1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 324 int flags, const char *dev_name, void *data) 325 { 326 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 327 &sockfs_dentry_operations, SOCKFS_MAGIC); 328 } 329 330 static struct vfsmount *sock_mnt __read_mostly; 331 332 static struct file_system_type sock_fs_type = { 333 .name = "sockfs", 334 .mount = sockfs_mount, 335 .kill_sb = kill_anon_super, 336 }; 337 338 /* 339 * Obtains the first available file descriptor and sets it up for use. 340 * 341 * These functions create file structures and maps them to fd space 342 * of the current process. On success it returns file descriptor 343 * and file struct implicitly stored in sock->file. 344 * Note that another thread may close file descriptor before we return 345 * from this function. We use the fact that now we do not refer 346 * to socket after mapping. If one day we will need it, this 347 * function will increment ref. count on file by 1. 348 * 349 * In any case returned fd MAY BE not valid! 350 * This race condition is unavoidable 351 * with shared fd spaces, we cannot solve it inside kernel, 352 * but we take care of internal coherence yet. 353 */ 354 355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 356 { 357 struct qstr name = { .name = "" }; 358 struct path path; 359 struct file *file; 360 361 if (dname) { 362 name.name = dname; 363 name.len = strlen(name.name); 364 } else if (sock->sk) { 365 name.name = sock->sk->sk_prot_creator->name; 366 name.len = strlen(name.name); 367 } 368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 369 if (unlikely(!path.dentry)) 370 return ERR_PTR(-ENOMEM); 371 path.mnt = mntget(sock_mnt); 372 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 376 &socket_file_ops); 377 if (IS_ERR(file)) { 378 /* drop dentry, keep inode */ 379 ihold(d_inode(path.dentry)); 380 path_put(&path); 381 return file; 382 } 383 384 sock->file = file; 385 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 386 file->private_data = sock; 387 return file; 388 } 389 EXPORT_SYMBOL(sock_alloc_file); 390 391 static int sock_map_fd(struct socket *sock, int flags) 392 { 393 struct file *newfile; 394 int fd = get_unused_fd_flags(flags); 395 if (unlikely(fd < 0)) 396 return fd; 397 398 newfile = sock_alloc_file(sock, flags, NULL); 399 if (likely(!IS_ERR(newfile))) { 400 fd_install(fd, newfile); 401 return fd; 402 } 403 404 put_unused_fd(fd); 405 return PTR_ERR(newfile); 406 } 407 408 struct socket *sock_from_file(struct file *file, int *err) 409 { 410 if (file->f_op == &socket_file_ops) 411 return file->private_data; /* set in sock_map_fd */ 412 413 *err = -ENOTSOCK; 414 return NULL; 415 } 416 EXPORT_SYMBOL(sock_from_file); 417 418 /** 419 * sockfd_lookup - Go from a file number to its socket slot 420 * @fd: file handle 421 * @err: pointer to an error code return 422 * 423 * The file handle passed in is locked and the socket it is bound 424 * too is returned. If an error occurs the err pointer is overwritten 425 * with a negative errno code and NULL is returned. The function checks 426 * for both invalid handles and passing a handle which is not a socket. 427 * 428 * On a success the socket object pointer is returned. 429 */ 430 431 struct socket *sockfd_lookup(int fd, int *err) 432 { 433 struct file *file; 434 struct socket *sock; 435 436 file = fget(fd); 437 if (!file) { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 sock = sock_from_file(file, err); 443 if (!sock) 444 fput(file); 445 return sock; 446 } 447 EXPORT_SYMBOL(sockfd_lookup); 448 449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 450 { 451 struct fd f = fdget(fd); 452 struct socket *sock; 453 454 *err = -EBADF; 455 if (f.file) { 456 sock = sock_from_file(f.file, err); 457 if (likely(sock)) { 458 *fput_needed = f.flags; 459 return sock; 460 } 461 fdput(f); 462 } 463 return NULL; 464 } 465 466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 469 static ssize_t sockfs_getxattr(struct dentry *dentry, 470 const char *name, void *value, size_t size) 471 { 472 const char *proto_name; 473 size_t proto_size; 474 int error; 475 476 error = -ENODATA; 477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 478 proto_name = dentry->d_name.name; 479 proto_size = strlen(proto_name); 480 481 if (value) { 482 error = -ERANGE; 483 if (proto_size + 1 > size) 484 goto out; 485 486 strncpy(value, proto_name, proto_size + 1); 487 } 488 error = proto_size + 1; 489 } 490 491 out: 492 return error; 493 } 494 495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 496 size_t size) 497 { 498 ssize_t len; 499 ssize_t used = 0; 500 501 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 502 if (len < 0) 503 return len; 504 used += len; 505 if (buffer) { 506 if (size < used) 507 return -ERANGE; 508 buffer += len; 509 } 510 511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 512 used += len; 513 if (buffer) { 514 if (size < used) 515 return -ERANGE; 516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 517 buffer += len; 518 } 519 520 return used; 521 } 522 523 static const struct inode_operations sockfs_inode_ops = { 524 .getxattr = sockfs_getxattr, 525 .listxattr = sockfs_listxattr, 526 }; 527 528 /** 529 * sock_alloc - allocate a socket 530 * 531 * Allocate a new inode and socket object. The two are bound together 532 * and initialised. The socket is then returned. If we are out of inodes 533 * NULL is returned. 534 */ 535 536 struct socket *sock_alloc(void) 537 { 538 struct inode *inode; 539 struct socket *sock; 540 541 inode = new_inode_pseudo(sock_mnt->mnt_sb); 542 if (!inode) 543 return NULL; 544 545 sock = SOCKET_I(inode); 546 547 kmemcheck_annotate_bitfield(sock, type); 548 inode->i_ino = get_next_ino(); 549 inode->i_mode = S_IFSOCK | S_IRWXUGO; 550 inode->i_uid = current_fsuid(); 551 inode->i_gid = current_fsgid(); 552 inode->i_op = &sockfs_inode_ops; 553 554 this_cpu_add(sockets_in_use, 1); 555 return sock; 556 } 557 EXPORT_SYMBOL(sock_alloc); 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 this_cpu_sub(sockets_in_use, 1); 582 if (!sock->file) { 583 iput(SOCK_INODE(sock)); 584 return; 585 } 586 sock->file = NULL; 587 } 588 EXPORT_SYMBOL(sock_release); 589 590 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 591 { 592 u8 flags = *tx_flags; 593 594 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 595 flags |= SKBTX_HW_TSTAMP; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 598 flags |= SKBTX_SW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 601 flags |= SKBTX_SCHED_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 604 flags |= SKBTX_ACK_TSTAMP; 605 606 *tx_flags = flags; 607 } 608 EXPORT_SYMBOL(__sock_tx_timestamp); 609 610 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 611 { 612 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 613 BUG_ON(ret == -EIOCBQUEUED); 614 return ret; 615 } 616 617 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 618 { 619 int err = security_socket_sendmsg(sock, msg, 620 msg_data_left(msg)); 621 622 return err ?: sock_sendmsg_nosec(sock, msg); 623 } 624 EXPORT_SYMBOL(sock_sendmsg); 625 626 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 627 struct kvec *vec, size_t num, size_t size) 628 { 629 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 630 return sock_sendmsg(sock, msg); 631 } 632 EXPORT_SYMBOL(kernel_sendmsg); 633 634 /* 635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 636 */ 637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 638 struct sk_buff *skb) 639 { 640 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 641 struct scm_timestamping tss; 642 int empty = 1; 643 struct skb_shared_hwtstamps *shhwtstamps = 644 skb_hwtstamps(skb); 645 646 /* Race occurred between timestamp enabling and packet 647 receiving. Fill in the current time for now. */ 648 if (need_software_tstamp && skb->tstamp.tv64 == 0) 649 __net_timestamp(skb); 650 651 if (need_software_tstamp) { 652 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 653 struct timeval tv; 654 skb_get_timestamp(skb, &tv); 655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 656 sizeof(tv), &tv); 657 } else { 658 struct timespec ts; 659 skb_get_timestampns(skb, &ts); 660 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 661 sizeof(ts), &ts); 662 } 663 } 664 665 memset(&tss, 0, sizeof(tss)); 666 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 667 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 668 empty = 0; 669 if (shhwtstamps && 670 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 671 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 672 empty = 0; 673 if (!empty) 674 put_cmsg(msg, SOL_SOCKET, 675 SCM_TIMESTAMPING, sizeof(tss), &tss); 676 } 677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 678 679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 680 struct sk_buff *skb) 681 { 682 int ack; 683 684 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 685 return; 686 if (!skb->wifi_acked_valid) 687 return; 688 689 ack = skb->wifi_acked; 690 691 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 692 } 693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 694 695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 696 struct sk_buff *skb) 697 { 698 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 699 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 700 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 701 } 702 703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 704 struct sk_buff *skb) 705 { 706 sock_recv_timestamp(msg, sk, skb); 707 sock_recv_drops(msg, sk, skb); 708 } 709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 710 711 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 712 size_t size, int flags) 713 { 714 return sock->ops->recvmsg(sock, msg, size, flags); 715 } 716 717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 718 int flags) 719 { 720 int err = security_socket_recvmsg(sock, msg, size, flags); 721 722 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 723 } 724 EXPORT_SYMBOL(sock_recvmsg); 725 726 /** 727 * kernel_recvmsg - Receive a message from a socket (kernel space) 728 * @sock: The socket to receive the message from 729 * @msg: Received message 730 * @vec: Input s/g array for message data 731 * @num: Size of input s/g array 732 * @size: Number of bytes to read 733 * @flags: Message flags (MSG_DONTWAIT, etc...) 734 * 735 * On return the msg structure contains the scatter/gather array passed in the 736 * vec argument. The array is modified so that it consists of the unfilled 737 * portion of the original array. 738 * 739 * The returned value is the total number of bytes received, or an error. 740 */ 741 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 742 struct kvec *vec, size_t num, size_t size, int flags) 743 { 744 mm_segment_t oldfs = get_fs(); 745 int result; 746 747 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 748 set_fs(KERNEL_DS); 749 result = sock_recvmsg(sock, msg, size, flags); 750 set_fs(oldfs); 751 return result; 752 } 753 EXPORT_SYMBOL(kernel_recvmsg); 754 755 static ssize_t sock_sendpage(struct file *file, struct page *page, 756 int offset, size_t size, loff_t *ppos, int more) 757 { 758 struct socket *sock; 759 int flags; 760 761 sock = file->private_data; 762 763 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 764 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 765 flags |= more; 766 767 return kernel_sendpage(sock, page, offset, size, flags); 768 } 769 770 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 771 struct pipe_inode_info *pipe, size_t len, 772 unsigned int flags) 773 { 774 struct socket *sock = file->private_data; 775 776 if (unlikely(!sock->ops->splice_read)) 777 return -EINVAL; 778 779 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 780 } 781 782 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 783 { 784 struct file *file = iocb->ki_filp; 785 struct socket *sock = file->private_data; 786 struct msghdr msg = {.msg_iter = *to, 787 .msg_iocb = iocb}; 788 ssize_t res; 789 790 if (file->f_flags & O_NONBLOCK) 791 msg.msg_flags = MSG_DONTWAIT; 792 793 if (iocb->ki_pos != 0) 794 return -ESPIPE; 795 796 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 797 return 0; 798 799 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 800 *to = msg.msg_iter; 801 return res; 802 } 803 804 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 805 { 806 struct file *file = iocb->ki_filp; 807 struct socket *sock = file->private_data; 808 struct msghdr msg = {.msg_iter = *from, 809 .msg_iocb = iocb}; 810 ssize_t res; 811 812 if (iocb->ki_pos != 0) 813 return -ESPIPE; 814 815 if (file->f_flags & O_NONBLOCK) 816 msg.msg_flags = MSG_DONTWAIT; 817 818 if (sock->type == SOCK_SEQPACKET) 819 msg.msg_flags |= MSG_EOR; 820 821 res = sock_sendmsg(sock, &msg); 822 *from = msg.msg_iter; 823 return res; 824 } 825 826 /* 827 * Atomic setting of ioctl hooks to avoid race 828 * with module unload. 829 */ 830 831 static DEFINE_MUTEX(br_ioctl_mutex); 832 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 833 834 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 835 { 836 mutex_lock(&br_ioctl_mutex); 837 br_ioctl_hook = hook; 838 mutex_unlock(&br_ioctl_mutex); 839 } 840 EXPORT_SYMBOL(brioctl_set); 841 842 static DEFINE_MUTEX(vlan_ioctl_mutex); 843 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 844 845 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 846 { 847 mutex_lock(&vlan_ioctl_mutex); 848 vlan_ioctl_hook = hook; 849 mutex_unlock(&vlan_ioctl_mutex); 850 } 851 EXPORT_SYMBOL(vlan_ioctl_set); 852 853 static DEFINE_MUTEX(dlci_ioctl_mutex); 854 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 855 856 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 857 { 858 mutex_lock(&dlci_ioctl_mutex); 859 dlci_ioctl_hook = hook; 860 mutex_unlock(&dlci_ioctl_mutex); 861 } 862 EXPORT_SYMBOL(dlci_ioctl_set); 863 864 static long sock_do_ioctl(struct net *net, struct socket *sock, 865 unsigned int cmd, unsigned long arg) 866 { 867 int err; 868 void __user *argp = (void __user *)arg; 869 870 err = sock->ops->ioctl(sock, cmd, arg); 871 872 /* 873 * If this ioctl is unknown try to hand it down 874 * to the NIC driver. 875 */ 876 if (err == -ENOIOCTLCMD) 877 err = dev_ioctl(net, cmd, argp); 878 879 return err; 880 } 881 882 /* 883 * With an ioctl, arg may well be a user mode pointer, but we don't know 884 * what to do with it - that's up to the protocol still. 885 */ 886 887 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 888 { 889 struct socket *sock; 890 struct sock *sk; 891 void __user *argp = (void __user *)arg; 892 int pid, err; 893 struct net *net; 894 895 sock = file->private_data; 896 sk = sock->sk; 897 net = sock_net(sk); 898 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 899 err = dev_ioctl(net, cmd, argp); 900 } else 901 #ifdef CONFIG_WEXT_CORE 902 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 903 err = dev_ioctl(net, cmd, argp); 904 } else 905 #endif 906 switch (cmd) { 907 case FIOSETOWN: 908 case SIOCSPGRP: 909 err = -EFAULT; 910 if (get_user(pid, (int __user *)argp)) 911 break; 912 f_setown(sock->file, pid, 1); 913 err = 0; 914 break; 915 case FIOGETOWN: 916 case SIOCGPGRP: 917 err = put_user(f_getown(sock->file), 918 (int __user *)argp); 919 break; 920 case SIOCGIFBR: 921 case SIOCSIFBR: 922 case SIOCBRADDBR: 923 case SIOCBRDELBR: 924 err = -ENOPKG; 925 if (!br_ioctl_hook) 926 request_module("bridge"); 927 928 mutex_lock(&br_ioctl_mutex); 929 if (br_ioctl_hook) 930 err = br_ioctl_hook(net, cmd, argp); 931 mutex_unlock(&br_ioctl_mutex); 932 break; 933 case SIOCGIFVLAN: 934 case SIOCSIFVLAN: 935 err = -ENOPKG; 936 if (!vlan_ioctl_hook) 937 request_module("8021q"); 938 939 mutex_lock(&vlan_ioctl_mutex); 940 if (vlan_ioctl_hook) 941 err = vlan_ioctl_hook(net, argp); 942 mutex_unlock(&vlan_ioctl_mutex); 943 break; 944 case SIOCADDDLCI: 945 case SIOCDELDLCI: 946 err = -ENOPKG; 947 if (!dlci_ioctl_hook) 948 request_module("dlci"); 949 950 mutex_lock(&dlci_ioctl_mutex); 951 if (dlci_ioctl_hook) 952 err = dlci_ioctl_hook(cmd, argp); 953 mutex_unlock(&dlci_ioctl_mutex); 954 break; 955 default: 956 err = sock_do_ioctl(net, sock, cmd, arg); 957 break; 958 } 959 return err; 960 } 961 962 int sock_create_lite(int family, int type, int protocol, struct socket **res) 963 { 964 int err; 965 struct socket *sock = NULL; 966 967 err = security_socket_create(family, type, protocol, 1); 968 if (err) 969 goto out; 970 971 sock = sock_alloc(); 972 if (!sock) { 973 err = -ENOMEM; 974 goto out; 975 } 976 977 sock->type = type; 978 err = security_socket_post_create(sock, family, type, protocol, 1); 979 if (err) 980 goto out_release; 981 982 out: 983 *res = sock; 984 return err; 985 out_release: 986 sock_release(sock); 987 sock = NULL; 988 goto out; 989 } 990 EXPORT_SYMBOL(sock_create_lite); 991 992 /* No kernel lock held - perfect */ 993 static unsigned int sock_poll(struct file *file, poll_table *wait) 994 { 995 unsigned int busy_flag = 0; 996 struct socket *sock; 997 998 /* 999 * We can't return errors to poll, so it's either yes or no. 1000 */ 1001 sock = file->private_data; 1002 1003 if (sk_can_busy_loop(sock->sk)) { 1004 /* this socket can poll_ll so tell the system call */ 1005 busy_flag = POLL_BUSY_LOOP; 1006 1007 /* once, only if requested by syscall */ 1008 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1009 sk_busy_loop(sock->sk, 1); 1010 } 1011 1012 return busy_flag | sock->ops->poll(file, sock, wait); 1013 } 1014 1015 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1016 { 1017 struct socket *sock = file->private_data; 1018 1019 return sock->ops->mmap(file, sock, vma); 1020 } 1021 1022 static int sock_close(struct inode *inode, struct file *filp) 1023 { 1024 sock_release(SOCKET_I(inode)); 1025 return 0; 1026 } 1027 1028 /* 1029 * Update the socket async list 1030 * 1031 * Fasync_list locking strategy. 1032 * 1033 * 1. fasync_list is modified only under process context socket lock 1034 * i.e. under semaphore. 1035 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1036 * or under socket lock 1037 */ 1038 1039 static int sock_fasync(int fd, struct file *filp, int on) 1040 { 1041 struct socket *sock = filp->private_data; 1042 struct sock *sk = sock->sk; 1043 struct socket_wq *wq; 1044 1045 if (sk == NULL) 1046 return -EINVAL; 1047 1048 lock_sock(sk); 1049 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1050 fasync_helper(fd, filp, on, &wq->fasync_list); 1051 1052 if (!wq->fasync_list) 1053 sock_reset_flag(sk, SOCK_FASYNC); 1054 else 1055 sock_set_flag(sk, SOCK_FASYNC); 1056 1057 release_sock(sk); 1058 return 0; 1059 } 1060 1061 /* This function may be called only under rcu_lock */ 1062 1063 int sock_wake_async(struct socket_wq *wq, int how, int band) 1064 { 1065 if (!wq || !wq->fasync_list) 1066 return -1; 1067 1068 switch (how) { 1069 case SOCK_WAKE_WAITD: 1070 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1071 break; 1072 goto call_kill; 1073 case SOCK_WAKE_SPACE: 1074 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1075 break; 1076 /* fall through */ 1077 case SOCK_WAKE_IO: 1078 call_kill: 1079 kill_fasync(&wq->fasync_list, SIGIO, band); 1080 break; 1081 case SOCK_WAKE_URG: 1082 kill_fasync(&wq->fasync_list, SIGURG, band); 1083 } 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL(sock_wake_async); 1088 1089 int __sock_create(struct net *net, int family, int type, int protocol, 1090 struct socket **res, int kern) 1091 { 1092 int err; 1093 struct socket *sock; 1094 const struct net_proto_family *pf; 1095 1096 /* 1097 * Check protocol is in range 1098 */ 1099 if (family < 0 || family >= NPROTO) 1100 return -EAFNOSUPPORT; 1101 if (type < 0 || type >= SOCK_MAX) 1102 return -EINVAL; 1103 1104 /* Compatibility. 1105 1106 This uglymoron is moved from INET layer to here to avoid 1107 deadlock in module load. 1108 */ 1109 if (family == PF_INET && type == SOCK_PACKET) { 1110 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1111 current->comm); 1112 family = PF_PACKET; 1113 } 1114 1115 err = security_socket_create(family, type, protocol, kern); 1116 if (err) 1117 return err; 1118 1119 /* 1120 * Allocate the socket and allow the family to set things up. if 1121 * the protocol is 0, the family is instructed to select an appropriate 1122 * default. 1123 */ 1124 sock = sock_alloc(); 1125 if (!sock) { 1126 net_warn_ratelimited("socket: no more sockets\n"); 1127 return -ENFILE; /* Not exactly a match, but its the 1128 closest posix thing */ 1129 } 1130 1131 sock->type = type; 1132 1133 #ifdef CONFIG_MODULES 1134 /* Attempt to load a protocol module if the find failed. 1135 * 1136 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1137 * requested real, full-featured networking support upon configuration. 1138 * Otherwise module support will break! 1139 */ 1140 if (rcu_access_pointer(net_families[family]) == NULL) 1141 request_module("net-pf-%d", family); 1142 #endif 1143 1144 rcu_read_lock(); 1145 pf = rcu_dereference(net_families[family]); 1146 err = -EAFNOSUPPORT; 1147 if (!pf) 1148 goto out_release; 1149 1150 /* 1151 * We will call the ->create function, that possibly is in a loadable 1152 * module, so we have to bump that loadable module refcnt first. 1153 */ 1154 if (!try_module_get(pf->owner)) 1155 goto out_release; 1156 1157 /* Now protected by module ref count */ 1158 rcu_read_unlock(); 1159 1160 err = pf->create(net, sock, protocol, kern); 1161 if (err < 0) 1162 goto out_module_put; 1163 1164 /* 1165 * Now to bump the refcnt of the [loadable] module that owns this 1166 * socket at sock_release time we decrement its refcnt. 1167 */ 1168 if (!try_module_get(sock->ops->owner)) 1169 goto out_module_busy; 1170 1171 /* 1172 * Now that we're done with the ->create function, the [loadable] 1173 * module can have its refcnt decremented 1174 */ 1175 module_put(pf->owner); 1176 err = security_socket_post_create(sock, family, type, protocol, kern); 1177 if (err) 1178 goto out_sock_release; 1179 *res = sock; 1180 1181 return 0; 1182 1183 out_module_busy: 1184 err = -EAFNOSUPPORT; 1185 out_module_put: 1186 sock->ops = NULL; 1187 module_put(pf->owner); 1188 out_sock_release: 1189 sock_release(sock); 1190 return err; 1191 1192 out_release: 1193 rcu_read_unlock(); 1194 goto out_sock_release; 1195 } 1196 EXPORT_SYMBOL(__sock_create); 1197 1198 int sock_create(int family, int type, int protocol, struct socket **res) 1199 { 1200 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1201 } 1202 EXPORT_SYMBOL(sock_create); 1203 1204 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1205 { 1206 return __sock_create(net, family, type, protocol, res, 1); 1207 } 1208 EXPORT_SYMBOL(sock_create_kern); 1209 1210 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1211 { 1212 int retval; 1213 struct socket *sock; 1214 int flags; 1215 1216 /* Check the SOCK_* constants for consistency. */ 1217 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1218 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1219 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1220 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1221 1222 flags = type & ~SOCK_TYPE_MASK; 1223 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1224 return -EINVAL; 1225 type &= SOCK_TYPE_MASK; 1226 1227 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1228 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1229 1230 retval = sock_create(family, type, protocol, &sock); 1231 if (retval < 0) 1232 goto out; 1233 1234 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1235 if (retval < 0) 1236 goto out_release; 1237 1238 out: 1239 /* It may be already another descriptor 8) Not kernel problem. */ 1240 return retval; 1241 1242 out_release: 1243 sock_release(sock); 1244 return retval; 1245 } 1246 1247 /* 1248 * Create a pair of connected sockets. 1249 */ 1250 1251 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1252 int __user *, usockvec) 1253 { 1254 struct socket *sock1, *sock2; 1255 int fd1, fd2, err; 1256 struct file *newfile1, *newfile2; 1257 int flags; 1258 1259 flags = type & ~SOCK_TYPE_MASK; 1260 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1261 return -EINVAL; 1262 type &= SOCK_TYPE_MASK; 1263 1264 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1265 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1266 1267 /* 1268 * Obtain the first socket and check if the underlying protocol 1269 * supports the socketpair call. 1270 */ 1271 1272 err = sock_create(family, type, protocol, &sock1); 1273 if (err < 0) 1274 goto out; 1275 1276 err = sock_create(family, type, protocol, &sock2); 1277 if (err < 0) 1278 goto out_release_1; 1279 1280 err = sock1->ops->socketpair(sock1, sock2); 1281 if (err < 0) 1282 goto out_release_both; 1283 1284 fd1 = get_unused_fd_flags(flags); 1285 if (unlikely(fd1 < 0)) { 1286 err = fd1; 1287 goto out_release_both; 1288 } 1289 1290 fd2 = get_unused_fd_flags(flags); 1291 if (unlikely(fd2 < 0)) { 1292 err = fd2; 1293 goto out_put_unused_1; 1294 } 1295 1296 newfile1 = sock_alloc_file(sock1, flags, NULL); 1297 if (IS_ERR(newfile1)) { 1298 err = PTR_ERR(newfile1); 1299 goto out_put_unused_both; 1300 } 1301 1302 newfile2 = sock_alloc_file(sock2, flags, NULL); 1303 if (IS_ERR(newfile2)) { 1304 err = PTR_ERR(newfile2); 1305 goto out_fput_1; 1306 } 1307 1308 err = put_user(fd1, &usockvec[0]); 1309 if (err) 1310 goto out_fput_both; 1311 1312 err = put_user(fd2, &usockvec[1]); 1313 if (err) 1314 goto out_fput_both; 1315 1316 audit_fd_pair(fd1, fd2); 1317 1318 fd_install(fd1, newfile1); 1319 fd_install(fd2, newfile2); 1320 /* fd1 and fd2 may be already another descriptors. 1321 * Not kernel problem. 1322 */ 1323 1324 return 0; 1325 1326 out_fput_both: 1327 fput(newfile2); 1328 fput(newfile1); 1329 put_unused_fd(fd2); 1330 put_unused_fd(fd1); 1331 goto out; 1332 1333 out_fput_1: 1334 fput(newfile1); 1335 put_unused_fd(fd2); 1336 put_unused_fd(fd1); 1337 sock_release(sock2); 1338 goto out; 1339 1340 out_put_unused_both: 1341 put_unused_fd(fd2); 1342 out_put_unused_1: 1343 put_unused_fd(fd1); 1344 out_release_both: 1345 sock_release(sock2); 1346 out_release_1: 1347 sock_release(sock1); 1348 out: 1349 return err; 1350 } 1351 1352 /* 1353 * Bind a name to a socket. Nothing much to do here since it's 1354 * the protocol's responsibility to handle the local address. 1355 * 1356 * We move the socket address to kernel space before we call 1357 * the protocol layer (having also checked the address is ok). 1358 */ 1359 1360 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1361 { 1362 struct socket *sock; 1363 struct sockaddr_storage address; 1364 int err, fput_needed; 1365 1366 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1367 if (sock) { 1368 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1369 if (err >= 0) { 1370 err = security_socket_bind(sock, 1371 (struct sockaddr *)&address, 1372 addrlen); 1373 if (!err) 1374 err = sock->ops->bind(sock, 1375 (struct sockaddr *) 1376 &address, addrlen); 1377 } 1378 fput_light(sock->file, fput_needed); 1379 } 1380 return err; 1381 } 1382 1383 /* 1384 * Perform a listen. Basically, we allow the protocol to do anything 1385 * necessary for a listen, and if that works, we mark the socket as 1386 * ready for listening. 1387 */ 1388 1389 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1390 { 1391 struct socket *sock; 1392 int err, fput_needed; 1393 int somaxconn; 1394 1395 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1396 if (sock) { 1397 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1398 if ((unsigned int)backlog > somaxconn) 1399 backlog = somaxconn; 1400 1401 err = security_socket_listen(sock, backlog); 1402 if (!err) 1403 err = sock->ops->listen(sock, backlog); 1404 1405 fput_light(sock->file, fput_needed); 1406 } 1407 return err; 1408 } 1409 1410 /* 1411 * For accept, we attempt to create a new socket, set up the link 1412 * with the client, wake up the client, then return the new 1413 * connected fd. We collect the address of the connector in kernel 1414 * space and move it to user at the very end. This is unclean because 1415 * we open the socket then return an error. 1416 * 1417 * 1003.1g adds the ability to recvmsg() to query connection pending 1418 * status to recvmsg. We need to add that support in a way thats 1419 * clean when we restucture accept also. 1420 */ 1421 1422 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1423 int __user *, upeer_addrlen, int, flags) 1424 { 1425 struct socket *sock, *newsock; 1426 struct file *newfile; 1427 int err, len, newfd, fput_needed; 1428 struct sockaddr_storage address; 1429 1430 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1431 return -EINVAL; 1432 1433 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1434 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1435 1436 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1437 if (!sock) 1438 goto out; 1439 1440 err = -ENFILE; 1441 newsock = sock_alloc(); 1442 if (!newsock) 1443 goto out_put; 1444 1445 newsock->type = sock->type; 1446 newsock->ops = sock->ops; 1447 1448 /* 1449 * We don't need try_module_get here, as the listening socket (sock) 1450 * has the protocol module (sock->ops->owner) held. 1451 */ 1452 __module_get(newsock->ops->owner); 1453 1454 newfd = get_unused_fd_flags(flags); 1455 if (unlikely(newfd < 0)) { 1456 err = newfd; 1457 sock_release(newsock); 1458 goto out_put; 1459 } 1460 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1461 if (IS_ERR(newfile)) { 1462 err = PTR_ERR(newfile); 1463 put_unused_fd(newfd); 1464 sock_release(newsock); 1465 goto out_put; 1466 } 1467 1468 err = security_socket_accept(sock, newsock); 1469 if (err) 1470 goto out_fd; 1471 1472 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1473 if (err < 0) 1474 goto out_fd; 1475 1476 if (upeer_sockaddr) { 1477 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1478 &len, 2) < 0) { 1479 err = -ECONNABORTED; 1480 goto out_fd; 1481 } 1482 err = move_addr_to_user(&address, 1483 len, upeer_sockaddr, upeer_addrlen); 1484 if (err < 0) 1485 goto out_fd; 1486 } 1487 1488 /* File flags are not inherited via accept() unlike another OSes. */ 1489 1490 fd_install(newfd, newfile); 1491 err = newfd; 1492 1493 out_put: 1494 fput_light(sock->file, fput_needed); 1495 out: 1496 return err; 1497 out_fd: 1498 fput(newfile); 1499 put_unused_fd(newfd); 1500 goto out_put; 1501 } 1502 1503 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1504 int __user *, upeer_addrlen) 1505 { 1506 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1507 } 1508 1509 /* 1510 * Attempt to connect to a socket with the server address. The address 1511 * is in user space so we verify it is OK and move it to kernel space. 1512 * 1513 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1514 * break bindings 1515 * 1516 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1517 * other SEQPACKET protocols that take time to connect() as it doesn't 1518 * include the -EINPROGRESS status for such sockets. 1519 */ 1520 1521 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1522 int, addrlen) 1523 { 1524 struct socket *sock; 1525 struct sockaddr_storage address; 1526 int err, fput_needed; 1527 1528 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1529 if (!sock) 1530 goto out; 1531 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1532 if (err < 0) 1533 goto out_put; 1534 1535 err = 1536 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1537 if (err) 1538 goto out_put; 1539 1540 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1541 sock->file->f_flags); 1542 out_put: 1543 fput_light(sock->file, fput_needed); 1544 out: 1545 return err; 1546 } 1547 1548 /* 1549 * Get the local address ('name') of a socket object. Move the obtained 1550 * name to user space. 1551 */ 1552 1553 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1554 int __user *, usockaddr_len) 1555 { 1556 struct socket *sock; 1557 struct sockaddr_storage address; 1558 int len, err, fput_needed; 1559 1560 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1561 if (!sock) 1562 goto out; 1563 1564 err = security_socket_getsockname(sock); 1565 if (err) 1566 goto out_put; 1567 1568 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1569 if (err) 1570 goto out_put; 1571 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1572 1573 out_put: 1574 fput_light(sock->file, fput_needed); 1575 out: 1576 return err; 1577 } 1578 1579 /* 1580 * Get the remote address ('name') of a socket object. Move the obtained 1581 * name to user space. 1582 */ 1583 1584 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1585 int __user *, usockaddr_len) 1586 { 1587 struct socket *sock; 1588 struct sockaddr_storage address; 1589 int len, err, fput_needed; 1590 1591 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1592 if (sock != NULL) { 1593 err = security_socket_getpeername(sock); 1594 if (err) { 1595 fput_light(sock->file, fput_needed); 1596 return err; 1597 } 1598 1599 err = 1600 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1601 1); 1602 if (!err) 1603 err = move_addr_to_user(&address, len, usockaddr, 1604 usockaddr_len); 1605 fput_light(sock->file, fput_needed); 1606 } 1607 return err; 1608 } 1609 1610 /* 1611 * Send a datagram to a given address. We move the address into kernel 1612 * space and check the user space data area is readable before invoking 1613 * the protocol. 1614 */ 1615 1616 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1617 unsigned int, flags, struct sockaddr __user *, addr, 1618 int, addr_len) 1619 { 1620 struct socket *sock; 1621 struct sockaddr_storage address; 1622 int err; 1623 struct msghdr msg; 1624 struct iovec iov; 1625 int fput_needed; 1626 1627 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1628 if (unlikely(err)) 1629 return err; 1630 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1631 if (!sock) 1632 goto out; 1633 1634 msg.msg_name = NULL; 1635 msg.msg_control = NULL; 1636 msg.msg_controllen = 0; 1637 msg.msg_namelen = 0; 1638 if (addr) { 1639 err = move_addr_to_kernel(addr, addr_len, &address); 1640 if (err < 0) 1641 goto out_put; 1642 msg.msg_name = (struct sockaddr *)&address; 1643 msg.msg_namelen = addr_len; 1644 } 1645 if (sock->file->f_flags & O_NONBLOCK) 1646 flags |= MSG_DONTWAIT; 1647 msg.msg_flags = flags; 1648 err = sock_sendmsg(sock, &msg); 1649 1650 out_put: 1651 fput_light(sock->file, fput_needed); 1652 out: 1653 return err; 1654 } 1655 1656 /* 1657 * Send a datagram down a socket. 1658 */ 1659 1660 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1661 unsigned int, flags) 1662 { 1663 return sys_sendto(fd, buff, len, flags, NULL, 0); 1664 } 1665 1666 /* 1667 * Receive a frame from the socket and optionally record the address of the 1668 * sender. We verify the buffers are writable and if needed move the 1669 * sender address from kernel to user space. 1670 */ 1671 1672 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1673 unsigned int, flags, struct sockaddr __user *, addr, 1674 int __user *, addr_len) 1675 { 1676 struct socket *sock; 1677 struct iovec iov; 1678 struct msghdr msg; 1679 struct sockaddr_storage address; 1680 int err, err2; 1681 int fput_needed; 1682 1683 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1684 if (unlikely(err)) 1685 return err; 1686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1687 if (!sock) 1688 goto out; 1689 1690 msg.msg_control = NULL; 1691 msg.msg_controllen = 0; 1692 /* Save some cycles and don't copy the address if not needed */ 1693 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1694 /* We assume all kernel code knows the size of sockaddr_storage */ 1695 msg.msg_namelen = 0; 1696 msg.msg_iocb = NULL; 1697 if (sock->file->f_flags & O_NONBLOCK) 1698 flags |= MSG_DONTWAIT; 1699 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1700 1701 if (err >= 0 && addr != NULL) { 1702 err2 = move_addr_to_user(&address, 1703 msg.msg_namelen, addr, addr_len); 1704 if (err2 < 0) 1705 err = err2; 1706 } 1707 1708 fput_light(sock->file, fput_needed); 1709 out: 1710 return err; 1711 } 1712 1713 /* 1714 * Receive a datagram from a socket. 1715 */ 1716 1717 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1718 unsigned int, flags) 1719 { 1720 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1721 } 1722 1723 /* 1724 * Set a socket option. Because we don't know the option lengths we have 1725 * to pass the user mode parameter for the protocols to sort out. 1726 */ 1727 1728 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1729 char __user *, optval, int, optlen) 1730 { 1731 int err, fput_needed; 1732 struct socket *sock; 1733 1734 if (optlen < 0) 1735 return -EINVAL; 1736 1737 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1738 if (sock != NULL) { 1739 err = security_socket_setsockopt(sock, level, optname); 1740 if (err) 1741 goto out_put; 1742 1743 if (level == SOL_SOCKET) 1744 err = 1745 sock_setsockopt(sock, level, optname, optval, 1746 optlen); 1747 else 1748 err = 1749 sock->ops->setsockopt(sock, level, optname, optval, 1750 optlen); 1751 out_put: 1752 fput_light(sock->file, fput_needed); 1753 } 1754 return err; 1755 } 1756 1757 /* 1758 * Get a socket option. Because we don't know the option lengths we have 1759 * to pass a user mode parameter for the protocols to sort out. 1760 */ 1761 1762 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1763 char __user *, optval, int __user *, optlen) 1764 { 1765 int err, fput_needed; 1766 struct socket *sock; 1767 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (sock != NULL) { 1770 err = security_socket_getsockopt(sock, level, optname); 1771 if (err) 1772 goto out_put; 1773 1774 if (level == SOL_SOCKET) 1775 err = 1776 sock_getsockopt(sock, level, optname, optval, 1777 optlen); 1778 else 1779 err = 1780 sock->ops->getsockopt(sock, level, optname, optval, 1781 optlen); 1782 out_put: 1783 fput_light(sock->file, fput_needed); 1784 } 1785 return err; 1786 } 1787 1788 /* 1789 * Shutdown a socket. 1790 */ 1791 1792 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1793 { 1794 int err, fput_needed; 1795 struct socket *sock; 1796 1797 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1798 if (sock != NULL) { 1799 err = security_socket_shutdown(sock, how); 1800 if (!err) 1801 err = sock->ops->shutdown(sock, how); 1802 fput_light(sock->file, fput_needed); 1803 } 1804 return err; 1805 } 1806 1807 /* A couple of helpful macros for getting the address of the 32/64 bit 1808 * fields which are the same type (int / unsigned) on our platforms. 1809 */ 1810 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1811 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1812 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1813 1814 struct used_address { 1815 struct sockaddr_storage name; 1816 unsigned int name_len; 1817 }; 1818 1819 static int copy_msghdr_from_user(struct msghdr *kmsg, 1820 struct user_msghdr __user *umsg, 1821 struct sockaddr __user **save_addr, 1822 struct iovec **iov) 1823 { 1824 struct sockaddr __user *uaddr; 1825 struct iovec __user *uiov; 1826 size_t nr_segs; 1827 ssize_t err; 1828 1829 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1830 __get_user(uaddr, &umsg->msg_name) || 1831 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1832 __get_user(uiov, &umsg->msg_iov) || 1833 __get_user(nr_segs, &umsg->msg_iovlen) || 1834 __get_user(kmsg->msg_control, &umsg->msg_control) || 1835 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1836 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1837 return -EFAULT; 1838 1839 if (!uaddr) 1840 kmsg->msg_namelen = 0; 1841 1842 if (kmsg->msg_namelen < 0) 1843 return -EINVAL; 1844 1845 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1846 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1847 1848 if (save_addr) 1849 *save_addr = uaddr; 1850 1851 if (uaddr && kmsg->msg_namelen) { 1852 if (!save_addr) { 1853 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1854 kmsg->msg_name); 1855 if (err < 0) 1856 return err; 1857 } 1858 } else { 1859 kmsg->msg_name = NULL; 1860 kmsg->msg_namelen = 0; 1861 } 1862 1863 if (nr_segs > UIO_MAXIOV) 1864 return -EMSGSIZE; 1865 1866 kmsg->msg_iocb = NULL; 1867 1868 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1869 UIO_FASTIOV, iov, &kmsg->msg_iter); 1870 } 1871 1872 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1873 struct msghdr *msg_sys, unsigned int flags, 1874 struct used_address *used_address, 1875 unsigned int allowed_msghdr_flags) 1876 { 1877 struct compat_msghdr __user *msg_compat = 1878 (struct compat_msghdr __user *)msg; 1879 struct sockaddr_storage address; 1880 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1881 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1882 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1883 /* 20 is size of ipv6_pktinfo */ 1884 unsigned char *ctl_buf = ctl; 1885 int ctl_len; 1886 ssize_t err; 1887 1888 msg_sys->msg_name = &address; 1889 1890 if (MSG_CMSG_COMPAT & flags) 1891 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1892 else 1893 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1894 if (err < 0) 1895 return err; 1896 1897 err = -ENOBUFS; 1898 1899 if (msg_sys->msg_controllen > INT_MAX) 1900 goto out_freeiov; 1901 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1902 ctl_len = msg_sys->msg_controllen; 1903 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1904 err = 1905 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1906 sizeof(ctl)); 1907 if (err) 1908 goto out_freeiov; 1909 ctl_buf = msg_sys->msg_control; 1910 ctl_len = msg_sys->msg_controllen; 1911 } else if (ctl_len) { 1912 if (ctl_len > sizeof(ctl)) { 1913 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1914 if (ctl_buf == NULL) 1915 goto out_freeiov; 1916 } 1917 err = -EFAULT; 1918 /* 1919 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1920 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1921 * checking falls down on this. 1922 */ 1923 if (copy_from_user(ctl_buf, 1924 (void __user __force *)msg_sys->msg_control, 1925 ctl_len)) 1926 goto out_freectl; 1927 msg_sys->msg_control = ctl_buf; 1928 } 1929 msg_sys->msg_flags = flags; 1930 1931 if (sock->file->f_flags & O_NONBLOCK) 1932 msg_sys->msg_flags |= MSG_DONTWAIT; 1933 /* 1934 * If this is sendmmsg() and current destination address is same as 1935 * previously succeeded address, omit asking LSM's decision. 1936 * used_address->name_len is initialized to UINT_MAX so that the first 1937 * destination address never matches. 1938 */ 1939 if (used_address && msg_sys->msg_name && 1940 used_address->name_len == msg_sys->msg_namelen && 1941 !memcmp(&used_address->name, msg_sys->msg_name, 1942 used_address->name_len)) { 1943 err = sock_sendmsg_nosec(sock, msg_sys); 1944 goto out_freectl; 1945 } 1946 err = sock_sendmsg(sock, msg_sys); 1947 /* 1948 * If this is sendmmsg() and sending to current destination address was 1949 * successful, remember it. 1950 */ 1951 if (used_address && err >= 0) { 1952 used_address->name_len = msg_sys->msg_namelen; 1953 if (msg_sys->msg_name) 1954 memcpy(&used_address->name, msg_sys->msg_name, 1955 used_address->name_len); 1956 } 1957 1958 out_freectl: 1959 if (ctl_buf != ctl) 1960 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1961 out_freeiov: 1962 kfree(iov); 1963 return err; 1964 } 1965 1966 /* 1967 * BSD sendmsg interface 1968 */ 1969 1970 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1971 { 1972 int fput_needed, err; 1973 struct msghdr msg_sys; 1974 struct socket *sock; 1975 1976 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1977 if (!sock) 1978 goto out; 1979 1980 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 1981 1982 fput_light(sock->file, fput_needed); 1983 out: 1984 return err; 1985 } 1986 1987 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1988 { 1989 if (flags & MSG_CMSG_COMPAT) 1990 return -EINVAL; 1991 return __sys_sendmsg(fd, msg, flags); 1992 } 1993 1994 /* 1995 * Linux sendmmsg interface 1996 */ 1997 1998 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 1999 unsigned int flags) 2000 { 2001 int fput_needed, err, datagrams; 2002 struct socket *sock; 2003 struct mmsghdr __user *entry; 2004 struct compat_mmsghdr __user *compat_entry; 2005 struct msghdr msg_sys; 2006 struct used_address used_address; 2007 unsigned int oflags = flags; 2008 2009 if (vlen > UIO_MAXIOV) 2010 vlen = UIO_MAXIOV; 2011 2012 datagrams = 0; 2013 2014 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2015 if (!sock) 2016 return err; 2017 2018 used_address.name_len = UINT_MAX; 2019 entry = mmsg; 2020 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2021 err = 0; 2022 flags |= MSG_BATCH; 2023 2024 while (datagrams < vlen) { 2025 if (datagrams == vlen - 1) 2026 flags = oflags; 2027 2028 if (MSG_CMSG_COMPAT & flags) { 2029 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2030 &msg_sys, flags, &used_address, MSG_EOR); 2031 if (err < 0) 2032 break; 2033 err = __put_user(err, &compat_entry->msg_len); 2034 ++compat_entry; 2035 } else { 2036 err = ___sys_sendmsg(sock, 2037 (struct user_msghdr __user *)entry, 2038 &msg_sys, flags, &used_address, MSG_EOR); 2039 if (err < 0) 2040 break; 2041 err = put_user(err, &entry->msg_len); 2042 ++entry; 2043 } 2044 2045 if (err) 2046 break; 2047 ++datagrams; 2048 cond_resched(); 2049 } 2050 2051 fput_light(sock->file, fput_needed); 2052 2053 /* We only return an error if no datagrams were able to be sent */ 2054 if (datagrams != 0) 2055 return datagrams; 2056 2057 return err; 2058 } 2059 2060 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2061 unsigned int, vlen, unsigned int, flags) 2062 { 2063 if (flags & MSG_CMSG_COMPAT) 2064 return -EINVAL; 2065 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2066 } 2067 2068 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2069 struct msghdr *msg_sys, unsigned int flags, int nosec) 2070 { 2071 struct compat_msghdr __user *msg_compat = 2072 (struct compat_msghdr __user *)msg; 2073 struct iovec iovstack[UIO_FASTIOV]; 2074 struct iovec *iov = iovstack; 2075 unsigned long cmsg_ptr; 2076 int total_len, len; 2077 ssize_t err; 2078 2079 /* kernel mode address */ 2080 struct sockaddr_storage addr; 2081 2082 /* user mode address pointers */ 2083 struct sockaddr __user *uaddr; 2084 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2085 2086 msg_sys->msg_name = &addr; 2087 2088 if (MSG_CMSG_COMPAT & flags) 2089 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2090 else 2091 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2092 if (err < 0) 2093 return err; 2094 total_len = iov_iter_count(&msg_sys->msg_iter); 2095 2096 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2097 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2098 2099 /* We assume all kernel code knows the size of sockaddr_storage */ 2100 msg_sys->msg_namelen = 0; 2101 2102 if (sock->file->f_flags & O_NONBLOCK) 2103 flags |= MSG_DONTWAIT; 2104 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2105 total_len, flags); 2106 if (err < 0) 2107 goto out_freeiov; 2108 len = err; 2109 2110 if (uaddr != NULL) { 2111 err = move_addr_to_user(&addr, 2112 msg_sys->msg_namelen, uaddr, 2113 uaddr_len); 2114 if (err < 0) 2115 goto out_freeiov; 2116 } 2117 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2118 COMPAT_FLAGS(msg)); 2119 if (err) 2120 goto out_freeiov; 2121 if (MSG_CMSG_COMPAT & flags) 2122 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2123 &msg_compat->msg_controllen); 2124 else 2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2126 &msg->msg_controllen); 2127 if (err) 2128 goto out_freeiov; 2129 err = len; 2130 2131 out_freeiov: 2132 kfree(iov); 2133 return err; 2134 } 2135 2136 /* 2137 * BSD recvmsg interface 2138 */ 2139 2140 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2141 { 2142 int fput_needed, err; 2143 struct msghdr msg_sys; 2144 struct socket *sock; 2145 2146 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2147 if (!sock) 2148 goto out; 2149 2150 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2151 2152 fput_light(sock->file, fput_needed); 2153 out: 2154 return err; 2155 } 2156 2157 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2158 unsigned int, flags) 2159 { 2160 if (flags & MSG_CMSG_COMPAT) 2161 return -EINVAL; 2162 return __sys_recvmsg(fd, msg, flags); 2163 } 2164 2165 /* 2166 * Linux recvmmsg interface 2167 */ 2168 2169 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2170 unsigned int flags, struct timespec *timeout) 2171 { 2172 int fput_needed, err, datagrams; 2173 struct socket *sock; 2174 struct mmsghdr __user *entry; 2175 struct compat_mmsghdr __user *compat_entry; 2176 struct msghdr msg_sys; 2177 struct timespec end_time; 2178 2179 if (timeout && 2180 poll_select_set_timeout(&end_time, timeout->tv_sec, 2181 timeout->tv_nsec)) 2182 return -EINVAL; 2183 2184 datagrams = 0; 2185 2186 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2187 if (!sock) 2188 return err; 2189 2190 err = sock_error(sock->sk); 2191 if (err) 2192 goto out_put; 2193 2194 entry = mmsg; 2195 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2196 2197 while (datagrams < vlen) { 2198 /* 2199 * No need to ask LSM for more than the first datagram. 2200 */ 2201 if (MSG_CMSG_COMPAT & flags) { 2202 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2203 &msg_sys, flags & ~MSG_WAITFORONE, 2204 datagrams); 2205 if (err < 0) 2206 break; 2207 err = __put_user(err, &compat_entry->msg_len); 2208 ++compat_entry; 2209 } else { 2210 err = ___sys_recvmsg(sock, 2211 (struct user_msghdr __user *)entry, 2212 &msg_sys, flags & ~MSG_WAITFORONE, 2213 datagrams); 2214 if (err < 0) 2215 break; 2216 err = put_user(err, &entry->msg_len); 2217 ++entry; 2218 } 2219 2220 if (err) 2221 break; 2222 ++datagrams; 2223 2224 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2225 if (flags & MSG_WAITFORONE) 2226 flags |= MSG_DONTWAIT; 2227 2228 if (timeout) { 2229 ktime_get_ts(timeout); 2230 *timeout = timespec_sub(end_time, *timeout); 2231 if (timeout->tv_sec < 0) { 2232 timeout->tv_sec = timeout->tv_nsec = 0; 2233 break; 2234 } 2235 2236 /* Timeout, return less than vlen datagrams */ 2237 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2238 break; 2239 } 2240 2241 /* Out of band data, return right away */ 2242 if (msg_sys.msg_flags & MSG_OOB) 2243 break; 2244 cond_resched(); 2245 } 2246 2247 if (err == 0) 2248 goto out_put; 2249 2250 if (datagrams == 0) { 2251 datagrams = err; 2252 goto out_put; 2253 } 2254 2255 /* 2256 * We may return less entries than requested (vlen) if the 2257 * sock is non block and there aren't enough datagrams... 2258 */ 2259 if (err != -EAGAIN) { 2260 /* 2261 * ... or if recvmsg returns an error after we 2262 * received some datagrams, where we record the 2263 * error to return on the next call or if the 2264 * app asks about it using getsockopt(SO_ERROR). 2265 */ 2266 sock->sk->sk_err = -err; 2267 } 2268 out_put: 2269 fput_light(sock->file, fput_needed); 2270 2271 return datagrams; 2272 } 2273 2274 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2275 unsigned int, vlen, unsigned int, flags, 2276 struct timespec __user *, timeout) 2277 { 2278 int datagrams; 2279 struct timespec timeout_sys; 2280 2281 if (flags & MSG_CMSG_COMPAT) 2282 return -EINVAL; 2283 2284 if (!timeout) 2285 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2286 2287 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2288 return -EFAULT; 2289 2290 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2291 2292 if (datagrams > 0 && 2293 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2294 datagrams = -EFAULT; 2295 2296 return datagrams; 2297 } 2298 2299 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2300 /* Argument list sizes for sys_socketcall */ 2301 #define AL(x) ((x) * sizeof(unsigned long)) 2302 static const unsigned char nargs[21] = { 2303 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2304 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2305 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2306 AL(4), AL(5), AL(4) 2307 }; 2308 2309 #undef AL 2310 2311 /* 2312 * System call vectors. 2313 * 2314 * Argument checking cleaned up. Saved 20% in size. 2315 * This function doesn't need to set the kernel lock because 2316 * it is set by the callees. 2317 */ 2318 2319 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2320 { 2321 unsigned long a[AUDITSC_ARGS]; 2322 unsigned long a0, a1; 2323 int err; 2324 unsigned int len; 2325 2326 if (call < 1 || call > SYS_SENDMMSG) 2327 return -EINVAL; 2328 2329 len = nargs[call]; 2330 if (len > sizeof(a)) 2331 return -EINVAL; 2332 2333 /* copy_from_user should be SMP safe. */ 2334 if (copy_from_user(a, args, len)) 2335 return -EFAULT; 2336 2337 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2338 if (err) 2339 return err; 2340 2341 a0 = a[0]; 2342 a1 = a[1]; 2343 2344 switch (call) { 2345 case SYS_SOCKET: 2346 err = sys_socket(a0, a1, a[2]); 2347 break; 2348 case SYS_BIND: 2349 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2350 break; 2351 case SYS_CONNECT: 2352 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2353 break; 2354 case SYS_LISTEN: 2355 err = sys_listen(a0, a1); 2356 break; 2357 case SYS_ACCEPT: 2358 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2359 (int __user *)a[2], 0); 2360 break; 2361 case SYS_GETSOCKNAME: 2362 err = 2363 sys_getsockname(a0, (struct sockaddr __user *)a1, 2364 (int __user *)a[2]); 2365 break; 2366 case SYS_GETPEERNAME: 2367 err = 2368 sys_getpeername(a0, (struct sockaddr __user *)a1, 2369 (int __user *)a[2]); 2370 break; 2371 case SYS_SOCKETPAIR: 2372 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2373 break; 2374 case SYS_SEND: 2375 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2376 break; 2377 case SYS_SENDTO: 2378 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2379 (struct sockaddr __user *)a[4], a[5]); 2380 break; 2381 case SYS_RECV: 2382 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2383 break; 2384 case SYS_RECVFROM: 2385 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2386 (struct sockaddr __user *)a[4], 2387 (int __user *)a[5]); 2388 break; 2389 case SYS_SHUTDOWN: 2390 err = sys_shutdown(a0, a1); 2391 break; 2392 case SYS_SETSOCKOPT: 2393 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2394 break; 2395 case SYS_GETSOCKOPT: 2396 err = 2397 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2398 (int __user *)a[4]); 2399 break; 2400 case SYS_SENDMSG: 2401 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2402 break; 2403 case SYS_SENDMMSG: 2404 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2405 break; 2406 case SYS_RECVMSG: 2407 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2408 break; 2409 case SYS_RECVMMSG: 2410 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2411 (struct timespec __user *)a[4]); 2412 break; 2413 case SYS_ACCEPT4: 2414 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2415 (int __user *)a[2], a[3]); 2416 break; 2417 default: 2418 err = -EINVAL; 2419 break; 2420 } 2421 return err; 2422 } 2423 2424 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2425 2426 /** 2427 * sock_register - add a socket protocol handler 2428 * @ops: description of protocol 2429 * 2430 * This function is called by a protocol handler that wants to 2431 * advertise its address family, and have it linked into the 2432 * socket interface. The value ops->family corresponds to the 2433 * socket system call protocol family. 2434 */ 2435 int sock_register(const struct net_proto_family *ops) 2436 { 2437 int err; 2438 2439 if (ops->family >= NPROTO) { 2440 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2441 return -ENOBUFS; 2442 } 2443 2444 spin_lock(&net_family_lock); 2445 if (rcu_dereference_protected(net_families[ops->family], 2446 lockdep_is_held(&net_family_lock))) 2447 err = -EEXIST; 2448 else { 2449 rcu_assign_pointer(net_families[ops->family], ops); 2450 err = 0; 2451 } 2452 spin_unlock(&net_family_lock); 2453 2454 pr_info("NET: Registered protocol family %d\n", ops->family); 2455 return err; 2456 } 2457 EXPORT_SYMBOL(sock_register); 2458 2459 /** 2460 * sock_unregister - remove a protocol handler 2461 * @family: protocol family to remove 2462 * 2463 * This function is called by a protocol handler that wants to 2464 * remove its address family, and have it unlinked from the 2465 * new socket creation. 2466 * 2467 * If protocol handler is a module, then it can use module reference 2468 * counts to protect against new references. If protocol handler is not 2469 * a module then it needs to provide its own protection in 2470 * the ops->create routine. 2471 */ 2472 void sock_unregister(int family) 2473 { 2474 BUG_ON(family < 0 || family >= NPROTO); 2475 2476 spin_lock(&net_family_lock); 2477 RCU_INIT_POINTER(net_families[family], NULL); 2478 spin_unlock(&net_family_lock); 2479 2480 synchronize_rcu(); 2481 2482 pr_info("NET: Unregistered protocol family %d\n", family); 2483 } 2484 EXPORT_SYMBOL(sock_unregister); 2485 2486 static int __init sock_init(void) 2487 { 2488 int err; 2489 /* 2490 * Initialize the network sysctl infrastructure. 2491 */ 2492 err = net_sysctl_init(); 2493 if (err) 2494 goto out; 2495 2496 /* 2497 * Initialize skbuff SLAB cache 2498 */ 2499 skb_init(); 2500 2501 /* 2502 * Initialize the protocols module. 2503 */ 2504 2505 init_inodecache(); 2506 2507 err = register_filesystem(&sock_fs_type); 2508 if (err) 2509 goto out_fs; 2510 sock_mnt = kern_mount(&sock_fs_type); 2511 if (IS_ERR(sock_mnt)) { 2512 err = PTR_ERR(sock_mnt); 2513 goto out_mount; 2514 } 2515 2516 /* The real protocol initialization is performed in later initcalls. 2517 */ 2518 2519 #ifdef CONFIG_NETFILTER 2520 err = netfilter_init(); 2521 if (err) 2522 goto out; 2523 #endif 2524 2525 ptp_classifier_init(); 2526 2527 out: 2528 return err; 2529 2530 out_mount: 2531 unregister_filesystem(&sock_fs_type); 2532 out_fs: 2533 goto out; 2534 } 2535 2536 core_initcall(sock_init); /* early initcall */ 2537 2538 #ifdef CONFIG_PROC_FS 2539 void socket_seq_show(struct seq_file *seq) 2540 { 2541 int cpu; 2542 int counter = 0; 2543 2544 for_each_possible_cpu(cpu) 2545 counter += per_cpu(sockets_in_use, cpu); 2546 2547 /* It can be negative, by the way. 8) */ 2548 if (counter < 0) 2549 counter = 0; 2550 2551 seq_printf(seq, "sockets: used %d\n", counter); 2552 } 2553 #endif /* CONFIG_PROC_FS */ 2554 2555 #ifdef CONFIG_COMPAT 2556 static int do_siocgstamp(struct net *net, struct socket *sock, 2557 unsigned int cmd, void __user *up) 2558 { 2559 mm_segment_t old_fs = get_fs(); 2560 struct timeval ktv; 2561 int err; 2562 2563 set_fs(KERNEL_DS); 2564 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2565 set_fs(old_fs); 2566 if (!err) 2567 err = compat_put_timeval(&ktv, up); 2568 2569 return err; 2570 } 2571 2572 static int do_siocgstampns(struct net *net, struct socket *sock, 2573 unsigned int cmd, void __user *up) 2574 { 2575 mm_segment_t old_fs = get_fs(); 2576 struct timespec kts; 2577 int err; 2578 2579 set_fs(KERNEL_DS); 2580 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2581 set_fs(old_fs); 2582 if (!err) 2583 err = compat_put_timespec(&kts, up); 2584 2585 return err; 2586 } 2587 2588 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2589 { 2590 struct ifreq __user *uifr; 2591 int err; 2592 2593 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2594 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2595 return -EFAULT; 2596 2597 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2598 if (err) 2599 return err; 2600 2601 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2602 return -EFAULT; 2603 2604 return 0; 2605 } 2606 2607 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2608 { 2609 struct compat_ifconf ifc32; 2610 struct ifconf ifc; 2611 struct ifconf __user *uifc; 2612 struct compat_ifreq __user *ifr32; 2613 struct ifreq __user *ifr; 2614 unsigned int i, j; 2615 int err; 2616 2617 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2618 return -EFAULT; 2619 2620 memset(&ifc, 0, sizeof(ifc)); 2621 if (ifc32.ifcbuf == 0) { 2622 ifc32.ifc_len = 0; 2623 ifc.ifc_len = 0; 2624 ifc.ifc_req = NULL; 2625 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2626 } else { 2627 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2628 sizeof(struct ifreq); 2629 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2630 ifc.ifc_len = len; 2631 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2632 ifr32 = compat_ptr(ifc32.ifcbuf); 2633 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2634 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2635 return -EFAULT; 2636 ifr++; 2637 ifr32++; 2638 } 2639 } 2640 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2641 return -EFAULT; 2642 2643 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2644 if (err) 2645 return err; 2646 2647 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2648 return -EFAULT; 2649 2650 ifr = ifc.ifc_req; 2651 ifr32 = compat_ptr(ifc32.ifcbuf); 2652 for (i = 0, j = 0; 2653 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2654 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2655 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2656 return -EFAULT; 2657 ifr32++; 2658 ifr++; 2659 } 2660 2661 if (ifc32.ifcbuf == 0) { 2662 /* Translate from 64-bit structure multiple to 2663 * a 32-bit one. 2664 */ 2665 i = ifc.ifc_len; 2666 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2667 ifc32.ifc_len = i; 2668 } else { 2669 ifc32.ifc_len = i; 2670 } 2671 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2672 return -EFAULT; 2673 2674 return 0; 2675 } 2676 2677 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2678 { 2679 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2680 bool convert_in = false, convert_out = false; 2681 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2682 struct ethtool_rxnfc __user *rxnfc; 2683 struct ifreq __user *ifr; 2684 u32 rule_cnt = 0, actual_rule_cnt; 2685 u32 ethcmd; 2686 u32 data; 2687 int ret; 2688 2689 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2690 return -EFAULT; 2691 2692 compat_rxnfc = compat_ptr(data); 2693 2694 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2695 return -EFAULT; 2696 2697 /* Most ethtool structures are defined without padding. 2698 * Unfortunately struct ethtool_rxnfc is an exception. 2699 */ 2700 switch (ethcmd) { 2701 default: 2702 break; 2703 case ETHTOOL_GRXCLSRLALL: 2704 /* Buffer size is variable */ 2705 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2706 return -EFAULT; 2707 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2708 return -ENOMEM; 2709 buf_size += rule_cnt * sizeof(u32); 2710 /* fall through */ 2711 case ETHTOOL_GRXRINGS: 2712 case ETHTOOL_GRXCLSRLCNT: 2713 case ETHTOOL_GRXCLSRULE: 2714 case ETHTOOL_SRXCLSRLINS: 2715 convert_out = true; 2716 /* fall through */ 2717 case ETHTOOL_SRXCLSRLDEL: 2718 buf_size += sizeof(struct ethtool_rxnfc); 2719 convert_in = true; 2720 break; 2721 } 2722 2723 ifr = compat_alloc_user_space(buf_size); 2724 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2725 2726 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2727 return -EFAULT; 2728 2729 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2730 &ifr->ifr_ifru.ifru_data)) 2731 return -EFAULT; 2732 2733 if (convert_in) { 2734 /* We expect there to be holes between fs.m_ext and 2735 * fs.ring_cookie and at the end of fs, but nowhere else. 2736 */ 2737 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2738 sizeof(compat_rxnfc->fs.m_ext) != 2739 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2740 sizeof(rxnfc->fs.m_ext)); 2741 BUILD_BUG_ON( 2742 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2743 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2744 offsetof(struct ethtool_rxnfc, fs.location) - 2745 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2746 2747 if (copy_in_user(rxnfc, compat_rxnfc, 2748 (void __user *)(&rxnfc->fs.m_ext + 1) - 2749 (void __user *)rxnfc) || 2750 copy_in_user(&rxnfc->fs.ring_cookie, 2751 &compat_rxnfc->fs.ring_cookie, 2752 (void __user *)(&rxnfc->fs.location + 1) - 2753 (void __user *)&rxnfc->fs.ring_cookie) || 2754 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2755 sizeof(rxnfc->rule_cnt))) 2756 return -EFAULT; 2757 } 2758 2759 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2760 if (ret) 2761 return ret; 2762 2763 if (convert_out) { 2764 if (copy_in_user(compat_rxnfc, rxnfc, 2765 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2766 (const void __user *)rxnfc) || 2767 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2768 &rxnfc->fs.ring_cookie, 2769 (const void __user *)(&rxnfc->fs.location + 1) - 2770 (const void __user *)&rxnfc->fs.ring_cookie) || 2771 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2772 sizeof(rxnfc->rule_cnt))) 2773 return -EFAULT; 2774 2775 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2776 /* As an optimisation, we only copy the actual 2777 * number of rules that the underlying 2778 * function returned. Since Mallory might 2779 * change the rule count in user memory, we 2780 * check that it is less than the rule count 2781 * originally given (as the user buffer size), 2782 * which has been range-checked. 2783 */ 2784 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2785 return -EFAULT; 2786 if (actual_rule_cnt < rule_cnt) 2787 rule_cnt = actual_rule_cnt; 2788 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2789 &rxnfc->rule_locs[0], 2790 rule_cnt * sizeof(u32))) 2791 return -EFAULT; 2792 } 2793 } 2794 2795 return 0; 2796 } 2797 2798 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2799 { 2800 void __user *uptr; 2801 compat_uptr_t uptr32; 2802 struct ifreq __user *uifr; 2803 2804 uifr = compat_alloc_user_space(sizeof(*uifr)); 2805 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2806 return -EFAULT; 2807 2808 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2809 return -EFAULT; 2810 2811 uptr = compat_ptr(uptr32); 2812 2813 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2814 return -EFAULT; 2815 2816 return dev_ioctl(net, SIOCWANDEV, uifr); 2817 } 2818 2819 static int bond_ioctl(struct net *net, unsigned int cmd, 2820 struct compat_ifreq __user *ifr32) 2821 { 2822 struct ifreq kifr; 2823 mm_segment_t old_fs; 2824 int err; 2825 2826 switch (cmd) { 2827 case SIOCBONDENSLAVE: 2828 case SIOCBONDRELEASE: 2829 case SIOCBONDSETHWADDR: 2830 case SIOCBONDCHANGEACTIVE: 2831 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2832 return -EFAULT; 2833 2834 old_fs = get_fs(); 2835 set_fs(KERNEL_DS); 2836 err = dev_ioctl(net, cmd, 2837 (struct ifreq __user __force *) &kifr); 2838 set_fs(old_fs); 2839 2840 return err; 2841 default: 2842 return -ENOIOCTLCMD; 2843 } 2844 } 2845 2846 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2847 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2848 struct compat_ifreq __user *u_ifreq32) 2849 { 2850 struct ifreq __user *u_ifreq64; 2851 char tmp_buf[IFNAMSIZ]; 2852 void __user *data64; 2853 u32 data32; 2854 2855 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2856 IFNAMSIZ)) 2857 return -EFAULT; 2858 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2859 return -EFAULT; 2860 data64 = compat_ptr(data32); 2861 2862 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2863 2864 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2865 IFNAMSIZ)) 2866 return -EFAULT; 2867 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2868 return -EFAULT; 2869 2870 return dev_ioctl(net, cmd, u_ifreq64); 2871 } 2872 2873 static int dev_ifsioc(struct net *net, struct socket *sock, 2874 unsigned int cmd, struct compat_ifreq __user *uifr32) 2875 { 2876 struct ifreq __user *uifr; 2877 int err; 2878 2879 uifr = compat_alloc_user_space(sizeof(*uifr)); 2880 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2881 return -EFAULT; 2882 2883 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2884 2885 if (!err) { 2886 switch (cmd) { 2887 case SIOCGIFFLAGS: 2888 case SIOCGIFMETRIC: 2889 case SIOCGIFMTU: 2890 case SIOCGIFMEM: 2891 case SIOCGIFHWADDR: 2892 case SIOCGIFINDEX: 2893 case SIOCGIFADDR: 2894 case SIOCGIFBRDADDR: 2895 case SIOCGIFDSTADDR: 2896 case SIOCGIFNETMASK: 2897 case SIOCGIFPFLAGS: 2898 case SIOCGIFTXQLEN: 2899 case SIOCGMIIPHY: 2900 case SIOCGMIIREG: 2901 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2902 err = -EFAULT; 2903 break; 2904 } 2905 } 2906 return err; 2907 } 2908 2909 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2910 struct compat_ifreq __user *uifr32) 2911 { 2912 struct ifreq ifr; 2913 struct compat_ifmap __user *uifmap32; 2914 mm_segment_t old_fs; 2915 int err; 2916 2917 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2918 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2919 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2920 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2921 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2922 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2923 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2924 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2925 if (err) 2926 return -EFAULT; 2927 2928 old_fs = get_fs(); 2929 set_fs(KERNEL_DS); 2930 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2931 set_fs(old_fs); 2932 2933 if (cmd == SIOCGIFMAP && !err) { 2934 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2935 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2936 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2937 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2938 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2939 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2940 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2941 if (err) 2942 err = -EFAULT; 2943 } 2944 return err; 2945 } 2946 2947 struct rtentry32 { 2948 u32 rt_pad1; 2949 struct sockaddr rt_dst; /* target address */ 2950 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2951 struct sockaddr rt_genmask; /* target network mask (IP) */ 2952 unsigned short rt_flags; 2953 short rt_pad2; 2954 u32 rt_pad3; 2955 unsigned char rt_tos; 2956 unsigned char rt_class; 2957 short rt_pad4; 2958 short rt_metric; /* +1 for binary compatibility! */ 2959 /* char * */ u32 rt_dev; /* forcing the device at add */ 2960 u32 rt_mtu; /* per route MTU/Window */ 2961 u32 rt_window; /* Window clamping */ 2962 unsigned short rt_irtt; /* Initial RTT */ 2963 }; 2964 2965 struct in6_rtmsg32 { 2966 struct in6_addr rtmsg_dst; 2967 struct in6_addr rtmsg_src; 2968 struct in6_addr rtmsg_gateway; 2969 u32 rtmsg_type; 2970 u16 rtmsg_dst_len; 2971 u16 rtmsg_src_len; 2972 u32 rtmsg_metric; 2973 u32 rtmsg_info; 2974 u32 rtmsg_flags; 2975 s32 rtmsg_ifindex; 2976 }; 2977 2978 static int routing_ioctl(struct net *net, struct socket *sock, 2979 unsigned int cmd, void __user *argp) 2980 { 2981 int ret; 2982 void *r = NULL; 2983 struct in6_rtmsg r6; 2984 struct rtentry r4; 2985 char devname[16]; 2986 u32 rtdev; 2987 mm_segment_t old_fs = get_fs(); 2988 2989 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2990 struct in6_rtmsg32 __user *ur6 = argp; 2991 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2992 3 * sizeof(struct in6_addr)); 2993 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2994 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2995 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2996 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2997 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2998 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2999 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3000 3001 r = (void *) &r6; 3002 } else { /* ipv4 */ 3003 struct rtentry32 __user *ur4 = argp; 3004 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3005 3 * sizeof(struct sockaddr)); 3006 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3007 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3008 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3009 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3010 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3011 ret |= get_user(rtdev, &(ur4->rt_dev)); 3012 if (rtdev) { 3013 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3014 r4.rt_dev = (char __user __force *)devname; 3015 devname[15] = 0; 3016 } else 3017 r4.rt_dev = NULL; 3018 3019 r = (void *) &r4; 3020 } 3021 3022 if (ret) { 3023 ret = -EFAULT; 3024 goto out; 3025 } 3026 3027 set_fs(KERNEL_DS); 3028 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3029 set_fs(old_fs); 3030 3031 out: 3032 return ret; 3033 } 3034 3035 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3036 * for some operations; this forces use of the newer bridge-utils that 3037 * use compatible ioctls 3038 */ 3039 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3040 { 3041 compat_ulong_t tmp; 3042 3043 if (get_user(tmp, argp)) 3044 return -EFAULT; 3045 if (tmp == BRCTL_GET_VERSION) 3046 return BRCTL_VERSION + 1; 3047 return -EINVAL; 3048 } 3049 3050 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3051 unsigned int cmd, unsigned long arg) 3052 { 3053 void __user *argp = compat_ptr(arg); 3054 struct sock *sk = sock->sk; 3055 struct net *net = sock_net(sk); 3056 3057 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3058 return compat_ifr_data_ioctl(net, cmd, argp); 3059 3060 switch (cmd) { 3061 case SIOCSIFBR: 3062 case SIOCGIFBR: 3063 return old_bridge_ioctl(argp); 3064 case SIOCGIFNAME: 3065 return dev_ifname32(net, argp); 3066 case SIOCGIFCONF: 3067 return dev_ifconf(net, argp); 3068 case SIOCETHTOOL: 3069 return ethtool_ioctl(net, argp); 3070 case SIOCWANDEV: 3071 return compat_siocwandev(net, argp); 3072 case SIOCGIFMAP: 3073 case SIOCSIFMAP: 3074 return compat_sioc_ifmap(net, cmd, argp); 3075 case SIOCBONDENSLAVE: 3076 case SIOCBONDRELEASE: 3077 case SIOCBONDSETHWADDR: 3078 case SIOCBONDCHANGEACTIVE: 3079 return bond_ioctl(net, cmd, argp); 3080 case SIOCADDRT: 3081 case SIOCDELRT: 3082 return routing_ioctl(net, sock, cmd, argp); 3083 case SIOCGSTAMP: 3084 return do_siocgstamp(net, sock, cmd, argp); 3085 case SIOCGSTAMPNS: 3086 return do_siocgstampns(net, sock, cmd, argp); 3087 case SIOCBONDSLAVEINFOQUERY: 3088 case SIOCBONDINFOQUERY: 3089 case SIOCSHWTSTAMP: 3090 case SIOCGHWTSTAMP: 3091 return compat_ifr_data_ioctl(net, cmd, argp); 3092 3093 case FIOSETOWN: 3094 case SIOCSPGRP: 3095 case FIOGETOWN: 3096 case SIOCGPGRP: 3097 case SIOCBRADDBR: 3098 case SIOCBRDELBR: 3099 case SIOCGIFVLAN: 3100 case SIOCSIFVLAN: 3101 case SIOCADDDLCI: 3102 case SIOCDELDLCI: 3103 return sock_ioctl(file, cmd, arg); 3104 3105 case SIOCGIFFLAGS: 3106 case SIOCSIFFLAGS: 3107 case SIOCGIFMETRIC: 3108 case SIOCSIFMETRIC: 3109 case SIOCGIFMTU: 3110 case SIOCSIFMTU: 3111 case SIOCGIFMEM: 3112 case SIOCSIFMEM: 3113 case SIOCGIFHWADDR: 3114 case SIOCSIFHWADDR: 3115 case SIOCADDMULTI: 3116 case SIOCDELMULTI: 3117 case SIOCGIFINDEX: 3118 case SIOCGIFADDR: 3119 case SIOCSIFADDR: 3120 case SIOCSIFHWBROADCAST: 3121 case SIOCDIFADDR: 3122 case SIOCGIFBRDADDR: 3123 case SIOCSIFBRDADDR: 3124 case SIOCGIFDSTADDR: 3125 case SIOCSIFDSTADDR: 3126 case SIOCGIFNETMASK: 3127 case SIOCSIFNETMASK: 3128 case SIOCSIFPFLAGS: 3129 case SIOCGIFPFLAGS: 3130 case SIOCGIFTXQLEN: 3131 case SIOCSIFTXQLEN: 3132 case SIOCBRADDIF: 3133 case SIOCBRDELIF: 3134 case SIOCSIFNAME: 3135 case SIOCGMIIPHY: 3136 case SIOCGMIIREG: 3137 case SIOCSMIIREG: 3138 return dev_ifsioc(net, sock, cmd, argp); 3139 3140 case SIOCSARP: 3141 case SIOCGARP: 3142 case SIOCDARP: 3143 case SIOCATMARK: 3144 return sock_do_ioctl(net, sock, cmd, arg); 3145 } 3146 3147 return -ENOIOCTLCMD; 3148 } 3149 3150 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3151 unsigned long arg) 3152 { 3153 struct socket *sock = file->private_data; 3154 int ret = -ENOIOCTLCMD; 3155 struct sock *sk; 3156 struct net *net; 3157 3158 sk = sock->sk; 3159 net = sock_net(sk); 3160 3161 if (sock->ops->compat_ioctl) 3162 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3163 3164 if (ret == -ENOIOCTLCMD && 3165 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3166 ret = compat_wext_handle_ioctl(net, cmd, arg); 3167 3168 if (ret == -ENOIOCTLCMD) 3169 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3170 3171 return ret; 3172 } 3173 #endif 3174 3175 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3176 { 3177 return sock->ops->bind(sock, addr, addrlen); 3178 } 3179 EXPORT_SYMBOL(kernel_bind); 3180 3181 int kernel_listen(struct socket *sock, int backlog) 3182 { 3183 return sock->ops->listen(sock, backlog); 3184 } 3185 EXPORT_SYMBOL(kernel_listen); 3186 3187 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3188 { 3189 struct sock *sk = sock->sk; 3190 int err; 3191 3192 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3193 newsock); 3194 if (err < 0) 3195 goto done; 3196 3197 err = sock->ops->accept(sock, *newsock, flags); 3198 if (err < 0) { 3199 sock_release(*newsock); 3200 *newsock = NULL; 3201 goto done; 3202 } 3203 3204 (*newsock)->ops = sock->ops; 3205 __module_get((*newsock)->ops->owner); 3206 3207 done: 3208 return err; 3209 } 3210 EXPORT_SYMBOL(kernel_accept); 3211 3212 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3213 int flags) 3214 { 3215 return sock->ops->connect(sock, addr, addrlen, flags); 3216 } 3217 EXPORT_SYMBOL(kernel_connect); 3218 3219 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3220 int *addrlen) 3221 { 3222 return sock->ops->getname(sock, addr, addrlen, 0); 3223 } 3224 EXPORT_SYMBOL(kernel_getsockname); 3225 3226 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3227 int *addrlen) 3228 { 3229 return sock->ops->getname(sock, addr, addrlen, 1); 3230 } 3231 EXPORT_SYMBOL(kernel_getpeername); 3232 3233 int kernel_getsockopt(struct socket *sock, int level, int optname, 3234 char *optval, int *optlen) 3235 { 3236 mm_segment_t oldfs = get_fs(); 3237 char __user *uoptval; 3238 int __user *uoptlen; 3239 int err; 3240 3241 uoptval = (char __user __force *) optval; 3242 uoptlen = (int __user __force *) optlen; 3243 3244 set_fs(KERNEL_DS); 3245 if (level == SOL_SOCKET) 3246 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3247 else 3248 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3249 uoptlen); 3250 set_fs(oldfs); 3251 return err; 3252 } 3253 EXPORT_SYMBOL(kernel_getsockopt); 3254 3255 int kernel_setsockopt(struct socket *sock, int level, int optname, 3256 char *optval, unsigned int optlen) 3257 { 3258 mm_segment_t oldfs = get_fs(); 3259 char __user *uoptval; 3260 int err; 3261 3262 uoptval = (char __user __force *) optval; 3263 3264 set_fs(KERNEL_DS); 3265 if (level == SOL_SOCKET) 3266 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3267 else 3268 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3269 optlen); 3270 set_fs(oldfs); 3271 return err; 3272 } 3273 EXPORT_SYMBOL(kernel_setsockopt); 3274 3275 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3276 size_t size, int flags) 3277 { 3278 if (sock->ops->sendpage) 3279 return sock->ops->sendpage(sock, page, offset, size, flags); 3280 3281 return sock_no_sendpage(sock, page, offset, size, flags); 3282 } 3283 EXPORT_SYMBOL(kernel_sendpage); 3284 3285 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3286 { 3287 mm_segment_t oldfs = get_fs(); 3288 int err; 3289 3290 set_fs(KERNEL_DS); 3291 err = sock->ops->ioctl(sock, cmd, arg); 3292 set_fs(oldfs); 3293 3294 return err; 3295 } 3296 EXPORT_SYMBOL(kernel_sock_ioctl); 3297 3298 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3299 { 3300 return sock->ops->shutdown(sock, how); 3301 } 3302 EXPORT_SYMBOL(kernel_sock_shutdown); 3303