xref: /linux/net/socket.c (revision 1274b37ab31211beb0f1c6e12e059d6b58a6e40a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 
140 	if (sock->ops->show_fdinfo)
141 		sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146 
147 /*
148  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149  *	in the operation structures but are done directly via the socketcall() multiplexor.
150  */
151 
152 static const struct file_operations socket_file_ops = {
153 	.owner =	THIS_MODULE,
154 	.llseek =	no_llseek,
155 	.read_iter =	sock_read_iter,
156 	.write_iter =	sock_write_iter,
157 	.poll =		sock_poll,
158 	.unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 	.compat_ioctl = compat_sock_ioctl,
161 #endif
162 	.mmap =		sock_mmap,
163 	.release =	sock_close,
164 	.fasync =	sock_fasync,
165 	.sendpage =	sock_sendpage,
166 	.splice_write = generic_splice_sendpage,
167 	.splice_read =	sock_splice_read,
168 	.show_fdinfo =	sock_show_fdinfo,
169 };
170 
171 static const char * const pf_family_names[] = {
172 	[PF_UNSPEC]	= "PF_UNSPEC",
173 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
174 	[PF_INET]	= "PF_INET",
175 	[PF_AX25]	= "PF_AX25",
176 	[PF_IPX]	= "PF_IPX",
177 	[PF_APPLETALK]	= "PF_APPLETALK",
178 	[PF_NETROM]	= "PF_NETROM",
179 	[PF_BRIDGE]	= "PF_BRIDGE",
180 	[PF_ATMPVC]	= "PF_ATMPVC",
181 	[PF_X25]	= "PF_X25",
182 	[PF_INET6]	= "PF_INET6",
183 	[PF_ROSE]	= "PF_ROSE",
184 	[PF_DECnet]	= "PF_DECnet",
185 	[PF_NETBEUI]	= "PF_NETBEUI",
186 	[PF_SECURITY]	= "PF_SECURITY",
187 	[PF_KEY]	= "PF_KEY",
188 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
189 	[PF_PACKET]	= "PF_PACKET",
190 	[PF_ASH]	= "PF_ASH",
191 	[PF_ECONET]	= "PF_ECONET",
192 	[PF_ATMSVC]	= "PF_ATMSVC",
193 	[PF_RDS]	= "PF_RDS",
194 	[PF_SNA]	= "PF_SNA",
195 	[PF_IRDA]	= "PF_IRDA",
196 	[PF_PPPOX]	= "PF_PPPOX",
197 	[PF_WANPIPE]	= "PF_WANPIPE",
198 	[PF_LLC]	= "PF_LLC",
199 	[PF_IB]		= "PF_IB",
200 	[PF_MPLS]	= "PF_MPLS",
201 	[PF_CAN]	= "PF_CAN",
202 	[PF_TIPC]	= "PF_TIPC",
203 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
204 	[PF_IUCV]	= "PF_IUCV",
205 	[PF_RXRPC]	= "PF_RXRPC",
206 	[PF_ISDN]	= "PF_ISDN",
207 	[PF_PHONET]	= "PF_PHONET",
208 	[PF_IEEE802154]	= "PF_IEEE802154",
209 	[PF_CAIF]	= "PF_CAIF",
210 	[PF_ALG]	= "PF_ALG",
211 	[PF_NFC]	= "PF_NFC",
212 	[PF_VSOCK]	= "PF_VSOCK",
213 	[PF_KCM]	= "PF_KCM",
214 	[PF_QIPCRTR]	= "PF_QIPCRTR",
215 	[PF_SMC]	= "PF_SMC",
216 	[PF_XDP]	= "PF_XDP",
217 	[PF_MCTP]	= "PF_MCTP",
218 };
219 
220 /*
221  *	The protocol list. Each protocol is registered in here.
222  */
223 
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226 
227 /*
228  * Support routines.
229  * Move socket addresses back and forth across the kernel/user
230  * divide and look after the messy bits.
231  */
232 
233 /**
234  *	move_addr_to_kernel	-	copy a socket address into kernel space
235  *	@uaddr: Address in user space
236  *	@kaddr: Address in kernel space
237  *	@ulen: Length in user space
238  *
239  *	The address is copied into kernel space. If the provided address is
240  *	too long an error code of -EINVAL is returned. If the copy gives
241  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
242  */
243 
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 		return -EINVAL;
248 	if (ulen == 0)
249 		return 0;
250 	if (copy_from_user(kaddr, uaddr, ulen))
251 		return -EFAULT;
252 	return audit_sockaddr(ulen, kaddr);
253 }
254 
255 /**
256  *	move_addr_to_user	-	copy an address to user space
257  *	@kaddr: kernel space address
258  *	@klen: length of address in kernel
259  *	@uaddr: user space address
260  *	@ulen: pointer to user length field
261  *
262  *	The value pointed to by ulen on entry is the buffer length available.
263  *	This is overwritten with the buffer space used. -EINVAL is returned
264  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
265  *	is returned if either the buffer or the length field are not
266  *	accessible.
267  *	After copying the data up to the limit the user specifies, the true
268  *	length of the data is written over the length limit the user
269  *	specified. Zero is returned for a success.
270  */
271 
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 			     void __user *uaddr, int __user *ulen)
274 {
275 	int err;
276 	int len;
277 
278 	BUG_ON(klen > sizeof(struct sockaddr_storage));
279 	err = get_user(len, ulen);
280 	if (err)
281 		return err;
282 	if (len > klen)
283 		len = klen;
284 	if (len < 0)
285 		return -EINVAL;
286 	if (len) {
287 		if (audit_sockaddr(klen, kaddr))
288 			return -ENOMEM;
289 		if (copy_to_user(uaddr, kaddr, len))
290 			return -EFAULT;
291 	}
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	return __put_user(klen, ulen);
297 }
298 
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 	struct socket_alloc *ei;
304 
305 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 	if (!ei)
307 		return NULL;
308 	init_waitqueue_head(&ei->socket.wq.wait);
309 	ei->socket.wq.fasync_list = NULL;
310 	ei->socket.wq.flags = 0;
311 
312 	ei->socket.state = SS_UNCONNECTED;
313 	ei->socket.flags = 0;
314 	ei->socket.ops = NULL;
315 	ei->socket.sk = NULL;
316 	ei->socket.file = NULL;
317 
318 	return &ei->vfs_inode;
319 }
320 
321 static void sock_free_inode(struct inode *inode)
322 {
323 	struct socket_alloc *ei;
324 
325 	ei = container_of(inode, struct socket_alloc, vfs_inode);
326 	kmem_cache_free(sock_inode_cachep, ei);
327 }
328 
329 static void init_once(void *foo)
330 {
331 	struct socket_alloc *ei = (struct socket_alloc *)foo;
332 
333 	inode_init_once(&ei->vfs_inode);
334 }
335 
336 static void init_inodecache(void)
337 {
338 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 					      sizeof(struct socket_alloc),
340 					      0,
341 					      (SLAB_HWCACHE_ALIGN |
342 					       SLAB_RECLAIM_ACCOUNT |
343 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 					      init_once);
345 	BUG_ON(sock_inode_cachep == NULL);
346 }
347 
348 static const struct super_operations sockfs_ops = {
349 	.alloc_inode	= sock_alloc_inode,
350 	.free_inode	= sock_free_inode,
351 	.statfs		= simple_statfs,
352 };
353 
354 /*
355  * sockfs_dname() is called from d_path().
356  */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 				d_inode(dentry)->i_ino);
361 }
362 
363 static const struct dentry_operations sockfs_dentry_operations = {
364 	.d_dname  = sockfs_dname,
365 };
366 
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 			    struct dentry *dentry, struct inode *inode,
369 			    const char *suffix, void *value, size_t size)
370 {
371 	if (value) {
372 		if (dentry->d_name.len + 1 > size)
373 			return -ERANGE;
374 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 	}
376 	return dentry->d_name.len + 1;
377 }
378 
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 
383 static const struct xattr_handler sockfs_xattr_handler = {
384 	.name = XATTR_NAME_SOCKPROTONAME,
385 	.get = sockfs_xattr_get,
386 };
387 
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 				     struct mnt_idmap *idmap,
390 				     struct dentry *dentry, struct inode *inode,
391 				     const char *suffix, const void *value,
392 				     size_t size, int flags)
393 {
394 	/* Handled by LSM. */
395 	return -EAGAIN;
396 }
397 
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 	.prefix = XATTR_SECURITY_PREFIX,
400 	.set = sockfs_security_xattr_set,
401 };
402 
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 	&sockfs_xattr_handler,
405 	&sockfs_security_xattr_handler,
406 	NULL
407 };
408 
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 	if (!ctx)
413 		return -ENOMEM;
414 	ctx->ops = &sockfs_ops;
415 	ctx->dops = &sockfs_dentry_operations;
416 	ctx->xattr = sockfs_xattr_handlers;
417 	return 0;
418 }
419 
420 static struct vfsmount *sock_mnt __read_mostly;
421 
422 static struct file_system_type sock_fs_type = {
423 	.name =		"sockfs",
424 	.init_fs_context = sockfs_init_fs_context,
425 	.kill_sb =	kill_anon_super,
426 };
427 
428 /*
429  *	Obtains the first available file descriptor and sets it up for use.
430  *
431  *	These functions create file structures and maps them to fd space
432  *	of the current process. On success it returns file descriptor
433  *	and file struct implicitly stored in sock->file.
434  *	Note that another thread may close file descriptor before we return
435  *	from this function. We use the fact that now we do not refer
436  *	to socket after mapping. If one day we will need it, this
437  *	function will increment ref. count on file by 1.
438  *
439  *	In any case returned fd MAY BE not valid!
440  *	This race condition is unavoidable
441  *	with shared fd spaces, we cannot solve it inside kernel,
442  *	but we take care of internal coherence yet.
443  */
444 
445 /**
446  *	sock_alloc_file - Bind a &socket to a &file
447  *	@sock: socket
448  *	@flags: file status flags
449  *	@dname: protocol name
450  *
451  *	Returns the &file bound with @sock, implicitly storing it
452  *	in sock->file. If dname is %NULL, sets to "".
453  *	On failure the return is a ERR pointer (see linux/err.h).
454  *	This function uses GFP_KERNEL internally.
455  */
456 
457 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
458 {
459 	struct file *file;
460 
461 	if (!dname)
462 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
463 
464 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
465 				O_RDWR | (flags & O_NONBLOCK),
466 				&socket_file_ops);
467 	if (IS_ERR(file)) {
468 		sock_release(sock);
469 		return file;
470 	}
471 
472 	sock->file = file;
473 	file->private_data = sock;
474 	stream_open(SOCK_INODE(sock), file);
475 	return file;
476 }
477 EXPORT_SYMBOL(sock_alloc_file);
478 
479 static int sock_map_fd(struct socket *sock, int flags)
480 {
481 	struct file *newfile;
482 	int fd = get_unused_fd_flags(flags);
483 	if (unlikely(fd < 0)) {
484 		sock_release(sock);
485 		return fd;
486 	}
487 
488 	newfile = sock_alloc_file(sock, flags, NULL);
489 	if (!IS_ERR(newfile)) {
490 		fd_install(fd, newfile);
491 		return fd;
492 	}
493 
494 	put_unused_fd(fd);
495 	return PTR_ERR(newfile);
496 }
497 
498 /**
499  *	sock_from_file - Return the &socket bounded to @file.
500  *	@file: file
501  *
502  *	On failure returns %NULL.
503  */
504 
505 struct socket *sock_from_file(struct file *file)
506 {
507 	if (file->f_op == &socket_file_ops)
508 		return file->private_data;	/* set in sock_alloc_file */
509 
510 	return NULL;
511 }
512 EXPORT_SYMBOL(sock_from_file);
513 
514 /**
515  *	sockfd_lookup - Go from a file number to its socket slot
516  *	@fd: file handle
517  *	@err: pointer to an error code return
518  *
519  *	The file handle passed in is locked and the socket it is bound
520  *	to is returned. If an error occurs the err pointer is overwritten
521  *	with a negative errno code and NULL is returned. The function checks
522  *	for both invalid handles and passing a handle which is not a socket.
523  *
524  *	On a success the socket object pointer is returned.
525  */
526 
527 struct socket *sockfd_lookup(int fd, int *err)
528 {
529 	struct file *file;
530 	struct socket *sock;
531 
532 	file = fget(fd);
533 	if (!file) {
534 		*err = -EBADF;
535 		return NULL;
536 	}
537 
538 	sock = sock_from_file(file);
539 	if (!sock) {
540 		*err = -ENOTSOCK;
541 		fput(file);
542 	}
543 	return sock;
544 }
545 EXPORT_SYMBOL(sockfd_lookup);
546 
547 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
548 {
549 	struct fd f = fdget(fd);
550 	struct socket *sock;
551 
552 	*err = -EBADF;
553 	if (f.file) {
554 		sock = sock_from_file(f.file);
555 		if (likely(sock)) {
556 			*fput_needed = f.flags & FDPUT_FPUT;
557 			return sock;
558 		}
559 		*err = -ENOTSOCK;
560 		fdput(f);
561 	}
562 	return NULL;
563 }
564 
565 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
566 				size_t size)
567 {
568 	ssize_t len;
569 	ssize_t used = 0;
570 
571 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
572 	if (len < 0)
573 		return len;
574 	used += len;
575 	if (buffer) {
576 		if (size < used)
577 			return -ERANGE;
578 		buffer += len;
579 	}
580 
581 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
582 	used += len;
583 	if (buffer) {
584 		if (size < used)
585 			return -ERANGE;
586 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
587 		buffer += len;
588 	}
589 
590 	return used;
591 }
592 
593 static int sockfs_setattr(struct mnt_idmap *idmap,
594 			  struct dentry *dentry, struct iattr *iattr)
595 {
596 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
597 
598 	if (!err && (iattr->ia_valid & ATTR_UID)) {
599 		struct socket *sock = SOCKET_I(d_inode(dentry));
600 
601 		if (sock->sk)
602 			sock->sk->sk_uid = iattr->ia_uid;
603 		else
604 			err = -ENOENT;
605 	}
606 
607 	return err;
608 }
609 
610 static const struct inode_operations sockfs_inode_ops = {
611 	.listxattr = sockfs_listxattr,
612 	.setattr = sockfs_setattr,
613 };
614 
615 /**
616  *	sock_alloc - allocate a socket
617  *
618  *	Allocate a new inode and socket object. The two are bound together
619  *	and initialised. The socket is then returned. If we are out of inodes
620  *	NULL is returned. This functions uses GFP_KERNEL internally.
621  */
622 
623 struct socket *sock_alloc(void)
624 {
625 	struct inode *inode;
626 	struct socket *sock;
627 
628 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
629 	if (!inode)
630 		return NULL;
631 
632 	sock = SOCKET_I(inode);
633 
634 	inode->i_ino = get_next_ino();
635 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
636 	inode->i_uid = current_fsuid();
637 	inode->i_gid = current_fsgid();
638 	inode->i_op = &sockfs_inode_ops;
639 
640 	return sock;
641 }
642 EXPORT_SYMBOL(sock_alloc);
643 
644 static void __sock_release(struct socket *sock, struct inode *inode)
645 {
646 	if (sock->ops) {
647 		struct module *owner = sock->ops->owner;
648 
649 		if (inode)
650 			inode_lock(inode);
651 		sock->ops->release(sock);
652 		sock->sk = NULL;
653 		if (inode)
654 			inode_unlock(inode);
655 		sock->ops = NULL;
656 		module_put(owner);
657 	}
658 
659 	if (sock->wq.fasync_list)
660 		pr_err("%s: fasync list not empty!\n", __func__);
661 
662 	if (!sock->file) {
663 		iput(SOCK_INODE(sock));
664 		return;
665 	}
666 	sock->file = NULL;
667 }
668 
669 /**
670  *	sock_release - close a socket
671  *	@sock: socket to close
672  *
673  *	The socket is released from the protocol stack if it has a release
674  *	callback, and the inode is then released if the socket is bound to
675  *	an inode not a file.
676  */
677 void sock_release(struct socket *sock)
678 {
679 	__sock_release(sock, NULL);
680 }
681 EXPORT_SYMBOL(sock_release);
682 
683 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
684 {
685 	u8 flags = *tx_flags;
686 
687 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
688 		flags |= SKBTX_HW_TSTAMP;
689 
690 		/* PTP hardware clocks can provide a free running cycle counter
691 		 * as a time base for virtual clocks. Tell driver to use the
692 		 * free running cycle counter for timestamp if socket is bound
693 		 * to virtual clock.
694 		 */
695 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
696 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
697 	}
698 
699 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
700 		flags |= SKBTX_SW_TSTAMP;
701 
702 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
703 		flags |= SKBTX_SCHED_TSTAMP;
704 
705 	*tx_flags = flags;
706 }
707 EXPORT_SYMBOL(__sock_tx_timestamp);
708 
709 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
710 					   size_t));
711 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
712 					    size_t));
713 
714 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
715 						 int flags)
716 {
717 	trace_sock_send_length(sk, ret, 0);
718 }
719 
720 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
721 {
722 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
723 				     inet_sendmsg, sock, msg,
724 				     msg_data_left(msg));
725 	BUG_ON(ret == -EIOCBQUEUED);
726 
727 	if (trace_sock_send_length_enabled())
728 		call_trace_sock_send_length(sock->sk, ret, 0);
729 	return ret;
730 }
731 
732 /**
733  *	sock_sendmsg - send a message through @sock
734  *	@sock: socket
735  *	@msg: message to send
736  *
737  *	Sends @msg through @sock, passing through LSM.
738  *	Returns the number of bytes sent, or an error code.
739  */
740 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 EXPORT_SYMBOL(sock_sendmsg);
748 
749 /**
750  *	kernel_sendmsg - send a message through @sock (kernel-space)
751  *	@sock: socket
752  *	@msg: message header
753  *	@vec: kernel vec
754  *	@num: vec array length
755  *	@size: total message data size
756  *
757  *	Builds the message data with @vec and sends it through @sock.
758  *	Returns the number of bytes sent, or an error code.
759  */
760 
761 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
762 		   struct kvec *vec, size_t num, size_t size)
763 {
764 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
765 	return sock_sendmsg(sock, msg);
766 }
767 EXPORT_SYMBOL(kernel_sendmsg);
768 
769 /**
770  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
771  *	@sk: sock
772  *	@msg: message header
773  *	@vec: output s/g array
774  *	@num: output s/g array length
775  *	@size: total message data size
776  *
777  *	Builds the message data with @vec and sends it through @sock.
778  *	Returns the number of bytes sent, or an error code.
779  *	Caller must hold @sk.
780  */
781 
782 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
783 			  struct kvec *vec, size_t num, size_t size)
784 {
785 	struct socket *sock = sk->sk_socket;
786 
787 	if (!sock->ops->sendmsg_locked)
788 		return sock_no_sendmsg_locked(sk, msg, size);
789 
790 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
791 
792 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
793 }
794 EXPORT_SYMBOL(kernel_sendmsg_locked);
795 
796 static bool skb_is_err_queue(const struct sk_buff *skb)
797 {
798 	/* pkt_type of skbs enqueued on the error queue are set to
799 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
800 	 * in recvmsg, since skbs received on a local socket will never
801 	 * have a pkt_type of PACKET_OUTGOING.
802 	 */
803 	return skb->pkt_type == PACKET_OUTGOING;
804 }
805 
806 /* On transmit, software and hardware timestamps are returned independently.
807  * As the two skb clones share the hardware timestamp, which may be updated
808  * before the software timestamp is received, a hardware TX timestamp may be
809  * returned only if there is no software TX timestamp. Ignore false software
810  * timestamps, which may be made in the __sock_recv_timestamp() call when the
811  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
812  * hardware timestamp.
813  */
814 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
815 {
816 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
817 }
818 
819 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
820 {
821 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
822 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
823 	struct net_device *orig_dev;
824 	ktime_t hwtstamp;
825 
826 	rcu_read_lock();
827 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
828 	if (orig_dev) {
829 		*if_index = orig_dev->ifindex;
830 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
831 	} else {
832 		hwtstamp = shhwtstamps->hwtstamp;
833 	}
834 	rcu_read_unlock();
835 
836 	return hwtstamp;
837 }
838 
839 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
840 			   int if_index)
841 {
842 	struct scm_ts_pktinfo ts_pktinfo;
843 	struct net_device *orig_dev;
844 
845 	if (!skb_mac_header_was_set(skb))
846 		return;
847 
848 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
849 
850 	if (!if_index) {
851 		rcu_read_lock();
852 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
853 		if (orig_dev)
854 			if_index = orig_dev->ifindex;
855 		rcu_read_unlock();
856 	}
857 	ts_pktinfo.if_index = if_index;
858 
859 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
860 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
861 		 sizeof(ts_pktinfo), &ts_pktinfo);
862 }
863 
864 /*
865  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
866  */
867 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
868 	struct sk_buff *skb)
869 {
870 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
871 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
872 	struct scm_timestamping_internal tss;
873 
874 	int empty = 1, false_tstamp = 0;
875 	struct skb_shared_hwtstamps *shhwtstamps =
876 		skb_hwtstamps(skb);
877 	int if_index;
878 	ktime_t hwtstamp;
879 
880 	/* Race occurred between timestamp enabling and packet
881 	   receiving.  Fill in the current time for now. */
882 	if (need_software_tstamp && skb->tstamp == 0) {
883 		__net_timestamp(skb);
884 		false_tstamp = 1;
885 	}
886 
887 	if (need_software_tstamp) {
888 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
889 			if (new_tstamp) {
890 				struct __kernel_sock_timeval tv;
891 
892 				skb_get_new_timestamp(skb, &tv);
893 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
894 					 sizeof(tv), &tv);
895 			} else {
896 				struct __kernel_old_timeval tv;
897 
898 				skb_get_timestamp(skb, &tv);
899 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
900 					 sizeof(tv), &tv);
901 			}
902 		} else {
903 			if (new_tstamp) {
904 				struct __kernel_timespec ts;
905 
906 				skb_get_new_timestampns(skb, &ts);
907 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
908 					 sizeof(ts), &ts);
909 			} else {
910 				struct __kernel_old_timespec ts;
911 
912 				skb_get_timestampns(skb, &ts);
913 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
914 					 sizeof(ts), &ts);
915 			}
916 		}
917 	}
918 
919 	memset(&tss, 0, sizeof(tss));
920 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
921 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
922 		empty = 0;
923 	if (shhwtstamps &&
924 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
925 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
926 		if_index = 0;
927 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
928 			hwtstamp = get_timestamp(sk, skb, &if_index);
929 		else
930 			hwtstamp = shhwtstamps->hwtstamp;
931 
932 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
933 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
934 							 sk->sk_bind_phc);
935 
936 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
937 			empty = 0;
938 
939 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
940 			    !skb_is_err_queue(skb))
941 				put_ts_pktinfo(msg, skb, if_index);
942 		}
943 	}
944 	if (!empty) {
945 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
946 			put_cmsg_scm_timestamping64(msg, &tss);
947 		else
948 			put_cmsg_scm_timestamping(msg, &tss);
949 
950 		if (skb_is_err_queue(skb) && skb->len &&
951 		    SKB_EXT_ERR(skb)->opt_stats)
952 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
953 				 skb->len, skb->data);
954 	}
955 }
956 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
957 
958 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
959 	struct sk_buff *skb)
960 {
961 	int ack;
962 
963 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
964 		return;
965 	if (!skb->wifi_acked_valid)
966 		return;
967 
968 	ack = skb->wifi_acked;
969 
970 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
971 }
972 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
973 
974 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
975 				   struct sk_buff *skb)
976 {
977 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
978 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
979 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
980 }
981 
982 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
983 			   struct sk_buff *skb)
984 {
985 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
986 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
987 		__u32 mark = skb->mark;
988 
989 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
990 	}
991 }
992 
993 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
994 		       struct sk_buff *skb)
995 {
996 	sock_recv_timestamp(msg, sk, skb);
997 	sock_recv_drops(msg, sk, skb);
998 	sock_recv_mark(msg, sk, skb);
999 }
1000 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1001 
1002 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1003 					   size_t, int));
1004 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1005 					    size_t, int));
1006 
1007 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1008 {
1009 	trace_sock_recv_length(sk, ret, flags);
1010 }
1011 
1012 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1013 				     int flags)
1014 {
1015 	int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1016 				     inet_recvmsg, sock, msg,
1017 				     msg_data_left(msg), flags);
1018 	if (trace_sock_recv_length_enabled())
1019 		call_trace_sock_recv_length(sock->sk, ret, flags);
1020 	return ret;
1021 }
1022 
1023 /**
1024  *	sock_recvmsg - receive a message from @sock
1025  *	@sock: socket
1026  *	@msg: message to receive
1027  *	@flags: message flags
1028  *
1029  *	Receives @msg from @sock, passing through LSM. Returns the total number
1030  *	of bytes received, or an error.
1031  */
1032 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1033 {
1034 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1035 
1036 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1037 }
1038 EXPORT_SYMBOL(sock_recvmsg);
1039 
1040 /**
1041  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1042  *	@sock: The socket to receive the message from
1043  *	@msg: Received message
1044  *	@vec: Input s/g array for message data
1045  *	@num: Size of input s/g array
1046  *	@size: Number of bytes to read
1047  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1048  *
1049  *	On return the msg structure contains the scatter/gather array passed in the
1050  *	vec argument. The array is modified so that it consists of the unfilled
1051  *	portion of the original array.
1052  *
1053  *	The returned value is the total number of bytes received, or an error.
1054  */
1055 
1056 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1057 		   struct kvec *vec, size_t num, size_t size, int flags)
1058 {
1059 	msg->msg_control_is_user = false;
1060 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1061 	return sock_recvmsg(sock, msg, flags);
1062 }
1063 EXPORT_SYMBOL(kernel_recvmsg);
1064 
1065 static ssize_t sock_sendpage(struct file *file, struct page *page,
1066 			     int offset, size_t size, loff_t *ppos, int more)
1067 {
1068 	struct socket *sock;
1069 	int flags;
1070 	int ret;
1071 
1072 	sock = file->private_data;
1073 
1074 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1075 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1076 	flags |= more;
1077 
1078 	ret = kernel_sendpage(sock, page, offset, size, flags);
1079 
1080 	if (trace_sock_send_length_enabled())
1081 		call_trace_sock_send_length(sock->sk, ret, 0);
1082 	return ret;
1083 }
1084 
1085 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1086 				struct pipe_inode_info *pipe, size_t len,
1087 				unsigned int flags)
1088 {
1089 	struct socket *sock = file->private_data;
1090 
1091 	if (unlikely(!sock->ops->splice_read))
1092 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1093 
1094 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1095 }
1096 
1097 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1098 {
1099 	struct file *file = iocb->ki_filp;
1100 	struct socket *sock = file->private_data;
1101 	struct msghdr msg = {.msg_iter = *to,
1102 			     .msg_iocb = iocb};
1103 	ssize_t res;
1104 
1105 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106 		msg.msg_flags = MSG_DONTWAIT;
1107 
1108 	if (iocb->ki_pos != 0)
1109 		return -ESPIPE;
1110 
1111 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1112 		return 0;
1113 
1114 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1115 	*to = msg.msg_iter;
1116 	return res;
1117 }
1118 
1119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1120 {
1121 	struct file *file = iocb->ki_filp;
1122 	struct socket *sock = file->private_data;
1123 	struct msghdr msg = {.msg_iter = *from,
1124 			     .msg_iocb = iocb};
1125 	ssize_t res;
1126 
1127 	if (iocb->ki_pos != 0)
1128 		return -ESPIPE;
1129 
1130 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1131 		msg.msg_flags = MSG_DONTWAIT;
1132 
1133 	if (sock->type == SOCK_SEQPACKET)
1134 		msg.msg_flags |= MSG_EOR;
1135 
1136 	res = sock_sendmsg(sock, &msg);
1137 	*from = msg.msg_iter;
1138 	return res;
1139 }
1140 
1141 /*
1142  * Atomic setting of ioctl hooks to avoid race
1143  * with module unload.
1144  */
1145 
1146 static DEFINE_MUTEX(br_ioctl_mutex);
1147 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1148 			    unsigned int cmd, struct ifreq *ifr,
1149 			    void __user *uarg);
1150 
1151 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1152 			     unsigned int cmd, struct ifreq *ifr,
1153 			     void __user *uarg))
1154 {
1155 	mutex_lock(&br_ioctl_mutex);
1156 	br_ioctl_hook = hook;
1157 	mutex_unlock(&br_ioctl_mutex);
1158 }
1159 EXPORT_SYMBOL(brioctl_set);
1160 
1161 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1162 		  struct ifreq *ifr, void __user *uarg)
1163 {
1164 	int err = -ENOPKG;
1165 
1166 	if (!br_ioctl_hook)
1167 		request_module("bridge");
1168 
1169 	mutex_lock(&br_ioctl_mutex);
1170 	if (br_ioctl_hook)
1171 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1172 	mutex_unlock(&br_ioctl_mutex);
1173 
1174 	return err;
1175 }
1176 
1177 static DEFINE_MUTEX(vlan_ioctl_mutex);
1178 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1179 
1180 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1181 {
1182 	mutex_lock(&vlan_ioctl_mutex);
1183 	vlan_ioctl_hook = hook;
1184 	mutex_unlock(&vlan_ioctl_mutex);
1185 }
1186 EXPORT_SYMBOL(vlan_ioctl_set);
1187 
1188 static long sock_do_ioctl(struct net *net, struct socket *sock,
1189 			  unsigned int cmd, unsigned long arg)
1190 {
1191 	struct ifreq ifr;
1192 	bool need_copyout;
1193 	int err;
1194 	void __user *argp = (void __user *)arg;
1195 	void __user *data;
1196 
1197 	err = sock->ops->ioctl(sock, cmd, arg);
1198 
1199 	/*
1200 	 * If this ioctl is unknown try to hand it down
1201 	 * to the NIC driver.
1202 	 */
1203 	if (err != -ENOIOCTLCMD)
1204 		return err;
1205 
1206 	if (!is_socket_ioctl_cmd(cmd))
1207 		return -ENOTTY;
1208 
1209 	if (get_user_ifreq(&ifr, &data, argp))
1210 		return -EFAULT;
1211 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1212 	if (!err && need_copyout)
1213 		if (put_user_ifreq(&ifr, argp))
1214 			return -EFAULT;
1215 
1216 	return err;
1217 }
1218 
1219 /*
1220  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1221  *	what to do with it - that's up to the protocol still.
1222  */
1223 
1224 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1225 {
1226 	struct socket *sock;
1227 	struct sock *sk;
1228 	void __user *argp = (void __user *)arg;
1229 	int pid, err;
1230 	struct net *net;
1231 
1232 	sock = file->private_data;
1233 	sk = sock->sk;
1234 	net = sock_net(sk);
1235 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1236 		struct ifreq ifr;
1237 		void __user *data;
1238 		bool need_copyout;
1239 		if (get_user_ifreq(&ifr, &data, argp))
1240 			return -EFAULT;
1241 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1242 		if (!err && need_copyout)
1243 			if (put_user_ifreq(&ifr, argp))
1244 				return -EFAULT;
1245 	} else
1246 #ifdef CONFIG_WEXT_CORE
1247 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1248 		err = wext_handle_ioctl(net, cmd, argp);
1249 	} else
1250 #endif
1251 		switch (cmd) {
1252 		case FIOSETOWN:
1253 		case SIOCSPGRP:
1254 			err = -EFAULT;
1255 			if (get_user(pid, (int __user *)argp))
1256 				break;
1257 			err = f_setown(sock->file, pid, 1);
1258 			break;
1259 		case FIOGETOWN:
1260 		case SIOCGPGRP:
1261 			err = put_user(f_getown(sock->file),
1262 				       (int __user *)argp);
1263 			break;
1264 		case SIOCGIFBR:
1265 		case SIOCSIFBR:
1266 		case SIOCBRADDBR:
1267 		case SIOCBRDELBR:
1268 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1269 			break;
1270 		case SIOCGIFVLAN:
1271 		case SIOCSIFVLAN:
1272 			err = -ENOPKG;
1273 			if (!vlan_ioctl_hook)
1274 				request_module("8021q");
1275 
1276 			mutex_lock(&vlan_ioctl_mutex);
1277 			if (vlan_ioctl_hook)
1278 				err = vlan_ioctl_hook(net, argp);
1279 			mutex_unlock(&vlan_ioctl_mutex);
1280 			break;
1281 		case SIOCGSKNS:
1282 			err = -EPERM;
1283 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1284 				break;
1285 
1286 			err = open_related_ns(&net->ns, get_net_ns);
1287 			break;
1288 		case SIOCGSTAMP_OLD:
1289 		case SIOCGSTAMPNS_OLD:
1290 			if (!sock->ops->gettstamp) {
1291 				err = -ENOIOCTLCMD;
1292 				break;
1293 			}
1294 			err = sock->ops->gettstamp(sock, argp,
1295 						   cmd == SIOCGSTAMP_OLD,
1296 						   !IS_ENABLED(CONFIG_64BIT));
1297 			break;
1298 		case SIOCGSTAMP_NEW:
1299 		case SIOCGSTAMPNS_NEW:
1300 			if (!sock->ops->gettstamp) {
1301 				err = -ENOIOCTLCMD;
1302 				break;
1303 			}
1304 			err = sock->ops->gettstamp(sock, argp,
1305 						   cmd == SIOCGSTAMP_NEW,
1306 						   false);
1307 			break;
1308 
1309 		case SIOCGIFCONF:
1310 			err = dev_ifconf(net, argp);
1311 			break;
1312 
1313 		default:
1314 			err = sock_do_ioctl(net, sock, cmd, arg);
1315 			break;
1316 		}
1317 	return err;
1318 }
1319 
1320 /**
1321  *	sock_create_lite - creates a socket
1322  *	@family: protocol family (AF_INET, ...)
1323  *	@type: communication type (SOCK_STREAM, ...)
1324  *	@protocol: protocol (0, ...)
1325  *	@res: new socket
1326  *
1327  *	Creates a new socket and assigns it to @res, passing through LSM.
1328  *	The new socket initialization is not complete, see kernel_accept().
1329  *	Returns 0 or an error. On failure @res is set to %NULL.
1330  *	This function internally uses GFP_KERNEL.
1331  */
1332 
1333 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1334 {
1335 	int err;
1336 	struct socket *sock = NULL;
1337 
1338 	err = security_socket_create(family, type, protocol, 1);
1339 	if (err)
1340 		goto out;
1341 
1342 	sock = sock_alloc();
1343 	if (!sock) {
1344 		err = -ENOMEM;
1345 		goto out;
1346 	}
1347 
1348 	sock->type = type;
1349 	err = security_socket_post_create(sock, family, type, protocol, 1);
1350 	if (err)
1351 		goto out_release;
1352 
1353 out:
1354 	*res = sock;
1355 	return err;
1356 out_release:
1357 	sock_release(sock);
1358 	sock = NULL;
1359 	goto out;
1360 }
1361 EXPORT_SYMBOL(sock_create_lite);
1362 
1363 /* No kernel lock held - perfect */
1364 static __poll_t sock_poll(struct file *file, poll_table *wait)
1365 {
1366 	struct socket *sock = file->private_data;
1367 	__poll_t events = poll_requested_events(wait), flag = 0;
1368 
1369 	if (!sock->ops->poll)
1370 		return 0;
1371 
1372 	if (sk_can_busy_loop(sock->sk)) {
1373 		/* poll once if requested by the syscall */
1374 		if (events & POLL_BUSY_LOOP)
1375 			sk_busy_loop(sock->sk, 1);
1376 
1377 		/* if this socket can poll_ll, tell the system call */
1378 		flag = POLL_BUSY_LOOP;
1379 	}
1380 
1381 	return sock->ops->poll(file, sock, wait) | flag;
1382 }
1383 
1384 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1385 {
1386 	struct socket *sock = file->private_data;
1387 
1388 	return sock->ops->mmap(file, sock, vma);
1389 }
1390 
1391 static int sock_close(struct inode *inode, struct file *filp)
1392 {
1393 	__sock_release(SOCKET_I(inode), inode);
1394 	return 0;
1395 }
1396 
1397 /*
1398  *	Update the socket async list
1399  *
1400  *	Fasync_list locking strategy.
1401  *
1402  *	1. fasync_list is modified only under process context socket lock
1403  *	   i.e. under semaphore.
1404  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1405  *	   or under socket lock
1406  */
1407 
1408 static int sock_fasync(int fd, struct file *filp, int on)
1409 {
1410 	struct socket *sock = filp->private_data;
1411 	struct sock *sk = sock->sk;
1412 	struct socket_wq *wq = &sock->wq;
1413 
1414 	if (sk == NULL)
1415 		return -EINVAL;
1416 
1417 	lock_sock(sk);
1418 	fasync_helper(fd, filp, on, &wq->fasync_list);
1419 
1420 	if (!wq->fasync_list)
1421 		sock_reset_flag(sk, SOCK_FASYNC);
1422 	else
1423 		sock_set_flag(sk, SOCK_FASYNC);
1424 
1425 	release_sock(sk);
1426 	return 0;
1427 }
1428 
1429 /* This function may be called only under rcu_lock */
1430 
1431 int sock_wake_async(struct socket_wq *wq, int how, int band)
1432 {
1433 	if (!wq || !wq->fasync_list)
1434 		return -1;
1435 
1436 	switch (how) {
1437 	case SOCK_WAKE_WAITD:
1438 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1439 			break;
1440 		goto call_kill;
1441 	case SOCK_WAKE_SPACE:
1442 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1443 			break;
1444 		fallthrough;
1445 	case SOCK_WAKE_IO:
1446 call_kill:
1447 		kill_fasync(&wq->fasync_list, SIGIO, band);
1448 		break;
1449 	case SOCK_WAKE_URG:
1450 		kill_fasync(&wq->fasync_list, SIGURG, band);
1451 	}
1452 
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL(sock_wake_async);
1456 
1457 /**
1458  *	__sock_create - creates a socket
1459  *	@net: net namespace
1460  *	@family: protocol family (AF_INET, ...)
1461  *	@type: communication type (SOCK_STREAM, ...)
1462  *	@protocol: protocol (0, ...)
1463  *	@res: new socket
1464  *	@kern: boolean for kernel space sockets
1465  *
1466  *	Creates a new socket and assigns it to @res, passing through LSM.
1467  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1468  *	be set to true if the socket resides in kernel space.
1469  *	This function internally uses GFP_KERNEL.
1470  */
1471 
1472 int __sock_create(struct net *net, int family, int type, int protocol,
1473 			 struct socket **res, int kern)
1474 {
1475 	int err;
1476 	struct socket *sock;
1477 	const struct net_proto_family *pf;
1478 
1479 	/*
1480 	 *      Check protocol is in range
1481 	 */
1482 	if (family < 0 || family >= NPROTO)
1483 		return -EAFNOSUPPORT;
1484 	if (type < 0 || type >= SOCK_MAX)
1485 		return -EINVAL;
1486 
1487 	/* Compatibility.
1488 
1489 	   This uglymoron is moved from INET layer to here to avoid
1490 	   deadlock in module load.
1491 	 */
1492 	if (family == PF_INET && type == SOCK_PACKET) {
1493 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1494 			     current->comm);
1495 		family = PF_PACKET;
1496 	}
1497 
1498 	err = security_socket_create(family, type, protocol, kern);
1499 	if (err)
1500 		return err;
1501 
1502 	/*
1503 	 *	Allocate the socket and allow the family to set things up. if
1504 	 *	the protocol is 0, the family is instructed to select an appropriate
1505 	 *	default.
1506 	 */
1507 	sock = sock_alloc();
1508 	if (!sock) {
1509 		net_warn_ratelimited("socket: no more sockets\n");
1510 		return -ENFILE;	/* Not exactly a match, but its the
1511 				   closest posix thing */
1512 	}
1513 
1514 	sock->type = type;
1515 
1516 #ifdef CONFIG_MODULES
1517 	/* Attempt to load a protocol module if the find failed.
1518 	 *
1519 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1520 	 * requested real, full-featured networking support upon configuration.
1521 	 * Otherwise module support will break!
1522 	 */
1523 	if (rcu_access_pointer(net_families[family]) == NULL)
1524 		request_module("net-pf-%d", family);
1525 #endif
1526 
1527 	rcu_read_lock();
1528 	pf = rcu_dereference(net_families[family]);
1529 	err = -EAFNOSUPPORT;
1530 	if (!pf)
1531 		goto out_release;
1532 
1533 	/*
1534 	 * We will call the ->create function, that possibly is in a loadable
1535 	 * module, so we have to bump that loadable module refcnt first.
1536 	 */
1537 	if (!try_module_get(pf->owner))
1538 		goto out_release;
1539 
1540 	/* Now protected by module ref count */
1541 	rcu_read_unlock();
1542 
1543 	err = pf->create(net, sock, protocol, kern);
1544 	if (err < 0)
1545 		goto out_module_put;
1546 
1547 	/*
1548 	 * Now to bump the refcnt of the [loadable] module that owns this
1549 	 * socket at sock_release time we decrement its refcnt.
1550 	 */
1551 	if (!try_module_get(sock->ops->owner))
1552 		goto out_module_busy;
1553 
1554 	/*
1555 	 * Now that we're done with the ->create function, the [loadable]
1556 	 * module can have its refcnt decremented
1557 	 */
1558 	module_put(pf->owner);
1559 	err = security_socket_post_create(sock, family, type, protocol, kern);
1560 	if (err)
1561 		goto out_sock_release;
1562 	*res = sock;
1563 
1564 	return 0;
1565 
1566 out_module_busy:
1567 	err = -EAFNOSUPPORT;
1568 out_module_put:
1569 	sock->ops = NULL;
1570 	module_put(pf->owner);
1571 out_sock_release:
1572 	sock_release(sock);
1573 	return err;
1574 
1575 out_release:
1576 	rcu_read_unlock();
1577 	goto out_sock_release;
1578 }
1579 EXPORT_SYMBOL(__sock_create);
1580 
1581 /**
1582  *	sock_create - creates a socket
1583  *	@family: protocol family (AF_INET, ...)
1584  *	@type: communication type (SOCK_STREAM, ...)
1585  *	@protocol: protocol (0, ...)
1586  *	@res: new socket
1587  *
1588  *	A wrapper around __sock_create().
1589  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1590  */
1591 
1592 int sock_create(int family, int type, int protocol, struct socket **res)
1593 {
1594 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1595 }
1596 EXPORT_SYMBOL(sock_create);
1597 
1598 /**
1599  *	sock_create_kern - creates a socket (kernel space)
1600  *	@net: net namespace
1601  *	@family: protocol family (AF_INET, ...)
1602  *	@type: communication type (SOCK_STREAM, ...)
1603  *	@protocol: protocol (0, ...)
1604  *	@res: new socket
1605  *
1606  *	A wrapper around __sock_create().
1607  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1608  */
1609 
1610 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1611 {
1612 	return __sock_create(net, family, type, protocol, res, 1);
1613 }
1614 EXPORT_SYMBOL(sock_create_kern);
1615 
1616 static struct socket *__sys_socket_create(int family, int type, int protocol)
1617 {
1618 	struct socket *sock;
1619 	int retval;
1620 
1621 	/* Check the SOCK_* constants for consistency.  */
1622 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1623 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1624 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1625 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1626 
1627 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1628 		return ERR_PTR(-EINVAL);
1629 	type &= SOCK_TYPE_MASK;
1630 
1631 	retval = sock_create(family, type, protocol, &sock);
1632 	if (retval < 0)
1633 		return ERR_PTR(retval);
1634 
1635 	return sock;
1636 }
1637 
1638 struct file *__sys_socket_file(int family, int type, int protocol)
1639 {
1640 	struct socket *sock;
1641 	struct file *file;
1642 	int flags;
1643 
1644 	sock = __sys_socket_create(family, type, protocol);
1645 	if (IS_ERR(sock))
1646 		return ERR_CAST(sock);
1647 
1648 	flags = type & ~SOCK_TYPE_MASK;
1649 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1650 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1651 
1652 	file = sock_alloc_file(sock, flags, NULL);
1653 	if (IS_ERR(file))
1654 		sock_release(sock);
1655 
1656 	return file;
1657 }
1658 
1659 int __sys_socket(int family, int type, int protocol)
1660 {
1661 	struct socket *sock;
1662 	int flags;
1663 
1664 	sock = __sys_socket_create(family, type, protocol);
1665 	if (IS_ERR(sock))
1666 		return PTR_ERR(sock);
1667 
1668 	flags = type & ~SOCK_TYPE_MASK;
1669 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1670 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1671 
1672 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1673 }
1674 
1675 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1676 {
1677 	return __sys_socket(family, type, protocol);
1678 }
1679 
1680 /*
1681  *	Create a pair of connected sockets.
1682  */
1683 
1684 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1685 {
1686 	struct socket *sock1, *sock2;
1687 	int fd1, fd2, err;
1688 	struct file *newfile1, *newfile2;
1689 	int flags;
1690 
1691 	flags = type & ~SOCK_TYPE_MASK;
1692 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1693 		return -EINVAL;
1694 	type &= SOCK_TYPE_MASK;
1695 
1696 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698 
1699 	/*
1700 	 * reserve descriptors and make sure we won't fail
1701 	 * to return them to userland.
1702 	 */
1703 	fd1 = get_unused_fd_flags(flags);
1704 	if (unlikely(fd1 < 0))
1705 		return fd1;
1706 
1707 	fd2 = get_unused_fd_flags(flags);
1708 	if (unlikely(fd2 < 0)) {
1709 		put_unused_fd(fd1);
1710 		return fd2;
1711 	}
1712 
1713 	err = put_user(fd1, &usockvec[0]);
1714 	if (err)
1715 		goto out;
1716 
1717 	err = put_user(fd2, &usockvec[1]);
1718 	if (err)
1719 		goto out;
1720 
1721 	/*
1722 	 * Obtain the first socket and check if the underlying protocol
1723 	 * supports the socketpair call.
1724 	 */
1725 
1726 	err = sock_create(family, type, protocol, &sock1);
1727 	if (unlikely(err < 0))
1728 		goto out;
1729 
1730 	err = sock_create(family, type, protocol, &sock2);
1731 	if (unlikely(err < 0)) {
1732 		sock_release(sock1);
1733 		goto out;
1734 	}
1735 
1736 	err = security_socket_socketpair(sock1, sock2);
1737 	if (unlikely(err)) {
1738 		sock_release(sock2);
1739 		sock_release(sock1);
1740 		goto out;
1741 	}
1742 
1743 	err = sock1->ops->socketpair(sock1, sock2);
1744 	if (unlikely(err < 0)) {
1745 		sock_release(sock2);
1746 		sock_release(sock1);
1747 		goto out;
1748 	}
1749 
1750 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1751 	if (IS_ERR(newfile1)) {
1752 		err = PTR_ERR(newfile1);
1753 		sock_release(sock2);
1754 		goto out;
1755 	}
1756 
1757 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1758 	if (IS_ERR(newfile2)) {
1759 		err = PTR_ERR(newfile2);
1760 		fput(newfile1);
1761 		goto out;
1762 	}
1763 
1764 	audit_fd_pair(fd1, fd2);
1765 
1766 	fd_install(fd1, newfile1);
1767 	fd_install(fd2, newfile2);
1768 	return 0;
1769 
1770 out:
1771 	put_unused_fd(fd2);
1772 	put_unused_fd(fd1);
1773 	return err;
1774 }
1775 
1776 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1777 		int __user *, usockvec)
1778 {
1779 	return __sys_socketpair(family, type, protocol, usockvec);
1780 }
1781 
1782 /*
1783  *	Bind a name to a socket. Nothing much to do here since it's
1784  *	the protocol's responsibility to handle the local address.
1785  *
1786  *	We move the socket address to kernel space before we call
1787  *	the protocol layer (having also checked the address is ok).
1788  */
1789 
1790 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1791 {
1792 	struct socket *sock;
1793 	struct sockaddr_storage address;
1794 	int err, fput_needed;
1795 
1796 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 	if (sock) {
1798 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1799 		if (!err) {
1800 			err = security_socket_bind(sock,
1801 						   (struct sockaddr *)&address,
1802 						   addrlen);
1803 			if (!err)
1804 				err = sock->ops->bind(sock,
1805 						      (struct sockaddr *)
1806 						      &address, addrlen);
1807 		}
1808 		fput_light(sock->file, fput_needed);
1809 	}
1810 	return err;
1811 }
1812 
1813 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1814 {
1815 	return __sys_bind(fd, umyaddr, addrlen);
1816 }
1817 
1818 /*
1819  *	Perform a listen. Basically, we allow the protocol to do anything
1820  *	necessary for a listen, and if that works, we mark the socket as
1821  *	ready for listening.
1822  */
1823 
1824 int __sys_listen(int fd, int backlog)
1825 {
1826 	struct socket *sock;
1827 	int err, fput_needed;
1828 	int somaxconn;
1829 
1830 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1831 	if (sock) {
1832 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1833 		if ((unsigned int)backlog > somaxconn)
1834 			backlog = somaxconn;
1835 
1836 		err = security_socket_listen(sock, backlog);
1837 		if (!err)
1838 			err = sock->ops->listen(sock, backlog);
1839 
1840 		fput_light(sock->file, fput_needed);
1841 	}
1842 	return err;
1843 }
1844 
1845 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1846 {
1847 	return __sys_listen(fd, backlog);
1848 }
1849 
1850 struct file *do_accept(struct file *file, unsigned file_flags,
1851 		       struct sockaddr __user *upeer_sockaddr,
1852 		       int __user *upeer_addrlen, int flags)
1853 {
1854 	struct socket *sock, *newsock;
1855 	struct file *newfile;
1856 	int err, len;
1857 	struct sockaddr_storage address;
1858 
1859 	sock = sock_from_file(file);
1860 	if (!sock)
1861 		return ERR_PTR(-ENOTSOCK);
1862 
1863 	newsock = sock_alloc();
1864 	if (!newsock)
1865 		return ERR_PTR(-ENFILE);
1866 
1867 	newsock->type = sock->type;
1868 	newsock->ops = sock->ops;
1869 
1870 	/*
1871 	 * We don't need try_module_get here, as the listening socket (sock)
1872 	 * has the protocol module (sock->ops->owner) held.
1873 	 */
1874 	__module_get(newsock->ops->owner);
1875 
1876 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1877 	if (IS_ERR(newfile))
1878 		return newfile;
1879 
1880 	err = security_socket_accept(sock, newsock);
1881 	if (err)
1882 		goto out_fd;
1883 
1884 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1885 					false);
1886 	if (err < 0)
1887 		goto out_fd;
1888 
1889 	if (upeer_sockaddr) {
1890 		len = newsock->ops->getname(newsock,
1891 					(struct sockaddr *)&address, 2);
1892 		if (len < 0) {
1893 			err = -ECONNABORTED;
1894 			goto out_fd;
1895 		}
1896 		err = move_addr_to_user(&address,
1897 					len, upeer_sockaddr, upeer_addrlen);
1898 		if (err < 0)
1899 			goto out_fd;
1900 	}
1901 
1902 	/* File flags are not inherited via accept() unlike another OSes. */
1903 	return newfile;
1904 out_fd:
1905 	fput(newfile);
1906 	return ERR_PTR(err);
1907 }
1908 
1909 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1910 			      int __user *upeer_addrlen, int flags)
1911 {
1912 	struct file *newfile;
1913 	int newfd;
1914 
1915 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1916 		return -EINVAL;
1917 
1918 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1919 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1920 
1921 	newfd = get_unused_fd_flags(flags);
1922 	if (unlikely(newfd < 0))
1923 		return newfd;
1924 
1925 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1926 			    flags);
1927 	if (IS_ERR(newfile)) {
1928 		put_unused_fd(newfd);
1929 		return PTR_ERR(newfile);
1930 	}
1931 	fd_install(newfd, newfile);
1932 	return newfd;
1933 }
1934 
1935 /*
1936  *	For accept, we attempt to create a new socket, set up the link
1937  *	with the client, wake up the client, then return the new
1938  *	connected fd. We collect the address of the connector in kernel
1939  *	space and move it to user at the very end. This is unclean because
1940  *	we open the socket then return an error.
1941  *
1942  *	1003.1g adds the ability to recvmsg() to query connection pending
1943  *	status to recvmsg. We need to add that support in a way thats
1944  *	clean when we restructure accept also.
1945  */
1946 
1947 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1948 		  int __user *upeer_addrlen, int flags)
1949 {
1950 	int ret = -EBADF;
1951 	struct fd f;
1952 
1953 	f = fdget(fd);
1954 	if (f.file) {
1955 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1956 					 upeer_addrlen, flags);
1957 		fdput(f);
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1964 		int __user *, upeer_addrlen, int, flags)
1965 {
1966 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1967 }
1968 
1969 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1970 		int __user *, upeer_addrlen)
1971 {
1972 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1973 }
1974 
1975 /*
1976  *	Attempt to connect to a socket with the server address.  The address
1977  *	is in user space so we verify it is OK and move it to kernel space.
1978  *
1979  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1980  *	break bindings
1981  *
1982  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1983  *	other SEQPACKET protocols that take time to connect() as it doesn't
1984  *	include the -EINPROGRESS status for such sockets.
1985  */
1986 
1987 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1988 		       int addrlen, int file_flags)
1989 {
1990 	struct socket *sock;
1991 	int err;
1992 
1993 	sock = sock_from_file(file);
1994 	if (!sock) {
1995 		err = -ENOTSOCK;
1996 		goto out;
1997 	}
1998 
1999 	err =
2000 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2001 	if (err)
2002 		goto out;
2003 
2004 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2005 				 sock->file->f_flags | file_flags);
2006 out:
2007 	return err;
2008 }
2009 
2010 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2011 {
2012 	int ret = -EBADF;
2013 	struct fd f;
2014 
2015 	f = fdget(fd);
2016 	if (f.file) {
2017 		struct sockaddr_storage address;
2018 
2019 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2020 		if (!ret)
2021 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2022 		fdput(f);
2023 	}
2024 
2025 	return ret;
2026 }
2027 
2028 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2029 		int, addrlen)
2030 {
2031 	return __sys_connect(fd, uservaddr, addrlen);
2032 }
2033 
2034 /*
2035  *	Get the local address ('name') of a socket object. Move the obtained
2036  *	name to user space.
2037  */
2038 
2039 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2040 		      int __user *usockaddr_len)
2041 {
2042 	struct socket *sock;
2043 	struct sockaddr_storage address;
2044 	int err, fput_needed;
2045 
2046 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2047 	if (!sock)
2048 		goto out;
2049 
2050 	err = security_socket_getsockname(sock);
2051 	if (err)
2052 		goto out_put;
2053 
2054 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2055 	if (err < 0)
2056 		goto out_put;
2057 	/* "err" is actually length in this case */
2058 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2059 
2060 out_put:
2061 	fput_light(sock->file, fput_needed);
2062 out:
2063 	return err;
2064 }
2065 
2066 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2067 		int __user *, usockaddr_len)
2068 {
2069 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2070 }
2071 
2072 /*
2073  *	Get the remote address ('name') of a socket object. Move the obtained
2074  *	name to user space.
2075  */
2076 
2077 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2078 		      int __user *usockaddr_len)
2079 {
2080 	struct socket *sock;
2081 	struct sockaddr_storage address;
2082 	int err, fput_needed;
2083 
2084 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2085 	if (sock != NULL) {
2086 		err = security_socket_getpeername(sock);
2087 		if (err) {
2088 			fput_light(sock->file, fput_needed);
2089 			return err;
2090 		}
2091 
2092 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2093 		if (err >= 0)
2094 			/* "err" is actually length in this case */
2095 			err = move_addr_to_user(&address, err, usockaddr,
2096 						usockaddr_len);
2097 		fput_light(sock->file, fput_needed);
2098 	}
2099 	return err;
2100 }
2101 
2102 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2103 		int __user *, usockaddr_len)
2104 {
2105 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2106 }
2107 
2108 /*
2109  *	Send a datagram to a given address. We move the address into kernel
2110  *	space and check the user space data area is readable before invoking
2111  *	the protocol.
2112  */
2113 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2114 		 struct sockaddr __user *addr,  int addr_len)
2115 {
2116 	struct socket *sock;
2117 	struct sockaddr_storage address;
2118 	int err;
2119 	struct msghdr msg;
2120 	struct iovec iov;
2121 	int fput_needed;
2122 
2123 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2124 	if (unlikely(err))
2125 		return err;
2126 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 	if (!sock)
2128 		goto out;
2129 
2130 	msg.msg_name = NULL;
2131 	msg.msg_control = NULL;
2132 	msg.msg_controllen = 0;
2133 	msg.msg_namelen = 0;
2134 	msg.msg_ubuf = NULL;
2135 	if (addr) {
2136 		err = move_addr_to_kernel(addr, addr_len, &address);
2137 		if (err < 0)
2138 			goto out_put;
2139 		msg.msg_name = (struct sockaddr *)&address;
2140 		msg.msg_namelen = addr_len;
2141 	}
2142 	if (sock->file->f_flags & O_NONBLOCK)
2143 		flags |= MSG_DONTWAIT;
2144 	msg.msg_flags = flags;
2145 	err = sock_sendmsg(sock, &msg);
2146 
2147 out_put:
2148 	fput_light(sock->file, fput_needed);
2149 out:
2150 	return err;
2151 }
2152 
2153 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2154 		unsigned int, flags, struct sockaddr __user *, addr,
2155 		int, addr_len)
2156 {
2157 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2158 }
2159 
2160 /*
2161  *	Send a datagram down a socket.
2162  */
2163 
2164 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2165 		unsigned int, flags)
2166 {
2167 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2168 }
2169 
2170 /*
2171  *	Receive a frame from the socket and optionally record the address of the
2172  *	sender. We verify the buffers are writable and if needed move the
2173  *	sender address from kernel to user space.
2174  */
2175 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2176 		   struct sockaddr __user *addr, int __user *addr_len)
2177 {
2178 	struct sockaddr_storage address;
2179 	struct msghdr msg = {
2180 		/* Save some cycles and don't copy the address if not needed */
2181 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2182 	};
2183 	struct socket *sock;
2184 	struct iovec iov;
2185 	int err, err2;
2186 	int fput_needed;
2187 
2188 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2189 	if (unlikely(err))
2190 		return err;
2191 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2192 	if (!sock)
2193 		goto out;
2194 
2195 	if (sock->file->f_flags & O_NONBLOCK)
2196 		flags |= MSG_DONTWAIT;
2197 	err = sock_recvmsg(sock, &msg, flags);
2198 
2199 	if (err >= 0 && addr != NULL) {
2200 		err2 = move_addr_to_user(&address,
2201 					 msg.msg_namelen, addr, addr_len);
2202 		if (err2 < 0)
2203 			err = err2;
2204 	}
2205 
2206 	fput_light(sock->file, fput_needed);
2207 out:
2208 	return err;
2209 }
2210 
2211 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2212 		unsigned int, flags, struct sockaddr __user *, addr,
2213 		int __user *, addr_len)
2214 {
2215 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2216 }
2217 
2218 /*
2219  *	Receive a datagram from a socket.
2220  */
2221 
2222 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2223 		unsigned int, flags)
2224 {
2225 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2226 }
2227 
2228 static bool sock_use_custom_sol_socket(const struct socket *sock)
2229 {
2230 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2231 }
2232 
2233 /*
2234  *	Set a socket option. Because we don't know the option lengths we have
2235  *	to pass the user mode parameter for the protocols to sort out.
2236  */
2237 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2238 		int optlen)
2239 {
2240 	sockptr_t optval = USER_SOCKPTR(user_optval);
2241 	char *kernel_optval = NULL;
2242 	int err, fput_needed;
2243 	struct socket *sock;
2244 
2245 	if (optlen < 0)
2246 		return -EINVAL;
2247 
2248 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2249 	if (!sock)
2250 		return err;
2251 
2252 	err = security_socket_setsockopt(sock, level, optname);
2253 	if (err)
2254 		goto out_put;
2255 
2256 	if (!in_compat_syscall())
2257 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2258 						     user_optval, &optlen,
2259 						     &kernel_optval);
2260 	if (err < 0)
2261 		goto out_put;
2262 	if (err > 0) {
2263 		err = 0;
2264 		goto out_put;
2265 	}
2266 
2267 	if (kernel_optval)
2268 		optval = KERNEL_SOCKPTR(kernel_optval);
2269 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2270 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2271 	else if (unlikely(!sock->ops->setsockopt))
2272 		err = -EOPNOTSUPP;
2273 	else
2274 		err = sock->ops->setsockopt(sock, level, optname, optval,
2275 					    optlen);
2276 	kfree(kernel_optval);
2277 out_put:
2278 	fput_light(sock->file, fput_needed);
2279 	return err;
2280 }
2281 
2282 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2283 		char __user *, optval, int, optlen)
2284 {
2285 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2286 }
2287 
2288 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2289 							 int optname));
2290 
2291 /*
2292  *	Get a socket option. Because we don't know the option lengths we have
2293  *	to pass a user mode parameter for the protocols to sort out.
2294  */
2295 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2296 		int __user *optlen)
2297 {
2298 	int err, fput_needed;
2299 	struct socket *sock;
2300 	int max_optlen;
2301 
2302 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2303 	if (!sock)
2304 		return err;
2305 
2306 	err = security_socket_getsockopt(sock, level, optname);
2307 	if (err)
2308 		goto out_put;
2309 
2310 	if (!in_compat_syscall())
2311 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2312 
2313 	if (level == SOL_SOCKET)
2314 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2315 	else if (unlikely(!sock->ops->getsockopt))
2316 		err = -EOPNOTSUPP;
2317 	else
2318 		err = sock->ops->getsockopt(sock, level, optname, optval,
2319 					    optlen);
2320 
2321 	if (!in_compat_syscall())
2322 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2323 						     optval, optlen, max_optlen,
2324 						     err);
2325 out_put:
2326 	fput_light(sock->file, fput_needed);
2327 	return err;
2328 }
2329 
2330 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2331 		char __user *, optval, int __user *, optlen)
2332 {
2333 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2334 }
2335 
2336 /*
2337  *	Shutdown a socket.
2338  */
2339 
2340 int __sys_shutdown_sock(struct socket *sock, int how)
2341 {
2342 	int err;
2343 
2344 	err = security_socket_shutdown(sock, how);
2345 	if (!err)
2346 		err = sock->ops->shutdown(sock, how);
2347 
2348 	return err;
2349 }
2350 
2351 int __sys_shutdown(int fd, int how)
2352 {
2353 	int err, fput_needed;
2354 	struct socket *sock;
2355 
2356 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2357 	if (sock != NULL) {
2358 		err = __sys_shutdown_sock(sock, how);
2359 		fput_light(sock->file, fput_needed);
2360 	}
2361 	return err;
2362 }
2363 
2364 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2365 {
2366 	return __sys_shutdown(fd, how);
2367 }
2368 
2369 /* A couple of helpful macros for getting the address of the 32/64 bit
2370  * fields which are the same type (int / unsigned) on our platforms.
2371  */
2372 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2373 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2374 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2375 
2376 struct used_address {
2377 	struct sockaddr_storage name;
2378 	unsigned int name_len;
2379 };
2380 
2381 int __copy_msghdr(struct msghdr *kmsg,
2382 		  struct user_msghdr *msg,
2383 		  struct sockaddr __user **save_addr)
2384 {
2385 	ssize_t err;
2386 
2387 	kmsg->msg_control_is_user = true;
2388 	kmsg->msg_get_inq = 0;
2389 	kmsg->msg_control_user = msg->msg_control;
2390 	kmsg->msg_controllen = msg->msg_controllen;
2391 	kmsg->msg_flags = msg->msg_flags;
2392 
2393 	kmsg->msg_namelen = msg->msg_namelen;
2394 	if (!msg->msg_name)
2395 		kmsg->msg_namelen = 0;
2396 
2397 	if (kmsg->msg_namelen < 0)
2398 		return -EINVAL;
2399 
2400 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2401 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2402 
2403 	if (save_addr)
2404 		*save_addr = msg->msg_name;
2405 
2406 	if (msg->msg_name && kmsg->msg_namelen) {
2407 		if (!save_addr) {
2408 			err = move_addr_to_kernel(msg->msg_name,
2409 						  kmsg->msg_namelen,
2410 						  kmsg->msg_name);
2411 			if (err < 0)
2412 				return err;
2413 		}
2414 	} else {
2415 		kmsg->msg_name = NULL;
2416 		kmsg->msg_namelen = 0;
2417 	}
2418 
2419 	if (msg->msg_iovlen > UIO_MAXIOV)
2420 		return -EMSGSIZE;
2421 
2422 	kmsg->msg_iocb = NULL;
2423 	kmsg->msg_ubuf = NULL;
2424 	return 0;
2425 }
2426 
2427 static int copy_msghdr_from_user(struct msghdr *kmsg,
2428 				 struct user_msghdr __user *umsg,
2429 				 struct sockaddr __user **save_addr,
2430 				 struct iovec **iov)
2431 {
2432 	struct user_msghdr msg;
2433 	ssize_t err;
2434 
2435 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2436 		return -EFAULT;
2437 
2438 	err = __copy_msghdr(kmsg, &msg, save_addr);
2439 	if (err)
2440 		return err;
2441 
2442 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2443 			    msg.msg_iov, msg.msg_iovlen,
2444 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2445 	return err < 0 ? err : 0;
2446 }
2447 
2448 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2449 			   unsigned int flags, struct used_address *used_address,
2450 			   unsigned int allowed_msghdr_flags)
2451 {
2452 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2453 				__aligned(sizeof(__kernel_size_t));
2454 	/* 20 is size of ipv6_pktinfo */
2455 	unsigned char *ctl_buf = ctl;
2456 	int ctl_len;
2457 	ssize_t err;
2458 
2459 	err = -ENOBUFS;
2460 
2461 	if (msg_sys->msg_controllen > INT_MAX)
2462 		goto out;
2463 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2464 	ctl_len = msg_sys->msg_controllen;
2465 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2466 		err =
2467 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2468 						     sizeof(ctl));
2469 		if (err)
2470 			goto out;
2471 		ctl_buf = msg_sys->msg_control;
2472 		ctl_len = msg_sys->msg_controllen;
2473 	} else if (ctl_len) {
2474 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2475 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2476 		if (ctl_len > sizeof(ctl)) {
2477 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2478 			if (ctl_buf == NULL)
2479 				goto out;
2480 		}
2481 		err = -EFAULT;
2482 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2483 			goto out_freectl;
2484 		msg_sys->msg_control = ctl_buf;
2485 		msg_sys->msg_control_is_user = false;
2486 	}
2487 	msg_sys->msg_flags = flags;
2488 
2489 	if (sock->file->f_flags & O_NONBLOCK)
2490 		msg_sys->msg_flags |= MSG_DONTWAIT;
2491 	/*
2492 	 * If this is sendmmsg() and current destination address is same as
2493 	 * previously succeeded address, omit asking LSM's decision.
2494 	 * used_address->name_len is initialized to UINT_MAX so that the first
2495 	 * destination address never matches.
2496 	 */
2497 	if (used_address && msg_sys->msg_name &&
2498 	    used_address->name_len == msg_sys->msg_namelen &&
2499 	    !memcmp(&used_address->name, msg_sys->msg_name,
2500 		    used_address->name_len)) {
2501 		err = sock_sendmsg_nosec(sock, msg_sys);
2502 		goto out_freectl;
2503 	}
2504 	err = sock_sendmsg(sock, msg_sys);
2505 	/*
2506 	 * If this is sendmmsg() and sending to current destination address was
2507 	 * successful, remember it.
2508 	 */
2509 	if (used_address && err >= 0) {
2510 		used_address->name_len = msg_sys->msg_namelen;
2511 		if (msg_sys->msg_name)
2512 			memcpy(&used_address->name, msg_sys->msg_name,
2513 			       used_address->name_len);
2514 	}
2515 
2516 out_freectl:
2517 	if (ctl_buf != ctl)
2518 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2519 out:
2520 	return err;
2521 }
2522 
2523 int sendmsg_copy_msghdr(struct msghdr *msg,
2524 			struct user_msghdr __user *umsg, unsigned flags,
2525 			struct iovec **iov)
2526 {
2527 	int err;
2528 
2529 	if (flags & MSG_CMSG_COMPAT) {
2530 		struct compat_msghdr __user *msg_compat;
2531 
2532 		msg_compat = (struct compat_msghdr __user *) umsg;
2533 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2534 	} else {
2535 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2536 	}
2537 	if (err < 0)
2538 		return err;
2539 
2540 	return 0;
2541 }
2542 
2543 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2544 			 struct msghdr *msg_sys, unsigned int flags,
2545 			 struct used_address *used_address,
2546 			 unsigned int allowed_msghdr_flags)
2547 {
2548 	struct sockaddr_storage address;
2549 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2550 	ssize_t err;
2551 
2552 	msg_sys->msg_name = &address;
2553 
2554 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2555 	if (err < 0)
2556 		return err;
2557 
2558 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2559 				allowed_msghdr_flags);
2560 	kfree(iov);
2561 	return err;
2562 }
2563 
2564 /*
2565  *	BSD sendmsg interface
2566  */
2567 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2568 			unsigned int flags)
2569 {
2570 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2571 }
2572 
2573 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2574 		   bool forbid_cmsg_compat)
2575 {
2576 	int fput_needed, err;
2577 	struct msghdr msg_sys;
2578 	struct socket *sock;
2579 
2580 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2581 		return -EINVAL;
2582 
2583 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2584 	if (!sock)
2585 		goto out;
2586 
2587 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2588 
2589 	fput_light(sock->file, fput_needed);
2590 out:
2591 	return err;
2592 }
2593 
2594 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2595 {
2596 	return __sys_sendmsg(fd, msg, flags, true);
2597 }
2598 
2599 /*
2600  *	Linux sendmmsg interface
2601  */
2602 
2603 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2604 		   unsigned int flags, bool forbid_cmsg_compat)
2605 {
2606 	int fput_needed, err, datagrams;
2607 	struct socket *sock;
2608 	struct mmsghdr __user *entry;
2609 	struct compat_mmsghdr __user *compat_entry;
2610 	struct msghdr msg_sys;
2611 	struct used_address used_address;
2612 	unsigned int oflags = flags;
2613 
2614 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2615 		return -EINVAL;
2616 
2617 	if (vlen > UIO_MAXIOV)
2618 		vlen = UIO_MAXIOV;
2619 
2620 	datagrams = 0;
2621 
2622 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2623 	if (!sock)
2624 		return err;
2625 
2626 	used_address.name_len = UINT_MAX;
2627 	entry = mmsg;
2628 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2629 	err = 0;
2630 	flags |= MSG_BATCH;
2631 
2632 	while (datagrams < vlen) {
2633 		if (datagrams == vlen - 1)
2634 			flags = oflags;
2635 
2636 		if (MSG_CMSG_COMPAT & flags) {
2637 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2638 					     &msg_sys, flags, &used_address, MSG_EOR);
2639 			if (err < 0)
2640 				break;
2641 			err = __put_user(err, &compat_entry->msg_len);
2642 			++compat_entry;
2643 		} else {
2644 			err = ___sys_sendmsg(sock,
2645 					     (struct user_msghdr __user *)entry,
2646 					     &msg_sys, flags, &used_address, MSG_EOR);
2647 			if (err < 0)
2648 				break;
2649 			err = put_user(err, &entry->msg_len);
2650 			++entry;
2651 		}
2652 
2653 		if (err)
2654 			break;
2655 		++datagrams;
2656 		if (msg_data_left(&msg_sys))
2657 			break;
2658 		cond_resched();
2659 	}
2660 
2661 	fput_light(sock->file, fput_needed);
2662 
2663 	/* We only return an error if no datagrams were able to be sent */
2664 	if (datagrams != 0)
2665 		return datagrams;
2666 
2667 	return err;
2668 }
2669 
2670 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2671 		unsigned int, vlen, unsigned int, flags)
2672 {
2673 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2674 }
2675 
2676 int recvmsg_copy_msghdr(struct msghdr *msg,
2677 			struct user_msghdr __user *umsg, unsigned flags,
2678 			struct sockaddr __user **uaddr,
2679 			struct iovec **iov)
2680 {
2681 	ssize_t err;
2682 
2683 	if (MSG_CMSG_COMPAT & flags) {
2684 		struct compat_msghdr __user *msg_compat;
2685 
2686 		msg_compat = (struct compat_msghdr __user *) umsg;
2687 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2688 	} else {
2689 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2690 	}
2691 	if (err < 0)
2692 		return err;
2693 
2694 	return 0;
2695 }
2696 
2697 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2698 			   struct user_msghdr __user *msg,
2699 			   struct sockaddr __user *uaddr,
2700 			   unsigned int flags, int nosec)
2701 {
2702 	struct compat_msghdr __user *msg_compat =
2703 					(struct compat_msghdr __user *) msg;
2704 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2705 	struct sockaddr_storage addr;
2706 	unsigned long cmsg_ptr;
2707 	int len;
2708 	ssize_t err;
2709 
2710 	msg_sys->msg_name = &addr;
2711 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2712 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2713 
2714 	/* We assume all kernel code knows the size of sockaddr_storage */
2715 	msg_sys->msg_namelen = 0;
2716 
2717 	if (sock->file->f_flags & O_NONBLOCK)
2718 		flags |= MSG_DONTWAIT;
2719 
2720 	if (unlikely(nosec))
2721 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2722 	else
2723 		err = sock_recvmsg(sock, msg_sys, flags);
2724 
2725 	if (err < 0)
2726 		goto out;
2727 	len = err;
2728 
2729 	if (uaddr != NULL) {
2730 		err = move_addr_to_user(&addr,
2731 					msg_sys->msg_namelen, uaddr,
2732 					uaddr_len);
2733 		if (err < 0)
2734 			goto out;
2735 	}
2736 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2737 			 COMPAT_FLAGS(msg));
2738 	if (err)
2739 		goto out;
2740 	if (MSG_CMSG_COMPAT & flags)
2741 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2742 				 &msg_compat->msg_controllen);
2743 	else
2744 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2745 				 &msg->msg_controllen);
2746 	if (err)
2747 		goto out;
2748 	err = len;
2749 out:
2750 	return err;
2751 }
2752 
2753 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2754 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2755 {
2756 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2757 	/* user mode address pointers */
2758 	struct sockaddr __user *uaddr;
2759 	ssize_t err;
2760 
2761 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2762 	if (err < 0)
2763 		return err;
2764 
2765 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2766 	kfree(iov);
2767 	return err;
2768 }
2769 
2770 /*
2771  *	BSD recvmsg interface
2772  */
2773 
2774 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2775 			struct user_msghdr __user *umsg,
2776 			struct sockaddr __user *uaddr, unsigned int flags)
2777 {
2778 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2779 }
2780 
2781 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2782 		   bool forbid_cmsg_compat)
2783 {
2784 	int fput_needed, err;
2785 	struct msghdr msg_sys;
2786 	struct socket *sock;
2787 
2788 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2789 		return -EINVAL;
2790 
2791 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2792 	if (!sock)
2793 		goto out;
2794 
2795 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2796 
2797 	fput_light(sock->file, fput_needed);
2798 out:
2799 	return err;
2800 }
2801 
2802 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2803 		unsigned int, flags)
2804 {
2805 	return __sys_recvmsg(fd, msg, flags, true);
2806 }
2807 
2808 /*
2809  *     Linux recvmmsg interface
2810  */
2811 
2812 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2813 			  unsigned int vlen, unsigned int flags,
2814 			  struct timespec64 *timeout)
2815 {
2816 	int fput_needed, err, datagrams;
2817 	struct socket *sock;
2818 	struct mmsghdr __user *entry;
2819 	struct compat_mmsghdr __user *compat_entry;
2820 	struct msghdr msg_sys;
2821 	struct timespec64 end_time;
2822 	struct timespec64 timeout64;
2823 
2824 	if (timeout &&
2825 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2826 				    timeout->tv_nsec))
2827 		return -EINVAL;
2828 
2829 	datagrams = 0;
2830 
2831 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2832 	if (!sock)
2833 		return err;
2834 
2835 	if (likely(!(flags & MSG_ERRQUEUE))) {
2836 		err = sock_error(sock->sk);
2837 		if (err) {
2838 			datagrams = err;
2839 			goto out_put;
2840 		}
2841 	}
2842 
2843 	entry = mmsg;
2844 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2845 
2846 	while (datagrams < vlen) {
2847 		/*
2848 		 * No need to ask LSM for more than the first datagram.
2849 		 */
2850 		if (MSG_CMSG_COMPAT & flags) {
2851 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2852 					     &msg_sys, flags & ~MSG_WAITFORONE,
2853 					     datagrams);
2854 			if (err < 0)
2855 				break;
2856 			err = __put_user(err, &compat_entry->msg_len);
2857 			++compat_entry;
2858 		} else {
2859 			err = ___sys_recvmsg(sock,
2860 					     (struct user_msghdr __user *)entry,
2861 					     &msg_sys, flags & ~MSG_WAITFORONE,
2862 					     datagrams);
2863 			if (err < 0)
2864 				break;
2865 			err = put_user(err, &entry->msg_len);
2866 			++entry;
2867 		}
2868 
2869 		if (err)
2870 			break;
2871 		++datagrams;
2872 
2873 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2874 		if (flags & MSG_WAITFORONE)
2875 			flags |= MSG_DONTWAIT;
2876 
2877 		if (timeout) {
2878 			ktime_get_ts64(&timeout64);
2879 			*timeout = timespec64_sub(end_time, timeout64);
2880 			if (timeout->tv_sec < 0) {
2881 				timeout->tv_sec = timeout->tv_nsec = 0;
2882 				break;
2883 			}
2884 
2885 			/* Timeout, return less than vlen datagrams */
2886 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2887 				break;
2888 		}
2889 
2890 		/* Out of band data, return right away */
2891 		if (msg_sys.msg_flags & MSG_OOB)
2892 			break;
2893 		cond_resched();
2894 	}
2895 
2896 	if (err == 0)
2897 		goto out_put;
2898 
2899 	if (datagrams == 0) {
2900 		datagrams = err;
2901 		goto out_put;
2902 	}
2903 
2904 	/*
2905 	 * We may return less entries than requested (vlen) if the
2906 	 * sock is non block and there aren't enough datagrams...
2907 	 */
2908 	if (err != -EAGAIN) {
2909 		/*
2910 		 * ... or  if recvmsg returns an error after we
2911 		 * received some datagrams, where we record the
2912 		 * error to return on the next call or if the
2913 		 * app asks about it using getsockopt(SO_ERROR).
2914 		 */
2915 		sock->sk->sk_err = -err;
2916 	}
2917 out_put:
2918 	fput_light(sock->file, fput_needed);
2919 
2920 	return datagrams;
2921 }
2922 
2923 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2924 		   unsigned int vlen, unsigned int flags,
2925 		   struct __kernel_timespec __user *timeout,
2926 		   struct old_timespec32 __user *timeout32)
2927 {
2928 	int datagrams;
2929 	struct timespec64 timeout_sys;
2930 
2931 	if (timeout && get_timespec64(&timeout_sys, timeout))
2932 		return -EFAULT;
2933 
2934 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2935 		return -EFAULT;
2936 
2937 	if (!timeout && !timeout32)
2938 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2939 
2940 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2941 
2942 	if (datagrams <= 0)
2943 		return datagrams;
2944 
2945 	if (timeout && put_timespec64(&timeout_sys, timeout))
2946 		datagrams = -EFAULT;
2947 
2948 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2949 		datagrams = -EFAULT;
2950 
2951 	return datagrams;
2952 }
2953 
2954 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2955 		unsigned int, vlen, unsigned int, flags,
2956 		struct __kernel_timespec __user *, timeout)
2957 {
2958 	if (flags & MSG_CMSG_COMPAT)
2959 		return -EINVAL;
2960 
2961 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2962 }
2963 
2964 #ifdef CONFIG_COMPAT_32BIT_TIME
2965 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2966 		unsigned int, vlen, unsigned int, flags,
2967 		struct old_timespec32 __user *, timeout)
2968 {
2969 	if (flags & MSG_CMSG_COMPAT)
2970 		return -EINVAL;
2971 
2972 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2973 }
2974 #endif
2975 
2976 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2977 /* Argument list sizes for sys_socketcall */
2978 #define AL(x) ((x) * sizeof(unsigned long))
2979 static const unsigned char nargs[21] = {
2980 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2981 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2982 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2983 	AL(4), AL(5), AL(4)
2984 };
2985 
2986 #undef AL
2987 
2988 /*
2989  *	System call vectors.
2990  *
2991  *	Argument checking cleaned up. Saved 20% in size.
2992  *  This function doesn't need to set the kernel lock because
2993  *  it is set by the callees.
2994  */
2995 
2996 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2997 {
2998 	unsigned long a[AUDITSC_ARGS];
2999 	unsigned long a0, a1;
3000 	int err;
3001 	unsigned int len;
3002 
3003 	if (call < 1 || call > SYS_SENDMMSG)
3004 		return -EINVAL;
3005 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3006 
3007 	len = nargs[call];
3008 	if (len > sizeof(a))
3009 		return -EINVAL;
3010 
3011 	/* copy_from_user should be SMP safe. */
3012 	if (copy_from_user(a, args, len))
3013 		return -EFAULT;
3014 
3015 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3016 	if (err)
3017 		return err;
3018 
3019 	a0 = a[0];
3020 	a1 = a[1];
3021 
3022 	switch (call) {
3023 	case SYS_SOCKET:
3024 		err = __sys_socket(a0, a1, a[2]);
3025 		break;
3026 	case SYS_BIND:
3027 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3028 		break;
3029 	case SYS_CONNECT:
3030 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3031 		break;
3032 	case SYS_LISTEN:
3033 		err = __sys_listen(a0, a1);
3034 		break;
3035 	case SYS_ACCEPT:
3036 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3037 				    (int __user *)a[2], 0);
3038 		break;
3039 	case SYS_GETSOCKNAME:
3040 		err =
3041 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3042 				      (int __user *)a[2]);
3043 		break;
3044 	case SYS_GETPEERNAME:
3045 		err =
3046 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3047 				      (int __user *)a[2]);
3048 		break;
3049 	case SYS_SOCKETPAIR:
3050 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3051 		break;
3052 	case SYS_SEND:
3053 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3054 				   NULL, 0);
3055 		break;
3056 	case SYS_SENDTO:
3057 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3058 				   (struct sockaddr __user *)a[4], a[5]);
3059 		break;
3060 	case SYS_RECV:
3061 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3062 				     NULL, NULL);
3063 		break;
3064 	case SYS_RECVFROM:
3065 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3066 				     (struct sockaddr __user *)a[4],
3067 				     (int __user *)a[5]);
3068 		break;
3069 	case SYS_SHUTDOWN:
3070 		err = __sys_shutdown(a0, a1);
3071 		break;
3072 	case SYS_SETSOCKOPT:
3073 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3074 				       a[4]);
3075 		break;
3076 	case SYS_GETSOCKOPT:
3077 		err =
3078 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3079 				     (int __user *)a[4]);
3080 		break;
3081 	case SYS_SENDMSG:
3082 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3083 				    a[2], true);
3084 		break;
3085 	case SYS_SENDMMSG:
3086 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3087 				     a[3], true);
3088 		break;
3089 	case SYS_RECVMSG:
3090 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3091 				    a[2], true);
3092 		break;
3093 	case SYS_RECVMMSG:
3094 		if (IS_ENABLED(CONFIG_64BIT))
3095 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3096 					     a[2], a[3],
3097 					     (struct __kernel_timespec __user *)a[4],
3098 					     NULL);
3099 		else
3100 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3101 					     a[2], a[3], NULL,
3102 					     (struct old_timespec32 __user *)a[4]);
3103 		break;
3104 	case SYS_ACCEPT4:
3105 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3106 				    (int __user *)a[2], a[3]);
3107 		break;
3108 	default:
3109 		err = -EINVAL;
3110 		break;
3111 	}
3112 	return err;
3113 }
3114 
3115 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3116 
3117 /**
3118  *	sock_register - add a socket protocol handler
3119  *	@ops: description of protocol
3120  *
3121  *	This function is called by a protocol handler that wants to
3122  *	advertise its address family, and have it linked into the
3123  *	socket interface. The value ops->family corresponds to the
3124  *	socket system call protocol family.
3125  */
3126 int sock_register(const struct net_proto_family *ops)
3127 {
3128 	int err;
3129 
3130 	if (ops->family >= NPROTO) {
3131 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3132 		return -ENOBUFS;
3133 	}
3134 
3135 	spin_lock(&net_family_lock);
3136 	if (rcu_dereference_protected(net_families[ops->family],
3137 				      lockdep_is_held(&net_family_lock)))
3138 		err = -EEXIST;
3139 	else {
3140 		rcu_assign_pointer(net_families[ops->family], ops);
3141 		err = 0;
3142 	}
3143 	spin_unlock(&net_family_lock);
3144 
3145 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3146 	return err;
3147 }
3148 EXPORT_SYMBOL(sock_register);
3149 
3150 /**
3151  *	sock_unregister - remove a protocol handler
3152  *	@family: protocol family to remove
3153  *
3154  *	This function is called by a protocol handler that wants to
3155  *	remove its address family, and have it unlinked from the
3156  *	new socket creation.
3157  *
3158  *	If protocol handler is a module, then it can use module reference
3159  *	counts to protect against new references. If protocol handler is not
3160  *	a module then it needs to provide its own protection in
3161  *	the ops->create routine.
3162  */
3163 void sock_unregister(int family)
3164 {
3165 	BUG_ON(family < 0 || family >= NPROTO);
3166 
3167 	spin_lock(&net_family_lock);
3168 	RCU_INIT_POINTER(net_families[family], NULL);
3169 	spin_unlock(&net_family_lock);
3170 
3171 	synchronize_rcu();
3172 
3173 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3174 }
3175 EXPORT_SYMBOL(sock_unregister);
3176 
3177 bool sock_is_registered(int family)
3178 {
3179 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3180 }
3181 
3182 static int __init sock_init(void)
3183 {
3184 	int err;
3185 	/*
3186 	 *      Initialize the network sysctl infrastructure.
3187 	 */
3188 	err = net_sysctl_init();
3189 	if (err)
3190 		goto out;
3191 
3192 	/*
3193 	 *      Initialize skbuff SLAB cache
3194 	 */
3195 	skb_init();
3196 
3197 	/*
3198 	 *      Initialize the protocols module.
3199 	 */
3200 
3201 	init_inodecache();
3202 
3203 	err = register_filesystem(&sock_fs_type);
3204 	if (err)
3205 		goto out;
3206 	sock_mnt = kern_mount(&sock_fs_type);
3207 	if (IS_ERR(sock_mnt)) {
3208 		err = PTR_ERR(sock_mnt);
3209 		goto out_mount;
3210 	}
3211 
3212 	/* The real protocol initialization is performed in later initcalls.
3213 	 */
3214 
3215 #ifdef CONFIG_NETFILTER
3216 	err = netfilter_init();
3217 	if (err)
3218 		goto out;
3219 #endif
3220 
3221 	ptp_classifier_init();
3222 
3223 out:
3224 	return err;
3225 
3226 out_mount:
3227 	unregister_filesystem(&sock_fs_type);
3228 	goto out;
3229 }
3230 
3231 core_initcall(sock_init);	/* early initcall */
3232 
3233 #ifdef CONFIG_PROC_FS
3234 void socket_seq_show(struct seq_file *seq)
3235 {
3236 	seq_printf(seq, "sockets: used %d\n",
3237 		   sock_inuse_get(seq->private));
3238 }
3239 #endif				/* CONFIG_PROC_FS */
3240 
3241 /* Handle the fact that while struct ifreq has the same *layout* on
3242  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3243  * which are handled elsewhere, it still has different *size* due to
3244  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3245  * resulting in struct ifreq being 32 and 40 bytes respectively).
3246  * As a result, if the struct happens to be at the end of a page and
3247  * the next page isn't readable/writable, we get a fault. To prevent
3248  * that, copy back and forth to the full size.
3249  */
3250 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3251 {
3252 	if (in_compat_syscall()) {
3253 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3254 
3255 		memset(ifr, 0, sizeof(*ifr));
3256 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3257 			return -EFAULT;
3258 
3259 		if (ifrdata)
3260 			*ifrdata = compat_ptr(ifr32->ifr_data);
3261 
3262 		return 0;
3263 	}
3264 
3265 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3266 		return -EFAULT;
3267 
3268 	if (ifrdata)
3269 		*ifrdata = ifr->ifr_data;
3270 
3271 	return 0;
3272 }
3273 EXPORT_SYMBOL(get_user_ifreq);
3274 
3275 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3276 {
3277 	size_t size = sizeof(*ifr);
3278 
3279 	if (in_compat_syscall())
3280 		size = sizeof(struct compat_ifreq);
3281 
3282 	if (copy_to_user(arg, ifr, size))
3283 		return -EFAULT;
3284 
3285 	return 0;
3286 }
3287 EXPORT_SYMBOL(put_user_ifreq);
3288 
3289 #ifdef CONFIG_COMPAT
3290 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3291 {
3292 	compat_uptr_t uptr32;
3293 	struct ifreq ifr;
3294 	void __user *saved;
3295 	int err;
3296 
3297 	if (get_user_ifreq(&ifr, NULL, uifr32))
3298 		return -EFAULT;
3299 
3300 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3301 		return -EFAULT;
3302 
3303 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3304 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3305 
3306 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3307 	if (!err) {
3308 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3309 		if (put_user_ifreq(&ifr, uifr32))
3310 			err = -EFAULT;
3311 	}
3312 	return err;
3313 }
3314 
3315 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3316 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3317 				 struct compat_ifreq __user *u_ifreq32)
3318 {
3319 	struct ifreq ifreq;
3320 	void __user *data;
3321 
3322 	if (!is_socket_ioctl_cmd(cmd))
3323 		return -ENOTTY;
3324 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3325 		return -EFAULT;
3326 	ifreq.ifr_data = data;
3327 
3328 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3329 }
3330 
3331 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3332 			 unsigned int cmd, unsigned long arg)
3333 {
3334 	void __user *argp = compat_ptr(arg);
3335 	struct sock *sk = sock->sk;
3336 	struct net *net = sock_net(sk);
3337 
3338 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3339 		return sock_ioctl(file, cmd, (unsigned long)argp);
3340 
3341 	switch (cmd) {
3342 	case SIOCWANDEV:
3343 		return compat_siocwandev(net, argp);
3344 	case SIOCGSTAMP_OLD:
3345 	case SIOCGSTAMPNS_OLD:
3346 		if (!sock->ops->gettstamp)
3347 			return -ENOIOCTLCMD;
3348 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3349 					    !COMPAT_USE_64BIT_TIME);
3350 
3351 	case SIOCETHTOOL:
3352 	case SIOCBONDSLAVEINFOQUERY:
3353 	case SIOCBONDINFOQUERY:
3354 	case SIOCSHWTSTAMP:
3355 	case SIOCGHWTSTAMP:
3356 		return compat_ifr_data_ioctl(net, cmd, argp);
3357 
3358 	case FIOSETOWN:
3359 	case SIOCSPGRP:
3360 	case FIOGETOWN:
3361 	case SIOCGPGRP:
3362 	case SIOCBRADDBR:
3363 	case SIOCBRDELBR:
3364 	case SIOCGIFVLAN:
3365 	case SIOCSIFVLAN:
3366 	case SIOCGSKNS:
3367 	case SIOCGSTAMP_NEW:
3368 	case SIOCGSTAMPNS_NEW:
3369 	case SIOCGIFCONF:
3370 	case SIOCSIFBR:
3371 	case SIOCGIFBR:
3372 		return sock_ioctl(file, cmd, arg);
3373 
3374 	case SIOCGIFFLAGS:
3375 	case SIOCSIFFLAGS:
3376 	case SIOCGIFMAP:
3377 	case SIOCSIFMAP:
3378 	case SIOCGIFMETRIC:
3379 	case SIOCSIFMETRIC:
3380 	case SIOCGIFMTU:
3381 	case SIOCSIFMTU:
3382 	case SIOCGIFMEM:
3383 	case SIOCSIFMEM:
3384 	case SIOCGIFHWADDR:
3385 	case SIOCSIFHWADDR:
3386 	case SIOCADDMULTI:
3387 	case SIOCDELMULTI:
3388 	case SIOCGIFINDEX:
3389 	case SIOCGIFADDR:
3390 	case SIOCSIFADDR:
3391 	case SIOCSIFHWBROADCAST:
3392 	case SIOCDIFADDR:
3393 	case SIOCGIFBRDADDR:
3394 	case SIOCSIFBRDADDR:
3395 	case SIOCGIFDSTADDR:
3396 	case SIOCSIFDSTADDR:
3397 	case SIOCGIFNETMASK:
3398 	case SIOCSIFNETMASK:
3399 	case SIOCSIFPFLAGS:
3400 	case SIOCGIFPFLAGS:
3401 	case SIOCGIFTXQLEN:
3402 	case SIOCSIFTXQLEN:
3403 	case SIOCBRADDIF:
3404 	case SIOCBRDELIF:
3405 	case SIOCGIFNAME:
3406 	case SIOCSIFNAME:
3407 	case SIOCGMIIPHY:
3408 	case SIOCGMIIREG:
3409 	case SIOCSMIIREG:
3410 	case SIOCBONDENSLAVE:
3411 	case SIOCBONDRELEASE:
3412 	case SIOCBONDSETHWADDR:
3413 	case SIOCBONDCHANGEACTIVE:
3414 	case SIOCSARP:
3415 	case SIOCGARP:
3416 	case SIOCDARP:
3417 	case SIOCOUTQ:
3418 	case SIOCOUTQNSD:
3419 	case SIOCATMARK:
3420 		return sock_do_ioctl(net, sock, cmd, arg);
3421 	}
3422 
3423 	return -ENOIOCTLCMD;
3424 }
3425 
3426 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3427 			      unsigned long arg)
3428 {
3429 	struct socket *sock = file->private_data;
3430 	int ret = -ENOIOCTLCMD;
3431 	struct sock *sk;
3432 	struct net *net;
3433 
3434 	sk = sock->sk;
3435 	net = sock_net(sk);
3436 
3437 	if (sock->ops->compat_ioctl)
3438 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3439 
3440 	if (ret == -ENOIOCTLCMD &&
3441 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3442 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3443 
3444 	if (ret == -ENOIOCTLCMD)
3445 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3446 
3447 	return ret;
3448 }
3449 #endif
3450 
3451 /**
3452  *	kernel_bind - bind an address to a socket (kernel space)
3453  *	@sock: socket
3454  *	@addr: address
3455  *	@addrlen: length of address
3456  *
3457  *	Returns 0 or an error.
3458  */
3459 
3460 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3461 {
3462 	return sock->ops->bind(sock, addr, addrlen);
3463 }
3464 EXPORT_SYMBOL(kernel_bind);
3465 
3466 /**
3467  *	kernel_listen - move socket to listening state (kernel space)
3468  *	@sock: socket
3469  *	@backlog: pending connections queue size
3470  *
3471  *	Returns 0 or an error.
3472  */
3473 
3474 int kernel_listen(struct socket *sock, int backlog)
3475 {
3476 	return sock->ops->listen(sock, backlog);
3477 }
3478 EXPORT_SYMBOL(kernel_listen);
3479 
3480 /**
3481  *	kernel_accept - accept a connection (kernel space)
3482  *	@sock: listening socket
3483  *	@newsock: new connected socket
3484  *	@flags: flags
3485  *
3486  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3487  *	If it fails, @newsock is guaranteed to be %NULL.
3488  *	Returns 0 or an error.
3489  */
3490 
3491 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3492 {
3493 	struct sock *sk = sock->sk;
3494 	int err;
3495 
3496 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3497 			       newsock);
3498 	if (err < 0)
3499 		goto done;
3500 
3501 	err = sock->ops->accept(sock, *newsock, flags, true);
3502 	if (err < 0) {
3503 		sock_release(*newsock);
3504 		*newsock = NULL;
3505 		goto done;
3506 	}
3507 
3508 	(*newsock)->ops = sock->ops;
3509 	__module_get((*newsock)->ops->owner);
3510 
3511 done:
3512 	return err;
3513 }
3514 EXPORT_SYMBOL(kernel_accept);
3515 
3516 /**
3517  *	kernel_connect - connect a socket (kernel space)
3518  *	@sock: socket
3519  *	@addr: address
3520  *	@addrlen: address length
3521  *	@flags: flags (O_NONBLOCK, ...)
3522  *
3523  *	For datagram sockets, @addr is the address to which datagrams are sent
3524  *	by default, and the only address from which datagrams are received.
3525  *	For stream sockets, attempts to connect to @addr.
3526  *	Returns 0 or an error code.
3527  */
3528 
3529 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3530 		   int flags)
3531 {
3532 	return sock->ops->connect(sock, addr, addrlen, flags);
3533 }
3534 EXPORT_SYMBOL(kernel_connect);
3535 
3536 /**
3537  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3538  *	@sock: socket
3539  *	@addr: address holder
3540  *
3541  * 	Fills the @addr pointer with the address which the socket is bound.
3542  *	Returns the length of the address in bytes or an error code.
3543  */
3544 
3545 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3546 {
3547 	return sock->ops->getname(sock, addr, 0);
3548 }
3549 EXPORT_SYMBOL(kernel_getsockname);
3550 
3551 /**
3552  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3553  *	@sock: socket
3554  *	@addr: address holder
3555  *
3556  * 	Fills the @addr pointer with the address which the socket is connected.
3557  *	Returns the length of the address in bytes or an error code.
3558  */
3559 
3560 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3561 {
3562 	return sock->ops->getname(sock, addr, 1);
3563 }
3564 EXPORT_SYMBOL(kernel_getpeername);
3565 
3566 /**
3567  *	kernel_sendpage - send a &page through a socket (kernel space)
3568  *	@sock: socket
3569  *	@page: page
3570  *	@offset: page offset
3571  *	@size: total size in bytes
3572  *	@flags: flags (MSG_DONTWAIT, ...)
3573  *
3574  *	Returns the total amount sent in bytes or an error.
3575  */
3576 
3577 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3578 		    size_t size, int flags)
3579 {
3580 	if (sock->ops->sendpage) {
3581 		/* Warn in case the improper page to zero-copy send */
3582 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3583 		return sock->ops->sendpage(sock, page, offset, size, flags);
3584 	}
3585 	return sock_no_sendpage(sock, page, offset, size, flags);
3586 }
3587 EXPORT_SYMBOL(kernel_sendpage);
3588 
3589 /**
3590  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3591  *	@sk: sock
3592  *	@page: page
3593  *	@offset: page offset
3594  *	@size: total size in bytes
3595  *	@flags: flags (MSG_DONTWAIT, ...)
3596  *
3597  *	Returns the total amount sent in bytes or an error.
3598  *	Caller must hold @sk.
3599  */
3600 
3601 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3602 			   size_t size, int flags)
3603 {
3604 	struct socket *sock = sk->sk_socket;
3605 
3606 	if (sock->ops->sendpage_locked)
3607 		return sock->ops->sendpage_locked(sk, page, offset, size,
3608 						  flags);
3609 
3610 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3611 }
3612 EXPORT_SYMBOL(kernel_sendpage_locked);
3613 
3614 /**
3615  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3616  *	@sock: socket
3617  *	@how: connection part
3618  *
3619  *	Returns 0 or an error.
3620  */
3621 
3622 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3623 {
3624 	return sock->ops->shutdown(sock, how);
3625 }
3626 EXPORT_SYMBOL(kernel_sock_shutdown);
3627 
3628 /**
3629  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3630  *	@sk: socket
3631  *
3632  *	This routine returns the IP overhead imposed by a socket i.e.
3633  *	the length of the underlying IP header, depending on whether
3634  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3635  *	on at the socket. Assumes that the caller has a lock on the socket.
3636  */
3637 
3638 u32 kernel_sock_ip_overhead(struct sock *sk)
3639 {
3640 	struct inet_sock *inet;
3641 	struct ip_options_rcu *opt;
3642 	u32 overhead = 0;
3643 #if IS_ENABLED(CONFIG_IPV6)
3644 	struct ipv6_pinfo *np;
3645 	struct ipv6_txoptions *optv6 = NULL;
3646 #endif /* IS_ENABLED(CONFIG_IPV6) */
3647 
3648 	if (!sk)
3649 		return overhead;
3650 
3651 	switch (sk->sk_family) {
3652 	case AF_INET:
3653 		inet = inet_sk(sk);
3654 		overhead += sizeof(struct iphdr);
3655 		opt = rcu_dereference_protected(inet->inet_opt,
3656 						sock_owned_by_user(sk));
3657 		if (opt)
3658 			overhead += opt->opt.optlen;
3659 		return overhead;
3660 #if IS_ENABLED(CONFIG_IPV6)
3661 	case AF_INET6:
3662 		np = inet6_sk(sk);
3663 		overhead += sizeof(struct ipv6hdr);
3664 		if (np)
3665 			optv6 = rcu_dereference_protected(np->opt,
3666 							  sock_owned_by_user(sk));
3667 		if (optv6)
3668 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3669 		return overhead;
3670 #endif /* IS_ENABLED(CONFIG_IPV6) */
3671 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3672 		return overhead;
3673 	}
3674 }
3675 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3676