG_BATCH; 2603 2604 while (datagrams < vlen) { 2605 if (datagrams == vlen - 1) 2606 flags = oflags; 2607 2608 if (MSG_CMSG_COMPAT & flags) { 2609 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2610 &msg_sys, flags, &used_address, MSG_EOR); 2611 if (err < 0) 2612 break; 2613 err = __put_user(err, &compat_entry->msg_len); 2614 ++compat_entry; 2615 } else { 2616 err = ___sys_sendmsg(sock, 2617 (struct user_msghdr __user *)entry, 2618 &msg_sys, flags, &used_address, MSG_EOR); 2619 if (err < 0) 2620 break; 2621 err = put_user(err, &entry->msg_len); 2622 ++entry; 2623 } 2624 2625 if (err) 2626 break; 2627 ++datagrams; 2628 if (msg_data_left(&msg_sys)) 2629 break; 2630 cond_resched(); 2631 } 2632 2633 fput_light(sock->file, fput_needed); 2634 2635 /* We only return an error if no datagrams were able to be sent */ 2636 if (datagrams != 0) 2637 return datagrams; 2638 2639 return err; 2640 } 2641 2642 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2643 unsigned int, vlen, unsigned int, flags) 2644 { 2645 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2646 } 2647 2648 int recvmsg_copy_msghdr(struct msghdr *msg, 2649 struct user_msghdr __user *umsg, unsigned flags, 2650 struct sockaddr __user **uaddr, 2651 struct iovec **iov) 2652 { 2653 ssize_t err; 2654 2655 if (MSG_CMSG_COMPAT & flags) { 2656 struct compat_msghdr __user *msg_compat; 2657 2658 msg_compat = (struct compat_msghdr __user *) umsg; 2659 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2660 } else { 2661 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2662 } 2663 if (err < 0) 2664 return err; 2665 2666 return 0; 2667 } 2668 2669 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2670 struct user_msghdr __user *msg, 2671 struct sockaddr __user *uaddr, 2672 unsigned int flags, int nosec) 2673 { 2674 struct compat_msghdr __user *msg_compat = 2675 (struct compat_msghdr __user *) msg; 2676 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2677 struct sockaddr_storage addr; 2678 unsigned long cmsg_ptr; 2679 int len; 2680 ssize_t err; 2681 2682 msg_sys->msg_name = &addr; 2683 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2684 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2685 2686 /* We assume all kernel code knows the size of sockaddr_storage */ 2687 msg_sys->msg_namelen = 0; 2688 2689 if (sock->file->f_flags & O_NONBLOCK) 2690 flags |= MSG_DONTWAIT; 2691 2692 if (unlikely(nosec)) 2693 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2694 else 2695 err = sock_recvmsg(sock, msg_sys, flags); 2696 2697 if (err < 0) 2698 goto out; 2699 len = err; 2700 2701 if (uaddr != NULL) { 2702 err = move_addr_to_user(&addr, 2703 msg_sys->msg_namelen, uaddr, 2704 uaddr_len); 2705 if (err < 0) 2706 goto out; 2707 } 2708 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2709 COMPAT_FLAGS(msg)); 2710 if (err) 2711 goto out; 2712 if (MSG_CMSG_COMPAT & flags) 2713 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2714 &msg_compat->msg_controllen); 2715 else 2716 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2717 &msg->msg_controllen); 2718 if (err) 2719 goto out; 2720 err = len; 2721 out: 2722 return err; 2723 } 2724 2725 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2726 struct msghdr *msg_sys, unsigned int flags, int nosec) 2727 { 2728 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2729 /* user mode address pointers */ 2730 struct sockaddr __user *uaddr; 2731 ssize_t err; 2732 2733 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2734 if (err < 0) 2735 return err; 2736 2737 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2738 kfree(iov); 2739 return err; 2740 } 2741 2742 /* 2743 * BSD recvmsg interface 2744 */ 2745 2746 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2747 struct user_msghdr __user *umsg, 2748 struct sockaddr __user *uaddr, unsigned int flags) 2749 { 2750 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2751 } 2752 2753 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2754 bool forbid_cmsg_compat) 2755 { 2756 int fput_needed, err; 2757 struct msghdr msg_sys; 2758 struct socket *sock; 2759 2760 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2761 return -EINVAL; 2762 2763 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2764 if (!sock) 2765 goto out; 2766 2767 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2768 2769 fput_light(sock->file, fput_needed); 2770 out: 2771 return err; 2772 } 2773 2774 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2775 unsigned int, flags) 2776 { 2777 return __sys_recvmsg(fd, msg, flags, true); 2778 } 2779 2780 /* 2781 * Linux recvmmsg interface 2782 */ 2783 2784 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2785 unsigned int vlen, unsigned int flags, 2786 struct timespec64 *timeout) 2787 { 2788 int fput_needed, err, datagrams; 2789 struct socket *sock; 2790 struct mmsghdr __user *entry; 2791 struct compat_mmsghdr __user *compat_entry; 2792 struct msghdr msg_sys; 2793 struct timespec64 end_time; 2794 struct timespec64 timeout64; 2795 2796 if (timeout && 2797 poll_select_set_timeout(&end_time, timeout->tv_sec, 2798 timeout->tv_nsec)) 2799 return -EINVAL; 2800 2801 datagrams = 0; 2802 2803 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2804 if (!sock) 2805 return err; 2806 2807 if (likely(!(flags & MSG_ERRQUEUE))) { 2808 err = sock_error(sock->sk); 2809 if (err) { 2810 datagrams = err; 2811 goto out_put; 2812 } 2813 } 2814 2815 entry = mmsg; 2816 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2817 2818 while (datagrams < vlen) { 2819 /* 2820 * No need to ask LSM for more than the first datagram. 2821 */ 2822 if (MSG_CMSG_COMPAT & flags) { 2823 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2824 &msg_sys, flags & ~MSG_WAITFORONE, 2825 datagrams); 2826 if (err < 0) 2827 break; 2828 err = __put_user(err, &compat_entry->msg_len); 2829 ++compat_entry; 2830 } else { 2831 err = ___sys_recvmsg(sock, 2832 (struct user_msghdr __user *)entry, 2833 &msg_sys, flags & ~MSG_WAITFORONE, 2834 datagrams); 2835 if (err < 0) 2836 break; 2837 err = put_user(err, &entry->msg_len); 2838 ++entry; 2839 } 2840 2841 if (err) 2842 break; 2843 ++datagrams; 2844 2845 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2846 if (flags & MSG_WAITFORONE) 2847 flags |= MSG_DONTWAIT; 2848 2849 if (timeout) { 2850 ktime_get_ts64(&timeout64); 2851 *timeout = timespec64_sub(end_time, timeout64); 2852 if (timeout->tv_sec < 0) { 2853 timeout->tv_sec = timeout->tv_nsec = 0; 2854 break; 2855 } 2856 2857 /* Timeout, return less than vlen datagrams */ 2858 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2859 break; 2860 } 2861 2862 /* Out of band data, return right away */ 2863 if (msg_sys.msg_flags & MSG_OOB) 2864 break; 2865 cond_resched(); 2866 } 2867 2868 if (err == 0) 2869 goto out_put; 2870 2871 if (datagrams == 0) { 2872 datagrams = err; 2873 goto out_put; 2874 } 2875 2876 /* 2877 * We may return less entries than requested (vlen) if the 2878 * sock is non block and there aren't enough datagrams... 2879 */ 2880 if (err != -EAGAIN) { 2881 /* 2882 * ... or if recvmsg returns an error after we 2883 * received some datagrams, where we record the 2884 * error to return on the next call or if the 2885 * app asks about it using getsockopt(SO_ERROR). 2886 */ 2887 sock->sk->sk_err = -err; 2888 } 2889 out_put: 2890 fput_light(sock->file, fput_needed); 2891 2892 return datagrams; 2893 } 2894 2895 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2896 unsigned int vlen, unsigned int flags, 2897 struct __kernel_timespec __user *timeout, 2898 struct old_timespec32 __user *timeout32) 2899 { 2900 int datagrams; 2901 struct timespec64 timeout_sys; 2902 2903 if (timeout && get_timespec64(&timeout_sys, timeout)) 2904 return -EFAULT; 2905 2906 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2907 return -EFAULT; 2908 2909 if (!timeout && !timeout32) 2910 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2911 2912 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2913 2914 if (datagrams <= 0) 2915 return datagrams; 2916 2917 if (timeout && put_timespec64(&timeout_sys, timeout)) 2918 datagrams = -EFAULT; 2919 2920 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2921 datagrams = -EFAULT; 2922 2923 return datagrams; 2924 } 2925 2926 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2927 unsigned int, vlen, unsigned int, flags, 2928 struct __kernel_timespec __user *, timeout) 2929 { 2930 if (flags & MSG_CMSG_COMPAT) 2931 return -EINVAL; 2932 2933 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2934 } 2935 2936 #ifdef CONFIG_COMPAT_32BIT_TIME 2937 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2938 unsigned int, vlen, unsigned int, flags, 2939 struct old_timespec32 __user *, timeout) 2940 { 2941 if (flags & MSG_CMSG_COMPAT) 2942 return -EINVAL; 2943 2944 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2945 } 2946 #endif 2947 2948 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2949 /* Argument list sizes for sys_socketcall */ 2950 #define AL(x) ((x) * sizeof(unsigned long)) 2951 static const unsigned char nargs[21] = { 2952 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2953 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2954 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2955 AL(4), AL(5), AL(4) 2956 }; 2957 2958 #undef AL 2959 2960 /* 2961 * System call vectors. 2962 * 2963 * Argument checking cleaned up. Saved 20% in size. 2964 * This function doesn't need to set the kernel lock because 2965 * it is set by the callees. 2966 */ 2967 2968 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2969 { 2970 unsigned long a[AUDITSC_ARGS]; 2971 unsigned long a0, a1; 2972 int err; 2973 unsigned int len; 2974 2975 if (call < 1 || call > SYS_SENDMMSG) 2976 return -EINVAL; 2977 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2978 2979 len = nargs[call]; 2980 if (len > sizeof(a)) 2981 return -EINVAL; 2982 2983 /* copy_from_user should be SMP safe. */ 2984 if (copy_from_user(a, args, len)) 2985 return -EFAULT; 2986 2987 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2988 if (err) 2989 return err; 2990 2991 a0 = a[0]; 2992 a1 = a[1]; 2993 2994 switch (call) { 2995 case SYS_SOCKET: 2996 err = __sys_socket(a0, a1, a[2]); 2997 break; 2998 case SYS_BIND: 2999 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3000 break; 3001 case SYS_CONNECT: 3002 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3003 break; 3004 case SYS_LISTEN: 3005 err = __sys_listen(a0, a1); 3006 break; 3007 case SYS_ACCEPT: 3008 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3009 (int __user *)a[2], 0); 3010 break; 3011 case SYS_GETSOCKNAME: 3012 err = 3013 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3014 (int __user *)a[2]); 3015 break; 3016 case SYS_GETPEERNAME: 3017 err = 3018 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3019 (int __user *)a[2]); 3020 break; 3021 case SYS_SOCKETPAIR: 3022 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3023 break; 3024 case SYS_SEND: 3025 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3026 NULL, 0); 3027 break; 3028 case SYS_SENDTO: 3029 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3030 (struct sockaddr __user *)a[4], a[5]); 3031 break; 3032 case SYS_RECV: 3033 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3034 NULL, NULL); 3035 break; 3036 case SYS_RECVFROM: 3037 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3038 (struct sockaddr __user *)a[4], 3039 (int __user *)a[5]); 3040 break; 3041 case SYS_SHUTDOWN: 3042 err = __sys_shutdown(a0, a1); 3043 break; 3044 case SYS_SETSOCKOPT: 3045 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3046 a[4]); 3047 break; 3048 case SYS_GETSOCKOPT: 3049 err = 3050 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3051 (int __user *)a[4]); 3052 break; 3053 case SYS_SENDMSG: 3054 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3055 a[2], true); 3056 break; 3057 case SYS_SENDMMSG: 3058 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3059 a[3], true); 3060 break; 3061 case SYS_RECVMSG: 3062 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3063 a[2], true); 3064 break; 3065 case SYS_RECVMMSG: 3066 if (IS_ENABLED(CONFIG_64BIT)) 3067 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3068 a[2], a[3], 3069 (struct __kernel_timespec __user *)a[4], 3070 NULL); 3071 else 3072 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3073 a[2], a[3], NULL, 3074 (struct old_timespec32 __user *)a[4]); 3075 break; 3076 case SYS_ACCEPT4: 3077 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3078 (int __user *)a[2], a[3]); 3079 break; 3080 default: 3081 err = -EINVAL; 3082 break; 3083 } 3084 return err; 3085 } 3086 3087 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3088 3089 /** 3090 * sock_register - add a socket protocol handler 3091 * @ops: description of protocol 3092 * 3093 * This function is called by a protocol handler that wants to 3094 * advertise its address family, and have it linked into the 3095 * socket interface. The value ops->family corresponds to the 3096 * socket system call protocol family. 3097 */ 3098 int sock_register(const struct net_proto_family *ops) 3099 { 3100 int err; 3101 3102 if (ops->family >= NPROTO) { 3103 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3104 return -ENOBUFS; 3105 } 3106 3107 spin_lock(&net_family_lock); 3108 if (rcu_dereference_protected(net_families[ops->family], 3109 lockdep_is_held(&net_family_lock))) 3110 err = -EEXIST; 3111 else { 3112 rcu_assign_pointer(net_families[ops->family], ops); 3113 err = 0; 3114 } 3115 spin_unlock(&net_family_lock); 3116 3117 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3118 return err; 3119 } 3120 EXPORT_SYMBOL(sock_register); 3121 3122 /** 3123 * sock_unregister - remove a protocol handler 3124 * @family: protocol family to remove 3125 * 3126 * This function is called by a protocol handler that wants to 3127 * remove its address family, and have it unlinked from the 3128 * new socket creation. 3129 * 3130 * If protocol handler is a module, then it can use module reference 3131 * counts to protect against new references. If protocol handler is not 3132 * a module then it needs to provide its own protection in 3133 * the ops->create routine. 3134 */ 3135 void sock_unregister(int family) 3136 { 3137 BUG_ON(family < 0 || family >= NPROTO); 3138 3139 spin_lock(&net_family_lock); 3140 RCU_INIT_POINTER(net_families[family], NULL); 3141 spin_unlock(&net_family_lock); 3142 3143 synchronize_rcu(); 3144 3145 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3146 } 3147 EXPORT_SYMBOL(sock_unregister); 3148 3149 bool sock_is_registered(int family) 3150 { 3151 return family < NPROTO && rcu_access_pointer(net_families[family]); 3152 } 3153 3154 static int __init sock_init(void) 3155 { 3156 int err; 3157 /* 3158 * Initialize the network sysctl infrastructure. 3159 */ 3160 err = net_sysctl_init(); 3161 if (err) 3162 goto out; 3163 3164 /* 3165 * Initialize skbuff SLAB cache 3166 */ 3167 skb_init(); 3168 3169 /* 3170 * Initialize the protocols module. 3171 */ 3172 3173 init_inodecache(); 3174 3175 err = register_filesystem(&sock_fs_type); 3176 if (err) 3177 goto out; 3178 sock_mnt = kern_mount(&sock_fs_type); 3179 if (IS_ERR(sock_mnt)) { 3180 err = PTR_ERR(sock_mnt); 3181 goto out_mount; 3182 } 3183 3184 /* The real protocol initialization is performed in later initcalls. 3185 */ 3186 3187 #ifdef CONFIG_NETFILTER 3188 err = netfilter_init(); 3189 if (err) 3190 goto out; 3191 #endif 3192 3193 ptp_classifier_init(); 3194 3195 out: 3196 return err; 3197 3198 out_mount: 3199 unregister_filesystem(&sock_fs_type); 3200 goto out; 3201 } 3202 3203 core_initcall(sock_init); /* early initcall */ 3204 3205 #ifdef CONFIG_PROC_FS 3206 void socket_seq_show(struct seq_file *seq) 3207 { 3208 seq_printf(seq, "sockets: used %d\n", 3209 sock_inuse_get(seq->private)); 3210 } 3211 #endif /* CONFIG_PROC_FS */ 3212 3213 /* Handle the fact that while struct ifreq has the same *layout* on 3214 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3215 * which are handled elsewhere, it still has different *size* due to 3216 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3217 * resulting in struct ifreq being 32 and 40 bytes respectively). 3218 * As a result, if the struct happens to be at the end of a page and 3219 * the next page isn't readable/writable, we get a fault. To prevent 3220 * that, copy back and forth to the full size. 3221 */ 3222 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3223 { 3224 if (in_compat_syscall()) { 3225 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3226 3227 memset(ifr, 0, sizeof(*ifr)); 3228 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3229 return -EFAULT; 3230 3231 if (ifrdata) 3232 *ifrdata = compat_ptr(ifr32->ifr_data); 3233 3234 return 0; 3235 } 3236 3237 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3238 return -EFAULT; 3239 3240 if (ifrdata) 3241 *ifrdata = ifr->ifr_data; 3242 3243 return 0; 3244 } 3245 EXPORT_SYMBOL(get_user_ifreq); 3246 3247 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3248 { 3249 size_t size = sizeof(*ifr); 3250 3251 if (in_compat_syscall()) 3252 size = sizeof(struct compat_ifreq); 3253 3254 if (copy_to_user(arg, ifr, size)) 3255 return -EFAULT; 3256 3257 return 0; 3258 } 3259 EXPORT_SYMBOL(put_user_ifreq); 3260 3261 #ifdef CONFIG_COMPAT 3262 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3263 { 3264 compat_uptr_t uptr32; 3265 struct ifreq ifr; 3266 void __user *saved; 3267 int err; 3268 3269 if (get_user_ifreq(&ifr, NULL, uifr32)) 3270 return -EFAULT; 3271 3272 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3273 return -EFAULT; 3274 3275 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3276 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3277 3278 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3279 if (!err) { 3280 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3281 if (put_user_ifreq(&ifr, uifr32)) 3282 err = -EFAULT; 3283 } 3284 return err; 3285 } 3286 3287 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3288 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3289 struct compat_ifreq __user *u_ifreq32) 3290 { 3291 struct ifreq ifreq; 3292 void __user *data; 3293 3294 if (!is_socket_ioctl_cmd(cmd)) 3295 return -ENOTTY; 3296 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3297 return -EFAULT; 3298 ifreq.ifr_data = data; 3299 3300 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3301 } 3302 3303 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3304 unsigned int cmd, unsigned long arg) 3305 { 3306 void __user *argp = compat_ptr(arg); 3307 struct sock *sk = sock->sk; 3308 struct net *net = sock_net(sk); 3309 3310 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3311 return sock_ioctl(file, cmd, (unsigned long)argp); 3312 3313 switch (cmd) { 3314 case SIOCWANDEV: 3315 return compat_siocwandev(net, argp); 3316 case SIOCGSTAMP_OLD: 3317 case SIOCGSTAMPNS_OLD: 3318 if (!sock->ops->gettstamp) 3319 return -ENOIOCTLCMD; 3320 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3321 !COMPAT_USE_64BIT_TIME); 3322 3323 case SIOCETHTOOL: 3324 case SIOCBONDSLAVEINFOQUERY: 3325 case SIOCBONDINFOQUERY: 3326 case SIOCSHWTSTAMP: 3327 case SIOCGHWTSTAMP: 3328 return compat_ifr_data_ioctl(net, cmd, argp); 3329 3330 case FIOSETOWN: 3331 case SIOCSPGRP: 3332 case FIOGETOWN: 3333 case SIOCGPGRP: 3334 case SIOCBRADDBR: 3335 case SIOCBRDELBR: 3336 case SIOCGIFVLAN: 3337 case SIOCSIFVLAN: 3338 case SIOCGSKNS: 3339 case SIOCGSTAMP_NEW: 3340 case SIOCGSTAMPNS_NEW: 3341 case SIOCGIFCONF: 3342 case SIOCSIFBR: 3343 case SIOCGIFBR: 3344 return sock_ioctl(file, cmd, arg); 3345 3346 case SIOCGIFFLAGS: 3347 case SIOCSIFFLAGS: 3348 case SIOCGIFMAP: 3349 case SIOCSIFMAP: 3350 case SIOCGIFMETRIC: 3351 case SIOCSIFMETRIC: 3352 case SIOCGIFMTU: 3353 case SIOCSIFMTU: 3354 case SIOCGIFMEM: 3355 case SIOCSIFMEM: 3356 case SIOCGIFHWADDR: 3357 case SIOCSIFHWADDR: 3358 case SIOCADDMULTI: 3359 case SIOCDELMULTI: 3360 case SIOCGIFINDEX: 3361 case SIOCGIFADDR: 3362 case SIOCSIFADDR: 3363 case SIOCSIFHWBROADCAST: 3364 case SIOCDIFADDR: 3365 case SIOCGIFBRDADDR: 3366 case SIOCSIFBRDADDR: 3367 case SIOCGIFDSTADDR: 3368 case SIOCSIFDSTADDR: 3369 case SIOCGIFNETMASK: 3370 case SIOCSIFNETMASK: 3371 case SIOCSIFPFLAGS: 3372 case SIOCGIFPFLAGS: 3373 case SIOCGIFTXQLEN: 3374 case SIOCSIFTXQLEN: 3375 case SIOCBRADDIF: 3376 case SIOCBRDELIF: 3377 case SIOCGIFNAME: 3378 case SIOCSIFNAME: 3379 case SIOCGMIIPHY: 3380 case SIOCGMIIREG: 3381 case SIOCSMIIREG: 3382 case SIOCBONDENSLAVE: 3383 case SIOCBONDRELEASE: 3384 case SIOCBONDSETHWADDR: 3385 case SIOCBONDCHANGEACTIVE: 3386 case SIOCSARP: 3387 case SIOCGARP: 3388 case SIOCDARP: 3389 case SIOCOUTQ: 3390 case SIOCOUTQNSD: 3391 case SIOCATMARK: 3392 return sock_do_ioctl(net, sock, cmd, arg); 3393 } 3394 3395 return -ENOIOCTLCMD; 3396 } 3397 3398 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3399 unsigned long arg) 3400 { 3401 struct socket *sock = file->private_data; 3402 int ret = -ENOIOCTLCMD; 3403 struct sock *sk; 3404 struct net *net; 3405 3406 sk = sock->sk; 3407 net = sock_net(sk); 3408 3409 if (sock->ops->compat_ioctl) 3410 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3411 3412 if (ret == -ENOIOCTLCMD && 3413 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3414 ret = compat_wext_handle_ioctl(net, cmd, arg); 3415 3416 if (ret == -ENOIOCTLCMD) 3417 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3418 3419 return ret; 3420 } 3421 #endif 3422 3423 /** 3424 * kernel_bind - bind an address to a socket (kernel space) 3425 * @sock: socket 3426 * @addr: address 3427 * @addrlen: length of address 3428 * 3429 * Returns 0 or an error. 3430 */ 3431 3432 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3433 { 3434 return sock->ops->bind(sock, addr, addrlen); 3435 } 3436 EXPORT_SYMBOL(kernel_bind); 3437 3438 /** 3439 * kernel_listen - move socket to listening state (kernel space) 3440 * @sock: socket 3441 * @backlog: pending connections queue size 3442 * 3443 * Returns 0 or an error. 3444 */ 3445 3446 int kernel_listen(struct socket *sock, int backlog) 3447 { 3448 return sock->ops->listen(sock, backlog); 3449 } 3450 EXPORT_SYMBOL(kernel_listen); 3451 3452 /** 3453 * kernel_accept - accept a connection (kernel space) 3454 * @sock: listening socket 3455 * @newsock: new connected socket 3456 * @flags: flags 3457 * 3458 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3459 * If it fails, @newsock is guaranteed to be %NULL. 3460 * Returns 0 or an error. 3461 */ 3462 3463 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3464 { 3465 struct sock *sk = sock->sk; 3466 int err; 3467 3468 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3469 newsock); 3470 if (err < 0) 3471 goto done; 3472 3473 err = sock->ops->accept(sock, *newsock, flags, true); 3474 if (err < 0) { 3475 sock_release(*newsock); 3476 *newsock = NULL; 3477 goto done; 3478 } 3479 3480 (*newsock)->ops = sock->ops; 3481 __module_get((*newsock)->ops->owner); 3482 3483 done: 3484 return err; 3485 } 3486 EXPORT_SYMBOL(kernel_accept); 3487 3488 /** 3489 * kernel_connect - connect a socket (kernel space) 3490 * @sock: socket 3491 * @addr: address 3492 * @addrlen: address length 3493 * @flags: flags (O_NONBLOCK, ...) 3494 * 3495 * For datagram sockets, @addr is the address to which datagrams are sent 3496 * by default, and the only address from which datagrams are received. 3497 * For stream sockets, attempts to connect to @addr. 3498 * Returns 0 or an error code. 3499 */ 3500 3501 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3502 int flags) 3503 { 3504 return sock->ops->connect(sock, addr, addrlen, flags); 3505 } 3506 EXPORT_SYMBOL(kernel_connect); 3507 3508 /** 3509 * kernel_getsockname - get the address which the socket is bound (kernel space) 3510 * @sock: socket 3511 * @addr: address holder 3512 * 3513 * Fills the @addr pointer with the address which the socket is bound. 3514 * Returns the length of the address in bytes or an error code. 3515 */ 3516 3517 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3518 { 3519 return sock->ops->getname(sock, addr, 0); 3520 } 3521 EXPORT_SYMBOL(kernel_getsockname); 3522 3523 /** 3524 * kernel_getpeername - get the address which the socket is connected (kernel space) 3525 * @sock: socket 3526 * @addr: address holder 3527 * 3528 * Fills the @addr pointer with the address which the socket is connected. 3529 * Returns the length of the address in bytes or an error code. 3530 */ 3531 3532 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3533 { 3534 return sock->ops->getname(sock, addr, 1); 3535 } 3536 EXPORT_SYMBOL(kernel_getpeername); 3537 3538 /** 3539 * kernel_sendpage - send a &page through a socket (kernel space) 3540 * @sock: socket 3541 * @page: page 3542 * @offset: page offset 3543 * @size: total size in bytes 3544 * @flags: flags (MSG_DONTWAIT, ...) 3545 * 3546 * Returns the total amount sent in bytes or an error. 3547 */ 3548 3549 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3550 size_t size, int flags) 3551 { 3552 if (sock->ops->sendpage) { 3553 /* Warn in case the improper page to zero-copy send */ 3554 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3555 return sock->ops->sendpage(sock, page, offset, size, flags); 3556 } 3557 return sock_no_sendpage(sock, page, offset, size, flags); 3558 } 3559 EXPORT_SYMBOL(kernel_sendpage); 3560 3561 /** 3562 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3563 * @sk: sock 3564 * @page: page 3565 * @offset: page offset 3566 * @size: total size in bytes 3567 * @flags: flags (MSG_DONTWAIT, ...) 3568 * 3569 * Returns the total amount sent in bytes or an error. 3570 * Caller must hold @sk. 3571 */ 3572 3573 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3574 size_t size, int flags) 3575 { 3576 struct socket *sock = sk->sk_socket; 3577 3578 if (sock->ops->sendpage_locked) 3579 return sock->ops->sendpage_locked(sk, page, offset, size, 3580 flags); 3581 3582 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3583 } 3584 EXPORT_SYMBOL(kernel_sendpage_locked); 3585 3586 /** 3587 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3588 * @sock: socket 3589 * @how: connection part 3590 * 3591 * Returns 0 or an error. 3592 */ 3593 3594 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3595 { 3596 return sock->ops->shutdown(sock, how); 3597 } 3598 EXPORT_SYMBOL(kernel_sock_shutdown); 3599 3600 /** 3601 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3602 * @sk: socket 3603 * 3604 * This routine returns the IP overhead imposed by a socket i.e. 3605 * the length of the underlying IP header, depending on whether 3606 * this is an IPv4 or IPv6 socket and the length from IP options turned 3607 * on at the socket. Assumes that the caller has a lock on the socket. 3608 */ 3609 3610 u32 kernel_sock_ip_overhead(struct sock *sk) 3611 { 3612 struct inet_sock *inet; 3613 struct ip_options_rcu *opt; 3614 u32 overhead = 0; 3615 #if IS_ENABLED(CONFIG_IPV6) 3616 struct ipv6_pinfo *np; 3617 struct ipv6_txoptions *optv6 = NULL; 3618 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3619 3620 if (!sk) 3621 return overhead; 3622 3623 switch (sk->sk_family) { 3624 case AF_INET: 3625 inet = inet_sk(sk); 3626 overhead += sizeof(struct iphdr); 3627 opt = rcu_dereference_protected(inet->inet_opt, 3628 sock_owned_by_user(sk)); 3629 if (opt) 3630 overhead += opt->opt.optlen; 3631 return overhead; 3632 #if IS_ENABLED(CONFIG_IPV6) 3633 case AF_INET6: 3634 np = inet6_sk(sk); 3635 overhead += sizeof(struct ipv6hdr); 3636 if (np) 3637 optv6 = rcu_dereference_protected(np->opt, 3638 sock_owned_by_user(sk)); 3639 if (optv6) 3640 overhead += (optv6->opt_flen + optv6->opt_nflen); 3641 return overhead; 3642 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3643 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3644 return overhead; 3645 } 3646 } 3647 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3648