xref: /linux/net/socket.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 			 int flags, const char *dev_name, void *data)
325 {
326 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 		&sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333 	.name =		"sockfs",
334 	.mount =	sockfs_mount,
335 	.kill_sb =	kill_anon_super,
336 };
337 
338 /*
339  *	Obtains the first available file descriptor and sets it up for use.
340  *
341  *	These functions create file structures and maps them to fd space
342  *	of the current process. On success it returns file descriptor
343  *	and file struct implicitly stored in sock->file.
344  *	Note that another thread may close file descriptor before we return
345  *	from this function. We use the fact that now we do not refer
346  *	to socket after mapping. If one day we will need it, this
347  *	function will increment ref. count on file by 1.
348  *
349  *	In any case returned fd MAY BE not valid!
350  *	This race condition is unavoidable
351  *	with shared fd spaces, we cannot solve it inside kernel,
352  *	but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 	struct qstr name = { .name = "" };
358 	struct path path;
359 	struct file *file;
360 
361 	if (dname) {
362 		name.name = dname;
363 		name.len = strlen(name.name);
364 	} else if (sock->sk) {
365 		name.name = sock->sk->sk_prot_creator->name;
366 		name.len = strlen(name.name);
367 	}
368 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 	if (unlikely(!path.dentry))
370 		return ERR_PTR(-ENOMEM);
371 	path.mnt = mntget(sock_mnt);
372 
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 
375 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 		  &socket_file_ops);
377 	if (IS_ERR(file)) {
378 		/* drop dentry, keep inode */
379 		ihold(d_inode(path.dentry));
380 		path_put(&path);
381 		return file;
382 	}
383 
384 	sock->file = file;
385 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 	file->private_data = sock;
387 	return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390 
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 	struct file *newfile;
394 	int fd = get_unused_fd_flags(flags);
395 	if (unlikely(fd < 0))
396 		return fd;
397 
398 	newfile = sock_alloc_file(sock, flags, NULL);
399 	if (likely(!IS_ERR(newfile))) {
400 		fd_install(fd, newfile);
401 		return fd;
402 	}
403 
404 	put_unused_fd(fd);
405 	return PTR_ERR(newfile);
406 }
407 
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 	if (file->f_op == &socket_file_ops)
411 		return file->private_data;	/* set in sock_map_fd */
412 
413 	*err = -ENOTSOCK;
414 	return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417 
418 /**
419  *	sockfd_lookup - Go from a file number to its socket slot
420  *	@fd: file handle
421  *	@err: pointer to an error code return
422  *
423  *	The file handle passed in is locked and the socket it is bound
424  *	too is returned. If an error occurs the err pointer is overwritten
425  *	with a negative errno code and NULL is returned. The function checks
426  *	for both invalid handles and passing a handle which is not a socket.
427  *
428  *	On a success the socket object pointer is returned.
429  */
430 
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 	struct file *file;
434 	struct socket *sock;
435 
436 	file = fget(fd);
437 	if (!file) {
438 		*err = -EBADF;
439 		return NULL;
440 	}
441 
442 	sock = sock_from_file(file, err);
443 	if (!sock)
444 		fput(file);
445 	return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448 
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 	struct fd f = fdget(fd);
452 	struct socket *sock;
453 
454 	*err = -EBADF;
455 	if (f.file) {
456 		sock = sock_from_file(f.file, err);
457 		if (likely(sock)) {
458 			*fput_needed = f.flags;
459 			return sock;
460 		}
461 		fdput(f);
462 	}
463 	return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 			       const char *name, void *value, size_t size)
471 {
472 	const char *proto_name;
473 	size_t proto_size;
474 	int error;
475 
476 	error = -ENODATA;
477 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 		proto_name = dentry->d_name.name;
479 		proto_size = strlen(proto_name);
480 
481 		if (value) {
482 			error = -ERANGE;
483 			if (proto_size + 1 > size)
484 				goto out;
485 
486 			strncpy(value, proto_name, proto_size + 1);
487 		}
488 		error = proto_size + 1;
489 	}
490 
491 out:
492 	return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 				size_t size)
497 {
498 	ssize_t len;
499 	ssize_t used = 0;
500 
501 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 	if (len < 0)
503 		return len;
504 	used += len;
505 	if (buffer) {
506 		if (size < used)
507 			return -ERANGE;
508 		buffer += len;
509 	}
510 
511 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 	used += len;
513 	if (buffer) {
514 		if (size < used)
515 			return -ERANGE;
516 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 		buffer += len;
518 	}
519 
520 	return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524 	.getxattr = sockfs_getxattr,
525 	.listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *	sock_alloc	-	allocate a socket
530  *
531  *	Allocate a new inode and socket object. The two are bound together
532  *	and initialised. The socket is then returned. If we are out of inodes
533  *	NULL is returned.
534  */
535 
536 struct socket *sock_alloc(void)
537 {
538 	struct inode *inode;
539 	struct socket *sock;
540 
541 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 	if (!inode)
543 		return NULL;
544 
545 	sock = SOCKET_I(inode);
546 
547 	kmemcheck_annotate_bitfield(sock, type);
548 	inode->i_ino = get_next_ino();
549 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 	inode->i_uid = current_fsuid();
551 	inode->i_gid = current_fsgid();
552 	inode->i_op = &sockfs_inode_ops;
553 
554 	this_cpu_add(sockets_in_use, 1);
555 	return sock;
556 }
557 EXPORT_SYMBOL(sock_alloc);
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	this_cpu_sub(sockets_in_use, 1);
582 	if (!sock->file) {
583 		iput(SOCK_INODE(sock));
584 		return;
585 	}
586 	sock->file = NULL;
587 }
588 EXPORT_SYMBOL(sock_release);
589 
590 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
591 {
592 	u8 flags = *tx_flags;
593 
594 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 		flags |= SKBTX_HW_TSTAMP;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 		flags |= SKBTX_SW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 		flags |= SKBTX_SCHED_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
604 		flags |= SKBTX_ACK_TSTAMP;
605 
606 	*tx_flags = flags;
607 }
608 EXPORT_SYMBOL(__sock_tx_timestamp);
609 
610 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
611 {
612 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
613 	BUG_ON(ret == -EIOCBQUEUED);
614 	return ret;
615 }
616 
617 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
618 {
619 	int err = security_socket_sendmsg(sock, msg,
620 					  msg_data_left(msg));
621 
622 	return err ?: sock_sendmsg_nosec(sock, msg);
623 }
624 EXPORT_SYMBOL(sock_sendmsg);
625 
626 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
627 		   struct kvec *vec, size_t num, size_t size)
628 {
629 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
630 	return sock_sendmsg(sock, msg);
631 }
632 EXPORT_SYMBOL(kernel_sendmsg);
633 
634 /*
635  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
636  */
637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
638 	struct sk_buff *skb)
639 {
640 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
641 	struct scm_timestamping tss;
642 	int empty = 1;
643 	struct skb_shared_hwtstamps *shhwtstamps =
644 		skb_hwtstamps(skb);
645 
646 	/* Race occurred between timestamp enabling and packet
647 	   receiving.  Fill in the current time for now. */
648 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
649 		__net_timestamp(skb);
650 
651 	if (need_software_tstamp) {
652 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
653 			struct timeval tv;
654 			skb_get_timestamp(skb, &tv);
655 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
656 				 sizeof(tv), &tv);
657 		} else {
658 			struct timespec ts;
659 			skb_get_timestampns(skb, &ts);
660 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
661 				 sizeof(ts), &ts);
662 		}
663 	}
664 
665 	memset(&tss, 0, sizeof(tss));
666 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
667 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
668 		empty = 0;
669 	if (shhwtstamps &&
670 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
671 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
672 		empty = 0;
673 	if (!empty)
674 		put_cmsg(msg, SOL_SOCKET,
675 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
676 }
677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678 
679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
680 	struct sk_buff *skb)
681 {
682 	int ack;
683 
684 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
685 		return;
686 	if (!skb->wifi_acked_valid)
687 		return;
688 
689 	ack = skb->wifi_acked;
690 
691 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
692 }
693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
694 
695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
696 				   struct sk_buff *skb)
697 {
698 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
699 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
700 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
701 }
702 
703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
704 	struct sk_buff *skb)
705 {
706 	sock_recv_timestamp(msg, sk, skb);
707 	sock_recv_drops(msg, sk, skb);
708 }
709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
710 
711 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
712 				     size_t size, int flags)
713 {
714 	return sock->ops->recvmsg(sock, msg, size, flags);
715 }
716 
717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
718 		 int flags)
719 {
720 	int err = security_socket_recvmsg(sock, msg, size, flags);
721 
722 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
723 }
724 EXPORT_SYMBOL(sock_recvmsg);
725 
726 /**
727  * kernel_recvmsg - Receive a message from a socket (kernel space)
728  * @sock:       The socket to receive the message from
729  * @msg:        Received message
730  * @vec:        Input s/g array for message data
731  * @num:        Size of input s/g array
732  * @size:       Number of bytes to read
733  * @flags:      Message flags (MSG_DONTWAIT, etc...)
734  *
735  * On return the msg structure contains the scatter/gather array passed in the
736  * vec argument. The array is modified so that it consists of the unfilled
737  * portion of the original array.
738  *
739  * The returned value is the total number of bytes received, or an error.
740  */
741 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
742 		   struct kvec *vec, size_t num, size_t size, int flags)
743 {
744 	mm_segment_t oldfs = get_fs();
745 	int result;
746 
747 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
748 	set_fs(KERNEL_DS);
749 	result = sock_recvmsg(sock, msg, size, flags);
750 	set_fs(oldfs);
751 	return result;
752 }
753 EXPORT_SYMBOL(kernel_recvmsg);
754 
755 static ssize_t sock_sendpage(struct file *file, struct page *page,
756 			     int offset, size_t size, loff_t *ppos, int more)
757 {
758 	struct socket *sock;
759 	int flags;
760 
761 	sock = file->private_data;
762 
763 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
764 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
765 	flags |= more;
766 
767 	return kernel_sendpage(sock, page, offset, size, flags);
768 }
769 
770 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
771 				struct pipe_inode_info *pipe, size_t len,
772 				unsigned int flags)
773 {
774 	struct socket *sock = file->private_data;
775 
776 	if (unlikely(!sock->ops->splice_read))
777 		return -EINVAL;
778 
779 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
780 }
781 
782 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
783 {
784 	struct file *file = iocb->ki_filp;
785 	struct socket *sock = file->private_data;
786 	struct msghdr msg = {.msg_iter = *to,
787 			     .msg_iocb = iocb};
788 	ssize_t res;
789 
790 	if (file->f_flags & O_NONBLOCK)
791 		msg.msg_flags = MSG_DONTWAIT;
792 
793 	if (iocb->ki_pos != 0)
794 		return -ESPIPE;
795 
796 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
797 		return 0;
798 
799 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
800 	*to = msg.msg_iter;
801 	return res;
802 }
803 
804 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
805 {
806 	struct file *file = iocb->ki_filp;
807 	struct socket *sock = file->private_data;
808 	struct msghdr msg = {.msg_iter = *from,
809 			     .msg_iocb = iocb};
810 	ssize_t res;
811 
812 	if (iocb->ki_pos != 0)
813 		return -ESPIPE;
814 
815 	if (file->f_flags & O_NONBLOCK)
816 		msg.msg_flags = MSG_DONTWAIT;
817 
818 	if (sock->type == SOCK_SEQPACKET)
819 		msg.msg_flags |= MSG_EOR;
820 
821 	res = sock_sendmsg(sock, &msg);
822 	*from = msg.msg_iter;
823 	return res;
824 }
825 
826 /*
827  * Atomic setting of ioctl hooks to avoid race
828  * with module unload.
829  */
830 
831 static DEFINE_MUTEX(br_ioctl_mutex);
832 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
833 
834 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
835 {
836 	mutex_lock(&br_ioctl_mutex);
837 	br_ioctl_hook = hook;
838 	mutex_unlock(&br_ioctl_mutex);
839 }
840 EXPORT_SYMBOL(brioctl_set);
841 
842 static DEFINE_MUTEX(vlan_ioctl_mutex);
843 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
844 
845 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
846 {
847 	mutex_lock(&vlan_ioctl_mutex);
848 	vlan_ioctl_hook = hook;
849 	mutex_unlock(&vlan_ioctl_mutex);
850 }
851 EXPORT_SYMBOL(vlan_ioctl_set);
852 
853 static DEFINE_MUTEX(dlci_ioctl_mutex);
854 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
855 
856 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
857 {
858 	mutex_lock(&dlci_ioctl_mutex);
859 	dlci_ioctl_hook = hook;
860 	mutex_unlock(&dlci_ioctl_mutex);
861 }
862 EXPORT_SYMBOL(dlci_ioctl_set);
863 
864 static long sock_do_ioctl(struct net *net, struct socket *sock,
865 				 unsigned int cmd, unsigned long arg)
866 {
867 	int err;
868 	void __user *argp = (void __user *)arg;
869 
870 	err = sock->ops->ioctl(sock, cmd, arg);
871 
872 	/*
873 	 * If this ioctl is unknown try to hand it down
874 	 * to the NIC driver.
875 	 */
876 	if (err == -ENOIOCTLCMD)
877 		err = dev_ioctl(net, cmd, argp);
878 
879 	return err;
880 }
881 
882 /*
883  *	With an ioctl, arg may well be a user mode pointer, but we don't know
884  *	what to do with it - that's up to the protocol still.
885  */
886 
887 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
888 {
889 	struct socket *sock;
890 	struct sock *sk;
891 	void __user *argp = (void __user *)arg;
892 	int pid, err;
893 	struct net *net;
894 
895 	sock = file->private_data;
896 	sk = sock->sk;
897 	net = sock_net(sk);
898 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
899 		err = dev_ioctl(net, cmd, argp);
900 	} else
901 #ifdef CONFIG_WEXT_CORE
902 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
903 		err = dev_ioctl(net, cmd, argp);
904 	} else
905 #endif
906 		switch (cmd) {
907 		case FIOSETOWN:
908 		case SIOCSPGRP:
909 			err = -EFAULT;
910 			if (get_user(pid, (int __user *)argp))
911 				break;
912 			f_setown(sock->file, pid, 1);
913 			err = 0;
914 			break;
915 		case FIOGETOWN:
916 		case SIOCGPGRP:
917 			err = put_user(f_getown(sock->file),
918 				       (int __user *)argp);
919 			break;
920 		case SIOCGIFBR:
921 		case SIOCSIFBR:
922 		case SIOCBRADDBR:
923 		case SIOCBRDELBR:
924 			err = -ENOPKG;
925 			if (!br_ioctl_hook)
926 				request_module("bridge");
927 
928 			mutex_lock(&br_ioctl_mutex);
929 			if (br_ioctl_hook)
930 				err = br_ioctl_hook(net, cmd, argp);
931 			mutex_unlock(&br_ioctl_mutex);
932 			break;
933 		case SIOCGIFVLAN:
934 		case SIOCSIFVLAN:
935 			err = -ENOPKG;
936 			if (!vlan_ioctl_hook)
937 				request_module("8021q");
938 
939 			mutex_lock(&vlan_ioctl_mutex);
940 			if (vlan_ioctl_hook)
941 				err = vlan_ioctl_hook(net, argp);
942 			mutex_unlock(&vlan_ioctl_mutex);
943 			break;
944 		case SIOCADDDLCI:
945 		case SIOCDELDLCI:
946 			err = -ENOPKG;
947 			if (!dlci_ioctl_hook)
948 				request_module("dlci");
949 
950 			mutex_lock(&dlci_ioctl_mutex);
951 			if (dlci_ioctl_hook)
952 				err = dlci_ioctl_hook(cmd, argp);
953 			mutex_unlock(&dlci_ioctl_mutex);
954 			break;
955 		default:
956 			err = sock_do_ioctl(net, sock, cmd, arg);
957 			break;
958 		}
959 	return err;
960 }
961 
962 int sock_create_lite(int family, int type, int protocol, struct socket **res)
963 {
964 	int err;
965 	struct socket *sock = NULL;
966 
967 	err = security_socket_create(family, type, protocol, 1);
968 	if (err)
969 		goto out;
970 
971 	sock = sock_alloc();
972 	if (!sock) {
973 		err = -ENOMEM;
974 		goto out;
975 	}
976 
977 	sock->type = type;
978 	err = security_socket_post_create(sock, family, type, protocol, 1);
979 	if (err)
980 		goto out_release;
981 
982 out:
983 	*res = sock;
984 	return err;
985 out_release:
986 	sock_release(sock);
987 	sock = NULL;
988 	goto out;
989 }
990 EXPORT_SYMBOL(sock_create_lite);
991 
992 /* No kernel lock held - perfect */
993 static unsigned int sock_poll(struct file *file, poll_table *wait)
994 {
995 	unsigned int busy_flag = 0;
996 	struct socket *sock;
997 
998 	/*
999 	 *      We can't return errors to poll, so it's either yes or no.
1000 	 */
1001 	sock = file->private_data;
1002 
1003 	if (sk_can_busy_loop(sock->sk)) {
1004 		/* this socket can poll_ll so tell the system call */
1005 		busy_flag = POLL_BUSY_LOOP;
1006 
1007 		/* once, only if requested by syscall */
1008 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1009 			sk_busy_loop(sock->sk, 1);
1010 	}
1011 
1012 	return busy_flag | sock->ops->poll(file, sock, wait);
1013 }
1014 
1015 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016 {
1017 	struct socket *sock = file->private_data;
1018 
1019 	return sock->ops->mmap(file, sock, vma);
1020 }
1021 
1022 static int sock_close(struct inode *inode, struct file *filp)
1023 {
1024 	sock_release(SOCKET_I(inode));
1025 	return 0;
1026 }
1027 
1028 /*
1029  *	Update the socket async list
1030  *
1031  *	Fasync_list locking strategy.
1032  *
1033  *	1. fasync_list is modified only under process context socket lock
1034  *	   i.e. under semaphore.
1035  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036  *	   or under socket lock
1037  */
1038 
1039 static int sock_fasync(int fd, struct file *filp, int on)
1040 {
1041 	struct socket *sock = filp->private_data;
1042 	struct sock *sk = sock->sk;
1043 	struct socket_wq *wq;
1044 
1045 	if (sk == NULL)
1046 		return -EINVAL;
1047 
1048 	lock_sock(sk);
1049 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050 	fasync_helper(fd, filp, on, &wq->fasync_list);
1051 
1052 	if (!wq->fasync_list)
1053 		sock_reset_flag(sk, SOCK_FASYNC);
1054 	else
1055 		sock_set_flag(sk, SOCK_FASYNC);
1056 
1057 	release_sock(sk);
1058 	return 0;
1059 }
1060 
1061 /* This function may be called only under rcu_lock */
1062 
1063 int sock_wake_async(struct socket_wq *wq, int how, int band)
1064 {
1065 	if (!wq || !wq->fasync_list)
1066 		return -1;
1067 
1068 	switch (how) {
1069 	case SOCK_WAKE_WAITD:
1070 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071 			break;
1072 		goto call_kill;
1073 	case SOCK_WAKE_SPACE:
1074 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075 			break;
1076 		/* fall through */
1077 	case SOCK_WAKE_IO:
1078 call_kill:
1079 		kill_fasync(&wq->fasync_list, SIGIO, band);
1080 		break;
1081 	case SOCK_WAKE_URG:
1082 		kill_fasync(&wq->fasync_list, SIGURG, band);
1083 	}
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL(sock_wake_async);
1088 
1089 int __sock_create(struct net *net, int family, int type, int protocol,
1090 			 struct socket **res, int kern)
1091 {
1092 	int err;
1093 	struct socket *sock;
1094 	const struct net_proto_family *pf;
1095 
1096 	/*
1097 	 *      Check protocol is in range
1098 	 */
1099 	if (family < 0 || family >= NPROTO)
1100 		return -EAFNOSUPPORT;
1101 	if (type < 0 || type >= SOCK_MAX)
1102 		return -EINVAL;
1103 
1104 	/* Compatibility.
1105 
1106 	   This uglymoron is moved from INET layer to here to avoid
1107 	   deadlock in module load.
1108 	 */
1109 	if (family == PF_INET && type == SOCK_PACKET) {
1110 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111 			     current->comm);
1112 		family = PF_PACKET;
1113 	}
1114 
1115 	err = security_socket_create(family, type, protocol, kern);
1116 	if (err)
1117 		return err;
1118 
1119 	/*
1120 	 *	Allocate the socket and allow the family to set things up. if
1121 	 *	the protocol is 0, the family is instructed to select an appropriate
1122 	 *	default.
1123 	 */
1124 	sock = sock_alloc();
1125 	if (!sock) {
1126 		net_warn_ratelimited("socket: no more sockets\n");
1127 		return -ENFILE;	/* Not exactly a match, but its the
1128 				   closest posix thing */
1129 	}
1130 
1131 	sock->type = type;
1132 
1133 #ifdef CONFIG_MODULES
1134 	/* Attempt to load a protocol module if the find failed.
1135 	 *
1136 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137 	 * requested real, full-featured networking support upon configuration.
1138 	 * Otherwise module support will break!
1139 	 */
1140 	if (rcu_access_pointer(net_families[family]) == NULL)
1141 		request_module("net-pf-%d", family);
1142 #endif
1143 
1144 	rcu_read_lock();
1145 	pf = rcu_dereference(net_families[family]);
1146 	err = -EAFNOSUPPORT;
1147 	if (!pf)
1148 		goto out_release;
1149 
1150 	/*
1151 	 * We will call the ->create function, that possibly is in a loadable
1152 	 * module, so we have to bump that loadable module refcnt first.
1153 	 */
1154 	if (!try_module_get(pf->owner))
1155 		goto out_release;
1156 
1157 	/* Now protected by module ref count */
1158 	rcu_read_unlock();
1159 
1160 	err = pf->create(net, sock, protocol, kern);
1161 	if (err < 0)
1162 		goto out_module_put;
1163 
1164 	/*
1165 	 * Now to bump the refcnt of the [loadable] module that owns this
1166 	 * socket at sock_release time we decrement its refcnt.
1167 	 */
1168 	if (!try_module_get(sock->ops->owner))
1169 		goto out_module_busy;
1170 
1171 	/*
1172 	 * Now that we're done with the ->create function, the [loadable]
1173 	 * module can have its refcnt decremented
1174 	 */
1175 	module_put(pf->owner);
1176 	err = security_socket_post_create(sock, family, type, protocol, kern);
1177 	if (err)
1178 		goto out_sock_release;
1179 	*res = sock;
1180 
1181 	return 0;
1182 
1183 out_module_busy:
1184 	err = -EAFNOSUPPORT;
1185 out_module_put:
1186 	sock->ops = NULL;
1187 	module_put(pf->owner);
1188 out_sock_release:
1189 	sock_release(sock);
1190 	return err;
1191 
1192 out_release:
1193 	rcu_read_unlock();
1194 	goto out_sock_release;
1195 }
1196 EXPORT_SYMBOL(__sock_create);
1197 
1198 int sock_create(int family, int type, int protocol, struct socket **res)
1199 {
1200 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201 }
1202 EXPORT_SYMBOL(sock_create);
1203 
1204 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205 {
1206 	return __sock_create(net, family, type, protocol, res, 1);
1207 }
1208 EXPORT_SYMBOL(sock_create_kern);
1209 
1210 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211 {
1212 	int retval;
1213 	struct socket *sock;
1214 	int flags;
1215 
1216 	/* Check the SOCK_* constants for consistency.  */
1217 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221 
1222 	flags = type & ~SOCK_TYPE_MASK;
1223 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224 		return -EINVAL;
1225 	type &= SOCK_TYPE_MASK;
1226 
1227 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229 
1230 	retval = sock_create(family, type, protocol, &sock);
1231 	if (retval < 0)
1232 		goto out;
1233 
1234 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235 	if (retval < 0)
1236 		goto out_release;
1237 
1238 out:
1239 	/* It may be already another descriptor 8) Not kernel problem. */
1240 	return retval;
1241 
1242 out_release:
1243 	sock_release(sock);
1244 	return retval;
1245 }
1246 
1247 /*
1248  *	Create a pair of connected sockets.
1249  */
1250 
1251 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252 		int __user *, usockvec)
1253 {
1254 	struct socket *sock1, *sock2;
1255 	int fd1, fd2, err;
1256 	struct file *newfile1, *newfile2;
1257 	int flags;
1258 
1259 	flags = type & ~SOCK_TYPE_MASK;
1260 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261 		return -EINVAL;
1262 	type &= SOCK_TYPE_MASK;
1263 
1264 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266 
1267 	/*
1268 	 * Obtain the first socket and check if the underlying protocol
1269 	 * supports the socketpair call.
1270 	 */
1271 
1272 	err = sock_create(family, type, protocol, &sock1);
1273 	if (err < 0)
1274 		goto out;
1275 
1276 	err = sock_create(family, type, protocol, &sock2);
1277 	if (err < 0)
1278 		goto out_release_1;
1279 
1280 	err = sock1->ops->socketpair(sock1, sock2);
1281 	if (err < 0)
1282 		goto out_release_both;
1283 
1284 	fd1 = get_unused_fd_flags(flags);
1285 	if (unlikely(fd1 < 0)) {
1286 		err = fd1;
1287 		goto out_release_both;
1288 	}
1289 
1290 	fd2 = get_unused_fd_flags(flags);
1291 	if (unlikely(fd2 < 0)) {
1292 		err = fd2;
1293 		goto out_put_unused_1;
1294 	}
1295 
1296 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1297 	if (IS_ERR(newfile1)) {
1298 		err = PTR_ERR(newfile1);
1299 		goto out_put_unused_both;
1300 	}
1301 
1302 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1303 	if (IS_ERR(newfile2)) {
1304 		err = PTR_ERR(newfile2);
1305 		goto out_fput_1;
1306 	}
1307 
1308 	err = put_user(fd1, &usockvec[0]);
1309 	if (err)
1310 		goto out_fput_both;
1311 
1312 	err = put_user(fd2, &usockvec[1]);
1313 	if (err)
1314 		goto out_fput_both;
1315 
1316 	audit_fd_pair(fd1, fd2);
1317 
1318 	fd_install(fd1, newfile1);
1319 	fd_install(fd2, newfile2);
1320 	/* fd1 and fd2 may be already another descriptors.
1321 	 * Not kernel problem.
1322 	 */
1323 
1324 	return 0;
1325 
1326 out_fput_both:
1327 	fput(newfile2);
1328 	fput(newfile1);
1329 	put_unused_fd(fd2);
1330 	put_unused_fd(fd1);
1331 	goto out;
1332 
1333 out_fput_1:
1334 	fput(newfile1);
1335 	put_unused_fd(fd2);
1336 	put_unused_fd(fd1);
1337 	sock_release(sock2);
1338 	goto out;
1339 
1340 out_put_unused_both:
1341 	put_unused_fd(fd2);
1342 out_put_unused_1:
1343 	put_unused_fd(fd1);
1344 out_release_both:
1345 	sock_release(sock2);
1346 out_release_1:
1347 	sock_release(sock1);
1348 out:
1349 	return err;
1350 }
1351 
1352 /*
1353  *	Bind a name to a socket. Nothing much to do here since it's
1354  *	the protocol's responsibility to handle the local address.
1355  *
1356  *	We move the socket address to kernel space before we call
1357  *	the protocol layer (having also checked the address is ok).
1358  */
1359 
1360 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361 {
1362 	struct socket *sock;
1363 	struct sockaddr_storage address;
1364 	int err, fput_needed;
1365 
1366 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367 	if (sock) {
1368 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369 		if (err >= 0) {
1370 			err = security_socket_bind(sock,
1371 						   (struct sockaddr *)&address,
1372 						   addrlen);
1373 			if (!err)
1374 				err = sock->ops->bind(sock,
1375 						      (struct sockaddr *)
1376 						      &address, addrlen);
1377 		}
1378 		fput_light(sock->file, fput_needed);
1379 	}
1380 	return err;
1381 }
1382 
1383 /*
1384  *	Perform a listen. Basically, we allow the protocol to do anything
1385  *	necessary for a listen, and if that works, we mark the socket as
1386  *	ready for listening.
1387  */
1388 
1389 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390 {
1391 	struct socket *sock;
1392 	int err, fput_needed;
1393 	int somaxconn;
1394 
1395 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396 	if (sock) {
1397 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398 		if ((unsigned int)backlog > somaxconn)
1399 			backlog = somaxconn;
1400 
1401 		err = security_socket_listen(sock, backlog);
1402 		if (!err)
1403 			err = sock->ops->listen(sock, backlog);
1404 
1405 		fput_light(sock->file, fput_needed);
1406 	}
1407 	return err;
1408 }
1409 
1410 /*
1411  *	For accept, we attempt to create a new socket, set up the link
1412  *	with the client, wake up the client, then return the new
1413  *	connected fd. We collect the address of the connector in kernel
1414  *	space and move it to user at the very end. This is unclean because
1415  *	we open the socket then return an error.
1416  *
1417  *	1003.1g adds the ability to recvmsg() to query connection pending
1418  *	status to recvmsg. We need to add that support in a way thats
1419  *	clean when we restucture accept also.
1420  */
1421 
1422 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423 		int __user *, upeer_addrlen, int, flags)
1424 {
1425 	struct socket *sock, *newsock;
1426 	struct file *newfile;
1427 	int err, len, newfd, fput_needed;
1428 	struct sockaddr_storage address;
1429 
1430 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431 		return -EINVAL;
1432 
1433 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 
1436 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437 	if (!sock)
1438 		goto out;
1439 
1440 	err = -ENFILE;
1441 	newsock = sock_alloc();
1442 	if (!newsock)
1443 		goto out_put;
1444 
1445 	newsock->type = sock->type;
1446 	newsock->ops = sock->ops;
1447 
1448 	/*
1449 	 * We don't need try_module_get here, as the listening socket (sock)
1450 	 * has the protocol module (sock->ops->owner) held.
1451 	 */
1452 	__module_get(newsock->ops->owner);
1453 
1454 	newfd = get_unused_fd_flags(flags);
1455 	if (unlikely(newfd < 0)) {
1456 		err = newfd;
1457 		sock_release(newsock);
1458 		goto out_put;
1459 	}
1460 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461 	if (IS_ERR(newfile)) {
1462 		err = PTR_ERR(newfile);
1463 		put_unused_fd(newfd);
1464 		sock_release(newsock);
1465 		goto out_put;
1466 	}
1467 
1468 	err = security_socket_accept(sock, newsock);
1469 	if (err)
1470 		goto out_fd;
1471 
1472 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1473 	if (err < 0)
1474 		goto out_fd;
1475 
1476 	if (upeer_sockaddr) {
1477 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1478 					  &len, 2) < 0) {
1479 			err = -ECONNABORTED;
1480 			goto out_fd;
1481 		}
1482 		err = move_addr_to_user(&address,
1483 					len, upeer_sockaddr, upeer_addrlen);
1484 		if (err < 0)
1485 			goto out_fd;
1486 	}
1487 
1488 	/* File flags are not inherited via accept() unlike another OSes. */
1489 
1490 	fd_install(newfd, newfile);
1491 	err = newfd;
1492 
1493 out_put:
1494 	fput_light(sock->file, fput_needed);
1495 out:
1496 	return err;
1497 out_fd:
1498 	fput(newfile);
1499 	put_unused_fd(newfd);
1500 	goto out_put;
1501 }
1502 
1503 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1504 		int __user *, upeer_addrlen)
1505 {
1506 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1507 }
1508 
1509 /*
1510  *	Attempt to connect to a socket with the server address.  The address
1511  *	is in user space so we verify it is OK and move it to kernel space.
1512  *
1513  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1514  *	break bindings
1515  *
1516  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1517  *	other SEQPACKET protocols that take time to connect() as it doesn't
1518  *	include the -EINPROGRESS status for such sockets.
1519  */
1520 
1521 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1522 		int, addrlen)
1523 {
1524 	struct socket *sock;
1525 	struct sockaddr_storage address;
1526 	int err, fput_needed;
1527 
1528 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 	if (!sock)
1530 		goto out;
1531 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1532 	if (err < 0)
1533 		goto out_put;
1534 
1535 	err =
1536 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1537 	if (err)
1538 		goto out_put;
1539 
1540 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1541 				 sock->file->f_flags);
1542 out_put:
1543 	fput_light(sock->file, fput_needed);
1544 out:
1545 	return err;
1546 }
1547 
1548 /*
1549  *	Get the local address ('name') of a socket object. Move the obtained
1550  *	name to user space.
1551  */
1552 
1553 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1554 		int __user *, usockaddr_len)
1555 {
1556 	struct socket *sock;
1557 	struct sockaddr_storage address;
1558 	int len, err, fput_needed;
1559 
1560 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561 	if (!sock)
1562 		goto out;
1563 
1564 	err = security_socket_getsockname(sock);
1565 	if (err)
1566 		goto out_put;
1567 
1568 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1569 	if (err)
1570 		goto out_put;
1571 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1572 
1573 out_put:
1574 	fput_light(sock->file, fput_needed);
1575 out:
1576 	return err;
1577 }
1578 
1579 /*
1580  *	Get the remote address ('name') of a socket object. Move the obtained
1581  *	name to user space.
1582  */
1583 
1584 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1585 		int __user *, usockaddr_len)
1586 {
1587 	struct socket *sock;
1588 	struct sockaddr_storage address;
1589 	int len, err, fput_needed;
1590 
1591 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1592 	if (sock != NULL) {
1593 		err = security_socket_getpeername(sock);
1594 		if (err) {
1595 			fput_light(sock->file, fput_needed);
1596 			return err;
1597 		}
1598 
1599 		err =
1600 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1601 				       1);
1602 		if (!err)
1603 			err = move_addr_to_user(&address, len, usockaddr,
1604 						usockaddr_len);
1605 		fput_light(sock->file, fput_needed);
1606 	}
1607 	return err;
1608 }
1609 
1610 /*
1611  *	Send a datagram to a given address. We move the address into kernel
1612  *	space and check the user space data area is readable before invoking
1613  *	the protocol.
1614  */
1615 
1616 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1617 		unsigned int, flags, struct sockaddr __user *, addr,
1618 		int, addr_len)
1619 {
1620 	struct socket *sock;
1621 	struct sockaddr_storage address;
1622 	int err;
1623 	struct msghdr msg;
1624 	struct iovec iov;
1625 	int fput_needed;
1626 
1627 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1628 	if (unlikely(err))
1629 		return err;
1630 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 	if (!sock)
1632 		goto out;
1633 
1634 	msg.msg_name = NULL;
1635 	msg.msg_control = NULL;
1636 	msg.msg_controllen = 0;
1637 	msg.msg_namelen = 0;
1638 	if (addr) {
1639 		err = move_addr_to_kernel(addr, addr_len, &address);
1640 		if (err < 0)
1641 			goto out_put;
1642 		msg.msg_name = (struct sockaddr *)&address;
1643 		msg.msg_namelen = addr_len;
1644 	}
1645 	if (sock->file->f_flags & O_NONBLOCK)
1646 		flags |= MSG_DONTWAIT;
1647 	msg.msg_flags = flags;
1648 	err = sock_sendmsg(sock, &msg);
1649 
1650 out_put:
1651 	fput_light(sock->file, fput_needed);
1652 out:
1653 	return err;
1654 }
1655 
1656 /*
1657  *	Send a datagram down a socket.
1658  */
1659 
1660 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1661 		unsigned int, flags)
1662 {
1663 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1664 }
1665 
1666 /*
1667  *	Receive a frame from the socket and optionally record the address of the
1668  *	sender. We verify the buffers are writable and if needed move the
1669  *	sender address from kernel to user space.
1670  */
1671 
1672 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1673 		unsigned int, flags, struct sockaddr __user *, addr,
1674 		int __user *, addr_len)
1675 {
1676 	struct socket *sock;
1677 	struct iovec iov;
1678 	struct msghdr msg;
1679 	struct sockaddr_storage address;
1680 	int err, err2;
1681 	int fput_needed;
1682 
1683 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1684 	if (unlikely(err))
1685 		return err;
1686 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 	if (!sock)
1688 		goto out;
1689 
1690 	msg.msg_control = NULL;
1691 	msg.msg_controllen = 0;
1692 	/* Save some cycles and don't copy the address if not needed */
1693 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1694 	/* We assume all kernel code knows the size of sockaddr_storage */
1695 	msg.msg_namelen = 0;
1696 	msg.msg_iocb = NULL;
1697 	if (sock->file->f_flags & O_NONBLOCK)
1698 		flags |= MSG_DONTWAIT;
1699 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1700 
1701 	if (err >= 0 && addr != NULL) {
1702 		err2 = move_addr_to_user(&address,
1703 					 msg.msg_namelen, addr, addr_len);
1704 		if (err2 < 0)
1705 			err = err2;
1706 	}
1707 
1708 	fput_light(sock->file, fput_needed);
1709 out:
1710 	return err;
1711 }
1712 
1713 /*
1714  *	Receive a datagram from a socket.
1715  */
1716 
1717 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1718 		unsigned int, flags)
1719 {
1720 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1721 }
1722 
1723 /*
1724  *	Set a socket option. Because we don't know the option lengths we have
1725  *	to pass the user mode parameter for the protocols to sort out.
1726  */
1727 
1728 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1729 		char __user *, optval, int, optlen)
1730 {
1731 	int err, fput_needed;
1732 	struct socket *sock;
1733 
1734 	if (optlen < 0)
1735 		return -EINVAL;
1736 
1737 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 	if (sock != NULL) {
1739 		err = security_socket_setsockopt(sock, level, optname);
1740 		if (err)
1741 			goto out_put;
1742 
1743 		if (level == SOL_SOCKET)
1744 			err =
1745 			    sock_setsockopt(sock, level, optname, optval,
1746 					    optlen);
1747 		else
1748 			err =
1749 			    sock->ops->setsockopt(sock, level, optname, optval,
1750 						  optlen);
1751 out_put:
1752 		fput_light(sock->file, fput_needed);
1753 	}
1754 	return err;
1755 }
1756 
1757 /*
1758  *	Get a socket option. Because we don't know the option lengths we have
1759  *	to pass a user mode parameter for the protocols to sort out.
1760  */
1761 
1762 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1763 		char __user *, optval, int __user *, optlen)
1764 {
1765 	int err, fput_needed;
1766 	struct socket *sock;
1767 
1768 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 	if (sock != NULL) {
1770 		err = security_socket_getsockopt(sock, level, optname);
1771 		if (err)
1772 			goto out_put;
1773 
1774 		if (level == SOL_SOCKET)
1775 			err =
1776 			    sock_getsockopt(sock, level, optname, optval,
1777 					    optlen);
1778 		else
1779 			err =
1780 			    sock->ops->getsockopt(sock, level, optname, optval,
1781 						  optlen);
1782 out_put:
1783 		fput_light(sock->file, fput_needed);
1784 	}
1785 	return err;
1786 }
1787 
1788 /*
1789  *	Shutdown a socket.
1790  */
1791 
1792 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1793 {
1794 	int err, fput_needed;
1795 	struct socket *sock;
1796 
1797 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798 	if (sock != NULL) {
1799 		err = security_socket_shutdown(sock, how);
1800 		if (!err)
1801 			err = sock->ops->shutdown(sock, how);
1802 		fput_light(sock->file, fput_needed);
1803 	}
1804 	return err;
1805 }
1806 
1807 /* A couple of helpful macros for getting the address of the 32/64 bit
1808  * fields which are the same type (int / unsigned) on our platforms.
1809  */
1810 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1811 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1812 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1813 
1814 struct used_address {
1815 	struct sockaddr_storage name;
1816 	unsigned int name_len;
1817 };
1818 
1819 static int copy_msghdr_from_user(struct msghdr *kmsg,
1820 				 struct user_msghdr __user *umsg,
1821 				 struct sockaddr __user **save_addr,
1822 				 struct iovec **iov)
1823 {
1824 	struct sockaddr __user *uaddr;
1825 	struct iovec __user *uiov;
1826 	size_t nr_segs;
1827 	ssize_t err;
1828 
1829 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1830 	    __get_user(uaddr, &umsg->msg_name) ||
1831 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1832 	    __get_user(uiov, &umsg->msg_iov) ||
1833 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1834 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1835 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1836 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1837 		return -EFAULT;
1838 
1839 	if (!uaddr)
1840 		kmsg->msg_namelen = 0;
1841 
1842 	if (kmsg->msg_namelen < 0)
1843 		return -EINVAL;
1844 
1845 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1846 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1847 
1848 	if (save_addr)
1849 		*save_addr = uaddr;
1850 
1851 	if (uaddr && kmsg->msg_namelen) {
1852 		if (!save_addr) {
1853 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1854 						  kmsg->msg_name);
1855 			if (err < 0)
1856 				return err;
1857 		}
1858 	} else {
1859 		kmsg->msg_name = NULL;
1860 		kmsg->msg_namelen = 0;
1861 	}
1862 
1863 	if (nr_segs > UIO_MAXIOV)
1864 		return -EMSGSIZE;
1865 
1866 	kmsg->msg_iocb = NULL;
1867 
1868 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1869 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1870 }
1871 
1872 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1873 			 struct msghdr *msg_sys, unsigned int flags,
1874 			 struct used_address *used_address,
1875 			 unsigned int allowed_msghdr_flags)
1876 {
1877 	struct compat_msghdr __user *msg_compat =
1878 	    (struct compat_msghdr __user *)msg;
1879 	struct sockaddr_storage address;
1880 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883 	/* 20 is size of ipv6_pktinfo */
1884 	unsigned char *ctl_buf = ctl;
1885 	int ctl_len;
1886 	ssize_t err;
1887 
1888 	msg_sys->msg_name = &address;
1889 
1890 	if (MSG_CMSG_COMPAT & flags)
1891 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892 	else
1893 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894 	if (err < 0)
1895 		return err;
1896 
1897 	err = -ENOBUFS;
1898 
1899 	if (msg_sys->msg_controllen > INT_MAX)
1900 		goto out_freeiov;
1901 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1902 	ctl_len = msg_sys->msg_controllen;
1903 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904 		err =
1905 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1906 						     sizeof(ctl));
1907 		if (err)
1908 			goto out_freeiov;
1909 		ctl_buf = msg_sys->msg_control;
1910 		ctl_len = msg_sys->msg_controllen;
1911 	} else if (ctl_len) {
1912 		if (ctl_len > sizeof(ctl)) {
1913 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914 			if (ctl_buf == NULL)
1915 				goto out_freeiov;
1916 		}
1917 		err = -EFAULT;
1918 		/*
1919 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1920 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921 		 * checking falls down on this.
1922 		 */
1923 		if (copy_from_user(ctl_buf,
1924 				   (void __user __force *)msg_sys->msg_control,
1925 				   ctl_len))
1926 			goto out_freectl;
1927 		msg_sys->msg_control = ctl_buf;
1928 	}
1929 	msg_sys->msg_flags = flags;
1930 
1931 	if (sock->file->f_flags & O_NONBLOCK)
1932 		msg_sys->msg_flags |= MSG_DONTWAIT;
1933 	/*
1934 	 * If this is sendmmsg() and current destination address is same as
1935 	 * previously succeeded address, omit asking LSM's decision.
1936 	 * used_address->name_len is initialized to UINT_MAX so that the first
1937 	 * destination address never matches.
1938 	 */
1939 	if (used_address && msg_sys->msg_name &&
1940 	    used_address->name_len == msg_sys->msg_namelen &&
1941 	    !memcmp(&used_address->name, msg_sys->msg_name,
1942 		    used_address->name_len)) {
1943 		err = sock_sendmsg_nosec(sock, msg_sys);
1944 		goto out_freectl;
1945 	}
1946 	err = sock_sendmsg(sock, msg_sys);
1947 	/*
1948 	 * If this is sendmmsg() and sending to current destination address was
1949 	 * successful, remember it.
1950 	 */
1951 	if (used_address && err >= 0) {
1952 		used_address->name_len = msg_sys->msg_namelen;
1953 		if (msg_sys->msg_name)
1954 			memcpy(&used_address->name, msg_sys->msg_name,
1955 			       used_address->name_len);
1956 	}
1957 
1958 out_freectl:
1959 	if (ctl_buf != ctl)
1960 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1961 out_freeiov:
1962 	kfree(iov);
1963 	return err;
1964 }
1965 
1966 /*
1967  *	BSD sendmsg interface
1968  */
1969 
1970 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1971 {
1972 	int fput_needed, err;
1973 	struct msghdr msg_sys;
1974 	struct socket *sock;
1975 
1976 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977 	if (!sock)
1978 		goto out;
1979 
1980 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1981 
1982 	fput_light(sock->file, fput_needed);
1983 out:
1984 	return err;
1985 }
1986 
1987 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1988 {
1989 	if (flags & MSG_CMSG_COMPAT)
1990 		return -EINVAL;
1991 	return __sys_sendmsg(fd, msg, flags);
1992 }
1993 
1994 /*
1995  *	Linux sendmmsg interface
1996  */
1997 
1998 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1999 		   unsigned int flags)
2000 {
2001 	int fput_needed, err, datagrams;
2002 	struct socket *sock;
2003 	struct mmsghdr __user *entry;
2004 	struct compat_mmsghdr __user *compat_entry;
2005 	struct msghdr msg_sys;
2006 	struct used_address used_address;
2007 	unsigned int oflags = flags;
2008 
2009 	if (vlen > UIO_MAXIOV)
2010 		vlen = UIO_MAXIOV;
2011 
2012 	datagrams = 0;
2013 
2014 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 	if (!sock)
2016 		return err;
2017 
2018 	used_address.name_len = UINT_MAX;
2019 	entry = mmsg;
2020 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021 	err = 0;
2022 	flags |= MSG_BATCH;
2023 
2024 	while (datagrams < vlen) {
2025 		if (datagrams == vlen - 1)
2026 			flags = oflags;
2027 
2028 		if (MSG_CMSG_COMPAT & flags) {
2029 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2030 					     &msg_sys, flags, &used_address, MSG_EOR);
2031 			if (err < 0)
2032 				break;
2033 			err = __put_user(err, &compat_entry->msg_len);
2034 			++compat_entry;
2035 		} else {
2036 			err = ___sys_sendmsg(sock,
2037 					     (struct user_msghdr __user *)entry,
2038 					     &msg_sys, flags, &used_address, MSG_EOR);
2039 			if (err < 0)
2040 				break;
2041 			err = put_user(err, &entry->msg_len);
2042 			++entry;
2043 		}
2044 
2045 		if (err)
2046 			break;
2047 		++datagrams;
2048 		cond_resched();
2049 	}
2050 
2051 	fput_light(sock->file, fput_needed);
2052 
2053 	/* We only return an error if no datagrams were able to be sent */
2054 	if (datagrams != 0)
2055 		return datagrams;
2056 
2057 	return err;
2058 }
2059 
2060 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061 		unsigned int, vlen, unsigned int, flags)
2062 {
2063 	if (flags & MSG_CMSG_COMPAT)
2064 		return -EINVAL;
2065 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066 }
2067 
2068 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2070 {
2071 	struct compat_msghdr __user *msg_compat =
2072 	    (struct compat_msghdr __user *)msg;
2073 	struct iovec iovstack[UIO_FASTIOV];
2074 	struct iovec *iov = iovstack;
2075 	unsigned long cmsg_ptr;
2076 	int total_len, len;
2077 	ssize_t err;
2078 
2079 	/* kernel mode address */
2080 	struct sockaddr_storage addr;
2081 
2082 	/* user mode address pointers */
2083 	struct sockaddr __user *uaddr;
2084 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085 
2086 	msg_sys->msg_name = &addr;
2087 
2088 	if (MSG_CMSG_COMPAT & flags)
2089 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090 	else
2091 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092 	if (err < 0)
2093 		return err;
2094 	total_len = iov_iter_count(&msg_sys->msg_iter);
2095 
2096 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098 
2099 	/* We assume all kernel code knows the size of sockaddr_storage */
2100 	msg_sys->msg_namelen = 0;
2101 
2102 	if (sock->file->f_flags & O_NONBLOCK)
2103 		flags |= MSG_DONTWAIT;
2104 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105 							  total_len, flags);
2106 	if (err < 0)
2107 		goto out_freeiov;
2108 	len = err;
2109 
2110 	if (uaddr != NULL) {
2111 		err = move_addr_to_user(&addr,
2112 					msg_sys->msg_namelen, uaddr,
2113 					uaddr_len);
2114 		if (err < 0)
2115 			goto out_freeiov;
2116 	}
2117 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118 			 COMPAT_FLAGS(msg));
2119 	if (err)
2120 		goto out_freeiov;
2121 	if (MSG_CMSG_COMPAT & flags)
2122 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123 				 &msg_compat->msg_controllen);
2124 	else
2125 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126 				 &msg->msg_controllen);
2127 	if (err)
2128 		goto out_freeiov;
2129 	err = len;
2130 
2131 out_freeiov:
2132 	kfree(iov);
2133 	return err;
2134 }
2135 
2136 /*
2137  *	BSD recvmsg interface
2138  */
2139 
2140 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141 {
2142 	int fput_needed, err;
2143 	struct msghdr msg_sys;
2144 	struct socket *sock;
2145 
2146 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 	if (!sock)
2148 		goto out;
2149 
2150 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151 
2152 	fput_light(sock->file, fput_needed);
2153 out:
2154 	return err;
2155 }
2156 
2157 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158 		unsigned int, flags)
2159 {
2160 	if (flags & MSG_CMSG_COMPAT)
2161 		return -EINVAL;
2162 	return __sys_recvmsg(fd, msg, flags);
2163 }
2164 
2165 /*
2166  *     Linux recvmmsg interface
2167  */
2168 
2169 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 		   unsigned int flags, struct timespec *timeout)
2171 {
2172 	int fput_needed, err, datagrams;
2173 	struct socket *sock;
2174 	struct mmsghdr __user *entry;
2175 	struct compat_mmsghdr __user *compat_entry;
2176 	struct msghdr msg_sys;
2177 	struct timespec end_time;
2178 
2179 	if (timeout &&
2180 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2181 				    timeout->tv_nsec))
2182 		return -EINVAL;
2183 
2184 	datagrams = 0;
2185 
2186 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 	if (!sock)
2188 		return err;
2189 
2190 	err = sock_error(sock->sk);
2191 	if (err)
2192 		goto out_put;
2193 
2194 	entry = mmsg;
2195 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196 
2197 	while (datagrams < vlen) {
2198 		/*
2199 		 * No need to ask LSM for more than the first datagram.
2200 		 */
2201 		if (MSG_CMSG_COMPAT & flags) {
2202 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 					     &msg_sys, flags & ~MSG_WAITFORONE,
2204 					     datagrams);
2205 			if (err < 0)
2206 				break;
2207 			err = __put_user(err, &compat_entry->msg_len);
2208 			++compat_entry;
2209 		} else {
2210 			err = ___sys_recvmsg(sock,
2211 					     (struct user_msghdr __user *)entry,
2212 					     &msg_sys, flags & ~MSG_WAITFORONE,
2213 					     datagrams);
2214 			if (err < 0)
2215 				break;
2216 			err = put_user(err, &entry->msg_len);
2217 			++entry;
2218 		}
2219 
2220 		if (err)
2221 			break;
2222 		++datagrams;
2223 
2224 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225 		if (flags & MSG_WAITFORONE)
2226 			flags |= MSG_DONTWAIT;
2227 
2228 		if (timeout) {
2229 			ktime_get_ts(timeout);
2230 			*timeout = timespec_sub(end_time, *timeout);
2231 			if (timeout->tv_sec < 0) {
2232 				timeout->tv_sec = timeout->tv_nsec = 0;
2233 				break;
2234 			}
2235 
2236 			/* Timeout, return less than vlen datagrams */
2237 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238 				break;
2239 		}
2240 
2241 		/* Out of band data, return right away */
2242 		if (msg_sys.msg_flags & MSG_OOB)
2243 			break;
2244 		cond_resched();
2245 	}
2246 
2247 	if (err == 0)
2248 		goto out_put;
2249 
2250 	if (datagrams == 0) {
2251 		datagrams = err;
2252 		goto out_put;
2253 	}
2254 
2255 	/*
2256 	 * We may return less entries than requested (vlen) if the
2257 	 * sock is non block and there aren't enough datagrams...
2258 	 */
2259 	if (err != -EAGAIN) {
2260 		/*
2261 		 * ... or  if recvmsg returns an error after we
2262 		 * received some datagrams, where we record the
2263 		 * error to return on the next call or if the
2264 		 * app asks about it using getsockopt(SO_ERROR).
2265 		 */
2266 		sock->sk->sk_err = -err;
2267 	}
2268 out_put:
2269 	fput_light(sock->file, fput_needed);
2270 
2271 	return datagrams;
2272 }
2273 
2274 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275 		unsigned int, vlen, unsigned int, flags,
2276 		struct timespec __user *, timeout)
2277 {
2278 	int datagrams;
2279 	struct timespec timeout_sys;
2280 
2281 	if (flags & MSG_CMSG_COMPAT)
2282 		return -EINVAL;
2283 
2284 	if (!timeout)
2285 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286 
2287 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288 		return -EFAULT;
2289 
2290 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2291 
2292 	if (datagrams > 0 &&
2293 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294 		datagrams = -EFAULT;
2295 
2296 	return datagrams;
2297 }
2298 
2299 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2300 /* Argument list sizes for sys_socketcall */
2301 #define AL(x) ((x) * sizeof(unsigned long))
2302 static const unsigned char nargs[21] = {
2303 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306 	AL(4), AL(5), AL(4)
2307 };
2308 
2309 #undef AL
2310 
2311 /*
2312  *	System call vectors.
2313  *
2314  *	Argument checking cleaned up. Saved 20% in size.
2315  *  This function doesn't need to set the kernel lock because
2316  *  it is set by the callees.
2317  */
2318 
2319 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320 {
2321 	unsigned long a[AUDITSC_ARGS];
2322 	unsigned long a0, a1;
2323 	int err;
2324 	unsigned int len;
2325 
2326 	if (call < 1 || call > SYS_SENDMMSG)
2327 		return -EINVAL;
2328 
2329 	len = nargs[call];
2330 	if (len > sizeof(a))
2331 		return -EINVAL;
2332 
2333 	/* copy_from_user should be SMP safe. */
2334 	if (copy_from_user(a, args, len))
2335 		return -EFAULT;
2336 
2337 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2338 	if (err)
2339 		return err;
2340 
2341 	a0 = a[0];
2342 	a1 = a[1];
2343 
2344 	switch (call) {
2345 	case SYS_SOCKET:
2346 		err = sys_socket(a0, a1, a[2]);
2347 		break;
2348 	case SYS_BIND:
2349 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2350 		break;
2351 	case SYS_CONNECT:
2352 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2353 		break;
2354 	case SYS_LISTEN:
2355 		err = sys_listen(a0, a1);
2356 		break;
2357 	case SYS_ACCEPT:
2358 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359 				  (int __user *)a[2], 0);
2360 		break;
2361 	case SYS_GETSOCKNAME:
2362 		err =
2363 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2364 				    (int __user *)a[2]);
2365 		break;
2366 	case SYS_GETPEERNAME:
2367 		err =
2368 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2369 				    (int __user *)a[2]);
2370 		break;
2371 	case SYS_SOCKETPAIR:
2372 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2373 		break;
2374 	case SYS_SEND:
2375 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2376 		break;
2377 	case SYS_SENDTO:
2378 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2379 				 (struct sockaddr __user *)a[4], a[5]);
2380 		break;
2381 	case SYS_RECV:
2382 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2383 		break;
2384 	case SYS_RECVFROM:
2385 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2386 				   (struct sockaddr __user *)a[4],
2387 				   (int __user *)a[5]);
2388 		break;
2389 	case SYS_SHUTDOWN:
2390 		err = sys_shutdown(a0, a1);
2391 		break;
2392 	case SYS_SETSOCKOPT:
2393 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2394 		break;
2395 	case SYS_GETSOCKOPT:
2396 		err =
2397 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2398 				   (int __user *)a[4]);
2399 		break;
2400 	case SYS_SENDMSG:
2401 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2402 		break;
2403 	case SYS_SENDMMSG:
2404 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2405 		break;
2406 	case SYS_RECVMSG:
2407 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2408 		break;
2409 	case SYS_RECVMMSG:
2410 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2411 				   (struct timespec __user *)a[4]);
2412 		break;
2413 	case SYS_ACCEPT4:
2414 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2415 				  (int __user *)a[2], a[3]);
2416 		break;
2417 	default:
2418 		err = -EINVAL;
2419 		break;
2420 	}
2421 	return err;
2422 }
2423 
2424 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2425 
2426 /**
2427  *	sock_register - add a socket protocol handler
2428  *	@ops: description of protocol
2429  *
2430  *	This function is called by a protocol handler that wants to
2431  *	advertise its address family, and have it linked into the
2432  *	socket interface. The value ops->family corresponds to the
2433  *	socket system call protocol family.
2434  */
2435 int sock_register(const struct net_proto_family *ops)
2436 {
2437 	int err;
2438 
2439 	if (ops->family >= NPROTO) {
2440 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2441 		return -ENOBUFS;
2442 	}
2443 
2444 	spin_lock(&net_family_lock);
2445 	if (rcu_dereference_protected(net_families[ops->family],
2446 				      lockdep_is_held(&net_family_lock)))
2447 		err = -EEXIST;
2448 	else {
2449 		rcu_assign_pointer(net_families[ops->family], ops);
2450 		err = 0;
2451 	}
2452 	spin_unlock(&net_family_lock);
2453 
2454 	pr_info("NET: Registered protocol family %d\n", ops->family);
2455 	return err;
2456 }
2457 EXPORT_SYMBOL(sock_register);
2458 
2459 /**
2460  *	sock_unregister - remove a protocol handler
2461  *	@family: protocol family to remove
2462  *
2463  *	This function is called by a protocol handler that wants to
2464  *	remove its address family, and have it unlinked from the
2465  *	new socket creation.
2466  *
2467  *	If protocol handler is a module, then it can use module reference
2468  *	counts to protect against new references. If protocol handler is not
2469  *	a module then it needs to provide its own protection in
2470  *	the ops->create routine.
2471  */
2472 void sock_unregister(int family)
2473 {
2474 	BUG_ON(family < 0 || family >= NPROTO);
2475 
2476 	spin_lock(&net_family_lock);
2477 	RCU_INIT_POINTER(net_families[family], NULL);
2478 	spin_unlock(&net_family_lock);
2479 
2480 	synchronize_rcu();
2481 
2482 	pr_info("NET: Unregistered protocol family %d\n", family);
2483 }
2484 EXPORT_SYMBOL(sock_unregister);
2485 
2486 static int __init sock_init(void)
2487 {
2488 	int err;
2489 	/*
2490 	 *      Initialize the network sysctl infrastructure.
2491 	 */
2492 	err = net_sysctl_init();
2493 	if (err)
2494 		goto out;
2495 
2496 	/*
2497 	 *      Initialize skbuff SLAB cache
2498 	 */
2499 	skb_init();
2500 
2501 	/*
2502 	 *      Initialize the protocols module.
2503 	 */
2504 
2505 	init_inodecache();
2506 
2507 	err = register_filesystem(&sock_fs_type);
2508 	if (err)
2509 		goto out_fs;
2510 	sock_mnt = kern_mount(&sock_fs_type);
2511 	if (IS_ERR(sock_mnt)) {
2512 		err = PTR_ERR(sock_mnt);
2513 		goto out_mount;
2514 	}
2515 
2516 	/* The real protocol initialization is performed in later initcalls.
2517 	 */
2518 
2519 #ifdef CONFIG_NETFILTER
2520 	err = netfilter_init();
2521 	if (err)
2522 		goto out;
2523 #endif
2524 
2525 	ptp_classifier_init();
2526 
2527 out:
2528 	return err;
2529 
2530 out_mount:
2531 	unregister_filesystem(&sock_fs_type);
2532 out_fs:
2533 	goto out;
2534 }
2535 
2536 core_initcall(sock_init);	/* early initcall */
2537 
2538 #ifdef CONFIG_PROC_FS
2539 void socket_seq_show(struct seq_file *seq)
2540 {
2541 	int cpu;
2542 	int counter = 0;
2543 
2544 	for_each_possible_cpu(cpu)
2545 	    counter += per_cpu(sockets_in_use, cpu);
2546 
2547 	/* It can be negative, by the way. 8) */
2548 	if (counter < 0)
2549 		counter = 0;
2550 
2551 	seq_printf(seq, "sockets: used %d\n", counter);
2552 }
2553 #endif				/* CONFIG_PROC_FS */
2554 
2555 #ifdef CONFIG_COMPAT
2556 static int do_siocgstamp(struct net *net, struct socket *sock,
2557 			 unsigned int cmd, void __user *up)
2558 {
2559 	mm_segment_t old_fs = get_fs();
2560 	struct timeval ktv;
2561 	int err;
2562 
2563 	set_fs(KERNEL_DS);
2564 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2565 	set_fs(old_fs);
2566 	if (!err)
2567 		err = compat_put_timeval(&ktv, up);
2568 
2569 	return err;
2570 }
2571 
2572 static int do_siocgstampns(struct net *net, struct socket *sock,
2573 			   unsigned int cmd, void __user *up)
2574 {
2575 	mm_segment_t old_fs = get_fs();
2576 	struct timespec kts;
2577 	int err;
2578 
2579 	set_fs(KERNEL_DS);
2580 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2581 	set_fs(old_fs);
2582 	if (!err)
2583 		err = compat_put_timespec(&kts, up);
2584 
2585 	return err;
2586 }
2587 
2588 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2589 {
2590 	struct ifreq __user *uifr;
2591 	int err;
2592 
2593 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2594 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2595 		return -EFAULT;
2596 
2597 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2598 	if (err)
2599 		return err;
2600 
2601 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2602 		return -EFAULT;
2603 
2604 	return 0;
2605 }
2606 
2607 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2608 {
2609 	struct compat_ifconf ifc32;
2610 	struct ifconf ifc;
2611 	struct ifconf __user *uifc;
2612 	struct compat_ifreq __user *ifr32;
2613 	struct ifreq __user *ifr;
2614 	unsigned int i, j;
2615 	int err;
2616 
2617 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2618 		return -EFAULT;
2619 
2620 	memset(&ifc, 0, sizeof(ifc));
2621 	if (ifc32.ifcbuf == 0) {
2622 		ifc32.ifc_len = 0;
2623 		ifc.ifc_len = 0;
2624 		ifc.ifc_req = NULL;
2625 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2626 	} else {
2627 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2628 			sizeof(struct ifreq);
2629 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2630 		ifc.ifc_len = len;
2631 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2632 		ifr32 = compat_ptr(ifc32.ifcbuf);
2633 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2634 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2635 				return -EFAULT;
2636 			ifr++;
2637 			ifr32++;
2638 		}
2639 	}
2640 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2641 		return -EFAULT;
2642 
2643 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2644 	if (err)
2645 		return err;
2646 
2647 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2648 		return -EFAULT;
2649 
2650 	ifr = ifc.ifc_req;
2651 	ifr32 = compat_ptr(ifc32.ifcbuf);
2652 	for (i = 0, j = 0;
2653 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2654 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2655 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2656 			return -EFAULT;
2657 		ifr32++;
2658 		ifr++;
2659 	}
2660 
2661 	if (ifc32.ifcbuf == 0) {
2662 		/* Translate from 64-bit structure multiple to
2663 		 * a 32-bit one.
2664 		 */
2665 		i = ifc.ifc_len;
2666 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2667 		ifc32.ifc_len = i;
2668 	} else {
2669 		ifc32.ifc_len = i;
2670 	}
2671 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2672 		return -EFAULT;
2673 
2674 	return 0;
2675 }
2676 
2677 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2678 {
2679 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2680 	bool convert_in = false, convert_out = false;
2681 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2682 	struct ethtool_rxnfc __user *rxnfc;
2683 	struct ifreq __user *ifr;
2684 	u32 rule_cnt = 0, actual_rule_cnt;
2685 	u32 ethcmd;
2686 	u32 data;
2687 	int ret;
2688 
2689 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2690 		return -EFAULT;
2691 
2692 	compat_rxnfc = compat_ptr(data);
2693 
2694 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2695 		return -EFAULT;
2696 
2697 	/* Most ethtool structures are defined without padding.
2698 	 * Unfortunately struct ethtool_rxnfc is an exception.
2699 	 */
2700 	switch (ethcmd) {
2701 	default:
2702 		break;
2703 	case ETHTOOL_GRXCLSRLALL:
2704 		/* Buffer size is variable */
2705 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2706 			return -EFAULT;
2707 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2708 			return -ENOMEM;
2709 		buf_size += rule_cnt * sizeof(u32);
2710 		/* fall through */
2711 	case ETHTOOL_GRXRINGS:
2712 	case ETHTOOL_GRXCLSRLCNT:
2713 	case ETHTOOL_GRXCLSRULE:
2714 	case ETHTOOL_SRXCLSRLINS:
2715 		convert_out = true;
2716 		/* fall through */
2717 	case ETHTOOL_SRXCLSRLDEL:
2718 		buf_size += sizeof(struct ethtool_rxnfc);
2719 		convert_in = true;
2720 		break;
2721 	}
2722 
2723 	ifr = compat_alloc_user_space(buf_size);
2724 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2725 
2726 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2727 		return -EFAULT;
2728 
2729 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2730 		     &ifr->ifr_ifru.ifru_data))
2731 		return -EFAULT;
2732 
2733 	if (convert_in) {
2734 		/* We expect there to be holes between fs.m_ext and
2735 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2736 		 */
2737 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2738 			     sizeof(compat_rxnfc->fs.m_ext) !=
2739 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2740 			     sizeof(rxnfc->fs.m_ext));
2741 		BUILD_BUG_ON(
2742 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2743 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2744 			offsetof(struct ethtool_rxnfc, fs.location) -
2745 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2746 
2747 		if (copy_in_user(rxnfc, compat_rxnfc,
2748 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2749 				 (void __user *)rxnfc) ||
2750 		    copy_in_user(&rxnfc->fs.ring_cookie,
2751 				 &compat_rxnfc->fs.ring_cookie,
2752 				 (void __user *)(&rxnfc->fs.location + 1) -
2753 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2754 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2755 				 sizeof(rxnfc->rule_cnt)))
2756 			return -EFAULT;
2757 	}
2758 
2759 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2760 	if (ret)
2761 		return ret;
2762 
2763 	if (convert_out) {
2764 		if (copy_in_user(compat_rxnfc, rxnfc,
2765 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2766 				 (const void __user *)rxnfc) ||
2767 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2768 				 &rxnfc->fs.ring_cookie,
2769 				 (const void __user *)(&rxnfc->fs.location + 1) -
2770 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2771 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2772 				 sizeof(rxnfc->rule_cnt)))
2773 			return -EFAULT;
2774 
2775 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2776 			/* As an optimisation, we only copy the actual
2777 			 * number of rules that the underlying
2778 			 * function returned.  Since Mallory might
2779 			 * change the rule count in user memory, we
2780 			 * check that it is less than the rule count
2781 			 * originally given (as the user buffer size),
2782 			 * which has been range-checked.
2783 			 */
2784 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2785 				return -EFAULT;
2786 			if (actual_rule_cnt < rule_cnt)
2787 				rule_cnt = actual_rule_cnt;
2788 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2789 					 &rxnfc->rule_locs[0],
2790 					 rule_cnt * sizeof(u32)))
2791 				return -EFAULT;
2792 		}
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2799 {
2800 	void __user *uptr;
2801 	compat_uptr_t uptr32;
2802 	struct ifreq __user *uifr;
2803 
2804 	uifr = compat_alloc_user_space(sizeof(*uifr));
2805 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806 		return -EFAULT;
2807 
2808 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2809 		return -EFAULT;
2810 
2811 	uptr = compat_ptr(uptr32);
2812 
2813 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2814 		return -EFAULT;
2815 
2816 	return dev_ioctl(net, SIOCWANDEV, uifr);
2817 }
2818 
2819 static int bond_ioctl(struct net *net, unsigned int cmd,
2820 			 struct compat_ifreq __user *ifr32)
2821 {
2822 	struct ifreq kifr;
2823 	mm_segment_t old_fs;
2824 	int err;
2825 
2826 	switch (cmd) {
2827 	case SIOCBONDENSLAVE:
2828 	case SIOCBONDRELEASE:
2829 	case SIOCBONDSETHWADDR:
2830 	case SIOCBONDCHANGEACTIVE:
2831 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2832 			return -EFAULT;
2833 
2834 		old_fs = get_fs();
2835 		set_fs(KERNEL_DS);
2836 		err = dev_ioctl(net, cmd,
2837 				(struct ifreq __user __force *) &kifr);
2838 		set_fs(old_fs);
2839 
2840 		return err;
2841 	default:
2842 		return -ENOIOCTLCMD;
2843 	}
2844 }
2845 
2846 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2847 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2848 				 struct compat_ifreq __user *u_ifreq32)
2849 {
2850 	struct ifreq __user *u_ifreq64;
2851 	char tmp_buf[IFNAMSIZ];
2852 	void __user *data64;
2853 	u32 data32;
2854 
2855 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2856 			   IFNAMSIZ))
2857 		return -EFAULT;
2858 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2859 		return -EFAULT;
2860 	data64 = compat_ptr(data32);
2861 
2862 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2863 
2864 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2865 			 IFNAMSIZ))
2866 		return -EFAULT;
2867 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2868 		return -EFAULT;
2869 
2870 	return dev_ioctl(net, cmd, u_ifreq64);
2871 }
2872 
2873 static int dev_ifsioc(struct net *net, struct socket *sock,
2874 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2875 {
2876 	struct ifreq __user *uifr;
2877 	int err;
2878 
2879 	uifr = compat_alloc_user_space(sizeof(*uifr));
2880 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2881 		return -EFAULT;
2882 
2883 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2884 
2885 	if (!err) {
2886 		switch (cmd) {
2887 		case SIOCGIFFLAGS:
2888 		case SIOCGIFMETRIC:
2889 		case SIOCGIFMTU:
2890 		case SIOCGIFMEM:
2891 		case SIOCGIFHWADDR:
2892 		case SIOCGIFINDEX:
2893 		case SIOCGIFADDR:
2894 		case SIOCGIFBRDADDR:
2895 		case SIOCGIFDSTADDR:
2896 		case SIOCGIFNETMASK:
2897 		case SIOCGIFPFLAGS:
2898 		case SIOCGIFTXQLEN:
2899 		case SIOCGMIIPHY:
2900 		case SIOCGMIIREG:
2901 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2902 				err = -EFAULT;
2903 			break;
2904 		}
2905 	}
2906 	return err;
2907 }
2908 
2909 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2910 			struct compat_ifreq __user *uifr32)
2911 {
2912 	struct ifreq ifr;
2913 	struct compat_ifmap __user *uifmap32;
2914 	mm_segment_t old_fs;
2915 	int err;
2916 
2917 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2918 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2919 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2920 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2921 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2922 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2923 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2924 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2925 	if (err)
2926 		return -EFAULT;
2927 
2928 	old_fs = get_fs();
2929 	set_fs(KERNEL_DS);
2930 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2931 	set_fs(old_fs);
2932 
2933 	if (cmd == SIOCGIFMAP && !err) {
2934 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2935 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2936 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2937 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2938 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2939 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2940 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2941 		if (err)
2942 			err = -EFAULT;
2943 	}
2944 	return err;
2945 }
2946 
2947 struct rtentry32 {
2948 	u32		rt_pad1;
2949 	struct sockaddr rt_dst;         /* target address               */
2950 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2951 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2952 	unsigned short	rt_flags;
2953 	short		rt_pad2;
2954 	u32		rt_pad3;
2955 	unsigned char	rt_tos;
2956 	unsigned char	rt_class;
2957 	short		rt_pad4;
2958 	short		rt_metric;      /* +1 for binary compatibility! */
2959 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2960 	u32		rt_mtu;         /* per route MTU/Window         */
2961 	u32		rt_window;      /* Window clamping              */
2962 	unsigned short  rt_irtt;        /* Initial RTT                  */
2963 };
2964 
2965 struct in6_rtmsg32 {
2966 	struct in6_addr		rtmsg_dst;
2967 	struct in6_addr		rtmsg_src;
2968 	struct in6_addr		rtmsg_gateway;
2969 	u32			rtmsg_type;
2970 	u16			rtmsg_dst_len;
2971 	u16			rtmsg_src_len;
2972 	u32			rtmsg_metric;
2973 	u32			rtmsg_info;
2974 	u32			rtmsg_flags;
2975 	s32			rtmsg_ifindex;
2976 };
2977 
2978 static int routing_ioctl(struct net *net, struct socket *sock,
2979 			 unsigned int cmd, void __user *argp)
2980 {
2981 	int ret;
2982 	void *r = NULL;
2983 	struct in6_rtmsg r6;
2984 	struct rtentry r4;
2985 	char devname[16];
2986 	u32 rtdev;
2987 	mm_segment_t old_fs = get_fs();
2988 
2989 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2990 		struct in6_rtmsg32 __user *ur6 = argp;
2991 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2992 			3 * sizeof(struct in6_addr));
2993 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2994 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2995 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2996 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2997 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2998 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2999 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3000 
3001 		r = (void *) &r6;
3002 	} else { /* ipv4 */
3003 		struct rtentry32 __user *ur4 = argp;
3004 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3005 					3 * sizeof(struct sockaddr));
3006 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3007 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3008 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3009 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3010 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3011 		ret |= get_user(rtdev, &(ur4->rt_dev));
3012 		if (rtdev) {
3013 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3014 			r4.rt_dev = (char __user __force *)devname;
3015 			devname[15] = 0;
3016 		} else
3017 			r4.rt_dev = NULL;
3018 
3019 		r = (void *) &r4;
3020 	}
3021 
3022 	if (ret) {
3023 		ret = -EFAULT;
3024 		goto out;
3025 	}
3026 
3027 	set_fs(KERNEL_DS);
3028 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3029 	set_fs(old_fs);
3030 
3031 out:
3032 	return ret;
3033 }
3034 
3035 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3036  * for some operations; this forces use of the newer bridge-utils that
3037  * use compatible ioctls
3038  */
3039 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3040 {
3041 	compat_ulong_t tmp;
3042 
3043 	if (get_user(tmp, argp))
3044 		return -EFAULT;
3045 	if (tmp == BRCTL_GET_VERSION)
3046 		return BRCTL_VERSION + 1;
3047 	return -EINVAL;
3048 }
3049 
3050 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3051 			 unsigned int cmd, unsigned long arg)
3052 {
3053 	void __user *argp = compat_ptr(arg);
3054 	struct sock *sk = sock->sk;
3055 	struct net *net = sock_net(sk);
3056 
3057 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3058 		return compat_ifr_data_ioctl(net, cmd, argp);
3059 
3060 	switch (cmd) {
3061 	case SIOCSIFBR:
3062 	case SIOCGIFBR:
3063 		return old_bridge_ioctl(argp);
3064 	case SIOCGIFNAME:
3065 		return dev_ifname32(net, argp);
3066 	case SIOCGIFCONF:
3067 		return dev_ifconf(net, argp);
3068 	case SIOCETHTOOL:
3069 		return ethtool_ioctl(net, argp);
3070 	case SIOCWANDEV:
3071 		return compat_siocwandev(net, argp);
3072 	case SIOCGIFMAP:
3073 	case SIOCSIFMAP:
3074 		return compat_sioc_ifmap(net, cmd, argp);
3075 	case SIOCBONDENSLAVE:
3076 	case SIOCBONDRELEASE:
3077 	case SIOCBONDSETHWADDR:
3078 	case SIOCBONDCHANGEACTIVE:
3079 		return bond_ioctl(net, cmd, argp);
3080 	case SIOCADDRT:
3081 	case SIOCDELRT:
3082 		return routing_ioctl(net, sock, cmd, argp);
3083 	case SIOCGSTAMP:
3084 		return do_siocgstamp(net, sock, cmd, argp);
3085 	case SIOCGSTAMPNS:
3086 		return do_siocgstampns(net, sock, cmd, argp);
3087 	case SIOCBONDSLAVEINFOQUERY:
3088 	case SIOCBONDINFOQUERY:
3089 	case SIOCSHWTSTAMP:
3090 	case SIOCGHWTSTAMP:
3091 		return compat_ifr_data_ioctl(net, cmd, argp);
3092 
3093 	case FIOSETOWN:
3094 	case SIOCSPGRP:
3095 	case FIOGETOWN:
3096 	case SIOCGPGRP:
3097 	case SIOCBRADDBR:
3098 	case SIOCBRDELBR:
3099 	case SIOCGIFVLAN:
3100 	case SIOCSIFVLAN:
3101 	case SIOCADDDLCI:
3102 	case SIOCDELDLCI:
3103 		return sock_ioctl(file, cmd, arg);
3104 
3105 	case SIOCGIFFLAGS:
3106 	case SIOCSIFFLAGS:
3107 	case SIOCGIFMETRIC:
3108 	case SIOCSIFMETRIC:
3109 	case SIOCGIFMTU:
3110 	case SIOCSIFMTU:
3111 	case SIOCGIFMEM:
3112 	case SIOCSIFMEM:
3113 	case SIOCGIFHWADDR:
3114 	case SIOCSIFHWADDR:
3115 	case SIOCADDMULTI:
3116 	case SIOCDELMULTI:
3117 	case SIOCGIFINDEX:
3118 	case SIOCGIFADDR:
3119 	case SIOCSIFADDR:
3120 	case SIOCSIFHWBROADCAST:
3121 	case SIOCDIFADDR:
3122 	case SIOCGIFBRDADDR:
3123 	case SIOCSIFBRDADDR:
3124 	case SIOCGIFDSTADDR:
3125 	case SIOCSIFDSTADDR:
3126 	case SIOCGIFNETMASK:
3127 	case SIOCSIFNETMASK:
3128 	case SIOCSIFPFLAGS:
3129 	case SIOCGIFPFLAGS:
3130 	case SIOCGIFTXQLEN:
3131 	case SIOCSIFTXQLEN:
3132 	case SIOCBRADDIF:
3133 	case SIOCBRDELIF:
3134 	case SIOCSIFNAME:
3135 	case SIOCGMIIPHY:
3136 	case SIOCGMIIREG:
3137 	case SIOCSMIIREG:
3138 		return dev_ifsioc(net, sock, cmd, argp);
3139 
3140 	case SIOCSARP:
3141 	case SIOCGARP:
3142 	case SIOCDARP:
3143 	case SIOCATMARK:
3144 		return sock_do_ioctl(net, sock, cmd, arg);
3145 	}
3146 
3147 	return -ENOIOCTLCMD;
3148 }
3149 
3150 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3151 			      unsigned long arg)
3152 {
3153 	struct socket *sock = file->private_data;
3154 	int ret = -ENOIOCTLCMD;
3155 	struct sock *sk;
3156 	struct net *net;
3157 
3158 	sk = sock->sk;
3159 	net = sock_net(sk);
3160 
3161 	if (sock->ops->compat_ioctl)
3162 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3163 
3164 	if (ret == -ENOIOCTLCMD &&
3165 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3166 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3167 
3168 	if (ret == -ENOIOCTLCMD)
3169 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3170 
3171 	return ret;
3172 }
3173 #endif
3174 
3175 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3176 {
3177 	return sock->ops->bind(sock, addr, addrlen);
3178 }
3179 EXPORT_SYMBOL(kernel_bind);
3180 
3181 int kernel_listen(struct socket *sock, int backlog)
3182 {
3183 	return sock->ops->listen(sock, backlog);
3184 }
3185 EXPORT_SYMBOL(kernel_listen);
3186 
3187 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3188 {
3189 	struct sock *sk = sock->sk;
3190 	int err;
3191 
3192 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3193 			       newsock);
3194 	if (err < 0)
3195 		goto done;
3196 
3197 	err = sock->ops->accept(sock, *newsock, flags);
3198 	if (err < 0) {
3199 		sock_release(*newsock);
3200 		*newsock = NULL;
3201 		goto done;
3202 	}
3203 
3204 	(*newsock)->ops = sock->ops;
3205 	__module_get((*newsock)->ops->owner);
3206 
3207 done:
3208 	return err;
3209 }
3210 EXPORT_SYMBOL(kernel_accept);
3211 
3212 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3213 		   int flags)
3214 {
3215 	return sock->ops->connect(sock, addr, addrlen, flags);
3216 }
3217 EXPORT_SYMBOL(kernel_connect);
3218 
3219 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3220 			 int *addrlen)
3221 {
3222 	return sock->ops->getname(sock, addr, addrlen, 0);
3223 }
3224 EXPORT_SYMBOL(kernel_getsockname);
3225 
3226 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3227 			 int *addrlen)
3228 {
3229 	return sock->ops->getname(sock, addr, addrlen, 1);
3230 }
3231 EXPORT_SYMBOL(kernel_getpeername);
3232 
3233 int kernel_getsockopt(struct socket *sock, int level, int optname,
3234 			char *optval, int *optlen)
3235 {
3236 	mm_segment_t oldfs = get_fs();
3237 	char __user *uoptval;
3238 	int __user *uoptlen;
3239 	int err;
3240 
3241 	uoptval = (char __user __force *) optval;
3242 	uoptlen = (int __user __force *) optlen;
3243 
3244 	set_fs(KERNEL_DS);
3245 	if (level == SOL_SOCKET)
3246 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3247 	else
3248 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3249 					    uoptlen);
3250 	set_fs(oldfs);
3251 	return err;
3252 }
3253 EXPORT_SYMBOL(kernel_getsockopt);
3254 
3255 int kernel_setsockopt(struct socket *sock, int level, int optname,
3256 			char *optval, unsigned int optlen)
3257 {
3258 	mm_segment_t oldfs = get_fs();
3259 	char __user *uoptval;
3260 	int err;
3261 
3262 	uoptval = (char __user __force *) optval;
3263 
3264 	set_fs(KERNEL_DS);
3265 	if (level == SOL_SOCKET)
3266 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3267 	else
3268 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3269 					    optlen);
3270 	set_fs(oldfs);
3271 	return err;
3272 }
3273 EXPORT_SYMBOL(kernel_setsockopt);
3274 
3275 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3276 		    size_t size, int flags)
3277 {
3278 	if (sock->ops->sendpage)
3279 		return sock->ops->sendpage(sock, page, offset, size, flags);
3280 
3281 	return sock_no_sendpage(sock, page, offset, size, flags);
3282 }
3283 EXPORT_SYMBOL(kernel_sendpage);
3284 
3285 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3286 {
3287 	mm_segment_t oldfs = get_fs();
3288 	int err;
3289 
3290 	set_fs(KERNEL_DS);
3291 	err = sock->ops->ioctl(sock, cmd, arg);
3292 	set_fs(oldfs);
3293 
3294 	return err;
3295 }
3296 EXPORT_SYMBOL(kernel_sock_ioctl);
3297 
3298 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3299 {
3300 	return sock->ops->shutdown(sock, how);
3301 }
3302 EXPORT_SYMBOL(kernel_sock_shutdown);
3303