1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/smp_lock.h> 63 #include <linux/socket.h> 64 #include <linux/file.h> 65 #include <linux/net.h> 66 #include <linux/interrupt.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/divert.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 89 #include <asm/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 94 #include <net/sock.h> 95 #include <linux/netfilter.h> 96 97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 99 size_t size, loff_t pos); 100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 101 size_t size, loff_t pos); 102 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 103 104 static int sock_close(struct inode *inode, struct file *file); 105 static unsigned int sock_poll(struct file *file, 106 struct poll_table_struct *wait); 107 static long sock_ioctl(struct file *file, 108 unsigned int cmd, unsigned long arg); 109 #ifdef CONFIG_COMPAT 110 static long compat_sock_ioctl(struct file *file, 111 unsigned int cmd, unsigned long arg); 112 #endif 113 static int sock_fasync(int fd, struct file *filp, int on); 114 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 115 unsigned long count, loff_t *ppos); 116 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 117 unsigned long count, loff_t *ppos); 118 static ssize_t sock_sendpage(struct file *file, struct page *page, 119 int offset, size_t size, loff_t *ppos, int more); 120 121 /* 122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 123 * in the operation structures but are done directly via the socketcall() multiplexor. 124 */ 125 126 static struct file_operations socket_file_ops = { 127 .owner = THIS_MODULE, 128 .llseek = no_llseek, 129 .aio_read = sock_aio_read, 130 .aio_write = sock_aio_write, 131 .poll = sock_poll, 132 .unlocked_ioctl = sock_ioctl, 133 #ifdef CONFIG_COMPAT 134 .compat_ioctl = compat_sock_ioctl, 135 #endif 136 .mmap = sock_mmap, 137 .open = sock_no_open, /* special open code to disallow open via /proc */ 138 .release = sock_close, 139 .fasync = sock_fasync, 140 .readv = sock_readv, 141 .writev = sock_writev, 142 .sendpage = sock_sendpage, 143 .splice_write = generic_splice_sendpage, 144 }; 145 146 /* 147 * The protocol list. Each protocol is registered in here. 148 */ 149 150 static struct net_proto_family *net_families[NPROTO]; 151 152 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 153 static atomic_t net_family_lockct = ATOMIC_INIT(0); 154 static DEFINE_SPINLOCK(net_family_lock); 155 156 /* The strategy is: modifications net_family vector are short, do not 157 sleep and veeery rare, but read access should be free of any exclusive 158 locks. 159 */ 160 161 static void net_family_write_lock(void) 162 { 163 spin_lock(&net_family_lock); 164 while (atomic_read(&net_family_lockct) != 0) { 165 spin_unlock(&net_family_lock); 166 167 yield(); 168 169 spin_lock(&net_family_lock); 170 } 171 } 172 173 static __inline__ void net_family_write_unlock(void) 174 { 175 spin_unlock(&net_family_lock); 176 } 177 178 static __inline__ void net_family_read_lock(void) 179 { 180 atomic_inc(&net_family_lockct); 181 spin_unlock_wait(&net_family_lock); 182 } 183 184 static __inline__ void net_family_read_unlock(void) 185 { 186 atomic_dec(&net_family_lockct); 187 } 188 189 #else 190 #define net_family_write_lock() do { } while(0) 191 #define net_family_write_unlock() do { } while(0) 192 #define net_family_read_lock() do { } while(0) 193 #define net_family_read_unlock() do { } while(0) 194 #endif 195 196 197 /* 198 * Statistics counters of the socket lists 199 */ 200 201 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 202 203 /* 204 * Support routines. Move socket addresses back and forth across the kernel/user 205 * divide and look after the messy bits. 206 */ 207 208 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 209 16 for IP, 16 for IPX, 210 24 for IPv6, 211 about 80 for AX.25 212 must be at least one bigger than 213 the AF_UNIX size (see net/unix/af_unix.c 214 :unix_mkname()). 215 */ 216 217 /** 218 * move_addr_to_kernel - copy a socket address into kernel space 219 * @uaddr: Address in user space 220 * @kaddr: Address in kernel space 221 * @ulen: Length in user space 222 * 223 * The address is copied into kernel space. If the provided address is 224 * too long an error code of -EINVAL is returned. If the copy gives 225 * invalid addresses -EFAULT is returned. On a success 0 is returned. 226 */ 227 228 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 229 { 230 if(ulen<0||ulen>MAX_SOCK_ADDR) 231 return -EINVAL; 232 if(ulen==0) 233 return 0; 234 if(copy_from_user(kaddr,uaddr,ulen)) 235 return -EFAULT; 236 return audit_sockaddr(ulen, kaddr); 237 } 238 239 /** 240 * move_addr_to_user - copy an address to user space 241 * @kaddr: kernel space address 242 * @klen: length of address in kernel 243 * @uaddr: user space address 244 * @ulen: pointer to user length field 245 * 246 * The value pointed to by ulen on entry is the buffer length available. 247 * This is overwritten with the buffer space used. -EINVAL is returned 248 * if an overlong buffer is specified or a negative buffer size. -EFAULT 249 * is returned if either the buffer or the length field are not 250 * accessible. 251 * After copying the data up to the limit the user specifies, the true 252 * length of the data is written over the length limit the user 253 * specified. Zero is returned for a success. 254 */ 255 256 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 257 { 258 int err; 259 int len; 260 261 if((err=get_user(len, ulen))) 262 return err; 263 if(len>klen) 264 len=klen; 265 if(len<0 || len> MAX_SOCK_ADDR) 266 return -EINVAL; 267 if(len) 268 { 269 if (audit_sockaddr(klen, kaddr)) 270 return -ENOMEM; 271 if(copy_to_user(uaddr,kaddr,len)) 272 return -EFAULT; 273 } 274 /* 275 * "fromlen shall refer to the value before truncation.." 276 * 1003.1g 277 */ 278 return __put_user(klen, ulen); 279 } 280 281 #define SOCKFS_MAGIC 0x534F434B 282 283 static kmem_cache_t * sock_inode_cachep __read_mostly; 284 285 static struct inode *sock_alloc_inode(struct super_block *sb) 286 { 287 struct socket_alloc *ei; 288 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 289 if (!ei) 290 return NULL; 291 init_waitqueue_head(&ei->socket.wait); 292 293 ei->socket.fasync_list = NULL; 294 ei->socket.state = SS_UNCONNECTED; 295 ei->socket.flags = 0; 296 ei->socket.ops = NULL; 297 ei->socket.sk = NULL; 298 ei->socket.file = NULL; 299 ei->socket.flags = 0; 300 301 return &ei->vfs_inode; 302 } 303 304 static void sock_destroy_inode(struct inode *inode) 305 { 306 kmem_cache_free(sock_inode_cachep, 307 container_of(inode, struct socket_alloc, vfs_inode)); 308 } 309 310 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 311 { 312 struct socket_alloc *ei = (struct socket_alloc *) foo; 313 314 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 315 SLAB_CTOR_CONSTRUCTOR) 316 inode_init_once(&ei->vfs_inode); 317 } 318 319 static int init_inodecache(void) 320 { 321 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 322 sizeof(struct socket_alloc), 323 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 324 SLAB_MEM_SPREAD), 325 init_once, NULL); 326 if (sock_inode_cachep == NULL) 327 return -ENOMEM; 328 return 0; 329 } 330 331 static struct super_operations sockfs_ops = { 332 .alloc_inode = sock_alloc_inode, 333 .destroy_inode =sock_destroy_inode, 334 .statfs = simple_statfs, 335 }; 336 337 static int sockfs_get_sb(struct file_system_type *fs_type, 338 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 339 { 340 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 341 mnt); 342 } 343 344 static struct vfsmount *sock_mnt __read_mostly; 345 346 static struct file_system_type sock_fs_type = { 347 .name = "sockfs", 348 .get_sb = sockfs_get_sb, 349 .kill_sb = kill_anon_super, 350 }; 351 static int sockfs_delete_dentry(struct dentry *dentry) 352 { 353 return 1; 354 } 355 static struct dentry_operations sockfs_dentry_operations = { 356 .d_delete = sockfs_delete_dentry, 357 }; 358 359 /* 360 * Obtains the first available file descriptor and sets it up for use. 361 * 362 * These functions create file structures and maps them to fd space 363 * of the current process. On success it returns file descriptor 364 * and file struct implicitly stored in sock->file. 365 * Note that another thread may close file descriptor before we return 366 * from this function. We use the fact that now we do not refer 367 * to socket after mapping. If one day we will need it, this 368 * function will increment ref. count on file by 1. 369 * 370 * In any case returned fd MAY BE not valid! 371 * This race condition is unavoidable 372 * with shared fd spaces, we cannot solve it inside kernel, 373 * but we take care of internal coherence yet. 374 */ 375 376 static int sock_alloc_fd(struct file **filep) 377 { 378 int fd; 379 380 fd = get_unused_fd(); 381 if (likely(fd >= 0)) { 382 struct file *file = get_empty_filp(); 383 384 *filep = file; 385 if (unlikely(!file)) { 386 put_unused_fd(fd); 387 return -ENFILE; 388 } 389 } else 390 *filep = NULL; 391 return fd; 392 } 393 394 static int sock_attach_fd(struct socket *sock, struct file *file) 395 { 396 struct qstr this; 397 char name[32]; 398 399 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 400 this.name = name; 401 this.hash = SOCK_INODE(sock)->i_ino; 402 403 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 404 if (unlikely(!file->f_dentry)) 405 return -ENOMEM; 406 407 file->f_dentry->d_op = &sockfs_dentry_operations; 408 d_add(file->f_dentry, SOCK_INODE(sock)); 409 file->f_vfsmnt = mntget(sock_mnt); 410 file->f_mapping = file->f_dentry->d_inode->i_mapping; 411 412 sock->file = file; 413 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 414 file->f_mode = FMODE_READ | FMODE_WRITE; 415 file->f_flags = O_RDWR; 416 file->f_pos = 0; 417 file->private_data = sock; 418 419 return 0; 420 } 421 422 int sock_map_fd(struct socket *sock) 423 { 424 struct file *newfile; 425 int fd = sock_alloc_fd(&newfile); 426 427 if (likely(fd >= 0)) { 428 int err = sock_attach_fd(sock, newfile); 429 430 if (unlikely(err < 0)) { 431 put_filp(newfile); 432 put_unused_fd(fd); 433 return err; 434 } 435 fd_install(fd, newfile); 436 } 437 return fd; 438 } 439 440 static struct socket *sock_from_file(struct file *file, int *err) 441 { 442 struct inode *inode; 443 struct socket *sock; 444 445 if (file->f_op == &socket_file_ops) 446 return file->private_data; /* set in sock_map_fd */ 447 448 inode = file->f_dentry->d_inode; 449 if (!S_ISSOCK(inode->i_mode)) { 450 *err = -ENOTSOCK; 451 return NULL; 452 } 453 454 sock = SOCKET_I(inode); 455 if (sock->file != file) { 456 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 457 sock->file = file; 458 } 459 return sock; 460 } 461 462 /** 463 * sockfd_lookup - Go from a file number to its socket slot 464 * @fd: file handle 465 * @err: pointer to an error code return 466 * 467 * The file handle passed in is locked and the socket it is bound 468 * too is returned. If an error occurs the err pointer is overwritten 469 * with a negative errno code and NULL is returned. The function checks 470 * for both invalid handles and passing a handle which is not a socket. 471 * 472 * On a success the socket object pointer is returned. 473 */ 474 475 struct socket *sockfd_lookup(int fd, int *err) 476 { 477 struct file *file; 478 struct socket *sock; 479 480 if (!(file = fget(fd))) { 481 *err = -EBADF; 482 return NULL; 483 } 484 sock = sock_from_file(file, err); 485 if (!sock) 486 fput(file); 487 return sock; 488 } 489 490 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 491 { 492 struct file *file; 493 struct socket *sock; 494 495 *err = -EBADF; 496 file = fget_light(fd, fput_needed); 497 if (file) { 498 sock = sock_from_file(file, err); 499 if (sock) 500 return sock; 501 fput_light(file, *fput_needed); 502 } 503 return NULL; 504 } 505 506 /** 507 * sock_alloc - allocate a socket 508 * 509 * Allocate a new inode and socket object. The two are bound together 510 * and initialised. The socket is then returned. If we are out of inodes 511 * NULL is returned. 512 */ 513 514 static struct socket *sock_alloc(void) 515 { 516 struct inode * inode; 517 struct socket * sock; 518 519 inode = new_inode(sock_mnt->mnt_sb); 520 if (!inode) 521 return NULL; 522 523 sock = SOCKET_I(inode); 524 525 inode->i_mode = S_IFSOCK|S_IRWXUGO; 526 inode->i_uid = current->fsuid; 527 inode->i_gid = current->fsgid; 528 529 get_cpu_var(sockets_in_use)++; 530 put_cpu_var(sockets_in_use); 531 return sock; 532 } 533 534 /* 535 * In theory you can't get an open on this inode, but /proc provides 536 * a back door. Remember to keep it shut otherwise you'll let the 537 * creepy crawlies in. 538 */ 539 540 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 541 { 542 return -ENXIO; 543 } 544 545 const struct file_operations bad_sock_fops = { 546 .owner = THIS_MODULE, 547 .open = sock_no_open, 548 }; 549 550 /** 551 * sock_release - close a socket 552 * @sock: socket to close 553 * 554 * The socket is released from the protocol stack if it has a release 555 * callback, and the inode is then released if the socket is bound to 556 * an inode not a file. 557 */ 558 559 void sock_release(struct socket *sock) 560 { 561 if (sock->ops) { 562 struct module *owner = sock->ops->owner; 563 564 sock->ops->release(sock); 565 sock->ops = NULL; 566 module_put(owner); 567 } 568 569 if (sock->fasync_list) 570 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 571 572 get_cpu_var(sockets_in_use)--; 573 put_cpu_var(sockets_in_use); 574 if (!sock->file) { 575 iput(SOCK_INODE(sock)); 576 return; 577 } 578 sock->file=NULL; 579 } 580 581 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 582 struct msghdr *msg, size_t size) 583 { 584 struct sock_iocb *si = kiocb_to_siocb(iocb); 585 int err; 586 587 si->sock = sock; 588 si->scm = NULL; 589 si->msg = msg; 590 si->size = size; 591 592 err = security_socket_sendmsg(sock, msg, size); 593 if (err) 594 return err; 595 596 return sock->ops->sendmsg(iocb, sock, msg, size); 597 } 598 599 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 600 { 601 struct kiocb iocb; 602 struct sock_iocb siocb; 603 int ret; 604 605 init_sync_kiocb(&iocb, NULL); 606 iocb.private = &siocb; 607 ret = __sock_sendmsg(&iocb, sock, msg, size); 608 if (-EIOCBQUEUED == ret) 609 ret = wait_on_sync_kiocb(&iocb); 610 return ret; 611 } 612 613 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 614 struct kvec *vec, size_t num, size_t size) 615 { 616 mm_segment_t oldfs = get_fs(); 617 int result; 618 619 set_fs(KERNEL_DS); 620 /* 621 * the following is safe, since for compiler definitions of kvec and 622 * iovec are identical, yielding the same in-core layout and alignment 623 */ 624 msg->msg_iov = (struct iovec *)vec, 625 msg->msg_iovlen = num; 626 result = sock_sendmsg(sock, msg, size); 627 set_fs(oldfs); 628 return result; 629 } 630 631 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 632 struct msghdr *msg, size_t size, int flags) 633 { 634 int err; 635 struct sock_iocb *si = kiocb_to_siocb(iocb); 636 637 si->sock = sock; 638 si->scm = NULL; 639 si->msg = msg; 640 si->size = size; 641 si->flags = flags; 642 643 err = security_socket_recvmsg(sock, msg, size, flags); 644 if (err) 645 return err; 646 647 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 648 } 649 650 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 651 size_t size, int flags) 652 { 653 struct kiocb iocb; 654 struct sock_iocb siocb; 655 int ret; 656 657 init_sync_kiocb(&iocb, NULL); 658 iocb.private = &siocb; 659 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 660 if (-EIOCBQUEUED == ret) 661 ret = wait_on_sync_kiocb(&iocb); 662 return ret; 663 } 664 665 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 666 struct kvec *vec, size_t num, 667 size_t size, int flags) 668 { 669 mm_segment_t oldfs = get_fs(); 670 int result; 671 672 set_fs(KERNEL_DS); 673 /* 674 * the following is safe, since for compiler definitions of kvec and 675 * iovec are identical, yielding the same in-core layout and alignment 676 */ 677 msg->msg_iov = (struct iovec *)vec, 678 msg->msg_iovlen = num; 679 result = sock_recvmsg(sock, msg, size, flags); 680 set_fs(oldfs); 681 return result; 682 } 683 684 static void sock_aio_dtor(struct kiocb *iocb) 685 { 686 kfree(iocb->private); 687 } 688 689 static ssize_t sock_sendpage(struct file *file, struct page *page, 690 int offset, size_t size, loff_t *ppos, int more) 691 { 692 struct socket *sock; 693 int flags; 694 695 sock = file->private_data; 696 697 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 698 if (more) 699 flags |= MSG_MORE; 700 701 return sock->ops->sendpage(sock, page, offset, size, flags); 702 } 703 704 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 705 char __user *ubuf, size_t size, struct sock_iocb *siocb) 706 { 707 if (!is_sync_kiocb(iocb)) { 708 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 709 if (!siocb) 710 return NULL; 711 iocb->ki_dtor = sock_aio_dtor; 712 } 713 714 siocb->kiocb = iocb; 715 siocb->async_iov.iov_base = ubuf; 716 siocb->async_iov.iov_len = size; 717 718 iocb->private = siocb; 719 return siocb; 720 } 721 722 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 723 struct file *file, struct iovec *iov, unsigned long nr_segs) 724 { 725 struct socket *sock = file->private_data; 726 size_t size = 0; 727 int i; 728 729 for (i = 0 ; i < nr_segs ; i++) 730 size += iov[i].iov_len; 731 732 msg->msg_name = NULL; 733 msg->msg_namelen = 0; 734 msg->msg_control = NULL; 735 msg->msg_controllen = 0; 736 msg->msg_iov = (struct iovec *) iov; 737 msg->msg_iovlen = nr_segs; 738 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 739 740 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 741 } 742 743 static ssize_t sock_readv(struct file *file, const struct iovec *iov, 744 unsigned long nr_segs, loff_t *ppos) 745 { 746 struct kiocb iocb; 747 struct sock_iocb siocb; 748 struct msghdr msg; 749 int ret; 750 751 init_sync_kiocb(&iocb, NULL); 752 iocb.private = &siocb; 753 754 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 755 if (-EIOCBQUEUED == ret) 756 ret = wait_on_sync_kiocb(&iocb); 757 return ret; 758 } 759 760 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 761 size_t count, loff_t pos) 762 { 763 struct sock_iocb siocb, *x; 764 765 if (pos != 0) 766 return -ESPIPE; 767 if (count == 0) /* Match SYS5 behaviour */ 768 return 0; 769 770 x = alloc_sock_iocb(iocb, ubuf, count, &siocb); 771 if (!x) 772 return -ENOMEM; 773 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, 774 &x->async_iov, 1); 775 } 776 777 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 778 struct file *file, struct iovec *iov, unsigned long nr_segs) 779 { 780 struct socket *sock = file->private_data; 781 size_t size = 0; 782 int i; 783 784 for (i = 0 ; i < nr_segs ; i++) 785 size += iov[i].iov_len; 786 787 msg->msg_name = NULL; 788 msg->msg_namelen = 0; 789 msg->msg_control = NULL; 790 msg->msg_controllen = 0; 791 msg->msg_iov = (struct iovec *) iov; 792 msg->msg_iovlen = nr_segs; 793 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 794 if (sock->type == SOCK_SEQPACKET) 795 msg->msg_flags |= MSG_EOR; 796 797 return __sock_sendmsg(iocb, sock, msg, size); 798 } 799 800 static ssize_t sock_writev(struct file *file, const struct iovec *iov, 801 unsigned long nr_segs, loff_t *ppos) 802 { 803 struct msghdr msg; 804 struct kiocb iocb; 805 struct sock_iocb siocb; 806 int ret; 807 808 init_sync_kiocb(&iocb, NULL); 809 iocb.private = &siocb; 810 811 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 812 if (-EIOCBQUEUED == ret) 813 ret = wait_on_sync_kiocb(&iocb); 814 return ret; 815 } 816 817 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 818 size_t count, loff_t pos) 819 { 820 struct sock_iocb siocb, *x; 821 822 if (pos != 0) 823 return -ESPIPE; 824 if (count == 0) /* Match SYS5 behaviour */ 825 return 0; 826 827 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb); 828 if (!x) 829 return -ENOMEM; 830 831 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, 832 &x->async_iov, 1); 833 } 834 835 836 /* 837 * Atomic setting of ioctl hooks to avoid race 838 * with module unload. 839 */ 840 841 static DEFINE_MUTEX(br_ioctl_mutex); 842 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 843 844 void brioctl_set(int (*hook)(unsigned int, void __user *)) 845 { 846 mutex_lock(&br_ioctl_mutex); 847 br_ioctl_hook = hook; 848 mutex_unlock(&br_ioctl_mutex); 849 } 850 EXPORT_SYMBOL(brioctl_set); 851 852 static DEFINE_MUTEX(vlan_ioctl_mutex); 853 static int (*vlan_ioctl_hook)(void __user *arg); 854 855 void vlan_ioctl_set(int (*hook)(void __user *)) 856 { 857 mutex_lock(&vlan_ioctl_mutex); 858 vlan_ioctl_hook = hook; 859 mutex_unlock(&vlan_ioctl_mutex); 860 } 861 EXPORT_SYMBOL(vlan_ioctl_set); 862 863 static DEFINE_MUTEX(dlci_ioctl_mutex); 864 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 865 866 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 867 { 868 mutex_lock(&dlci_ioctl_mutex); 869 dlci_ioctl_hook = hook; 870 mutex_unlock(&dlci_ioctl_mutex); 871 } 872 EXPORT_SYMBOL(dlci_ioctl_set); 873 874 /* 875 * With an ioctl, arg may well be a user mode pointer, but we don't know 876 * what to do with it - that's up to the protocol still. 877 */ 878 879 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 880 { 881 struct socket *sock; 882 void __user *argp = (void __user *)arg; 883 int pid, err; 884 885 sock = file->private_data; 886 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 887 err = dev_ioctl(cmd, argp); 888 } else 889 #ifdef CONFIG_WIRELESS_EXT 890 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 891 err = dev_ioctl(cmd, argp); 892 } else 893 #endif /* CONFIG_WIRELESS_EXT */ 894 switch (cmd) { 895 case FIOSETOWN: 896 case SIOCSPGRP: 897 err = -EFAULT; 898 if (get_user(pid, (int __user *)argp)) 899 break; 900 err = f_setown(sock->file, pid, 1); 901 break; 902 case FIOGETOWN: 903 case SIOCGPGRP: 904 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 905 break; 906 case SIOCGIFBR: 907 case SIOCSIFBR: 908 case SIOCBRADDBR: 909 case SIOCBRDELBR: 910 err = -ENOPKG; 911 if (!br_ioctl_hook) 912 request_module("bridge"); 913 914 mutex_lock(&br_ioctl_mutex); 915 if (br_ioctl_hook) 916 err = br_ioctl_hook(cmd, argp); 917 mutex_unlock(&br_ioctl_mutex); 918 break; 919 case SIOCGIFVLAN: 920 case SIOCSIFVLAN: 921 err = -ENOPKG; 922 if (!vlan_ioctl_hook) 923 request_module("8021q"); 924 925 mutex_lock(&vlan_ioctl_mutex); 926 if (vlan_ioctl_hook) 927 err = vlan_ioctl_hook(argp); 928 mutex_unlock(&vlan_ioctl_mutex); 929 break; 930 case SIOCGIFDIVERT: 931 case SIOCSIFDIVERT: 932 /* Convert this to call through a hook */ 933 err = divert_ioctl(cmd, argp); 934 break; 935 case SIOCADDDLCI: 936 case SIOCDELDLCI: 937 err = -ENOPKG; 938 if (!dlci_ioctl_hook) 939 request_module("dlci"); 940 941 if (dlci_ioctl_hook) { 942 mutex_lock(&dlci_ioctl_mutex); 943 err = dlci_ioctl_hook(cmd, argp); 944 mutex_unlock(&dlci_ioctl_mutex); 945 } 946 break; 947 default: 948 err = sock->ops->ioctl(sock, cmd, arg); 949 950 /* 951 * If this ioctl is unknown try to hand it down 952 * to the NIC driver. 953 */ 954 if (err == -ENOIOCTLCMD) 955 err = dev_ioctl(cmd, argp); 956 break; 957 } 958 return err; 959 } 960 961 int sock_create_lite(int family, int type, int protocol, struct socket **res) 962 { 963 int err; 964 struct socket *sock = NULL; 965 966 err = security_socket_create(family, type, protocol, 1); 967 if (err) 968 goto out; 969 970 sock = sock_alloc(); 971 if (!sock) { 972 err = -ENOMEM; 973 goto out; 974 } 975 976 security_socket_post_create(sock, family, type, protocol, 1); 977 sock->type = type; 978 out: 979 *res = sock; 980 return err; 981 } 982 983 /* No kernel lock held - perfect */ 984 static unsigned int sock_poll(struct file *file, poll_table * wait) 985 { 986 struct socket *sock; 987 988 /* 989 * We can't return errors to poll, so it's either yes or no. 990 */ 991 sock = file->private_data; 992 return sock->ops->poll(file, sock, wait); 993 } 994 995 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 996 { 997 struct socket *sock = file->private_data; 998 999 return sock->ops->mmap(file, sock, vma); 1000 } 1001 1002 static int sock_close(struct inode *inode, struct file *filp) 1003 { 1004 /* 1005 * It was possible the inode is NULL we were 1006 * closing an unfinished socket. 1007 */ 1008 1009 if (!inode) 1010 { 1011 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1012 return 0; 1013 } 1014 sock_fasync(-1, filp, 0); 1015 sock_release(SOCKET_I(inode)); 1016 return 0; 1017 } 1018 1019 /* 1020 * Update the socket async list 1021 * 1022 * Fasync_list locking strategy. 1023 * 1024 * 1. fasync_list is modified only under process context socket lock 1025 * i.e. under semaphore. 1026 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1027 * or under socket lock. 1028 * 3. fasync_list can be used from softirq context, so that 1029 * modification under socket lock have to be enhanced with 1030 * write_lock_bh(&sk->sk_callback_lock). 1031 * --ANK (990710) 1032 */ 1033 1034 static int sock_fasync(int fd, struct file *filp, int on) 1035 { 1036 struct fasync_struct *fa, *fna=NULL, **prev; 1037 struct socket *sock; 1038 struct sock *sk; 1039 1040 if (on) 1041 { 1042 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1043 if(fna==NULL) 1044 return -ENOMEM; 1045 } 1046 1047 sock = filp->private_data; 1048 1049 if ((sk=sock->sk) == NULL) { 1050 kfree(fna); 1051 return -EINVAL; 1052 } 1053 1054 lock_sock(sk); 1055 1056 prev=&(sock->fasync_list); 1057 1058 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1059 if (fa->fa_file==filp) 1060 break; 1061 1062 if(on) 1063 { 1064 if(fa!=NULL) 1065 { 1066 write_lock_bh(&sk->sk_callback_lock); 1067 fa->fa_fd=fd; 1068 write_unlock_bh(&sk->sk_callback_lock); 1069 1070 kfree(fna); 1071 goto out; 1072 } 1073 fna->fa_file=filp; 1074 fna->fa_fd=fd; 1075 fna->magic=FASYNC_MAGIC; 1076 fna->fa_next=sock->fasync_list; 1077 write_lock_bh(&sk->sk_callback_lock); 1078 sock->fasync_list=fna; 1079 write_unlock_bh(&sk->sk_callback_lock); 1080 } 1081 else 1082 { 1083 if (fa!=NULL) 1084 { 1085 write_lock_bh(&sk->sk_callback_lock); 1086 *prev=fa->fa_next; 1087 write_unlock_bh(&sk->sk_callback_lock); 1088 kfree(fa); 1089 } 1090 } 1091 1092 out: 1093 release_sock(sock->sk); 1094 return 0; 1095 } 1096 1097 /* This function may be called only under socket lock or callback_lock */ 1098 1099 int sock_wake_async(struct socket *sock, int how, int band) 1100 { 1101 if (!sock || !sock->fasync_list) 1102 return -1; 1103 switch (how) 1104 { 1105 case 1: 1106 1107 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1108 break; 1109 goto call_kill; 1110 case 2: 1111 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1112 break; 1113 /* fall through */ 1114 case 0: 1115 call_kill: 1116 __kill_fasync(sock->fasync_list, SIGIO, band); 1117 break; 1118 case 3: 1119 __kill_fasync(sock->fasync_list, SIGURG, band); 1120 } 1121 return 0; 1122 } 1123 1124 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1125 { 1126 int err; 1127 struct socket *sock; 1128 1129 /* 1130 * Check protocol is in range 1131 */ 1132 if (family < 0 || family >= NPROTO) 1133 return -EAFNOSUPPORT; 1134 if (type < 0 || type >= SOCK_MAX) 1135 return -EINVAL; 1136 1137 /* Compatibility. 1138 1139 This uglymoron is moved from INET layer to here to avoid 1140 deadlock in module load. 1141 */ 1142 if (family == PF_INET && type == SOCK_PACKET) { 1143 static int warned; 1144 if (!warned) { 1145 warned = 1; 1146 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1147 } 1148 family = PF_PACKET; 1149 } 1150 1151 err = security_socket_create(family, type, protocol, kern); 1152 if (err) 1153 return err; 1154 1155 #if defined(CONFIG_KMOD) 1156 /* Attempt to load a protocol module if the find failed. 1157 * 1158 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1159 * requested real, full-featured networking support upon configuration. 1160 * Otherwise module support will break! 1161 */ 1162 if (net_families[family]==NULL) 1163 { 1164 request_module("net-pf-%d",family); 1165 } 1166 #endif 1167 1168 net_family_read_lock(); 1169 if (net_families[family] == NULL) { 1170 err = -EAFNOSUPPORT; 1171 goto out; 1172 } 1173 1174 /* 1175 * Allocate the socket and allow the family to set things up. if 1176 * the protocol is 0, the family is instructed to select an appropriate 1177 * default. 1178 */ 1179 1180 if (!(sock = sock_alloc())) { 1181 printk(KERN_WARNING "socket: no more sockets\n"); 1182 err = -ENFILE; /* Not exactly a match, but its the 1183 closest posix thing */ 1184 goto out; 1185 } 1186 1187 sock->type = type; 1188 1189 /* 1190 * We will call the ->create function, that possibly is in a loadable 1191 * module, so we have to bump that loadable module refcnt first. 1192 */ 1193 err = -EAFNOSUPPORT; 1194 if (!try_module_get(net_families[family]->owner)) 1195 goto out_release; 1196 1197 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1198 sock->ops = NULL; 1199 goto out_module_put; 1200 } 1201 1202 /* 1203 * Now to bump the refcnt of the [loadable] module that owns this 1204 * socket at sock_release time we decrement its refcnt. 1205 */ 1206 if (!try_module_get(sock->ops->owner)) { 1207 sock->ops = NULL; 1208 goto out_module_put; 1209 } 1210 /* 1211 * Now that we're done with the ->create function, the [loadable] 1212 * module can have its refcnt decremented 1213 */ 1214 module_put(net_families[family]->owner); 1215 *res = sock; 1216 security_socket_post_create(sock, family, type, protocol, kern); 1217 1218 out: 1219 net_family_read_unlock(); 1220 return err; 1221 out_module_put: 1222 module_put(net_families[family]->owner); 1223 out_release: 1224 sock_release(sock); 1225 goto out; 1226 } 1227 1228 int sock_create(int family, int type, int protocol, struct socket **res) 1229 { 1230 return __sock_create(family, type, protocol, res, 0); 1231 } 1232 1233 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1234 { 1235 return __sock_create(family, type, protocol, res, 1); 1236 } 1237 1238 asmlinkage long sys_socket(int family, int type, int protocol) 1239 { 1240 int retval; 1241 struct socket *sock; 1242 1243 retval = sock_create(family, type, protocol, &sock); 1244 if (retval < 0) 1245 goto out; 1246 1247 retval = sock_map_fd(sock); 1248 if (retval < 0) 1249 goto out_release; 1250 1251 out: 1252 /* It may be already another descriptor 8) Not kernel problem. */ 1253 return retval; 1254 1255 out_release: 1256 sock_release(sock); 1257 return retval; 1258 } 1259 1260 /* 1261 * Create a pair of connected sockets. 1262 */ 1263 1264 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1265 { 1266 struct socket *sock1, *sock2; 1267 int fd1, fd2, err; 1268 1269 /* 1270 * Obtain the first socket and check if the underlying protocol 1271 * supports the socketpair call. 1272 */ 1273 1274 err = sock_create(family, type, protocol, &sock1); 1275 if (err < 0) 1276 goto out; 1277 1278 err = sock_create(family, type, protocol, &sock2); 1279 if (err < 0) 1280 goto out_release_1; 1281 1282 err = sock1->ops->socketpair(sock1, sock2); 1283 if (err < 0) 1284 goto out_release_both; 1285 1286 fd1 = fd2 = -1; 1287 1288 err = sock_map_fd(sock1); 1289 if (err < 0) 1290 goto out_release_both; 1291 fd1 = err; 1292 1293 err = sock_map_fd(sock2); 1294 if (err < 0) 1295 goto out_close_1; 1296 fd2 = err; 1297 1298 /* fd1 and fd2 may be already another descriptors. 1299 * Not kernel problem. 1300 */ 1301 1302 err = put_user(fd1, &usockvec[0]); 1303 if (!err) 1304 err = put_user(fd2, &usockvec[1]); 1305 if (!err) 1306 return 0; 1307 1308 sys_close(fd2); 1309 sys_close(fd1); 1310 return err; 1311 1312 out_close_1: 1313 sock_release(sock2); 1314 sys_close(fd1); 1315 return err; 1316 1317 out_release_both: 1318 sock_release(sock2); 1319 out_release_1: 1320 sock_release(sock1); 1321 out: 1322 return err; 1323 } 1324 1325 1326 /* 1327 * Bind a name to a socket. Nothing much to do here since it's 1328 * the protocol's responsibility to handle the local address. 1329 * 1330 * We move the socket address to kernel space before we call 1331 * the protocol layer (having also checked the address is ok). 1332 */ 1333 1334 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1335 { 1336 struct socket *sock; 1337 char address[MAX_SOCK_ADDR]; 1338 int err, fput_needed; 1339 1340 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1341 { 1342 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1343 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1344 if (!err) 1345 err = sock->ops->bind(sock, 1346 (struct sockaddr *)address, addrlen); 1347 } 1348 fput_light(sock->file, fput_needed); 1349 } 1350 return err; 1351 } 1352 1353 1354 /* 1355 * Perform a listen. Basically, we allow the protocol to do anything 1356 * necessary for a listen, and if that works, we mark the socket as 1357 * ready for listening. 1358 */ 1359 1360 int sysctl_somaxconn = SOMAXCONN; 1361 1362 asmlinkage long sys_listen(int fd, int backlog) 1363 { 1364 struct socket *sock; 1365 int err, fput_needed; 1366 1367 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1368 if ((unsigned) backlog > sysctl_somaxconn) 1369 backlog = sysctl_somaxconn; 1370 1371 err = security_socket_listen(sock, backlog); 1372 if (!err) 1373 err = sock->ops->listen(sock, backlog); 1374 1375 fput_light(sock->file, fput_needed); 1376 } 1377 return err; 1378 } 1379 1380 1381 /* 1382 * For accept, we attempt to create a new socket, set up the link 1383 * with the client, wake up the client, then return the new 1384 * connected fd. We collect the address of the connector in kernel 1385 * space and move it to user at the very end. This is unclean because 1386 * we open the socket then return an error. 1387 * 1388 * 1003.1g adds the ability to recvmsg() to query connection pending 1389 * status to recvmsg. We need to add that support in a way thats 1390 * clean when we restucture accept also. 1391 */ 1392 1393 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1394 { 1395 struct socket *sock, *newsock; 1396 struct file *newfile; 1397 int err, len, newfd, fput_needed; 1398 char address[MAX_SOCK_ADDR]; 1399 1400 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1401 if (!sock) 1402 goto out; 1403 1404 err = -ENFILE; 1405 if (!(newsock = sock_alloc())) 1406 goto out_put; 1407 1408 newsock->type = sock->type; 1409 newsock->ops = sock->ops; 1410 1411 /* 1412 * We don't need try_module_get here, as the listening socket (sock) 1413 * has the protocol module (sock->ops->owner) held. 1414 */ 1415 __module_get(newsock->ops->owner); 1416 1417 newfd = sock_alloc_fd(&newfile); 1418 if (unlikely(newfd < 0)) { 1419 err = newfd; 1420 sock_release(newsock); 1421 goto out_put; 1422 } 1423 1424 err = sock_attach_fd(newsock, newfile); 1425 if (err < 0) 1426 goto out_fd; 1427 1428 err = security_socket_accept(sock, newsock); 1429 if (err) 1430 goto out_fd; 1431 1432 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1433 if (err < 0) 1434 goto out_fd; 1435 1436 if (upeer_sockaddr) { 1437 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1438 err = -ECONNABORTED; 1439 goto out_fd; 1440 } 1441 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1442 if (err < 0) 1443 goto out_fd; 1444 } 1445 1446 /* File flags are not inherited via accept() unlike another OSes. */ 1447 1448 fd_install(newfd, newfile); 1449 err = newfd; 1450 1451 security_socket_post_accept(sock, newsock); 1452 1453 out_put: 1454 fput_light(sock->file, fput_needed); 1455 out: 1456 return err; 1457 out_fd: 1458 fput(newfile); 1459 put_unused_fd(newfd); 1460 goto out_put; 1461 } 1462 1463 1464 /* 1465 * Attempt to connect to a socket with the server address. The address 1466 * is in user space so we verify it is OK and move it to kernel space. 1467 * 1468 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1469 * break bindings 1470 * 1471 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1472 * other SEQPACKET protocols that take time to connect() as it doesn't 1473 * include the -EINPROGRESS status for such sockets. 1474 */ 1475 1476 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1477 { 1478 struct socket *sock; 1479 char address[MAX_SOCK_ADDR]; 1480 int err, fput_needed; 1481 1482 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1483 if (!sock) 1484 goto out; 1485 err = move_addr_to_kernel(uservaddr, addrlen, address); 1486 if (err < 0) 1487 goto out_put; 1488 1489 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1490 if (err) 1491 goto out_put; 1492 1493 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1494 sock->file->f_flags); 1495 out_put: 1496 fput_light(sock->file, fput_needed); 1497 out: 1498 return err; 1499 } 1500 1501 /* 1502 * Get the local address ('name') of a socket object. Move the obtained 1503 * name to user space. 1504 */ 1505 1506 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1507 { 1508 struct socket *sock; 1509 char address[MAX_SOCK_ADDR]; 1510 int len, err, fput_needed; 1511 1512 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1513 if (!sock) 1514 goto out; 1515 1516 err = security_socket_getsockname(sock); 1517 if (err) 1518 goto out_put; 1519 1520 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1521 if (err) 1522 goto out_put; 1523 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1524 1525 out_put: 1526 fput_light(sock->file, fput_needed); 1527 out: 1528 return err; 1529 } 1530 1531 /* 1532 * Get the remote address ('name') of a socket object. Move the obtained 1533 * name to user space. 1534 */ 1535 1536 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1537 { 1538 struct socket *sock; 1539 char address[MAX_SOCK_ADDR]; 1540 int len, err, fput_needed; 1541 1542 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1543 err = security_socket_getpeername(sock); 1544 if (err) { 1545 fput_light(sock->file, fput_needed); 1546 return err; 1547 } 1548 1549 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1550 if (!err) 1551 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1552 fput_light(sock->file, fput_needed); 1553 } 1554 return err; 1555 } 1556 1557 /* 1558 * Send a datagram to a given address. We move the address into kernel 1559 * space and check the user space data area is readable before invoking 1560 * the protocol. 1561 */ 1562 1563 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1564 struct sockaddr __user *addr, int addr_len) 1565 { 1566 struct socket *sock; 1567 char address[MAX_SOCK_ADDR]; 1568 int err; 1569 struct msghdr msg; 1570 struct iovec iov; 1571 int fput_needed; 1572 struct file *sock_file; 1573 1574 sock_file = fget_light(fd, &fput_needed); 1575 if (!sock_file) 1576 return -EBADF; 1577 1578 sock = sock_from_file(sock_file, &err); 1579 if (!sock) 1580 goto out_put; 1581 iov.iov_base=buff; 1582 iov.iov_len=len; 1583 msg.msg_name=NULL; 1584 msg.msg_iov=&iov; 1585 msg.msg_iovlen=1; 1586 msg.msg_control=NULL; 1587 msg.msg_controllen=0; 1588 msg.msg_namelen=0; 1589 if (addr) { 1590 err = move_addr_to_kernel(addr, addr_len, address); 1591 if (err < 0) 1592 goto out_put; 1593 msg.msg_name=address; 1594 msg.msg_namelen=addr_len; 1595 } 1596 if (sock->file->f_flags & O_NONBLOCK) 1597 flags |= MSG_DONTWAIT; 1598 msg.msg_flags = flags; 1599 err = sock_sendmsg(sock, &msg, len); 1600 1601 out_put: 1602 fput_light(sock_file, fput_needed); 1603 return err; 1604 } 1605 1606 /* 1607 * Send a datagram down a socket. 1608 */ 1609 1610 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1611 { 1612 return sys_sendto(fd, buff, len, flags, NULL, 0); 1613 } 1614 1615 /* 1616 * Receive a frame from the socket and optionally record the address of the 1617 * sender. We verify the buffers are writable and if needed move the 1618 * sender address from kernel to user space. 1619 */ 1620 1621 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1622 struct sockaddr __user *addr, int __user *addr_len) 1623 { 1624 struct socket *sock; 1625 struct iovec iov; 1626 struct msghdr msg; 1627 char address[MAX_SOCK_ADDR]; 1628 int err,err2; 1629 struct file *sock_file; 1630 int fput_needed; 1631 1632 sock_file = fget_light(fd, &fput_needed); 1633 if (!sock_file) 1634 return -EBADF; 1635 1636 sock = sock_from_file(sock_file, &err); 1637 if (!sock) 1638 goto out; 1639 1640 msg.msg_control=NULL; 1641 msg.msg_controllen=0; 1642 msg.msg_iovlen=1; 1643 msg.msg_iov=&iov; 1644 iov.iov_len=size; 1645 iov.iov_base=ubuf; 1646 msg.msg_name=address; 1647 msg.msg_namelen=MAX_SOCK_ADDR; 1648 if (sock->file->f_flags & O_NONBLOCK) 1649 flags |= MSG_DONTWAIT; 1650 err=sock_recvmsg(sock, &msg, size, flags); 1651 1652 if(err >= 0 && addr != NULL) 1653 { 1654 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1655 if(err2<0) 1656 err=err2; 1657 } 1658 out: 1659 fput_light(sock_file, fput_needed); 1660 return err; 1661 } 1662 1663 /* 1664 * Receive a datagram from a socket. 1665 */ 1666 1667 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1668 { 1669 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1670 } 1671 1672 /* 1673 * Set a socket option. Because we don't know the option lengths we have 1674 * to pass the user mode parameter for the protocols to sort out. 1675 */ 1676 1677 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1678 { 1679 int err, fput_needed; 1680 struct socket *sock; 1681 1682 if (optlen < 0) 1683 return -EINVAL; 1684 1685 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) 1686 { 1687 err = security_socket_setsockopt(sock,level,optname); 1688 if (err) 1689 goto out_put; 1690 1691 if (level == SOL_SOCKET) 1692 err=sock_setsockopt(sock,level,optname,optval,optlen); 1693 else 1694 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1695 out_put: 1696 fput_light(sock->file, fput_needed); 1697 } 1698 return err; 1699 } 1700 1701 /* 1702 * Get a socket option. Because we don't know the option lengths we have 1703 * to pass a user mode parameter for the protocols to sort out. 1704 */ 1705 1706 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1707 { 1708 int err, fput_needed; 1709 struct socket *sock; 1710 1711 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1712 err = security_socket_getsockopt(sock, level, optname); 1713 if (err) 1714 goto out_put; 1715 1716 if (level == SOL_SOCKET) 1717 err=sock_getsockopt(sock,level,optname,optval,optlen); 1718 else 1719 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1720 out_put: 1721 fput_light(sock->file, fput_needed); 1722 } 1723 return err; 1724 } 1725 1726 1727 /* 1728 * Shutdown a socket. 1729 */ 1730 1731 asmlinkage long sys_shutdown(int fd, int how) 1732 { 1733 int err, fput_needed; 1734 struct socket *sock; 1735 1736 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1737 { 1738 err = security_socket_shutdown(sock, how); 1739 if (!err) 1740 err = sock->ops->shutdown(sock, how); 1741 fput_light(sock->file, fput_needed); 1742 } 1743 return err; 1744 } 1745 1746 /* A couple of helpful macros for getting the address of the 32/64 bit 1747 * fields which are the same type (int / unsigned) on our platforms. 1748 */ 1749 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1750 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1751 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1752 1753 1754 /* 1755 * BSD sendmsg interface 1756 */ 1757 1758 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1759 { 1760 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1761 struct socket *sock; 1762 char address[MAX_SOCK_ADDR]; 1763 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1764 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1765 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1766 /* 20 is size of ipv6_pktinfo */ 1767 unsigned char *ctl_buf = ctl; 1768 struct msghdr msg_sys; 1769 int err, ctl_len, iov_size, total_len; 1770 int fput_needed; 1771 1772 err = -EFAULT; 1773 if (MSG_CMSG_COMPAT & flags) { 1774 if (get_compat_msghdr(&msg_sys, msg_compat)) 1775 return -EFAULT; 1776 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1777 return -EFAULT; 1778 1779 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1780 if (!sock) 1781 goto out; 1782 1783 /* do not move before msg_sys is valid */ 1784 err = -EMSGSIZE; 1785 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1786 goto out_put; 1787 1788 /* Check whether to allocate the iovec area*/ 1789 err = -ENOMEM; 1790 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1791 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1792 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1793 if (!iov) 1794 goto out_put; 1795 } 1796 1797 /* This will also move the address data into kernel space */ 1798 if (MSG_CMSG_COMPAT & flags) { 1799 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1800 } else 1801 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1802 if (err < 0) 1803 goto out_freeiov; 1804 total_len = err; 1805 1806 err = -ENOBUFS; 1807 1808 if (msg_sys.msg_controllen > INT_MAX) 1809 goto out_freeiov; 1810 ctl_len = msg_sys.msg_controllen; 1811 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1812 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1813 if (err) 1814 goto out_freeiov; 1815 ctl_buf = msg_sys.msg_control; 1816 ctl_len = msg_sys.msg_controllen; 1817 } else if (ctl_len) { 1818 if (ctl_len > sizeof(ctl)) 1819 { 1820 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1821 if (ctl_buf == NULL) 1822 goto out_freeiov; 1823 } 1824 err = -EFAULT; 1825 /* 1826 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1827 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1828 * checking falls down on this. 1829 */ 1830 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1831 goto out_freectl; 1832 msg_sys.msg_control = ctl_buf; 1833 } 1834 msg_sys.msg_flags = flags; 1835 1836 if (sock->file->f_flags & O_NONBLOCK) 1837 msg_sys.msg_flags |= MSG_DONTWAIT; 1838 err = sock_sendmsg(sock, &msg_sys, total_len); 1839 1840 out_freectl: 1841 if (ctl_buf != ctl) 1842 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1843 out_freeiov: 1844 if (iov != iovstack) 1845 sock_kfree_s(sock->sk, iov, iov_size); 1846 out_put: 1847 fput_light(sock->file, fput_needed); 1848 out: 1849 return err; 1850 } 1851 1852 /* 1853 * BSD recvmsg interface 1854 */ 1855 1856 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1857 { 1858 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1859 struct socket *sock; 1860 struct iovec iovstack[UIO_FASTIOV]; 1861 struct iovec *iov=iovstack; 1862 struct msghdr msg_sys; 1863 unsigned long cmsg_ptr; 1864 int err, iov_size, total_len, len; 1865 int fput_needed; 1866 1867 /* kernel mode address */ 1868 char addr[MAX_SOCK_ADDR]; 1869 1870 /* user mode address pointers */ 1871 struct sockaddr __user *uaddr; 1872 int __user *uaddr_len; 1873 1874 if (MSG_CMSG_COMPAT & flags) { 1875 if (get_compat_msghdr(&msg_sys, msg_compat)) 1876 return -EFAULT; 1877 } else 1878 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1879 return -EFAULT; 1880 1881 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1882 if (!sock) 1883 goto out; 1884 1885 err = -EMSGSIZE; 1886 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1887 goto out_put; 1888 1889 /* Check whether to allocate the iovec area*/ 1890 err = -ENOMEM; 1891 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1892 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1893 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1894 if (!iov) 1895 goto out_put; 1896 } 1897 1898 /* 1899 * Save the user-mode address (verify_iovec will change the 1900 * kernel msghdr to use the kernel address space) 1901 */ 1902 1903 uaddr = (void __user *) msg_sys.msg_name; 1904 uaddr_len = COMPAT_NAMELEN(msg); 1905 if (MSG_CMSG_COMPAT & flags) { 1906 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1907 } else 1908 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1909 if (err < 0) 1910 goto out_freeiov; 1911 total_len=err; 1912 1913 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1914 msg_sys.msg_flags = 0; 1915 if (MSG_CMSG_COMPAT & flags) 1916 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1917 1918 if (sock->file->f_flags & O_NONBLOCK) 1919 flags |= MSG_DONTWAIT; 1920 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1921 if (err < 0) 1922 goto out_freeiov; 1923 len = err; 1924 1925 if (uaddr != NULL) { 1926 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1927 if (err < 0) 1928 goto out_freeiov; 1929 } 1930 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1931 COMPAT_FLAGS(msg)); 1932 if (err) 1933 goto out_freeiov; 1934 if (MSG_CMSG_COMPAT & flags) 1935 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1936 &msg_compat->msg_controllen); 1937 else 1938 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1939 &msg->msg_controllen); 1940 if (err) 1941 goto out_freeiov; 1942 err = len; 1943 1944 out_freeiov: 1945 if (iov != iovstack) 1946 sock_kfree_s(sock->sk, iov, iov_size); 1947 out_put: 1948 fput_light(sock->file, fput_needed); 1949 out: 1950 return err; 1951 } 1952 1953 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1954 1955 /* Argument list sizes for sys_socketcall */ 1956 #define AL(x) ((x) * sizeof(unsigned long)) 1957 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1958 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1959 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1960 #undef AL 1961 1962 /* 1963 * System call vectors. 1964 * 1965 * Argument checking cleaned up. Saved 20% in size. 1966 * This function doesn't need to set the kernel lock because 1967 * it is set by the callees. 1968 */ 1969 1970 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1971 { 1972 unsigned long a[6]; 1973 unsigned long a0,a1; 1974 int err; 1975 1976 if(call<1||call>SYS_RECVMSG) 1977 return -EINVAL; 1978 1979 /* copy_from_user should be SMP safe. */ 1980 if (copy_from_user(a, args, nargs[call])) 1981 return -EFAULT; 1982 1983 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1984 if (err) 1985 return err; 1986 1987 a0=a[0]; 1988 a1=a[1]; 1989 1990 switch(call) 1991 { 1992 case SYS_SOCKET: 1993 err = sys_socket(a0,a1,a[2]); 1994 break; 1995 case SYS_BIND: 1996 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1997 break; 1998 case SYS_CONNECT: 1999 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2000 break; 2001 case SYS_LISTEN: 2002 err = sys_listen(a0,a1); 2003 break; 2004 case SYS_ACCEPT: 2005 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2006 break; 2007 case SYS_GETSOCKNAME: 2008 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2009 break; 2010 case SYS_GETPEERNAME: 2011 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 2012 break; 2013 case SYS_SOCKETPAIR: 2014 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 2015 break; 2016 case SYS_SEND: 2017 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2018 break; 2019 case SYS_SENDTO: 2020 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 2021 (struct sockaddr __user *)a[4], a[5]); 2022 break; 2023 case SYS_RECV: 2024 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2025 break; 2026 case SYS_RECVFROM: 2027 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2028 (struct sockaddr __user *)a[4], (int __user *)a[5]); 2029 break; 2030 case SYS_SHUTDOWN: 2031 err = sys_shutdown(a0,a1); 2032 break; 2033 case SYS_SETSOCKOPT: 2034 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2035 break; 2036 case SYS_GETSOCKOPT: 2037 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 2038 break; 2039 case SYS_SENDMSG: 2040 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 2041 break; 2042 case SYS_RECVMSG: 2043 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 2044 break; 2045 default: 2046 err = -EINVAL; 2047 break; 2048 } 2049 return err; 2050 } 2051 2052 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2053 2054 /* 2055 * This function is called by a protocol handler that wants to 2056 * advertise its address family, and have it linked into the 2057 * SOCKET module. 2058 */ 2059 2060 int sock_register(struct net_proto_family *ops) 2061 { 2062 int err; 2063 2064 if (ops->family >= NPROTO) { 2065 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2066 return -ENOBUFS; 2067 } 2068 net_family_write_lock(); 2069 err = -EEXIST; 2070 if (net_families[ops->family] == NULL) { 2071 net_families[ops->family]=ops; 2072 err = 0; 2073 } 2074 net_family_write_unlock(); 2075 printk(KERN_INFO "NET: Registered protocol family %d\n", 2076 ops->family); 2077 return err; 2078 } 2079 2080 /* 2081 * This function is called by a protocol handler that wants to 2082 * remove its address family, and have it unlinked from the 2083 * SOCKET module. 2084 */ 2085 2086 int sock_unregister(int family) 2087 { 2088 if (family < 0 || family >= NPROTO) 2089 return -1; 2090 2091 net_family_write_lock(); 2092 net_families[family]=NULL; 2093 net_family_write_unlock(); 2094 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2095 family); 2096 return 0; 2097 } 2098 2099 static int __init sock_init(void) 2100 { 2101 /* 2102 * Initialize sock SLAB cache. 2103 */ 2104 2105 sk_init(); 2106 2107 /* 2108 * Initialize skbuff SLAB cache 2109 */ 2110 skb_init(); 2111 2112 /* 2113 * Initialize the protocols module. 2114 */ 2115 2116 init_inodecache(); 2117 register_filesystem(&sock_fs_type); 2118 sock_mnt = kern_mount(&sock_fs_type); 2119 2120 /* The real protocol initialization is performed in later initcalls. 2121 */ 2122 2123 #ifdef CONFIG_NETFILTER 2124 netfilter_init(); 2125 #endif 2126 2127 return 0; 2128 } 2129 2130 core_initcall(sock_init); /* early initcall */ 2131 2132 #ifdef CONFIG_PROC_FS 2133 void socket_seq_show(struct seq_file *seq) 2134 { 2135 int cpu; 2136 int counter = 0; 2137 2138 for_each_possible_cpu(cpu) 2139 counter += per_cpu(sockets_in_use, cpu); 2140 2141 /* It can be negative, by the way. 8) */ 2142 if (counter < 0) 2143 counter = 0; 2144 2145 seq_printf(seq, "sockets: used %d\n", counter); 2146 } 2147 #endif /* CONFIG_PROC_FS */ 2148 2149 #ifdef CONFIG_COMPAT 2150 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2151 unsigned long arg) 2152 { 2153 struct socket *sock = file->private_data; 2154 int ret = -ENOIOCTLCMD; 2155 2156 if (sock->ops->compat_ioctl) 2157 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2158 2159 return ret; 2160 } 2161 #endif 2162 2163 /* ABI emulation layers need these two */ 2164 EXPORT_SYMBOL(move_addr_to_kernel); 2165 EXPORT_SYMBOL(move_addr_to_user); 2166 EXPORT_SYMBOL(sock_create); 2167 EXPORT_SYMBOL(sock_create_kern); 2168 EXPORT_SYMBOL(sock_create_lite); 2169 EXPORT_SYMBOL(sock_map_fd); 2170 EXPORT_SYMBOL(sock_recvmsg); 2171 EXPORT_SYMBOL(sock_register); 2172 EXPORT_SYMBOL(sock_release); 2173 EXPORT_SYMBOL(sock_sendmsg); 2174 EXPORT_SYMBOL(sock_unregister); 2175 EXPORT_SYMBOL(sock_wake_async); 2176 EXPORT_SYMBOL(sockfd_lookup); 2177 EXPORT_SYMBOL(kernel_sendmsg); 2178 EXPORT_SYMBOL(kernel_recvmsg); 2179