1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 89 #include <asm/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 #include <net/wext.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 102 unsigned long nr_segs, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 109 #ifdef CONFIG_COMPAT 110 static long compat_sock_ioctl(struct file *file, 111 unsigned int cmd, unsigned long arg); 112 #endif 113 static int sock_fasync(int fd, struct file *filp, int on); 114 static ssize_t sock_sendpage(struct file *file, struct page *page, 115 int offset, size_t size, loff_t *ppos, int more); 116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 117 struct pipe_inode_info *pipe, size_t len, 118 unsigned int flags); 119 120 /* 121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 122 * in the operation structures but are done directly via the socketcall() multiplexor. 123 */ 124 125 static const struct file_operations socket_file_ops = { 126 .owner = THIS_MODULE, 127 .llseek = no_llseek, 128 .aio_read = sock_aio_read, 129 .aio_write = sock_aio_write, 130 .poll = sock_poll, 131 .unlocked_ioctl = sock_ioctl, 132 #ifdef CONFIG_COMPAT 133 .compat_ioctl = compat_sock_ioctl, 134 #endif 135 .mmap = sock_mmap, 136 .open = sock_no_open, /* special open code to disallow open via /proc */ 137 .release = sock_close, 138 .fasync = sock_fasync, 139 .sendpage = sock_sendpage, 140 .splice_write = generic_splice_sendpage, 141 .splice_read = sock_splice_read, 142 }; 143 144 /* 145 * The protocol list. Each protocol is registered in here. 146 */ 147 148 static DEFINE_SPINLOCK(net_family_lock); 149 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 150 151 /* 152 * Statistics counters of the socket lists 153 */ 154 155 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 156 157 /* 158 * Support routines. 159 * Move socket addresses back and forth across the kernel/user 160 * divide and look after the messy bits. 161 */ 162 163 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 164 16 for IP, 16 for IPX, 165 24 for IPv6, 166 about 80 for AX.25 167 must be at least one bigger than 168 the AF_UNIX size (see net/unix/af_unix.c 169 :unix_mkname()). 170 */ 171 172 /** 173 * move_addr_to_kernel - copy a socket address into kernel space 174 * @uaddr: Address in user space 175 * @kaddr: Address in kernel space 176 * @ulen: Length in user space 177 * 178 * The address is copied into kernel space. If the provided address is 179 * too long an error code of -EINVAL is returned. If the copy gives 180 * invalid addresses -EFAULT is returned. On a success 0 is returned. 181 */ 182 183 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 184 { 185 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 186 return -EINVAL; 187 if (ulen == 0) 188 return 0; 189 if (copy_from_user(kaddr, uaddr, ulen)) 190 return -EFAULT; 191 return audit_sockaddr(ulen, kaddr); 192 } 193 194 /** 195 * move_addr_to_user - copy an address to user space 196 * @kaddr: kernel space address 197 * @klen: length of address in kernel 198 * @uaddr: user space address 199 * @ulen: pointer to user length field 200 * 201 * The value pointed to by ulen on entry is the buffer length available. 202 * This is overwritten with the buffer space used. -EINVAL is returned 203 * if an overlong buffer is specified or a negative buffer size. -EFAULT 204 * is returned if either the buffer or the length field are not 205 * accessible. 206 * After copying the data up to the limit the user specifies, the true 207 * length of the data is written over the length limit the user 208 * specified. Zero is returned for a success. 209 */ 210 211 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 212 int __user *ulen) 213 { 214 int err; 215 int len; 216 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0 || len > sizeof(struct sockaddr_storage)) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 #define SOCKFS_MAGIC 0x534F434B 238 239 static struct kmem_cache *sock_inode_cachep __read_mostly; 240 241 static struct inode *sock_alloc_inode(struct super_block *sb) 242 { 243 struct socket_alloc *ei; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 init_waitqueue_head(&ei->socket.wait); 249 250 ei->socket.fasync_list = NULL; 251 ei->socket.state = SS_UNCONNECTED; 252 ei->socket.flags = 0; 253 ei->socket.ops = NULL; 254 ei->socket.sk = NULL; 255 ei->socket.file = NULL; 256 257 return &ei->vfs_inode; 258 } 259 260 static void sock_destroy_inode(struct inode *inode) 261 { 262 kmem_cache_free(sock_inode_cachep, 263 container_of(inode, struct socket_alloc, vfs_inode)); 264 } 265 266 static void init_once(struct kmem_cache *cachep, void *foo) 267 { 268 struct socket_alloc *ei = (struct socket_alloc *)foo; 269 270 inode_init_once(&ei->vfs_inode); 271 } 272 273 static int init_inodecache(void) 274 { 275 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 276 sizeof(struct socket_alloc), 277 0, 278 (SLAB_HWCACHE_ALIGN | 279 SLAB_RECLAIM_ACCOUNT | 280 SLAB_MEM_SPREAD), 281 init_once); 282 if (sock_inode_cachep == NULL) 283 return -ENOMEM; 284 return 0; 285 } 286 287 static struct super_operations sockfs_ops = { 288 .alloc_inode = sock_alloc_inode, 289 .destroy_inode =sock_destroy_inode, 290 .statfs = simple_statfs, 291 }; 292 293 static int sockfs_get_sb(struct file_system_type *fs_type, 294 int flags, const char *dev_name, void *data, 295 struct vfsmount *mnt) 296 { 297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 298 mnt); 299 } 300 301 static struct vfsmount *sock_mnt __read_mostly; 302 303 static struct file_system_type sock_fs_type = { 304 .name = "sockfs", 305 .get_sb = sockfs_get_sb, 306 .kill_sb = kill_anon_super, 307 }; 308 309 static int sockfs_delete_dentry(struct dentry *dentry) 310 { 311 /* 312 * At creation time, we pretended this dentry was hashed 313 * (by clearing DCACHE_UNHASHED bit in d_flags) 314 * At delete time, we restore the truth : not hashed. 315 * (so that dput() can proceed correctly) 316 */ 317 dentry->d_flags |= DCACHE_UNHASHED; 318 return 0; 319 } 320 321 /* 322 * sockfs_dname() is called from d_path(). 323 */ 324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 325 { 326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 327 dentry->d_inode->i_ino); 328 } 329 330 static struct dentry_operations sockfs_dentry_operations = { 331 .d_delete = sockfs_delete_dentry, 332 .d_dname = sockfs_dname, 333 }; 334 335 /* 336 * Obtains the first available file descriptor and sets it up for use. 337 * 338 * These functions create file structures and maps them to fd space 339 * of the current process. On success it returns file descriptor 340 * and file struct implicitly stored in sock->file. 341 * Note that another thread may close file descriptor before we return 342 * from this function. We use the fact that now we do not refer 343 * to socket after mapping. If one day we will need it, this 344 * function will increment ref. count on file by 1. 345 * 346 * In any case returned fd MAY BE not valid! 347 * This race condition is unavoidable 348 * with shared fd spaces, we cannot solve it inside kernel, 349 * but we take care of internal coherence yet. 350 */ 351 352 static int sock_alloc_fd(struct file **filep) 353 { 354 int fd; 355 356 fd = get_unused_fd(); 357 if (likely(fd >= 0)) { 358 struct file *file = get_empty_filp(); 359 360 *filep = file; 361 if (unlikely(!file)) { 362 put_unused_fd(fd); 363 return -ENFILE; 364 } 365 } else 366 *filep = NULL; 367 return fd; 368 } 369 370 static int sock_attach_fd(struct socket *sock, struct file *file) 371 { 372 struct dentry *dentry; 373 struct qstr name = { .name = "" }; 374 375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 376 if (unlikely(!dentry)) 377 return -ENOMEM; 378 379 dentry->d_op = &sockfs_dentry_operations; 380 /* 381 * We dont want to push this dentry into global dentry hash table. 382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 383 * This permits a working /proc/$pid/fd/XXX on sockets 384 */ 385 dentry->d_flags &= ~DCACHE_UNHASHED; 386 d_instantiate(dentry, SOCK_INODE(sock)); 387 388 sock->file = file; 389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 390 &socket_file_ops); 391 SOCK_INODE(sock)->i_fop = &socket_file_ops; 392 file->f_flags = O_RDWR; 393 file->f_pos = 0; 394 file->private_data = sock; 395 396 return 0; 397 } 398 399 int sock_map_fd(struct socket *sock) 400 { 401 struct file *newfile; 402 int fd = sock_alloc_fd(&newfile); 403 404 if (likely(fd >= 0)) { 405 int err = sock_attach_fd(sock, newfile); 406 407 if (unlikely(err < 0)) { 408 put_filp(newfile); 409 put_unused_fd(fd); 410 return err; 411 } 412 fd_install(fd, newfile); 413 } 414 return fd; 415 } 416 417 static struct socket *sock_from_file(struct file *file, int *err) 418 { 419 if (file->f_op == &socket_file_ops) 420 return file->private_data; /* set in sock_map_fd */ 421 422 *err = -ENOTSOCK; 423 return NULL; 424 } 425 426 /** 427 * sockfd_lookup - Go from a file number to its socket slot 428 * @fd: file handle 429 * @err: pointer to an error code return 430 * 431 * The file handle passed in is locked and the socket it is bound 432 * too is returned. If an error occurs the err pointer is overwritten 433 * with a negative errno code and NULL is returned. The function checks 434 * for both invalid handles and passing a handle which is not a socket. 435 * 436 * On a success the socket object pointer is returned. 437 */ 438 439 struct socket *sockfd_lookup(int fd, int *err) 440 { 441 struct file *file; 442 struct socket *sock; 443 444 file = fget(fd); 445 if (!file) { 446 *err = -EBADF; 447 return NULL; 448 } 449 450 sock = sock_from_file(file, err); 451 if (!sock) 452 fput(file); 453 return sock; 454 } 455 456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 457 { 458 struct file *file; 459 struct socket *sock; 460 461 *err = -EBADF; 462 file = fget_light(fd, fput_needed); 463 if (file) { 464 sock = sock_from_file(file, err); 465 if (sock) 466 return sock; 467 fput_light(file, *fput_needed); 468 } 469 return NULL; 470 } 471 472 /** 473 * sock_alloc - allocate a socket 474 * 475 * Allocate a new inode and socket object. The two are bound together 476 * and initialised. The socket is then returned. If we are out of inodes 477 * NULL is returned. 478 */ 479 480 static struct socket *sock_alloc(void) 481 { 482 struct inode *inode; 483 struct socket *sock; 484 485 inode = new_inode(sock_mnt->mnt_sb); 486 if (!inode) 487 return NULL; 488 489 sock = SOCKET_I(inode); 490 491 inode->i_mode = S_IFSOCK | S_IRWXUGO; 492 inode->i_uid = current->fsuid; 493 inode->i_gid = current->fsgid; 494 495 get_cpu_var(sockets_in_use)++; 496 put_cpu_var(sockets_in_use); 497 return sock; 498 } 499 500 /* 501 * In theory you can't get an open on this inode, but /proc provides 502 * a back door. Remember to keep it shut otherwise you'll let the 503 * creepy crawlies in. 504 */ 505 506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 507 { 508 return -ENXIO; 509 } 510 511 const struct file_operations bad_sock_fops = { 512 .owner = THIS_MODULE, 513 .open = sock_no_open, 514 }; 515 516 /** 517 * sock_release - close a socket 518 * @sock: socket to close 519 * 520 * The socket is released from the protocol stack if it has a release 521 * callback, and the inode is then released if the socket is bound to 522 * an inode not a file. 523 */ 524 525 void sock_release(struct socket *sock) 526 { 527 if (sock->ops) { 528 struct module *owner = sock->ops->owner; 529 530 sock->ops->release(sock); 531 sock->ops = NULL; 532 module_put(owner); 533 } 534 535 if (sock->fasync_list) 536 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 537 538 get_cpu_var(sockets_in_use)--; 539 put_cpu_var(sockets_in_use); 540 if (!sock->file) { 541 iput(SOCK_INODE(sock)); 542 return; 543 } 544 sock->file = NULL; 545 } 546 547 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 548 struct msghdr *msg, size_t size) 549 { 550 struct sock_iocb *si = kiocb_to_siocb(iocb); 551 int err; 552 553 si->sock = sock; 554 si->scm = NULL; 555 si->msg = msg; 556 si->size = size; 557 558 err = security_socket_sendmsg(sock, msg, size); 559 if (err) 560 return err; 561 562 return sock->ops->sendmsg(iocb, sock, msg, size); 563 } 564 565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 566 { 567 struct kiocb iocb; 568 struct sock_iocb siocb; 569 int ret; 570 571 init_sync_kiocb(&iocb, NULL); 572 iocb.private = &siocb; 573 ret = __sock_sendmsg(&iocb, sock, msg, size); 574 if (-EIOCBQUEUED == ret) 575 ret = wait_on_sync_kiocb(&iocb); 576 return ret; 577 } 578 579 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 580 struct kvec *vec, size_t num, size_t size) 581 { 582 mm_segment_t oldfs = get_fs(); 583 int result; 584 585 set_fs(KERNEL_DS); 586 /* 587 * the following is safe, since for compiler definitions of kvec and 588 * iovec are identical, yielding the same in-core layout and alignment 589 */ 590 msg->msg_iov = (struct iovec *)vec; 591 msg->msg_iovlen = num; 592 result = sock_sendmsg(sock, msg, size); 593 set_fs(oldfs); 594 return result; 595 } 596 597 /* 598 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 599 */ 600 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 601 struct sk_buff *skb) 602 { 603 ktime_t kt = skb->tstamp; 604 605 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 606 struct timeval tv; 607 /* Race occurred between timestamp enabling and packet 608 receiving. Fill in the current time for now. */ 609 if (kt.tv64 == 0) 610 kt = ktime_get_real(); 611 skb->tstamp = kt; 612 tv = ktime_to_timeval(kt); 613 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 614 } else { 615 struct timespec ts; 616 /* Race occurred between timestamp enabling and packet 617 receiving. Fill in the current time for now. */ 618 if (kt.tv64 == 0) 619 kt = ktime_get_real(); 620 skb->tstamp = kt; 621 ts = ktime_to_timespec(kt); 622 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 623 } 624 } 625 626 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 627 628 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 629 struct msghdr *msg, size_t size, int flags) 630 { 631 int err; 632 struct sock_iocb *si = kiocb_to_siocb(iocb); 633 634 si->sock = sock; 635 si->scm = NULL; 636 si->msg = msg; 637 si->size = size; 638 si->flags = flags; 639 640 err = security_socket_recvmsg(sock, msg, size, flags); 641 if (err) 642 return err; 643 644 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 645 } 646 647 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 648 size_t size, int flags) 649 { 650 struct kiocb iocb; 651 struct sock_iocb siocb; 652 int ret; 653 654 init_sync_kiocb(&iocb, NULL); 655 iocb.private = &siocb; 656 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 657 if (-EIOCBQUEUED == ret) 658 ret = wait_on_sync_kiocb(&iocb); 659 return ret; 660 } 661 662 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 663 struct kvec *vec, size_t num, size_t size, int flags) 664 { 665 mm_segment_t oldfs = get_fs(); 666 int result; 667 668 set_fs(KERNEL_DS); 669 /* 670 * the following is safe, since for compiler definitions of kvec and 671 * iovec are identical, yielding the same in-core layout and alignment 672 */ 673 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 674 result = sock_recvmsg(sock, msg, size, flags); 675 set_fs(oldfs); 676 return result; 677 } 678 679 static void sock_aio_dtor(struct kiocb *iocb) 680 { 681 kfree(iocb->private); 682 } 683 684 static ssize_t sock_sendpage(struct file *file, struct page *page, 685 int offset, size_t size, loff_t *ppos, int more) 686 { 687 struct socket *sock; 688 int flags; 689 690 sock = file->private_data; 691 692 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 693 if (more) 694 flags |= MSG_MORE; 695 696 return sock->ops->sendpage(sock, page, offset, size, flags); 697 } 698 699 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 700 struct pipe_inode_info *pipe, size_t len, 701 unsigned int flags) 702 { 703 struct socket *sock = file->private_data; 704 705 if (unlikely(!sock->ops->splice_read)) 706 return -EINVAL; 707 708 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 709 } 710 711 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 712 struct sock_iocb *siocb) 713 { 714 if (!is_sync_kiocb(iocb)) { 715 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 716 if (!siocb) 717 return NULL; 718 iocb->ki_dtor = sock_aio_dtor; 719 } 720 721 siocb->kiocb = iocb; 722 iocb->private = siocb; 723 return siocb; 724 } 725 726 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 727 struct file *file, const struct iovec *iov, 728 unsigned long nr_segs) 729 { 730 struct socket *sock = file->private_data; 731 size_t size = 0; 732 int i; 733 734 for (i = 0; i < nr_segs; i++) 735 size += iov[i].iov_len; 736 737 msg->msg_name = NULL; 738 msg->msg_namelen = 0; 739 msg->msg_control = NULL; 740 msg->msg_controllen = 0; 741 msg->msg_iov = (struct iovec *)iov; 742 msg->msg_iovlen = nr_segs; 743 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 744 745 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 746 } 747 748 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 749 unsigned long nr_segs, loff_t pos) 750 { 751 struct sock_iocb siocb, *x; 752 753 if (pos != 0) 754 return -ESPIPE; 755 756 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 757 return 0; 758 759 760 x = alloc_sock_iocb(iocb, &siocb); 761 if (!x) 762 return -ENOMEM; 763 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 764 } 765 766 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 767 struct file *file, const struct iovec *iov, 768 unsigned long nr_segs) 769 { 770 struct socket *sock = file->private_data; 771 size_t size = 0; 772 int i; 773 774 for (i = 0; i < nr_segs; i++) 775 size += iov[i].iov_len; 776 777 msg->msg_name = NULL; 778 msg->msg_namelen = 0; 779 msg->msg_control = NULL; 780 msg->msg_controllen = 0; 781 msg->msg_iov = (struct iovec *)iov; 782 msg->msg_iovlen = nr_segs; 783 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 784 if (sock->type == SOCK_SEQPACKET) 785 msg->msg_flags |= MSG_EOR; 786 787 return __sock_sendmsg(iocb, sock, msg, size); 788 } 789 790 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 791 unsigned long nr_segs, loff_t pos) 792 { 793 struct sock_iocb siocb, *x; 794 795 if (pos != 0) 796 return -ESPIPE; 797 798 x = alloc_sock_iocb(iocb, &siocb); 799 if (!x) 800 return -ENOMEM; 801 802 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 803 } 804 805 /* 806 * Atomic setting of ioctl hooks to avoid race 807 * with module unload. 808 */ 809 810 static DEFINE_MUTEX(br_ioctl_mutex); 811 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 812 813 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 814 { 815 mutex_lock(&br_ioctl_mutex); 816 br_ioctl_hook = hook; 817 mutex_unlock(&br_ioctl_mutex); 818 } 819 820 EXPORT_SYMBOL(brioctl_set); 821 822 static DEFINE_MUTEX(vlan_ioctl_mutex); 823 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 824 825 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 826 { 827 mutex_lock(&vlan_ioctl_mutex); 828 vlan_ioctl_hook = hook; 829 mutex_unlock(&vlan_ioctl_mutex); 830 } 831 832 EXPORT_SYMBOL(vlan_ioctl_set); 833 834 static DEFINE_MUTEX(dlci_ioctl_mutex); 835 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 836 837 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 838 { 839 mutex_lock(&dlci_ioctl_mutex); 840 dlci_ioctl_hook = hook; 841 mutex_unlock(&dlci_ioctl_mutex); 842 } 843 844 EXPORT_SYMBOL(dlci_ioctl_set); 845 846 /* 847 * With an ioctl, arg may well be a user mode pointer, but we don't know 848 * what to do with it - that's up to the protocol still. 849 */ 850 851 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 852 { 853 struct socket *sock; 854 struct sock *sk; 855 void __user *argp = (void __user *)arg; 856 int pid, err; 857 struct net *net; 858 859 sock = file->private_data; 860 sk = sock->sk; 861 net = sock_net(sk); 862 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 863 err = dev_ioctl(net, cmd, argp); 864 } else 865 #ifdef CONFIG_WIRELESS_EXT 866 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 867 err = dev_ioctl(net, cmd, argp); 868 } else 869 #endif /* CONFIG_WIRELESS_EXT */ 870 switch (cmd) { 871 case FIOSETOWN: 872 case SIOCSPGRP: 873 err = -EFAULT; 874 if (get_user(pid, (int __user *)argp)) 875 break; 876 err = f_setown(sock->file, pid, 1); 877 break; 878 case FIOGETOWN: 879 case SIOCGPGRP: 880 err = put_user(f_getown(sock->file), 881 (int __user *)argp); 882 break; 883 case SIOCGIFBR: 884 case SIOCSIFBR: 885 case SIOCBRADDBR: 886 case SIOCBRDELBR: 887 err = -ENOPKG; 888 if (!br_ioctl_hook) 889 request_module("bridge"); 890 891 mutex_lock(&br_ioctl_mutex); 892 if (br_ioctl_hook) 893 err = br_ioctl_hook(net, cmd, argp); 894 mutex_unlock(&br_ioctl_mutex); 895 break; 896 case SIOCGIFVLAN: 897 case SIOCSIFVLAN: 898 err = -ENOPKG; 899 if (!vlan_ioctl_hook) 900 request_module("8021q"); 901 902 mutex_lock(&vlan_ioctl_mutex); 903 if (vlan_ioctl_hook) 904 err = vlan_ioctl_hook(net, argp); 905 mutex_unlock(&vlan_ioctl_mutex); 906 break; 907 case SIOCADDDLCI: 908 case SIOCDELDLCI: 909 err = -ENOPKG; 910 if (!dlci_ioctl_hook) 911 request_module("dlci"); 912 913 mutex_lock(&dlci_ioctl_mutex); 914 if (dlci_ioctl_hook) 915 err = dlci_ioctl_hook(cmd, argp); 916 mutex_unlock(&dlci_ioctl_mutex); 917 break; 918 default: 919 err = sock->ops->ioctl(sock, cmd, arg); 920 921 /* 922 * If this ioctl is unknown try to hand it down 923 * to the NIC driver. 924 */ 925 if (err == -ENOIOCTLCMD) 926 err = dev_ioctl(net, cmd, argp); 927 break; 928 } 929 return err; 930 } 931 932 int sock_create_lite(int family, int type, int protocol, struct socket **res) 933 { 934 int err; 935 struct socket *sock = NULL; 936 937 err = security_socket_create(family, type, protocol, 1); 938 if (err) 939 goto out; 940 941 sock = sock_alloc(); 942 if (!sock) { 943 err = -ENOMEM; 944 goto out; 945 } 946 947 sock->type = type; 948 err = security_socket_post_create(sock, family, type, protocol, 1); 949 if (err) 950 goto out_release; 951 952 out: 953 *res = sock; 954 return err; 955 out_release: 956 sock_release(sock); 957 sock = NULL; 958 goto out; 959 } 960 961 /* No kernel lock held - perfect */ 962 static unsigned int sock_poll(struct file *file, poll_table *wait) 963 { 964 struct socket *sock; 965 966 /* 967 * We can't return errors to poll, so it's either yes or no. 968 */ 969 sock = file->private_data; 970 return sock->ops->poll(file, sock, wait); 971 } 972 973 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 974 { 975 struct socket *sock = file->private_data; 976 977 return sock->ops->mmap(file, sock, vma); 978 } 979 980 static int sock_close(struct inode *inode, struct file *filp) 981 { 982 /* 983 * It was possible the inode is NULL we were 984 * closing an unfinished socket. 985 */ 986 987 if (!inode) { 988 printk(KERN_DEBUG "sock_close: NULL inode\n"); 989 return 0; 990 } 991 sock_fasync(-1, filp, 0); 992 sock_release(SOCKET_I(inode)); 993 return 0; 994 } 995 996 /* 997 * Update the socket async list 998 * 999 * Fasync_list locking strategy. 1000 * 1001 * 1. fasync_list is modified only under process context socket lock 1002 * i.e. under semaphore. 1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1004 * or under socket lock. 1005 * 3. fasync_list can be used from softirq context, so that 1006 * modification under socket lock have to be enhanced with 1007 * write_lock_bh(&sk->sk_callback_lock). 1008 * --ANK (990710) 1009 */ 1010 1011 static int sock_fasync(int fd, struct file *filp, int on) 1012 { 1013 struct fasync_struct *fa, *fna = NULL, **prev; 1014 struct socket *sock; 1015 struct sock *sk; 1016 1017 if (on) { 1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1019 if (fna == NULL) 1020 return -ENOMEM; 1021 } 1022 1023 sock = filp->private_data; 1024 1025 sk = sock->sk; 1026 if (sk == NULL) { 1027 kfree(fna); 1028 return -EINVAL; 1029 } 1030 1031 lock_sock(sk); 1032 1033 prev = &(sock->fasync_list); 1034 1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1036 if (fa->fa_file == filp) 1037 break; 1038 1039 if (on) { 1040 if (fa != NULL) { 1041 write_lock_bh(&sk->sk_callback_lock); 1042 fa->fa_fd = fd; 1043 write_unlock_bh(&sk->sk_callback_lock); 1044 1045 kfree(fna); 1046 goto out; 1047 } 1048 fna->fa_file = filp; 1049 fna->fa_fd = fd; 1050 fna->magic = FASYNC_MAGIC; 1051 fna->fa_next = sock->fasync_list; 1052 write_lock_bh(&sk->sk_callback_lock); 1053 sock->fasync_list = fna; 1054 write_unlock_bh(&sk->sk_callback_lock); 1055 } else { 1056 if (fa != NULL) { 1057 write_lock_bh(&sk->sk_callback_lock); 1058 *prev = fa->fa_next; 1059 write_unlock_bh(&sk->sk_callback_lock); 1060 kfree(fa); 1061 } 1062 } 1063 1064 out: 1065 release_sock(sock->sk); 1066 return 0; 1067 } 1068 1069 /* This function may be called only under socket lock or callback_lock */ 1070 1071 int sock_wake_async(struct socket *sock, int how, int band) 1072 { 1073 if (!sock || !sock->fasync_list) 1074 return -1; 1075 switch (how) { 1076 case SOCK_WAKE_WAITD: 1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1078 break; 1079 goto call_kill; 1080 case SOCK_WAKE_SPACE: 1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1082 break; 1083 /* fall through */ 1084 case SOCK_WAKE_IO: 1085 call_kill: 1086 __kill_fasync(sock->fasync_list, SIGIO, band); 1087 break; 1088 case SOCK_WAKE_URG: 1089 __kill_fasync(sock->fasync_list, SIGURG, band); 1090 } 1091 return 0; 1092 } 1093 1094 static int __sock_create(struct net *net, int family, int type, int protocol, 1095 struct socket **res, int kern) 1096 { 1097 int err; 1098 struct socket *sock; 1099 const struct net_proto_family *pf; 1100 1101 /* 1102 * Check protocol is in range 1103 */ 1104 if (family < 0 || family >= NPROTO) 1105 return -EAFNOSUPPORT; 1106 if (type < 0 || type >= SOCK_MAX) 1107 return -EINVAL; 1108 1109 /* Compatibility. 1110 1111 This uglymoron is moved from INET layer to here to avoid 1112 deadlock in module load. 1113 */ 1114 if (family == PF_INET && type == SOCK_PACKET) { 1115 static int warned; 1116 if (!warned) { 1117 warned = 1; 1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1119 current->comm); 1120 } 1121 family = PF_PACKET; 1122 } 1123 1124 err = security_socket_create(family, type, protocol, kern); 1125 if (err) 1126 return err; 1127 1128 /* 1129 * Allocate the socket and allow the family to set things up. if 1130 * the protocol is 0, the family is instructed to select an appropriate 1131 * default. 1132 */ 1133 sock = sock_alloc(); 1134 if (!sock) { 1135 if (net_ratelimit()) 1136 printk(KERN_WARNING "socket: no more sockets\n"); 1137 return -ENFILE; /* Not exactly a match, but its the 1138 closest posix thing */ 1139 } 1140 1141 sock->type = type; 1142 1143 #if defined(CONFIG_KMOD) 1144 /* Attempt to load a protocol module if the find failed. 1145 * 1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1147 * requested real, full-featured networking support upon configuration. 1148 * Otherwise module support will break! 1149 */ 1150 if (net_families[family] == NULL) 1151 request_module("net-pf-%d", family); 1152 #endif 1153 1154 rcu_read_lock(); 1155 pf = rcu_dereference(net_families[family]); 1156 err = -EAFNOSUPPORT; 1157 if (!pf) 1158 goto out_release; 1159 1160 /* 1161 * We will call the ->create function, that possibly is in a loadable 1162 * module, so we have to bump that loadable module refcnt first. 1163 */ 1164 if (!try_module_get(pf->owner)) 1165 goto out_release; 1166 1167 /* Now protected by module ref count */ 1168 rcu_read_unlock(); 1169 1170 err = pf->create(net, sock, protocol); 1171 if (err < 0) 1172 goto out_module_put; 1173 1174 /* 1175 * Now to bump the refcnt of the [loadable] module that owns this 1176 * socket at sock_release time we decrement its refcnt. 1177 */ 1178 if (!try_module_get(sock->ops->owner)) 1179 goto out_module_busy; 1180 1181 /* 1182 * Now that we're done with the ->create function, the [loadable] 1183 * module can have its refcnt decremented 1184 */ 1185 module_put(pf->owner); 1186 err = security_socket_post_create(sock, family, type, protocol, kern); 1187 if (err) 1188 goto out_sock_release; 1189 *res = sock; 1190 1191 return 0; 1192 1193 out_module_busy: 1194 err = -EAFNOSUPPORT; 1195 out_module_put: 1196 sock->ops = NULL; 1197 module_put(pf->owner); 1198 out_sock_release: 1199 sock_release(sock); 1200 return err; 1201 1202 out_release: 1203 rcu_read_unlock(); 1204 goto out_sock_release; 1205 } 1206 1207 int sock_create(int family, int type, int protocol, struct socket **res) 1208 { 1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1210 } 1211 1212 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1213 { 1214 return __sock_create(&init_net, family, type, protocol, res, 1); 1215 } 1216 1217 asmlinkage long sys_socket(int family, int type, int protocol) 1218 { 1219 int retval; 1220 struct socket *sock; 1221 1222 retval = sock_create(family, type, protocol, &sock); 1223 if (retval < 0) 1224 goto out; 1225 1226 retval = sock_map_fd(sock); 1227 if (retval < 0) 1228 goto out_release; 1229 1230 out: 1231 /* It may be already another descriptor 8) Not kernel problem. */ 1232 return retval; 1233 1234 out_release: 1235 sock_release(sock); 1236 return retval; 1237 } 1238 1239 /* 1240 * Create a pair of connected sockets. 1241 */ 1242 1243 asmlinkage long sys_socketpair(int family, int type, int protocol, 1244 int __user *usockvec) 1245 { 1246 struct socket *sock1, *sock2; 1247 int fd1, fd2, err; 1248 struct file *newfile1, *newfile2; 1249 1250 /* 1251 * Obtain the first socket and check if the underlying protocol 1252 * supports the socketpair call. 1253 */ 1254 1255 err = sock_create(family, type, protocol, &sock1); 1256 if (err < 0) 1257 goto out; 1258 1259 err = sock_create(family, type, protocol, &sock2); 1260 if (err < 0) 1261 goto out_release_1; 1262 1263 err = sock1->ops->socketpair(sock1, sock2); 1264 if (err < 0) 1265 goto out_release_both; 1266 1267 fd1 = sock_alloc_fd(&newfile1); 1268 if (unlikely(fd1 < 0)) { 1269 err = fd1; 1270 goto out_release_both; 1271 } 1272 1273 fd2 = sock_alloc_fd(&newfile2); 1274 if (unlikely(fd2 < 0)) { 1275 err = fd2; 1276 put_filp(newfile1); 1277 put_unused_fd(fd1); 1278 goto out_release_both; 1279 } 1280 1281 err = sock_attach_fd(sock1, newfile1); 1282 if (unlikely(err < 0)) { 1283 goto out_fd2; 1284 } 1285 1286 err = sock_attach_fd(sock2, newfile2); 1287 if (unlikely(err < 0)) { 1288 fput(newfile1); 1289 goto out_fd1; 1290 } 1291 1292 err = audit_fd_pair(fd1, fd2); 1293 if (err < 0) { 1294 fput(newfile1); 1295 fput(newfile2); 1296 goto out_fd; 1297 } 1298 1299 fd_install(fd1, newfile1); 1300 fd_install(fd2, newfile2); 1301 /* fd1 and fd2 may be already another descriptors. 1302 * Not kernel problem. 1303 */ 1304 1305 err = put_user(fd1, &usockvec[0]); 1306 if (!err) 1307 err = put_user(fd2, &usockvec[1]); 1308 if (!err) 1309 return 0; 1310 1311 sys_close(fd2); 1312 sys_close(fd1); 1313 return err; 1314 1315 out_release_both: 1316 sock_release(sock2); 1317 out_release_1: 1318 sock_release(sock1); 1319 out: 1320 return err; 1321 1322 out_fd2: 1323 put_filp(newfile1); 1324 sock_release(sock1); 1325 out_fd1: 1326 put_filp(newfile2); 1327 sock_release(sock2); 1328 out_fd: 1329 put_unused_fd(fd1); 1330 put_unused_fd(fd2); 1331 goto out; 1332 } 1333 1334 /* 1335 * Bind a name to a socket. Nothing much to do here since it's 1336 * the protocol's responsibility to handle the local address. 1337 * 1338 * We move the socket address to kernel space before we call 1339 * the protocol layer (having also checked the address is ok). 1340 */ 1341 1342 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1343 { 1344 struct socket *sock; 1345 struct sockaddr_storage address; 1346 int err, fput_needed; 1347 1348 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1349 if (sock) { 1350 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1351 if (err >= 0) { 1352 err = security_socket_bind(sock, 1353 (struct sockaddr *)&address, 1354 addrlen); 1355 if (!err) 1356 err = sock->ops->bind(sock, 1357 (struct sockaddr *) 1358 &address, addrlen); 1359 } 1360 fput_light(sock->file, fput_needed); 1361 } 1362 return err; 1363 } 1364 1365 /* 1366 * Perform a listen. Basically, we allow the protocol to do anything 1367 * necessary for a listen, and if that works, we mark the socket as 1368 * ready for listening. 1369 */ 1370 1371 asmlinkage long sys_listen(int fd, int backlog) 1372 { 1373 struct socket *sock; 1374 int err, fput_needed; 1375 int somaxconn; 1376 1377 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1378 if (sock) { 1379 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1380 if ((unsigned)backlog > somaxconn) 1381 backlog = somaxconn; 1382 1383 err = security_socket_listen(sock, backlog); 1384 if (!err) 1385 err = sock->ops->listen(sock, backlog); 1386 1387 fput_light(sock->file, fput_needed); 1388 } 1389 return err; 1390 } 1391 1392 /* 1393 * For accept, we attempt to create a new socket, set up the link 1394 * with the client, wake up the client, then return the new 1395 * connected fd. We collect the address of the connector in kernel 1396 * space and move it to user at the very end. This is unclean because 1397 * we open the socket then return an error. 1398 * 1399 * 1003.1g adds the ability to recvmsg() to query connection pending 1400 * status to recvmsg. We need to add that support in a way thats 1401 * clean when we restucture accept also. 1402 */ 1403 1404 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1405 int __user *upeer_addrlen) 1406 { 1407 struct socket *sock, *newsock; 1408 struct file *newfile; 1409 int err, len, newfd, fput_needed; 1410 struct sockaddr_storage address; 1411 1412 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1413 if (!sock) 1414 goto out; 1415 1416 err = -ENFILE; 1417 if (!(newsock = sock_alloc())) 1418 goto out_put; 1419 1420 newsock->type = sock->type; 1421 newsock->ops = sock->ops; 1422 1423 /* 1424 * We don't need try_module_get here, as the listening socket (sock) 1425 * has the protocol module (sock->ops->owner) held. 1426 */ 1427 __module_get(newsock->ops->owner); 1428 1429 newfd = sock_alloc_fd(&newfile); 1430 if (unlikely(newfd < 0)) { 1431 err = newfd; 1432 sock_release(newsock); 1433 goto out_put; 1434 } 1435 1436 err = sock_attach_fd(newsock, newfile); 1437 if (err < 0) 1438 goto out_fd_simple; 1439 1440 err = security_socket_accept(sock, newsock); 1441 if (err) 1442 goto out_fd; 1443 1444 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1445 if (err < 0) 1446 goto out_fd; 1447 1448 if (upeer_sockaddr) { 1449 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1450 &len, 2) < 0) { 1451 err = -ECONNABORTED; 1452 goto out_fd; 1453 } 1454 err = move_addr_to_user((struct sockaddr *)&address, 1455 len, upeer_sockaddr, upeer_addrlen); 1456 if (err < 0) 1457 goto out_fd; 1458 } 1459 1460 /* File flags are not inherited via accept() unlike another OSes. */ 1461 1462 fd_install(newfd, newfile); 1463 err = newfd; 1464 1465 security_socket_post_accept(sock, newsock); 1466 1467 out_put: 1468 fput_light(sock->file, fput_needed); 1469 out: 1470 return err; 1471 out_fd_simple: 1472 sock_release(newsock); 1473 put_filp(newfile); 1474 put_unused_fd(newfd); 1475 goto out_put; 1476 out_fd: 1477 fput(newfile); 1478 put_unused_fd(newfd); 1479 goto out_put; 1480 } 1481 1482 /* 1483 * Attempt to connect to a socket with the server address. The address 1484 * is in user space so we verify it is OK and move it to kernel space. 1485 * 1486 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1487 * break bindings 1488 * 1489 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1490 * other SEQPACKET protocols that take time to connect() as it doesn't 1491 * include the -EINPROGRESS status for such sockets. 1492 */ 1493 1494 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1495 int addrlen) 1496 { 1497 struct socket *sock; 1498 struct sockaddr_storage address; 1499 int err, fput_needed; 1500 1501 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1502 if (!sock) 1503 goto out; 1504 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1505 if (err < 0) 1506 goto out_put; 1507 1508 err = 1509 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1510 if (err) 1511 goto out_put; 1512 1513 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1514 sock->file->f_flags); 1515 out_put: 1516 fput_light(sock->file, fput_needed); 1517 out: 1518 return err; 1519 } 1520 1521 /* 1522 * Get the local address ('name') of a socket object. Move the obtained 1523 * name to user space. 1524 */ 1525 1526 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1527 int __user *usockaddr_len) 1528 { 1529 struct socket *sock; 1530 struct sockaddr_storage address; 1531 int len, err, fput_needed; 1532 1533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1534 if (!sock) 1535 goto out; 1536 1537 err = security_socket_getsockname(sock); 1538 if (err) 1539 goto out_put; 1540 1541 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1542 if (err) 1543 goto out_put; 1544 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1545 1546 out_put: 1547 fput_light(sock->file, fput_needed); 1548 out: 1549 return err; 1550 } 1551 1552 /* 1553 * Get the remote address ('name') of a socket object. Move the obtained 1554 * name to user space. 1555 */ 1556 1557 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1558 int __user *usockaddr_len) 1559 { 1560 struct socket *sock; 1561 struct sockaddr_storage address; 1562 int len, err, fput_needed; 1563 1564 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1565 if (sock != NULL) { 1566 err = security_socket_getpeername(sock); 1567 if (err) { 1568 fput_light(sock->file, fput_needed); 1569 return err; 1570 } 1571 1572 err = 1573 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1574 1); 1575 if (!err) 1576 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1577 usockaddr_len); 1578 fput_light(sock->file, fput_needed); 1579 } 1580 return err; 1581 } 1582 1583 /* 1584 * Send a datagram to a given address. We move the address into kernel 1585 * space and check the user space data area is readable before invoking 1586 * the protocol. 1587 */ 1588 1589 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1590 unsigned flags, struct sockaddr __user *addr, 1591 int addr_len) 1592 { 1593 struct socket *sock; 1594 struct sockaddr_storage address; 1595 int err; 1596 struct msghdr msg; 1597 struct iovec iov; 1598 int fput_needed; 1599 1600 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1601 if (!sock) 1602 goto out; 1603 1604 iov.iov_base = buff; 1605 iov.iov_len = len; 1606 msg.msg_name = NULL; 1607 msg.msg_iov = &iov; 1608 msg.msg_iovlen = 1; 1609 msg.msg_control = NULL; 1610 msg.msg_controllen = 0; 1611 msg.msg_namelen = 0; 1612 if (addr) { 1613 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1614 if (err < 0) 1615 goto out_put; 1616 msg.msg_name = (struct sockaddr *)&address; 1617 msg.msg_namelen = addr_len; 1618 } 1619 if (sock->file->f_flags & O_NONBLOCK) 1620 flags |= MSG_DONTWAIT; 1621 msg.msg_flags = flags; 1622 err = sock_sendmsg(sock, &msg, len); 1623 1624 out_put: 1625 fput_light(sock->file, fput_needed); 1626 out: 1627 return err; 1628 } 1629 1630 /* 1631 * Send a datagram down a socket. 1632 */ 1633 1634 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1635 { 1636 return sys_sendto(fd, buff, len, flags, NULL, 0); 1637 } 1638 1639 /* 1640 * Receive a frame from the socket and optionally record the address of the 1641 * sender. We verify the buffers are writable and if needed move the 1642 * sender address from kernel to user space. 1643 */ 1644 1645 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1646 unsigned flags, struct sockaddr __user *addr, 1647 int __user *addr_len) 1648 { 1649 struct socket *sock; 1650 struct iovec iov; 1651 struct msghdr msg; 1652 struct sockaddr_storage address; 1653 int err, err2; 1654 int fput_needed; 1655 1656 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1657 if (!sock) 1658 goto out; 1659 1660 msg.msg_control = NULL; 1661 msg.msg_controllen = 0; 1662 msg.msg_iovlen = 1; 1663 msg.msg_iov = &iov; 1664 iov.iov_len = size; 1665 iov.iov_base = ubuf; 1666 msg.msg_name = (struct sockaddr *)&address; 1667 msg.msg_namelen = sizeof(address); 1668 if (sock->file->f_flags & O_NONBLOCK) 1669 flags |= MSG_DONTWAIT; 1670 err = sock_recvmsg(sock, &msg, size, flags); 1671 1672 if (err >= 0 && addr != NULL) { 1673 err2 = move_addr_to_user((struct sockaddr *)&address, 1674 msg.msg_namelen, addr, addr_len); 1675 if (err2 < 0) 1676 err = err2; 1677 } 1678 1679 fput_light(sock->file, fput_needed); 1680 out: 1681 return err; 1682 } 1683 1684 /* 1685 * Receive a datagram from a socket. 1686 */ 1687 1688 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1689 unsigned flags) 1690 { 1691 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1692 } 1693 1694 /* 1695 * Set a socket option. Because we don't know the option lengths we have 1696 * to pass the user mode parameter for the protocols to sort out. 1697 */ 1698 1699 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1700 char __user *optval, int optlen) 1701 { 1702 int err, fput_needed; 1703 struct socket *sock; 1704 1705 if (optlen < 0) 1706 return -EINVAL; 1707 1708 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1709 if (sock != NULL) { 1710 err = security_socket_setsockopt(sock, level, optname); 1711 if (err) 1712 goto out_put; 1713 1714 if (level == SOL_SOCKET) 1715 err = 1716 sock_setsockopt(sock, level, optname, optval, 1717 optlen); 1718 else 1719 err = 1720 sock->ops->setsockopt(sock, level, optname, optval, 1721 optlen); 1722 out_put: 1723 fput_light(sock->file, fput_needed); 1724 } 1725 return err; 1726 } 1727 1728 /* 1729 * Get a socket option. Because we don't know the option lengths we have 1730 * to pass a user mode parameter for the protocols to sort out. 1731 */ 1732 1733 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1734 char __user *optval, int __user *optlen) 1735 { 1736 int err, fput_needed; 1737 struct socket *sock; 1738 1739 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1740 if (sock != NULL) { 1741 err = security_socket_getsockopt(sock, level, optname); 1742 if (err) 1743 goto out_put; 1744 1745 if (level == SOL_SOCKET) 1746 err = 1747 sock_getsockopt(sock, level, optname, optval, 1748 optlen); 1749 else 1750 err = 1751 sock->ops->getsockopt(sock, level, optname, optval, 1752 optlen); 1753 out_put: 1754 fput_light(sock->file, fput_needed); 1755 } 1756 return err; 1757 } 1758 1759 /* 1760 * Shutdown a socket. 1761 */ 1762 1763 asmlinkage long sys_shutdown(int fd, int how) 1764 { 1765 int err, fput_needed; 1766 struct socket *sock; 1767 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (sock != NULL) { 1770 err = security_socket_shutdown(sock, how); 1771 if (!err) 1772 err = sock->ops->shutdown(sock, how); 1773 fput_light(sock->file, fput_needed); 1774 } 1775 return err; 1776 } 1777 1778 /* A couple of helpful macros for getting the address of the 32/64 bit 1779 * fields which are the same type (int / unsigned) on our platforms. 1780 */ 1781 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1782 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1783 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1784 1785 /* 1786 * BSD sendmsg interface 1787 */ 1788 1789 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1790 { 1791 struct compat_msghdr __user *msg_compat = 1792 (struct compat_msghdr __user *)msg; 1793 struct socket *sock; 1794 struct sockaddr_storage address; 1795 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1796 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1797 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1798 /* 20 is size of ipv6_pktinfo */ 1799 unsigned char *ctl_buf = ctl; 1800 struct msghdr msg_sys; 1801 int err, ctl_len, iov_size, total_len; 1802 int fput_needed; 1803 1804 err = -EFAULT; 1805 if (MSG_CMSG_COMPAT & flags) { 1806 if (get_compat_msghdr(&msg_sys, msg_compat)) 1807 return -EFAULT; 1808 } 1809 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1810 return -EFAULT; 1811 1812 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1813 if (!sock) 1814 goto out; 1815 1816 /* do not move before msg_sys is valid */ 1817 err = -EMSGSIZE; 1818 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1819 goto out_put; 1820 1821 /* Check whether to allocate the iovec area */ 1822 err = -ENOMEM; 1823 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1824 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1825 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1826 if (!iov) 1827 goto out_put; 1828 } 1829 1830 /* This will also move the address data into kernel space */ 1831 if (MSG_CMSG_COMPAT & flags) { 1832 err = verify_compat_iovec(&msg_sys, iov, 1833 (struct sockaddr *)&address, 1834 VERIFY_READ); 1835 } else 1836 err = verify_iovec(&msg_sys, iov, 1837 (struct sockaddr *)&address, 1838 VERIFY_READ); 1839 if (err < 0) 1840 goto out_freeiov; 1841 total_len = err; 1842 1843 err = -ENOBUFS; 1844 1845 if (msg_sys.msg_controllen > INT_MAX) 1846 goto out_freeiov; 1847 ctl_len = msg_sys.msg_controllen; 1848 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1849 err = 1850 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1851 sizeof(ctl)); 1852 if (err) 1853 goto out_freeiov; 1854 ctl_buf = msg_sys.msg_control; 1855 ctl_len = msg_sys.msg_controllen; 1856 } else if (ctl_len) { 1857 if (ctl_len > sizeof(ctl)) { 1858 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1859 if (ctl_buf == NULL) 1860 goto out_freeiov; 1861 } 1862 err = -EFAULT; 1863 /* 1864 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1865 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1866 * checking falls down on this. 1867 */ 1868 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1869 ctl_len)) 1870 goto out_freectl; 1871 msg_sys.msg_control = ctl_buf; 1872 } 1873 msg_sys.msg_flags = flags; 1874 1875 if (sock->file->f_flags & O_NONBLOCK) 1876 msg_sys.msg_flags |= MSG_DONTWAIT; 1877 err = sock_sendmsg(sock, &msg_sys, total_len); 1878 1879 out_freectl: 1880 if (ctl_buf != ctl) 1881 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1882 out_freeiov: 1883 if (iov != iovstack) 1884 sock_kfree_s(sock->sk, iov, iov_size); 1885 out_put: 1886 fput_light(sock->file, fput_needed); 1887 out: 1888 return err; 1889 } 1890 1891 /* 1892 * BSD recvmsg interface 1893 */ 1894 1895 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1896 unsigned int flags) 1897 { 1898 struct compat_msghdr __user *msg_compat = 1899 (struct compat_msghdr __user *)msg; 1900 struct socket *sock; 1901 struct iovec iovstack[UIO_FASTIOV]; 1902 struct iovec *iov = iovstack; 1903 struct msghdr msg_sys; 1904 unsigned long cmsg_ptr; 1905 int err, iov_size, total_len, len; 1906 int fput_needed; 1907 1908 /* kernel mode address */ 1909 struct sockaddr_storage addr; 1910 1911 /* user mode address pointers */ 1912 struct sockaddr __user *uaddr; 1913 int __user *uaddr_len; 1914 1915 if (MSG_CMSG_COMPAT & flags) { 1916 if (get_compat_msghdr(&msg_sys, msg_compat)) 1917 return -EFAULT; 1918 } 1919 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1920 return -EFAULT; 1921 1922 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1923 if (!sock) 1924 goto out; 1925 1926 err = -EMSGSIZE; 1927 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1928 goto out_put; 1929 1930 /* Check whether to allocate the iovec area */ 1931 err = -ENOMEM; 1932 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1933 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1934 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1935 if (!iov) 1936 goto out_put; 1937 } 1938 1939 /* 1940 * Save the user-mode address (verify_iovec will change the 1941 * kernel msghdr to use the kernel address space) 1942 */ 1943 1944 uaddr = (__force void __user *)msg_sys.msg_name; 1945 uaddr_len = COMPAT_NAMELEN(msg); 1946 if (MSG_CMSG_COMPAT & flags) { 1947 err = verify_compat_iovec(&msg_sys, iov, 1948 (struct sockaddr *)&addr, 1949 VERIFY_WRITE); 1950 } else 1951 err = verify_iovec(&msg_sys, iov, 1952 (struct sockaddr *)&addr, 1953 VERIFY_WRITE); 1954 if (err < 0) 1955 goto out_freeiov; 1956 total_len = err; 1957 1958 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1959 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1960 1961 if (sock->file->f_flags & O_NONBLOCK) 1962 flags |= MSG_DONTWAIT; 1963 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1964 if (err < 0) 1965 goto out_freeiov; 1966 len = err; 1967 1968 if (uaddr != NULL) { 1969 err = move_addr_to_user((struct sockaddr *)&addr, 1970 msg_sys.msg_namelen, uaddr, 1971 uaddr_len); 1972 if (err < 0) 1973 goto out_freeiov; 1974 } 1975 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1976 COMPAT_FLAGS(msg)); 1977 if (err) 1978 goto out_freeiov; 1979 if (MSG_CMSG_COMPAT & flags) 1980 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1981 &msg_compat->msg_controllen); 1982 else 1983 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1984 &msg->msg_controllen); 1985 if (err) 1986 goto out_freeiov; 1987 err = len; 1988 1989 out_freeiov: 1990 if (iov != iovstack) 1991 sock_kfree_s(sock->sk, iov, iov_size); 1992 out_put: 1993 fput_light(sock->file, fput_needed); 1994 out: 1995 return err; 1996 } 1997 1998 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1999 2000 /* Argument list sizes for sys_socketcall */ 2001 #define AL(x) ((x) * sizeof(unsigned long)) 2002 static const unsigned char nargs[18]={ 2003 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2004 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2005 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 2006 }; 2007 2008 #undef AL 2009 2010 /* 2011 * System call vectors. 2012 * 2013 * Argument checking cleaned up. Saved 20% in size. 2014 * This function doesn't need to set the kernel lock because 2015 * it is set by the callees. 2016 */ 2017 2018 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2019 { 2020 unsigned long a[6]; 2021 unsigned long a0, a1; 2022 int err; 2023 2024 if (call < 1 || call > SYS_RECVMSG) 2025 return -EINVAL; 2026 2027 /* copy_from_user should be SMP safe. */ 2028 if (copy_from_user(a, args, nargs[call])) 2029 return -EFAULT; 2030 2031 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2032 if (err) 2033 return err; 2034 2035 a0 = a[0]; 2036 a1 = a[1]; 2037 2038 switch (call) { 2039 case SYS_SOCKET: 2040 err = sys_socket(a0, a1, a[2]); 2041 break; 2042 case SYS_BIND: 2043 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2044 break; 2045 case SYS_CONNECT: 2046 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2047 break; 2048 case SYS_LISTEN: 2049 err = sys_listen(a0, a1); 2050 break; 2051 case SYS_ACCEPT: 2052 err = 2053 sys_accept(a0, (struct sockaddr __user *)a1, 2054 (int __user *)a[2]); 2055 break; 2056 case SYS_GETSOCKNAME: 2057 err = 2058 sys_getsockname(a0, (struct sockaddr __user *)a1, 2059 (int __user *)a[2]); 2060 break; 2061 case SYS_GETPEERNAME: 2062 err = 2063 sys_getpeername(a0, (struct sockaddr __user *)a1, 2064 (int __user *)a[2]); 2065 break; 2066 case SYS_SOCKETPAIR: 2067 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2068 break; 2069 case SYS_SEND: 2070 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2071 break; 2072 case SYS_SENDTO: 2073 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2074 (struct sockaddr __user *)a[4], a[5]); 2075 break; 2076 case SYS_RECV: 2077 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2078 break; 2079 case SYS_RECVFROM: 2080 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2081 (struct sockaddr __user *)a[4], 2082 (int __user *)a[5]); 2083 break; 2084 case SYS_SHUTDOWN: 2085 err = sys_shutdown(a0, a1); 2086 break; 2087 case SYS_SETSOCKOPT: 2088 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2089 break; 2090 case SYS_GETSOCKOPT: 2091 err = 2092 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2093 (int __user *)a[4]); 2094 break; 2095 case SYS_SENDMSG: 2096 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2097 break; 2098 case SYS_RECVMSG: 2099 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2100 break; 2101 default: 2102 err = -EINVAL; 2103 break; 2104 } 2105 return err; 2106 } 2107 2108 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2109 2110 /** 2111 * sock_register - add a socket protocol handler 2112 * @ops: description of protocol 2113 * 2114 * This function is called by a protocol handler that wants to 2115 * advertise its address family, and have it linked into the 2116 * socket interface. The value ops->family coresponds to the 2117 * socket system call protocol family. 2118 */ 2119 int sock_register(const struct net_proto_family *ops) 2120 { 2121 int err; 2122 2123 if (ops->family >= NPROTO) { 2124 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2125 NPROTO); 2126 return -ENOBUFS; 2127 } 2128 2129 spin_lock(&net_family_lock); 2130 if (net_families[ops->family]) 2131 err = -EEXIST; 2132 else { 2133 net_families[ops->family] = ops; 2134 err = 0; 2135 } 2136 spin_unlock(&net_family_lock); 2137 2138 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2139 return err; 2140 } 2141 2142 /** 2143 * sock_unregister - remove a protocol handler 2144 * @family: protocol family to remove 2145 * 2146 * This function is called by a protocol handler that wants to 2147 * remove its address family, and have it unlinked from the 2148 * new socket creation. 2149 * 2150 * If protocol handler is a module, then it can use module reference 2151 * counts to protect against new references. If protocol handler is not 2152 * a module then it needs to provide its own protection in 2153 * the ops->create routine. 2154 */ 2155 void sock_unregister(int family) 2156 { 2157 BUG_ON(family < 0 || family >= NPROTO); 2158 2159 spin_lock(&net_family_lock); 2160 net_families[family] = NULL; 2161 spin_unlock(&net_family_lock); 2162 2163 synchronize_rcu(); 2164 2165 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2166 } 2167 2168 static int __init sock_init(void) 2169 { 2170 /* 2171 * Initialize sock SLAB cache. 2172 */ 2173 2174 sk_init(); 2175 2176 /* 2177 * Initialize skbuff SLAB cache 2178 */ 2179 skb_init(); 2180 2181 /* 2182 * Initialize the protocols module. 2183 */ 2184 2185 init_inodecache(); 2186 register_filesystem(&sock_fs_type); 2187 sock_mnt = kern_mount(&sock_fs_type); 2188 2189 /* The real protocol initialization is performed in later initcalls. 2190 */ 2191 2192 #ifdef CONFIG_NETFILTER 2193 netfilter_init(); 2194 #endif 2195 2196 return 0; 2197 } 2198 2199 core_initcall(sock_init); /* early initcall */ 2200 2201 #ifdef CONFIG_PROC_FS 2202 void socket_seq_show(struct seq_file *seq) 2203 { 2204 int cpu; 2205 int counter = 0; 2206 2207 for_each_possible_cpu(cpu) 2208 counter += per_cpu(sockets_in_use, cpu); 2209 2210 /* It can be negative, by the way. 8) */ 2211 if (counter < 0) 2212 counter = 0; 2213 2214 seq_printf(seq, "sockets: used %d\n", counter); 2215 } 2216 #endif /* CONFIG_PROC_FS */ 2217 2218 #ifdef CONFIG_COMPAT 2219 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2220 unsigned long arg) 2221 { 2222 struct socket *sock = file->private_data; 2223 int ret = -ENOIOCTLCMD; 2224 struct sock *sk; 2225 struct net *net; 2226 2227 sk = sock->sk; 2228 net = sock_net(sk); 2229 2230 if (sock->ops->compat_ioctl) 2231 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2232 2233 if (ret == -ENOIOCTLCMD && 2234 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2235 ret = compat_wext_handle_ioctl(net, cmd, arg); 2236 2237 return ret; 2238 } 2239 #endif 2240 2241 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2242 { 2243 return sock->ops->bind(sock, addr, addrlen); 2244 } 2245 2246 int kernel_listen(struct socket *sock, int backlog) 2247 { 2248 return sock->ops->listen(sock, backlog); 2249 } 2250 2251 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2252 { 2253 struct sock *sk = sock->sk; 2254 int err; 2255 2256 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2257 newsock); 2258 if (err < 0) 2259 goto done; 2260 2261 err = sock->ops->accept(sock, *newsock, flags); 2262 if (err < 0) { 2263 sock_release(*newsock); 2264 *newsock = NULL; 2265 goto done; 2266 } 2267 2268 (*newsock)->ops = sock->ops; 2269 2270 done: 2271 return err; 2272 } 2273 2274 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2275 int flags) 2276 { 2277 return sock->ops->connect(sock, addr, addrlen, flags); 2278 } 2279 2280 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2281 int *addrlen) 2282 { 2283 return sock->ops->getname(sock, addr, addrlen, 0); 2284 } 2285 2286 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2287 int *addrlen) 2288 { 2289 return sock->ops->getname(sock, addr, addrlen, 1); 2290 } 2291 2292 int kernel_getsockopt(struct socket *sock, int level, int optname, 2293 char *optval, int *optlen) 2294 { 2295 mm_segment_t oldfs = get_fs(); 2296 int err; 2297 2298 set_fs(KERNEL_DS); 2299 if (level == SOL_SOCKET) 2300 err = sock_getsockopt(sock, level, optname, optval, optlen); 2301 else 2302 err = sock->ops->getsockopt(sock, level, optname, optval, 2303 optlen); 2304 set_fs(oldfs); 2305 return err; 2306 } 2307 2308 int kernel_setsockopt(struct socket *sock, int level, int optname, 2309 char *optval, int optlen) 2310 { 2311 mm_segment_t oldfs = get_fs(); 2312 int err; 2313 2314 set_fs(KERNEL_DS); 2315 if (level == SOL_SOCKET) 2316 err = sock_setsockopt(sock, level, optname, optval, optlen); 2317 else 2318 err = sock->ops->setsockopt(sock, level, optname, optval, 2319 optlen); 2320 set_fs(oldfs); 2321 return err; 2322 } 2323 2324 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2325 size_t size, int flags) 2326 { 2327 if (sock->ops->sendpage) 2328 return sock->ops->sendpage(sock, page, offset, size, flags); 2329 2330 return sock_no_sendpage(sock, page, offset, size, flags); 2331 } 2332 2333 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2334 { 2335 mm_segment_t oldfs = get_fs(); 2336 int err; 2337 2338 set_fs(KERNEL_DS); 2339 err = sock->ops->ioctl(sock, cmd, arg); 2340 set_fs(oldfs); 2341 2342 return err; 2343 } 2344 2345 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2346 { 2347 return sock->ops->shutdown(sock, how); 2348 } 2349 2350 EXPORT_SYMBOL(sock_create); 2351 EXPORT_SYMBOL(sock_create_kern); 2352 EXPORT_SYMBOL(sock_create_lite); 2353 EXPORT_SYMBOL(sock_map_fd); 2354 EXPORT_SYMBOL(sock_recvmsg); 2355 EXPORT_SYMBOL(sock_register); 2356 EXPORT_SYMBOL(sock_release); 2357 EXPORT_SYMBOL(sock_sendmsg); 2358 EXPORT_SYMBOL(sock_unregister); 2359 EXPORT_SYMBOL(sock_wake_async); 2360 EXPORT_SYMBOL(sockfd_lookup); 2361 EXPORT_SYMBOL(kernel_sendmsg); 2362 EXPORT_SYMBOL(kernel_recvmsg); 2363 EXPORT_SYMBOL(kernel_bind); 2364 EXPORT_SYMBOL(kernel_listen); 2365 EXPORT_SYMBOL(kernel_accept); 2366 EXPORT_SYMBOL(kernel_connect); 2367 EXPORT_SYMBOL(kernel_getsockname); 2368 EXPORT_SYMBOL(kernel_getpeername); 2369 EXPORT_SYMBOL(kernel_getsockopt); 2370 EXPORT_SYMBOL(kernel_setsockopt); 2371 EXPORT_SYMBOL(kernel_sendpage); 2372 EXPORT_SYMBOL(kernel_sock_ioctl); 2373 EXPORT_SYMBOL(kernel_sock_shutdown); 2374