1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 }; 216 217 /* 218 * The protocol list. Each protocol is registered in here. 219 */ 220 221 static DEFINE_SPINLOCK(net_family_lock); 222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 223 224 /* 225 * Support routines. 226 * Move socket addresses back and forth across the kernel/user 227 * divide and look after the messy bits. 228 */ 229 230 /** 231 * move_addr_to_kernel - copy a socket address into kernel space 232 * @uaddr: Address in user space 233 * @kaddr: Address in kernel space 234 * @ulen: Length in user space 235 * 236 * The address is copied into kernel space. If the provided address is 237 * too long an error code of -EINVAL is returned. If the copy gives 238 * invalid addresses -EFAULT is returned. On a success 0 is returned. 239 */ 240 241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 242 { 243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 244 return -EINVAL; 245 if (ulen == 0) 246 return 0; 247 if (copy_from_user(kaddr, uaddr, ulen)) 248 return -EFAULT; 249 return audit_sockaddr(ulen, kaddr); 250 } 251 252 /** 253 * move_addr_to_user - copy an address to user space 254 * @kaddr: kernel space address 255 * @klen: length of address in kernel 256 * @uaddr: user space address 257 * @ulen: pointer to user length field 258 * 259 * The value pointed to by ulen on entry is the buffer length available. 260 * This is overwritten with the buffer space used. -EINVAL is returned 261 * if an overlong buffer is specified or a negative buffer size. -EFAULT 262 * is returned if either the buffer or the length field are not 263 * accessible. 264 * After copying the data up to the limit the user specifies, the true 265 * length of the data is written over the length limit the user 266 * specified. Zero is returned for a success. 267 */ 268 269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 270 void __user *uaddr, int __user *ulen) 271 { 272 int err; 273 int len; 274 275 BUG_ON(klen > sizeof(struct sockaddr_storage)); 276 err = get_user(len, ulen); 277 if (err) 278 return err; 279 if (len > klen) 280 len = klen; 281 if (len < 0) 282 return -EINVAL; 283 if (len) { 284 if (audit_sockaddr(klen, kaddr)) 285 return -ENOMEM; 286 if (copy_to_user(uaddr, kaddr, len)) 287 return -EFAULT; 288 } 289 /* 290 * "fromlen shall refer to the value before truncation.." 291 * 1003.1g 292 */ 293 return __put_user(klen, ulen); 294 } 295 296 static struct kmem_cache *sock_inode_cachep __ro_after_init; 297 298 static struct inode *sock_alloc_inode(struct super_block *sb) 299 { 300 struct socket_alloc *ei; 301 302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 303 if (!ei) 304 return NULL; 305 init_waitqueue_head(&ei->socket.wq.wait); 306 ei->socket.wq.fasync_list = NULL; 307 ei->socket.wq.flags = 0; 308 309 ei->socket.state = SS_UNCONNECTED; 310 ei->socket.flags = 0; 311 ei->socket.ops = NULL; 312 ei->socket.sk = NULL; 313 ei->socket.file = NULL; 314 315 return &ei->vfs_inode; 316 } 317 318 static void sock_free_inode(struct inode *inode) 319 { 320 struct socket_alloc *ei; 321 322 ei = container_of(inode, struct socket_alloc, vfs_inode); 323 kmem_cache_free(sock_inode_cachep, ei); 324 } 325 326 static void init_once(void *foo) 327 { 328 struct socket_alloc *ei = (struct socket_alloc *)foo; 329 330 inode_init_once(&ei->vfs_inode); 331 } 332 333 static void init_inodecache(void) 334 { 335 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 336 sizeof(struct socket_alloc), 337 0, 338 (SLAB_HWCACHE_ALIGN | 339 SLAB_RECLAIM_ACCOUNT | 340 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 341 init_once); 342 BUG_ON(sock_inode_cachep == NULL); 343 } 344 345 static const struct super_operations sockfs_ops = { 346 .alloc_inode = sock_alloc_inode, 347 .free_inode = sock_free_inode, 348 .statfs = simple_statfs, 349 }; 350 351 /* 352 * sockfs_dname() is called from d_path(). 353 */ 354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 355 { 356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 357 d_inode(dentry)->i_ino); 358 } 359 360 static const struct dentry_operations sockfs_dentry_operations = { 361 .d_dname = sockfs_dname, 362 }; 363 364 static int sockfs_xattr_get(const struct xattr_handler *handler, 365 struct dentry *dentry, struct inode *inode, 366 const char *suffix, void *value, size_t size) 367 { 368 if (value) { 369 if (dentry->d_name.len + 1 > size) 370 return -ERANGE; 371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 372 } 373 return dentry->d_name.len + 1; 374 } 375 376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 379 380 static const struct xattr_handler sockfs_xattr_handler = { 381 .name = XATTR_NAME_SOCKPROTONAME, 382 .get = sockfs_xattr_get, 383 }; 384 385 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 386 struct user_namespace *mnt_userns, 387 struct dentry *dentry, struct inode *inode, 388 const char *suffix, const void *value, 389 size_t size, int flags) 390 { 391 /* Handled by LSM. */ 392 return -EAGAIN; 393 } 394 395 static const struct xattr_handler sockfs_security_xattr_handler = { 396 .prefix = XATTR_SECURITY_PREFIX, 397 .set = sockfs_security_xattr_set, 398 }; 399 400 static const struct xattr_handler *sockfs_xattr_handlers[] = { 401 &sockfs_xattr_handler, 402 &sockfs_security_xattr_handler, 403 NULL 404 }; 405 406 static int sockfs_init_fs_context(struct fs_context *fc) 407 { 408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 409 if (!ctx) 410 return -ENOMEM; 411 ctx->ops = &sockfs_ops; 412 ctx->dops = &sockfs_dentry_operations; 413 ctx->xattr = sockfs_xattr_handlers; 414 return 0; 415 } 416 417 static struct vfsmount *sock_mnt __read_mostly; 418 419 static struct file_system_type sock_fs_type = { 420 .name = "sockfs", 421 .init_fs_context = sockfs_init_fs_context, 422 .kill_sb = kill_anon_super, 423 }; 424 425 /* 426 * Obtains the first available file descriptor and sets it up for use. 427 * 428 * These functions create file structures and maps them to fd space 429 * of the current process. On success it returns file descriptor 430 * and file struct implicitly stored in sock->file. 431 * Note that another thread may close file descriptor before we return 432 * from this function. We use the fact that now we do not refer 433 * to socket after mapping. If one day we will need it, this 434 * function will increment ref. count on file by 1. 435 * 436 * In any case returned fd MAY BE not valid! 437 * This race condition is unavoidable 438 * with shared fd spaces, we cannot solve it inside kernel, 439 * but we take care of internal coherence yet. 440 */ 441 442 /** 443 * sock_alloc_file - Bind a &socket to a &file 444 * @sock: socket 445 * @flags: file status flags 446 * @dname: protocol name 447 * 448 * Returns the &file bound with @sock, implicitly storing it 449 * in sock->file. If dname is %NULL, sets to "". 450 * On failure the return is a ERR pointer (see linux/err.h). 451 * This function uses GFP_KERNEL internally. 452 */ 453 454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 455 { 456 struct file *file; 457 458 if (!dname) 459 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 460 461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 462 O_RDWR | (flags & O_NONBLOCK), 463 &socket_file_ops); 464 if (IS_ERR(file)) { 465 sock_release(sock); 466 return file; 467 } 468 469 sock->file = file; 470 file->private_data = sock; 471 stream_open(SOCK_INODE(sock), file); 472 return file; 473 } 474 EXPORT_SYMBOL(sock_alloc_file); 475 476 static int sock_map_fd(struct socket *sock, int flags) 477 { 478 struct file *newfile; 479 int fd = get_unused_fd_flags(flags); 480 if (unlikely(fd < 0)) { 481 sock_release(sock); 482 return fd; 483 } 484 485 newfile = sock_alloc_file(sock, flags, NULL); 486 if (!IS_ERR(newfile)) { 487 fd_install(fd, newfile); 488 return fd; 489 } 490 491 put_unused_fd(fd); 492 return PTR_ERR(newfile); 493 } 494 495 /** 496 * sock_from_file - Return the &socket bounded to @file. 497 * @file: file 498 * 499 * On failure returns %NULL. 500 */ 501 502 struct socket *sock_from_file(struct file *file) 503 { 504 if (file->f_op == &socket_file_ops) 505 return file->private_data; /* set in sock_map_fd */ 506 507 return NULL; 508 } 509 EXPORT_SYMBOL(sock_from_file); 510 511 /** 512 * sockfd_lookup - Go from a file number to its socket slot 513 * @fd: file handle 514 * @err: pointer to an error code return 515 * 516 * The file handle passed in is locked and the socket it is bound 517 * to is returned. If an error occurs the err pointer is overwritten 518 * with a negative errno code and NULL is returned. The function checks 519 * for both invalid handles and passing a handle which is not a socket. 520 * 521 * On a success the socket object pointer is returned. 522 */ 523 524 struct socket *sockfd_lookup(int fd, int *err) 525 { 526 struct file *file; 527 struct socket *sock; 528 529 file = fget(fd); 530 if (!file) { 531 *err = -EBADF; 532 return NULL; 533 } 534 535 sock = sock_from_file(file); 536 if (!sock) { 537 *err = -ENOTSOCK; 538 fput(file); 539 } 540 return sock; 541 } 542 EXPORT_SYMBOL(sockfd_lookup); 543 544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 545 { 546 struct fd f = fdget(fd); 547 struct socket *sock; 548 549 *err = -EBADF; 550 if (f.file) { 551 sock = sock_from_file(f.file); 552 if (likely(sock)) { 553 *fput_needed = f.flags & FDPUT_FPUT; 554 return sock; 555 } 556 *err = -ENOTSOCK; 557 fdput(f); 558 } 559 return NULL; 560 } 561 562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 563 size_t size) 564 { 565 ssize_t len; 566 ssize_t used = 0; 567 568 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 569 if (len < 0) 570 return len; 571 used += len; 572 if (buffer) { 573 if (size < used) 574 return -ERANGE; 575 buffer += len; 576 } 577 578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 584 buffer += len; 585 } 586 587 return used; 588 } 589 590 static int sockfs_setattr(struct user_namespace *mnt_userns, 591 struct dentry *dentry, struct iattr *iattr) 592 { 593 int err = simple_setattr(&init_user_ns, dentry, iattr); 594 595 if (!err && (iattr->ia_valid & ATTR_UID)) { 596 struct socket *sock = SOCKET_I(d_inode(dentry)); 597 598 if (sock->sk) 599 sock->sk->sk_uid = iattr->ia_uid; 600 else 601 err = -ENOENT; 602 } 603 604 return err; 605 } 606 607 static const struct inode_operations sockfs_inode_ops = { 608 .listxattr = sockfs_listxattr, 609 .setattr = sockfs_setattr, 610 }; 611 612 /** 613 * sock_alloc - allocate a socket 614 * 615 * Allocate a new inode and socket object. The two are bound together 616 * and initialised. The socket is then returned. If we are out of inodes 617 * NULL is returned. This functions uses GFP_KERNEL internally. 618 */ 619 620 struct socket *sock_alloc(void) 621 { 622 struct inode *inode; 623 struct socket *sock; 624 625 inode = new_inode_pseudo(sock_mnt->mnt_sb); 626 if (!inode) 627 return NULL; 628 629 sock = SOCKET_I(inode); 630 631 inode->i_ino = get_next_ino(); 632 inode->i_mode = S_IFSOCK | S_IRWXUGO; 633 inode->i_uid = current_fsuid(); 634 inode->i_gid = current_fsgid(); 635 inode->i_op = &sockfs_inode_ops; 636 637 return sock; 638 } 639 EXPORT_SYMBOL(sock_alloc); 640 641 static void __sock_release(struct socket *sock, struct inode *inode) 642 { 643 if (sock->ops) { 644 struct module *owner = sock->ops->owner; 645 646 if (inode) 647 inode_lock(inode); 648 sock->ops->release(sock); 649 sock->sk = NULL; 650 if (inode) 651 inode_unlock(inode); 652 sock->ops = NULL; 653 module_put(owner); 654 } 655 656 if (sock->wq.fasync_list) 657 pr_err("%s: fasync list not empty!\n", __func__); 658 659 if (!sock->file) { 660 iput(SOCK_INODE(sock)); 661 return; 662 } 663 sock->file = NULL; 664 } 665 666 /** 667 * sock_release - close a socket 668 * @sock: socket to close 669 * 670 * The socket is released from the protocol stack if it has a release 671 * callback, and the inode is then released if the socket is bound to 672 * an inode not a file. 673 */ 674 void sock_release(struct socket *sock) 675 { 676 __sock_release(sock, NULL); 677 } 678 EXPORT_SYMBOL(sock_release); 679 680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 681 { 682 u8 flags = *tx_flags; 683 684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 685 flags |= SKBTX_HW_TSTAMP; 686 687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 688 flags |= SKBTX_SW_TSTAMP; 689 690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 691 flags |= SKBTX_SCHED_TSTAMP; 692 693 *tx_flags = flags; 694 } 695 EXPORT_SYMBOL(__sock_tx_timestamp); 696 697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 698 size_t)); 699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 700 size_t)); 701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 702 { 703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 704 inet_sendmsg, sock, msg, 705 msg_data_left(msg)); 706 BUG_ON(ret == -EIOCBQUEUED); 707 return ret; 708 } 709 710 /** 711 * sock_sendmsg - send a message through @sock 712 * @sock: socket 713 * @msg: message to send 714 * 715 * Sends @msg through @sock, passing through LSM. 716 * Returns the number of bytes sent, or an error code. 717 */ 718 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 719 { 720 int err = security_socket_sendmsg(sock, msg, 721 msg_data_left(msg)); 722 723 return err ?: sock_sendmsg_nosec(sock, msg); 724 } 725 EXPORT_SYMBOL(sock_sendmsg); 726 727 /** 728 * kernel_sendmsg - send a message through @sock (kernel-space) 729 * @sock: socket 730 * @msg: message header 731 * @vec: kernel vec 732 * @num: vec array length 733 * @size: total message data size 734 * 735 * Builds the message data with @vec and sends it through @sock. 736 * Returns the number of bytes sent, or an error code. 737 */ 738 739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size) 741 { 742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 743 return sock_sendmsg(sock, msg); 744 } 745 EXPORT_SYMBOL(kernel_sendmsg); 746 747 /** 748 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 749 * @sk: sock 750 * @msg: message header 751 * @vec: output s/g array 752 * @num: output s/g array length 753 * @size: total message data size 754 * 755 * Builds the message data with @vec and sends it through @sock. 756 * Returns the number of bytes sent, or an error code. 757 * Caller must hold @sk. 758 */ 759 760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 761 struct kvec *vec, size_t num, size_t size) 762 { 763 struct socket *sock = sk->sk_socket; 764 765 if (!sock->ops->sendmsg_locked) 766 return sock_no_sendmsg_locked(sk, msg, size); 767 768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 769 770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 771 } 772 EXPORT_SYMBOL(kernel_sendmsg_locked); 773 774 static bool skb_is_err_queue(const struct sk_buff *skb) 775 { 776 /* pkt_type of skbs enqueued on the error queue are set to 777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 778 * in recvmsg, since skbs received on a local socket will never 779 * have a pkt_type of PACKET_OUTGOING. 780 */ 781 return skb->pkt_type == PACKET_OUTGOING; 782 } 783 784 /* On transmit, software and hardware timestamps are returned independently. 785 * As the two skb clones share the hardware timestamp, which may be updated 786 * before the software timestamp is received, a hardware TX timestamp may be 787 * returned only if there is no software TX timestamp. Ignore false software 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 790 * hardware timestamp. 791 */ 792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 793 { 794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 795 } 796 797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 798 { 799 struct scm_ts_pktinfo ts_pktinfo; 800 struct net_device *orig_dev; 801 802 if (!skb_mac_header_was_set(skb)) 803 return; 804 805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 806 807 rcu_read_lock(); 808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 809 if (orig_dev) 810 ts_pktinfo.if_index = orig_dev->ifindex; 811 rcu_read_unlock(); 812 813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 815 sizeof(ts_pktinfo), &ts_pktinfo); 816 } 817 818 /* 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 820 */ 821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 822 struct sk_buff *skb) 823 { 824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 826 struct scm_timestamping_internal tss; 827 828 int empty = 1, false_tstamp = 0; 829 struct skb_shared_hwtstamps *shhwtstamps = 830 skb_hwtstamps(skb); 831 832 /* Race occurred between timestamp enabling and packet 833 receiving. Fill in the current time for now. */ 834 if (need_software_tstamp && skb->tstamp == 0) { 835 __net_timestamp(skb); 836 false_tstamp = 1; 837 } 838 839 if (need_software_tstamp) { 840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 841 if (new_tstamp) { 842 struct __kernel_sock_timeval tv; 843 844 skb_get_new_timestamp(skb, &tv); 845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 846 sizeof(tv), &tv); 847 } else { 848 struct __kernel_old_timeval tv; 849 850 skb_get_timestamp(skb, &tv); 851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 852 sizeof(tv), &tv); 853 } 854 } else { 855 if (new_tstamp) { 856 struct __kernel_timespec ts; 857 858 skb_get_new_timestampns(skb, &ts); 859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 860 sizeof(ts), &ts); 861 } else { 862 struct __kernel_old_timespec ts; 863 864 skb_get_timestampns(skb, &ts); 865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 866 sizeof(ts), &ts); 867 } 868 } 869 } 870 871 memset(&tss, 0, sizeof(tss)); 872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 874 empty = 0; 875 if (shhwtstamps && 876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 877 !skb_is_swtx_tstamp(skb, false_tstamp)) { 878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 880 881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 882 tss.ts + 2)) { 883 empty = 0; 884 885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 886 !skb_is_err_queue(skb)) 887 put_ts_pktinfo(msg, skb); 888 } 889 } 890 if (!empty) { 891 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 892 put_cmsg_scm_timestamping64(msg, &tss); 893 else 894 put_cmsg_scm_timestamping(msg, &tss); 895 896 if (skb_is_err_queue(skb) && skb->len && 897 SKB_EXT_ERR(skb)->opt_stats) 898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 899 skb->len, skb->data); 900 } 901 } 902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 903 904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 905 struct sk_buff *skb) 906 { 907 int ack; 908 909 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 910 return; 911 if (!skb->wifi_acked_valid) 912 return; 913 914 ack = skb->wifi_acked; 915 916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 917 } 918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 919 920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 921 struct sk_buff *skb) 922 { 923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 926 } 927 928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 929 struct sk_buff *skb) 930 { 931 sock_recv_timestamp(msg, sk, skb); 932 sock_recv_drops(msg, sk, skb); 933 } 934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 935 936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 937 size_t, int)); 938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 939 size_t, int)); 940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 941 int flags) 942 { 943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 944 inet_recvmsg, sock, msg, msg_data_left(msg), 945 flags); 946 } 947 948 /** 949 * sock_recvmsg - receive a message from @sock 950 * @sock: socket 951 * @msg: message to receive 952 * @flags: message flags 953 * 954 * Receives @msg from @sock, passing through LSM. Returns the total number 955 * of bytes received, or an error. 956 */ 957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 958 { 959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 960 961 return err ?: sock_recvmsg_nosec(sock, msg, flags); 962 } 963 EXPORT_SYMBOL(sock_recvmsg); 964 965 /** 966 * kernel_recvmsg - Receive a message from a socket (kernel space) 967 * @sock: The socket to receive the message from 968 * @msg: Received message 969 * @vec: Input s/g array for message data 970 * @num: Size of input s/g array 971 * @size: Number of bytes to read 972 * @flags: Message flags (MSG_DONTWAIT, etc...) 973 * 974 * On return the msg structure contains the scatter/gather array passed in the 975 * vec argument. The array is modified so that it consists of the unfilled 976 * portion of the original array. 977 * 978 * The returned value is the total number of bytes received, or an error. 979 */ 980 981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 982 struct kvec *vec, size_t num, size_t size, int flags) 983 { 984 msg->msg_control_is_user = false; 985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 986 return sock_recvmsg(sock, msg, flags); 987 } 988 EXPORT_SYMBOL(kernel_recvmsg); 989 990 static ssize_t sock_sendpage(struct file *file, struct page *page, 991 int offset, size_t size, loff_t *ppos, int more) 992 { 993 struct socket *sock; 994 int flags; 995 996 sock = file->private_data; 997 998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1000 flags |= more; 1001 1002 return kernel_sendpage(sock, page, offset, size, flags); 1003 } 1004 1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1006 struct pipe_inode_info *pipe, size_t len, 1007 unsigned int flags) 1008 { 1009 struct socket *sock = file->private_data; 1010 1011 if (unlikely(!sock->ops->splice_read)) 1012 return generic_file_splice_read(file, ppos, pipe, len, flags); 1013 1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1015 } 1016 1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1018 { 1019 struct file *file = iocb->ki_filp; 1020 struct socket *sock = file->private_data; 1021 struct msghdr msg = {.msg_iter = *to, 1022 .msg_iocb = iocb}; 1023 ssize_t res; 1024 1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1026 msg.msg_flags = MSG_DONTWAIT; 1027 1028 if (iocb->ki_pos != 0) 1029 return -ESPIPE; 1030 1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1032 return 0; 1033 1034 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1035 *to = msg.msg_iter; 1036 return res; 1037 } 1038 1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1040 { 1041 struct file *file = iocb->ki_filp; 1042 struct socket *sock = file->private_data; 1043 struct msghdr msg = {.msg_iter = *from, 1044 .msg_iocb = iocb}; 1045 ssize_t res; 1046 1047 if (iocb->ki_pos != 0) 1048 return -ESPIPE; 1049 1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1051 msg.msg_flags = MSG_DONTWAIT; 1052 1053 if (sock->type == SOCK_SEQPACKET) 1054 msg.msg_flags |= MSG_EOR; 1055 1056 res = sock_sendmsg(sock, &msg); 1057 *from = msg.msg_iter; 1058 return res; 1059 } 1060 1061 /* 1062 * Atomic setting of ioctl hooks to avoid race 1063 * with module unload. 1064 */ 1065 1066 static DEFINE_MUTEX(br_ioctl_mutex); 1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1068 1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1070 { 1071 mutex_lock(&br_ioctl_mutex); 1072 br_ioctl_hook = hook; 1073 mutex_unlock(&br_ioctl_mutex); 1074 } 1075 EXPORT_SYMBOL(brioctl_set); 1076 1077 static DEFINE_MUTEX(vlan_ioctl_mutex); 1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1079 1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1081 { 1082 mutex_lock(&vlan_ioctl_mutex); 1083 vlan_ioctl_hook = hook; 1084 mutex_unlock(&vlan_ioctl_mutex); 1085 } 1086 EXPORT_SYMBOL(vlan_ioctl_set); 1087 1088 static long sock_do_ioctl(struct net *net, struct socket *sock, 1089 unsigned int cmd, unsigned long arg) 1090 { 1091 int err; 1092 void __user *argp = (void __user *)arg; 1093 1094 err = sock->ops->ioctl(sock, cmd, arg); 1095 1096 /* 1097 * If this ioctl is unknown try to hand it down 1098 * to the NIC driver. 1099 */ 1100 if (err != -ENOIOCTLCMD) 1101 return err; 1102 1103 if (cmd == SIOCGIFCONF) { 1104 struct ifconf ifc; 1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1106 return -EFAULT; 1107 rtnl_lock(); 1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1109 rtnl_unlock(); 1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1111 err = -EFAULT; 1112 } else { 1113 struct ifreq ifr; 1114 bool need_copyout; 1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1116 return -EFAULT; 1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1118 if (!err && need_copyout) 1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1120 return -EFAULT; 1121 } 1122 return err; 1123 } 1124 1125 /* 1126 * With an ioctl, arg may well be a user mode pointer, but we don't know 1127 * what to do with it - that's up to the protocol still. 1128 */ 1129 1130 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1131 { 1132 struct socket *sock; 1133 struct sock *sk; 1134 void __user *argp = (void __user *)arg; 1135 int pid, err; 1136 struct net *net; 1137 1138 sock = file->private_data; 1139 sk = sock->sk; 1140 net = sock_net(sk); 1141 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1142 struct ifreq ifr; 1143 bool need_copyout; 1144 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1145 return -EFAULT; 1146 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1147 if (!err && need_copyout) 1148 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1149 return -EFAULT; 1150 } else 1151 #ifdef CONFIG_WEXT_CORE 1152 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1153 err = wext_handle_ioctl(net, cmd, argp); 1154 } else 1155 #endif 1156 switch (cmd) { 1157 case FIOSETOWN: 1158 case SIOCSPGRP: 1159 err = -EFAULT; 1160 if (get_user(pid, (int __user *)argp)) 1161 break; 1162 err = f_setown(sock->file, pid, 1); 1163 break; 1164 case FIOGETOWN: 1165 case SIOCGPGRP: 1166 err = put_user(f_getown(sock->file), 1167 (int __user *)argp); 1168 break; 1169 case SIOCGIFBR: 1170 case SIOCSIFBR: 1171 case SIOCBRADDBR: 1172 case SIOCBRDELBR: 1173 err = -ENOPKG; 1174 if (!br_ioctl_hook) 1175 request_module("bridge"); 1176 1177 mutex_lock(&br_ioctl_mutex); 1178 if (br_ioctl_hook) 1179 err = br_ioctl_hook(net, cmd, argp); 1180 mutex_unlock(&br_ioctl_mutex); 1181 break; 1182 case SIOCGIFVLAN: 1183 case SIOCSIFVLAN: 1184 err = -ENOPKG; 1185 if (!vlan_ioctl_hook) 1186 request_module("8021q"); 1187 1188 mutex_lock(&vlan_ioctl_mutex); 1189 if (vlan_ioctl_hook) 1190 err = vlan_ioctl_hook(net, argp); 1191 mutex_unlock(&vlan_ioctl_mutex); 1192 break; 1193 case SIOCGSKNS: 1194 err = -EPERM; 1195 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1196 break; 1197 1198 err = open_related_ns(&net->ns, get_net_ns); 1199 break; 1200 case SIOCGSTAMP_OLD: 1201 case SIOCGSTAMPNS_OLD: 1202 if (!sock->ops->gettstamp) { 1203 err = -ENOIOCTLCMD; 1204 break; 1205 } 1206 err = sock->ops->gettstamp(sock, argp, 1207 cmd == SIOCGSTAMP_OLD, 1208 !IS_ENABLED(CONFIG_64BIT)); 1209 break; 1210 case SIOCGSTAMP_NEW: 1211 case SIOCGSTAMPNS_NEW: 1212 if (!sock->ops->gettstamp) { 1213 err = -ENOIOCTLCMD; 1214 break; 1215 } 1216 err = sock->ops->gettstamp(sock, argp, 1217 cmd == SIOCGSTAMP_NEW, 1218 false); 1219 break; 1220 default: 1221 err = sock_do_ioctl(net, sock, cmd, arg); 1222 break; 1223 } 1224 return err; 1225 } 1226 1227 /** 1228 * sock_create_lite - creates a socket 1229 * @family: protocol family (AF_INET, ...) 1230 * @type: communication type (SOCK_STREAM, ...) 1231 * @protocol: protocol (0, ...) 1232 * @res: new socket 1233 * 1234 * Creates a new socket and assigns it to @res, passing through LSM. 1235 * The new socket initialization is not complete, see kernel_accept(). 1236 * Returns 0 or an error. On failure @res is set to %NULL. 1237 * This function internally uses GFP_KERNEL. 1238 */ 1239 1240 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1241 { 1242 int err; 1243 struct socket *sock = NULL; 1244 1245 err = security_socket_create(family, type, protocol, 1); 1246 if (err) 1247 goto out; 1248 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 err = -ENOMEM; 1252 goto out; 1253 } 1254 1255 sock->type = type; 1256 err = security_socket_post_create(sock, family, type, protocol, 1); 1257 if (err) 1258 goto out_release; 1259 1260 out: 1261 *res = sock; 1262 return err; 1263 out_release: 1264 sock_release(sock); 1265 sock = NULL; 1266 goto out; 1267 } 1268 EXPORT_SYMBOL(sock_create_lite); 1269 1270 /* No kernel lock held - perfect */ 1271 static __poll_t sock_poll(struct file *file, poll_table *wait) 1272 { 1273 struct socket *sock = file->private_data; 1274 __poll_t events = poll_requested_events(wait), flag = 0; 1275 1276 if (!sock->ops->poll) 1277 return 0; 1278 1279 if (sk_can_busy_loop(sock->sk)) { 1280 /* poll once if requested by the syscall */ 1281 if (events & POLL_BUSY_LOOP) 1282 sk_busy_loop(sock->sk, 1); 1283 1284 /* if this socket can poll_ll, tell the system call */ 1285 flag = POLL_BUSY_LOOP; 1286 } 1287 1288 return sock->ops->poll(file, sock, wait) | flag; 1289 } 1290 1291 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1292 { 1293 struct socket *sock = file->private_data; 1294 1295 return sock->ops->mmap(file, sock, vma); 1296 } 1297 1298 static int sock_close(struct inode *inode, struct file *filp) 1299 { 1300 __sock_release(SOCKET_I(inode), inode); 1301 return 0; 1302 } 1303 1304 /* 1305 * Update the socket async list 1306 * 1307 * Fasync_list locking strategy. 1308 * 1309 * 1. fasync_list is modified only under process context socket lock 1310 * i.e. under semaphore. 1311 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1312 * or under socket lock 1313 */ 1314 1315 static int sock_fasync(int fd, struct file *filp, int on) 1316 { 1317 struct socket *sock = filp->private_data; 1318 struct sock *sk = sock->sk; 1319 struct socket_wq *wq = &sock->wq; 1320 1321 if (sk == NULL) 1322 return -EINVAL; 1323 1324 lock_sock(sk); 1325 fasync_helper(fd, filp, on, &wq->fasync_list); 1326 1327 if (!wq->fasync_list) 1328 sock_reset_flag(sk, SOCK_FASYNC); 1329 else 1330 sock_set_flag(sk, SOCK_FASYNC); 1331 1332 release_sock(sk); 1333 return 0; 1334 } 1335 1336 /* This function may be called only under rcu_lock */ 1337 1338 int sock_wake_async(struct socket_wq *wq, int how, int band) 1339 { 1340 if (!wq || !wq->fasync_list) 1341 return -1; 1342 1343 switch (how) { 1344 case SOCK_WAKE_WAITD: 1345 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1346 break; 1347 goto call_kill; 1348 case SOCK_WAKE_SPACE: 1349 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1350 break; 1351 fallthrough; 1352 case SOCK_WAKE_IO: 1353 call_kill: 1354 kill_fasync(&wq->fasync_list, SIGIO, band); 1355 break; 1356 case SOCK_WAKE_URG: 1357 kill_fasync(&wq->fasync_list, SIGURG, band); 1358 } 1359 1360 return 0; 1361 } 1362 EXPORT_SYMBOL(sock_wake_async); 1363 1364 /** 1365 * __sock_create - creates a socket 1366 * @net: net namespace 1367 * @family: protocol family (AF_INET, ...) 1368 * @type: communication type (SOCK_STREAM, ...) 1369 * @protocol: protocol (0, ...) 1370 * @res: new socket 1371 * @kern: boolean for kernel space sockets 1372 * 1373 * Creates a new socket and assigns it to @res, passing through LSM. 1374 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1375 * be set to true if the socket resides in kernel space. 1376 * This function internally uses GFP_KERNEL. 1377 */ 1378 1379 int __sock_create(struct net *net, int family, int type, int protocol, 1380 struct socket **res, int kern) 1381 { 1382 int err; 1383 struct socket *sock; 1384 const struct net_proto_family *pf; 1385 1386 /* 1387 * Check protocol is in range 1388 */ 1389 if (family < 0 || family >= NPROTO) 1390 return -EAFNOSUPPORT; 1391 if (type < 0 || type >= SOCK_MAX) 1392 return -EINVAL; 1393 1394 /* Compatibility. 1395 1396 This uglymoron is moved from INET layer to here to avoid 1397 deadlock in module load. 1398 */ 1399 if (family == PF_INET && type == SOCK_PACKET) { 1400 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1401 current->comm); 1402 family = PF_PACKET; 1403 } 1404 1405 err = security_socket_create(family, type, protocol, kern); 1406 if (err) 1407 return err; 1408 1409 /* 1410 * Allocate the socket and allow the family to set things up. if 1411 * the protocol is 0, the family is instructed to select an appropriate 1412 * default. 1413 */ 1414 sock = sock_alloc(); 1415 if (!sock) { 1416 net_warn_ratelimited("socket: no more sockets\n"); 1417 return -ENFILE; /* Not exactly a match, but its the 1418 closest posix thing */ 1419 } 1420 1421 sock->type = type; 1422 1423 #ifdef CONFIG_MODULES 1424 /* Attempt to load a protocol module if the find failed. 1425 * 1426 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1427 * requested real, full-featured networking support upon configuration. 1428 * Otherwise module support will break! 1429 */ 1430 if (rcu_access_pointer(net_families[family]) == NULL) 1431 request_module("net-pf-%d", family); 1432 #endif 1433 1434 rcu_read_lock(); 1435 pf = rcu_dereference(net_families[family]); 1436 err = -EAFNOSUPPORT; 1437 if (!pf) 1438 goto out_release; 1439 1440 /* 1441 * We will call the ->create function, that possibly is in a loadable 1442 * module, so we have to bump that loadable module refcnt first. 1443 */ 1444 if (!try_module_get(pf->owner)) 1445 goto out_release; 1446 1447 /* Now protected by module ref count */ 1448 rcu_read_unlock(); 1449 1450 err = pf->create(net, sock, protocol, kern); 1451 if (err < 0) 1452 goto out_module_put; 1453 1454 /* 1455 * Now to bump the refcnt of the [loadable] module that owns this 1456 * socket at sock_release time we decrement its refcnt. 1457 */ 1458 if (!try_module_get(sock->ops->owner)) 1459 goto out_module_busy; 1460 1461 /* 1462 * Now that we're done with the ->create function, the [loadable] 1463 * module can have its refcnt decremented 1464 */ 1465 module_put(pf->owner); 1466 err = security_socket_post_create(sock, family, type, protocol, kern); 1467 if (err) 1468 goto out_sock_release; 1469 *res = sock; 1470 1471 return 0; 1472 1473 out_module_busy: 1474 err = -EAFNOSUPPORT; 1475 out_module_put: 1476 sock->ops = NULL; 1477 module_put(pf->owner); 1478 out_sock_release: 1479 sock_release(sock); 1480 return err; 1481 1482 out_release: 1483 rcu_read_unlock(); 1484 goto out_sock_release; 1485 } 1486 EXPORT_SYMBOL(__sock_create); 1487 1488 /** 1489 * sock_create - creates a socket 1490 * @family: protocol family (AF_INET, ...) 1491 * @type: communication type (SOCK_STREAM, ...) 1492 * @protocol: protocol (0, ...) 1493 * @res: new socket 1494 * 1495 * A wrapper around __sock_create(). 1496 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1497 */ 1498 1499 int sock_create(int family, int type, int protocol, struct socket **res) 1500 { 1501 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1502 } 1503 EXPORT_SYMBOL(sock_create); 1504 1505 /** 1506 * sock_create_kern - creates a socket (kernel space) 1507 * @net: net namespace 1508 * @family: protocol family (AF_INET, ...) 1509 * @type: communication type (SOCK_STREAM, ...) 1510 * @protocol: protocol (0, ...) 1511 * @res: new socket 1512 * 1513 * A wrapper around __sock_create(). 1514 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1515 */ 1516 1517 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1518 { 1519 return __sock_create(net, family, type, protocol, res, 1); 1520 } 1521 EXPORT_SYMBOL(sock_create_kern); 1522 1523 int __sys_socket(int family, int type, int protocol) 1524 { 1525 int retval; 1526 struct socket *sock; 1527 int flags; 1528 1529 /* Check the SOCK_* constants for consistency. */ 1530 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1531 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1532 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1533 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1534 1535 flags = type & ~SOCK_TYPE_MASK; 1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1537 return -EINVAL; 1538 type &= SOCK_TYPE_MASK; 1539 1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1542 1543 retval = sock_create(family, type, protocol, &sock); 1544 if (retval < 0) 1545 return retval; 1546 1547 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1548 } 1549 1550 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1551 { 1552 return __sys_socket(family, type, protocol); 1553 } 1554 1555 /* 1556 * Create a pair of connected sockets. 1557 */ 1558 1559 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1560 { 1561 struct socket *sock1, *sock2; 1562 int fd1, fd2, err; 1563 struct file *newfile1, *newfile2; 1564 int flags; 1565 1566 flags = type & ~SOCK_TYPE_MASK; 1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1568 return -EINVAL; 1569 type &= SOCK_TYPE_MASK; 1570 1571 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1572 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1573 1574 /* 1575 * reserve descriptors and make sure we won't fail 1576 * to return them to userland. 1577 */ 1578 fd1 = get_unused_fd_flags(flags); 1579 if (unlikely(fd1 < 0)) 1580 return fd1; 1581 1582 fd2 = get_unused_fd_flags(flags); 1583 if (unlikely(fd2 < 0)) { 1584 put_unused_fd(fd1); 1585 return fd2; 1586 } 1587 1588 err = put_user(fd1, &usockvec[0]); 1589 if (err) 1590 goto out; 1591 1592 err = put_user(fd2, &usockvec[1]); 1593 if (err) 1594 goto out; 1595 1596 /* 1597 * Obtain the first socket and check if the underlying protocol 1598 * supports the socketpair call. 1599 */ 1600 1601 err = sock_create(family, type, protocol, &sock1); 1602 if (unlikely(err < 0)) 1603 goto out; 1604 1605 err = sock_create(family, type, protocol, &sock2); 1606 if (unlikely(err < 0)) { 1607 sock_release(sock1); 1608 goto out; 1609 } 1610 1611 err = security_socket_socketpair(sock1, sock2); 1612 if (unlikely(err)) { 1613 sock_release(sock2); 1614 sock_release(sock1); 1615 goto out; 1616 } 1617 1618 err = sock1->ops->socketpair(sock1, sock2); 1619 if (unlikely(err < 0)) { 1620 sock_release(sock2); 1621 sock_release(sock1); 1622 goto out; 1623 } 1624 1625 newfile1 = sock_alloc_file(sock1, flags, NULL); 1626 if (IS_ERR(newfile1)) { 1627 err = PTR_ERR(newfile1); 1628 sock_release(sock2); 1629 goto out; 1630 } 1631 1632 newfile2 = sock_alloc_file(sock2, flags, NULL); 1633 if (IS_ERR(newfile2)) { 1634 err = PTR_ERR(newfile2); 1635 fput(newfile1); 1636 goto out; 1637 } 1638 1639 audit_fd_pair(fd1, fd2); 1640 1641 fd_install(fd1, newfile1); 1642 fd_install(fd2, newfile2); 1643 return 0; 1644 1645 out: 1646 put_unused_fd(fd2); 1647 put_unused_fd(fd1); 1648 return err; 1649 } 1650 1651 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1652 int __user *, usockvec) 1653 { 1654 return __sys_socketpair(family, type, protocol, usockvec); 1655 } 1656 1657 /* 1658 * Bind a name to a socket. Nothing much to do here since it's 1659 * the protocol's responsibility to handle the local address. 1660 * 1661 * We move the socket address to kernel space before we call 1662 * the protocol layer (having also checked the address is ok). 1663 */ 1664 1665 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1666 { 1667 struct socket *sock; 1668 struct sockaddr_storage address; 1669 int err, fput_needed; 1670 1671 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1672 if (sock) { 1673 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1674 if (!err) { 1675 err = security_socket_bind(sock, 1676 (struct sockaddr *)&address, 1677 addrlen); 1678 if (!err) 1679 err = sock->ops->bind(sock, 1680 (struct sockaddr *) 1681 &address, addrlen); 1682 } 1683 fput_light(sock->file, fput_needed); 1684 } 1685 return err; 1686 } 1687 1688 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1689 { 1690 return __sys_bind(fd, umyaddr, addrlen); 1691 } 1692 1693 /* 1694 * Perform a listen. Basically, we allow the protocol to do anything 1695 * necessary for a listen, and if that works, we mark the socket as 1696 * ready for listening. 1697 */ 1698 1699 int __sys_listen(int fd, int backlog) 1700 { 1701 struct socket *sock; 1702 int err, fput_needed; 1703 int somaxconn; 1704 1705 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1706 if (sock) { 1707 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1708 if ((unsigned int)backlog > somaxconn) 1709 backlog = somaxconn; 1710 1711 err = security_socket_listen(sock, backlog); 1712 if (!err) 1713 err = sock->ops->listen(sock, backlog); 1714 1715 fput_light(sock->file, fput_needed); 1716 } 1717 return err; 1718 } 1719 1720 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1721 { 1722 return __sys_listen(fd, backlog); 1723 } 1724 1725 struct file *do_accept(struct file *file, unsigned file_flags, 1726 struct sockaddr __user *upeer_sockaddr, 1727 int __user *upeer_addrlen, int flags) 1728 { 1729 struct socket *sock, *newsock; 1730 struct file *newfile; 1731 int err, len; 1732 struct sockaddr_storage address; 1733 1734 sock = sock_from_file(file); 1735 if (!sock) 1736 return ERR_PTR(-ENOTSOCK); 1737 1738 newsock = sock_alloc(); 1739 if (!newsock) 1740 return ERR_PTR(-ENFILE); 1741 1742 newsock->type = sock->type; 1743 newsock->ops = sock->ops; 1744 1745 /* 1746 * We don't need try_module_get here, as the listening socket (sock) 1747 * has the protocol module (sock->ops->owner) held. 1748 */ 1749 __module_get(newsock->ops->owner); 1750 1751 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1752 if (IS_ERR(newfile)) 1753 return newfile; 1754 1755 err = security_socket_accept(sock, newsock); 1756 if (err) 1757 goto out_fd; 1758 1759 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1760 false); 1761 if (err < 0) 1762 goto out_fd; 1763 1764 if (upeer_sockaddr) { 1765 len = newsock->ops->getname(newsock, 1766 (struct sockaddr *)&address, 2); 1767 if (len < 0) { 1768 err = -ECONNABORTED; 1769 goto out_fd; 1770 } 1771 err = move_addr_to_user(&address, 1772 len, upeer_sockaddr, upeer_addrlen); 1773 if (err < 0) 1774 goto out_fd; 1775 } 1776 1777 /* File flags are not inherited via accept() unlike another OSes. */ 1778 return newfile; 1779 out_fd: 1780 fput(newfile); 1781 return ERR_PTR(err); 1782 } 1783 1784 int __sys_accept4_file(struct file *file, unsigned file_flags, 1785 struct sockaddr __user *upeer_sockaddr, 1786 int __user *upeer_addrlen, int flags, 1787 unsigned long nofile) 1788 { 1789 struct file *newfile; 1790 int newfd; 1791 1792 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1793 return -EINVAL; 1794 1795 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1796 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1797 1798 newfd = __get_unused_fd_flags(flags, nofile); 1799 if (unlikely(newfd < 0)) 1800 return newfd; 1801 1802 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen, 1803 flags); 1804 if (IS_ERR(newfile)) { 1805 put_unused_fd(newfd); 1806 return PTR_ERR(newfile); 1807 } 1808 fd_install(newfd, newfile); 1809 return newfd; 1810 } 1811 1812 /* 1813 * For accept, we attempt to create a new socket, set up the link 1814 * with the client, wake up the client, then return the new 1815 * connected fd. We collect the address of the connector in kernel 1816 * space and move it to user at the very end. This is unclean because 1817 * we open the socket then return an error. 1818 * 1819 * 1003.1g adds the ability to recvmsg() to query connection pending 1820 * status to recvmsg. We need to add that support in a way thats 1821 * clean when we restructure accept also. 1822 */ 1823 1824 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1825 int __user *upeer_addrlen, int flags) 1826 { 1827 int ret = -EBADF; 1828 struct fd f; 1829 1830 f = fdget(fd); 1831 if (f.file) { 1832 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1833 upeer_addrlen, flags, 1834 rlimit(RLIMIT_NOFILE)); 1835 fdput(f); 1836 } 1837 1838 return ret; 1839 } 1840 1841 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1842 int __user *, upeer_addrlen, int, flags) 1843 { 1844 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1845 } 1846 1847 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1848 int __user *, upeer_addrlen) 1849 { 1850 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1851 } 1852 1853 /* 1854 * Attempt to connect to a socket with the server address. The address 1855 * is in user space so we verify it is OK and move it to kernel space. 1856 * 1857 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1858 * break bindings 1859 * 1860 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1861 * other SEQPACKET protocols that take time to connect() as it doesn't 1862 * include the -EINPROGRESS status for such sockets. 1863 */ 1864 1865 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1866 int addrlen, int file_flags) 1867 { 1868 struct socket *sock; 1869 int err; 1870 1871 sock = sock_from_file(file); 1872 if (!sock) { 1873 err = -ENOTSOCK; 1874 goto out; 1875 } 1876 1877 err = 1878 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1879 if (err) 1880 goto out; 1881 1882 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1883 sock->file->f_flags | file_flags); 1884 out: 1885 return err; 1886 } 1887 1888 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1889 { 1890 int ret = -EBADF; 1891 struct fd f; 1892 1893 f = fdget(fd); 1894 if (f.file) { 1895 struct sockaddr_storage address; 1896 1897 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1898 if (!ret) 1899 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1900 fdput(f); 1901 } 1902 1903 return ret; 1904 } 1905 1906 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1907 int, addrlen) 1908 { 1909 return __sys_connect(fd, uservaddr, addrlen); 1910 } 1911 1912 /* 1913 * Get the local address ('name') of a socket object. Move the obtained 1914 * name to user space. 1915 */ 1916 1917 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1918 int __user *usockaddr_len) 1919 { 1920 struct socket *sock; 1921 struct sockaddr_storage address; 1922 int err, fput_needed; 1923 1924 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1925 if (!sock) 1926 goto out; 1927 1928 err = security_socket_getsockname(sock); 1929 if (err) 1930 goto out_put; 1931 1932 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1933 if (err < 0) 1934 goto out_put; 1935 /* "err" is actually length in this case */ 1936 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1937 1938 out_put: 1939 fput_light(sock->file, fput_needed); 1940 out: 1941 return err; 1942 } 1943 1944 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1945 int __user *, usockaddr_len) 1946 { 1947 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1948 } 1949 1950 /* 1951 * Get the remote address ('name') of a socket object. Move the obtained 1952 * name to user space. 1953 */ 1954 1955 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1956 int __user *usockaddr_len) 1957 { 1958 struct socket *sock; 1959 struct sockaddr_storage address; 1960 int err, fput_needed; 1961 1962 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1963 if (sock != NULL) { 1964 err = security_socket_getpeername(sock); 1965 if (err) { 1966 fput_light(sock->file, fput_needed); 1967 return err; 1968 } 1969 1970 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1971 if (err >= 0) 1972 /* "err" is actually length in this case */ 1973 err = move_addr_to_user(&address, err, usockaddr, 1974 usockaddr_len); 1975 fput_light(sock->file, fput_needed); 1976 } 1977 return err; 1978 } 1979 1980 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1981 int __user *, usockaddr_len) 1982 { 1983 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1984 } 1985 1986 /* 1987 * Send a datagram to a given address. We move the address into kernel 1988 * space and check the user space data area is readable before invoking 1989 * the protocol. 1990 */ 1991 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1992 struct sockaddr __user *addr, int addr_len) 1993 { 1994 struct socket *sock; 1995 struct sockaddr_storage address; 1996 int err; 1997 struct msghdr msg; 1998 struct iovec iov; 1999 int fput_needed; 2000 2001 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 2002 if (unlikely(err)) 2003 return err; 2004 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2005 if (!sock) 2006 goto out; 2007 2008 msg.msg_name = NULL; 2009 msg.msg_control = NULL; 2010 msg.msg_controllen = 0; 2011 msg.msg_namelen = 0; 2012 if (addr) { 2013 err = move_addr_to_kernel(addr, addr_len, &address); 2014 if (err < 0) 2015 goto out_put; 2016 msg.msg_name = (struct sockaddr *)&address; 2017 msg.msg_namelen = addr_len; 2018 } 2019 if (sock->file->f_flags & O_NONBLOCK) 2020 flags |= MSG_DONTWAIT; 2021 msg.msg_flags = flags; 2022 err = sock_sendmsg(sock, &msg); 2023 2024 out_put: 2025 fput_light(sock->file, fput_needed); 2026 out: 2027 return err; 2028 } 2029 2030 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2031 unsigned int, flags, struct sockaddr __user *, addr, 2032 int, addr_len) 2033 { 2034 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2035 } 2036 2037 /* 2038 * Send a datagram down a socket. 2039 */ 2040 2041 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2042 unsigned int, flags) 2043 { 2044 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2045 } 2046 2047 /* 2048 * Receive a frame from the socket and optionally record the address of the 2049 * sender. We verify the buffers are writable and if needed move the 2050 * sender address from kernel to user space. 2051 */ 2052 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2053 struct sockaddr __user *addr, int __user *addr_len) 2054 { 2055 struct socket *sock; 2056 struct iovec iov; 2057 struct msghdr msg; 2058 struct sockaddr_storage address; 2059 int err, err2; 2060 int fput_needed; 2061 2062 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2063 if (unlikely(err)) 2064 return err; 2065 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2066 if (!sock) 2067 goto out; 2068 2069 msg.msg_control = NULL; 2070 msg.msg_controllen = 0; 2071 /* Save some cycles and don't copy the address if not needed */ 2072 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2073 /* We assume all kernel code knows the size of sockaddr_storage */ 2074 msg.msg_namelen = 0; 2075 msg.msg_iocb = NULL; 2076 msg.msg_flags = 0; 2077 if (sock->file->f_flags & O_NONBLOCK) 2078 flags |= MSG_DONTWAIT; 2079 err = sock_recvmsg(sock, &msg, flags); 2080 2081 if (err >= 0 && addr != NULL) { 2082 err2 = move_addr_to_user(&address, 2083 msg.msg_namelen, addr, addr_len); 2084 if (err2 < 0) 2085 err = err2; 2086 } 2087 2088 fput_light(sock->file, fput_needed); 2089 out: 2090 return err; 2091 } 2092 2093 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2094 unsigned int, flags, struct sockaddr __user *, addr, 2095 int __user *, addr_len) 2096 { 2097 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2098 } 2099 2100 /* 2101 * Receive a datagram from a socket. 2102 */ 2103 2104 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2105 unsigned int, flags) 2106 { 2107 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2108 } 2109 2110 static bool sock_use_custom_sol_socket(const struct socket *sock) 2111 { 2112 const struct sock *sk = sock->sk; 2113 2114 /* Use sock->ops->setsockopt() for MPTCP */ 2115 return IS_ENABLED(CONFIG_MPTCP) && 2116 sk->sk_protocol == IPPROTO_MPTCP && 2117 sk->sk_type == SOCK_STREAM && 2118 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2119 } 2120 2121 /* 2122 * Set a socket option. Because we don't know the option lengths we have 2123 * to pass the user mode parameter for the protocols to sort out. 2124 */ 2125 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2126 int optlen) 2127 { 2128 sockptr_t optval = USER_SOCKPTR(user_optval); 2129 char *kernel_optval = NULL; 2130 int err, fput_needed; 2131 struct socket *sock; 2132 2133 if (optlen < 0) 2134 return -EINVAL; 2135 2136 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2137 if (!sock) 2138 return err; 2139 2140 err = security_socket_setsockopt(sock, level, optname); 2141 if (err) 2142 goto out_put; 2143 2144 if (!in_compat_syscall()) 2145 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2146 user_optval, &optlen, 2147 &kernel_optval); 2148 if (err < 0) 2149 goto out_put; 2150 if (err > 0) { 2151 err = 0; 2152 goto out_put; 2153 } 2154 2155 if (kernel_optval) 2156 optval = KERNEL_SOCKPTR(kernel_optval); 2157 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2158 err = sock_setsockopt(sock, level, optname, optval, optlen); 2159 else if (unlikely(!sock->ops->setsockopt)) 2160 err = -EOPNOTSUPP; 2161 else 2162 err = sock->ops->setsockopt(sock, level, optname, optval, 2163 optlen); 2164 kfree(kernel_optval); 2165 out_put: 2166 fput_light(sock->file, fput_needed); 2167 return err; 2168 } 2169 2170 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2171 char __user *, optval, int, optlen) 2172 { 2173 return __sys_setsockopt(fd, level, optname, optval, optlen); 2174 } 2175 2176 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2177 int optname)); 2178 2179 /* 2180 * Get a socket option. Because we don't know the option lengths we have 2181 * to pass a user mode parameter for the protocols to sort out. 2182 */ 2183 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2184 int __user *optlen) 2185 { 2186 int err, fput_needed; 2187 struct socket *sock; 2188 int max_optlen; 2189 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 return err; 2193 2194 err = security_socket_getsockopt(sock, level, optname); 2195 if (err) 2196 goto out_put; 2197 2198 if (!in_compat_syscall()) 2199 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2200 2201 if (level == SOL_SOCKET) 2202 err = sock_getsockopt(sock, level, optname, optval, optlen); 2203 else if (unlikely(!sock->ops->getsockopt)) 2204 err = -EOPNOTSUPP; 2205 else 2206 err = sock->ops->getsockopt(sock, level, optname, optval, 2207 optlen); 2208 2209 if (!in_compat_syscall()) 2210 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2211 optval, optlen, max_optlen, 2212 err); 2213 out_put: 2214 fput_light(sock->file, fput_needed); 2215 return err; 2216 } 2217 2218 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2219 char __user *, optval, int __user *, optlen) 2220 { 2221 return __sys_getsockopt(fd, level, optname, optval, optlen); 2222 } 2223 2224 /* 2225 * Shutdown a socket. 2226 */ 2227 2228 int __sys_shutdown_sock(struct socket *sock, int how) 2229 { 2230 int err; 2231 2232 err = security_socket_shutdown(sock, how); 2233 if (!err) 2234 err = sock->ops->shutdown(sock, how); 2235 2236 return err; 2237 } 2238 2239 int __sys_shutdown(int fd, int how) 2240 { 2241 int err, fput_needed; 2242 struct socket *sock; 2243 2244 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2245 if (sock != NULL) { 2246 err = __sys_shutdown_sock(sock, how); 2247 fput_light(sock->file, fput_needed); 2248 } 2249 return err; 2250 } 2251 2252 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2253 { 2254 return __sys_shutdown(fd, how); 2255 } 2256 2257 /* A couple of helpful macros for getting the address of the 32/64 bit 2258 * fields which are the same type (int / unsigned) on our platforms. 2259 */ 2260 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2261 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2262 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2263 2264 struct used_address { 2265 struct sockaddr_storage name; 2266 unsigned int name_len; 2267 }; 2268 2269 int __copy_msghdr_from_user(struct msghdr *kmsg, 2270 struct user_msghdr __user *umsg, 2271 struct sockaddr __user **save_addr, 2272 struct iovec __user **uiov, size_t *nsegs) 2273 { 2274 struct user_msghdr msg; 2275 ssize_t err; 2276 2277 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2278 return -EFAULT; 2279 2280 kmsg->msg_control_is_user = true; 2281 kmsg->msg_control_user = msg.msg_control; 2282 kmsg->msg_controllen = msg.msg_controllen; 2283 kmsg->msg_flags = msg.msg_flags; 2284 2285 kmsg->msg_namelen = msg.msg_namelen; 2286 if (!msg.msg_name) 2287 kmsg->msg_namelen = 0; 2288 2289 if (kmsg->msg_namelen < 0) 2290 return -EINVAL; 2291 2292 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2293 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2294 2295 if (save_addr) 2296 *save_addr = msg.msg_name; 2297 2298 if (msg.msg_name && kmsg->msg_namelen) { 2299 if (!save_addr) { 2300 err = move_addr_to_kernel(msg.msg_name, 2301 kmsg->msg_namelen, 2302 kmsg->msg_name); 2303 if (err < 0) 2304 return err; 2305 } 2306 } else { 2307 kmsg->msg_name = NULL; 2308 kmsg->msg_namelen = 0; 2309 } 2310 2311 if (msg.msg_iovlen > UIO_MAXIOV) 2312 return -EMSGSIZE; 2313 2314 kmsg->msg_iocb = NULL; 2315 *uiov = msg.msg_iov; 2316 *nsegs = msg.msg_iovlen; 2317 return 0; 2318 } 2319 2320 static int copy_msghdr_from_user(struct msghdr *kmsg, 2321 struct user_msghdr __user *umsg, 2322 struct sockaddr __user **save_addr, 2323 struct iovec **iov) 2324 { 2325 struct user_msghdr msg; 2326 ssize_t err; 2327 2328 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2329 &msg.msg_iovlen); 2330 if (err) 2331 return err; 2332 2333 err = import_iovec(save_addr ? READ : WRITE, 2334 msg.msg_iov, msg.msg_iovlen, 2335 UIO_FASTIOV, iov, &kmsg->msg_iter); 2336 return err < 0 ? err : 0; 2337 } 2338 2339 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2340 unsigned int flags, struct used_address *used_address, 2341 unsigned int allowed_msghdr_flags) 2342 { 2343 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2344 __aligned(sizeof(__kernel_size_t)); 2345 /* 20 is size of ipv6_pktinfo */ 2346 unsigned char *ctl_buf = ctl; 2347 int ctl_len; 2348 ssize_t err; 2349 2350 err = -ENOBUFS; 2351 2352 if (msg_sys->msg_controllen > INT_MAX) 2353 goto out; 2354 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2355 ctl_len = msg_sys->msg_controllen; 2356 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2357 err = 2358 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2359 sizeof(ctl)); 2360 if (err) 2361 goto out; 2362 ctl_buf = msg_sys->msg_control; 2363 ctl_len = msg_sys->msg_controllen; 2364 } else if (ctl_len) { 2365 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2366 CMSG_ALIGN(sizeof(struct cmsghdr))); 2367 if (ctl_len > sizeof(ctl)) { 2368 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2369 if (ctl_buf == NULL) 2370 goto out; 2371 } 2372 err = -EFAULT; 2373 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2374 goto out_freectl; 2375 msg_sys->msg_control = ctl_buf; 2376 msg_sys->msg_control_is_user = false; 2377 } 2378 msg_sys->msg_flags = flags; 2379 2380 if (sock->file->f_flags & O_NONBLOCK) 2381 msg_sys->msg_flags |= MSG_DONTWAIT; 2382 /* 2383 * If this is sendmmsg() and current destination address is same as 2384 * previously succeeded address, omit asking LSM's decision. 2385 * used_address->name_len is initialized to UINT_MAX so that the first 2386 * destination address never matches. 2387 */ 2388 if (used_address && msg_sys->msg_name && 2389 used_address->name_len == msg_sys->msg_namelen && 2390 !memcmp(&used_address->name, msg_sys->msg_name, 2391 used_address->name_len)) { 2392 err = sock_sendmsg_nosec(sock, msg_sys); 2393 goto out_freectl; 2394 } 2395 err = sock_sendmsg(sock, msg_sys); 2396 /* 2397 * If this is sendmmsg() and sending to current destination address was 2398 * successful, remember it. 2399 */ 2400 if (used_address && err >= 0) { 2401 used_address->name_len = msg_sys->msg_namelen; 2402 if (msg_sys->msg_name) 2403 memcpy(&used_address->name, msg_sys->msg_name, 2404 used_address->name_len); 2405 } 2406 2407 out_freectl: 2408 if (ctl_buf != ctl) 2409 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2410 out: 2411 return err; 2412 } 2413 2414 int sendmsg_copy_msghdr(struct msghdr *msg, 2415 struct user_msghdr __user *umsg, unsigned flags, 2416 struct iovec **iov) 2417 { 2418 int err; 2419 2420 if (flags & MSG_CMSG_COMPAT) { 2421 struct compat_msghdr __user *msg_compat; 2422 2423 msg_compat = (struct compat_msghdr __user *) umsg; 2424 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2425 } else { 2426 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2427 } 2428 if (err < 0) 2429 return err; 2430 2431 return 0; 2432 } 2433 2434 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2435 struct msghdr *msg_sys, unsigned int flags, 2436 struct used_address *used_address, 2437 unsigned int allowed_msghdr_flags) 2438 { 2439 struct sockaddr_storage address; 2440 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2441 ssize_t err; 2442 2443 msg_sys->msg_name = &address; 2444 2445 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2446 if (err < 0) 2447 return err; 2448 2449 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2450 allowed_msghdr_flags); 2451 kfree(iov); 2452 return err; 2453 } 2454 2455 /* 2456 * BSD sendmsg interface 2457 */ 2458 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2459 unsigned int flags) 2460 { 2461 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2462 } 2463 2464 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2465 bool forbid_cmsg_compat) 2466 { 2467 int fput_needed, err; 2468 struct msghdr msg_sys; 2469 struct socket *sock; 2470 2471 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2472 return -EINVAL; 2473 2474 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2475 if (!sock) 2476 goto out; 2477 2478 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2479 2480 fput_light(sock->file, fput_needed); 2481 out: 2482 return err; 2483 } 2484 2485 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2486 { 2487 return __sys_sendmsg(fd, msg, flags, true); 2488 } 2489 2490 /* 2491 * Linux sendmmsg interface 2492 */ 2493 2494 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2495 unsigned int flags, bool forbid_cmsg_compat) 2496 { 2497 int fput_needed, err, datagrams; 2498 struct socket *sock; 2499 struct mmsghdr __user *entry; 2500 struct compat_mmsghdr __user *compat_entry; 2501 struct msghdr msg_sys; 2502 struct used_address used_address; 2503 unsigned int oflags = flags; 2504 2505 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2506 return -EINVAL; 2507 2508 if (vlen > UIO_MAXIOV) 2509 vlen = UIO_MAXIOV; 2510 2511 datagrams = 0; 2512 2513 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2514 if (!sock) 2515 return err; 2516 2517 used_address.name_len = UINT_MAX; 2518 entry = mmsg; 2519 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2520 err = 0; 2521 flags |= MSG_BATCH; 2522 2523 while (datagrams < vlen) { 2524 if (datagrams == vlen - 1) 2525 flags = oflags; 2526 2527 if (MSG_CMSG_COMPAT & flags) { 2528 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2529 &msg_sys, flags, &used_address, MSG_EOR); 2530 if (err < 0) 2531 break; 2532 err = __put_user(err, &compat_entry->msg_len); 2533 ++compat_entry; 2534 } else { 2535 err = ___sys_sendmsg(sock, 2536 (struct user_msghdr __user *)entry, 2537 &msg_sys, flags, &used_address, MSG_EOR); 2538 if (err < 0) 2539 break; 2540 err = put_user(err, &entry->msg_len); 2541 ++entry; 2542 } 2543 2544 if (err) 2545 break; 2546 ++datagrams; 2547 if (msg_data_left(&msg_sys)) 2548 break; 2549 cond_resched(); 2550 } 2551 2552 fput_light(sock->file, fput_needed); 2553 2554 /* We only return an error if no datagrams were able to be sent */ 2555 if (datagrams != 0) 2556 return datagrams; 2557 2558 return err; 2559 } 2560 2561 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2562 unsigned int, vlen, unsigned int, flags) 2563 { 2564 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2565 } 2566 2567 int recvmsg_copy_msghdr(struct msghdr *msg, 2568 struct user_msghdr __user *umsg, unsigned flags, 2569 struct sockaddr __user **uaddr, 2570 struct iovec **iov) 2571 { 2572 ssize_t err; 2573 2574 if (MSG_CMSG_COMPAT & flags) { 2575 struct compat_msghdr __user *msg_compat; 2576 2577 msg_compat = (struct compat_msghdr __user *) umsg; 2578 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2579 } else { 2580 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2581 } 2582 if (err < 0) 2583 return err; 2584 2585 return 0; 2586 } 2587 2588 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2589 struct user_msghdr __user *msg, 2590 struct sockaddr __user *uaddr, 2591 unsigned int flags, int nosec) 2592 { 2593 struct compat_msghdr __user *msg_compat = 2594 (struct compat_msghdr __user *) msg; 2595 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2596 struct sockaddr_storage addr; 2597 unsigned long cmsg_ptr; 2598 int len; 2599 ssize_t err; 2600 2601 msg_sys->msg_name = &addr; 2602 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2603 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2604 2605 /* We assume all kernel code knows the size of sockaddr_storage */ 2606 msg_sys->msg_namelen = 0; 2607 2608 if (sock->file->f_flags & O_NONBLOCK) 2609 flags |= MSG_DONTWAIT; 2610 2611 if (unlikely(nosec)) 2612 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2613 else 2614 err = sock_recvmsg(sock, msg_sys, flags); 2615 2616 if (err < 0) 2617 goto out; 2618 len = err; 2619 2620 if (uaddr != NULL) { 2621 err = move_addr_to_user(&addr, 2622 msg_sys->msg_namelen, uaddr, 2623 uaddr_len); 2624 if (err < 0) 2625 goto out; 2626 } 2627 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2628 COMPAT_FLAGS(msg)); 2629 if (err) 2630 goto out; 2631 if (MSG_CMSG_COMPAT & flags) 2632 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2633 &msg_compat->msg_controllen); 2634 else 2635 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2636 &msg->msg_controllen); 2637 if (err) 2638 goto out; 2639 err = len; 2640 out: 2641 return err; 2642 } 2643 2644 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2645 struct msghdr *msg_sys, unsigned int flags, int nosec) 2646 { 2647 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2648 /* user mode address pointers */ 2649 struct sockaddr __user *uaddr; 2650 ssize_t err; 2651 2652 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2653 if (err < 0) 2654 return err; 2655 2656 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2657 kfree(iov); 2658 return err; 2659 } 2660 2661 /* 2662 * BSD recvmsg interface 2663 */ 2664 2665 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2666 struct user_msghdr __user *umsg, 2667 struct sockaddr __user *uaddr, unsigned int flags) 2668 { 2669 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2670 } 2671 2672 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2673 bool forbid_cmsg_compat) 2674 { 2675 int fput_needed, err; 2676 struct msghdr msg_sys; 2677 struct socket *sock; 2678 2679 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2680 return -EINVAL; 2681 2682 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2683 if (!sock) 2684 goto out; 2685 2686 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2687 2688 fput_light(sock->file, fput_needed); 2689 out: 2690 return err; 2691 } 2692 2693 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2694 unsigned int, flags) 2695 { 2696 return __sys_recvmsg(fd, msg, flags, true); 2697 } 2698 2699 /* 2700 * Linux recvmmsg interface 2701 */ 2702 2703 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2704 unsigned int vlen, unsigned int flags, 2705 struct timespec64 *timeout) 2706 { 2707 int fput_needed, err, datagrams; 2708 struct socket *sock; 2709 struct mmsghdr __user *entry; 2710 struct compat_mmsghdr __user *compat_entry; 2711 struct msghdr msg_sys; 2712 struct timespec64 end_time; 2713 struct timespec64 timeout64; 2714 2715 if (timeout && 2716 poll_select_set_timeout(&end_time, timeout->tv_sec, 2717 timeout->tv_nsec)) 2718 return -EINVAL; 2719 2720 datagrams = 0; 2721 2722 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2723 if (!sock) 2724 return err; 2725 2726 if (likely(!(flags & MSG_ERRQUEUE))) { 2727 err = sock_error(sock->sk); 2728 if (err) { 2729 datagrams = err; 2730 goto out_put; 2731 } 2732 } 2733 2734 entry = mmsg; 2735 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2736 2737 while (datagrams < vlen) { 2738 /* 2739 * No need to ask LSM for more than the first datagram. 2740 */ 2741 if (MSG_CMSG_COMPAT & flags) { 2742 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2743 &msg_sys, flags & ~MSG_WAITFORONE, 2744 datagrams); 2745 if (err < 0) 2746 break; 2747 err = __put_user(err, &compat_entry->msg_len); 2748 ++compat_entry; 2749 } else { 2750 err = ___sys_recvmsg(sock, 2751 (struct user_msghdr __user *)entry, 2752 &msg_sys, flags & ~MSG_WAITFORONE, 2753 datagrams); 2754 if (err < 0) 2755 break; 2756 err = put_user(err, &entry->msg_len); 2757 ++entry; 2758 } 2759 2760 if (err) 2761 break; 2762 ++datagrams; 2763 2764 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2765 if (flags & MSG_WAITFORONE) 2766 flags |= MSG_DONTWAIT; 2767 2768 if (timeout) { 2769 ktime_get_ts64(&timeout64); 2770 *timeout = timespec64_sub(end_time, timeout64); 2771 if (timeout->tv_sec < 0) { 2772 timeout->tv_sec = timeout->tv_nsec = 0; 2773 break; 2774 } 2775 2776 /* Timeout, return less than vlen datagrams */ 2777 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2778 break; 2779 } 2780 2781 /* Out of band data, return right away */ 2782 if (msg_sys.msg_flags & MSG_OOB) 2783 break; 2784 cond_resched(); 2785 } 2786 2787 if (err == 0) 2788 goto out_put; 2789 2790 if (datagrams == 0) { 2791 datagrams = err; 2792 goto out_put; 2793 } 2794 2795 /* 2796 * We may return less entries than requested (vlen) if the 2797 * sock is non block and there aren't enough datagrams... 2798 */ 2799 if (err != -EAGAIN) { 2800 /* 2801 * ... or if recvmsg returns an error after we 2802 * received some datagrams, where we record the 2803 * error to return on the next call or if the 2804 * app asks about it using getsockopt(SO_ERROR). 2805 */ 2806 sock->sk->sk_err = -err; 2807 } 2808 out_put: 2809 fput_light(sock->file, fput_needed); 2810 2811 return datagrams; 2812 } 2813 2814 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2815 unsigned int vlen, unsigned int flags, 2816 struct __kernel_timespec __user *timeout, 2817 struct old_timespec32 __user *timeout32) 2818 { 2819 int datagrams; 2820 struct timespec64 timeout_sys; 2821 2822 if (timeout && get_timespec64(&timeout_sys, timeout)) 2823 return -EFAULT; 2824 2825 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2826 return -EFAULT; 2827 2828 if (!timeout && !timeout32) 2829 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2830 2831 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2832 2833 if (datagrams <= 0) 2834 return datagrams; 2835 2836 if (timeout && put_timespec64(&timeout_sys, timeout)) 2837 datagrams = -EFAULT; 2838 2839 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2840 datagrams = -EFAULT; 2841 2842 return datagrams; 2843 } 2844 2845 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2846 unsigned int, vlen, unsigned int, flags, 2847 struct __kernel_timespec __user *, timeout) 2848 { 2849 if (flags & MSG_CMSG_COMPAT) 2850 return -EINVAL; 2851 2852 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2853 } 2854 2855 #ifdef CONFIG_COMPAT_32BIT_TIME 2856 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2857 unsigned int, vlen, unsigned int, flags, 2858 struct old_timespec32 __user *, timeout) 2859 { 2860 if (flags & MSG_CMSG_COMPAT) 2861 return -EINVAL; 2862 2863 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2864 } 2865 #endif 2866 2867 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2868 /* Argument list sizes for sys_socketcall */ 2869 #define AL(x) ((x) * sizeof(unsigned long)) 2870 static const unsigned char nargs[21] = { 2871 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2872 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2873 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2874 AL(4), AL(5), AL(4) 2875 }; 2876 2877 #undef AL 2878 2879 /* 2880 * System call vectors. 2881 * 2882 * Argument checking cleaned up. Saved 20% in size. 2883 * This function doesn't need to set the kernel lock because 2884 * it is set by the callees. 2885 */ 2886 2887 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2888 { 2889 unsigned long a[AUDITSC_ARGS]; 2890 unsigned long a0, a1; 2891 int err; 2892 unsigned int len; 2893 2894 if (call < 1 || call > SYS_SENDMMSG) 2895 return -EINVAL; 2896 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2897 2898 len = nargs[call]; 2899 if (len > sizeof(a)) 2900 return -EINVAL; 2901 2902 /* copy_from_user should be SMP safe. */ 2903 if (copy_from_user(a, args, len)) 2904 return -EFAULT; 2905 2906 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2907 if (err) 2908 return err; 2909 2910 a0 = a[0]; 2911 a1 = a[1]; 2912 2913 switch (call) { 2914 case SYS_SOCKET: 2915 err = __sys_socket(a0, a1, a[2]); 2916 break; 2917 case SYS_BIND: 2918 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2919 break; 2920 case SYS_CONNECT: 2921 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2922 break; 2923 case SYS_LISTEN: 2924 err = __sys_listen(a0, a1); 2925 break; 2926 case SYS_ACCEPT: 2927 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2928 (int __user *)a[2], 0); 2929 break; 2930 case SYS_GETSOCKNAME: 2931 err = 2932 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2933 (int __user *)a[2]); 2934 break; 2935 case SYS_GETPEERNAME: 2936 err = 2937 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2938 (int __user *)a[2]); 2939 break; 2940 case SYS_SOCKETPAIR: 2941 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2942 break; 2943 case SYS_SEND: 2944 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2945 NULL, 0); 2946 break; 2947 case SYS_SENDTO: 2948 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2949 (struct sockaddr __user *)a[4], a[5]); 2950 break; 2951 case SYS_RECV: 2952 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2953 NULL, NULL); 2954 break; 2955 case SYS_RECVFROM: 2956 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2957 (struct sockaddr __user *)a[4], 2958 (int __user *)a[5]); 2959 break; 2960 case SYS_SHUTDOWN: 2961 err = __sys_shutdown(a0, a1); 2962 break; 2963 case SYS_SETSOCKOPT: 2964 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2965 a[4]); 2966 break; 2967 case SYS_GETSOCKOPT: 2968 err = 2969 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2970 (int __user *)a[4]); 2971 break; 2972 case SYS_SENDMSG: 2973 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2974 a[2], true); 2975 break; 2976 case SYS_SENDMMSG: 2977 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2978 a[3], true); 2979 break; 2980 case SYS_RECVMSG: 2981 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2982 a[2], true); 2983 break; 2984 case SYS_RECVMMSG: 2985 if (IS_ENABLED(CONFIG_64BIT)) 2986 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2987 a[2], a[3], 2988 (struct __kernel_timespec __user *)a[4], 2989 NULL); 2990 else 2991 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2992 a[2], a[3], NULL, 2993 (struct old_timespec32 __user *)a[4]); 2994 break; 2995 case SYS_ACCEPT4: 2996 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2997 (int __user *)a[2], a[3]); 2998 break; 2999 default: 3000 err = -EINVAL; 3001 break; 3002 } 3003 return err; 3004 } 3005 3006 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3007 3008 /** 3009 * sock_register - add a socket protocol handler 3010 * @ops: description of protocol 3011 * 3012 * This function is called by a protocol handler that wants to 3013 * advertise its address family, and have it linked into the 3014 * socket interface. The value ops->family corresponds to the 3015 * socket system call protocol family. 3016 */ 3017 int sock_register(const struct net_proto_family *ops) 3018 { 3019 int err; 3020 3021 if (ops->family >= NPROTO) { 3022 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3023 return -ENOBUFS; 3024 } 3025 3026 spin_lock(&net_family_lock); 3027 if (rcu_dereference_protected(net_families[ops->family], 3028 lockdep_is_held(&net_family_lock))) 3029 err = -EEXIST; 3030 else { 3031 rcu_assign_pointer(net_families[ops->family], ops); 3032 err = 0; 3033 } 3034 spin_unlock(&net_family_lock); 3035 3036 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3037 return err; 3038 } 3039 EXPORT_SYMBOL(sock_register); 3040 3041 /** 3042 * sock_unregister - remove a protocol handler 3043 * @family: protocol family to remove 3044 * 3045 * This function is called by a protocol handler that wants to 3046 * remove its address family, and have it unlinked from the 3047 * new socket creation. 3048 * 3049 * If protocol handler is a module, then it can use module reference 3050 * counts to protect against new references. If protocol handler is not 3051 * a module then it needs to provide its own protection in 3052 * the ops->create routine. 3053 */ 3054 void sock_unregister(int family) 3055 { 3056 BUG_ON(family < 0 || family >= NPROTO); 3057 3058 spin_lock(&net_family_lock); 3059 RCU_INIT_POINTER(net_families[family], NULL); 3060 spin_unlock(&net_family_lock); 3061 3062 synchronize_rcu(); 3063 3064 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3065 } 3066 EXPORT_SYMBOL(sock_unregister); 3067 3068 bool sock_is_registered(int family) 3069 { 3070 return family < NPROTO && rcu_access_pointer(net_families[family]); 3071 } 3072 3073 static int __init sock_init(void) 3074 { 3075 int err; 3076 /* 3077 * Initialize the network sysctl infrastructure. 3078 */ 3079 err = net_sysctl_init(); 3080 if (err) 3081 goto out; 3082 3083 /* 3084 * Initialize skbuff SLAB cache 3085 */ 3086 skb_init(); 3087 3088 /* 3089 * Initialize the protocols module. 3090 */ 3091 3092 init_inodecache(); 3093 3094 err = register_filesystem(&sock_fs_type); 3095 if (err) 3096 goto out; 3097 sock_mnt = kern_mount(&sock_fs_type); 3098 if (IS_ERR(sock_mnt)) { 3099 err = PTR_ERR(sock_mnt); 3100 goto out_mount; 3101 } 3102 3103 /* The real protocol initialization is performed in later initcalls. 3104 */ 3105 3106 #ifdef CONFIG_NETFILTER 3107 err = netfilter_init(); 3108 if (err) 3109 goto out; 3110 #endif 3111 3112 ptp_classifier_init(); 3113 3114 out: 3115 return err; 3116 3117 out_mount: 3118 unregister_filesystem(&sock_fs_type); 3119 goto out; 3120 } 3121 3122 core_initcall(sock_init); /* early initcall */ 3123 3124 #ifdef CONFIG_PROC_FS 3125 void socket_seq_show(struct seq_file *seq) 3126 { 3127 seq_printf(seq, "sockets: used %d\n", 3128 sock_inuse_get(seq->private)); 3129 } 3130 #endif /* CONFIG_PROC_FS */ 3131 3132 #ifdef CONFIG_COMPAT 3133 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3134 { 3135 struct compat_ifconf ifc32; 3136 struct ifconf ifc; 3137 int err; 3138 3139 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3140 return -EFAULT; 3141 3142 ifc.ifc_len = ifc32.ifc_len; 3143 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3144 3145 rtnl_lock(); 3146 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3147 rtnl_unlock(); 3148 if (err) 3149 return err; 3150 3151 ifc32.ifc_len = ifc.ifc_len; 3152 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3153 return -EFAULT; 3154 3155 return 0; 3156 } 3157 3158 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3159 { 3160 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3161 bool convert_in = false, convert_out = false; 3162 size_t buf_size = 0; 3163 struct ethtool_rxnfc __user *rxnfc = NULL; 3164 struct ifreq ifr; 3165 u32 rule_cnt = 0, actual_rule_cnt; 3166 u32 ethcmd; 3167 u32 data; 3168 int ret; 3169 3170 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3171 return -EFAULT; 3172 3173 compat_rxnfc = compat_ptr(data); 3174 3175 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3176 return -EFAULT; 3177 3178 /* Most ethtool structures are defined without padding. 3179 * Unfortunately struct ethtool_rxnfc is an exception. 3180 */ 3181 switch (ethcmd) { 3182 default: 3183 break; 3184 case ETHTOOL_GRXCLSRLALL: 3185 /* Buffer size is variable */ 3186 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3187 return -EFAULT; 3188 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3189 return -ENOMEM; 3190 buf_size += rule_cnt * sizeof(u32); 3191 fallthrough; 3192 case ETHTOOL_GRXRINGS: 3193 case ETHTOOL_GRXCLSRLCNT: 3194 case ETHTOOL_GRXCLSRULE: 3195 case ETHTOOL_SRXCLSRLINS: 3196 convert_out = true; 3197 fallthrough; 3198 case ETHTOOL_SRXCLSRLDEL: 3199 buf_size += sizeof(struct ethtool_rxnfc); 3200 convert_in = true; 3201 rxnfc = compat_alloc_user_space(buf_size); 3202 break; 3203 } 3204 3205 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3206 return -EFAULT; 3207 3208 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3209 3210 if (convert_in) { 3211 /* We expect there to be holes between fs.m_ext and 3212 * fs.ring_cookie and at the end of fs, but nowhere else. 3213 */ 3214 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3215 sizeof(compat_rxnfc->fs.m_ext) != 3216 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3217 sizeof(rxnfc->fs.m_ext)); 3218 BUILD_BUG_ON( 3219 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3220 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3221 offsetof(struct ethtool_rxnfc, fs.location) - 3222 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3223 3224 if (copy_in_user(rxnfc, compat_rxnfc, 3225 (void __user *)(&rxnfc->fs.m_ext + 1) - 3226 (void __user *)rxnfc) || 3227 copy_in_user(&rxnfc->fs.ring_cookie, 3228 &compat_rxnfc->fs.ring_cookie, 3229 (void __user *)(&rxnfc->fs.location + 1) - 3230 (void __user *)&rxnfc->fs.ring_cookie)) 3231 return -EFAULT; 3232 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3233 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3234 return -EFAULT; 3235 } else if (copy_in_user(&rxnfc->rule_cnt, 3236 &compat_rxnfc->rule_cnt, 3237 sizeof(rxnfc->rule_cnt))) 3238 return -EFAULT; 3239 } 3240 3241 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3242 if (ret) 3243 return ret; 3244 3245 if (convert_out) { 3246 if (copy_in_user(compat_rxnfc, rxnfc, 3247 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3248 (const void __user *)rxnfc) || 3249 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3250 &rxnfc->fs.ring_cookie, 3251 (const void __user *)(&rxnfc->fs.location + 1) - 3252 (const void __user *)&rxnfc->fs.ring_cookie) || 3253 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3254 sizeof(rxnfc->rule_cnt))) 3255 return -EFAULT; 3256 3257 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3258 /* As an optimisation, we only copy the actual 3259 * number of rules that the underlying 3260 * function returned. Since Mallory might 3261 * change the rule count in user memory, we 3262 * check that it is less than the rule count 3263 * originally given (as the user buffer size), 3264 * which has been range-checked. 3265 */ 3266 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3267 return -EFAULT; 3268 if (actual_rule_cnt < rule_cnt) 3269 rule_cnt = actual_rule_cnt; 3270 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3271 &rxnfc->rule_locs[0], 3272 rule_cnt * sizeof(u32))) 3273 return -EFAULT; 3274 } 3275 } 3276 3277 return 0; 3278 } 3279 3280 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3281 { 3282 compat_uptr_t uptr32; 3283 struct ifreq ifr; 3284 void __user *saved; 3285 int err; 3286 3287 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3288 return -EFAULT; 3289 3290 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3291 return -EFAULT; 3292 3293 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3294 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3295 3296 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3297 if (!err) { 3298 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3299 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3300 err = -EFAULT; 3301 } 3302 return err; 3303 } 3304 3305 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3306 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3307 struct compat_ifreq __user *u_ifreq32) 3308 { 3309 struct ifreq ifreq; 3310 u32 data32; 3311 3312 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3313 return -EFAULT; 3314 if (get_user(data32, &u_ifreq32->ifr_data)) 3315 return -EFAULT; 3316 ifreq.ifr_data = compat_ptr(data32); 3317 3318 return dev_ioctl(net, cmd, &ifreq, NULL); 3319 } 3320 3321 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3322 unsigned int cmd, 3323 struct compat_ifreq __user *uifr32) 3324 { 3325 struct ifreq __user *uifr; 3326 int err; 3327 3328 /* Handle the fact that while struct ifreq has the same *layout* on 3329 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3330 * which are handled elsewhere, it still has different *size* due to 3331 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3332 * resulting in struct ifreq being 32 and 40 bytes respectively). 3333 * As a result, if the struct happens to be at the end of a page and 3334 * the next page isn't readable/writable, we get a fault. To prevent 3335 * that, copy back and forth to the full size. 3336 */ 3337 3338 uifr = compat_alloc_user_space(sizeof(*uifr)); 3339 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3340 return -EFAULT; 3341 3342 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3343 3344 if (!err) { 3345 switch (cmd) { 3346 case SIOCGIFFLAGS: 3347 case SIOCGIFMETRIC: 3348 case SIOCGIFMTU: 3349 case SIOCGIFMEM: 3350 case SIOCGIFHWADDR: 3351 case SIOCGIFINDEX: 3352 case SIOCGIFADDR: 3353 case SIOCGIFBRDADDR: 3354 case SIOCGIFDSTADDR: 3355 case SIOCGIFNETMASK: 3356 case SIOCGIFPFLAGS: 3357 case SIOCGIFTXQLEN: 3358 case SIOCGMIIPHY: 3359 case SIOCGMIIREG: 3360 case SIOCGIFNAME: 3361 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3362 err = -EFAULT; 3363 break; 3364 } 3365 } 3366 return err; 3367 } 3368 3369 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3370 struct compat_ifreq __user *uifr32) 3371 { 3372 struct ifreq ifr; 3373 struct compat_ifmap __user *uifmap32; 3374 int err; 3375 3376 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3377 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3378 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3379 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3380 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3381 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3382 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3383 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3384 if (err) 3385 return -EFAULT; 3386 3387 err = dev_ioctl(net, cmd, &ifr, NULL); 3388 3389 if (cmd == SIOCGIFMAP && !err) { 3390 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3391 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3392 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3393 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3394 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3395 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3396 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3397 if (err) 3398 err = -EFAULT; 3399 } 3400 return err; 3401 } 3402 3403 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3404 * for some operations; this forces use of the newer bridge-utils that 3405 * use compatible ioctls 3406 */ 3407 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3408 { 3409 compat_ulong_t tmp; 3410 3411 if (get_user(tmp, argp)) 3412 return -EFAULT; 3413 if (tmp == BRCTL_GET_VERSION) 3414 return BRCTL_VERSION + 1; 3415 return -EINVAL; 3416 } 3417 3418 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3419 unsigned int cmd, unsigned long arg) 3420 { 3421 void __user *argp = compat_ptr(arg); 3422 struct sock *sk = sock->sk; 3423 struct net *net = sock_net(sk); 3424 3425 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3426 return compat_ifr_data_ioctl(net, cmd, argp); 3427 3428 switch (cmd) { 3429 case SIOCSIFBR: 3430 case SIOCGIFBR: 3431 return old_bridge_ioctl(argp); 3432 case SIOCGIFCONF: 3433 return compat_dev_ifconf(net, argp); 3434 case SIOCETHTOOL: 3435 return ethtool_ioctl(net, argp); 3436 case SIOCWANDEV: 3437 return compat_siocwandev(net, argp); 3438 case SIOCGIFMAP: 3439 case SIOCSIFMAP: 3440 return compat_sioc_ifmap(net, cmd, argp); 3441 case SIOCGSTAMP_OLD: 3442 case SIOCGSTAMPNS_OLD: 3443 if (!sock->ops->gettstamp) 3444 return -ENOIOCTLCMD; 3445 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3446 !COMPAT_USE_64BIT_TIME); 3447 3448 case SIOCBONDSLAVEINFOQUERY: 3449 case SIOCBONDINFOQUERY: 3450 case SIOCSHWTSTAMP: 3451 case SIOCGHWTSTAMP: 3452 return compat_ifr_data_ioctl(net, cmd, argp); 3453 3454 case FIOSETOWN: 3455 case SIOCSPGRP: 3456 case FIOGETOWN: 3457 case SIOCGPGRP: 3458 case SIOCBRADDBR: 3459 case SIOCBRDELBR: 3460 case SIOCGIFVLAN: 3461 case SIOCSIFVLAN: 3462 case SIOCGSKNS: 3463 case SIOCGSTAMP_NEW: 3464 case SIOCGSTAMPNS_NEW: 3465 return sock_ioctl(file, cmd, arg); 3466 3467 case SIOCGIFFLAGS: 3468 case SIOCSIFFLAGS: 3469 case SIOCGIFMETRIC: 3470 case SIOCSIFMETRIC: 3471 case SIOCGIFMTU: 3472 case SIOCSIFMTU: 3473 case SIOCGIFMEM: 3474 case SIOCSIFMEM: 3475 case SIOCGIFHWADDR: 3476 case SIOCSIFHWADDR: 3477 case SIOCADDMULTI: 3478 case SIOCDELMULTI: 3479 case SIOCGIFINDEX: 3480 case SIOCGIFADDR: 3481 case SIOCSIFADDR: 3482 case SIOCSIFHWBROADCAST: 3483 case SIOCDIFADDR: 3484 case SIOCGIFBRDADDR: 3485 case SIOCSIFBRDADDR: 3486 case SIOCGIFDSTADDR: 3487 case SIOCSIFDSTADDR: 3488 case SIOCGIFNETMASK: 3489 case SIOCSIFNETMASK: 3490 case SIOCSIFPFLAGS: 3491 case SIOCGIFPFLAGS: 3492 case SIOCGIFTXQLEN: 3493 case SIOCSIFTXQLEN: 3494 case SIOCBRADDIF: 3495 case SIOCBRDELIF: 3496 case SIOCGIFNAME: 3497 case SIOCSIFNAME: 3498 case SIOCGMIIPHY: 3499 case SIOCGMIIREG: 3500 case SIOCSMIIREG: 3501 case SIOCBONDENSLAVE: 3502 case SIOCBONDRELEASE: 3503 case SIOCBONDSETHWADDR: 3504 case SIOCBONDCHANGEACTIVE: 3505 return compat_ifreq_ioctl(net, sock, cmd, argp); 3506 3507 case SIOCSARP: 3508 case SIOCGARP: 3509 case SIOCDARP: 3510 case SIOCOUTQ: 3511 case SIOCOUTQNSD: 3512 case SIOCATMARK: 3513 return sock_do_ioctl(net, sock, cmd, arg); 3514 } 3515 3516 return -ENOIOCTLCMD; 3517 } 3518 3519 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3520 unsigned long arg) 3521 { 3522 struct socket *sock = file->private_data; 3523 int ret = -ENOIOCTLCMD; 3524 struct sock *sk; 3525 struct net *net; 3526 3527 sk = sock->sk; 3528 net = sock_net(sk); 3529 3530 if (sock->ops->compat_ioctl) 3531 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3532 3533 if (ret == -ENOIOCTLCMD && 3534 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3535 ret = compat_wext_handle_ioctl(net, cmd, arg); 3536 3537 if (ret == -ENOIOCTLCMD) 3538 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3539 3540 return ret; 3541 } 3542 #endif 3543 3544 /** 3545 * kernel_bind - bind an address to a socket (kernel space) 3546 * @sock: socket 3547 * @addr: address 3548 * @addrlen: length of address 3549 * 3550 * Returns 0 or an error. 3551 */ 3552 3553 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3554 { 3555 return sock->ops->bind(sock, addr, addrlen); 3556 } 3557 EXPORT_SYMBOL(kernel_bind); 3558 3559 /** 3560 * kernel_listen - move socket to listening state (kernel space) 3561 * @sock: socket 3562 * @backlog: pending connections queue size 3563 * 3564 * Returns 0 or an error. 3565 */ 3566 3567 int kernel_listen(struct socket *sock, int backlog) 3568 { 3569 return sock->ops->listen(sock, backlog); 3570 } 3571 EXPORT_SYMBOL(kernel_listen); 3572 3573 /** 3574 * kernel_accept - accept a connection (kernel space) 3575 * @sock: listening socket 3576 * @newsock: new connected socket 3577 * @flags: flags 3578 * 3579 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3580 * If it fails, @newsock is guaranteed to be %NULL. 3581 * Returns 0 or an error. 3582 */ 3583 3584 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3585 { 3586 struct sock *sk = sock->sk; 3587 int err; 3588 3589 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3590 newsock); 3591 if (err < 0) 3592 goto done; 3593 3594 err = sock->ops->accept(sock, *newsock, flags, true); 3595 if (err < 0) { 3596 sock_release(*newsock); 3597 *newsock = NULL; 3598 goto done; 3599 } 3600 3601 (*newsock)->ops = sock->ops; 3602 __module_get((*newsock)->ops->owner); 3603 3604 done: 3605 return err; 3606 } 3607 EXPORT_SYMBOL(kernel_accept); 3608 3609 /** 3610 * kernel_connect - connect a socket (kernel space) 3611 * @sock: socket 3612 * @addr: address 3613 * @addrlen: address length 3614 * @flags: flags (O_NONBLOCK, ...) 3615 * 3616 * For datagram sockets, @addr is the address to which datagrams are sent 3617 * by default, and the only address from which datagrams are received. 3618 * For stream sockets, attempts to connect to @addr. 3619 * Returns 0 or an error code. 3620 */ 3621 3622 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3623 int flags) 3624 { 3625 return sock->ops->connect(sock, addr, addrlen, flags); 3626 } 3627 EXPORT_SYMBOL(kernel_connect); 3628 3629 /** 3630 * kernel_getsockname - get the address which the socket is bound (kernel space) 3631 * @sock: socket 3632 * @addr: address holder 3633 * 3634 * Fills the @addr pointer with the address which the socket is bound. 3635 * Returns 0 or an error code. 3636 */ 3637 3638 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3639 { 3640 return sock->ops->getname(sock, addr, 0); 3641 } 3642 EXPORT_SYMBOL(kernel_getsockname); 3643 3644 /** 3645 * kernel_getpeername - get the address which the socket is connected (kernel space) 3646 * @sock: socket 3647 * @addr: address holder 3648 * 3649 * Fills the @addr pointer with the address which the socket is connected. 3650 * Returns 0 or an error code. 3651 */ 3652 3653 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3654 { 3655 return sock->ops->getname(sock, addr, 1); 3656 } 3657 EXPORT_SYMBOL(kernel_getpeername); 3658 3659 /** 3660 * kernel_sendpage - send a &page through a socket (kernel space) 3661 * @sock: socket 3662 * @page: page 3663 * @offset: page offset 3664 * @size: total size in bytes 3665 * @flags: flags (MSG_DONTWAIT, ...) 3666 * 3667 * Returns the total amount sent in bytes or an error. 3668 */ 3669 3670 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3671 size_t size, int flags) 3672 { 3673 if (sock->ops->sendpage) { 3674 /* Warn in case the improper page to zero-copy send */ 3675 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3676 return sock->ops->sendpage(sock, page, offset, size, flags); 3677 } 3678 return sock_no_sendpage(sock, page, offset, size, flags); 3679 } 3680 EXPORT_SYMBOL(kernel_sendpage); 3681 3682 /** 3683 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3684 * @sk: sock 3685 * @page: page 3686 * @offset: page offset 3687 * @size: total size in bytes 3688 * @flags: flags (MSG_DONTWAIT, ...) 3689 * 3690 * Returns the total amount sent in bytes or an error. 3691 * Caller must hold @sk. 3692 */ 3693 3694 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3695 size_t size, int flags) 3696 { 3697 struct socket *sock = sk->sk_socket; 3698 3699 if (sock->ops->sendpage_locked) 3700 return sock->ops->sendpage_locked(sk, page, offset, size, 3701 flags); 3702 3703 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3704 } 3705 EXPORT_SYMBOL(kernel_sendpage_locked); 3706 3707 /** 3708 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3709 * @sock: socket 3710 * @how: connection part 3711 * 3712 * Returns 0 or an error. 3713 */ 3714 3715 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3716 { 3717 return sock->ops->shutdown(sock, how); 3718 } 3719 EXPORT_SYMBOL(kernel_sock_shutdown); 3720 3721 /** 3722 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3723 * @sk: socket 3724 * 3725 * This routine returns the IP overhead imposed by a socket i.e. 3726 * the length of the underlying IP header, depending on whether 3727 * this is an IPv4 or IPv6 socket and the length from IP options turned 3728 * on at the socket. Assumes that the caller has a lock on the socket. 3729 */ 3730 3731 u32 kernel_sock_ip_overhead(struct sock *sk) 3732 { 3733 struct inet_sock *inet; 3734 struct ip_options_rcu *opt; 3735 u32 overhead = 0; 3736 #if IS_ENABLED(CONFIG_IPV6) 3737 struct ipv6_pinfo *np; 3738 struct ipv6_txoptions *optv6 = NULL; 3739 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3740 3741 if (!sk) 3742 return overhead; 3743 3744 switch (sk->sk_family) { 3745 case AF_INET: 3746 inet = inet_sk(sk); 3747 overhead += sizeof(struct iphdr); 3748 opt = rcu_dereference_protected(inet->inet_opt, 3749 sock_owned_by_user(sk)); 3750 if (opt) 3751 overhead += opt->opt.optlen; 3752 return overhead; 3753 #if IS_ENABLED(CONFIG_IPV6) 3754 case AF_INET6: 3755 np = inet6_sk(sk); 3756 overhead += sizeof(struct ipv6hdr); 3757 if (np) 3758 optv6 = rcu_dereference_protected(np->opt, 3759 sock_owned_by_user(sk)); 3760 if (optv6) 3761 overhead += (optv6->opt_flen + optv6->opt_nflen); 3762 return overhead; 3763 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3764 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3765 return overhead; 3766 } 3767 } 3768 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3769